US9462599B2 - Wireless communication method utilizing a large-scale antenna array - Google Patents
Wireless communication method utilizing a large-scale antenna array Download PDFInfo
- Publication number
- US9462599B2 US9462599B2 US14/232,193 US201314232193A US9462599B2 US 9462599 B2 US9462599 B2 US 9462599B2 US 201314232193 A US201314232193 A US 201314232193A US 9462599 B2 US9462599 B2 US 9462599B2
- Authority
- US
- United States
- Prior art keywords
- user
- users
- signals
- base station
- domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000006854 communication Effects 0.000 title claims abstract description 48
- 238000004891 communication Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000011159 matrix material Substances 0.000 claims abstract description 35
- 230000008878 coupling Effects 0.000 claims abstract description 9
- 238000010168 coupling process Methods 0.000 claims abstract description 9
- 238000005859 coupling reaction Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims abstract description 9
- 230000005540 biological transmission Effects 0.000 claims description 74
- 238000012545 processing Methods 0.000 claims description 65
- 238000001514 detection method Methods 0.000 claims description 33
- 230000001052 transient effect Effects 0.000 claims description 14
- 239000000969 carrier Substances 0.000 claims description 10
- 230000001427 coherent effect Effects 0.000 claims description 8
- 238000012549 training Methods 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 7
- 239000013307 optical fiber Substances 0.000 claims description 6
- 238000012805 post-processing Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 4
- 230000003993 interaction Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 12
- 230000003595 spectral effect Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 238000010295 mobile communication Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- 230000002087 whitening effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H04W72/085—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- the present invention relates to a wireless communication system utilizing multiple antennas, in particular to a multi-user SDMA (Space Division Multiple Access) wireless communication system that utilizes a large-scale antenna array.
- SDMA Space Division Multiple Access
- Multi-antenna wireless transmission technology has become key technology in the 3GPP LTE (3rd Generation Partnership Project Long Term Evolution) for a new generation of mobile communication standard.
- the present invention provides a wireless communication technique that utilizes a large-scale antenna array.
- the object of the present invention is to provide a wireless communication method utilizing a large-scale antenna array, which can thoroughly exploit radio resources in spatial dimensions and support green broadband mobile communication.
- the present invention provides a wireless communication method that utilizes the beam domain characteristics of wireless channels and large-scale antenna array to achieve high-efficiency wireless communication.
- the method comprises:
- the antenna units are connected to a digital baseband processing unit for wireless communication via their sending-receiving RF unit, A-D/D-A converter unit, digital optical module, and optical fiber transmission channels, and large-scale beam coverage in the cell is implemented by digital domain multi-beam forming; alternatively, the large-scale antenna array can achieve large-scale beam coverage in the cell by means of an analog multi-beam forming network, and the beam domain sending-receiving signal ports can be connected to the digital baseband processing unit for wireless communication via A-D/D-A converter unit, digital optical module, and optical fiber transmission channels.
- a beam domain digital baseband processing and control system at the base station side comprises modules like beam processing units, user processing units, exchange processing unit, and space division multi-user scheduling unit, etc.
- Each beam processing unit accomplishes transmission post-processing or reception pre-processing of one or more beams
- each user processing unit accomplishes generation of frequency domain transmitted signals and processing of received signals of one or more users
- the exchange processing unit accomplishes signal interaction between the beam processing units and the user processing units
- the space division multi-user scheduling unit accomplishes scheduling of space division multiple users.
- the acquisition of said beam domain long-time channel information is accomplished in a channel detection process in the up links; in the up links, each user transmits detection signals intermittently, the detection signals from different users can be transmitted in an OFDM symbol in one time slot, different sub-carrier resources are used for the detection signals from different users, different antennas of each user transmit detection signals on different sub-carriers, the sub-carrier resources occupied by multiple antennae of each user are multiple sets of sub-carrier resources composed of adjacent sub-carriers, and each antenna uses sub-carriers with different numbers in these sub-carrier sets; on each beam of the base station, the beam domain channel parameters of each user are estimated according to the received detection signals, and thereby a channel characteristic mode energy coupling matrix (i.e., beam domain long-time channel information required for implementing multi-user space division scheduling) is calculated for each user.
- a channel characteristic mode energy coupling matrix i.e., beam domain long-time channel information required for implementing multi-user space division scheduling
- the beam domain user scheduling is accomplished by a space division multi-user scheduling processing module at the base station side according to long-time channel information, i.e., the users in the cell are scheduled with the aforesaid obtained beam domain long-time channel information of each user on a criterion of maximizing system sum-rate, so as to determine the multiple users that can communicate with the same time-frequency resource and the beams to be used by each user; after the scheduling, the transmission beams of the communicated users have no overlap among them, and the users can carry out SDMA transmission in the beam domain; the user scheduling can be accomplished with a greedy algorithm or simplified greedy algorithm, i.e., all users and beams are traversed, with consideration of beams available to the current user in the remaining beam set and with consideration of the influence of the addition of the user into the selected user set on the system and rate performance, and the user that has the highest contribution to the increase of the system and rate is selected to be added into the selected user set.
- long-time channel information i.e., the users
- the beam domain multi-user SDMA transmission utilizes the spatial angle resolution of the large-scale array antenna and the local characteristics of each user channel in the beam domain to differentiate users at different positions in different directions; different users use different beam sets to communicate with the base station with the same time-frequency resource, the beam sets have no overlap among the users, and the beams of each user don't exceed the limit of maximum beam; single-user MIMO links are formed between each user and associated multiple beam ports thereof; in the up links, the base station processes the received signals for the users on corresponding beam sets; in the down links, the base station transmits the signals for users on corresponding beam sets.
- the up-link transmission process for the users involves pilot frequency training and data transmission.
- Each user transmits pilot frequency signals with the given time-frequency resource, the pilot frequency signals don't have to be orthogonal among different users, and can be reused; for the same user, the pilot frequency signals shall be orthogonal among different antennas; the base station utilizes the received pilot frequency signals on the corresponding beams of users in conjunction with the received data signals to estimate transient channel information and correlation matrix of interference, and thereby carries out coherent reception processing for the data signals.
- the down-link transmission process for each user involves pilot frequency training and data transmission.
- the base station transmits pilot frequency signals with the given time-frequency resource, the pilot frequency signals for each user are mapped to different beam sets for transmission; in addition, the pilot frequency signals don't have to be orthogonal among different users, and can be reused; for the same user, the pilot frequency signals shall be orthogonal among different beams; each user utilizes the received pilot frequency signals in conjunction with the received data signals to estimate transient channel information and correlation matrix of interference, and thereby carries out coherent reception processing for the data signals.
- FIG. 1 is a schematic diagram of configuration and beam coverage of a large-scale antenna array at base station side.
- FIG. 2 shows schematic diagrams of the composition of a base station system: (a) schematic diagram of a base station system that utilizes an analog multi-beam forming network; (b) schematic diagram of a base station system that utilizes digital domain multi-beam forming.
- FIG. 3 is a schematic diagram of a beam domain digital baseband processing and control system.
- FIG. 4 is a schematic diagram of resource occupation for acquiring beam domain long-time channel information for each user.
- FIG. 5 shows comparison between the up-link transmission scheme and the conventional scheme: (a) transmission model of conventional MAC (Multiple Access Channel); (b) transmission model of the scheme in the present invention.
- FIG. 6 shows comparison between the down-link transmission scheme and the conventional scheme: (a) transmission model of conventional BC (Broadcast Channel); (b) transmission model of the scheme in the present invention.
- FIG. 1 is a schematic diagram of configuration and beam coverage of a large-scale antenna array at base station side.
- the base station of a single cell is considered in the diagram.
- the large-scale antenna array of the base station is deployed on the building of the base station.
- the large-scale antenna array configured for a base station has a plurality of sectors, and each sector comprises a large quantity of antenna units. If the antenna units employ omni-antennae or 120° fan antennae, the interval between adjacent antenna units can be designed as 1 ⁇ 2 ⁇ or 1/ ⁇ square root over (3) ⁇ , where, ⁇ is carrier wavelength.
- the large-scale antenna array can be a circular array or in any other array structure that can create large-scale beam coverage and is easy to install.
- the antenna units are connected to a digital baseband processing unit via their sending-receiving RF unit, A-D/D-A converter unit, digital optical module and optical fiber transmission channels, and large-scale beam coverage in the cell is implemented by means of digital domain multi-beam forming.
- the large-scale antenna array can implement large-scale beam coverage in the cell by means of an analog multi-beam forming network, and the beam sending-receiving signal ports can be connected to the digital baseband processing unit via sending-receiving RF unit, A-D/D-A converter unit, digital optical module, and optical fiber transmission channels respectively.
- the large-scale beam coverage is illustrated with a large number of dotted line circles in FIG. 1 .
- the cell covered by the base station is airspace sub-divided by means of a large number of beams, so as to fully exploit and utilize wireless resources in spatial dimensions.
- FIG. 2( a ) is a schematic diagram of composition of a base station system that utilizes an analog multi-beam forming network.
- the base station system comprises four parts: a one-dimensional or two-dimensional large-scale antenna array, an analog multi-beam forming network, an analog beam sending-receiving processing array, and a beam domain digital baseband processing and control unit.
- the large-scale antenna array can be arranged in different shapes, according to the quantity and requirement for easy installation. In the simplest form, the array can be a one-dimensional linear uniform antenna array; or, the array can be a two-dimensional square array or circular array.
- the multi-beam forming network mainly achieves transformation of spatial domain signals and beam domain signals, so that the antenna array can concentrate energy to transmit signals in different spatial directions or receive signals from different spatial directions; different beams correspond to different signal transmission and receiving directions and different beam coverage areas shown in FIG. 1 , so as to achieve the purpose of differentiating users at different positions.
- the analog sending-receiving processing unit for each beam comprises carrier modulation/demodulation module, A-D/D-A converter module, and digital optical sending-receiving module, and all these modules are controlled by a control unit to switch on/off.
- the communication with users is accomplished with some beams, and a large number of beams are in idle state. Turning off the sending-receiving processing modules in idle state can reduce energy consumption.
- FIG. 2( b ) is a schematic diagram of composition of a base station system that utilizes digital domain multi-beam forming.
- the base station system comprises four parts: a one-dimensional or two-dimensional large-scale antenna array, an analog sending-receiving processing array, a digital domain multi-beam forming unit, and a beam domain digital baseband processing and control unit.
- the analog multi-beam forming network shown in FIG. 2( a ) is replaced with a digital domain multi-beam forming unit, to implement multi-beam forming in digital domain.
- digital-domain multi-beam forming can be implemented by means of DFT (Discrete Fourier Transform). Different from FIG.
- DFT Discrete Fourier Transform
- the analog sending-receiving processing units here are not in one-to-one correspondence to the beam channels.
- the sending-receiving processing units can't be turned off according to the beam utilization condition.
- FIG. 3 is a schematic diagram of a beam domain digital baseband processing and control system, which mainly comprises modules like beam processing unit, user processing unit, a switching processing unit, and a space division multi-user scheduling unit.
- Each beam processing unit accomplishes transmission post-processing or reception pre-processing of one or more beams, wherein, the transmission post-processing includes time-frequency resource mapping and OFDM (Orthogonal Frequency Division Multiplexing) modulation of signals transmitted by users on the corresponding beam; the reception pre-processing includes synchronization, OFDM demodulation, channel detection, and user signal extraction on the corresponding beams.
- the product of the number of beam processing units M′ shown in FIG. 3 and the number of beams processed by each beam processing unit is the number of beams M in the system.
- Each user processing unit accomplishes generation of signals transmitted in frequency domain and processing of received signals for one or more users, wherein, the generation of transmitted signals includes transmission processing such as channel encoding and modulation of symbol mapping, etc.; the processing of received signals includes channel estimation, signal detection, channel decoding, and self-adapting link control, etc.
- the product of the number of use processing units U′ shown in FIG. 3 and the number of users processed by each user processing unit is the number of users U in the cell.
- the switching unit accomplishes signal interaction between the beam processing units and the user processing units.
- the space division multi-user scheduling unit accomplishes scheduling of space division multi-users, selects the users that can communicate with the same time-frequency resource according to the statistic channel information obtained by channel detection, and allocates one or more corresponding beams for communication to each user.
- the acquisition of beam domain long-time channel information is accomplished through a channel detection process in up links.
- each user transmits detection signals intermittently, the detection signals from all users can be transmitted in an OFDM symbol in a time slot, the detection signals from different users use different sub-carrier resources, different antennas of each user transmit detection signals on different sub-carriers, the sub-carrier resources occupied by multiple antennas of each user are multiple sets of sub-carrier resources composed of adjacent sub-carriers, and each antenna uses sub-carriers with different numbers in these sub-carrier sets.
- the beam domain channel parameters are estimated for each user according to the received detection signals, and thereby the characteristic mode energy coupling matrix is calculated for each user channel.
- the characteristic mode energy coupling matrix is beam domain long-time channel information required for implementing multi-user space division scheduling.
- FIG. 4 is a schematic diagram of resource occupation for acquiring beam domain long-time channel information for each user, wherein, the horizontal direction represents time, the vertical direction represents OFDM sub-carrier, and different slash shadows represent the time-frequency resources occupied for acquiring long-time channel information for different users.
- the number of sending-receiving antennas configured for each user is denoted as N
- the number of users in the cell is denoted as U
- the number of sub-carrier sets used by each user is denoted as N S ;
- set K N S NU.
- the number of time slots in one statistic period is denoted as ⁇ , and the label is t ⁇ 1, 2, . . . , ⁇ .
- the characteristic mode energy coupling matrix of the up channel of each user is obtained through the following channel detection process:
- Step 1 calculate the up-link channel parameters in beam domain for each user, wherein, the channel parameter of antenna n of user u on sub-carrier k in time slot t is calculated with the following formula:
- ⁇ u , n , t , k up 1 x u , n , k ⁇ y u , n , t , k ( 1 )
- y u,n,t,k is the vector of received signals in the corresponding beam domain
- the element b is the received signal on beam b.
- Step 2 calculate the transmitting correlation matrix of each user:
- Step 5 calculate the characteristic mode energy coupling matrix of the up channel of each user:
- ⁇ is the Hadamard product of the matrix, and the superscript * represents conjugation.
- the users can carry out SDMA transmission in the beam domain.
- the user scheduling problem can be accomplished with a greedy algorithm or simplified greedy algorithm. Based on the criterion of maximizing system sum-rate, on the premise of meeting the limit of beams number of each user and no overlap among the transmission beams of different users, traverse all users and beams, with consideration of beams available for the current user in the remaining beam set and the influence of addition of the user into the selected user set on the system performance, select the user that will make the highest contribution to the increase of system sum-rate and add the user into the selected user set; terminate the scheduling if the sum-rate decreases or when all users have been searched.
- the set of all users in the cell is denoted as U ⁇ ⁇ 1, 2, . . . , U ⁇
- the set of users selected for SDMA communication is denoted as U S ⁇ u 1 , u 2 , . . .
- R(U s , B u 1 , B u 2 , . . . , B u S ) can be obtained by the following approximate calculation:
- R(U s , B u 1 , B u 2 , . . . , B u s ) can be obtained by the following approximate calculation:
- the system sum-rate can be calculated as the sum of sum-rate of up link and sum-rate of down link, or a weighted sum of them.
- Step 2 For each user in the remaining user set U n , select an optimal transmission beam set B i from the free beam set B n in a way that the system sum-rate is maximum after the user is added into the selected user set; the beam selection formula is:
- B i arg ⁇ ⁇ max B i ⁇ B n ⁇ R ⁇ ( U s ⁇ ⁇ i ⁇ , B u 1 , ... ⁇ , B u s , B i ) , i ⁇ U n ( 11 )
- Step 3 calculate the system sum-rate after the users in the remaining user set U n are added into the selected user set with their optimal transmission beam set B i respectively:
- R U s ,t R ( U s ⁇ i ⁇ ,B u 1 , . . . ,B u s ,B i ), i ⁇ U n (12) Select the users that enable maximum sum-rate.
- Step 5 terminate scheduling, the selected user set is U S , the scheduled number of users is S, the beam set for user communication is Bi, i ⁇ U S .
- Step 2 select an optimal transmission beam B u for user u from the free beam set B n in a way that the system sum-rate is maximum after the user is added into the user scheduling set U S ; the beam selection formula is:
- Step 3 calculate the system sum-rate S U t ,n after the user is added into the user scheduling set U S .
- R U s ,u R ( U s ⁇ u ⁇ ,B u 1 , . . .
- Step 4 If u ⁇ U, return to step 2; otherwise, turn to step 5. Step 5: terminate scheduling, the selected user set is U S , the scheduled number of users is S, the beam set for user communication is Bi, i ⁇ U S .
- FIG. 5 shows the comparison between the up-link transmission and the conventional transmission scheme.
- FIG. 5( a ) shows the model of conventional MAC channel transmission, wherein, the base station receives the superposed signals of all users in space domain, and the reception processing needs joint processing. As numbers of the users and sending-receiving antennas increase, the pilot frequency overhead and system complexity will increase significantly, and the channel information acquisition will be a bottleneck.
- FIG. 5( b ) shows the up-link model of beam domain multi-user SDMA transmission scheme. Utilizing user separability in the beam domain, each user communicates with the base station on selected beams. The transmitted signals from each user include pilot frequency signals and data signals; pilot frequency signals from different users don't have to be orthogonal to each other. Thus, the bottleneck problem of channel information acquisition is solved, and the base station receives signals from different users on different beam sets; therefore, processing complexity is lower.
- the signals of user i received by the base station on beam set B i are:
- x i up is the beam domain transmitted signals of user i
- p i up is the transmitting power
- n i is Additive White Gaussian Noise (AWGN)
- n i ′ is the sum of interfering signals of other users on the beam of the user and n 1 .
- the base station only utilizes the received signals y i up on beam B i , and doesn't need to utilize signals received on other beams.
- FIG. 6 shows the comparison between the down-link transmission and the conventional transmission scheme.
- the conventional BC channel transmission is shown in FIG. 6( a ) .
- the base station transmits superposed signals of all users, and the transmitting end usually has to know the transient channel status information. As the number of users and sending-receiving antennas increase, the channel information acquisition will become a bottleneck, and the transmission processing will be very complex.
- FIG. 6( b ) shows the down-link model of beam domain multi-user SDMA transmission scheme.
- the base station transmits the signals for the users with the corresponding beam sets, which is to say, the beam set of each user is only used to transmit the signals for the user; the beam sets have no overlap among the users, and the complexity of transmission processing is lower; the pilot frequency signals of the users don't have to be orthogonal to each other; therefore, the bottleneck problem of down-link channel information acquisition is solved.
- the signals received by user i are:
- x i down is the beam domain transmitted signals for user i
- P i down is the transmitting power
- n i is AWGN
- n′ i is the sum of the interfering signals of other users and n i .
- the received signals y i down are used, while n i ′ is treated as color interference noise.
- the up-link transmission is equivalent to a plurality of single-user MIMO links.
- the scheduled users communicate with the base station with the same time-frequency resource.
- the entire transmission process comprises pilot frequency training and data transmission.
- the base station receives signals from the users on corresponding beams on the basis of the scheduling result, utilizes the received pilot frequency signals in conjunction with received data signals to estimate transient channel information and correlation matrix of interference, and utilizes the correlation matrix to carry out coherent reception processing for the data signals.
- the transmission process is described as follows:
- the base station carries out coherent detection of transmitted signals x u up with the transient information (K u up ) ⁇ 1/2 [H u up ] B u of equivalent channel on beam B u and received signals r u up .
- the down link transmission is equivalent to a plurality of single-user MIMO links.
- the base station communicates with the scheduled users with the same time-frequency resource in the down link.
- the down-link transmission process comprises pilot frequency training and data transmission.
- the base station maps the pilot frequency signals and data signals for each user to the corresponding beam set for transmission; each user uses the received pilot frequency signals in conjunction with the received data signals to estimate transient channel information and correlation matrix of interference, and finally to carry out coherent reception processing.
- the transmission process is described as follows:
- the user carries out coherent detection of transmitted signals x u down with the transient information (K u down ) ⁇ 1/2 [H u down ] B u of equivalent channel on beam B u and received signal r u down .
- the transmission scheme is applicable to FDD and TDD systems.
- the up-link and down-link use different frequencies; therefore, the transient channel information of up-link is different from that of down-link, and channel information has to be estimated separately, i.e., transient channel information and correlation matrix of interference have to be estimated separately for up-link and down-link;
- channel estimation can be carried out separately for up-link and down-link, or the pilot frequency signals can be transmitted in up-link or down-link only and the channel information of up-link and down-link can be obtained by utilizing the reciprocity between up-link and down-link; however, the interference in up-link is different from the interference in down link; therefore, the correlation matrix of interference has to be estimated separately for up-link and down-link.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
- a. deploying a large-scale antenna array at the base station side for wireless communication, wherein, the antenna array is composed of tens of antenna units arranged at an interval at the magnitude of half wavelength, can be an one-dimensional or two-dimensional array, and can form tens of beam coverage over the area covered by the base station;
- b. accomplishing beam domain division of spatial resources at the base station side with an analog multi-beam forming network or a digital domain multi-beam forming method, wherein, the base station carries out wireless communication with multiple users with the same time-frequency resource, and the communication process is implemented in the beam domain;
- c. each user uses a different time-frequency resource to transmit detection signals; the base station obtains the beam domain long-time channel information of each user according to the received detection signals;
- d. accomplishing user scheduling in the beam domain with the beam domain long-time channel information, to determine users that can communicate with the same time-frequency resource and allocate an corresponding beam set for each user;
- e. Each user communicates with the base station on the selected beam set, wherein, the beam sets occupied by the users communicating with the same time-frequency resource have no overlap among them; in that way, multi-user SDMA transmission in the beam domain is achieved;
- f. in the up links, the users communicating with the same time-frequency resource transmits pilot frequency signals and data signals simultaneously; and, the base station receives and deals with the data from the users on different beam sets; wherein, pilot frequency signals from different users don't have to be orthogonal to each other, and the pilot frequency can be reused among the space division users;
- g. in the down links, the base station transmits signals simultaneously, including pilot frequency signals and data signals, to the users on selected beam sets with the same time-frequency resource; and, the users receives and deals with the data; wherein, pilot frequency signals for different users don't have to be orthogonal to each other, and the pilot frequency can be reused among the space division users.
- 1. Each user communicates with the base station in the beam domain, which can be adaptive to the airspace locality of the wireless channels; thus, the power gain and multi-path diversity gain provided by the large-scale antenna array can be obtained, and therefore the power efficiency and transmission reliability can be improved.
- 2. The beam resources used by each user can be determined with the long-time user channel information in the beam domain, and multi-user SDMA transmission can be implemented with the same time-frequency resource; therefore, the spectral efficiency can be greatly improved, and the SDMA transmission is applicable to both TDD (Time Division Duplexing) system and FDD (Frequency Division Duplexing) system.
- 3. Multi-user MIMO links are divided into single-user MIMO links, and each user communicates with a few beams only; therefore, the order of complexity for implementation in the physical layer is greatly decreased.
- 4. The required long-time information of each user channel in the beam domain can be obtained by means of sparse detection signals, and the required transient channel information can be obtained by means of specific pilot frequency signals with the corresponding beam resource; therefore, the cost for obtaining channel information can be greatly reduced.
- 5. The system solution in which each user communicate with the base station in a large-scale beam domain is helpful for implementation of wireless positioning with high accuracy and can improve wireless communication security.
Where, yu,n,t,k is the vector of received signals in the corresponding beam domain, and the element b is the received signal on beam b. The channel parameters of N antennas of user u form the following channel matrix:
Ĝ u,t,k up =[ĝ u,1,t,k up ,ĝ u,2,t,k up , . . . ,ĝ u,N,t,k up] (2)
Where, superscript H represents conjugate transposition.
R u ut =B uΛu V u H (4)
to obtain the transmitting characteristic matrix Vu of each user, where, Λu is a diagonal matrix composed of the Eigen values.
H u,t,k up =G u,t,k up V u (5)
Where, Per (•) is matrix permanent, Ω1,i=[Θi,1, . . . , Θi,i−1, Θ1,i, Θi,i+1, . . . , Θi,S], Ω2,i=[Θi,1, . . . , Θi,i−1, Θi,i+1, . . . , Θi,S], and
Alternatively, R(Us, Bu
For the down link, suppose the power of frequency domain QAM modulation symbol transmitted by the base station for user u′ is Pu′ down, and the noise variance in the received signals of user u is σu 2, then the ratio of the power of modulation symbol transmitted by the base station for user u′ to the received noise variance of user u is ρu,u′ down=Pu′ down/σu 2, and can R(Us, Bu
Where Ω3,t=[Θi,1, . . . , Θi,i−1, Θi,1, Θi,i+1, . . . , Θi,S], Ω4,t=[i,1, . . . , Θi,i−1, Θi,i+1, . . . , Θt,S], and Θi,j=ρu
R U
Select the users that enable maximum sum-rate.
Step 2: select an optimal transmission beam Bu for user u from the free beam set Bn in a way that the system sum-rate is maximum after the user is added into the user scheduling set US; the beam selection formula is:
Step 3: calculate the system sum-rate SU
R U
If RU
Step 4: If u≦U, return to
Step 5: terminate scheduling, the selected user set is US, the scheduled number of users is S, the beam set for user communication is Bi, iεUS.
Where, xi up is the beam domain transmitted signals of user i, pi up is the transmitting power, ni is Additive White Gaussian Noise (AWGN), and ni′ is the sum of interfering signals of other users on the beam of the user and n1. During detection and decoding for the user, the base station only utilizes the received signals yi up on beam Bi, and doesn't need to utilize signals received on other beams.
Where, xi down is the beam domain transmitted signals for user i, Pi down is the transmitting power, ni is AWGN, and n′i is the sum of the interfering signals of other users and ni. During detection and decoding for the user, the received signals yi down are used, while ni′ is treated as color interference noise.
- 1) In the up links, the users transmit pilot frequency training signals with the given time-frequency resource; the pilot frequency signals don't have to be orthogonal to each other among different users, and can be reused; however, pilot frequency signals of the same user among different antennas must be orthogonal.
- 2) The users transmit data signals with the time-frequency resource that is not pilot frequency.
- 3) On the basis of the user scheduling result, the base station carries out channel estimation for user u on beam Bu, to obtain transient channel information [Hu up]B
u in the beam domain and a correlation matrix of interference Ku up=E{nu up(nu up)H}. - 4) The base station receives the signals yu up from user u on beam Bu, carries out whitening treatment for the received signals with the correlation matrix of interference Ku up, to obtain the received signals equivalent to white noise channel:
r u up=(K u up)−1/2 y u up (18)
- 1) The base station transmits pilot frequency training signals with the given time-frequency resource, and maps the pilot frequency signals for different users to different beam sets for transmission; the pilot frequency signals don't have to be orthogonal among different users, and can be reused; however, the pilot frequency signals of the same user among different beams must be orthogonal.
- 2) The base station maps the data signals of each user to corresponding beams for transmission with the time-frequency resource that is not pilot frequency.
- 3) The user u uses the received pilot frequency signals in conjunction with the received data signals to estimate the channel [Hu down]B
u on beam Bu, to obtain the transient channel information [Hu down]Bu in the beam domain and correlation matrix of interference Ku down=E{nu down(nu down)H}, - 4) The user u receives signal yu down and carries out whitening processing for the received signals with the correlation matrix of interference Ku down, to obtain received signals equivalent to white noise channel,
r u down=(K u down)−1/2 y u down (19)
Claims (8)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210394910.3 | 2012-10-17 | ||
CN201210394910.3A CN102916735B (en) | 2012-10-17 | 2012-10-17 | Utilize the wireless communications method of large-scale antenna array |
CN201210394910 | 2012-10-17 | ||
PCT/CN2013/074435 WO2014059774A1 (en) | 2012-10-17 | 2013-04-19 | Wireless communication method utilizing large scale aerial array |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150334726A1 US20150334726A1 (en) | 2015-11-19 |
US9462599B2 true US9462599B2 (en) | 2016-10-04 |
Family
ID=47614982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/232,193 Active US9462599B2 (en) | 2012-10-17 | 2013-04-19 | Wireless communication method utilizing a large-scale antenna array |
Country Status (3)
Country | Link |
---|---|
US (1) | US9462599B2 (en) |
CN (1) | CN102916735B (en) |
WO (1) | WO2014059774A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9820166B2 (en) | 2014-06-19 | 2017-11-14 | Huawei Technologies Co., Ltd. | Base station and beam coverage method |
Families Citing this family (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102916735B (en) | 2012-10-17 | 2016-06-08 | 东南大学 | Utilize the wireless communications method of large-scale antenna array |
CN103298124B (en) * | 2013-06-14 | 2016-06-29 | 东南大学 | Extensive mimo system pilot distribution method based on spatial orthogonality |
CA2935464C (en) * | 2013-12-31 | 2019-05-28 | Huawei Technologies Co., Ltd. | Method for acquiring channel information, apparatus, and system |
CN104767565A (en) * | 2014-01-02 | 2015-07-08 | 中兴通讯股份有限公司 | Multiple-input Multiple-output (MIMO) light communication method, MIMO light communication device and MIMO light communication system |
US9985701B2 (en) * | 2014-05-07 | 2018-05-29 | National Instruments Corporation | Signaling and frame structure for massive MIMO cellular telecommunication systems |
KR102004383B1 (en) * | 2014-07-25 | 2019-07-26 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Communications device and method in high-frequency system |
US10211891B2 (en) * | 2014-11-21 | 2019-02-19 | Futurewei Technologies, Inc. | System and method for multi-user multiple input multiple output communications |
CN104467930B (en) * | 2014-12-09 | 2017-07-11 | 山东大学 | Multiuser MIMO user choosing method based on Space Angle |
CN105992374B (en) * | 2014-12-09 | 2019-09-27 | 山东大学 | Based on L2The multi-user MIMO system user scheduling method of-Hausdorff distance |
CN104579612A (en) * | 2015-01-12 | 2015-04-29 | 国家电网公司 | TD-LTE-based multi-antenna self-adaptation transmission method of electric power telecommunication system |
CN104702324B (en) * | 2015-03-17 | 2018-09-28 | 东南大学 | Extensive MIMO down link self adaption transmission methods |
EP3295581B1 (en) | 2015-05-14 | 2021-02-17 | Telefonaktiebolaget LM Ericsson (publ) | Measurement procedures for drs with beamforming |
CN105007129A (en) * | 2015-06-16 | 2015-10-28 | 东南大学 | Multi-beam satellite mobile communication system traversal capacity estimation and user scheduling |
CN105049383A (en) * | 2015-07-01 | 2015-11-11 | 东南大学 | FDD large-scale MIMO system downlink training sequence design method |
DE102015111638B4 (en) * | 2015-07-17 | 2023-01-05 | Apple Inc. | beam shaping device |
CN106559361B (en) * | 2015-09-17 | 2019-08-09 | 清华大学 | The channel estimation methods and device of extensive multi-input multi-output antenna system |
US10205491B2 (en) * | 2015-09-28 | 2019-02-12 | Futurewei Technologies, Inc. | System and method for large scale multiple input multiple output communications |
WO2017062050A1 (en) * | 2015-10-07 | 2017-04-13 | Intel IP Corporation | Dynamically beamformed control channel for beamformed cells |
KR102188747B1 (en) * | 2015-10-12 | 2020-12-08 | 에스케이텔레콤 주식회사 | Methods and apparatus for wireless communication on hybrid beamforming |
CN105281046A (en) * | 2015-11-16 | 2016-01-27 | 中国电子科技集团公司第十研究所 | Whole airspace multi-target measurement and control communication system |
CN105515623B (en) * | 2015-11-26 | 2019-03-01 | 华为技术有限公司 | A kind of beam allocation method and base station |
WO2017113301A1 (en) * | 2015-12-31 | 2017-07-06 | 华为技术有限公司 | Beamforming method, receiver, transmitter and system |
CN106982184B (en) * | 2016-01-15 | 2020-11-10 | 中兴通讯股份有限公司 | Method and device for realizing transmission of measurement reference symbols |
CN108702186B (en) * | 2016-02-18 | 2021-09-03 | 梁平 | Large MIMO channel simulator |
CN106060973B (en) * | 2016-07-08 | 2019-07-09 | 上海华为技术有限公司 | A kind of method, apparatus of signal processing and base station |
CN106027131A (en) * | 2016-07-25 | 2016-10-12 | 清华大学 | Base station and beam forming method |
US10498504B2 (en) * | 2016-08-12 | 2019-12-03 | Futurewei Technologies, Inc. | System and method for user equipment operations management |
WO2018039527A1 (en) * | 2016-08-25 | 2018-03-01 | Skylark Wireless, Llc | Efficient channel estimation for implicit mu-mimo |
WO2018052344A1 (en) * | 2016-09-13 | 2018-03-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Mu-mimo communication in systems with antenna subarrays |
KR20190056411A (en) * | 2016-09-29 | 2019-05-24 | 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 | Signal sending method, terminal device and network device |
US10536202B2 (en) * | 2016-09-30 | 2020-01-14 | Rkf Engineering Solutions Llc | Hybrid analog/digital beamforming |
CN106341216B (en) * | 2016-10-10 | 2019-07-12 | 东南大学 | A kind of wireless communication link adaptive approach and uplink downlink adaptive approach |
CN108011657A (en) * | 2016-10-27 | 2018-05-08 | 中国移动通信有限公司研究院 | Wave beam sending method, device and base station in a kind of extensive antenna system |
WO2018076362A1 (en) * | 2016-10-31 | 2018-05-03 | Southeast University | Systems and methods for wireless communication with per-beam signal synchronization |
CN107040316A (en) * | 2016-12-22 | 2017-08-11 | 华中科技大学 | A kind of inexpensive spatial coherence photoreceiver of multiple aperture and signal receiving demodulation method |
CN107070581B (en) * | 2016-12-29 | 2019-10-25 | 上海华为技术有限公司 | A kind of interference elimination method and base station |
CN108924929B (en) * | 2017-03-22 | 2021-10-15 | 北京紫光展锐通信技术有限公司 | Beam recovery method, base station and user terminal |
US11206654B2 (en) * | 2017-05-17 | 2021-12-21 | Lg Electronics Inc. | Method for receiving downlink channel in wireless communication system and device therefor |
CN109391303B (en) * | 2017-08-11 | 2021-08-03 | 华为技术有限公司 | Method and device for processing data |
CN109429311B (en) * | 2017-08-24 | 2022-06-24 | 珠海市魅族科技有限公司 | Communication method and communication device of wireless network |
CN107547130B (en) * | 2017-09-15 | 2019-12-10 | 东南大学 | Beam-domain optical wireless communication method and system |
WO2019095276A1 (en) | 2017-11-17 | 2019-05-23 | 华为技术有限公司 | Data transmission method and apparatus |
CN109963291B (en) * | 2017-12-26 | 2021-09-28 | 中国移动通信集团广东有限公司 | Coverage area self-adaptive adjustment method and base station |
CN110267344B (en) * | 2018-03-12 | 2023-04-07 | 上海朗帛通信技术有限公司 | Method and device used in user equipment and base station for wireless communication |
CN108990167B (en) * | 2018-07-11 | 2021-09-07 | 东南大学 | Machine learning-assisted large-scale MIMO downlink user scheduling method |
CN108964729B (en) * | 2018-09-20 | 2021-08-17 | 南通大学 | Sea area large-scale antenna planar array beam selection and user scheduling method |
CN109670140A (en) * | 2018-12-04 | 2019-04-23 | 西安电子科技大学 | A kind of array antenna Electrical Analysis method based on array element feature mode |
CN109687897B (en) * | 2019-02-25 | 2021-12-28 | 西华大学 | Superposition CSI feedback method based on deep learning large-scale MIMO system |
US11888517B2 (en) * | 2019-04-25 | 2024-01-30 | Sew-Eurodrive Gmbh & Co. Kg | Method for a data transmission between a first and a second module and system including mobile parts for carrying out the method |
CN110337145B (en) * | 2019-06-05 | 2020-12-01 | 浙江大学 | User cluster grouping method based on angle domain millimeter wave non-orthogonal multiple access system and application |
CN112243242B (en) * | 2019-07-17 | 2022-04-05 | 大唐移动通信设备有限公司 | Large-scale antenna beam configuration method and device |
CN110365379B (en) * | 2019-07-23 | 2021-09-07 | 东南大学 | Large-scale antenna system joint code division and beam division multiple access method |
CN112311437B (en) * | 2019-07-31 | 2023-04-18 | 徐立 | Receiving method of analog-digital mixed multi-beam receiving array with cylindrical omnibearing coverage |
CN112311436B (en) * | 2019-07-31 | 2023-02-24 | 徐立 | Receiving method of two-dimensional analog multi-beam receiving array |
CN112311433B (en) * | 2019-07-31 | 2023-03-14 | 徐立 | Analog-digital mixed multi-beam forming method and receiving method thereof in receiving array |
CN112311426B (en) * | 2019-07-31 | 2023-06-02 | 徐立 | Two-dimensional simulation multi-beam receiving array system |
CN112671440B (en) * | 2019-10-16 | 2024-06-28 | 王晋良 | Beam alignment method of antenna array, multi-beam transmission system and device |
US20210226687A1 (en) * | 2020-01-22 | 2021-07-22 | Qualcomm Incorporated | Beam selection using a window for precoding |
US11362719B2 (en) * | 2020-04-01 | 2022-06-14 | Corning Research & Development Corporation | Multi-level beam scheduling in a wireless communications circuit, particularly for a wireless communications system (WCS) |
CN111669210B (en) * | 2020-06-01 | 2022-08-09 | 西安交通大学 | Multi-user timing synchronization method based on large-scale antenna space-time alignment |
CN114765311A (en) | 2020-08-27 | 2022-07-19 | 康普技术有限责任公司 | Base station antenna system |
DE20946540T1 (en) * | 2020-08-27 | 2022-07-07 | Commscope Technologies Llc | BEAM-FORMING ANTENNAS WITH COMMON RADIO PORTS ACROSS MULTIPLE COLUMNS |
US11728875B2 (en) | 2020-11-25 | 2023-08-15 | Corning Research & Development Corporation | Selective radio frequency (RF) reference beam radiation in a wireless communications system (WCS) based on user equipment (UE) locations |
CN113965233B (en) * | 2021-10-19 | 2022-07-26 | 东南大学 | Multi-user broadband millimeter wave communication resource allocation method based on deep learning |
CN114449650A (en) * | 2021-12-13 | 2022-05-06 | 西安电子科技大学 | Single base station positioning method based on 5G |
CN114599045B (en) * | 2022-04-19 | 2024-01-30 | 北京邮电大学 | Multi-cell cooperation beam selection and management method in user mobile scene |
US20230362587A1 (en) * | 2022-05-06 | 2023-11-09 | Hewlett Packard Enterprise Development Lp | Location identification of access points in a network |
CN114727338B (en) * | 2022-06-09 | 2022-09-13 | 杭州纵横通信股份有限公司 | Link establishment method for wireless communication system |
CN115426015B (en) * | 2022-07-14 | 2023-12-08 | 中信科移动通信技术股份有限公司 | Beam management method and system |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090268685A1 (en) * | 2008-04-29 | 2009-10-29 | Qualcomm Incorporated | Assignment of ack resource in a wireless communication system |
US20090279500A1 (en) * | 2008-03-27 | 2009-11-12 | Qualcomm Incorporated | Methods of sending control information for users sharing the same resource |
US20100008331A1 (en) * | 2008-07-09 | 2010-01-14 | Qinghua Li | Bandwidth allocation base station and method for allocating uplink bandwidth using sdma |
US20100189189A1 (en) * | 2007-07-05 | 2010-07-29 | Panasonic Corporation | Radio communication system, radio communication apparatus, and radio communication method |
CN101882952A (en) | 2010-06-24 | 2010-11-10 | 东南大学 | Space division multiple address transmission method of statistical characteristic mode |
US20120020319A1 (en) * | 2007-08-20 | 2012-01-26 | Yang Song | Cooperative mimo among base stations with low information interaction, a method and apparatus for scheduling the same |
US20120027108A1 (en) * | 2010-07-27 | 2012-02-02 | Young Jun Hong | Method and apparatus for coordinated multi-point communication for each sub-band based on long-term channel state information |
CN102710309A (en) | 2012-05-31 | 2012-10-03 | 东南大学 | Synchronization signal transmission method applied to large-scale antenna array |
CN102916735A (en) | 2012-10-17 | 2013-02-06 | 东南大学 | Wireless communication method making use of large-scale antenna array |
US20130034040A1 (en) * | 2010-04-20 | 2013-02-07 | Telecom Italia, S.P.A. | Method and system for wireless communications, corresponding network and computer program product |
US20130083770A1 (en) * | 2010-06-18 | 2013-04-04 | Kyocera Corporation | Control channel architecture with control information distributed over multiple subframes |
US20130089068A1 (en) * | 2010-06-18 | 2013-04-11 | Kyocera Corporation | Control channel architecture with control information distributed over multiple subframes on different carriers |
US20130130690A1 (en) * | 2010-06-09 | 2013-05-23 | Fujitsu Limited | Handover procedures and signalling for planned cell outage in wireless cellular networks |
US20130272211A1 (en) * | 2012-04-13 | 2013-10-17 | Qualcomm Incorporated | Scheduling algorithms for ieee 802.11 multi-user (mu) multiple-input multiple-output (mimo) communication systems |
US20130272263A1 (en) * | 2012-04-16 | 2013-10-17 | Samsung Electronics Co., Ltd. | Hierarchical channel sounding and channel state information feedback in massive mimo systems |
US20130322280A1 (en) * | 2012-06-05 | 2013-12-05 | Samsung Electronics Co., Ltd. | Uplink channel sounding and channel state information estimation in mobile communication systems with multiple antennas |
US20140044044A1 (en) * | 2012-08-13 | 2014-02-13 | Samsung Electronics Co., Ltd. | Method and apparatus to support channel refinement and multi-stream transmission in millimeter wave systems |
US9048917B1 (en) * | 2012-08-15 | 2015-06-02 | Marvell International Ltd. | Method and apparatus for estimating noise covariance in a wireless network |
US20160006122A1 (en) * | 2012-07-31 | 2016-01-07 | Samsung Electronics Co., Ltd. | Communication method and device using beamforming in wireless communication system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100975720B1 (en) * | 2003-11-13 | 2010-08-12 | 삼성전자주식회사 | Method and system for dynamic channel assignment and assignment of pilot channel in mimo-ofdm/ sdm system |
CN101800584B (en) * | 2009-02-11 | 2013-07-10 | 电信科学技术研究院 | Space division multiple access method and device for indoor distributed system |
-
2012
- 2012-10-17 CN CN201210394910.3A patent/CN102916735B/en active Active
-
2013
- 2013-04-19 US US14/232,193 patent/US9462599B2/en active Active
- 2013-04-19 WO PCT/CN2013/074435 patent/WO2014059774A1/en active Application Filing
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100189189A1 (en) * | 2007-07-05 | 2010-07-29 | Panasonic Corporation | Radio communication system, radio communication apparatus, and radio communication method |
US20120020319A1 (en) * | 2007-08-20 | 2012-01-26 | Yang Song | Cooperative mimo among base stations with low information interaction, a method and apparatus for scheduling the same |
US20090279500A1 (en) * | 2008-03-27 | 2009-11-12 | Qualcomm Incorporated | Methods of sending control information for users sharing the same resource |
US20090268685A1 (en) * | 2008-04-29 | 2009-10-29 | Qualcomm Incorporated | Assignment of ack resource in a wireless communication system |
US20100008331A1 (en) * | 2008-07-09 | 2010-01-14 | Qinghua Li | Bandwidth allocation base station and method for allocating uplink bandwidth using sdma |
US20130034040A1 (en) * | 2010-04-20 | 2013-02-07 | Telecom Italia, S.P.A. | Method and system for wireless communications, corresponding network and computer program product |
US20130130690A1 (en) * | 2010-06-09 | 2013-05-23 | Fujitsu Limited | Handover procedures and signalling for planned cell outage in wireless cellular networks |
US20130083770A1 (en) * | 2010-06-18 | 2013-04-04 | Kyocera Corporation | Control channel architecture with control information distributed over multiple subframes |
US20130089068A1 (en) * | 2010-06-18 | 2013-04-11 | Kyocera Corporation | Control channel architecture with control information distributed over multiple subframes on different carriers |
US20120177001A1 (en) | 2010-06-24 | 2012-07-12 | Xiqi Gao | Space division multiple access transmission method of statistical characteristic mode |
CN101882952A (en) | 2010-06-24 | 2010-11-10 | 东南大学 | Space division multiple address transmission method of statistical characteristic mode |
US20120027108A1 (en) * | 2010-07-27 | 2012-02-02 | Young Jun Hong | Method and apparatus for coordinated multi-point communication for each sub-band based on long-term channel state information |
US20130272211A1 (en) * | 2012-04-13 | 2013-10-17 | Qualcomm Incorporated | Scheduling algorithms for ieee 802.11 multi-user (mu) multiple-input multiple-output (mimo) communication systems |
US20130272263A1 (en) * | 2012-04-16 | 2013-10-17 | Samsung Electronics Co., Ltd. | Hierarchical channel sounding and channel state information feedback in massive mimo systems |
CN102710309A (en) | 2012-05-31 | 2012-10-03 | 东南大学 | Synchronization signal transmission method applied to large-scale antenna array |
US20130322280A1 (en) * | 2012-06-05 | 2013-12-05 | Samsung Electronics Co., Ltd. | Uplink channel sounding and channel state information estimation in mobile communication systems with multiple antennas |
US20160006122A1 (en) * | 2012-07-31 | 2016-01-07 | Samsung Electronics Co., Ltd. | Communication method and device using beamforming in wireless communication system |
US20140044044A1 (en) * | 2012-08-13 | 2014-02-13 | Samsung Electronics Co., Ltd. | Method and apparatus to support channel refinement and multi-stream transmission in millimeter wave systems |
US9048917B1 (en) * | 2012-08-15 | 2015-06-02 | Marvell International Ltd. | Method and apparatus for estimating noise covariance in a wireless network |
CN102916735A (en) | 2012-10-17 | 2013-02-06 | 东南大学 | Wireless communication method making use of large-scale antenna array |
Non-Patent Citations (2)
Title |
---|
International Search Report issued in corresponding PCT Patent Appln. Serial No. PCT/CN2013/074435 dated Jul. 2, 2013 (5 pgs). |
ZTE, Consideration on Multi-user beamforming, 3GPP TSG RAN WGI Meeting #56 R1-090636, Feb. 3, 2009 "2 MU scheme in TDD" (4 pgs). |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9820166B2 (en) | 2014-06-19 | 2017-11-14 | Huawei Technologies Co., Ltd. | Base station and beam coverage method |
Also Published As
Publication number | Publication date |
---|---|
US20150334726A1 (en) | 2015-11-19 |
CN102916735A (en) | 2013-02-06 |
WO2014059774A1 (en) | 2014-04-24 |
CN102916735B (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9462599B2 (en) | Wireless communication method utilizing a large-scale antenna array | |
CN109526251B (en) | System and method for beamforming broadcast signals and beamforming synchronization signals | |
CN105191432B (en) | Discontinuous received device and method are carried out in the communication system of the antenna with big quantity | |
US8059744B2 (en) | Frequency band extrapolation beamforming weight computation for wireless communications | |
US10044421B2 (en) | Wireless communication via combined channel training and physical layer header signaling | |
US8582486B2 (en) | Reference signal transmission method for downlink multiple input multiple output system | |
CN105122662A (en) | Method and apparatus for random access in communication system with large number of antennas | |
CN109889246A (en) | User equipment, base station and its method | |
US10594459B2 (en) | Method and apparatus for extracting large-scale features in propagation channels via non-orthogonal pilot signal designs | |
CN112075033B (en) | Beam codebook generating method of 5G terminal | |
WO2018058433A1 (en) | Device and method for transmitting reference signal, and communication system | |
CN103378882B (en) | A kind of extensive antenna system control signal sending method and device | |
CN102868477A (en) | Grouped wave beam based multi-user precoding method and device | |
WO2016026408A1 (en) | System and method for orthogonal frequency division multiple access (ofdma) transmission | |
EP3311524A1 (en) | System and method for coverage enhancement | |
US20240187913A1 (en) | Dynamic transmit chain availability signaling in wireless devices | |
US20230300813A1 (en) | Beam indication framework for sensing-assisted mimo | |
EP3641150B1 (en) | Beam training method, initiator device, and responder device | |
Tateishi et al. | 5G experimental trial achieving over 20 Gbps using advanced multi-antenna solutions | |
CN103249124A (en) | Densely distributed wireless communication method and system | |
US10236958B2 (en) | Method for signal transmission to multiple user equipments utilizing reciprocity of wireless channel | |
KR101413504B1 (en) | Method and device for uplink signals transmission and channel estimation in wireless access network | |
Tateishi et al. | Experimental evaluation on 5G radio access employing multi-user MIMO at 15 GHz band | |
CN106982089B (en) | Data transmission method and device | |
Harris et al. | From MIMO to Massive MIMO |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SOUTHEAST UNIVERSITY, CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GAO, XIQI;SUN, CHEN;JIN, SHI;AND OTHERS;REEL/FRAME:031980/0242 Effective date: 20131223 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: HUAWEI TECHNOLOGIES CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOUTHEAST UNIVERSITY;REEL/FRAME:045484/0763 Effective date: 20180404 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.) |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1555); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |