US9270512B2 - Nonlinearity compensation for reception of OFDM signals - Google Patents

Nonlinearity compensation for reception of OFDM signals Download PDF

Info

Publication number
US9270512B2
US9270512B2 US14/541,312 US201414541312A US9270512B2 US 9270512 B2 US9270512 B2 US 9270512B2 US 201414541312 A US201414541312 A US 201414541312A US 9270512 B2 US9270512 B2 US 9270512B2
Authority
US
United States
Prior art keywords
nonlinear distortion
model
receiver
ofdm symbol
circuitry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/541,312
Other versions
US20150358191A1 (en
Inventor
Amir Eliaz
Ilan Reuven
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Magnacom Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnacom Ltd filed Critical Magnacom Ltd
Priority to US14/541,312 priority Critical patent/US9270512B2/en
Publication of US20150358191A1 publication Critical patent/US20150358191A1/en
Application granted granted Critical
Priority to US15/050,550 priority patent/US20160248531A1/en
Publication of US9270512B2 publication Critical patent/US9270512B2/en
Assigned to AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. reassignment AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MagnaCom Ltd.
Assigned to AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED reassignment AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED MERGER (SEE DOCUMENT FOR DETAILS). Assignors: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.
Assigned to AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED reassignment AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE PREVIOUSLY RECORDED AT REEL: 047422 FRAME: 0464. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER. Assignors: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03305Joint sequence estimation and interference removal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03821Inter-carrier interference cancellation [ICI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • FIG. 1 shows an example transmitter operable to generate inter-carrier correlated (ICI) orthogonal frequency divisions multiplexed (OFDM) signals.
  • ICI inter-carrier correlated
  • OFDM orthogonal frequency divisions multiplexed
  • FIG. 2 shows an example receiver operable to recover information from received ICI OFDM signals.
  • FIG. 3 shows an example implementation of the reduced state sequence estimation (RSSE) circuitry of FIG. 2 .
  • RSSE reduced state sequence estimation
  • FIG. 4A shows a first example implementation of the nonlinear distortion model determination circuitry of FIG. 2 .
  • FIG. 4B shows a second example implementation of the nonlinear distortion model determination circuitry of FIG. 2 .
  • FIG. 5 shows a first example implementation of the interference estimation circuitry of FIG. 2 for use with a generalized third-order nonlinear distortion model.
  • FIG. 6 shows a first example implementation of the interference estimation circuitry of FIG. 2 for use with a digital clipping nonlinear distortion model.
  • FIGS. 7A-7D show an example implementation in which the receiver of FIG. 2 performs two or more iterations over the subcarriers of an OFDM symbol to recover the data of the OFDM symbol in the presence of nonlinear distortion.
  • circuits and circuitry refer to physical electronic components (i.e. hardware) and any software and/or firmware (“code”) which may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware.
  • code software and/or firmware
  • a particular processor and memory may comprise a first “circuit” when executing a first one or more lines of code and may comprise a second “circuit” when executing a second one or more lines of code.
  • and/or means any one or more of the items in the list joined by “and/or”.
  • x and/or y means any element of the three-element set ⁇ (x), (y), (x, y) ⁇ .
  • x, y, and/or z means any element of the seven-element set ⁇ (x), (y), (z), (x, y), (x, z), (y, z), (x, y, z) ⁇ .
  • the terms “e.g.,” and “for example” set off lists of one or more non-limiting examples, instances, or illustrations.
  • circuitry is “operable” to perform a function whenever the circuitry comprises the necessary hardware and code (if any is necessary) to perform the function, regardless of whether performance of the function is disabled, or not enabled, by some user-configurable setting.
  • FIG. 1 shows an example transmitter operable to generate inter-carrier correlated (ICI) orthogonal frequency divisions multiplexed (OFDM) signals. Shown is a transmitter that comprises encoder circuitry 102 , mapper circuitry 104 , inter-subcarrier interference (ICI) generation circuitry 106 , inverse fast Fourier transform (IFFT) circuit 108 , and analog front end (AFE) 110 .
  • ICI inter-carrier correlated
  • OFDM orthogonal frequency divisions multiplexed
  • the encoder circuitry 102 receives a vector of bits B ′ which are the bits of a particular OFDM symbol.
  • the encoder circuitry 102 converts the bits B ′, to a vector of bits B , in accordance with a forward error correction (FEC) algorithm (e.g., Reed-Solomon, Low-Density Parity Check, Turbo, and/or the like).
  • FEC forward error correction
  • the mapper circuit 104 is operable to map the vector B to a vector A according to a selected modulation scheme.
  • a quadrature amplitude modulation (QAM) scheme having an alphabet size of M M-QAM
  • the mapper may map each Log 2 (M) bits of B to a value represented as a complex number and/or as in-phase (I) and quadrature-phase (Q) components.
  • M-QAM is used for illustration in this disclosure, aspects of this disclosure are applicable to any modulation scheme (e.g., pulse amplitude modulation (PAM), amplitude shift keying (ASK), phase shift keying (PSK), frequency shift keying (FSK), etc.).
  • PAM pulse amplitude modulation
  • ASK amplitude shift keying
  • PSK phase shift keying
  • FSK frequency shift keying
  • points of the M-QAM constellation may be regularly spaced (“on-grid”) or irregularly spaced (“off-grid”).
  • the constellation used by the mapper 104 may be optimized for best bit-error rate (BER) performance (or adjusted to achieve a target BER) that is related to log-likelihood ratio (LLR) and to optimizing mean mutual information bit (MMIB) (or achieving a target MMIB).
  • BER bit-error rate
  • LLR log-likelihood ratio
  • MMIB mean mutual information bit
  • the ISC generation circuitry 106 is operable to process A to generate a vector C .
  • the elements of A are referred to herein as “virtual subcarrier values” of the particular OFDM symbol and the elements of C are referred to herein as the corresponding “physical subcarrier values” of the particular OFDM symbol, where: the vector A comprises N values, the vector C comprises P values, N and P are positive integers, N ⁇ 2, and N ⁇ P.
  • the N elements of A are represented herein as a 1 :a N , with any particular one of the values represented as a n .
  • the P elements of C are represented herein as c 1 :c P , with any particular one of the values represented as c P .
  • the processing performed by the circuitry 106 may comprise cyclic filtering and/or decimation such that each of the ISC values of C depends on a plurality (perhaps all) of the elements of A .
  • the circuitry 106 may be similar to, or the same as, circuits 104 and 106 of the above incorporated Unites States Patent Application Publication US2013/0343473.
  • ⁇ (an integer) pilot symbols may be inserted at the IFFT and the total number of physical subcarriers may be P+ ⁇ , where P is thus the quantity of data-carrying subcarriers.
  • the inverse fast Fourier transform (IFFT) circuit 108 is operable to convert the physical subcarrier value vector C (of length P) to a corresponding vector of P time-domain samples (i.e., the time-domain representation of the particular OFDM symbol).
  • the analog front end (AFE) 110 is operable to convert the P time-domain values output by IFFT 108 to an analog representation, upconvert the resulting analog signal, and amplify the upconverted signal for transmission onto a channel 112 .
  • the transmitter front-end 118 may comprise, for example, a digital-to-analog converter (DAC), mixer, and/or power amplifier.
  • the front-end 118 may introduce nonlinear distortion and/or phase noise (and/or other non-idealities) to the transmitted signal 117 .
  • the nonlinear distortion introduced by the circuit 118 may be represented as NL Tx which may be, for example, a polynomial, or an exponential (e.g., Rapp model).
  • the model of the nonlinear distortion may incorporate memory (e.g., Volterra series).
  • the transmitted values C after being converted to the time domain, experiencing the nonlinear distortion introduced by the AFE 110 , and passing through the channel 112 (which may also introduce nonlinear distortion and/or noise), emerge as a signal 113 .
  • FIG. 2 shows an example receiver operable to recover information from received ICI OFDM signals.
  • the receiver comprises an analog front-end 202 , time domain preprocessing circuitry 204 , a fast Fourier transform (FFT) circuit 208 , frequency domain preprocessing circuitry 206 , nonlinear distortion model determination circuitry 214 , interference estimation circuitry 210 , and reduced state sequence estimation (RSSE) circuitry 212 .
  • FFT fast Fourier transform
  • RSSE reduced state sequence estimation
  • the AFE 202 is operable to process the signal 113 corresponding to a particular OFDM signal to a vector of S ′ samples of the particular OFDM symbol. Such processing may comprise, amplification, downconversion (to IF or baseband), and analog-to-digital conversion.
  • the receiver front-end 202 may comprise, for example, a low-noise amplifier, a mixer, and/or an analog-to-digital converter.
  • the AFE 202 may, for example, sample the received signal 113 P times per OFDM symbol period resulting in a S ′ of length P (where pilot symbols are used, the AFE 202 may sample P+ ⁇ times per OFDM symbol).
  • the receiver front-end 202 may introduce nonlinear distortion and/or phase noise to the signal S ′.
  • the nonlinear distortion introduced by the front end 202 may be represented as NL Rx which may be, for example, a polynomial, or an exponential (e.g., Rapp model).
  • the model of the nonlinear distortion may incorporate memory (e.g., Volterra series).
  • the time domain preprocessing circuitry 204 is operable to perform time-domain processing of the samples S ′ to generate received physical subcarrier value vector S .
  • Such processing may include, for example, timing acquisition, phase correction, frequency correction, decimation, DC removal, IQ mismatch correction, filtering, windowing, removal of pilot symbols, cyclic prefix removal, and/or the like.
  • the FFT 208 is operable to convert the time-domain physical subcarrier value vector S (of length P) to a corresponding vector of P frequency-domain samples (i.e., convert the time-domain representation of S to the frequency-domain representation of S ).
  • the frequency domain preprocessing circuitry 206 is operable to perform frequency domain processing of the output of the FFT 208 to generate a vector Y , which is a vector of N received virtual subcarrier values. Such processing may include, for example, performing the inverse of the ICI generation circuitry 106 ( FIG. 1 ), and performing per-subcarrier equalization.
  • the elements of Y are represented herein as y 1 :y N , with any particular one of the values represented as y n .
  • the RSSE circuitry 212 is operable to perform reduced state sequence estimation on the vector Y to generate a vector ⁇ which is the receiver's decision vector (“best guess” as to the transmitted virtual subcarrier value vector A ). Details of an example implementation of RSSE circuitry 212 are described below with reference to FIG. 3 .
  • the nonlinear distortion model determination circuitry 214 is operable to determine a model, NL, that represents/enables reproduction of (to a desired accuracy) the nonlinear distortion experienced by the signal S ′ in the transmitter, the channel, and/or the receiver.
  • the nonlinear distortion introduced by the AFE 110 of the transmitter may be dominant and NL may be a representation of NL Tx .
  • the nonlinear distortion model, NL may be, for example, a logical and/or mathematical expression, a look-up table, and/or any other suitable representation of the nonlinear distortion. Any one or more of a variety of model types may be used for NL, with each model type being characterized by one or more parameters.
  • the model type and/or parameter values may be communicated directly by the transmitter (e.g., during handshaking) and/or may be learned by the receiver by processing signals received from the transmitter (e.g., selection of the model type and/or training of the parameter values may be based on preambles sent by the transmitter).
  • NL may comprise an AM/AM parameter whose value is dependent on transmitted signal strength, and an AM/PM parameter whose value is dependent on transmitted signal strength.
  • received signal strength may be used as a proxy for transmitted signal strength and the received signal strength may be applied to the look-up table to determine appropriate values of the AM/AM and AM/PM parameters.
  • the interference estimation circuitry 210 is operable to estimate the interference, F , present in the received virtual subcarrier values Y , based on Y and based on NL. Details of example implementations of 210 are described below with reference to FIGS. 5 and 6 .
  • FIG. 3 shows an example implementation of the reduced state sequence estimation (RSSE) circuitry of FIG. 2 .
  • the example RSSE circuitry 212 shown in FIG. 3 comprises nonlinear distortion circuitry 302 , metric calculation circuitry 306 , survivor selection circuitry 308 , buffering circuitry 310 , successor generation circuitry 312 , and buffering circuitry 314 .
  • FIG. 2 depicts the RSSE circuitry 212 processing received virtual subcarrier value having index n (where 1 ⁇ n ⁇ N) of a particular OFDM symbol.
  • the buffer circuitry 310 is operable to, upon completion of processing a particular received virtual subcarrier value of the OFDM symbol being processed, latch the selected survivor vectors such that those survivors are available for processing the next received virtual subcarrier value of the OFDM symbol.
  • FIG. 3 which shows processing of received virtual subcarrier value having index n
  • the survivors selected upon completion of processing the received virtual subcarrier value having index n ⁇ 1 ( ) are latched by the buffer 310 and output to the successor generation circuitry 312 .
  • Each survivor comprises up to n elements corresponding to one or more of subcarriers 0 through n ⁇ 1. Elements of survivor are represented herein as , where D is the memory depth of the RSSE circuitry.
  • the successor generation circuitry 312 is operable to extend each of the M survivors from the previous iteration, , to K successors, resulting in successors .
  • Elements of successor vector are represented herein as , where is the element by which survivor was extended to create successor .
  • the number of successors generated thus depends on the number of survivors, M, retained for each received virtual subcarrier value and the number of possible symbol transmitted virtual subcarrier values for which it is desired to search. Higher values of M and K may achieve improved results at the expense of increased size and complexity.
  • the value of K may be chosen to be the size of the constellation used by mapper 104 ( FIG. 1 ) (e.g., for 64QAM K may be set to 64) such that each survivor is extended by each possible transmitted virtual subcarrier value.
  • the nonlinear distortion circuitry 302 is operable to, for each of the M ⁇ K successors , generate a candidate vector by introducing nonlinear distortion to the successor G n m,k .
  • Elements of candidate vector are represented herein as , where is the estimated constellation symbol of the (m,k) candidate for subcarrier index n, is the estimated constellation symbol of the (m,k) candidate for subcarrier index n ⁇ 1, and so on (where n is less than D, D-n elements may be values from an initialization of the RSSE circuitry).
  • the nonlinear distortion introduced to each successor is determined based on NL from the nonlinear distortion model determination circuitry 214 ( FIGS. 1 , 4 A, and 4 B). In this manner, the circuitry 302 attempts to reproduce (to desired/necessary accuracy) the nonlinear distortion experienced by the signal 113 (or S ′ where nonlinear distortion of the AFE 202 is accounted for in NL)).
  • the metric calculation circuitry 306 is operable to calculate branch a path metric, PM n m,k for each of the candidates , and output the path metrics to the survivor selection circuitry 308 .
  • the branch metric for candidate may be calculated based on F . The manner in which the branch metric is calculated varies for different implementations. Some example branch metric calculations are described below with reference to FIGS. 5 , 6 , 7 B, 7 C, and 7 D.
  • the survivor selection circuitry 308 is operable to compare the path metrics for each of the candidates and select the M best candidates (corresponding to the M best path metrics) as the survivors .
  • the buffer circuitry 314 is operable to buffer samples of signal Y and/or initialization samples and may shift the samples out as signal Y n .
  • the first n elements of Y n may be equal to the first n elements of Y and the remaining (D ⁇ n) elements of Y n may be known values used for initialization of the RSSE circuitry.
  • FIG. 4A shows a first example implementation of the nonlinear distortion model determination circuitry of FIG. 2 .
  • the example implementation of nonlinear distortion model determination circuitry 214 shown in FIG. 4A comprises circuitry 402 operable to estimate the nonlinear distortion experienced by S (the output of time-domain processing circuitry 204 in FIG. 2 ) in the time domain.
  • the estimation of the nonlinear distortion may be based on, for example, preambles present in S ′, the received signal strength of 113 , and/or based on control information (e.g., a model type best suited for the transmitter from which signal 113 originated, initial nonlinear distortion model parameters, power level at signal 113 was transmitted, and/or the like) communicated to the receiver (e.g., during handshaking and/or in frame headers of S ).
  • control information e.g., a model type best suited for the transmitter from which signal 113 originated, initial nonlinear distortion model parameters, power level at signal 113 was transmitted, and/or the like
  • T time domain nonlinear distortion model
  • FIG. 4B shows a second example implementation of the nonlinear distortion model determination circuitry of FIG. 2 .
  • the frequency domain NL is determined in the frequency domain directly from Y .
  • FIG. 5 shows a first example implementation of the interference estimation circuitry of FIG. 2 for use with a generalized third-order nonlinear distortion model.
  • the example implementation of the interference estimation circuitry 210 in FIG. 5 comprises interference calculation circuitry 502 .
  • the notation f n m,k represents an estimate of the aggregate interference present in the received virtual subcarrier value having index n for candidate .
  • the aggregate interference estimate may, for example, be a complex number representing the magnitude and phase of the interference.
  • the estimated aggregate interference may depend only on n (the received virtual subcarrier index) and may be the same for all of the candidates (i.e., each of the estimates f n 1,1 :f n M,K takes on the same value), but in other instances, the interference estimates may differ among the candidates .
  • the aggregate interference estimate for candidate may be calculated exhaustively taking into account each of the other N ⁇ 1 virtual subcarriers.
  • the aggregate interference estimate for candidate may be calculated taking into account only a selected subset of the other N ⁇ 1 virtual subcarriers. This may reduce the amount of calculations necessary.
  • indexes of virtual subcarriers having power above a determined threshold may be included in the set Q (based on the assumption that low-energy virtual subcarriers will experience relatively little nonlinear distortion and thus not contribute a lot of interference).
  • the branch metric (represented as BM n m,k ) for candidate may be calculated.
  • FIG. 6 shows a first example implementation of the interference estimation circuitry of FIG. 2 for use with a digital clipping nonlinear distortion model.
  • the interference estimation circuitry 210 comprises clipped subcarrier determination circuit 602 and interference estimation circuit 604 .
  • the clipped subcarrier determination circuit 602 is operable to determine which transmitted virtual subcarriers values were digitally clipped in the transmitter during the transmission that resulted in signal 113 .
  • the circuit 602 then outputs the indexes of the clipped subcarriers to the circuit 604 as vector I .
  • the transmitter may directly send such information (e.g., in a header) and the circuit 602 may simply extract the information.
  • the circuit 602 may determine which transmitted virtual subcarrier values were digitally clipped based on the magnitude of the received virtual subcarrier values.
  • the interference F may be determined by NL and I .
  • the branch metric for candidate may be calculated.
  • FIGS. 7A-7D show an example implementation in which the receiver of FIG. 2 performs two or more iterations over the OFDM symbol to generate decisions as to the transmitted virtual subcarrier values of the OFDM symbol in the presence of nonlinear distortion.
  • Shown in FIG. 7A is another example implementation of interference estimation circuitry 210 , which comprises nonlinear distortion circuitry 702 and combiner 704 .
  • the nonlinear distortion circuitry 702 is operable to introduce nonlinear distortion to the received virtual subcarrier vector Y to generate Y ′.
  • the nonlinear distortion introduced is determined based on NL from the nonlinear distortion model determination circuitry 214 ( FIGS. 1 , 4 A, and 4 B). In this manner, the circuitry 702 attempts to reproduce (to desired/necessary accuracy) the nonlinear distortion experienced by the signal 113 (or the signal S ′ where nonlinear distortion of the AFE 202 is accounted for in NL).
  • the combiner 704 combines Y and Y ′ such that the output is the difference between Y and Y ′.
  • the output of combiner 704 is —an initial approximation of the interference introduced by the nonlinear distortion experienced by Y . It is acknowledged that, because there is interference present in Y as a result of the nonlinear distortion that Y experienced en route to the circuitry 210 (at least a portion of which NL is attempting to model), this is not going to be an exact measure of the actual interference present in Y . Nevertheless, if the strength of the interference present in Y is relatively small compared to the desired signal strength, the amount of additional interference contributed by the existing interference during application of NL may be small enough that is a suitable approximation.
  • a first iteration of processing the particular OFDM symbol is carried out by the RSSE circuitry 212 as shown in FIG. 7B .
  • the RSSE circuitry 212 As is shown, during the first iteration on the particular OFDM symbol, is input to the metric calculation circuitry 306 , and the N subcarriers are processed sequentially.
  • the sequential processing during the first iteration on the particular OFDM symbol comprises: extending, by successor generation circuitry 312 , each of the M selected survivors ( ) from the previous subcarrier to K successors ( ); distorting, by nonlinear distortion circuitry 302 , each of the M ⁇ K successors to generate candidates ; calculating, by metrics calculation circuitry 306 , metrics for each candidate n m.k using ; and selecting, by survivor selection circuitry 308 , the M best survivors .
  • the metrics for candidate during the first iteration on the particular OFDM symbol are based on and y n+1 :y N (as a result of using ).
  • FIGS. 7C and 7D illustrate an embodiment where a second iteration is performed in an attempt to improve the reliability of the estimates.
  • circuitry 702 and 704 for the second iteration on the particular OFDM symbol, (rather than Y as was used in FIG. 7A ) is used by circuitry 702 and 704 for calculating F , which, as shown in FIG. 7D , is then input to metric calculation circuitry 306 for calculating metrics during the second iteration on the particular OFDM symbol.
  • the successors are processed similarly to the first iteration.
  • the sequential processing during the second iteration on the particular OFDM symbol comprises: extending, by successor generation circuitry 312 , each of the M selected survivors ( ) from the previous subcarrier to K successors ( ) distorting, by nonlinear distortion circuitry 302 , each of the M ⁇ K successors to generate candidates ; calculating, by metrics calculation circuitry 306 , metrics for each candidate using ; and selecting, by survivor selection circuitry 308 , the M best survivors .
  • the metrics for candidate during the first iteration on the particular OFDM symbol are based on and (as a result of using F ).
  • the M selected survivors are , and the best of these ( ) is selected for output to downstream circuitry such as a FEC decoder. In other implementations, additional iterations may be performed to refine these survivors even further.
  • an electronic receiver may comprise nonlinear distortion modeling circuitry (e.g., 214 ), interference estimation circuitry (e.g., 210 ), and sequence estimation circuitry (e.g., 212 ).
  • the receiver may receive an orthogonal frequency division multiplexing (OFDM) symbol in the form of an electromagnetic signal (e.g., 113 ).
  • the nonlinear distortion modeling circuitry may generate a nonlinear distortion model (e.g., NL) that models nonlinear distortion introduced to the received electromagnetic signal en route to the sequence estimation circuitry.
  • the interference estimation circuitry may estimate inter- subcarrier interference present in the received OFDM symbol based on the generated nonlinear distortion model.
  • the sequence estimation circuitry may sequentially process a plurality of received virtual subcarrier values (e.g., Y ) of the OFDM symbol using the estimated inter-subcarrier interference.
  • the processing may result in decisions as to a plurality of transmitted virtual subcarrier values (e.g., ) that correspond to the plurality of received virtual subcarrier values.
  • the estimating of the inter-subcarrier interference may comprise applying the nonlinear distortion model to one or more candidate vectors (e.g., G n m,k ) generated by the sequence estimation circuitry.
  • the estimating of the inter-subcarrier interference may comprise determining which one or more of the transmitted virtual subcarrier values were digitally clipped in a transmitter from which the received electromagnetic signal originated.
  • the estimating of the inter-subcarrier interference may comprise calculating the inter-subcarrier interference based on which one or more of the plurality of transmitted virtual subcarrier values were digitally clipped in the transmitter and based on the generated nonlinear distortion model.
  • the determining which one or more of the plurality of transmitted virtual subcarrier values were digitally clipped in the transmitter may comprise determining magnitude of each of the plurality of received virtual subcarrier values.
  • the estimating of the inter- subcarrier interference may comprise applying the nonlinear distortion model to the received electromagnetic signal to generate an intermediate electromagnetic signal (e.g., Y ′).
  • the estimating of the inter-subcarrier interference may comprise subtracting the received electromagnetic signal from the intermediate electromagnetic signal, a result of the subtraction being the estimate of the inter-subcarrier interference.
  • the plurality of received virtual subcarrier values may comprise a first received virtual subcarrier value (e.g., y 0 ) and a second received virtual subcarrier value (e.g., y 1 ).
  • the sequential processing may comprise processing the first received virtual subcarrier value to generate a decision as to a first one of the plurality of transmitted virtual subcarrier values (e.g., ) using an estimate of interference present in the first received virtual subcarrier value (e.g., f 0 ) that is based on the second received virtual subcarrier value.
  • the sequential processing may comprise processing the second received virtual subcarrier value to generate a decision as to a second one of the plurality of transmitted virtual subcarrier values (e.g., ) using an estimate of interference present in the second received virtual subcarrier value (e.g., f 1 ) that is based on the generated decision as to the first one of the plurality of transmitted virtual subcarrier values.
  • the plurality of received virtual subcarrier values may comprise a third received virtual subcarrier value (e.g., y 2 ).
  • the estimate of interference present in the second received virtual subcarrier value may be based on the third received virtual subcarrier value.
  • the sequential processing may comprise processing the third received virtual subcarrier value to generate a decision as to a third one of the plurality of transmitted virtual subcarrier values (e.g., ) using an estimate of interference present in the third received virtual subcarrier value (e.g., f 3 ) that is based on the generated decision as to the first one of the plurality of transmitted virtual subcarrier values and on the generated decision as to the second one of the plurality of transmitted virtual subcarrier values.
  • a decision as to a third one of the plurality of transmitted virtual subcarrier values e.g., ) using an estimate of interference present in the third received virtual subcarrier value (e.g., f 3 ) that is based on the generated decision as to the first one of the plurality of transmitted virtual subcarrier values and on the generated decision as to the second one of the plurality of transmitted virtual subcarrier values.
  • the sequential processing may comprise generating a plurality of branch metrics (e.g., BM 0 1,1 :BM N ⁇ 1 M,K ), wherein each of the plurality of branch metrics is based on a corresponding one of the received virtual subcarrier values, a candidate vector generated by the sequence estimation circuitry, and the estimated inter-subcarrier interference.
  • the estimating of the inter-subcarrier interference may considers all others of the received virtual subcarrier values or only a subset of all others of the plurality of received virtual subcarrier values.
  • the subset of all others of the plurality of received virtual subcarrier values may correspond to those of the plurality of received virtual subcarrier values having a magnitude above a determined threshold.
  • the present method and/or system may be realized in hardware, software, or a combination of hardware and software.
  • the present methods and/or systems may be realized in a centralized fashion in at least one computing system, or in a distributed fashion where different elements are spread across several interconnected computing systems. Any kind of computing system or other apparatus adapted for carrying out the methods described herein is suited.
  • a typical combination of hardware and software may be a general-purpose computing system with a program or other code that, when being loaded and executed, controls the computing system such that it carries out the methods described herein.
  • Another typical implementation may comprise an application specific integrated circuit or chip.
  • Some implementations may comprise a non-transitory machine-readable (e.g., computer readable) medium (e.g., FLASH drive, optical disk, magnetic storage disk, or the like) having stored thereon one or more lines of code executable by a machine, thereby causing the machine to perform processes as described herein.
  • a non-transitory machine-readable (e.g., computer readable) medium e.g., FLASH drive, optical disk, magnetic storage disk, or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • Noise Elimination (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

An electronic receiver may comprise nonlinear distortion modeling circuitry, interference estimation circuitry, and sequence estimation circuitry. The receiver may receive an orthogonal frequency division multiplexing (OFDM) symbol in the form of an electromagnetic signal. The nonlinear distortion modeling circuitry may generate a nonlinear distortion model that models nonlinear distortion introduced to the received electromagnetic signal en route to the sequence estimation circuitry. The interference estimation circuitry may estimate inter-subcarrier interference present in the received OFDM symbol based on the generated nonlinear distortion model. The estimating of the inter-subcarrier interference may comprise applying the nonlinear distortion model to one or more candidate vectors generated by the sequence estimation circuitry. The sequence estimation circuitry may sequentially process a plurality of received virtual subcarrier values of the OFDM symbol using the estimated inter-subcarrier interference.

Description

CLAIM OF PRIORITY
This application is a continuation of U.S. patent application Ser. No. 14/298,373, filed Jun. 6, 2014 (now patented as U.S. Pat. No. 8,891,701).
INCORPORATION BY REFERENCE
The entirety of U.S. Pat. No. 8,781,008 titled “Highly-Spectrally-Efficient Transmission Using Orthogonal Frequency Division Multiplexing” is hereby incorporated herein by reference.
BACKGROUND
Limitations and disadvantages of conventional approaches to reception of signals in the presence of nonlinear distortion will become apparent to one of skill in the art, through comparison of such approaches with some aspects of the present method and system set forth in the remainder of this disclosure with reference to the drawings.
BRIEF SUMMARY
Methods and systems are provided for nonlinearity compensation for reception of OFDM signals, substantially as illustrated by and/or described in connection with at least one of the figures, as set forth more completely in the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an example transmitter operable to generate inter-carrier correlated (ICI) orthogonal frequency divisions multiplexed (OFDM) signals.
FIG. 2 shows an example receiver operable to recover information from received ICI OFDM signals.
FIG. 3 shows an example implementation of the reduced state sequence estimation (RSSE) circuitry of FIG. 2.
FIG. 4A shows a first example implementation of the nonlinear distortion model determination circuitry of FIG. 2.
FIG. 4B shows a second example implementation of the nonlinear distortion model determination circuitry of FIG. 2.
FIG. 5 shows a first example implementation of the interference estimation circuitry of FIG. 2 for use with a generalized third-order nonlinear distortion model.
FIG. 6 shows a first example implementation of the interference estimation circuitry of FIG. 2 for use with a digital clipping nonlinear distortion model.
FIGS. 7A-7D show an example implementation in which the receiver of FIG. 2 performs two or more iterations over the subcarriers of an OFDM symbol to recover the data of the OFDM symbol in the presence of nonlinear distortion.
DETAILED DESCRIPTION
As utilized herein the terms “circuits” and “circuitry” refer to physical electronic components (i.e. hardware) and any software and/or firmware (“code”) which may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware. As used herein, for example, a particular processor and memory may comprise a first “circuit” when executing a first one or more lines of code and may comprise a second “circuit” when executing a second one or more lines of code. As utilized herein, “and/or” means any one or more of the items in the list joined by “and/or”. As an example, “x and/or y” means any element of the three-element set {(x), (y), (x, y)}. As another example, “x, y, and/or z” means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. As utilized herein, the terms “e.g.,” and “for example” set off lists of one or more non-limiting examples, instances, or illustrations. As utilized herein, circuitry is “operable” to perform a function whenever the circuitry comprises the necessary hardware and code (if any is necessary) to perform the function, regardless of whether performance of the function is disabled, or not enabled, by some user-configurable setting.
FIG. 1 shows an example transmitter operable to generate inter-carrier correlated (ICI) orthogonal frequency divisions multiplexed (OFDM) signals. Shown is a transmitter that comprises encoder circuitry 102, mapper circuitry 104, inter-subcarrier interference (ICI) generation circuitry 106, inverse fast Fourier transform (IFFT) circuit 108, and analog front end (AFE) 110.
The encoder circuitry 102 receives a vector of bits B′ which are the bits of a particular OFDM symbol. The encoder circuitry 102 converts the bits B′, to a vector of bits B, in accordance with a forward error correction (FEC) algorithm (e.g., Reed-Solomon, Low-Density Parity Check, Turbo, and/or the like).
The mapper circuit 104, is operable to map the vector B to a vector A according to a selected modulation scheme. For example, for a quadrature amplitude modulation (QAM) scheme having an alphabet size of M (M-QAM), the mapper may map each Log2(M) bits of B to a value represented as a complex number and/or as in-phase (I) and quadrature-phase (Q) components. Although M-QAM is used for illustration in this disclosure, aspects of this disclosure are applicable to any modulation scheme (e.g., pulse amplitude modulation (PAM), amplitude shift keying (ASK), phase shift keying (PSK), frequency shift keying (FSK), etc.). Additionally, points of the M-QAM constellation may be regularly spaced (“on-grid”) or irregularly spaced (“off-grid”). Furthermore, the constellation used by the mapper 104 may be optimized for best bit-error rate (BER) performance (or adjusted to achieve a target BER) that is related to log-likelihood ratio (LLR) and to optimizing mean mutual information bit (MMIB) (or achieving a target MMIB).
The ISC generation circuitry 106 is operable to process A to generate a vector C. The elements of A are referred to herein as “virtual subcarrier values” of the particular OFDM symbol and the elements of C are referred to herein as the corresponding “physical subcarrier values” of the particular OFDM symbol, where: the vector A comprises N values, the vector C comprises P values, N and P are positive integers, N≧2, and N≧P. The N elements of A are represented herein as a1:aN, with any particular one of the values represented as an. The P elements of C are represented herein as c1:cP, with any particular one of the values represented as cP. In an example implementation, the processing performed by the circuitry 106 may comprise cyclic filtering and/or decimation such that each of the ISC values of C depends on a plurality (perhaps all) of the elements of A. In an example implementation, the circuitry 106 may be similar to, or the same as, circuits 104 and 106 of the above incorporated Unites States Patent Application Publication US2013/0343473. In an example implementation, Δ (an integer) pilot symbols may be inserted at the IFFT and the total number of physical subcarriers may be P+Δ, where P is thus the quantity of data-carrying subcarriers.
The inverse fast Fourier transform (IFFT) circuit 108 is operable to convert the physical subcarrier value vector C (of length P) to a corresponding vector of P time-domain samples (i.e., the time-domain representation of the particular OFDM symbol).
The analog front end (AFE) 110 is operable to convert the P time-domain values output by IFFT 108 to an analog representation, upconvert the resulting analog signal, and amplify the upconverted signal for transmission onto a channel 112. Thus, the transmitter front-end 118 may comprise, for example, a digital-to-analog converter (DAC), mixer, and/or power amplifier. The front-end 118 may introduce nonlinear distortion and/or phase noise (and/or other non-idealities) to the transmitted signal 117. The nonlinear distortion introduced by the circuit 118 may be represented as NLTx which may be, for example, a polynomial, or an exponential (e.g., Rapp model). The model of the nonlinear distortion may incorporate memory (e.g., Volterra series). The transmitted values C, after being converted to the time domain, experiencing the nonlinear distortion introduced by the AFE 110, and passing through the channel 112 (which may also introduce nonlinear distortion and/or noise), emerge as a signal 113.
FIG. 2 shows an example receiver operable to recover information from received ICI OFDM signals. The receiver comprises an analog front-end 202, time domain preprocessing circuitry 204, a fast Fourier transform (FFT) circuit 208, frequency domain preprocessing circuitry 206, nonlinear distortion model determination circuitry 214, interference estimation circuitry 210, and reduced state sequence estimation (RSSE) circuitry 212.
The AFE 202 is operable to process the signal 113 corresponding to a particular OFDM signal to a vector of S′ samples of the particular OFDM symbol. Such processing may comprise, amplification, downconversion (to IF or baseband), and analog-to-digital conversion. Thus, the receiver front-end 202 may comprise, for example, a low-noise amplifier, a mixer, and/or an analog-to-digital converter. The AFE 202 may, for example, sample the received signal 113 P times per OFDM symbol period resulting in a S′ of length P (where pilot symbols are used, the AFE 202 may sample P+Δ times per OFDM symbol). Due to non-idealities, the receiver front-end 202 may introduce nonlinear distortion and/or phase noise to the signal S′. The nonlinear distortion introduced by the front end 202 may be represented as NLRx which may be, for example, a polynomial, or an exponential (e.g., Rapp model). The model of the nonlinear distortion may incorporate memory (e.g., Volterra series).
The time domain preprocessing circuitry 204 is operable to perform time-domain processing of the samples S′ to generate received physical subcarrier value vector S. Such processing may include, for example, timing acquisition, phase correction, frequency correction, decimation, DC removal, IQ mismatch correction, filtering, windowing, removal of pilot symbols, cyclic prefix removal, and/or the like.
The FFT 208 is operable to convert the time-domain physical subcarrier value vector S (of length P) to a corresponding vector of P frequency-domain samples (i.e., convert the time-domain representation of S to the frequency-domain representation of S).
The frequency domain preprocessing circuitry 206 is operable to perform frequency domain processing of the output of the FFT 208 to generate a vector Y, which is a vector of N received virtual subcarrier values. Such processing may include, for example, performing the inverse of the ICI generation circuitry 106 (FIG. 1), and performing per-subcarrier equalization. The elements of Y are represented herein as y1:yN, with any particular one of the values represented as yn.
The RSSE circuitry 212 is operable to perform reduced state sequence estimation on the vector Y to generate a vector  which is the receiver's decision vector (“best guess” as to the transmitted virtual subcarrier value vector A). Details of an example implementation of RSSE circuitry 212 are described below with reference to FIG. 3.
The nonlinear distortion model determination circuitry 214 is operable to determine a model, NL, that represents/enables reproduction of (to a desired accuracy) the nonlinear distortion experienced by the signal S′ in the transmitter, the channel, and/or the receiver. In an example implementation, the nonlinear distortion introduced by the AFE 110 of the transmitter may be dominant and NL may be a representation of NLTx. The nonlinear distortion model, NL, may be, for example, a logical and/or mathematical expression, a look-up table, and/or any other suitable representation of the nonlinear distortion. Any one or more of a variety of model types may be used for NL, with each model type being characterized by one or more parameters. The model type and/or parameter values may be communicated directly by the transmitter (e.g., during handshaking) and/or may be learned by the receiver by processing signals received from the transmitter (e.g., selection of the model type and/or training of the parameter values may be based on preambles sent by the transmitter). In an example implementation, NL may comprise an AM/AM parameter whose value is dependent on transmitted signal strength, and an AM/PM parameter whose value is dependent on transmitted signal strength. In such an example implementation, received signal strength may be used as a proxy for transmitted signal strength and the received signal strength may be applied to the look-up table to determine appropriate values of the AM/AM and AM/PM parameters.
The interference estimation circuitry 210 is operable to estimate the interference, F, present in the received virtual subcarrier values Y, based on Y and based on NL. Details of example implementations of 210 are described below with reference to FIGS. 5 and 6.
FIG. 3 shows an example implementation of the reduced state sequence estimation (RSSE) circuitry of FIG. 2. The example RSSE circuitry 212 shown in FIG. 3 comprises nonlinear distortion circuitry 302, metric calculation circuitry 306, survivor selection circuitry 308, buffering circuitry 310, successor generation circuitry 312, and buffering circuitry 314. FIG. 2 depicts the RSSE circuitry 212 processing received virtual subcarrier value having index n (where 1≦n≦N) of a particular OFDM symbol.
The buffer circuitry 310 is operable to, upon completion of processing a particular received virtual subcarrier value of the OFDM symbol being processed, latch the selected survivor vectors such that those survivors are available for processing the next received virtual subcarrier value of the OFDM symbol. Thus, in FIG. 3, which shows processing of received virtual subcarrier value having index n, the survivors selected upon completion of processing the received virtual subcarrier value having index n−1 (
Figure US09270512-20160223-P00001
) are latched by the buffer 310 and output to the successor generation circuitry 312. Each survivor
Figure US09270512-20160223-P00001
comprises up to n elements corresponding to one or more of subcarriers 0 through n−1. Elements of survivor
Figure US09270512-20160223-P00001
are represented herein as
Figure US09270512-20160223-P00001
, where D is the memory depth of the RSSE circuitry.
The successor generation circuitry 312 is operable to extend each of the M survivors from the previous iteration,
Figure US09270512-20160223-P00001
, to K successors, resulting in successors
Figure US09270512-20160223-P00001
. Elements of successor vector
Figure US09270512-20160223-P00001
are represented herein as
Figure US09270512-20160223-P00001
, where
Figure US09270512-20160223-P00001
is the element by which survivor
Figure US09270512-20160223-P00001
was extended to create successor
Figure US09270512-20160223-P00001
. The number of successors generated thus depends on the number of survivors, M, retained for each received virtual subcarrier value and the number of possible symbol transmitted virtual subcarrier values for which it is desired to search. Higher values of M and K may achieve improved results at the expense of increased size and complexity. In an example implementation, the value of K may be chosen to be the size of the constellation used by mapper 104 (FIG. 1) (e.g., for 64QAM K may be set to 64) such that each survivor is extended by each possible transmitted virtual subcarrier value.
The nonlinear distortion circuitry 302 is operable to, for each of the M×K successors
Figure US09270512-20160223-P00001
, generate a candidate vector
Figure US09270512-20160223-P00001
by introducing nonlinear distortion to the successor G n m,k. Elements of candidate vector
Figure US09270512-20160223-P00001
are represented herein as
Figure US09270512-20160223-P00001
, where
Figure US09270512-20160223-P00001
is the estimated constellation symbol of the (m,k) candidate for subcarrier index n,
Figure US09270512-20160223-P00001
is the estimated constellation symbol of the (m,k) candidate for subcarrier index n−1, and so on (where n is less than D, D-n elements may be values from an initialization of the RSSE circuitry).
The nonlinear distortion introduced to each successor is determined based on NL from the nonlinear distortion model determination circuitry 214 (FIGS. 1, 4A, and 4B). In this manner, the circuitry 302 attempts to reproduce (to desired/necessary accuracy) the nonlinear distortion experienced by the signal 113 (or S′ where nonlinear distortion of the AFE 202 is accounted for in NL)).
The metric calculation circuitry 306 is operable to calculate branch a path metric, PMn m,k for each of the candidates
Figure US09270512-20160223-P00001
, and output the path metrics to the survivor selection circuitry 308. The path metric for candidate
Figure US09270512-20160223-P00001
may be calculated as PMn m,k=BMn m,k+PMn−1 m,k, where BMn m,k is the branch metric for candidate
Figure US09270512-20160223-P00001
. The branch metric for candidate
Figure US09270512-20160223-P00001
may be calculated based on F. The manner in which the branch metric is calculated varies for different implementations. Some example branch metric calculations are described below with reference to FIGS. 5, 6, 7B, 7C, and 7D.
The survivor selection circuitry 308 is operable to compare the path metrics for each of the candidates
Figure US09270512-20160223-P00001
and select the M best candidates (corresponding to the M best path metrics) as the survivors
Figure US09270512-20160223-P00001
.
The buffer circuitry 314 is operable to buffer samples of signal Y and/or initialization samples and may shift the samples out as signal Y n. For example, the first n elements of Y n may be equal to the first n elements of Y and the remaining (D−n) elements of Y n may be known values used for initialization of the RSSE circuitry.
FIG. 4A shows a first example implementation of the nonlinear distortion model determination circuitry of FIG. 2. The example implementation of nonlinear distortion model determination circuitry 214 shown in FIG. 4A comprises circuitry 402 operable to estimate the nonlinear distortion experienced by S (the output of time-domain processing circuitry 204 in FIG. 2) in the time domain. The estimation of the nonlinear distortion may be based on, for example, preambles present in S′, the received signal strength of 113, and/or based on control information (e.g., a model type best suited for the transmitter from which signal 113 originated, initial nonlinear distortion model parameters, power level at signal 113 was transmitted, and/or the like) communicated to the receiver (e.g., during handshaking and/or in frame headers of S). Once the time domain nonlinear distortion model, T, has been determined, it is passed to circuitry 404 which translates it to the frequency domain representation, NL. The frequency domain representation NL is then output by the circuitry 214.
FIG. 4B shows a second example implementation of the nonlinear distortion model determination circuitry of FIG. 2. In the example implementation of FIG. 4B, the frequency domain NL is determined in the frequency domain directly from Y.
FIG. 5 shows a first example implementation of the interference estimation circuitry of FIG. 2 for use with a generalized third-order nonlinear distortion model. The example implementation of the interference estimation circuitry 210 in FIG. 5 comprises interference calculation circuitry 502.
The notation fn m,k represents an estimate of the aggregate interference present in the received virtual subcarrier value having index n for candidate
Figure US09270512-20160223-P00001
. The aggregate interference estimate may, for example, be a complex number representing the magnitude and phase of the interference. The notation F represents the vector (of length M×K) of aggregate interference estimates for all of the candidates
Figure US09270512-20160223-P00001
(i.e., F=f n 1,1:fn M,K). In some instances, the estimated aggregate interference may depend only on n (the received virtual subcarrier index) and may be the same for all of the candidates
Figure US09270512-20160223-P00001
(i.e., each of the estimates fn 1,1:fn M,K takes on the same value), but in other instances, the interference estimates may differ among the candidates
Figure US09270512-20160223-P00001
.
In a first variation, the aggregate interference estimate for candidate
Figure US09270512-20160223-P00001
may be calculated exhaustively taking into account each of the other N−1 virtual subcarriers. This exhaustive calculation may comprise calculating fn m,kαΣi=0 N−1Σj=0 N−1zi·zj*·zn−i+j, where: α is a parameter (or vector of parameters) determined by nonlinear model determination block 208, zi=yi for i≧n; zi=gi m,k for i<n; zj=yj for j≧n, zj=gj m,k for j<n, yi is a received virtual subcarrier value for subcarrier having index i, yj is the received virtual subcarrier value for subcarrier having index j, gi m,k is the decision for the subcarrier having index i for the (m,k) candidate, where gi m,k is the decision the subcarrier having index j for the (m,k) candidate.
In a second variation, the aggregate interference estimate for candidate
Figure US09270512-20160223-P00001
may be calculated taking into account only a selected subset of the other N−1 virtual subcarriers. This may reduce the amount of calculations necessary. This selective calculation may comprise calculating fn m,k=αΣiεQΣjεQzi·zj* ·zn−i∓j, where α is a parameter (or vector of parameters) determined by nonlinear model determination block 208, Q is a subset of the set 1:N; zx=yx for x≧n, zx=gx m,k for x<n, and x is used as a generic for i and j. For example, only indexes of virtual subcarriers having power above a determined threshold may be included in the set Q (based on the assumption that low-energy virtual subcarriers will experience relatively little nonlinear distortion and thus not contribute a lot of interference). The smaller the size of Q relative to the size of N, the more this selective calculation will reduce computational complexity/overhead.
Thus, common to both variations above is that, when calculating the interference present in received virtual subcarrier having index n due to another virtual subcarrier having index x for candidate
Figure US09270512-20160223-P00001
, if a decision as to a transmitted virtual subcarrier having index x has already been generated by the RSSE circuitry (i.e., x <n), then the decided value of x (i.e., gx m,k) is used in the calculation, but if a decision as to a transmitted virtual subcarrier having index x has not yet been generated by the RSSE circuitry (i.e., x>n), then the received virtual subcarrier value having index x (i.e., yx) is used for the calculation (based on the assumption that the interference in that received signal is relatively small compared to the desired signal and, therefore, error introduced is tolerable).
Once the estimated aggregate interference fn m,k has been determined, the branch metric (represented as BMn m,k) for candidate
Figure US09270512-20160223-P00001
may be calculated. In an example implementation, the following expression may be used: BMn m,k=|yn
Figure US09270512-20160223-P00001
−fn m,k|2.
FIG. 6 shows a first example implementation of the interference estimation circuitry of FIG. 2 for use with a digital clipping nonlinear distortion model. In FIG. 6, the interference estimation circuitry 210 comprises clipped subcarrier determination circuit 602 and interference estimation circuit 604.
The clipped subcarrier determination circuit 602 is operable to determine which transmitted virtual subcarriers values were digitally clipped in the transmitter during the transmission that resulted in signal 113. The circuit 602 then outputs the indexes of the clipped subcarriers to the circuit 604 as vector I. In an example implementation, the transmitter may directly send such information (e.g., in a header) and the circuit 602 may simply extract the information. In another example implementation, the circuit 602 may determine which transmitted virtual subcarrier values were digitally clipped based on the magnitude of the received virtual subcarrier values.
With a digital clipping model, the interference F may be determined by NL and I. Thus, once the circuitry 604 has been provided NL and I for a particular OFDM symbol, calculation of F may be straightforward (with much less computational complexity/overhead than for the implementation described with reference to FIG. 5). Once F is determined, the branch metric for candidate
Figure US09270512-20160223-P00001
may be calculated. The calculation of the interference may be simplified as compared to the calculation described with reference to FIG. 5. In an example implementation, it may be calculated using the following expression: BMn m,k=
Figure US09270512-20160223-P00001
, which is substantially similar to the branch metric expression presented above with reference to FIG. 5 but with the m and k superscripts left off of the interference term to indicate that the estimated aggregate interference present in the received virtual subcarrier having index n is the same for all candidates.
FIGS. 7A-7D show an example implementation in which the receiver of FIG. 2 performs two or more iterations over the OFDM symbol to generate decisions as to the transmitted virtual subcarrier values of the OFDM symbol in the presence of nonlinear distortion. Shown in FIG. 7A is another example implementation of interference estimation circuitry 210, which comprises nonlinear distortion circuitry 702 and combiner 704.
The nonlinear distortion circuitry 702 is operable to introduce nonlinear distortion to the received virtual subcarrier vector Y to generate Y′. The nonlinear distortion introduced is determined based on NL from the nonlinear distortion model determination circuitry 214 (FIGS. 1, 4A, and 4B). In this manner, the circuitry 702 attempts to reproduce (to desired/necessary accuracy) the nonlinear distortion experienced by the signal 113 (or the signal S′ where nonlinear distortion of the AFE 202 is accounted for in NL).
The combiner 704 combines Y and Y′ such that the output is the difference between Y and Y′. In this example implementation, the output of combiner 704 is
Figure US09270512-20160223-P00001
—an initial approximation of the interference introduced by the nonlinear distortion experienced by Y. It is acknowledged that, because there is interference present in Y as a result of the nonlinear distortion that Y experienced en route to the circuitry 210 (at least a portion of which NL is attempting to model), this
Figure US09270512-20160223-P00001
is not going to be an exact measure of the actual interference present in Y. Nevertheless, if the strength of the interference present in Y is relatively small compared to the desired signal strength, the amount of additional interference contributed by the existing interference during application of NL may be small enough that
Figure US09270512-20160223-P00001
is a suitable approximation.
Once
Figure US09270512-20160223-P00001
is calculated as in FIG. 7A, a first iteration of processing the particular OFDM symbol is carried out by the RSSE circuitry 212 as shown in FIG. 7B. As is shown, during the first iteration on the particular OFDM symbol,
Figure US09270512-20160223-P00001
is input to the metric calculation circuitry 306, and the N subcarriers are processed sequentially. For each subcarrier n, the sequential processing during the first iteration on the particular OFDM symbol comprises: extending, by successor generation circuitry 312, each of the M selected survivors (
Figure US09270512-20160223-P00002
) from the previous subcarrier to K successors (
Figure US09270512-20160223-P00002
); distorting, by nonlinear distortion circuitry 302, each of the M×K successors to generate candidates
Figure US09270512-20160223-P00002
; calculating, by metrics calculation circuitry 306, metrics for each candidate
Figure US09270512-20160223-P00002
n m.k using
Figure US09270512-20160223-P00001
; and selecting, by survivor selection circuitry 308, the M best survivors
Figure US09270512-20160223-P00002
. Thus, the metrics for candidate
Figure US09270512-20160223-P00002
during the first iteration on the particular OFDM symbol are based on
Figure US09270512-20160223-P00002
and yn+1:yN (as a result of using
Figure US09270512-20160223-P00001
). Upon completing processing of all N subcarriers, the M selected survivors are
Figure US09270512-20160223-P00002
. In some instances, the accuracy of these survivors may be improved via one or more additional iterations over the particular OFDM symbol. FIGS. 7C and 7D illustrate an embodiment where a second iteration is performed in an attempt to improve the reliability of the estimates.
As is shown, in FIG. 7C, for the second iteration on the particular OFDM symbol,
Figure US09270512-20160223-P00002
(rather than Y as was used in FIG. 7A) is used by circuitry 702 and 704 for calculating F, which, as shown in FIG. 7D, is then input to metric calculation circuitry 306 for calculating metrics during the second iteration on the particular OFDM symbol.
During the second iteration on the particular OFDM symbol, the successors are processed similarly to the first iteration. For each subcarrier n, the sequential processing during the second iteration on the particular OFDM symbol comprises: extending, by successor generation circuitry 312, each of the M selected survivors (
Figure US09270512-20160223-P00001
) from the previous subcarrier to K successors (
Figure US09270512-20160223-P00001
) distorting, by nonlinear distortion circuitry 302, each of the M×K successors to generate candidates
Figure US09270512-20160223-P00001
; calculating, by metrics calculation circuitry 306, metrics for each candidate
Figure US09270512-20160223-P00001
using
Figure US09270512-20160223-P00001
; and selecting, by survivor selection circuitry 308, the M best survivors
Figure US09270512-20160223-P00003
. Thus, the metrics for candidate
Figure US09270512-20160223-P00001
during the first iteration on the particular OFDM symbol are based on
Figure US09270512-20160223-P00001
and
Figure US09270512-20160223-P00002
(as a result of using F). Upon completing processing of all N subcarriers, the M selected survivors are
Figure US09270512-20160223-P00001
, and the best of these (
Figure US09270512-20160223-P00001
) is selected for output to downstream circuitry such as a FEC decoder. In other implementations, additional iterations may be performed to refine these survivors even further.
In accordance with an example implementation of this disclosure, an electronic receiver (e.g., 200) may comprise nonlinear distortion modeling circuitry (e.g., 214), interference estimation circuitry (e.g., 210), and sequence estimation circuitry (e.g., 212). The receiver may receive an orthogonal frequency division multiplexing (OFDM) symbol in the form of an electromagnetic signal (e.g., 113). The nonlinear distortion modeling circuitry may generate a nonlinear distortion model (e.g., NL) that models nonlinear distortion introduced to the received electromagnetic signal en route to the sequence estimation circuitry. The interference estimation circuitry may estimate inter- subcarrier interference present in the received OFDM symbol based on the generated nonlinear distortion model. The sequence estimation circuitry may sequentially process a plurality of received virtual subcarrier values (e.g., Y) of the OFDM symbol using the estimated inter-subcarrier interference. The processing may result in decisions as to a plurality of transmitted virtual subcarrier values (e.g.,
Figure US09270512-20160223-P00001
) that correspond to the plurality of received virtual subcarrier values. The estimating of the inter-subcarrier interference may comprise applying the nonlinear distortion model to one or more candidate vectors (e.g., G n m,k) generated by the sequence estimation circuitry. The estimating of the inter-subcarrier interference may comprise determining which one or more of the transmitted virtual subcarrier values were digitally clipped in a transmitter from which the received electromagnetic signal originated. The estimating of the inter-subcarrier interference may comprise calculating the inter-subcarrier interference based on which one or more of the plurality of transmitted virtual subcarrier values were digitally clipped in the transmitter and based on the generated nonlinear distortion model. The determining which one or more of the plurality of transmitted virtual subcarrier values were digitally clipped in the transmitter may comprise determining magnitude of each of the plurality of received virtual subcarrier values. The estimating of the inter- subcarrier interference may comprise applying the nonlinear distortion model to the received electromagnetic signal to generate an intermediate electromagnetic signal (e.g., Y′). The estimating of the inter-subcarrier interference may comprise subtracting the received electromagnetic signal from the intermediate electromagnetic signal, a result of the subtraction being the estimate of the inter-subcarrier interference. The plurality of received virtual subcarrier values may comprise a first received virtual subcarrier value (e.g., y0) and a second received virtual subcarrier value (e.g., y1). The sequential processing may comprise processing the first received virtual subcarrier value to generate a decision as to a first one of the plurality of transmitted virtual subcarrier values (e.g.,
Figure US09270512-20160223-P00001
) using an estimate of interference present in the first received virtual subcarrier value (e.g., f0) that is based on the second received virtual subcarrier value. The sequential processing may comprise processing the second received virtual subcarrier value to generate a decision as to a second one of the plurality of transmitted virtual subcarrier values (e.g.,
Figure US09270512-20160223-P00001
) using an estimate of interference present in the second received virtual subcarrier value (e.g., f1) that is based on the generated decision as to the first one of the plurality of transmitted virtual subcarrier values. The plurality of received virtual subcarrier values may comprise a third received virtual subcarrier value (e.g., y2). The estimate of interference present in the second received virtual subcarrier value may be based on the third received virtual subcarrier value. The sequential processing may comprise processing the third received virtual subcarrier value to generate a decision as to a third one of the plurality of transmitted virtual subcarrier values (e.g.,
Figure US09270512-20160223-P00001
) using an estimate of interference present in the third received virtual subcarrier value (e.g., f3) that is based on the generated decision as to the first one of the plurality of transmitted virtual subcarrier values and on the generated decision as to the second one of the plurality of transmitted virtual subcarrier values. The sequential processing may comprise generating a plurality of branch metrics (e.g., BM0 1,1:BMN−1 M,K), wherein each of the plurality of branch metrics is based on a corresponding one of the received virtual subcarrier values, a candidate vector generated by the sequence estimation circuitry, and the estimated inter-subcarrier interference. For each of the plurality of received virtual subcarrier values, the estimating of the inter-subcarrier interference may considers all others of the received virtual subcarrier values or only a subset of all others of the plurality of received virtual subcarrier values. The subset of all others of the plurality of received virtual subcarrier values may correspond to those of the plurality of received virtual subcarrier values having a magnitude above a determined threshold.
The present method and/or system may be realized in hardware, software, or a combination of hardware and software. The present methods and/or systems may be realized in a centralized fashion in at least one computing system, or in a distributed fashion where different elements are spread across several interconnected computing systems. Any kind of computing system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software may be a general-purpose computing system with a program or other code that, when being loaded and executed, controls the computing system such that it carries out the methods described herein. Another typical implementation may comprise an application specific integrated circuit or chip. Some implementations may comprise a non-transitory machine-readable (e.g., computer readable) medium (e.g., FLASH drive, optical disk, magnetic storage disk, or the like) having stored thereon one or more lines of code executable by a machine, thereby causing the machine to perform processes as described herein.
While the present method and/or system has been described with reference to certain implementations, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present method and/or system. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from its scope. Therefore, it is intended that the present method and/or system not be limited to the particular implementations disclosed, but that the present method and/or system will include all implementations falling within the scope of the appended claims.

Claims (32)

What is claimed is:
1. A receiver comprising:
an analog front end circuit operable to receive a nonlinearly distorted orthogonal frequency division multiplexed (OFDM) symbol that is a result of a plurality of symbols transmitted on a plurality of subcarriers;
nonlinear distortion modeling circuitry operable to generate a model of nonlinear distortion introduced to said OFDM symbol by a transmitter, wherein:
a result of said nonlinear distortion is inter-subcarrier interference in said received OFDM symbol; and
said model of said nonlinear distortion is a digital clipping model; and circuitry operable to:
iteratively calculate metrics based on said received OFDM symbol and said model of nonlinear distortion; and
determine values of said symbols based on said metrics.
2. The receiver of claim 1, wherein said model of said nonlinear distortion is stored in memory of said receiver as a mathematical and/or logical expression.
3. The receiver of claim 1, wherein said model of said nonlinear distortion is stored in memory of said receiver as a look-up table.
4. The receiver of claim 3, wherein said look-up table is indexed based on a transmitted signal power parameter.
5. The receiver of claim 1, wherein said generation of said model is based on control information received from a transmitter from which said OFDM symbol originated.
6. The receiver of claim 5, wherein said control information comprises an identification of a type of nonlinear distortion model best suited for use with said OFDM symbol.
7. The receiver of claim 5, wherein said control information comprises initial values for parameters of said model of said nonlinear distortion model.
8. The receiver of claim 5, wherein said control information is received during handshaking with said transmitter.
9. The receiver of claim 5, wherein said control information is received in a preamble of said OFDM symbol.
10. A method comprising:
in a receiver:
receiving, by an analog front end circuit, a nonlinearly distorted orthogonal frequency division multiplexed (OFDM) symbol that is a result of a plurality of symbols transmitted on a plurality of subcarriers;
generating, by nonlinear distortion modeling circuitry, a model of nonlinear distortion introduced to said OFDM symbol by a transmitter, wherein:
a result of said nonlinear distortion is inter-subcarrier interference in said received OFDM symbol; and
said model of said nonlinear distortion is a digital clipping model;
iteratively calculating, by circuitry of said receiver, metrics based on said received OFDM symbol and said model of nonlinear distortion; and
determining, by circuitry of said receiver, values of said symbols based on said metrics.
11. The method of claim 10, wherein said model of said nonlinear distortion is stored in memory of said receiver as a mathematical and/or logical expression.
12. The method of claim 10, wherein said model of said nonlinear distortion is stored in memory of said receiver as a look-up table.
13. The method of claim 12, wherein said look-up table is indexed based on a transmitted signal power parameter.
14. The method of claim 10, wherein said generating said model is based on control information received from a transmitter from which said OFDM symbol originated.
15. The method of claim 14, wherein said control information comprises an identification of a type of nonlinear distortion model best suited for use with said OFDM symbol.
16. The method of claim 14, wherein said control information comprises initial values for parameters of said model of said nonlinear distortion model.
17. The method of claim 14, comprising receiving said control information during handshaking with said transmitter.
18. The method of claim 14, comprising receiving said control information in a preamble of said OFDM symbol.
19. A receiver comprising:
an analog front end circuit operable to receive a nonlinearly distorted orthogonal frequency division multiplexed (OFDM) symbol that is a result of a plurality of symbols transmitted on a plurality of subcarriers;
nonlinear distortion modeling circuitry operable to generate a model of nonlinear distortion introduced to said OFDM symbol by a transmitter, wherein:
a result of said nonlinear distortion is inter-subcarrier interference in said received OFDM symbol;
said model of said nonlinear distortion is stored in memory of said receiver as a look-up table; and
said look-up table is indexed based on a transmitted signal power parameter; and
circuitry operable to:
iteratively calculate metrics based on said received OFDM symbol and said model of nonlinear distortion; and
determine values of said symbols based on said metrics.
20. The receiver of claim 19, wherein said model of said nonlinear distortion is stored in memory of said receiver as a mathematical and/or logical expression.
21. The receiver of claim 19, wherein said generation of said model is based on control information received from a transmitter from which said OFDM symbol originated.
22. The receiver of claim 21, wherein said control information comprises an identification of a type of nonlinear distortion model best suited for use with said OFDM symbol.
23. The receiver of claim 21, wherein said control information comprises initial values for parameters of said model of said nonlinear distortion model.
24. The receiver of claim 21, wherein said control information is received during handshaking with said transmitter.
25. The receiver of claim 21, wherein said control information is received in a preamble of said OFDM symbol.
26. A method comprising:
in a receiver:
receiving, by an analog front end circuit, a nonlinearly distorted orthogonal frequency division multiplexed (OFDM) symbol that is a result of a plurality of symbols transmitted on a plurality of subcarriers;
generating, by nonlinear distortion modeling circuitry, a model of nonlinear distortion introduced to said OFDM symbol by a transmitter, wherein:
a result of said nonlinear distortion is inter-subcarrier interference in said received OFDM symbol;
said model of said nonlinear distortion is stored in memory of said receiver as a look-up table; and
said look-up table is indexed based on a transmitted signal power parameter; and
iteratively calculating, by circuitry of said receiver, metrics based on said received OFDM symbol and said model of nonlinear distortion; and
determining, by circuitry of said receiver, values of said symbols based on said metrics.
27. The method of claim 26, wherein said model of said nonlinear distortion is stored in memory of said receiver as a mathematical and/or logical expression.
28. The method of claim 26, wherein said generating said model is based on control information received from a transmitter from which said OFDM symbol originated.
29. The method of claim 28, wherein said control information comprises an identification of a type of nonlinear distortion model best suited for use with said OFDM symbol.
30. The method of claim 28, wherein said control information comprises initial values for parameters of said model of said nonlinear distortion model.
31. The method of claim 28, comprising receiving said control information during handshaking with said transmitter.
32. The method of claim 28, comprising receiving said control information in a preamble of said OFDM symbol.
US14/541,312 2014-06-06 2014-11-14 Nonlinearity compensation for reception of OFDM signals Active US9270512B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/541,312 US9270512B2 (en) 2014-06-06 2014-11-14 Nonlinearity compensation for reception of OFDM signals
US15/050,550 US20160248531A1 (en) 2014-06-06 2016-02-23 Nonlinearity compensation for reception of ofdm signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/298,373 US8891701B1 (en) 2014-06-06 2014-06-06 Nonlinearity compensation for reception of OFDM signals
US14/541,312 US9270512B2 (en) 2014-06-06 2014-11-14 Nonlinearity compensation for reception of OFDM signals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/298,373 Continuation US8891701B1 (en) 2014-06-06 2014-06-06 Nonlinearity compensation for reception of OFDM signals

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/050,550 Continuation US20160248531A1 (en) 2014-06-06 2016-02-23 Nonlinearity compensation for reception of ofdm signals

Publications (2)

Publication Number Publication Date
US20150358191A1 US20150358191A1 (en) 2015-12-10
US9270512B2 true US9270512B2 (en) 2016-02-23

Family

ID=51870201

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/298,373 Active US8891701B1 (en) 2014-06-06 2014-06-06 Nonlinearity compensation for reception of OFDM signals
US14/541,312 Active US9270512B2 (en) 2014-06-06 2014-11-14 Nonlinearity compensation for reception of OFDM signals
US15/050,550 Abandoned US20160248531A1 (en) 2014-06-06 2016-02-23 Nonlinearity compensation for reception of ofdm signals

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/298,373 Active US8891701B1 (en) 2014-06-06 2014-06-06 Nonlinearity compensation for reception of OFDM signals

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/050,550 Abandoned US20160248531A1 (en) 2014-06-06 2016-02-23 Nonlinearity compensation for reception of ofdm signals

Country Status (1)

Country Link
US (3) US8891701B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11451419B2 (en) 2019-03-15 2022-09-20 The Research Foundation for the State University Integrating volterra series model and deep neural networks to equalize nonlinear power amplifiers

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8897387B1 (en) 2012-06-20 2014-11-25 MagnaCom Ltd. Optimization of partial response pulse shape filter
US8831124B2 (en) 2012-06-20 2014-09-09 MagnaCom Ltd. Multi-mode orthogonal frequency division multiplexing transmitter for highly-spectrally-efficient communications
US8781008B2 (en) 2012-06-20 2014-07-15 MagnaCom Ltd. Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing
US8811548B2 (en) 2012-11-14 2014-08-19 MagnaCom, Ltd. Hypotheses generation based on multidimensional slicing
US9088400B2 (en) 2012-11-14 2015-07-21 MagnaCom Ltd. Hypotheses generation based on multidimensional slicing
US9118519B2 (en) 2013-11-01 2015-08-25 MagnaCom Ltd. Reception of inter-symbol-correlated signals using symbol-by-symbol soft-output demodulator
US8804879B1 (en) 2013-11-13 2014-08-12 MagnaCom Ltd. Hypotheses generation based on multidimensional slicing
US9130637B2 (en) 2014-01-21 2015-09-08 MagnaCom Ltd. Communication methods and systems for nonlinear multi-user environments
US9496900B2 (en) 2014-05-06 2016-11-15 MagnaCom Ltd. Signal acquisition in a multimode environment
US8891701B1 (en) 2014-06-06 2014-11-18 MagnaCom Ltd. Nonlinearity compensation for reception of OFDM signals
US9246523B1 (en) 2014-08-27 2016-01-26 MagnaCom Ltd. Transmitter signal shaping
US9858381B2 (en) 2014-12-02 2018-01-02 Samsung Display Co., Ltd. Method of analog front end optimization in presence of circuit nonlinearity
US9276619B1 (en) 2014-12-08 2016-03-01 MagnaCom Ltd. Dynamic configuration of modulation and demodulation
US9191247B1 (en) 2014-12-09 2015-11-17 MagnaCom Ltd. High-performance sequence estimation system and method of operation
US10333561B2 (en) 2015-01-26 2019-06-25 Northrop Grumman Systems Corporation Iterative equalization using non-linear models in a soft-input soft-output trellis
KR20180052003A (en) * 2016-11-09 2018-05-17 주식회사 에치에프알 Method and Apparatus for Distortion Compensation of Subcarrier in Orthogonal Frequency Division Multiplexing System
KR102331100B1 (en) * 2017-12-11 2021-11-26 한국전자통신연구원 Method for estimating self-interference signal based on iterative estimation and apparatus using the same

Citations (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109101A (en) 1975-06-04 1978-08-22 Nippon Electric Company, Ltd. Correlative converter between a 2n -ary code sequence and a 2n+1 -phase carrier pulse sequence
US4135057A (en) 1976-09-07 1979-01-16 Arthur A. Collins, Inc. High density digital transmission system
US4797925A (en) 1986-09-26 1989-01-10 Bell Communications Research, Inc. Method for coding speech at low bit rates
US5111484A (en) 1991-04-16 1992-05-05 Raytheon Company Adaptive distortion canceller
US5131011A (en) 1989-06-26 1992-07-14 N. V. Philips' Gloeilampenfabrieken Receiver for data transmission system with nonlinearities
US5202903A (en) 1990-03-30 1993-04-13 Nec Corporation Noise-immune space diversity receiver
US5249200A (en) 1991-07-30 1993-09-28 Codex Corporation Device and method for combining precoding with symbol-rate spectral shaping
US5283813A (en) 1991-02-24 1994-02-01 Ramat University Authority For Applied Research & Industrial Development Ltd. Methods and apparatus particularly useful for blind deconvolution
US5291516A (en) 1991-05-13 1994-03-01 Omnipoint Data Company, Inc. Dual mode transmitter and receiver
US5394439A (en) 1991-11-12 1995-02-28 Comsat Corporation Bisdn compatible modem codec for digital information communication system
US5432822A (en) 1993-03-12 1995-07-11 Hughes Aircraft Company Error correcting decoder and decoding method employing reliability based erasure decision-making in cellular communication system
US5459762A (en) 1994-09-16 1995-10-17 Rockwell International Corporation Variable multi-threshold detection for 0.3-GMSK
US5590121A (en) 1995-03-30 1996-12-31 Lucent Technologies Inc. Method and apparatus for adaptive filtering
US5602507A (en) 1993-11-05 1997-02-11 Ntt Mobile Communications Network Inc. Adaptive demodulating method for generating replica and demodulator thereof
US5757855A (en) 1995-11-29 1998-05-26 David Sarnoff Research Center, Inc. Data detection for partial response channels
US5784415A (en) 1993-06-14 1998-07-21 International Business Machines Corporation Adaptive noise-predictive partial-response equalization for channels with spectral nulls
US5818653A (en) 1993-02-27 1998-10-06 Samsung Electronics Co., Ltd. Multiple-values digital signal magnetic recording and reproducing apparatus using a QAM and PSK modulator, pilot signal and a viterbi decoder
US5886748A (en) 1996-01-09 1999-03-23 Samsung Electronics Co., Ltd. Equalizing method and equalizer using reference signal
US5889823A (en) 1995-12-13 1999-03-30 Lucent Technologies Inc. Method and apparatus for compensation of linear or nonlinear intersymbol interference and noise correlation in magnetic recording channels
US5915213A (en) 1995-10-30 1999-06-22 Fujitsu Limited Transmitter apparatus with linearizing circuit to compensate for distortion in power amplifier
US5930309A (en) 1997-02-27 1999-07-27 Thomson Consumer Electronics, Inc. Receiver signal processing system for cap signals
US6009120A (en) 1997-06-26 1999-12-28 Rockwell Science Center, Inc. Multi-dimensional combined equalizer and decoder
US6167079A (en) 1995-12-29 2000-12-26 Nokia Telecommunications Oy Method for identifying data transmission rate, and a receiver
US6233709B1 (en) 1998-12-07 2001-05-15 Nokia Mobile Phones Ltd. Dynamic iterative decoding for balancing quality of service parameters
US20010008542A1 (en) 2000-01-17 2001-07-19 Thomas Wiebke Method and apparatus for a CDMA cellular radio transmission system
US6272173B1 (en) 1998-11-09 2001-08-07 Broadcom Corporation Efficient fir filter for high-speed communication
US6335954B1 (en) 1996-12-27 2002-01-01 Ericsson Inc. Method and apparatus for joint synchronization of multiple receive channels
US20020016938A1 (en) 1998-04-17 2002-02-07 Ameritech Corporation Method and system for adaptive interleaving
US6356586B1 (en) 1999-09-03 2002-03-12 Lucent Technologies, Inc. Methods and apparatus for parallel decision-feedback decoding in a communication system
US20020123318A1 (en) 2000-10-26 2002-09-05 Koninklijke Philips Electronics N.V. Method of receiving a signal and a receiver
US20020150184A1 (en) 2001-02-02 2002-10-17 Abdulrauf Hafeez Estimation and compensation of the pulse-shape response in wireless terminals
US20020150065A1 (en) 2001-02-01 2002-10-17 Seshaiah Ponnekanti Communications systems
US20020172297A1 (en) 2001-04-09 2002-11-21 Mikihiro Ouchi Front end processor for data receiver and nonlinear distortion equalization method
US20030016741A1 (en) 2001-03-20 2003-01-23 Nir Sasson Method and system for digital equalization of non-linear distortion
US6516437B1 (en) 2000-03-07 2003-02-04 General Electric Company Turbo decoder control for use with a programmable interleaver, variable block length, and multiple code rates
US6516025B1 (en) 1999-04-29 2003-02-04 Texas Instruments Incorporated High-speed upstream modem communication
US6532256B2 (en) 1993-03-17 2003-03-11 Rainmaker Technologies, Inc. Method and apparatus for signal transmission and reception
US6535549B1 (en) 1999-09-14 2003-03-18 Harris Canada, Inc. Method and apparatus for carrier phase tracking
US6591090B1 (en) 1998-05-27 2003-07-08 Nokia Mobile Phones Limited Predistortion control for power reduction
US20030135809A1 (en) 2002-01-11 2003-07-17 Samsung Electronics Co., Ltd. Decoding device having a turbo decoder and an RS decoder concatenated serially and a method of decoding performed by the same
US20030132814A1 (en) 2002-01-15 2003-07-17 Nokia Corporation Circuit topology for attenuator and switch circuits
US20030210352A1 (en) 2002-05-09 2003-11-13 Fitzsimmons John E. Remote monitoring system
US6675184B1 (en) * 1999-04-30 2004-01-06 Nec Corporation Adaptive type signal estimator
US20040009783A1 (en) 2001-07-13 2004-01-15 Kenichi Miyoshi Multi-carrier transmission apparatus, multi-carrier reception apparatus, and multi-carrier radio communication method
US6690754B1 (en) 1999-06-04 2004-02-10 Agere Systems Inc. Method and apparatus for reducing the computational complexity and relaxing the critical path of reduced state sequence estimation (RSSE) techniques
US6697441B1 (en) 2000-06-06 2004-02-24 Ericsson Inc. Baseband processors and methods and systems for decoding a received signal having a transmitter or channel induced coupling between bits
US20040037374A1 (en) 1999-02-13 2004-02-26 Broadcom Corporation Efficient partial response equalization
US20040081259A1 (en) 2002-10-24 2004-04-29 Gerhard Ammer Soft sample scaling in a turbo decoder
US20040086276A1 (en) 2002-11-05 2004-05-06 Lenosky Thomas J. System and method for reducing interference in an optical data stream using multiple, selectable equalizers
US20040120409A1 (en) 2002-12-20 2004-06-24 Ambighairajah Yasotharan Impulse response shortening and symbol synchronization in OFDM communication systems
US20040142666A1 (en) 1998-11-02 2004-07-22 Creigh John L. Determination of transmitter distortion
US6785342B1 (en) 2000-11-06 2004-08-31 Wideband Semiconductors, Inc. Nonlinear pre-distortion modulator and long loop control
US20040170228A1 (en) 2000-08-31 2004-09-02 Nokia Corporation Frequency domain partial response signaling with high spectral efficiency and low peak to average power ratio
US20040174937A1 (en) 2003-03-08 2004-09-09 Gottfried Ungerboeck Zero excess bandwidth modulation
US20040203458A1 (en) 2002-10-15 2004-10-14 Nigra Louis M. Method and apparatus to reduce interference in a communication device
US20040227570A1 (en) 2003-05-12 2004-11-18 Andrew Corporation Optimization of error loops in distributed power amplifiers
US20040240578A1 (en) 2003-05-30 2004-12-02 Thesling William H. Receiver based saturation estimator
US20040257955A1 (en) 2003-04-11 2004-12-23 Yutaka Yamanaka Optical disc medium having a system information recording area of low recording density
US20050032472A1 (en) 2003-08-08 2005-02-10 Yimin Jiang Method and apparatus of estimating non-linear amplifier response in an overlaid communication system
US20050047517A1 (en) 2003-09-03 2005-03-03 Georgios Giannakis B. Adaptive modulation for multi-antenna transmissions with partial channel knowledge
US6871208B1 (en) 1999-12-01 2005-03-22 Macronix International Co., Ltd. Parallel adder-based DCT/IDCT design using cyclic convolution
US20050089125A1 (en) * 2003-10-28 2005-04-28 Samsung Electronics Co., Ltd. Receiver for compensating nonlinearly distorted multicarrier signals
US20050123077A1 (en) 2003-12-04 2005-06-09 Lg Electronics Inc. Digital broadcasting receiving system and equalizing method thereof
US20050135472A1 (en) 2003-10-30 2005-06-23 Sony Corporation Adaptive equalizer, decoding device, and error detecting device
US20050163252A1 (en) 2004-01-27 2005-07-28 Crestcom, Inc. Transmitter predistortion circuit and method therefor
US20050193318A1 (en) 2002-07-29 2005-09-01 Sharp Kabushiki Kaisha Adaptive waveform equalization for viterbi-decodable signal and signal quality evaluation of viterbi-decodable signal
US20050220218A1 (en) 2004-04-02 2005-10-06 Jensen Henrik T RF transmitter architecture for continuous switching between modulations modes
US6968021B1 (en) 2001-09-24 2005-11-22 Rockwell Collins Synchronization method and apparatus for modems based on jointly iterative turbo demodulation and decoding
US20050265470A1 (en) 2002-12-05 2005-12-01 Matsushita Electric Industrial Co., Ltd. Radio communication system, radio communication method, and radio communication device
US20050276317A1 (en) 2004-06-14 2005-12-15 Samsung Electronics Co., Ltd. Apparatus and method for controlling transmission mode in a MIMO mobile communication system
US6985709B2 (en) 2001-06-22 2006-01-10 Intel Corporation Noise dependent filter
US20060067396A1 (en) 2004-09-27 2006-03-30 Benny Christensen Feed forward equalizer for a communication system
US20060109780A1 (en) 2004-11-02 2006-05-25 Infineon Technologies Ag. OFDM transmission method, which is intended both for sporadic and for continuous data communication, for a WLAN
US20060109935A1 (en) 2004-11-19 2006-05-25 Evolium S.A.S. Receiver system and method for soft-decision decoding of punctured convolutional codes in a wireless communication system
US20060171489A1 (en) 2005-02-02 2006-08-03 Sbc Knowledge Ventures, L.P. Soft bit Viterbi equalizer using partially collapsed metrics
US20060203943A1 (en) 2005-03-10 2006-09-14 Comsys Communication & Signal Processing Ltd. Single antenna interference suppression in a wireless receiver
US20060239339A1 (en) 2005-04-22 2006-10-26 Tyler Brown CIR estimating decision feedback equalizer with phase tracker
US20060245765A1 (en) 2005-04-28 2006-11-02 Salam Elahmadi Methods of spread-pulse modulation and nonlinear time domain equalization for fiber optic communication channels
US20060280113A1 (en) 2005-06-10 2006-12-14 Huo David D Method and apparatus for dynamic allocation of pilot symbols
US7158324B2 (en) 2004-09-20 2007-01-02 Guzik Technical Enterprises Self-adjusting PRML receiver
WO2007000495A1 (en) 2005-06-29 2007-01-04 Nokia Siemens Networks Oy Data processing method, pre-distortion arrangement, transmitter, network element and base station
US20070047121A1 (en) 2005-08-26 2007-03-01 Eleftheriou Evangelos S Read channel apparatus for asynchronous sampling and synchronous equalization
US7190721B2 (en) 2002-06-28 2007-03-13 Lucent Technologies Inc. Error convergence measurement circuit for providing convergence of a filter
US7190288B2 (en) 2003-06-27 2007-03-13 Northrop Grumman Corp. Look-up table delta-sigma conversion
US7206363B2 (en) 2003-06-24 2007-04-17 Intersymbol Communications, Inc. Method and apparatus for delayed recursion decoder
US7205798B1 (en) 2004-05-28 2007-04-17 Intersil Americas Inc. Phase error correction circuit for a high speed frequency synthesizer
US20070092017A1 (en) 2005-10-25 2007-04-26 Fujitsu Limited Communications systems and methods using phase vectors
US20070098090A1 (en) 2005-08-12 2007-05-03 Xiaoqiang Ma Systems, methods, and apparatus for mitigation of nonlinear distortion
US20070098059A1 (en) 2005-10-31 2007-05-03 Ives Fred H Testing device and method for providing receiver overload protection during transceiver testing
US20070098116A1 (en) 2005-10-31 2007-05-03 Lg Electronics Inc. Apparatus for performing initial synchronization and frame synchronization in mobile communications system and method thereof
US7215716B1 (en) 2002-06-25 2007-05-08 Francis J. Smith Non-linear adaptive AM/AM and AM/PM pre-distortion compensation with time and temperature compensation for low power applications
US20070110177A1 (en) 2005-11-14 2007-05-17 Telefonaktiebolaget Lm Ericsson RF power distribution in the frequency domain
US20070110191A1 (en) 2005-11-11 2007-05-17 Sang-Hyo Kim Method and apparatus for normalizing input metric to a channel decoder in a wireless communication system
US20070127608A1 (en) 2005-12-06 2007-06-07 Jacob Scheim Blind interference mitigation in a digital receiver
US20070140330A1 (en) 2001-02-01 2007-06-21 Allpress Steve A High performance equalizer with enhanced dfe having reduced complexity
US20070189404A1 (en) 2006-02-14 2007-08-16 Motorola, Inc. Method and apparatus for pilot signal transmission
US7269205B2 (en) 2003-09-26 2007-09-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for signal demodulation
US20070213087A1 (en) 2003-02-24 2007-09-13 Qualcomm Incorporated Method of transmitting pilot tones in a multi-sector cell, including null pilot tones, for generating channel quality indicators
US20070230593A1 (en) 2006-03-29 2007-10-04 Provigent Ltd. Joint optimization of transmitter and receiver pulse-shaping filters
US20070258517A1 (en) 2006-05-08 2007-11-08 Micro Circuits Corporation Adaptive error slicer and residual intersymbol interference estimator
US20070291719A1 (en) 2006-06-20 2007-12-20 Mustafa Demirhan Random Access Request Extension for an Additional Resource Request
US20080002789A1 (en) 2006-06-14 2008-01-03 Harris Corporation System and method for anticipatory receiver switching based on signal quality estimation
US20080049598A1 (en) 2006-08-28 2008-02-28 Xiaoqiang Ma OFDM Channel Estimation
US20080080644A1 (en) 2006-09-29 2008-04-03 Optichron, Inc. Nonlinear digital signal processor
US20080130788A1 (en) 2006-12-01 2008-06-05 Texas Instruments Incorporated System and method for computing parameters for a digital predistorter
US20080130716A1 (en) 2006-12-01 2008-06-05 Cho Sung-Rae Apparatus and method for spreading/despreading data using pair of child orthogonal variable spreading factor codes
US20080207143A1 (en) 2007-02-28 2008-08-28 Telefonaktiebolaget Lm Ericsson (Publ) Radio communications using scheduled power amplifier backoff
US20080260985A1 (en) 2007-04-23 2008-10-23 Hitachi Maxell, Ltd. Information-recording medium
US7467338B2 (en) 2004-03-12 2008-12-16 Ntt Docomo, Inc. Apparatus and method for generating an error signal
US20090003425A1 (en) 2007-06-29 2009-01-01 Danxun Shen Inter-carrier Interference Measurement In Orthogonal Frequency Division Multiplexing Systems
US20090028234A1 (en) 2007-07-27 2009-01-29 Jie Zhu Tap initialization of equalizer based on estimated channel impulse response
US20090041105A1 (en) * 2006-01-31 2009-02-12 Mitsubishi Electric Corporation Communication control method, receiving station apparatus, transmitting station apparatus, and communication system
US20090058521A1 (en) 2007-08-31 2009-03-05 Fernandez Andrew D System and method of digital linearization in electronic devices
US20090075590A1 (en) 2005-04-15 2009-03-19 Mitsubishi Electric Research Laboratories Method and System for Estimating Time of Arrival of Signals Using Multiple Different Time Scales
US20090086808A1 (en) 1998-11-03 2009-04-02 Broadcom Corporation Equalization And Decision-Directed Loops With Trellis Demodulation In High Definition TV
US20090115513A1 (en) 2007-11-01 2009-05-07 Naoki Hongo Predistorter
US20090122854A1 (en) 2007-11-14 2009-05-14 The Hong Kong University Of Science And Technology Frequency domain equalization with transmit precoding for high speed data transmission
US20090137212A1 (en) 2005-03-24 2009-05-28 Maxim Borisovich Belotserkovsky Non-Linear Signal Distortion Detection Using Multiple Signal to Noise Ratio Measurement Sources
US20090185612A1 (en) 2003-03-10 2009-07-23 Advanced Receiver Technologies, Llc Method and apparatus for single burst equalization of single carrier signals in broadband wireless access systems
US20090213908A1 (en) 2008-02-22 2009-08-27 Bottomley Gregory E Method and Apparatus for Symbol Detection via Reduced Complexity Sequence Estimation Processing
US20090220034A1 (en) 2008-03-03 2009-09-03 Ramprashad Sean A Layered receiver structure
US20090245401A1 (en) 2008-03-31 2009-10-01 Qualcomm Incorporated Multidimensional constellations for coded transmission
US20090245226A1 (en) 2003-06-26 2009-10-01 Ian Robinson Communication System and Method for Improving Efficiency and Linearity
US20090290620A1 (en) 2001-03-27 2009-11-26 Aware, Inc. Systems and methods for implementing receiver transparent q-mode
US20090323841A1 (en) 2008-06-27 2009-12-31 Bruno Clerckx Codebook design method for multiple input multiple output system and method for using the codebook
US20100002692A1 (en) 2008-07-02 2010-01-07 Harry Bims Multimedia-aware quality-of-service and error correction provisioning
US20100034253A1 (en) 2006-07-05 2010-02-11 Yossef Cohen Double Equalizer for Multi-Path Rejection
US20100039100A1 (en) 2008-08-18 2010-02-18 Fujitsu Limited Nonlinear Degree Measuring Apparatus And Method For A Power Amplifier, Predistortion Compensation Apparatus
US20100062705A1 (en) 2008-09-10 2010-03-11 Qualcomm Incorporated Apparatus and method for interference-adaptive communications
US20100074349A1 (en) 2008-09-25 2010-03-25 Thord Hyllander Method and base station for orthogonal frequency division multiplexing (ofdm) signal processing
US20100158085A1 (en) 2008-12-23 2010-06-24 Khayrallah Ali S Feedforward receiver and method for reducing inter-symbol interference by using joint soft values
US20100166050A1 (en) 2006-08-18 2010-07-01 Nxp, B.V. Time error estimation for data symbols
US20100172309A1 (en) 2004-07-30 2010-07-08 Antonio Forenza System and method for distributed input distributed output wireless communications
US20100203854A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Method and Apparatus For Transmitting a Signal Within a Predetermined Spectral Mask
US20100202505A1 (en) 2005-10-25 2010-08-12 Broadcom Corporation Equalizer Architecture for Data Communication
US20100202507A1 (en) 2001-02-01 2010-08-12 Stephen Allpress High Performance Equalizer Having Reduced Complexity
US20100208774A1 (en) 2005-11-15 2010-08-19 Rambus Inc. Iterative Interference Cancellation Using Mixed Feedback Weights and Stabilizing Step Sizes
US20100208832A1 (en) 2007-09-04 2010-08-19 Electronic And Telecommunications Research Institute Frame structure for fast wireless communication system and apparatus for fast wireless communication using the frame
US20100215107A1 (en) 2009-02-23 2010-08-26 Shun-An Yang Methods and apparatuses for dealing with spectrum inversion
US20100220825A1 (en) 2002-04-04 2010-09-02 Nortel Networks Limited System and method for i/q imbalance compensation
US20100278288A1 (en) 2007-12-12 2010-11-04 Nortel Networks Limited Channel estimation method and system for inter-carrier interference-limited wireless communication network
US7830854B1 (en) 2008-10-01 2010-11-09 Sprint Spectrum L.P. Variable auxiliary pilot trigger and performance
US20100284481A1 (en) 2002-07-16 2010-11-11 Panasonic Corporation Communication method, and transmitting apparatus and receiving apparatus using that communication method
US20100283540A1 (en) 2009-05-07 2010-11-11 Nortel Networks, Limited Pre-distortion for a Radio Frequency Power Amplifier
US20100309796A1 (en) 2009-06-05 2010-12-09 Khayrallah Ali S Reduced-complexity equalization with sphere decoding
US20100329325A1 (en) 2009-06-29 2010-12-30 Lsi Corporation Statistically-Adapted Receiver and Transmitter Equalization
US20110051864A1 (en) 2009-09-03 2011-03-03 Qualcomm Incorporated Multi-stage interference suppression
US20110064171A1 (en) 2009-09-14 2011-03-17 Xinping Huang Multi-carrier amplifier linearization system and method
US20110069791A1 (en) 2009-09-24 2011-03-24 Credo Semiconductor (Hong Kong) Limited Parallel Viterbi Decoder with End-State Information Passing
US20110074506A1 (en) 2009-09-25 2011-03-31 General Dynamics C4 Systems, Inc. Cancelling non-linear power amplifier induced distortion from a received signal by moving incorrectly estimated constellation points
US20110075745A1 (en) * 2009-09-25 2011-03-31 General Dynamics C4 Systems, Inc. Reducing transmitter-to-receiver non-linear distortion at a transmitter prior to estimating and cancelling known non-linear distortion at a receiver
US20110074500A1 (en) 2008-06-03 2011-03-31 Thomson Licensing Apparatus and method for determination of signal format
US20110090986A1 (en) 2008-05-22 2011-04-21 Yeong Hyeon Kwon Method for transmitting data in wireless communication system
US20110103455A1 (en) * 2009-10-30 2011-05-05 Qualcomm Incorporated Adaptive digital post distortion reduction
US20110134899A1 (en) 2009-12-07 2011-06-09 Qualcomm Incorporated Enabling phase tracking for a communication device
US20110150064A1 (en) 2009-12-17 2011-06-23 Electronics And Telecommunications Research Institute Device and method of estimating symbol using second order differential phase vector
US7974230B1 (en) 2007-09-12 2011-07-05 Sprint Spectrum L.P. Mitigating interference by low-cost internet-base-station (LCIB) pilot beacons with macro-network communications
US20110164492A1 (en) 2005-03-30 2011-07-07 Jianglei Ma Method and system for combining ofdm and transformed ofdm
US20110170630A1 (en) 2010-01-13 2011-07-14 Cisco Technology, Inc. Digital Predistortion Training System
US20110182329A1 (en) 2010-01-25 2011-07-28 Infineon Technolongies Ag Device and method for distortion-robust decoding
US20110188550A1 (en) 2008-10-27 2011-08-04 Novelsat Ltd. High-performance faster-than-nyquist (ftn) signaling schemes
US8005170B2 (en) 2006-10-12 2011-08-23 Samsung Electronics Co., Ltd. Apparatus and method for detecting a signal in a communication system using multiple antennas
US20110228869A1 (en) 2007-06-05 2011-09-22 Constellation Designs, Inc. Design methodology and method and appartus for signaling with capacity optimized constellations
US20110243266A1 (en) 2010-04-05 2011-10-06 Lg Electronics Inc. Method and system for reducing inter carrier interference for ofdm
US20110249709A1 (en) 2010-04-08 2011-10-13 Muh-Tian Shiue DHT-Based OFDM Transmitter and Receiver
US20110275338A1 (en) 2010-05-04 2011-11-10 Hughes Network Systems, Llc Phase pulse system and method for bandwidth and energy efficient continuous phase modulation
US8059737B2 (en) 2008-06-23 2011-11-15 Mediatek Inc. OFDM receiver having memory capable of acting in a single-chip mode and a diversity mode
US20110310978A1 (en) 2010-06-18 2011-12-22 Yiyan Wu Multilayer decoding using persistent bits
US20110310823A1 (en) 2010-06-18 2011-12-22 Samsung Electronics Co., Ltd. Method and system for mapping harq-ack bits
US20120025909A1 (en) 2010-07-28 2012-02-02 Electronics And Telecommunications Research Institute Distortion compensation apparatus and apparatus and method for transmitting signal
US20120027132A1 (en) 2010-07-30 2012-02-02 Sensus Usa Inc. Gfsk receiver architecture and methodology
US20120051464A1 (en) 2010-08-27 2012-03-01 Matthias Kamuf OFDM signal reception in the presence of interference
US8175186B1 (en) 2008-11-20 2012-05-08 L-3 Services, Inc. Preserving the content of a communication signal corrupted by interference during transmission
US20120120990A1 (en) * 2008-06-21 2012-05-17 Vyycore Corporation System for predistortion and post-distortion correction of both a receiver and transmitter during calibration
US8199804B1 (en) 2005-11-04 2012-06-12 Marvell International Ltd. Efficient tapped delay line equalizer methods and apparatus
US20120163489A1 (en) 2010-12-23 2012-06-28 Texas Instruments Incorporated Pulse shaping in a communication system
WO2012092647A1 (en) 2011-01-04 2012-07-12 James Cook University A method and system for linearising a radio frequency transmitter
US20120207248A1 (en) 2011-02-15 2012-08-16 Ahmed I Zakir Estimation of Sample Clock Frequency Offset Using Error Vector Magnitude
US8248975B2 (en) 2005-09-06 2012-08-21 Nippon Telegraph And Telephone Corporation Wireless transmitting apparatus, wireless receiving apparatus, wireless transmission method, wireless reception method, wireless communication system, and wireless communication method
US8265561B2 (en) * 2008-03-14 2012-09-11 Fujitsu Limited Radio communication apparatus and interference removing method
US8351536B2 (en) 2008-09-11 2013-01-08 Motorola Mobility Llc Wireless communication of data symbols
US20130028299A1 (en) 2011-07-26 2013-01-31 Himax Media Solutions, Inc. Adaptive ethernet transceiver with joint decision feedback equalizer and trellis decoder
US20130044877A1 (en) 2011-08-15 2013-02-21 Yong Liu Long range wlan data unit format
WO2013030815A1 (en) 2011-08-30 2013-03-07 Dsp Group Ltd. Amplifier linearization using predistortion
US20130077563A1 (en) 2011-09-27 2013-03-28 Electronics And Telecommunications Research Institute Data transmission and reception method and apparatus robust against phase noise for high efficiency satellite transmission
US8422589B2 (en) 2004-11-03 2013-04-16 Panasonic Corporation Method and apparatus for transmitting data in a digital communication system, and computer-readable storage medium relating thereto
US8432987B2 (en) 2005-07-20 2013-04-30 Stmicroelectronics S.R.L. Method and apparatus for multiple antenna communications, and related systems and computer program
US20130121257A1 (en) 2011-11-10 2013-05-16 Microsoft Corporation Mapping Signals from a Virtual Frequency Band to Physical Frequency Bands
US8498591B1 (en) 2009-08-21 2013-07-30 Marvell International Ltd. Digital Predistortion for nonlinear RF power amplifiers
US8526523B1 (en) 2012-06-20 2013-09-03 MagnaCom Ltd. Highly-spectrally-efficient receiver
US8548089B2 (en) 1998-11-13 2013-10-01 Broadcom Corporation System and method for packet communication
US20130343480A1 (en) 2012-06-20 2013-12-26 MagnaCom Ltd. Multi-Mode Orthogonal Frequency Division Multiplexing Transmitter for Highly-Spectrally-Efficient Communications
US20140056387A1 (en) 2012-08-22 2014-02-27 Mitsubishi Electric Corporation Receiving apparatus and receiving method
US20140098841A2 (en) 2010-06-07 2014-04-10 University Of Delaware Underwater acoustic multiple-input/multiple-output (mimo) communication systems and methods
US8731413B1 (en) 2012-01-23 2014-05-20 Viasat, Inc. DAC-based optical modulator and demodulator
US20140140446A1 (en) 2012-06-20 2014-05-22 MagnaCom Ltd. Method and System for Corrupt Symbol Handling for Providing High Reliability Sequences
US8781008B2 (en) 2012-06-20 2014-07-15 MagnaCom Ltd. Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing
US20140198255A1 (en) 2013-01-11 2014-07-17 Seiko Epson Corporation Video processing apparatus, display apparatus, and video processing method
US8804879B1 (en) 2013-11-13 2014-08-12 MagnaCom Ltd. Hypotheses generation based on multidimensional slicing
US8811548B2 (en) 2012-11-14 2014-08-19 MagnaCom, Ltd. Hypotheses generation based on multidimensional slicing
US8891701B1 (en) 2014-06-06 2014-11-18 MagnaCom Ltd. Nonlinearity compensation for reception of OFDM signals
US20140376358A1 (en) 2011-12-28 2014-12-25 Telefonaktiebolaget L M Ericsson (Publ) Symbol detection technique
US20150049843A1 (en) 2013-08-15 2015-02-19 MagnaCom Ltd. Combined Transmission Precompensation and Receiver Nonlinearity Mitigation
US20150070089A1 (en) 2013-09-09 2015-03-12 MagnaCom Ltd. Adaptive nonlinear model learning
US8989249B2 (en) 2005-01-20 2015-03-24 Rambus Inc. High-speed signaling systems with adaptable pre-emphasis and equalization

Patent Citations (272)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109101A (en) 1975-06-04 1978-08-22 Nippon Electric Company, Ltd. Correlative converter between a 2n -ary code sequence and a 2n+1 -phase carrier pulse sequence
US4135057A (en) 1976-09-07 1979-01-16 Arthur A. Collins, Inc. High density digital transmission system
US4797925A (en) 1986-09-26 1989-01-10 Bell Communications Research, Inc. Method for coding speech at low bit rates
US5131011A (en) 1989-06-26 1992-07-14 N. V. Philips' Gloeilampenfabrieken Receiver for data transmission system with nonlinearities
US5202903A (en) 1990-03-30 1993-04-13 Nec Corporation Noise-immune space diversity receiver
US5283813A (en) 1991-02-24 1994-02-01 Ramat University Authority For Applied Research & Industrial Development Ltd. Methods and apparatus particularly useful for blind deconvolution
US5111484A (en) 1991-04-16 1992-05-05 Raytheon Company Adaptive distortion canceller
US5291516A (en) 1991-05-13 1994-03-01 Omnipoint Data Company, Inc. Dual mode transmitter and receiver
US5249200A (en) 1991-07-30 1993-09-28 Codex Corporation Device and method for combining precoding with symbol-rate spectral shaping
US5394439A (en) 1991-11-12 1995-02-28 Comsat Corporation Bisdn compatible modem codec for digital information communication system
US5818653A (en) 1993-02-27 1998-10-06 Samsung Electronics Co., Ltd. Multiple-values digital signal magnetic recording and reproducing apparatus using a QAM and PSK modulator, pilot signal and a viterbi decoder
US5432822A (en) 1993-03-12 1995-07-11 Hughes Aircraft Company Error correcting decoder and decoding method employing reliability based erasure decision-making in cellular communication system
US6532256B2 (en) 1993-03-17 2003-03-11 Rainmaker Technologies, Inc. Method and apparatus for signal transmission and reception
US5784415A (en) 1993-06-14 1998-07-21 International Business Machines Corporation Adaptive noise-predictive partial-response equalization for channels with spectral nulls
US5602507A (en) 1993-11-05 1997-02-11 Ntt Mobile Communications Network Inc. Adaptive demodulating method for generating replica and demodulator thereof
US5459762A (en) 1994-09-16 1995-10-17 Rockwell International Corporation Variable multi-threshold detection for 0.3-GMSK
US5590121A (en) 1995-03-30 1996-12-31 Lucent Technologies Inc. Method and apparatus for adaptive filtering
US5915213A (en) 1995-10-30 1999-06-22 Fujitsu Limited Transmitter apparatus with linearizing circuit to compensate for distortion in power amplifier
US5757855A (en) 1995-11-29 1998-05-26 David Sarnoff Research Center, Inc. Data detection for partial response channels
US5889823A (en) 1995-12-13 1999-03-30 Lucent Technologies Inc. Method and apparatus for compensation of linear or nonlinear intersymbol interference and noise correlation in magnetic recording channels
US6167079A (en) 1995-12-29 2000-12-26 Nokia Telecommunications Oy Method for identifying data transmission rate, and a receiver
US5886748A (en) 1996-01-09 1999-03-23 Samsung Electronics Co., Ltd. Equalizing method and equalizer using reference signal
US6335954B1 (en) 1996-12-27 2002-01-01 Ericsson Inc. Method and apparatus for joint synchronization of multiple receive channels
US5930309A (en) 1997-02-27 1999-07-27 Thomson Consumer Electronics, Inc. Receiver signal processing system for cap signals
US6009120A (en) 1997-06-26 1999-12-28 Rockwell Science Center, Inc. Multi-dimensional combined equalizer and decoder
US20020016938A1 (en) 1998-04-17 2002-02-07 Ameritech Corporation Method and system for adaptive interleaving
US6591090B1 (en) 1998-05-27 2003-07-08 Nokia Mobile Phones Limited Predistortion control for power reduction
US20040142666A1 (en) 1998-11-02 2004-07-22 Creigh John L. Determination of transmitter distortion
US20090086808A1 (en) 1998-11-03 2009-04-02 Broadcom Corporation Equalization And Decision-Directed Loops With Trellis Demodulation In High Definition TV
US6272173B1 (en) 1998-11-09 2001-08-07 Broadcom Corporation Efficient fir filter for high-speed communication
US8548089B2 (en) 1998-11-13 2013-10-01 Broadcom Corporation System and method for packet communication
US6233709B1 (en) 1998-12-07 2001-05-15 Nokia Mobile Phones Ltd. Dynamic iterative decoding for balancing quality of service parameters
US20040037374A1 (en) 1999-02-13 2004-02-26 Broadcom Corporation Efficient partial response equalization
US6516025B1 (en) 1999-04-29 2003-02-04 Texas Instruments Incorporated High-speed upstream modem communication
US6675184B1 (en) * 1999-04-30 2004-01-06 Nec Corporation Adaptive type signal estimator
US6690754B1 (en) 1999-06-04 2004-02-10 Agere Systems Inc. Method and apparatus for reducing the computational complexity and relaxing the critical path of reduced state sequence estimation (RSSE) techniques
US6356586B1 (en) 1999-09-03 2002-03-12 Lucent Technologies, Inc. Methods and apparatus for parallel decision-feedback decoding in a communication system
US6535549B1 (en) 1999-09-14 2003-03-18 Harris Canada, Inc. Method and apparatus for carrier phase tracking
US6871208B1 (en) 1999-12-01 2005-03-22 Macronix International Co., Ltd. Parallel adder-based DCT/IDCT design using cyclic convolution
US20010008542A1 (en) 2000-01-17 2001-07-19 Thomas Wiebke Method and apparatus for a CDMA cellular radio transmission system
US6516437B1 (en) 2000-03-07 2003-02-04 General Electric Company Turbo decoder control for use with a programmable interleaver, variable block length, and multiple code rates
US6697441B1 (en) 2000-06-06 2004-02-24 Ericsson Inc. Baseband processors and methods and systems for decoding a received signal having a transmitter or channel induced coupling between bits
US20040170228A1 (en) 2000-08-31 2004-09-02 Nokia Corporation Frequency domain partial response signaling with high spectral efficiency and low peak to average power ratio
US20020123318A1 (en) 2000-10-26 2002-09-05 Koninklijke Philips Electronics N.V. Method of receiving a signal and a receiver
US6785342B1 (en) 2000-11-06 2004-08-31 Wideband Semiconductors, Inc. Nonlinear pre-distortion modulator and long loop control
US20070140330A1 (en) 2001-02-01 2007-06-21 Allpress Steve A High performance equalizer with enhanced dfe having reduced complexity
US20100202507A1 (en) 2001-02-01 2010-08-12 Stephen Allpress High Performance Equalizer Having Reduced Complexity
US20020150065A1 (en) 2001-02-01 2002-10-17 Seshaiah Ponnekanti Communications systems
US20080159377A1 (en) 2001-02-01 2008-07-03 Allpress Steve A High performance equalizer with enhanced dfe having reduced complexity
US20020150184A1 (en) 2001-02-02 2002-10-17 Abdulrauf Hafeez Estimation and compensation of the pulse-shape response in wireless terminals
US20030016741A1 (en) 2001-03-20 2003-01-23 Nir Sasson Method and system for digital equalization of non-linear distortion
US20090290620A1 (en) 2001-03-27 2009-11-26 Aware, Inc. Systems and methods for implementing receiver transparent q-mode
US20020172297A1 (en) 2001-04-09 2002-11-21 Mikihiro Ouchi Front end processor for data receiver and nonlinear distortion equalization method
US6985709B2 (en) 2001-06-22 2006-01-10 Intel Corporation Noise dependent filter
US20040009783A1 (en) 2001-07-13 2004-01-15 Kenichi Miyoshi Multi-carrier transmission apparatus, multi-carrier reception apparatus, and multi-carrier radio communication method
US6968021B1 (en) 2001-09-24 2005-11-22 Rockwell Collins Synchronization method and apparatus for modems based on jointly iterative turbo demodulation and decoding
US20030135809A1 (en) 2002-01-11 2003-07-17 Samsung Electronics Co., Ltd. Decoding device having a turbo decoder and an RS decoder concatenated serially and a method of decoding performed by the same
US20030132814A1 (en) 2002-01-15 2003-07-17 Nokia Corporation Circuit topology for attenuator and switch circuits
US20100220825A1 (en) 2002-04-04 2010-09-02 Nortel Networks Limited System and method for i/q imbalance compensation
US20030210352A1 (en) 2002-05-09 2003-11-13 Fitzsimmons John E. Remote monitoring system
US7215716B1 (en) 2002-06-25 2007-05-08 Francis J. Smith Non-linear adaptive AM/AM and AM/PM pre-distortion compensation with time and temperature compensation for low power applications
US7190721B2 (en) 2002-06-28 2007-03-13 Lucent Technologies Inc. Error convergence measurement circuit for providing convergence of a filter
US20100284481A1 (en) 2002-07-16 2010-11-11 Panasonic Corporation Communication method, and transmitting apparatus and receiving apparatus using that communication method
US20050193318A1 (en) 2002-07-29 2005-09-01 Sharp Kabushiki Kaisha Adaptive waveform equalization for viterbi-decodable signal and signal quality evaluation of viterbi-decodable signal
US20040203458A1 (en) 2002-10-15 2004-10-14 Nigra Louis M. Method and apparatus to reduce interference in a communication device
US20040081259A1 (en) 2002-10-24 2004-04-29 Gerhard Ammer Soft sample scaling in a turbo decoder
US20040086276A1 (en) 2002-11-05 2004-05-06 Lenosky Thomas J. System and method for reducing interference in an optical data stream using multiple, selectable equalizers
US20050265470A1 (en) 2002-12-05 2005-12-01 Matsushita Electric Industrial Co., Ltd. Radio communication system, radio communication method, and radio communication device
US20040120409A1 (en) 2002-12-20 2004-06-24 Ambighairajah Yasotharan Impulse response shortening and symbol synchronization in OFDM communication systems
US20070213087A1 (en) 2003-02-24 2007-09-13 Qualcomm Incorporated Method of transmitting pilot tones in a multi-sector cell, including null pilot tones, for generating channel quality indicators
US20040174937A1 (en) 2003-03-08 2004-09-09 Gottfried Ungerboeck Zero excess bandwidth modulation
US20090185612A1 (en) 2003-03-10 2009-07-23 Advanced Receiver Technologies, Llc Method and apparatus for single burst equalization of single carrier signals in broadband wireless access systems
US20040257955A1 (en) 2003-04-11 2004-12-23 Yutaka Yamanaka Optical disc medium having a system information recording area of low recording density
US20040227570A1 (en) 2003-05-12 2004-11-18 Andrew Corporation Optimization of error loops in distributed power amplifiers
US20040240578A1 (en) 2003-05-30 2004-12-02 Thesling William H. Receiver based saturation estimator
US7206363B2 (en) 2003-06-24 2007-04-17 Intersymbol Communications, Inc. Method and apparatus for delayed recursion decoder
US20090245226A1 (en) 2003-06-26 2009-10-01 Ian Robinson Communication System and Method for Improving Efficiency and Linearity
US7190288B2 (en) 2003-06-27 2007-03-13 Northrop Grumman Corp. Look-up table delta-sigma conversion
US20050032472A1 (en) 2003-08-08 2005-02-10 Yimin Jiang Method and apparatus of estimating non-linear amplifier response in an overlaid communication system
US20050047517A1 (en) 2003-09-03 2005-03-03 Georgios Giannakis B. Adaptive modulation for multi-antenna transmissions with partial channel knowledge
US7269205B2 (en) 2003-09-26 2007-09-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for signal demodulation
US20050089125A1 (en) * 2003-10-28 2005-04-28 Samsung Electronics Co., Ltd. Receiver for compensating nonlinearly distorted multicarrier signals
US20050135472A1 (en) 2003-10-30 2005-06-23 Sony Corporation Adaptive equalizer, decoding device, and error detecting device
US20050123077A1 (en) 2003-12-04 2005-06-09 Lg Electronics Inc. Digital broadcasting receiving system and equalizing method thereof
US20050163252A1 (en) 2004-01-27 2005-07-28 Crestcom, Inc. Transmitter predistortion circuit and method therefor
US7467338B2 (en) 2004-03-12 2008-12-16 Ntt Docomo, Inc. Apparatus and method for generating an error signal
US20050220218A1 (en) 2004-04-02 2005-10-06 Jensen Henrik T RF transmitter architecture for continuous switching between modulations modes
US7205798B1 (en) 2004-05-28 2007-04-17 Intersil Americas Inc. Phase error correction circuit for a high speed frequency synthesizer
US20050276317A1 (en) 2004-06-14 2005-12-15 Samsung Electronics Co., Ltd. Apparatus and method for controlling transmission mode in a MIMO mobile communication system
US20100172309A1 (en) 2004-07-30 2010-07-08 Antonio Forenza System and method for distributed input distributed output wireless communications
US7158324B2 (en) 2004-09-20 2007-01-02 Guzik Technical Enterprises Self-adjusting PRML receiver
US20060067396A1 (en) 2004-09-27 2006-03-30 Benny Christensen Feed forward equalizer for a communication system
US20060109780A1 (en) 2004-11-02 2006-05-25 Infineon Technologies Ag. OFDM transmission method, which is intended both for sporadic and for continuous data communication, for a WLAN
US8422589B2 (en) 2004-11-03 2013-04-16 Panasonic Corporation Method and apparatus for transmitting data in a digital communication system, and computer-readable storage medium relating thereto
US20060109935A1 (en) 2004-11-19 2006-05-25 Evolium S.A.S. Receiver system and method for soft-decision decoding of punctured convolutional codes in a wireless communication system
US8989249B2 (en) 2005-01-20 2015-03-24 Rambus Inc. High-speed signaling systems with adaptable pre-emphasis and equalization
US20060171489A1 (en) 2005-02-02 2006-08-03 Sbc Knowledge Ventures, L.P. Soft bit Viterbi equalizer using partially collapsed metrics
US20060203943A1 (en) 2005-03-10 2006-09-14 Comsys Communication & Signal Processing Ltd. Single antenna interference suppression in a wireless receiver
US20090137212A1 (en) 2005-03-24 2009-05-28 Maxim Borisovich Belotserkovsky Non-Linear Signal Distortion Detection Using Multiple Signal to Noise Ratio Measurement Sources
US20110164492A1 (en) 2005-03-30 2011-07-07 Jianglei Ma Method and system for combining ofdm and transformed ofdm
US20090075590A1 (en) 2005-04-15 2009-03-19 Mitsubishi Electric Research Laboratories Method and System for Estimating Time of Arrival of Signals Using Multiple Different Time Scales
US20060239339A1 (en) 2005-04-22 2006-10-26 Tyler Brown CIR estimating decision feedback equalizer with phase tracker
US20060245765A1 (en) 2005-04-28 2006-11-02 Salam Elahmadi Methods of spread-pulse modulation and nonlinear time domain equalization for fiber optic communication channels
US20060280113A1 (en) 2005-06-10 2006-12-14 Huo David D Method and apparatus for dynamic allocation of pilot symbols
WO2007000495A1 (en) 2005-06-29 2007-01-04 Nokia Siemens Networks Oy Data processing method, pre-distortion arrangement, transmitter, network element and base station
US8432987B2 (en) 2005-07-20 2013-04-30 Stmicroelectronics S.R.L. Method and apparatus for multiple antenna communications, and related systems and computer program
US20070098090A1 (en) 2005-08-12 2007-05-03 Xiaoqiang Ma Systems, methods, and apparatus for mitigation of nonlinear distortion
US20070047121A1 (en) 2005-08-26 2007-03-01 Eleftheriou Evangelos S Read channel apparatus for asynchronous sampling and synchronous equalization
US8248975B2 (en) 2005-09-06 2012-08-21 Nippon Telegraph And Telephone Corporation Wireless transmitting apparatus, wireless receiving apparatus, wireless transmission method, wireless reception method, wireless communication system, and wireless communication method
US20100202505A1 (en) 2005-10-25 2010-08-12 Broadcom Corporation Equalizer Architecture for Data Communication
US20070092017A1 (en) 2005-10-25 2007-04-26 Fujitsu Limited Communications systems and methods using phase vectors
US20070098059A1 (en) 2005-10-31 2007-05-03 Ives Fred H Testing device and method for providing receiver overload protection during transceiver testing
US20070098116A1 (en) 2005-10-31 2007-05-03 Lg Electronics Inc. Apparatus for performing initial synchronization and frame synchronization in mobile communications system and method thereof
US8199804B1 (en) 2005-11-04 2012-06-12 Marvell International Ltd. Efficient tapped delay line equalizer methods and apparatus
US20070110191A1 (en) 2005-11-11 2007-05-17 Sang-Hyo Kim Method and apparatus for normalizing input metric to a channel decoder in a wireless communication system
US20070110177A1 (en) 2005-11-14 2007-05-17 Telefonaktiebolaget Lm Ericsson RF power distribution in the frequency domain
US20100208774A1 (en) 2005-11-15 2010-08-19 Rambus Inc. Iterative Interference Cancellation Using Mixed Feedback Weights and Stabilizing Step Sizes
US20070127608A1 (en) 2005-12-06 2007-06-07 Jacob Scheim Blind interference mitigation in a digital receiver
US20090041105A1 (en) * 2006-01-31 2009-02-12 Mitsubishi Electric Corporation Communication control method, receiving station apparatus, transmitting station apparatus, and communication system
US20070189404A1 (en) 2006-02-14 2007-08-16 Motorola, Inc. Method and apparatus for pilot signal transmission
US20070230593A1 (en) 2006-03-29 2007-10-04 Provigent Ltd. Joint optimization of transmitter and receiver pulse-shaping filters
US20070258517A1 (en) 2006-05-08 2007-11-08 Micro Circuits Corporation Adaptive error slicer and residual intersymbol interference estimator
US20120106617A1 (en) 2006-06-14 2012-05-03 Tjo San Jao System and method for anticipatory receiver switching based on signal quality estimation
US20080002789A1 (en) 2006-06-14 2008-01-03 Harris Corporation System and method for anticipatory receiver switching based on signal quality estimation
US20070291719A1 (en) 2006-06-20 2007-12-20 Mustafa Demirhan Random Access Request Extension for an Additional Resource Request
US20100034253A1 (en) 2006-07-05 2010-02-11 Yossef Cohen Double Equalizer for Multi-Path Rejection
US20100166050A1 (en) 2006-08-18 2010-07-01 Nxp, B.V. Time error estimation for data symbols
US20080049598A1 (en) 2006-08-28 2008-02-28 Xiaoqiang Ma OFDM Channel Estimation
US20080080644A1 (en) 2006-09-29 2008-04-03 Optichron, Inc. Nonlinear digital signal processor
US8005170B2 (en) 2006-10-12 2011-08-23 Samsung Electronics Co., Ltd. Apparatus and method for detecting a signal in a communication system using multiple antennas
US20080130788A1 (en) 2006-12-01 2008-06-05 Texas Instruments Incorporated System and method for computing parameters for a digital predistorter
US20080130716A1 (en) 2006-12-01 2008-06-05 Cho Sung-Rae Apparatus and method for spreading/despreading data using pair of child orthogonal variable spreading factor codes
US20080207143A1 (en) 2007-02-28 2008-08-28 Telefonaktiebolaget Lm Ericsson (Publ) Radio communications using scheduled power amplifier backoff
US20080260985A1 (en) 2007-04-23 2008-10-23 Hitachi Maxell, Ltd. Information-recording medium
US20110228869A1 (en) 2007-06-05 2011-09-22 Constellation Designs, Inc. Design methodology and method and appartus for signaling with capacity optimized constellations
US20090003425A1 (en) 2007-06-29 2009-01-01 Danxun Shen Inter-carrier Interference Measurement In Orthogonal Frequency Division Multiplexing Systems
US20090028234A1 (en) 2007-07-27 2009-01-29 Jie Zhu Tap initialization of equalizer based on estimated channel impulse response
US20090058521A1 (en) 2007-08-31 2009-03-05 Fernandez Andrew D System and method of digital linearization in electronic devices
US20100208832A1 (en) 2007-09-04 2010-08-19 Electronic And Telecommunications Research Institute Frame structure for fast wireless communication system and apparatus for fast wireless communication using the frame
US7974230B1 (en) 2007-09-12 2011-07-05 Sprint Spectrum L.P. Mitigating interference by low-cost internet-base-station (LCIB) pilot beacons with macro-network communications
US20090115513A1 (en) 2007-11-01 2009-05-07 Naoki Hongo Predistorter
US20090122854A1 (en) 2007-11-14 2009-05-14 The Hong Kong University Of Science And Technology Frequency domain equalization with transmit precoding for high speed data transmission
US20100278288A1 (en) 2007-12-12 2010-11-04 Nortel Networks Limited Channel estimation method and system for inter-carrier interference-limited wireless communication network
US20090213908A1 (en) 2008-02-22 2009-08-27 Bottomley Gregory E Method and Apparatus for Symbol Detection via Reduced Complexity Sequence Estimation Processing
US20090220034A1 (en) 2008-03-03 2009-09-03 Ramprashad Sean A Layered receiver structure
US8265561B2 (en) * 2008-03-14 2012-09-11 Fujitsu Limited Radio communication apparatus and interference removing method
US20120177138A1 (en) 2008-03-31 2012-07-12 Qualcomm Incorporated Multidimensional constellations for coded transmission
US20090245401A1 (en) 2008-03-31 2009-10-01 Qualcomm Incorporated Multidimensional constellations for coded transmission
US20110090986A1 (en) 2008-05-22 2011-04-21 Yeong Hyeon Kwon Method for transmitting data in wireless communication system
US20110074500A1 (en) 2008-06-03 2011-03-31 Thomson Licensing Apparatus and method for determination of signal format
US20120120990A1 (en) * 2008-06-21 2012-05-17 Vyycore Corporation System for predistortion and post-distortion correction of both a receiver and transmitter during calibration
US8059737B2 (en) 2008-06-23 2011-11-15 Mediatek Inc. OFDM receiver having memory capable of acting in a single-chip mode and a diversity mode
US20090323841A1 (en) 2008-06-27 2009-12-31 Bruno Clerckx Codebook design method for multiple input multiple output system and method for using the codebook
US20100002692A1 (en) 2008-07-02 2010-01-07 Harry Bims Multimedia-aware quality-of-service and error correction provisioning
US20100039100A1 (en) 2008-08-18 2010-02-18 Fujitsu Limited Nonlinear Degree Measuring Apparatus And Method For A Power Amplifier, Predistortion Compensation Apparatus
US20100062705A1 (en) 2008-09-10 2010-03-11 Qualcomm Incorporated Apparatus and method for interference-adaptive communications
US8351536B2 (en) 2008-09-11 2013-01-08 Motorola Mobility Llc Wireless communication of data symbols
US20100074349A1 (en) 2008-09-25 2010-03-25 Thord Hyllander Method and base station for orthogonal frequency division multiplexing (ofdm) signal processing
US7830854B1 (en) 2008-10-01 2010-11-09 Sprint Spectrum L.P. Variable auxiliary pilot trigger and performance
US20110188550A1 (en) 2008-10-27 2011-08-04 Novelsat Ltd. High-performance faster-than-nyquist (ftn) signaling schemes
US8175186B1 (en) 2008-11-20 2012-05-08 L-3 Services, Inc. Preserving the content of a communication signal corrupted by interference during transmission
US20100158085A1 (en) 2008-12-23 2010-06-24 Khayrallah Ali S Feedforward receiver and method for reducing inter-symbol interference by using joint soft values
US20100203854A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Method and Apparatus For Transmitting a Signal Within a Predetermined Spectral Mask
US20100215107A1 (en) 2009-02-23 2010-08-26 Shun-An Yang Methods and apparatuses for dealing with spectrum inversion
US20100283540A1 (en) 2009-05-07 2010-11-11 Nortel Networks, Limited Pre-distortion for a Radio Frequency Power Amplifier
US20100309796A1 (en) 2009-06-05 2010-12-09 Khayrallah Ali S Reduced-complexity equalization with sphere decoding
US20100329325A1 (en) 2009-06-29 2010-12-30 Lsi Corporation Statistically-Adapted Receiver and Transmitter Equalization
US8498591B1 (en) 2009-08-21 2013-07-30 Marvell International Ltd. Digital Predistortion for nonlinear RF power amplifiers
US20110051864A1 (en) 2009-09-03 2011-03-03 Qualcomm Incorporated Multi-stage interference suppression
US20110064171A1 (en) 2009-09-14 2011-03-17 Xinping Huang Multi-carrier amplifier linearization system and method
US20110069791A1 (en) 2009-09-24 2011-03-24 Credo Semiconductor (Hong Kong) Limited Parallel Viterbi Decoder with End-State Information Passing
US20110074506A1 (en) 2009-09-25 2011-03-31 General Dynamics C4 Systems, Inc. Cancelling non-linear power amplifier induced distortion from a received signal by moving incorrectly estimated constellation points
US20110075745A1 (en) * 2009-09-25 2011-03-31 General Dynamics C4 Systems, Inc. Reducing transmitter-to-receiver non-linear distortion at a transmitter prior to estimating and cancelling known non-linear distortion at a receiver
US20110103455A1 (en) * 2009-10-30 2011-05-05 Qualcomm Incorporated Adaptive digital post distortion reduction
US20110134899A1 (en) 2009-12-07 2011-06-09 Qualcomm Incorporated Enabling phase tracking for a communication device
US20110150064A1 (en) 2009-12-17 2011-06-23 Electronics And Telecommunications Research Institute Device and method of estimating symbol using second order differential phase vector
US20110170630A1 (en) 2010-01-13 2011-07-14 Cisco Technology, Inc. Digital Predistortion Training System
US20110182329A1 (en) 2010-01-25 2011-07-28 Infineon Technolongies Ag Device and method for distortion-robust decoding
US20110243266A1 (en) 2010-04-05 2011-10-06 Lg Electronics Inc. Method and system for reducing inter carrier interference for ofdm
US20110249709A1 (en) 2010-04-08 2011-10-13 Muh-Tian Shiue DHT-Based OFDM Transmitter and Receiver
US20110275338A1 (en) 2010-05-04 2011-11-10 Hughes Network Systems, Llc Phase pulse system and method for bandwidth and energy efficient continuous phase modulation
US20140098841A2 (en) 2010-06-07 2014-04-10 University Of Delaware Underwater acoustic multiple-input/multiple-output (mimo) communication systems and methods
US20110310978A1 (en) 2010-06-18 2011-12-22 Yiyan Wu Multilayer decoding using persistent bits
US20110310823A1 (en) 2010-06-18 2011-12-22 Samsung Electronics Co., Ltd. Method and system for mapping harq-ack bits
US20120025909A1 (en) 2010-07-28 2012-02-02 Electronics And Telecommunications Research Institute Distortion compensation apparatus and apparatus and method for transmitting signal
US20120027132A1 (en) 2010-07-30 2012-02-02 Sensus Usa Inc. Gfsk receiver architecture and methodology
US20120051464A1 (en) 2010-08-27 2012-03-01 Matthias Kamuf OFDM signal reception in the presence of interference
US20120163489A1 (en) 2010-12-23 2012-06-28 Texas Instruments Incorporated Pulse shaping in a communication system
WO2012092647A1 (en) 2011-01-04 2012-07-12 James Cook University A method and system for linearising a radio frequency transmitter
US20120207248A1 (en) 2011-02-15 2012-08-16 Ahmed I Zakir Estimation of Sample Clock Frequency Offset Using Error Vector Magnitude
US20130028299A1 (en) 2011-07-26 2013-01-31 Himax Media Solutions, Inc. Adaptive ethernet transceiver with joint decision feedback equalizer and trellis decoder
US20130044877A1 (en) 2011-08-15 2013-02-21 Yong Liu Long range wlan data unit format
WO2013030815A1 (en) 2011-08-30 2013-03-07 Dsp Group Ltd. Amplifier linearization using predistortion
US20130077563A1 (en) 2011-09-27 2013-03-28 Electronics And Telecommunications Research Institute Data transmission and reception method and apparatus robust against phase noise for high efficiency satellite transmission
US20130121257A1 (en) 2011-11-10 2013-05-16 Microsoft Corporation Mapping Signals from a Virtual Frequency Band to Physical Frequency Bands
US20140376358A1 (en) 2011-12-28 2014-12-25 Telefonaktiebolaget L M Ericsson (Publ) Symbol detection technique
US8731413B1 (en) 2012-01-23 2014-05-20 Viasat, Inc. DAC-based optical modulator and demodulator
US20140105268A1 (en) 2012-06-20 2014-04-17 MagnaCom Ltd. Decision feedback equalizer utilizing symbol error rate biased adaptation function for highly spectrally efficient communications
US20140161158A1 (en) 2012-06-20 2014-06-12 MagnaCom Ltd. Joint sequence estimation of symbol and phase with high tolerance of nonlinearity
US8559494B1 (en) 2012-06-20 2013-10-15 MagnaCom Ltd. Timing synchronization for reception of highly-spectrally-efficient communications
US8566687B1 (en) 2012-06-20 2013-10-22 MagnaCom Ltd. Method and system for forward error correction decoding with parity check for use in low complexity highly-spectrally efficient communications
US8565363B1 (en) 2012-06-20 2013-10-22 MagnaCom Ltd. Fine phase estimation for highly spectrally efficient communications
US8571131B1 (en) 2012-06-20 2013-10-29 MagnaCom Ltd. Dynamic filter adjustment for highly-spectrally-efficient communications
US8572458B1 (en) 2012-06-20 2013-10-29 MagnaCom Ltd. Forward error correction with parity check encoding for use in low complexity highly-spectrally efficient communications
US8571146B1 (en) 2012-06-20 2013-10-29 MagnaCom Ltd. Method and system for corrupt symbol handling for providing high reliability sequences
US8582637B1 (en) 2012-06-20 2013-11-12 MagnaCom Ltd. Low-complexity, highly-spectrally-efficient communications
US8599914B1 (en) 2012-06-20 2013-12-03 MagnaCom Ltd. Feed forward equalization for highly-spectrally-efficient communications
US8605832B1 (en) 2012-06-20 2013-12-10 MagnaCom Ltd. Joint sequence estimation of symbol and phase with high tolerance of nonlinearity
US20130343487A1 (en) 2012-06-20 2013-12-26 MagnaCom Ltd. Multi-Mode Receiver for Highly-Spectrally-Efficient Communications
US20130343480A1 (en) 2012-06-20 2013-12-26 MagnaCom Ltd. Multi-Mode Orthogonal Frequency Division Multiplexing Transmitter for Highly-Spectrally-Efficient Communications
US20140036986A1 (en) 2012-06-20 2014-02-06 MagnaCom Ltd. Coarse phase estimation for highly-spectrally-efficient communications
US9003258B2 (en) 2012-06-20 2015-04-07 MagnaCom Ltd. Forward error correction with parity check encoding for use in low complexity highly-spectrally efficient communications
US8665992B1 (en) 2012-06-20 2014-03-04 MagnaCom Ltd. Pilot symbol generation for highly-spectrally-efficient communications
US8665941B1 (en) 2012-06-20 2014-03-04 MagnaCom Ltd. Decision feedback equalizer for highly spectrally efficient communications
US8666000B2 (en) 2012-06-20 2014-03-04 MagnaCom Ltd. Reduced state sequence estimation with soft decision outputs
US8675782B2 (en) 2012-06-20 2014-03-18 MagnaCom Ltd. Highly-spectrally-efficient receiver
US8675769B1 (en) 2012-06-20 2014-03-18 MagnaCom Ltd. Constellation map optimization for highly spectrally efficient communications
US8681889B2 (en) 2012-06-20 2014-03-25 MagnaCom Ltd. Multi-mode orthogonal frequency division multiplexing receiver for highly-spectrally-efficient communications
US20140098907A1 (en) 2012-06-20 2014-04-10 MagnaCom Ltd. Timing pilot generation for highly-spectrally-efficient communications
US8559498B1 (en) 2012-06-20 2013-10-15 MagnaCom Ltd. Decision feedback equalizer utilizing symbol error rate biased adaptation function for highly spectrally efficient communications
US20140098915A1 (en) 2012-06-20 2014-04-10 MagnaCom Ltd. Adaptive non-linear model for highly-spectrally-efficient communications
US20140105267A1 (en) 2012-06-20 2014-04-17 MagnaCom Ltd. Signal Reception Using Non-Linearity-Compensated, Partial Response Feedback
US8553821B1 (en) 2012-06-20 2013-10-08 MagnaCom Ltd. Adaptive non-linear model for highly-spectrally-efficient communications
US20140108892A1 (en) 2012-06-20 2014-04-17 MagnaCom Ltd. Method and System for Forward Error Correction Decoding With Parity Check for Use in Low Complexity Highly-Spectrally Efficient Communications
US20140105332A1 (en) 2012-06-20 2014-04-17 MagnaCom Ltd. Timing synchronization for reception of highly-spectrally-efficient communications
US20140105334A1 (en) 2012-06-20 2014-04-17 MagnaCom Ltd. Fine Phase Estimation for Highly Spectrally Efficient Communications
US20140133540A1 (en) 2012-06-20 2014-05-15 MagnaCom Ltd. Low-complexity, highly-spectrally-efficient communications
US8548097B1 (en) 2012-06-20 2013-10-01 MagnaCom Ltd. Coarse phase estimation for highly-spectrally-efficient communications
US20140140388A1 (en) 2012-06-20 2014-05-22 MagnaCom Ltd. Forward Error Correction With Parity Check Encoding For Use in Low Complexity Highly-Spectrally Efficient Communications
US20140140446A1 (en) 2012-06-20 2014-05-22 MagnaCom Ltd. Method and System for Corrupt Symbol Handling for Providing High Reliability Sequences
US8737458B2 (en) 2012-06-20 2014-05-27 MagnaCom Ltd. Highly-spectrally-efficient reception using orthogonal frequency division multiplexing
US20140146911A1 (en) 2012-06-20 2014-05-29 MagnaCom Ltd. Dynamic Filter Adjustment for Highly-Spectrally-Efficient Communications
US8744003B2 (en) 2012-06-20 2014-06-03 MagnaCom Ltd. Multi-mode transmitter for highly-spectrally-efficient communications
US20140161170A1 (en) 2012-06-20 2014-06-12 MagnaCom Ltd. Feed Forward Equalization for Highly-Spectrally-Efficient Communications
US8559496B1 (en) 2012-06-20 2013-10-15 MagnaCom Ltd. Signal reception using non-linearity-compensated, partial response feedback
US8781008B2 (en) 2012-06-20 2014-07-15 MagnaCom Ltd. Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing
US8526523B1 (en) 2012-06-20 2013-09-03 MagnaCom Ltd. Highly-spectrally-efficient receiver
US20150078491A1 (en) 2012-06-20 2015-03-19 MagnaCom Ltd. Highly-Spectrally-Efficient OFDM Receiver
US8982984B2 (en) 2012-06-20 2015-03-17 MagnaCom Ltd. Dynamic filter adjustment for highly-spectrally-efficient communications
US20140241477A1 (en) 2012-06-20 2014-08-28 MagnaCom Ltd. Decision feedback equalizer for highly spectrally efficient communications
US8824572B2 (en) 2012-06-20 2014-09-02 MagnaCom Ltd. Timing pilot generation for highly-spectrally-efficient communications
US8824611B2 (en) 2012-06-20 2014-09-02 MagnaCom Ltd. Adaptive non-linear model for highly-spectrally-efficient communications
US8824599B1 (en) 2012-06-20 2014-09-02 MagnaCom Ltd. Pilot symbol-aided sequence estimation for highly-spectrally-efficient communications
US20140247904A1 (en) 2012-06-20 2014-09-04 MagnaCom Ltd. Pilot Symbol Generation for Highly-Spectrally-Efficient Communications
US8831124B2 (en) 2012-06-20 2014-09-09 MagnaCom Ltd. Multi-mode orthogonal frequency division multiplexing transmitter for highly-spectrally-efficient communications
US20150071389A1 (en) 2012-06-20 2015-03-12 MagnaCom Ltd. Multi-Mode Receiver for Highly-Spectrally-Efficient Communications
US8842778B2 (en) 2012-06-20 2014-09-23 MagnaCom Ltd. Multi-mode receiver for highly-spectrally-efficient communications
US8976911B2 (en) 2012-06-20 2015-03-10 MagnaCom Ltd. Joint sequence estimation of symbol and phase with high tolerance of nonlinearity
US8976853B2 (en) 2012-06-20 2015-03-10 MagnaCom Ltd. Signal reception using non-linearity-compensated, partial response feedback
US8873612B1 (en) 2012-06-20 2014-10-28 MagnaCom Ltd. Decision feedback equalizer with multiple cores for highly-spectrally-efficient communications
US20140321525A1 (en) 2012-06-20 2014-10-30 MagnaCom Ltd. Highly-spectrally-efficient reception using orthogonal frequency division multiplexing
US20140328428A1 (en) 2012-06-20 2014-11-06 MagnaCom Ltd. Multi-Mode Transmitter for Highly-Spectrally-Efficient Communications
US8885698B2 (en) 2012-06-20 2014-11-11 MagnaCom Ltd. Decision feedback equalizer utilizing symbol error rate biased adaptation function for highly spectrally efficient communications
US8885786B2 (en) 2012-06-20 2014-11-11 MagnaCom Ltd. Fine phase estimation for highly spectrally efficient communications
US20150063499A1 (en) 2012-06-20 2015-03-05 MagnaCom Ltd. Timing pilot generation for highly-spectrally-efficient communications
US8897387B1 (en) 2012-06-20 2014-11-25 MagnaCom Ltd. Optimization of partial response pulse shape filter
US8897405B2 (en) 2012-06-20 2014-11-25 MagnaCom Ltd. Decision feedback equalizer for highly spectrally efficient communications
US8548072B1 (en) 2012-06-20 2013-10-01 MagnaCom Ltd. Timing pilot generation for highly-spectrally-efficient communications
US20150010108A1 (en) 2012-06-20 2015-01-08 MagnaCom Ltd. Highly-Spectrally-Efficient Transmission Using Orthogonal Frequency Division Multiplexing
US8948321B2 (en) 2012-06-20 2015-02-03 MagnaCom Ltd. Reduced state sequence estimation with soft decision outputs
US8972836B2 (en) 2012-06-20 2015-03-03 MagnaCom Ltd. Method and system for forward error correction decoding with parity check for use in low complexity highly-spectrally efficient communications
US20150055722A1 (en) 2012-06-20 2015-02-26 MagnaCom Ltd. Adaptive non-linear model for highly-spectrally-efficient communications
US20140056387A1 (en) 2012-08-22 2014-02-27 Mitsubishi Electric Corporation Receiving apparatus and receiving method
US20140301507A1 (en) 2012-11-14 2014-10-09 MagnaCom Ltd. Highly-Spectrally-Efficient Receiver
US20140286459A1 (en) 2012-11-14 2014-09-25 MagnaCom Ltd. Multi-mode orthogonal frequency division multiplexing receiver for highly-spectrally-efficient communications
US20140269861A1 (en) 2012-11-14 2014-09-18 MagnaCom Ltd. Constellation Map Optimization for Highly Spectrally Efficient Communications
US8811548B2 (en) 2012-11-14 2014-08-19 MagnaCom, Ltd. Hypotheses generation based on multidimensional slicing
US20140198255A1 (en) 2013-01-11 2014-07-17 Seiko Epson Corporation Video processing apparatus, display apparatus, and video processing method
US20150049843A1 (en) 2013-08-15 2015-02-19 MagnaCom Ltd. Combined Transmission Precompensation and Receiver Nonlinearity Mitigation
US20150070089A1 (en) 2013-09-09 2015-03-12 MagnaCom Ltd. Adaptive nonlinear model learning
US8804879B1 (en) 2013-11-13 2014-08-12 MagnaCom Ltd. Hypotheses generation based on multidimensional slicing
US8891701B1 (en) 2014-06-06 2014-11-18 MagnaCom Ltd. Nonlinearity compensation for reception of OFDM signals

Non-Patent Citations (49)

* Cited by examiner, † Cited by third party
Title
A. Duel-Hallen and C. Heegard, "Delayed decision-feedback sequence estimation," IEEE Trans. Commun., vol. 37, pp. 428-436, May 1989.
Ai-Dhahir, Naofal et al., "MMSE Decision-Feedback Equalizers: Finite-Length Results" IEEE Transactions on Information Theory, vol. 41, No. 4, Jul. 1995.
Chan, N., "Partial Response Signaling with a Maximum Likelihood Sequence Estimation Receiver" (1980). Open Access Dissertations and Theses. Paper 2855, (123 pages).
Cioffi, John M. et al., "MMSE Decision-Feedback Equalizers and Coding-Park I: Equalization Results" IEEE Transactions onCommunications, vol. 43, No. 10, Oct. 1995.
D. Hajela, "On computing the minimum distance for faster than Nyquist signaling," IEEE Trans. Inform. Theory, vol. 36, pp. 289-295, Mar. 1990.
Digital predistortion for power amplifiers using separable functions. Signal Processing, IEEE Transactions on, 58(8), 4121-4130. Retrieved from the internet </https://arxiv.org/ftp/arxiv/papers/1306/1306.0037.pdf> Jiang, H., & Wilford, P.A. Aug. 8, 2010.
Digital predistortion for power amplifiers using separable functions. Signal Processing, IEEE Transactions on, 58(8), 4121-4130. Retrieved from the internet Jiang, H., & Wilford, P.A. Aug. 8, 2010.
Digital predistortion linearization methods for RF power amplifiers. Teknillinen korkeakoulu. Retrieved from the Internet <https://lib.tkk.fi/Diss/2008/isbn9789512295463/isbn9789512295463.pdf> Teikari I. Sep. 30, 2008.
Digital predistortion linearization methods for RF power amplifiers. Teknillinen korkeakoulu. Retrieved from the Internet Teikari I. Sep. 30, 2008.
Digital predistortion of power amplifiers for wireless applications (Doctoral dissertation, Georgia Institute of Technology). Retrieved from the internet <https://https://202.28.199.34/multim/3126235.pdf> Ding, L. Mar. 31, 2005.
Digital predistortion of power amplifiers for wireless applications (Doctoral dissertation, Georgia Institute of Technology). Retrieved from the internet Ding, L. Mar. 31, 2005.
E. Biglieri, E. Chiaberto, G. P. Maccone, and E. Viterbo, "Compensation of nonlinearities in high-density magnetic recording channels," IEEE Trans. Magn., vol. 30, pp. 5079-5086, Nov. 1994.
Equalization: The Correction and Analysis of Degraded Signals, White Paper, Agilent Technologies, Ransom Stephens V1.0, Aug. 15, 2005 (12 pages).
Eyuboglu, M. Vedat et al., "Reduced-State Sequence Estimation with Set Partitioning and Decision Feedback" IEEE Transactions onCommunications, vol. 36, No. 1, Jan. 1988.
Faulkner, Michael, "Low-Complex ICI Cancellation for Improving Doppler Performance in OFDM Systems", Center for Telecommunication and Microelectronics, 1-4244-0063-5/06/$2000 (c) 2006 IEEE. (5 pgs).
Forney, G. David Jr., "Coset Codes-Part I: Introduction and Geometrical Classification" IEEE Transactions on Information Theory, vol. 34, No. 5, Sep. 1988.
G. D. Forney, Jr., "Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference," IEEE Trans. Inform. Theory, vol. 18, No. 2, pp. 363-378, May 1972.
G. Ungerboeck, "Adaptive maximum-likelihood receiver for carrier modulated data-transmission systems," IEEE Trans. Commun., vol. 22, No. 5, pp. 624-636, May 1974.
Int'l Search Report and Written Opinion for PCT/IB2013/001878 dated Mar. 21, 2014.
Int'l Search Report and Written Opinion for PCT/IB2013/001923 dated Mar. 21, 2014.
Int'l Search Report and Written Opinion for PCT/IB2013/002383 dated Mar. 21, 2014.
Int'l Search Report and Written Opinion for PCT/IB2013/01860 dated Mar. 21, 2014.
Int'l Search Report and Written Opinion for PCT/IB2013/01866 dated Mar. 21, 2014.
Int'l Search Report and Written Opinion for PCT/IB2013/01930 dated May 15, 2014.
Int'l Search Report and Written Opinion for PCT/IB2013/01970 dated Mar. 27, 2014.
Int'l Search Report and Written Opinion for PCT/IB2013/02081 dated May 22, 2014.
Int'l Search Report and Written Opinion for PCT/IB2014/002449 dated Mar. 12, 2015.
Intuitive Guide to Principles of Communications, www.complextoreal.com, Inter Symbol Interference (ISI) and Root-raised Cosine (RRC) filtering, (2002), pp. 1-23 (23 pages).
J. E. Mazo and H. J. Landau, "On the minimum distance problem for faster-than-Nyquist signaling," IEEE Trans. Inform. Theory, vol. 34, pp. 1420-1427, Nov. 1988.
Joachim Hagenauer and Peter Hoeher, "A Viterbi algorithm with soft-decision outputs and its applications," in Proc. IEEE Global Telecommunications Conference 1989, Dallas, Texas, pp. 1680-1686,Nov. 1989.
Kayhan, F., et al., Constellation Design for Transmission over Nonlinear Satellite Channels, Oct. 5, 2012.
Kayhan, F., et al., Joint Signal-Labeling Optimization for Pragmatic Capacity under Peak-Power Constraint, 978-1-4244-5637, 2010.
Kayhan, F., et al., Signal and Labeling Optimization for Non-Linear and Phase Noise Channels, Department of Electronics and Telecommunications.
Khaled M. Gharaibeh, Nonlinear Distortion in Wireless Systems, 2011, John Wiley & Sons, 2nd Edition, chapter 3, pp. 59-81.
M. V. Eyubog .lu and S. U. Qureshi, "Reduced-state sequence estimation with set partitioning and decision feedback," IEEE Trans. Commun., vol. 36, pp. 13-20, Jan. 1988.
M. V. Eyubog •lu and S. U. Qureshi, "Reduced-state sequence estimation with set partitioning and decision feedback," IEEE Trans. Commun., vol. 36, pp. 13-20, Jan. 1988.
Miao, George J., Signal Processing for Digital Communications, 2006, Artech House, pp. 375-377.
Modulation and Coding for Linear Gaussian Channels, G. David Forney, Jr., and Gottfried Ungerboeck, IEEE Transactions of Information Theory, vol. 44, No. 6, Oct. 1998 pp. 2384-2415 (32 pages).
O. E. Agazzi and N. Sheshadri, "On the use of tentative decisions to cancel intersymbol interference and nonlinear distortion (with application to magnetic recording channels)," IEEE Trans. Inform. Theory, vol. 43, pp. 394-408, Mar. 1997.
Prlja, Adnan et al., "Receivers for Faster-than-Nyquist Signaling with and Without Turbo Equalization".
R. A. Gibby and J. W. Smith, "Some extensions of Nyquist's telegraph transmission theory," Bell Syst. Tech. J., vol. 44, pp. 1487-1510, Sep. 1965.
S. Mita, M. Izumita, N. Doi, and Y. Eto, "Automatic equalizer for digital magnetic recording systems" IEEE Trans. Magn., vol. 25, pp. 3672-3674,1987.
Stefano Tomasin, et al. "Iterative Interference Cancellation and Channel Estimation for Mobile OFDM", IEEE Transactions on Wireless Communications, vol. 4, No. 1, Jan. 2005, pp. 238-245.
The Viterbi Algorithm, Ryan, M.S. and Nudd, G.R., Department of Computer Science, Univ. of Warwick, Coventry, (1993) (17 pages).
W. E. Ryan and A. Gutierrez, "Performance of adaptive Volterra equalizers on nonlinear magnetic recording channels," IEEE Trans. Magn., vol. 31, pp. 3054-3056, Nov. 1995.
W. H. Gerstacker, F. Obernosterer, R. Meyer, and J. B. Huber, "An efficient method for prefilter computation for reduced-state equalization," Proc. of the 11th IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun. PIMRC, vol. 1, pp. 604-609, London, UK, Sep. 18-21, 2000.
W. H. Gerstacker, F. Obernosterer, R. Meyer, and J. B. Huber, "On prefilter computation for reduced-state equalization," IEEE Trans. Wireless Commun., vol. 1, No. 4, pp. 793-800, Oct. 2002.
X. Che, "Nonlinearity measurements and write precompensation studies for a PRML recording channel," IEEE Trans. Magn., vol. 31, pp. 3021-3026, Nov. 1995.
Xiong, Fuqin. Digital Modulation Techniques, Artech House, 2006, Chapter 9, pp. 447-483.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11451419B2 (en) 2019-03-15 2022-09-20 The Research Foundation for the State University Integrating volterra series model and deep neural networks to equalize nonlinear power amplifiers
US11855813B2 (en) 2019-03-15 2023-12-26 The Research Foundation For Suny Integrating volterra series model and deep neural networks to equalize nonlinear power amplifiers

Also Published As

Publication number Publication date
US20150358191A1 (en) 2015-12-10
US8891701B1 (en) 2014-11-18
US20160248531A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
US9270512B2 (en) Nonlinearity compensation for reception of OFDM signals
US8737458B2 (en) Highly-spectrally-efficient reception using orthogonal frequency division multiplexing
US9219632B2 (en) Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing
US20160065275A1 (en) Multiple input multiple output communications over nonlinear channels using orthogonal frequency division multiplexing
US8811548B2 (en) Hypotheses generation based on multidimensional slicing
US8948317B2 (en) Receiver apparatus, reception method, communication system, and communication method
US8804879B1 (en) Hypotheses generation based on multidimensional slicing
JP4272665B2 (en) Apparatus, method, and computer program for estimating channel of OFDM transmission system
WO2016016723A2 (en) Orthogonal frequency division multiplexing based communications over nonlinear channels
US20150222456A1 (en) Throughput scaling in a receiver
KR20090115232A (en) Method and apparatus for mitigating interference in multicarrier modulation systems
US20130182802A1 (en) Receiver apparatus, reception method, and reception program
US20060285482A1 (en) OFDM demodulation apparatus, method and computer readable medium
US20160065329A1 (en) Single carrier communications harnessing nonlinearity
WO2011065878A1 (en) Bit soft value normalization
CN108781129A (en) Log-likelihood calculations circuit, reception device and log-likelihood calculations method
US10382231B2 (en) Receiver circuit
JP6884270B2 (en) Devices and methods for demodulating received symbols
CN110247710B (en) Multi-dimensional modulation signal processing method and device based on optical OFDM (orthogonal frequency division multiplexing) idler position coding
US8284869B2 (en) QAM demodulation
JP6395639B2 (en) Method and apparatus and computer program for canceling narrowband interference in a single carrier signal
CN111294125B (en) Signal-to-noise ratio estimation method and device and computer readable storage medium
WO2012051848A1 (en) Signal detection method and equipment in multi-path channel
US9749166B2 (en) Estimation apparatus and compensation apparatus for clipping distortion of multicarrier signals and receiver
CN107005259B (en) The method and apparatus for reducing the adjacent-channel interference in wlan system

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAGNACOM LTD.;REEL/FRAME:041604/0861

Effective date: 20160509

AS Assignment

Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE

Free format text: MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047422/0464

Effective date: 20180509

AS Assignment

Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE PREVIOUSLY RECORDED AT REEL: 047422 FRAME: 0464. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:048883/0702

Effective date: 20180905

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE UNDER 1.28(C) (ORIGINAL EVENT CODE: M1559); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8