US9353283B2 - Article coated with a composition comprising polyethylene prepared with a single site catalyst - Google Patents
Article coated with a composition comprising polyethylene prepared with a single site catalyst Download PDFInfo
- Publication number
- US9353283B2 US9353283B2 US13/140,342 US200913140342A US9353283B2 US 9353283 B2 US9353283 B2 US 9353283B2 US 200913140342 A US200913140342 A US 200913140342A US 9353283 B2 US9353283 B2 US 9353283B2
- Authority
- US
- United States
- Prior art keywords
- component
- composition
- iso
- site catalyst
- prepared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 34
- 239000000203 mixture Substances 0.000 title claims abstract description 33
- -1 polyethylene Polymers 0.000 title description 11
- 239000004698 Polyethylene Substances 0.000 title description 5
- 229920000573 polyethylene Polymers 0.000 title description 5
- 239000005977 Ethylene Substances 0.000 claims abstract description 19
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000012360 testing method Methods 0.000 claims abstract description 17
- 239000011248 coating agent Substances 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 17
- 238000009826 distribution Methods 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 8
- 239000011347 resin Substances 0.000 claims description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 229920001519 homopolymer Polymers 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 229920006026 co-polymeric resin Polymers 0.000 abstract description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical group C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 238000005299 abrasion Methods 0.000 description 10
- 125000001424 substituent group Chemical group 0.000 description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 6
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 5
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000006649 (C2-C20) alkynyl group Chemical group 0.000 description 3
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 3
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 3
- VJLWKQJUUKZXRZ-UHFFFAOYSA-N 2,4,5,5,6,6-hexakis(2-methylpropyl)oxaluminane Chemical compound CC(C)CC1C[Al](CC(C)C)OC(CC(C)C)(CC(C)C)C1(CC(C)C)CC(C)C VJLWKQJUUKZXRZ-UHFFFAOYSA-N 0.000 description 3
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 3
- KBGJIKKXNIQHQH-UHFFFAOYSA-N potassium;methanidylbenzene Chemical compound [K+].[CH2-]C1=CC=CC=C1 KBGJIKKXNIQHQH-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- 125000006652 (C3-C12) cycloalkyl group Chemical group 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- WBZVXZGPXBXMSC-UHFFFAOYSA-N 2,5,6,6-tetrakis(2-methylpropyl)oxaluminane Chemical compound CC(C)CC1CC[Al](CC(C)C)OC1(CC(C)C)CC(C)C WBZVXZGPXBXMSC-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 239000012968 metallocene catalyst Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-SVYQBANQSA-N oxolane-d8 Chemical compound [2H]C1([2H])OC([2H])([2H])C([2H])([2H])C1([2H])[2H] WYURNTSHIVDZCO-SVYQBANQSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- YXFVVABEGXRONW-JGUCLWPXSA-N toluene-d8 Chemical compound [2H]C1=C([2H])C([2H])=C(C([2H])([2H])[2H])C([2H])=C1[2H] YXFVVABEGXRONW-JGUCLWPXSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- NMXLXQGHBSPIDR-UHFFFAOYSA-N 2-(2-methylpropyl)oxaluminane Chemical compound CC(C)C[Al]1CCCCO1 NMXLXQGHBSPIDR-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 125000003860 C1-C20 alkoxy group Chemical group 0.000 description 1
- 0 CC.CC.CCC.II.c1ccc(Cc2cccc2)c1 Chemical compound CC.CC.CCC.II.c1ccc(Cc2cccc2)c1 0.000 description 1
- 239000004150 EU approved colour Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- UORVGPXVDQYIDP-BJUDXGSMSA-N borane Chemical compound [10BH3] UORVGPXVDQYIDP-BJUDXGSMSA-N 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 125000005626 carbonium group Chemical group 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- VGRFVJMYCCLWPQ-UHFFFAOYSA-N germanium Chemical compound [Ge].[Ge] VGRFVJMYCCLWPQ-UHFFFAOYSA-N 0.000 description 1
- 125000003936 heterocyclopentadienyl group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 125000002370 organoaluminium group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N trihydridoboron Substances B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D123/00—Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
- C09D123/02—Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D123/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D123/00—Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
- C09D123/02—Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D123/04—Homopolymers or copolymers of ethene
- C09D123/06—Polyethene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L58/00—Protection of pipes or pipe fittings against corrosion or incrustation
- F16L58/02—Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
- F16L58/04—Coatings characterised by the materials used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
- C08L2666/04—Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
- C08L2666/06—Homopolymers or copolymers of unsaturated hydrocarbons; Derivatives thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/139—Open-ended, self-supporting conduit, cylinder, or tube-type article
- Y10T428/1393—Multilayer [continuous layer]
Definitions
- the present invention relates to an article coated with a composition comprising a polyethylene resin prepared with a single site catalyst.
- coating includes the lining of pipes.
- WO 04/67654 describes a coating composition suitable for metal pipes which comprises a multimodal ethylene polymer obtained with a metallocene catalyst.
- WO 04/67654 describes a coating composition suitable for metal pipes which comprises a multimodal ethylene polymer obtained with a metallocene catalyst.
- the problem of low temperature resistance is not addressed in WO 04/67654.
- the object of the present invention can be achieved by using an ethylene homo- or copolymer prepared with a single site catalyst.
- the present invention provides in a first embodiment an article coated with a composition comprising
- composition used for the coating of an article according to the first, and the second embodiment of the present invention has a good low temperature stability and further shows good processability, such as extrudability, and good mechanical properties, such as improved abrasion resistance and can be simply and cost-efficiently prepared.
- component (A) has an impact strength at ⁇ 40° C. of at least 80 kJ/m 2 in a Charpy notched test according to ISO 179-1/1eA:2000 with a pendulum energy of 15 J.
- component (A) has an MFR 21 , measured according to ISO 1133 at 190° C. and under a load of 21.6 kg, from 0.01 to 20 g/10 min.
- the article is a pipe, even more preferably the article is a steel pipe.
- the composition is used for the coating of pipes, preferably steel pipes or as topcoat material for pipes used for transport of gas, oil, etc., preferably steel pipes used for transport of gas, oil, etc.
- polyolefin or “polyethylene”
- olefin homo- or copolymers or ethylene homo- or copolymers
- base resin The total amount of all of the polymer components of the composition the coating is consisting of are denoted as “base resin”.
- the amount of the base resin is at least 90 wt. %, more preferably at least 95 wt. %, even more preferably at least 97.5 wt. % and most preferably 100 wt. % of the coating.
- the amount of component (A) is not less than 80 wt. %, more preferably not less than 85 wt. %, even more preferably not less than 90 wt. % and most preferably not less than 95 wt. % of the base resin.
- the amount of component (A) is not more than 99.5 wt. %, more preferably not more than 98 wt. % and most preferably not more than 95 wt. % of the base resin.
- composition the coating is consisting of may comprise further polymer components apart from component (A) in the prescribed amount of at least 80 wt. %.
- (A) has a comonomer content from 0 to 5.0 mol %, more preferably from 0 to 3.5 mol %, even more preferably from 0 to 2.0 mol %, even more preferably from 0 to 1.0 mol % based on the total amount of (A), most preferably component (A) is an ethylene homopolymer.
- Component (A) may comprise as comonomer any compound which includes unsaturated polymerizable groups.
- the comonomer(s) used for the production of (A) are C 3 - to C 20 -alpha-olefins e.g. propene, but-1-ene, hex-1-ene, 4-methyl-pent-1-ene, oct-1-ene etc., more preferably C 4 - to C 10 -alpha-olefins and most preferably C 6 - to C 8 -alpha-olefins, e.g. hexene.
- C 3 - to C 20 -alpha-olefins e.g. propene, but-1-ene, hex-1-ene, 4-methyl-pent-1-ene, oct-1-ene etc.
- C 4 - to C 10 -alpha-olefins and most preferably C 6 - to C 8 -alpha-olefins, e.g. hexene.
- Preferably (A) has a density of at least 920 kg/m 3 , more preferably of at least 930 kg/m 3 , even more preferably of at least 940 kg/m 3 and most preferably of at least 945 kg/m 3 .
- (A) has a density of not more than 970 kg/m 3 , more preferably of not more than 960 kg/m 3 , even more preferably of not more than 955 kg/m′ and most preferably of not more than 950 kg/m 3 .
- Preferably (A) has an MFR 5 measured according to ISO 1133 at 190° C. and under a load of 5.0 kg of at least 0.01 g/10 min, more preferably of at least 0.05 g/10 min, even more preferably of at least 0.10 g/10 min, even more preferably of at least 0.15 g/10 min and most preferably of at least 0.20 g/10 min.
- (A) has an MFR 5 measured according to ISO 1133 at 190° C. and under a load of 5.0 kg of not more than 10 g/10 min, even more preferably of not more than 5.0 g/10 min, even more preferably of not more than 3.0 g/10 min, more preferably of not more than 2.0 g/10 min, even more preferably of not more than 1.0 g/10 min and most preferably of not more than 0.7 g/10 min.
- (A) has an MFR 21 measured according to ISO 1133 at 190° C. and under a load of 21.6 kg of at least 0.1 g/10 min, more preferably of at least 0.5 g/10 min, and most preferably of at least 1 g/10 min.
- (A) has a MFR 21 measured according to ISO 1133 at 190° C. and under a load of 21.6 kg of not more than 15 g/10 min, more preferably not more than 10.0 g/10 min, even more preferably of not more than 5.0 g/10 min, even more preferably of not more than 3.0 g/10 min and most preferably of not more than 2.5 g/10 min.
- Preferably (A) has a weight average molecular weight (M w ) of at least 50,000 g/mol, more preferably of at least 100,000 g/mol, even more preferably of at least 150,000 g/mol and most preferably of at least 200,000 g/mol.
- M w weight average molecular weight
- (A) has a weight average molecular weight (M w ) of not more than 500,000 g/mol, more preferably of not more than 400,000 g/mol, even more preferably of not more than 325,000 g/mol and most preferably of not more than 300,000 g/mol.
- M w weight average molecular weight
- (A) has a number average molecular weight (M n ) of at least 35,000 g/mol, more preferably of at least 50,000 g/mol, even more preferably of at least 65,000 g/mol and most preferably of at least 80,000 g/mol.
- M n number average molecular weight
- (A) has a number average molecular weight (M n ) of not more than 200,000 g/mol, more preferably of not more than 175,000 g/mol, even more preferably of not more than 150,000 g/mol and most preferably of not more than 125,000 g/mol.
- (A) has a molecular weight distribution (MWD) of at least 1.5 and most preferably of at least 2.
- (A) has a molecular weight distribution (MWD) of not more than 5, more preferably of not more than 4, even more preferably of not more than 3.5 and most preferably of less than 3.0.
- MFD molecular weight distribution
- component (A) has an impact strength at ⁇ 40° C. of at least 100 kJ/m 2 in a Charpy notched test according to ISO 179-1/1eA:2000 with a pendulum energy of 15 J, more preferably of at least 120 kJ/m 2 and most preferably of at least 130 kJ/m 2 .
- component (A) has an impact strength at ⁇ 20° C. of at least 80 kJ/m 2 in a Charpy notched test according to ISO 179-1/1eA:2000 with a pendulum energy of 15 J, more preferably of at least 100 kJ/m 2 , even more preferably of at least 120 kJ/m 2 and most preferably of at least 130 kJ/m 2 .
- component (A) has an impact strength at 0° C. of at least 80 kJ/m 2 in a Charpy notched test according to ISO 179-1/1eA:2000 with a pendulum energy of 15 J, more preferably of at least 100 kJ/m 2 , even more preferably of at least 120 kJ/m 2 and most preferably of at least 130 kJ/m 2 .
- component (A) has an impact strength at 23° C. of at least 80 kJ/m 2 in a Charpy notched test according to ISO 179-1/1eA:2000 with a pendulum energy of 15 J, more preferably of at least 100 kJ/m 2 , even more preferably of at least 120 kJ/m 2 and most preferably of at least 130 kJ/m 2 .
- component (A) has an impact strength at any of the above-given temperatures of not more than 250 kJ/m 2 in a Charpy notched test according to ISO 179-1/1eA:2000 with a pendulum energy of 15 J.
- component (A) has a tensile stress at break determined at ⁇ 45° C. of at least 35 MPa, more preferably of at least 40 MPa and most preferably of at least 45 MPa.
- component (A) has a tensile stress at break determined at ⁇ 45° C. of not more than 100 MPa.
- component (A) has a tensile strain at break determined at ⁇ 45° C. of at least 250%, more preferably of at least 300% and most preferably of at least 350%.
- component (A) has a tensile stress at yield determined at ⁇ 45° C. of not less than 40 MPa.
- component (A) has a tensile stress at yield determined at ⁇ 45° C. of not more than 80 MPa.
- component (A) has a tensile strain at yield determined at ⁇ 45° C. of at least 6.5%, more preferably of at least 7.0%.
- component (A) has a tensile strain at yield determined at ⁇ 45° C. of not more than 20%.
- component (A) has a tensile stress at break determined at 23° C. of at least 30 MPa.
- component (A) has a tensile stress at break determined at 23° C. of not more than 601 MPa.
- component (A) has a tensile strain at break determined at 23° C. of at least 700%.
- component (A) has a tensile strain at break determined at 23° C. of not more than 1500%.
- component (A) has a tensile stress at yield determined at 23° C. of not less than 25 MPa.
- component (A) has a tensile stress at yield determined at 23° C. of not more than 60 MPa.
- component (A) has a tensile strain at yield determined at 23° C. of at least 9.0%, more preferably of at least 10.0%.
- component (A) has a tensile strain at yield determined at 23° C. of not more than 20%.
- the Taber abrasion of (A) measured according to ASTM D 4060 is not more than 10 mg/1000 cycles, more preferably is not more than 8.0 mg/1000 cycles, even more preferably is not more than 6.0 mg/1000 cycles, even more preferably is not more than 5.0 mg/1000 cycles and most preferably is not more than 4.5 mg/1000 cycles.
- the Ball cratering wear coefficient is not more than 3.5 ⁇ 10 ⁇ 4 mm 3 /mN, more preferably is not more than 3.3 ⁇ 10 ⁇ 4 mm 3 /mN, even more preferably is not more than 3.1 ⁇ 10 ⁇ 4 mm 3 /mN and most preferably is not more than 2.9 ⁇ 10 ⁇ 4 mm 3 /mN.
- a metallocene compound is used as single site catalyst for the production of (A). More preferably, a metallocene compound of formula I is used ((Cp) m R n )MX 2 (I) wherein:
- Said optional substituent(s) present on the Cp groups are independently selected from halogen, hydrocarbyl (e.g. C 1-20 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 3-12 -cycloalkyl, C 6-60 -aryl or C 7-20 -arylalkyl), C 3-12 -heterocycloalkyl, C 5-20 -heteroaryl, C 1-20 -haloalkyl, —SiR′′ 3 , —OSiR′′ 3 , —SR′′, —PR′′ 2 or —NR′′ 2 , each R′′ is independently a hydrogen or hydrocarbyl, e.g.
- hydrocarbyl e.g. C 1-20 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 3-12 -cycloalkyl, C 6-60 -aryl or C 7-20 -arylalkyl
- the two substituents R′′ can form a ring, e.g. five- or six-membered ring, together with the nitrogen atom wherein they are attached to.
- the bridging group R between Cp groups is preferably a bridge of 1 to 4 bridging C-atoms and 0 to 3 bridging heteroatoms, wherein the heteroatom(s) can be e.g. Si, Ge and/or O atom(s), whereby each of the bridge atoms may bear independently substituents, such as hydrogen, C 1-20 -alkyl, tri(C 1-20 -alkyl)silyl, tri(C 1-20 -alkyl)siloxy, C 6-20 -aryl or C 6-20 -arylalkyl substituents; or a bridge of 1-3, e.g.
- each R 1 is independently C 1-20 -alkyl, C 6-20 -aryl or tri(C 1-20 -alkyl)silyl residue, such as trimethylsilyl-.
- Cp preferably denotes cyclopentadienyl, indenyl, tetrahydroindenyl or fluorenyl optionally substituted as defined above.
- the Cp group may further bear a fused ring of 3 to 7 atoms, e.g. 4, 5 or 6 atoms, which ring may be aromatic, saturated or partially saturated such as a benzindenyl (e.g. 4,5-benzindenyl). More preferably Cp denotes cyclopentadienyl or indenyl.
- m is preferably 1 or 2, especially 2.
- the Cp groups are based on the same ⁇ 5 -ligand structure, e.g. both optionally substituted cyclopentadienyls or optionally substituted indenyls as defined above. More preferably, when m is 2, both Cp groups will be the same, i.e. carry the same substituents.
- each Cp group remains unsubstituted or independently bears 1, 2, 3, 4 or 5 substituents as defined above, more preferably 1, 2, 3 or 4, e.g. 1 or 2 substituents.
- Preferred substituents include C 1-20 -alkyl, C 6-20 -aryl, C 7-20 -arylalkyl (wherein the aryl ring alone or as a part of a further moiety may further be substituted as indicated above, e.g. substituted by C 1-20 -alkyl), or —OSi(C 1-20 -hydrocarbyl) 3 .
- the Cp groups carry 1 to 5 C 1-6 -alkyl substituents such as methyl, ethyl, isopropyl or n-butyl or —OSi(C 1-20 -alkyl) 3 such as —OSidimethyl-tert-butyl.
- n is preferably 1 or 0, i.e. the metallocene is either bridged or unbridged.
- n represents 1
- m should represent 2 and the bridge between the Cp groups should preferably be between the 1-positions on the Cp rings.
- R if present, are a methylene, ethylene or a silyl bridge, whereby the silyl can be substituted as defined above.
- Preferred silyl bridges are ⁇ SiR 1 2 where each R 1 is independently C 1-6 -alkyl, tri(C 1-6 -alkyl)siloxy, tri(C 1-6 -alkyl)silyl or C 6-10 -aryl, e.g. dimethylSi ⁇ , (trimethylsilyl)(methyl)Si ⁇ or (methyl)(phenyl)Si ⁇ .
- R, if present, is a dimethylsilyl or ethylene bridge.
- M is a transition metal of Group 3 to 10, preferably of Group 4 to 10, more preferably of Group 4 to 6, even more preferably Group 4 or Cr, even more preferably Ti, Zr or Hf, most preferably Hf.
- Each X is —CH 2 —Y.
- each Y is independently selected from C 6-20 -aryl, NR′ 2 , —SiR′ 3 or —OSiR′ 3 wherein R′ is as defined above.
- R′ is as defined above.
- —CH 2 —Y is benzyl or —CH 2 —SiR′ 3 .
- Preferred R′ or R′′ groups are C 1-6 -alkyl, e.g. methyl, ethyl, isopropyl, n-butyl, isobutyl, t-butyl or C 6-10 -aryl.
- n is preferably 0, and if Cp is optionally substituted indenyl, then n is preferably 1.
- bridged or, preferably, unbridged bis(mono-,di- or trialkyl substituted cyclopentadienyl) ligands complexed with Zr, Ti or Hf can be mentioned.
- metallocene compounds of formula (II) are used for the production of (A).
- R 2 represents an optionally present 1 to 4 atom bridge, e.g. ethylene or dimethylsilyl bridge
- each R 3 is a C 1-6 -alkyl or siloxy substituent (e.g. as described above)
- both X′ groups are either benzyl (Bz) or CH 2 SiR′ 3 wherein R′ is as hereinbefore defined.
- a compound of formula (II) wherein R 2 is absent, R 3 is methyl, ethyl, n-propyl, i-propyl, n-butyl. i-butyl, t-butyl, preferably n-butyl or n-propyl and 1 or 2 substituents are present on each Cp ring, preferably 1 substituent.
- X′ is benzyl or CH 2 SiR′ 3 wherein R′ is preferably C 1-6 -alkyl, especially methyl wherein R′ is as hereinbefore defined.
- a compound of one of the following formulas (III) or (IV) is used (Cp′) 2 R 0/1 HfBz 2 (III) (Cp′) 2 R 0/1 Hf(X 1 )(CH 2 SiR′ 3 ) (IV) wherein each Cp′ denotes a mono- or di-C 1-6 -alkyl-substituted cyclopentadienyl, R and R′ are as herein before defined, e.g. a 1 to 4 atom bridge optionally comprising heteroatoms, X 1 is halogen, C 1-20 -hydrocarbyl or —CH 2 —Y wherein Y is as hereinbefore defined and Bz represents benzyl.
- R if present is preferably ethylene or dimethylsilyl, although in a most preferred embodiment of both formulae (III) and (IV) R is absent.
- X 1 is preferably —CH 2 —Y, especially —CH 2 SiR′ 3 .
- R′ is C 1-6 -alkyl, especially methyl, e.g. X 1 is —CH 2 SiMe 3 .
- any alkyl, alkenyl or alkynyl residue (with up to 20 C-atoms) referred to above alone or as a part of a moiety may be linear or branched, and preferably contains up to 9, more preferably up to 6 carbon atoms.
- C 6-20 -aryl is preferably phenyl or naphthyl, preferably phenyl.
- C 1-20 -hydrocarbyl includes C 1-20 -alkyl, C 6-20 -aryl, C 2-20 -alkenyl or C 2-20 -alkynyl.
- Halogen means F, Cl, Br or I, preferably Cl.
- the term C 5-20 -heteroaryl may contain e.g.
- Bridged metallocenes may exist in rac- or meso-forms or mixtures thereof and can be separated using conventional techniques known in the art.
- the preparation of the metallocenes of the invention can be carried out according or analogously to the methods known from the literature and is within skills of a person skilled in the field.
- examples of compounds wherein the metal atom bears a —NR′′ 2 ligand see inter alia WO-A-9856831 and WO-A-0034341.
- examples of compounds wherein the metal atom bears a —NR′′ 2 ligand see inter alia WO-A-9856831 and WO-A-0034341.
- For the preparation see also e.g.
- EP-A-260 130 WO-A-9728170, WO-A-9846616, WO-A-9849208, WO-A-9912981, WO-A-9919335, EP-A-836608, WO-A-9856831, WO-A-00/34341, EP-A-423 101 and EP-A-537 130.
- the single-site catalyst comprises a cocatalyst.
- Said cocatalysts are known in the art.
- Metallocene procatalysts are generally used as part of a catalyst system which also includes an ionic cocatalyst or catalyst activator (herein generally cocatalyst), for example, an aluminoxane (e.g. methylaluminoxane (MAO), hexaisobutylaluminoxane and tetraisobutylaluminoxane) or a boron compound (e.g. a fluoroboron compound such as triphenylpentafluoroboron or triphenylcarbenium tetrakis-(pentafluorophenyl)borate (C 6 H 5 ) 3 C + B(C 6 F 5 ) 4 .
- an aluminoxane e.g. methylaluminoxane (MAO), hexaisobutylaluminoxane and tetraisobutylaluminoxane
- a boron compound
- Alumoxanes are well known in the art and can be made by conventional methods. Traditionally, the most widely used aluminoxane is methylaluminoxane (MAO), an aluminoxane compound in which the R groups are methyls. For aluminoxanes with higher alkyl groups reference is made to hexaisobutylalumoxane (HIBAO).
- MAO methylaluminoxane
- HIBAO hexaisobutylalumoxane
- the olefin polymerisation catalyst system of the invention comprises (i) a procatalyst formed from a metallated compound of formula (I) and (ii) a cocatalyst.
- the cocatalyst compound is preferably an aluminoxane, most preferably MAO, isobutylalumoxane, e.g. TIBAO (tetraisobutylalumoxane) or HIBAO (hexaisobutylalumoxane).
- the metallocene procatalyst and cocatalyst may be introduced into the polymerization reactor separately or together or, more preferably they are pre-reacted and their reaction product is introduced into the polymerization reactor.
- the procatalyst, procatalyst/cocatalyst mixture or a procatalyst/cocatalyst reaction product may be used in unsupported form or it may be solidified together with other catalyst forming components and used as such.
- the metallocene procatalyst or its reaction product with the cocatalyst can be introduced into the polymerization reactor in supported form, e.g. impregnated into a porous particulate support.
- the particulate support material may be an organic or inorganic material, e.g. an organic polymer or pseudo metal oxide such as silica, alumina, titania or zirconia or a mixed oxide such as silica-alumina, silica-titania in particular silica, alumina or silica-alumina.
- organic polymer or pseudo metal oxide such as silica, alumina, titania or zirconia
- a mixed oxide such as silica-alumina, silica-titania in particular silica, alumina or silica-alumina.
- the support is a porous material so that the metallocene may be loaded into the pores of the support, e.g. using a process analogous to those described in WO94/14856 (Mobil), WO95/12622 (Borealis), WO96/32923 (Borealis) and WO96/00243 (Exxon).
- the particle size is not critical but is preferably in the range 5 to 200 ⁇ m, more preferably 20 to 80 ⁇ m.
- catalyst forming components e.g. further activators
- further catalyst forming components may be used in a manner known in the art.
- an organoaluminium alkylating agent is used, this is preferably used in a quantity sufficient to provide a loading of at least 0.1 mmol Al/g carrier, more preferably at least 0.5 mmol Al/g, even more preferably at least 0.7 mmol Al/g, even more preferably at least 1.4 mmol Al/g carrier, and still more preferably 2 to 3 mmol Al/g carrier.
- the surface area of the carrier is particularly high, higher aluminium loadings may be needed.
- particularly preferred aluminium loadings with a surface area of 300-400 m 2 /g carrier may range from 0.5 to 3 mmol Al/g carrier.
- the active metal i.e. the metal of the procatalyst
- metallocene compounds and the cocatalyst are within the skills of the artisan.
- the quantities employed may vary depending on the particular loading conditions and may be chosen in a manner well known to the skilled person.
- the mole ratio of the cocatalyst to the metallocene is preferably from 0.1:1 to 10000:1, more preferably from 1:1 to 50:1 and most preferably from 1:2 to 30:1. More preferably, where an alumoxane cocatalyst is used, then for an unsupported catalyst the aluminium:metallocene metal (M) molar ratio is preferably from 2:1 to 10000:1 and more preferably from 50:1 to 1000:1. Where the catalyst is supported the Al:M molar ratio is preferably from 2:1 to 10000:1 and more preferably from 50:1 to 400:1.
- the B:M molar ratio is preferably from 2:1 to 1:2, more preferably from 9:10 to 10:9 and most preferably 1:1.
- the B:M molar ratio is preferably from 1:2 to 500:1, however some aluminium alkyl would normally also be used.
- a catalyst as described above is used in the process of the invention.
- Polymerization in the process of the invention may be effected in one polymerization reactor, using conventional polymerization techniques, e.g. gas phase, solution phase, slurry or bulk polymerization.
- the process of the invention may also comprise a prepolymerisation step. However, preferably a prepolymerisation step is not applied.
- the reaction temperature will generally be in the range 60 to 110° C., preferably 70 to 100° C.
- the reactor pressure will generally be in the range 5 to 80 bar, preferably 30 to 80 bar and most preferably 40 to 70 bar
- the residence time will generally be in the range 0.3 to 5 hours, preferably 0.5 to 2 hours.
- the diluent used will generally be an aliphatic hydrocarbon having a boiling point in the range ⁇ 70 to +100° C. In such reactors, polymerization may if desired be effected under supercritical conditions.
- the reaction temperature used will generally be in the range 60 to 115° C., preferably 70 to 110° C.; the reactor pressure will generally be in the range 10 to 25 bar; and the residence time will generally be 1 to 8 hours.
- the gas used will commonly be a non-reactive gas such as nitrogen or low boiling point hydrocarbons such as propane together with monomer (e.g. ethylene).
- the gas phase may also be run in gas phase condensed mode as is well known in the art.
- catalyst used will depend upon the nature of the catalyst, the reactor types and conditions and the properties desired for the polymer product. Conventional catalyst quantities, such as described in the publications referred to herein, may be used. Hydrogen may be employed as is known in the art.
- a catalyst as described above is used in the process of the invention.
- component (A) is unimodal, i.e. not multimodal.
- the modality of a polyethylene resin according to the present invention can be determined according to known methods.
- a multimodal molecular weight distribution (MWD) is reflected in a gel permeation chromatography (GPC) curve exhibiting two or more component polymers wherein the number of component polymers corresponds to the number of discernible peaks, or one component polymer may exist as a hump, shoulder or tail relative to the MWD of the other component polymer.
- GPC gel permeation chromatography
- a unimodal ethylene polymer can also be obtained in a multi-stage process using two or more reactors coupled in series when a metallocene catalyst is used and slightly different reaction conditions in each reaction stage are applied.
- the composition may further contain various additives, such as miscible thermoplastics, further stabilizers, lubricants, fillers, colouring agents and foaming agents, which can be added before, during or after the blending step (i) to the composition.
- additives such as miscible thermoplastics, further stabilizers, lubricants, fillers, colouring agents and foaming agents, which can be added before, during or after the blending step (i) to the composition.
- the amount of said additives is usually below 10 wt. %, preferably below 7 wt. %, more preferably below 3 wt. % and most preferably below 1 wt. % based the composition.
- the coating of the article may be carried out by well-known methods, as for example described in EP 1 316 598.
- test specimens were compression moulded samples of multipurpose type B (ISO 3167), with a thickness of 4 mm. Average cooling rate was 15 K/min (ISO 1872-2).
- Density of the polymer was measured according to ISO 1183/D, the sample preparation is made according to ISO 1872-2B.
- the melt flow rate is determined according to ISO 1133 and is indicated in g/10 min.
- the MFR is an indication of the melt viscosity of the polymer.
- the MFR is determined at 190° C. for PE and at 230° C. for PP.
- the load under which the melt flow rate is determined is usually indicated as a subscript, for instance MFR 2 is measured under 2.16 kg load, MFR 5 is measured under 5 kg load or MFR 21 is measured under 21.6 kg load.
- An Alliance 2000 GPCV instrument, equipped with refractive index detector and online viscosimeter was used with 3 ⁇ HT6E styragel columns from Waters (styrene-divinylbenzene) and 1,2,4-trichlorobenzene (TCB, stabilized with 250 mg/l 2,6-di-tert-butyl-4-methyl-phenol) as solvent at 140° C. and at a constant flow rate of 1 ml/min.
- Tensile strength properties were determined according to ISO 527-2. Compression moulded specimens of type 1A were used, which were prepared according to ISO 1872-2.
- Strain at yield (in %) was determined according to ISO 527-2. The measurement was conducted at ⁇ 45° C. and 23° C. temperature with an elongation rate of 50 mm/min.
- Tensile break was determined according to ISO 527-2. The measurement was conducted at ⁇ 45° C. and 23° C. temperature with an elongation rate of 50 mm/min.
- the Taber abrasion was measured according to ASTM D 4060.
- the specimen is a 2 mm thick 100 ⁇ 100 mm 2 compression moulded plaque having a hole with 6.3 mm diameter at the centre.
- the specimen has been thermostated for at least 24 hours at 23° C. temperature and 50% relative humidity.
- the test is done by using CS-17 abrasion wheel. The wheel is adjusted by placing the specimen in the device and running the wheel 50 cycles. The specimen is then carefully cleaned and weighed after which the specimen is placed in the testing device and the test is started.
- the wear index (I) is calculated as:
- the Ball cratering wear coefficient was measured according to Wear , Vol. 229, p. 205.
- a plaque with a thickness of 1 mm is compression molded and a circular specimen with a diameter of 20 mm is cut out from the plaque.
- the single-site catalyst as described above has been used for the production of Examples 1 and 2 and Comparative Example 3.
- the process parameters are given in Table 1 below.
- the polymer has been produced with a prepolymerized Ziegler-Natta catalyst prepared according to WO 99/51646, example 3 in a loop and a gas-phase reactor.
- the process parameters are given in Table 1 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
Abstract
Description
-
- (A) an ethylene homo- or copolymer resin which has been prepared by using a single-site catalyst
- further characterized in that
- component (A) has an MFR21, measured according to ISO 1133 at 190° C. and under a load of 21.6 kg, from 0.01 to 20 g/10 min.
-
- (A) an ethylene homo- or copolymer resin which has been prepared by using a single-site catalyst
- further characterized in that
- component (A) has an MFR21, measured according to ISO 1133 at 190° C. and under a load of 21.6 kg, from 0.01 to 20 g/10 min for the coating of an article.
-
- (A) an ethylene homo- or copolymer resin which has been prepared by using a single-site catalyst
- further characterized in that
- component (A) has an impact strength at −40° C. of at least 80 kJ/m2 in a Charpy notched test according to ISO ISO 179-1/1eA:2000 with a pendulum energy of 15 J.
-
- (A) an ethylene homo- or copolymer resin which has been prepared by using a single-site catalyst
- further characterized in that
- component (A) has an impact strength at −40° C. of at least 80 kJ/m2 in a Charpy notched test according to ISO 179-1/1eA:2000 with a pendulum energy of 15 J.
for the coating of an article.
((Cp)mRn)MX2 (I)
wherein:
-
- each Cp independently is an optionally substituted and/or optionally fused homo- or heterocyclopentadienyl ligand;
- R is a bridge between the Cp groups of 1-7 bridging atoms;
- M is a transition metal of Group 3 to 10;
- each X is —CH2—Y, wherein Y is C6-20-aryl, C6-20-heteroaryl, C1-20-alkoxy, C6-20-aryloxy, —NR′2, —SR′, —PR′3, —SiR′3, —OSiR′3 or halogen;
- R′ is C1-20-hydrocarbyl or in case of —NR′2, the two substituents R′ can form a ring together with the nitrogen atom wherein they are attached to; and each non-cyclopentadienyl ring moiety can further be substituted;
- m is 1 or 2;
- n is 0, 1 or 2;
- wherein m+2 is equal to the valence of M and
- a cocatalyst, e.g. a fluoroborate cocatalyst or aluminoxane cocatalyst, preferably an aluminoxane cocatalyst.
wherein R2 represents an optionally present 1 to 4 atom bridge, e.g. ethylene or dimethylsilyl bridge, each R3 is a C1-6-alkyl or siloxy substituent (e.g. as described above), and both X′ groups are either benzyl (Bz) or CH2SiR′3 wherein R′ is as hereinbefore defined.
(Cp′)2R0/1HfBz2 (III)
(Cp′)2R0/1Hf(X1)(CH2SiR′3) (IV)
wherein each Cp′ denotes a mono- or di-C1-6-alkyl-substituted cyclopentadienyl, R and R′ are as herein before defined, e.g. a 1 to 4 atom bridge optionally comprising heteroatoms, X1 is halogen, C1-20-hydrocarbyl or —CH2—Y wherein Y is as hereinbefore defined and Bz represents benzyl. R, if present is preferably ethylene or dimethylsilyl, although in a most preferred embodiment of both formulae (III) and (IV) R is absent. In formula (IV), X1 is preferably —CH2—Y, especially —CH2SiR′3. Preferably R′ is C1-6-alkyl, especially methyl, e.g. X1 is —CH2SiMe3.
- bis(n-butylcyclopentadienyl)Hf dibenzyl,
- bis(methylcyclopentadienyl)Hf dibenzyl,
- bis(1,2-dimethylcyclopentadienyl)Hf dibenzyl,
- bis(n-butylindenyl)Hf dibenzyl,
- bis(methylindenyl)Hf dibenzyl,
- bis(dimethylindenyl)Hf dibenzyl,
- bis(n-propylcyclopentadienyl)Hf dibenzyl,
- bis(i-propylcyclopentadienyl)Hf dibenzyl,
- bis(1,2,4-trimethylcyclopentadienyl)Zr dibenzyl,
- dimethylsilylbis(2-methyl-4,5-benzindenyl)Zr dibenzyl,
- rac-dimethylsilylbis(2-methyl-4-fluorenyl)Zr dibenzyl,
- bis(n-butylcyclopentadienyl)Hf (CH2SiMe3)2,
- bis(n-propylcyclopentadienyl)Hf (CH2SiMe3)2,
- bis(i-propylcyclopentadienyl)Hf (CH2SiMe3)2,
- bis(1,2,4-trimethylcyclopentadienyl)Zr (CH2SiMe3)2,
- dimethylsilylbis(2-methyl,4,5-benzindenyl)Zr (CH2SiMe3)2,
- rac-dimethylsilylbis(2-methyl-4-fluorenyl)Zr (CH2SiMe3)2,
where A=weight of the specimen before the abrasion, B=weight of the specimen after the abrasion and C=number of abrasion cycles. The adjustment of the wheel is done at the beginning of each test and after 500 cycles.
Ball Cratering Wear Measurement
TABLE 1 | |||||
Compara- | Compara- | ||||
Exam- | Exam- | tive | tive | ||
ple 1 | ple 2 | Example 3 | Example 4 | ||
prepolymerization ethylene homopolymer |
Temperature | [° C.] | Not | Not | Not | 50 |
pressure | [bar] | in | in | in | 65 |
MFR5 | [g/10 min] | use | use | use | 0.5 |
Split | 1 |
loop reactor ethylene homopolymer |
temperature | [° C.] | 85 | 85 | 85 | 95 |
pressure | [bar] | 58 | 58 | 58 | 64 |
C2 concentra- | [mol-%] | 15.2 | 9.4 | 9.0 | 2.2 |
tion | |||||
H2/C2 ratio | [mol/kmol] | 0.04 | 0.06 | 0.17 | 1200 |
split | [wt-%] | 100 | 52 | 50 | 47.0 |
MFR2 | [g/10 min] | n.d. | n.d. | 9.3 | 320.0 |
MFR21 | [g/10 min] | n.a. | 4.2 | n.d. | n.a. |
density | [kg/m3] | 950 | 963 | 973 |
Gas Phase Reactor |
temperature | [° C.] | Not | 80 | 80 | 85.0 |
pressure | [bar] | in | 20 | 20 | 19 |
C2 conc. | [mol-%] | use | 56 | 55 | 2.8 |
H2/C2 ratio | [mol/kmol] | 0.15 | 0.12 | 35 | |
C4/C2 ratio | [mol/kmol] | n.a. | n.a. | 65 | |
C6 feed | [kg/h] | 0 | 1.6 | 0 | |
C6/C2 ratio | [mol/kmol] | n.a. | 6.0 | n.a. | |
split | [wt-%] | 48 | 50 | 52 | |
n.a. not applicable; n.d. not determined |
TABLE 2 | ||||
Final properties | Ex. 1 | Ex. 2 | CE 3 | CE 4 |
MFR5 | [g/10 min] | 0.2 | 0.2 | 2.4 | 0.3 |
MFR21 | [g/10 min] | 1.5 | 1.7 | 22.5 | 11.1 |
Mn | [g/mol] | 88200 | 102000 | 33900 | 6700 |
Mw | [g/mol] | 254000 | 258000 | 157000 | 329000 |
MWD (Mw/Mn) | — | 2.9 | 2.5 | 4.6 | 49 |
Density | [kg/m3] | 948.0 | 947.7 | 946.5 | 950 |
Taber abrasion | [mg/1000 cycles] | 3.7 | n.d | n.d. | 14.1 |
Ball cratering wear coefficient × 104 | [mm3/mN] | 2.82 | n.d | n.d. | 3.99 |
Charpy at −40° C. | [kJ/m2] | 150 | 131 | 12 | 18(8) |
Charpy at −20° C. | [kJ/m2] | 146 | 139 | 17 | 9 |
Charpy at 0° C. | [kJ/m2] | 143 | 140 | 21 | 14 |
Charpy at 23° C. | [kJ/m2] | 131 | 131 | 28 | 18 |
tensile stress at break −45° C. | MPa | 50 | 54 | 21 | 24 |
tensile strain at break −45° C. | % | 387 | 426 | 156 | 222 |
tensile stress at yield −45° C. | MPa | 40 | 41 | 38 | 45 |
tensile strain at yield −45° C. | % | 7 | 7 | 6 | 5 |
tensile stress at break 23° C. | MPa | 31 | 32 | 37 | 40 |
tensile strain at break 23° C. | % | 715 | 718 | 716 | 793 |
tensile stress at yield 23° C. | MPa | 27 | 27 | 26 | 28 |
tensile strain at strain 23° C. | % | 10 | 10 | 8 | 7 |
n.a. not applicable; n.d. not determined |
Claims (9)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08022586.5 | 2008-12-31 | ||
EP08022586A EP2204410A1 (en) | 2008-12-31 | 2008-12-31 | Article coated with a composition comprising polyethylene prepared with a single site catalyst |
EP08022586 | 2008-12-31 | ||
PCT/EP2009/008396 WO2010075914A1 (en) | 2008-12-31 | 2009-11-25 | Article coated with a comprising polyethylene prepared with a single site catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110250374A1 US20110250374A1 (en) | 2011-10-13 |
US9353283B2 true US9353283B2 (en) | 2016-05-31 |
Family
ID=40434237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/140,342 Expired - Fee Related US9353283B2 (en) | 2008-12-31 | 2009-11-25 | Article coated with a composition comprising polyethylene prepared with a single site catalyst |
Country Status (6)
Country | Link |
---|---|
US (1) | US9353283B2 (en) |
EP (2) | EP2204410A1 (en) |
KR (1) | KR101310687B1 (en) |
CA (1) | CA2748723C (en) |
EA (1) | EA021158B1 (en) |
WO (1) | WO2010075914A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2860200B1 (en) * | 2013-10-10 | 2017-08-02 | Borealis AG | Polyethylene composition for pipe and pipe coating applications |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0129368A1 (en) | 1983-06-06 | 1984-12-27 | Exxon Research And Engineering Company | Process and catalyst for polyolefin density and molecular weight control |
EP0260130A1 (en) | 1986-09-09 | 1988-03-16 | Exxon Chemical Patents Inc. | New supported polymerization catalyst |
EP0423101A2 (en) | 1989-10-10 | 1991-04-17 | Fina Technology, Inc. | Catalyst for producing hemiisotactic polypropylene |
EP0537130A1 (en) | 1991-10-07 | 1993-04-14 | Fina Technology, Inc. | Process and catalyst for producing isotactic polyolefins |
WO1994014856A1 (en) | 1992-12-28 | 1994-07-07 | Mobil Oil Corporation | A process for forming a carrier material |
WO1995012622A1 (en) | 1993-11-05 | 1995-05-11 | Borealis Holding A/S | Supported olefin polymerization catalyst, its preparation and use |
WO1996000243A1 (en) | 1994-06-24 | 1996-01-04 | Exxon Chemical Patents Inc. | Polymerization catalyst systems, their production and use |
WO1996032923A2 (en) | 1995-04-15 | 1996-10-24 | Henkel Kommanditgesellschaft Auf Aktien | Anti-transpirants |
WO1997028170A1 (en) | 1996-01-30 | 1997-08-07 | Borealis A/S | Heteroatom substituted metallocene compounds for olefin polymerization catalyst systems and methods for preparing them |
EP0836608A1 (en) | 1995-07-03 | 1998-04-22 | PCD-Polymere Gesellschaft m.b.H. | Metallocenes with silyl-substituted bridges and their use for olefin polymerization |
WO1998046616A1 (en) | 1997-04-14 | 1998-10-22 | Borealis A/S | Substituted metallocene compounds for olefin polymerization catalyst systems, their intermediates and methods for preparing them |
WO1998049208A1 (en) | 1997-04-25 | 1998-11-05 | Bp Chemicals Limited | Novel compounds and their use in polymerisation |
WO1998056831A1 (en) | 1997-06-10 | 1998-12-17 | Peroxid-Chemie Gmbh & Co. Kg. | New catalyst systems for (co-)polymerization reactions, metallocene amide halogenides, the production and use thereof |
WO1999012981A1 (en) | 1997-09-05 | 1999-03-18 | Bp Chemicals Limited | Polymerisation catalysts |
WO1999019335A1 (en) | 1997-10-11 | 1999-04-22 | Bp Chemicals Limited | Novel polymerisation catalysts |
WO1999051646A1 (en) | 1998-04-06 | 1999-10-14 | Borealis Technology Oy | Olefin polymerization catalyst component, its preparation and use |
WO2000034341A2 (en) | 1998-12-07 | 2000-06-15 | Borealis A/S | Catalyst and process for olefin polymerization |
WO2001030861A1 (en) | 1999-10-22 | 2001-05-03 | Univation Technologies, Llc | Catalyst compositions, methods of polymerization, and polymers therefrom |
EP1316598A1 (en) | 2001-11-29 | 2003-06-04 | Borealis Technology Oy | Adhesive polymer composition |
WO2004067654A1 (en) | 2003-01-28 | 2004-08-12 | Borealis Technology Oy | Coating composition, method of preparation thereof and substrate coated therewith |
WO2006045550A1 (en) | 2004-10-22 | 2006-05-04 | Borealis Technology Oy | Composition |
US7081285B1 (en) | 2005-04-29 | 2006-07-25 | Fina Technology, Inc. | Polyethylene useful for blown films and blow molding |
US7153909B2 (en) * | 1994-11-17 | 2006-12-26 | Dow Global Technologies Inc. | High density ethylene homopolymers and blend compositions |
US20070254990A1 (en) | 2006-04-26 | 2007-11-01 | Nova Chemicals (International) S.A. | Pipe coating composition |
WO2008051824A2 (en) | 2006-10-23 | 2008-05-02 | Dow Global Technologies Inc. | Polyethylene compositions, methods of making the same, and articles prepared therefrom |
-
2008
- 2008-12-31 EP EP08022586A patent/EP2204410A1/en not_active Withdrawn
-
2009
- 2009-11-25 EP EP09759684.5A patent/EP2370514B1/en not_active Not-in-force
- 2009-11-25 CA CA2748723A patent/CA2748723C/en not_active Expired - Fee Related
- 2009-11-25 EA EA201170907A patent/EA021158B1/en not_active IP Right Cessation
- 2009-11-25 US US13/140,342 patent/US9353283B2/en not_active Expired - Fee Related
- 2009-11-25 WO PCT/EP2009/008396 patent/WO2010075914A1/en active Application Filing
- 2009-11-25 KR KR1020117014952A patent/KR101310687B1/en active IP Right Grant
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0129368A1 (en) | 1983-06-06 | 1984-12-27 | Exxon Research And Engineering Company | Process and catalyst for polyolefin density and molecular weight control |
EP0260130A1 (en) | 1986-09-09 | 1988-03-16 | Exxon Chemical Patents Inc. | New supported polymerization catalyst |
EP0423101A2 (en) | 1989-10-10 | 1991-04-17 | Fina Technology, Inc. | Catalyst for producing hemiisotactic polypropylene |
EP0537130A1 (en) | 1991-10-07 | 1993-04-14 | Fina Technology, Inc. | Process and catalyst for producing isotactic polyolefins |
WO1994014856A1 (en) | 1992-12-28 | 1994-07-07 | Mobil Oil Corporation | A process for forming a carrier material |
WO1995012622A1 (en) | 1993-11-05 | 1995-05-11 | Borealis Holding A/S | Supported olefin polymerization catalyst, its preparation and use |
WO1996000243A1 (en) | 1994-06-24 | 1996-01-04 | Exxon Chemical Patents Inc. | Polymerization catalyst systems, their production and use |
US7153909B2 (en) * | 1994-11-17 | 2006-12-26 | Dow Global Technologies Inc. | High density ethylene homopolymers and blend compositions |
WO1996032923A2 (en) | 1995-04-15 | 1996-10-24 | Henkel Kommanditgesellschaft Auf Aktien | Anti-transpirants |
EP0836608A1 (en) | 1995-07-03 | 1998-04-22 | PCD-Polymere Gesellschaft m.b.H. | Metallocenes with silyl-substituted bridges and their use for olefin polymerization |
WO1997028170A1 (en) | 1996-01-30 | 1997-08-07 | Borealis A/S | Heteroatom substituted metallocene compounds for olefin polymerization catalyst systems and methods for preparing them |
WO1998046616A1 (en) | 1997-04-14 | 1998-10-22 | Borealis A/S | Substituted metallocene compounds for olefin polymerization catalyst systems, their intermediates and methods for preparing them |
WO1998049208A1 (en) | 1997-04-25 | 1998-11-05 | Bp Chemicals Limited | Novel compounds and their use in polymerisation |
WO1998056831A1 (en) | 1997-06-10 | 1998-12-17 | Peroxid-Chemie Gmbh & Co. Kg. | New catalyst systems for (co-)polymerization reactions, metallocene amide halogenides, the production and use thereof |
WO1999012981A1 (en) | 1997-09-05 | 1999-03-18 | Bp Chemicals Limited | Polymerisation catalysts |
WO1999019335A1 (en) | 1997-10-11 | 1999-04-22 | Bp Chemicals Limited | Novel polymerisation catalysts |
WO1999051646A1 (en) | 1998-04-06 | 1999-10-14 | Borealis Technology Oy | Olefin polymerization catalyst component, its preparation and use |
WO2000034341A2 (en) | 1998-12-07 | 2000-06-15 | Borealis A/S | Catalyst and process for olefin polymerization |
WO2001030861A1 (en) | 1999-10-22 | 2001-05-03 | Univation Technologies, Llc | Catalyst compositions, methods of polymerization, and polymers therefrom |
EP1316598A1 (en) | 2001-11-29 | 2003-06-04 | Borealis Technology Oy | Adhesive polymer composition |
WO2004067654A1 (en) | 2003-01-28 | 2004-08-12 | Borealis Technology Oy | Coating composition, method of preparation thereof and substrate coated therewith |
WO2006045550A1 (en) | 2004-10-22 | 2006-05-04 | Borealis Technology Oy | Composition |
US7081285B1 (en) | 2005-04-29 | 2006-07-25 | Fina Technology, Inc. | Polyethylene useful for blown films and blow molding |
US20070254990A1 (en) | 2006-04-26 | 2007-11-01 | Nova Chemicals (International) S.A. | Pipe coating composition |
WO2008051824A2 (en) | 2006-10-23 | 2008-05-02 | Dow Global Technologies Inc. | Polyethylene compositions, methods of making the same, and articles prepared therefrom |
Non-Patent Citations (2)
Title |
---|
International Search Report for International Application No. PCT/EP2009/008396. |
Written Opinion of the International Searching Authority and International Preliminary Report on Patentability for International Application No. PCT/EP2009/008396. |
Also Published As
Publication number | Publication date |
---|---|
EA201170907A1 (en) | 2011-12-30 |
US20110250374A1 (en) | 2011-10-13 |
WO2010075914A1 (en) | 2010-07-08 |
EP2204410A1 (en) | 2010-07-07 |
CA2748723A1 (en) | 2010-07-08 |
KR20110091033A (en) | 2011-08-10 |
EP2370514A1 (en) | 2011-10-05 |
EA021158B1 (en) | 2015-04-30 |
EP2370514B1 (en) | 2017-01-04 |
KR101310687B1 (en) | 2013-09-24 |
CA2748723C (en) | 2013-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7956129B2 (en) | Polymer blends | |
US10323110B2 (en) | Ethylene/alpha-olefin copolymer having excellent processability | |
KR100880097B1 (en) | High melt strength polymers and method of making same | |
US11208512B2 (en) | Bimodal polyethylene resins | |
US7473745B2 (en) | Preparation of multimodal polyethylene | |
EP1838744B1 (en) | Film and process for its preparation | |
EP1462464A1 (en) | Metallocene catalysts and preparation of polyolefins therewith | |
WO1997044371A1 (en) | Polyolefin composition with molecular weight maximum occuring in that part of the composition that has the highest comonomer content | |
US10975184B2 (en) | High-density ethylene-based polymer using hybrid supported metallocene catalyst and pipe using same | |
JP2022507058A (en) | Ethylene / 1-hexene copolymer with excellent long-term physical characteristics and processability | |
US20230272196A1 (en) | Thermoplastic compositions comprising recycled polymers and articles manufactured therefrom | |
JP2021507965A (en) | Ethylene / 1-butene copolymer with excellent workability | |
KR20220004149A (en) | Enhanced ESCR and ductile bimodal rotomolding resin | |
EP0611377A1 (en) | Process for producing polyolefin | |
US7335710B2 (en) | Polymerization process | |
US9353283B2 (en) | Article coated with a composition comprising polyethylene prepared with a single site catalyst | |
JP2020505480A (en) | Olefin polymer, method for producing the same, and film using the same | |
KR20210070816A (en) | Catalyst composition and process for preparation of polyethylene using the same | |
EP3434700B1 (en) | Ethylene/alpha-olefin copolymer having excellent processability | |
JP2013133419A (en) | Rubber packaging film and rubber package | |
JP2014040561A (en) | Tube | |
JP2013151637A (en) | Resin for coating steel, and the steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOREALIS AG, AUSTRIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VOIGT, BJORN;ANKER, MARTIN;PALMLOF, MAGNUS;AND OTHERS;SIGNING DATES FROM 20110520 TO 20110528;REEL/FRAME:026468/0163 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: BOREALIS AG, AUSTRIA Free format text: CHANGE OF ADDRESS;ASSIGNOR:BOREALIS AG;REEL/FRAME:059219/0949 Effective date: 20220201 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240531 |