US9014625B2 - Method and apparatus for generating dedicated data channels in inductive coupled RFID systems using band-pass modulation - Google Patents

Method and apparatus for generating dedicated data channels in inductive coupled RFID systems using band-pass modulation Download PDF

Info

Publication number
US9014625B2
US9014625B2 US13/482,083 US201213482083A US9014625B2 US 9014625 B2 US9014625 B2 US 9014625B2 US 201213482083 A US201213482083 A US 201213482083A US 9014625 B2 US9014625 B2 US 9014625B2
Authority
US
United States
Prior art keywords
signal
inductive coupling
coupling apparatus
band
reader device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/482,083
Other versions
US20130324033A1 (en
Inventor
Tajinder Manku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DRNC Holdings Inc
Original Assignee
Tag Comm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tag Comm Inc filed Critical Tag Comm Inc
Assigned to TAG-COMM INC. reassignment TAG-COMM INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MANKU, TAJINDER
Priority to US13/482,083 priority Critical patent/US9014625B2/en
Priority to CN201710137966.3A priority patent/CN107103351B/en
Priority to KR1020147030542A priority patent/KR101619687B1/en
Priority to CN201280073516.8A priority patent/CN104335494B/en
Priority to JP2015510584A priority patent/JP6010689B2/en
Priority to EP12877871.9A priority patent/EP2856657B1/en
Priority to PCT/CA2012/000569 priority patent/WO2013177659A1/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED SECURITY AGREEMENT Assignors: TAG-COMM INC.
Publication of US20130324033A1 publication Critical patent/US20130324033A1/en
Priority to IN9474DEN2014 priority patent/IN2014DN09474A/en
Publication of US9014625B2 publication Critical patent/US9014625B2/en
Application granted granted Critical
Assigned to TAG-COMM INC. reassignment TAG-COMM INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: QUALCOMM INCORPORATED
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: TAG-COMM INC.
Assigned to DRNC HOLDINGS, INC. reassignment DRNC HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAG-COMM INC.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • H04B5/0062
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • H04B5/0075
    • H04B5/0081
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils

Definitions

  • the present invention relates generally to a method and apparatus for generating dedicated data transmission channels in inductive coupled radio frequency communication networks using band-pass modulation.
  • Radio Frequency Identification systems are commonly used to locate and track items in a near-field communication network including a reader device and at least one wireless terminal, or tag. Energized time-varying electromagnetic radio frequency (RF) waves, which comprise the carrier signal, are transmitted from the reader to the tags in a given RFID network or system. Inductive coupling may be used to transfer energy from one circuit (such as a conductive antenna coil and associated circuitry) to another by means of mutual inductance between the two circuits. A voltage is induced in the tag that can be rectified and used to power the tag circuitry.
  • RFID networks may include tags and readers which exchange information using such inductive coupling between their inductive coupling coils (or antenna coils).
  • the tag circuitry changes or varies the load, which is referred to herein as a coupled impedance associated with the inductive coupling coil or element. This change can be detected by the reader as a result of the mutual inductive coupling, whereby a reader-originated RF signal can be modified by the tag to transmit encoded data.
  • FIG. 1 a depicts a prior art RFID system in which data transmission from tags 101 a - c to reader device 103 is performed on a same frequency channel or spectrum 104 .
  • each of the plurality of tags typically in the RFID system or network sends RF signals using the modified carrier signal.
  • the modified RF signals from each tag overlap those of other tags within the same RF frequency spectrum associated with a given reader device in the RFID network.
  • tag collision in RFID systems occur when the multiple tags are energized by the same RFID reader device, and simultaneously modify their respective, overlapping signals back to the reader using the given frequency channel.
  • tag collision problem is exacerbated whenever a large number of tags must be read together in the same RF field.
  • the reader is unable to differentiate these signals when the simultaneously generated signals collide.
  • the tag collisions confuse the reader, generate data transmission errors, and generally reduce data throughput within the RFID system or network.
  • tags For example, in one technique aimed at reducing collision errors, when the reader recognizes that tag collision has taken place, it sends a special “gap pulse” signal. Upon receiving this signal, each tag consults a random number counter to determine the interval to wait before sending its data. Since each tag gets a unique number interval, the tags send their data at different times. The adverse impact on overall RFID system performance, in terms of data throughput rate, however, still exists.
  • Modulating the signal received by the tag and inductively coupling the modulated signal to the reader device is known, using such signal modulation schemes as phase shift keying (PSK) and amplitude shift keying (ASK), where the tag changes its associated impedance by changing the impedance match between states.
  • PSK phase shift keying
  • ASK amplitude shift keying
  • the underlying coils are defined by their physical size and structure. It is well know that a coupling system of the two coils can replaced by an equivalent transformer. The connection between these two coils is given by the magnetic field (B) and the underlying value to describe this connection is the mutual inductance (M) and/or the coupling factor (k).
  • FIG. 1 b shows a prior art inductive coupled RFID system.
  • the applicable Biot-Savart relationship is:
  • M ⁇ A 2 ⁇ B ⁇ ( i 1 ) i 1 ⁇ ⁇ d
  • a 2 k M L 1 ⁇ L 2
  • a 2 describes the area of the second coil
  • L 1 and L 2 describe the inductance of the two coils.
  • the distance between the reader-coil and transponder-coil also determines the coupling factor.
  • L 1 and L 2 are in resonance with the capacitors C 1 and C 2 , respectively.
  • the Y 1 +Y 2 admittances are modulated to transfer information back to the reader.
  • the Y 1 +Y 2 are either modulated via amplitude (ASK) or in-phase (PSK).
  • Y 1 +Y 2 can also be modulated using multi-phase PSK and multi-amplitude ASK, but this poses an issue on the Q of the resonance of L 1 C 1 and L 2 C 2 .
  • the admittances Y 1 +Y 2 are modulated such that most of the data in frequency domain sits near DC. This poses a problem for the reader device since it has to distinguish the actual signal from DC offsets that may be produced by the reader itself; for example, the operating frequency of the reader leaks back into itself producing a DC, or the phase noise of the oscillator used in the reader becomes (undesirably) superimposed on the modulated signal.
  • the inductive coupling apparatus for modifying an incoming radio frequency (RF) signal.
  • the inductive coupling apparatus comprises an inductive coil or element, a variable impedance circuit having an output electrically coupled to the inductive element, and at least one band-pass delta sigma ( ⁇ ) modulator coupled to the variable impedance circuit and digitally controlling the output of the variable impedance circuit, wherein the incoming RF signal is modified in accordance with a coupled impedance characteristic of the inductive element being adjusted based on the output of the variable impedance circuit.
  • band-pass delta sigma
  • an output of the at least one band-pass delta sigma modulator switches the output of the variable impedance circuit between two states to adjust the coupled impedance z.
  • an input signal applied to the band-pass delta sigma modulator consists of one of a complex modulation signal offset from the incoming radio frequency signal by +/ ⁇ 0 .
  • the complex modulation signal may consists of any of a GMSK, QPSK, nPSK, nQAM, and an OFDM signal.
  • the input data provided to the IQ up-conversion module consists of one of a GMSK, QPSK, nPSK, nQAM, and an OFDM signal format.
  • the inductive coupling apparatus may comprise part of a tag terminal electromagnetically coupled to a reader device within a radio frequency identification (RFID) system wherein generation of data from the IQ up-conversion modulator is based on a clock circuit internal to the tag terminal.
  • RFID radio frequency identification
  • generation of data from the IQ up-conversion modulator is based on a clock circuit using a carrier signal frequency of the reader device, frf, divided by M, where M represents a positive numerical value.
  • clocking for the IQ up-conversion modulator may be based on a clock circuit using a carrier signal frequency of the reader device, frf, divided by N, where N represents a positive numerical value.
  • the inductive element comprises part of a tag terminal, the tag terminal electromagnetically coupled to a reader device within a radio frequency identification (RFID) system, the RFID system comprises clocking the band-pass delta sigma modulator using a clock circuit within the tag reader.
  • RFID radio frequency identification
  • clocking the band-pass delta sigma modulator uses a clock circuit generated based on a frequency of the incoming RF signal divided by L, where L represents a positive numerical value.
  • FIG. 1 a shows a prior art inductive coupled RFID system in which data transmission from tag to reader is performed on a same frequency channel
  • FIG. 3 shows, in one embodiment, an apparatus for generating an IQ signal offset by the frequency of a digital signal source such as a Direct Digital Synthesizer;
  • FIG. 4 shows, in one embodiment, an apparatus using band-pass modulation for generating an OFDM signal offset by the frequency of a digital signal source such as a Direct Digital Synthesizer;
  • FIG. 5 shows an embodiment of an RFID system in which data transmission, via inductive coupling between from tag and reader, may be performed on dedicated frequency channels using band-pass modulation;
  • FIG. 6 a shows, in one embodiment, an inductive coupled band-pass modulator apparatus for generating a QAM signal
  • FIG. 6 b shows, in one embodiment, a process for implementing of a system generating 64QAM data using band-pass modulation
  • FIG. 6 c shows a constellation diagram representation of the output of the 64QAM system apparatus of FIG. 6 a with a signal to noise ratio of 13 dB;
  • FIG. 6 d shows a constellation diagram representation of the output of the 64QAM system apparatus of FIG. 6 a with a signal to noise ratio of 22 dB.
  • modulation refers to the process by which the radio frequency identification (RFID) wireless terminal, or tag, changes the carrier radio frequency (RF) signal of the reader inductive coupling apparatus to encode and convey information.
  • RFID radio frequency identification
  • RF radio frequency
  • FIG. 2 shows, in one embodiment, an inductive coupling apparatus 200 of a wireless communication system, such as a radio frequency identification (RFID) communication network, which may be passive or semi-passive, for generating a varying (or modulating) impedance 205 at inductive element 203 to modify an incoming radio frequency (RF) signal such as from a reader device of the RFID network.
  • RFID radio frequency identification
  • Inductive element 203 which may be part of a tag terminal of the RFID communication network, modifies the incoming RF signal in accordance with its time-varying load, or impedance, characteristic Z L (t).
  • digital waveform 207 is applied to a single bit band-pass delta sigma ( ⁇ ) modulator 202 .
  • the output of single bit band-pass ⁇ modulator 202 is applied to control at least two states of varying impedance 205 .
  • FIG. 3 shows, in one embodiment, apparatus 300 for generating an In-Phase—Quadrature (IQ) signal ( 308 , 309 ) offset by the frequency of a digital signal source which, in one embodiment, may be Direct Digital Synthesizer (DDS) 307 .
  • the IQ signals ( 308 , 309 ) to the mixers are generated by DDS 307 .
  • a band-pass delta sigma ( ⁇ ) modulator 302 may be applied to generate a complex modulation signal.
  • the band-pass delta sigma modulator generates an output bit stream that represents the input data near the sampling frequency of the band-pass delta sigma modulator (denoted by fs) divided by 4. Above and below fs/4, quantized noise of the band-pass delta sigma increases until at some design cutoff point, the signal would be deemed to have too much quantization noise.
  • the IQ signal to the mixers may be up-converted by direct digital synthesizer (DDS) 307 , or a clock, at fs/4.
  • the up-converted output signals are then applied to band pass delta sigma modulator 302 .
  • Band-pass delta sigma ( ⁇ ) modulator 302 is applied at a sample rate fs to generate the complex modulation signal.
  • the band-pass delta sigma modulator generates an output bit stream that represents the input data from with the range of: fs/4 ⁇ BW/2 to fs/4+BW/2
  • fs represents the sampling frequency of the band-pass delta sigma modulator
  • BW represents a predefined bandwidth for which the band-pass delta sigma modulator is designed.
  • the complex IQ signal of the inductive element of the tag device will be around frf+/ ⁇ fs/4, where frf is the frequency of the reader device signal in the RFID network. Since the output bit stream is offset from the frequency of the reader device signal by fs/4, this both reduces the effect of DC offset in the reader device, and reduces the effects of the reader device's phase noise.
  • any type of complex modulation may be applied, including a Gaussian minimum shift keying (GMSK), nPSK, quadrature phase shift keying (QPSK), n-Quadrature Amplitude Modulation (nQAM), where n represents an integer, and an OFDM signal, and wherein an input signal applied to the band-pass delta sigma modulator consists of a complex modulation signal offset from the incoming radio frequency signal of the reader device by +/ ⁇ 0 , where ⁇ 0 represents the frequency offset from the incoming RF signal.
  • GMSK Gaussian minimum shift keying
  • QPSK quadrature phase shift keying
  • nQAM n-Quadrature Amplitude Modulation
  • the inductive coupling apparatus may comprise part of a tag terminal electromagnetically coupled to a reader device within an RFID network or system wherein clocking of the band-pass delta sigma modulator may be driven based on a carrier signal frequency of the reader device, frf, divided by L, where L represents a positive numerical value
  • the inductive coupling apparatus may comprise part of a tag terminal electromagnetically coupled to a reader device within an RFID network or system wherein generation of data from the IQ up-conversion modulator is driven by a clock circuit internal to the tag terminal.
  • the inductive coupling apparatus may comprise part of a tag terminal electromagnetically coupled to a reader device within an RFID network or system wherein generation of data from the IQ up-conversion modulator is driven by a clock circuit based on the carrier signal frequency of the reader device, frf, divided by M, where M represents a positive numerical value.
  • the output of the band-pass delta sigma modulator 302 may be a return to zero (RTZ), so if the data is 1101101, the output would be 10100010100010; note there is a zero between each bit.
  • the output of band-pass delta sigma modulator 302 may be a non-return to zero (NRZ) type signal; for example, if the data is 1101101, the output is 1101101, and nothing is added to the data stream.
  • NRZ non-return to zero
  • one or more filters may be in the variable impedance circuit to filter out of band noise output from band-pass delta sigma modulator 302 .
  • FIG. 4 shows, in one embodiment, apparatus for Z- ⁇ scheme 400 for generating an orthogonal frequency division multiplexing (OFDM) signal offset by the frequency of a digital signal source such as DDS 407 .
  • the input signal to the mixers is up-converted by direct digital synthesizer (DDS) 407 , or a clock, at fs/4.
  • DDS direct digital synthesizer
  • the output signals are then applied to band-pass delta sigma modulator 402 .
  • Band-pass delta sigma ( ⁇ ) modulator 402 is applied at a sampling rate fs to generate the complex modulation signal.
  • FIG. 5 shows an embodiment of an RFID communication network 500 in which data transmission from tag to reader is performed on dedicated frequency channels using the complex modulation apparatus and method for band-pass delta sigma modulation, by generating separate frequency channels 505 , 505 , 507 for each of the tags 501 a - c used for data communication in RFID communication network 500 .
  • the complex modulation method and apparatus for band-pass delta sigma modulation of the coupled impedance are herein referred to, and denoted, as “the z- ⁇ scheme”.
  • Inductive elements 503 a - c in respective ones of tag terminals 501 a - c modify the incoming RF signal, such as from reader device 502 , in accordance with a coupled impedance characteristic, Z, of inductive elements 503 a - c .
  • a variable impedance circuit (not shown in FIG. 5 ) has an output electrically connected to inductive element 503 a - c .
  • a band-pass delta sigma modulator is coupled to an input of the variable impedance circuit to digitally control the output of the variable impedance circuit, such that coupled impedance Z of inductive element 503 a - c may be adjusted by changing the output of the variable impedance circuit.
  • FIG. 6 a shows, in one embodiment, inductive coupling Z- ⁇ apparatus 600 a for generating quadrature amplitude (QAM) signals.
  • Input data bits are applied to LUT (Look Up Table) 601 to generate the I and Q signals 608 , 609 .
  • the I Q signals 608 , 609 are then up-converted to fs/4 and then applied to band-pass delta sigma modulator 502 which is sampled at fs.
  • FIG. 6 b shows, in one embodiment, 600 B process for implementing of a system generating 64QAM data.
  • the incoming IQ data at step 610 is used, at step 611 to generate the 64QAM data.
  • the data is then up-sampled at step 612 and up-converted at step 613 to fs/4.
  • a 4 th order band pass delta sigma modulator may then be applied to the signal at step 614 , modulating the coupled impedance of inductive element 603 of a tag device of an RFID system.
  • the output may then be demodulated by the reader of the RFID system and attendant output constellation diagram can be plotted for a given different level of signal-to-noise (SNR) ratio.
  • SNR signal-to-noise
  • FIG. 6 c shows a constellation diagram representation of the 64QAM system output with a signal to noise ratio of 13 dB.
  • FIG. 6 d shows a constellation diagram representation of the 64QAM system output with a signal to noise ratio of 22 dB.
  • the constellation diagrams of FIGS. 6 c and 6 d show 64QAM modulation produced by applying the Z- ⁇ scheme including the band-pass delta sigma modulator.
  • the constellation diagrams are produced by taking the output from the inductive element of the tag device, that is, what the band-pass delta sigma modulator is driving, and then passing it through a reader device.
  • the reader device performs down-conversion using the reader device's carrier signal RF frequency, digitizing the data via an analog to digital converter (ADC), then down-sampling the data and passing it through a digital filter, and finally demodulating the IQ data.
  • ADC analog to digital converter
  • the constellation plots of FIGS. 6 c and 6 d shown represents the demodulated data.
  • generation of the clocking function may be provided by a clock circuit within the tag reader, or via a clock circuit generation based on the frequency of the incoming RF signal provided by the reader device of the RFID network.
  • the clock used by the tag will be frf, or some frequency, frf/N, where N is some integer; that is frf is divided by N to generate the clocking function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Near-Field Transmission Systems (AREA)
  • Power Engineering (AREA)

Abstract

An inductive coupling apparatus for modifying an incoming radio frequency (RF) signal includes an inductive element. A variable impedance circuit includes an output electrically coupled to the inductive element. A band-pass delta sigma modulator is coupled to the variable impedance circuit and digitally controls the output of the variable impedance circuit. The incoming RF signal is modified as the coupled impedance of the inductive element is adjusted in accordance with the output of the variable impedance circuit.

Description

FIELD OF THE INVENTION
The present invention relates generally to a method and apparatus for generating dedicated data transmission channels in inductive coupled radio frequency communication networks using band-pass modulation.
BACKGROUND OF THE INVENTION
Radio Frequency Identification (RFID) systems are commonly used to locate and track items in a near-field communication network including a reader device and at least one wireless terminal, or tag. Energized time-varying electromagnetic radio frequency (RF) waves, which comprise the carrier signal, are transmitted from the reader to the tags in a given RFID network or system. Inductive coupling may be used to transfer energy from one circuit (such as a conductive antenna coil and associated circuitry) to another by means of mutual inductance between the two circuits. A voltage is induced in the tag that can be rectified and used to power the tag circuitry. RFID networks may include tags and readers which exchange information using such inductive coupling between their inductive coupling coils (or antenna coils). To enable data to be passed from the tag to the reader, the tag circuitry changes or varies the load, which is referred to herein as a coupled impedance associated with the inductive coupling coil or element. This change can be detected by the reader as a result of the mutual inductive coupling, whereby a reader-originated RF signal can be modified by the tag to transmit encoded data.
FIG. 1 a depicts a prior art RFID system in which data transmission from tags 101 a-c to reader device 103 is performed on a same frequency channel or spectrum 104. Using the established inductive coupling technology, each of the plurality of tags typically in the RFID system or network sends RF signals using the modified carrier signal. Hence, the modified RF signals from each tag overlap those of other tags within the same RF frequency spectrum associated with a given reader device in the RFID network.
As a consequence, tag collision in RFID systems occur when the multiple tags are energized by the same RFID reader device, and simultaneously modify their respective, overlapping signals back to the reader using the given frequency channel. Thus the tag collision problem is exacerbated whenever a large number of tags must be read together in the same RF field. The reader is unable to differentiate these signals when the simultaneously generated signals collide. The tag collisions confuse the reader, generate data transmission errors, and generally reduce data throughput within the RFID system or network.
Various systems have been proposed to isolate individual tags. For example, in one technique aimed at reducing collision errors, when the reader recognizes that tag collision has taken place, it sends a special “gap pulse” signal. Upon receiving this signal, each tag consults a random number counter to determine the interval to wait before sending its data. Since each tag gets a unique number interval, the tags send their data at different times. The adverse impact on overall RFID system performance, in terms of data throughput rate, however, still exists.
Modulating the signal received by the tag and inductively coupling the modulated signal to the reader device is known, using such signal modulation schemes as phase shift keying (PSK) and amplitude shift keying (ASK), where the tag changes its associated impedance by changing the impedance match between states. However, the adverse effects of tag collisions resulting from overlapping modified signals on a given frequency channel still remain when using these known signal modulation schemes.
Moreover, especially pertinent in the context of a reader device of an RFID network is the effect of the DC offset in the reader device and the effects of the reader's phase noise.
In an inductive coupled RFID system, the underlying coils are defined by their physical size and structure. It is well know that a coupling system of the two coils can replaced by an equivalent transformer. The connection between these two coils is given by the magnetic field (B) and the underlying value to describe this connection is the mutual inductance (M) and/or the coupling factor (k).
FIG. 1 b shows a prior art inductive coupled RFID system. The applicable Biot-Savart relationship is:
B = μ o i 1 4 π S s × x x 3
This allows the calculation of the magnetic field at every point as function of the current, i1, as well as the geometry. In this equation (1), u0 describes the permeability, x stands for the distance and S describes the integration-path along the coil.
Besides this, the mutual inductance and the coupling factor are given by:
M = A 2 B ( i 1 ) i 1 A 2 k = M L 1 L 2
Here A2 describes the area of the second coil, while L1 and L2 describe the inductance of the two coils. The distance between the reader-coil and transponder-coil also determines the coupling factor.
Still with reference to FIG. 1 b, the impedance as seen by the reader device is:
Z in2 M 2 [Y 1 +Y 2]
where ω is the operating frequency in rads/s, M is the mutual inductance, Y1+Y2 are the admittances within the tag device. Here, L1 and L2 are in resonance with the capacitors C1 and C2, respectively. The Y1+Y2 admittances are modulated to transfer information back to the reader. The Y1+Y2 are either modulated via amplitude (ASK) or in-phase (PSK). Y1+Y2 can also be modulated using multi-phase PSK and multi-amplitude ASK, but this poses an issue on the Q of the resonance of L1C1 and L2C2.
The admittances Y1+Y2 are modulated such that most of the data in frequency domain sits near DC. This poses a problem for the reader device since it has to distinguish the actual signal from DC offsets that may be produced by the reader itself; for example, the operating frequency of the reader leaks back into itself producing a DC, or the phase noise of the oscillator used in the reader becomes (undesirably) superimposed on the modulated signal.
SUMMARY OF THE INVENTION
Provided is an inductive coupling apparatus for modifying an incoming radio frequency (RF) signal. The inductive coupling apparatus comprises an inductive coil or element, a variable impedance circuit having an output electrically coupled to the inductive element, and at least one band-pass delta sigma (ΔΣ) modulator coupled to the variable impedance circuit and digitally controlling the output of the variable impedance circuit, wherein the incoming RF signal is modified in accordance with a coupled impedance characteristic of the inductive element being adjusted based on the output of the variable impedance circuit.
In one embodiment, an output of the at least one band-pass delta sigma modulator switches the output of the variable impedance circuit between two states to adjust the coupled impedance z.
In another embodiment, an input signal applied to the band-pass delta sigma modulator consists of one of a complex modulation signal offset from the incoming radio frequency signal by +/−ω0.
The complex modulation signal may consists of any of a GMSK, QPSK, nPSK, nQAM, and an OFDM signal.
In an embodiment of the inductive coupling apparatus, an output of the band-pass delta sigma modulator is one of a return to zero (RTZ) and a non-return to zero (NRZ) type signal.
The inductive coupling apparatus may comprise, in one embodiment, an IQ up-conversion modulator wherein the digitally controlled output is generated from an in-phase—quadrature (IQ) up-converted signal input to the band-pass delta sigma modulator.
In yet another embodiment, the input data provided to the IQ up-conversion module consists of one of a GMSK, QPSK, nPSK, nQAM, and an OFDM signal format.
The inductive coupling apparatus may comprise part of a tag terminal electromagnetically coupled to a reader device within a radio frequency identification (RFID) system wherein generation of data from the IQ up-conversion modulator is based on a clock circuit internal to the tag terminal.
In another embodiment. generation of data from the IQ up-conversion modulator is based on a clock circuit using a carrier signal frequency of the reader device, frf, divided by M, where M represents a positive numerical value.
Clocking for the IQ up-conversion modulator, in one embodiment, may based on a clock circuit internal to the tag terminal.
In another embodiment, clocking for the IQ up-conversion modulator may be based on a clock circuit using a carrier signal frequency of the reader device, frf, divided by N, where N represents a positive numerical value.
In a further embodiment of the inductive coupling apparatus, the inductive element comprises part of a tag terminal, the tag terminal electromagnetically coupled to a reader device within a radio frequency identification (RFID) system, the RFID system comprises clocking the band-pass delta sigma modulator using a clock circuit within the tag reader.
In an alternate embodiment, clocking the band-pass delta sigma modulator uses a clock circuit generated based on a frequency of the incoming RF signal divided by L, where L represents a positive numerical value.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described by way of example only with reference to the following drawings in which:
FIG. 1 a shows a prior art inductive coupled RFID system in which data transmission from tag to reader is performed on a same frequency channel;
FIG. 1 b shows a representative model of a prior art inductive coupled RFID system;
FIG. 2 shows, in one embodiment, an apparatus using band-pass modulation for generating a varying impedance coupled to the inductive element;
FIG. 3 shows, in one embodiment, an apparatus for generating an IQ signal offset by the frequency of a digital signal source such as a Direct Digital Synthesizer;
FIG. 4 shows, in one embodiment, an apparatus using band-pass modulation for generating an OFDM signal offset by the frequency of a digital signal source such as a Direct Digital Synthesizer;
FIG. 5 shows an embodiment of an RFID system in which data transmission, via inductive coupling between from tag and reader, may be performed on dedicated frequency channels using band-pass modulation;
FIG. 6 a shows, in one embodiment, an inductive coupled band-pass modulator apparatus for generating a QAM signal;
FIG. 6 b shows, in one embodiment, a process for implementing of a system generating 64QAM data using band-pass modulation;
FIG. 6 c shows a constellation diagram representation of the output of the 64QAM system apparatus of FIG. 6 a with a signal to noise ratio of 13 dB; and
FIG. 6 d shows a constellation diagram representation of the output of the 64QAM system apparatus of FIG. 6 a with a signal to noise ratio of 22 dB.
DETAILED DESCRIPTION
The term modulation as used herein refers to the process by which the radio frequency identification (RFID) wireless terminal, or tag, changes the carrier radio frequency (RF) signal of the reader inductive coupling apparatus to encode and convey information. For instance, in phase modulation, data being transmitted from the reader device to the tag is encoded in changes in the phase of the carrier wave sent out by the RFID reader device.
FIG. 2 shows, in one embodiment, an inductive coupling apparatus 200 of a wireless communication system, such as a radio frequency identification (RFID) communication network, which may be passive or semi-passive, for generating a varying (or modulating) impedance 205 at inductive element 203 to modify an incoming radio frequency (RF) signal such as from a reader device of the RFID network. Inductive element 203, which may be part of a tag terminal of the RFID communication network, modifies the incoming RF signal in accordance with its time-varying load, or impedance, characteristic ZL(t). Here digital waveform 207 is applied to a single bit band-pass delta sigma (ΔΣ) modulator 202. The output of single bit band-pass ΔΣ modulator 202 is applied to control at least two states of varying impedance 205.
FIG. 3 shows, in one embodiment, apparatus 300 for generating an In-Phase—Quadrature (IQ) signal (308, 309) offset by the frequency of a digital signal source which, in one embodiment, may be Direct Digital Synthesizer (DDS) 307. The IQ signals (308, 309) to the mixers are generated by DDS 307. A band-pass delta sigma (ΔΣ) modulator 302 may be applied to generate a complex modulation signal. As referred to herein, the band-pass delta sigma modulator generates an output bit stream that represents the input data near the sampling frequency of the band-pass delta sigma modulator (denoted by fs) divided by 4. Above and below fs/4, quantized noise of the band-pass delta sigma increases until at some design cutoff point, the signal would be deemed to have too much quantization noise.
Still with reference to FIG. 3, the IQ signal to the mixers may be up-converted by direct digital synthesizer (DDS) 307, or a clock, at fs/4. The up-converted output signals are then applied to band pass delta sigma modulator 302. Band-pass delta sigma (ΔΣ) modulator 302 is applied at a sample rate fs to generate the complex modulation signal. As referred to herein, the band-pass delta sigma modulator generates an output bit stream that represents the input data from with the range of:
fs/4−BW/2
to
fs/4+BW/2
where fs represents the sampling frequency of the band-pass delta sigma modulator, and BW represents a predefined bandwidth for which the band-pass delta sigma modulator is designed. The complex IQ signal of the inductive element of the tag device will be around frf+/−fs/4, where frf is the frequency of the reader device signal in the RFID network. Since the output bit stream is offset from the frequency of the reader device signal by fs/4, this both reduces the effect of DC offset in the reader device, and reduces the effects of the reader device's phase noise.
In this fashion, any type of complex modulation may be applied, including a Gaussian minimum shift keying (GMSK), nPSK, quadrature phase shift keying (QPSK), n-Quadrature Amplitude Modulation (nQAM), where n represents an integer, and an OFDM signal, and wherein an input signal applied to the band-pass delta sigma modulator consists of a complex modulation signal offset from the incoming radio frequency signal of the reader device by +/−ω0, where ω0 represents the frequency offset from the incoming RF signal.
In an embodiment, the inductive coupling apparatus may comprise part of a tag terminal electromagnetically coupled to a reader device within an RFID network or system wherein clocking of the band-pass delta sigma modulator may be driven based on a carrier signal frequency of the reader device, frf, divided by L, where L represents a positive numerical value
In a further embodiment, the inductive coupling apparatus may comprise part of a tag terminal electromagnetically coupled to a reader device within an RFID network or system wherein generation of data from the IQ up-conversion modulator is driven by a clock circuit internal to the tag terminal.
Alternatively, the inductive coupling apparatus may comprise part of a tag terminal electromagnetically coupled to a reader device within an RFID network or system wherein generation of data from the IQ up-conversion modulator is driven by a clock circuit based on the carrier signal frequency of the reader device, frf, divided by M, where M represents a positive numerical value.
In one embodiment, the output of the band-pass delta sigma modulator 302 may be a return to zero (RTZ), so if the data is 1101101, the output would be 10100010100010; note there is a zero between each bit. In an alternate embodiment, the output of band-pass delta sigma modulator 302 may be a non-return to zero (NRZ) type signal; for example, if the data is 1101101, the output is 1101101, and nothing is added to the data stream.
In an embodiment, one or more filters may be in the variable impedance circuit to filter out of band noise output from band-pass delta sigma modulator 302.
FIG. 4 shows, in one embodiment, apparatus for Z-ΔΣ scheme 400 for generating an orthogonal frequency division multiplexing (OFDM) signal offset by the frequency of a digital signal source such as DDS 407. The input signal to the mixers is up-converted by direct digital synthesizer (DDS) 407, or a clock, at fs/4. The output signals are then applied to band-pass delta sigma modulator 402. Band-pass delta sigma (ΔΣ) modulator 402 is applied at a sampling rate fs to generate the complex modulation signal.
FIG. 5 shows an embodiment of an RFID communication network 500 in which data transmission from tag to reader is performed on dedicated frequency channels using the complex modulation apparatus and method for band-pass delta sigma modulation, by generating separate frequency channels 505, 505, 507 for each of the tags 501 a-c used for data communication in RFID communication network 500. The complex modulation method and apparatus for band-pass delta sigma modulation of the coupled impedance are herein referred to, and denoted, as “the z-ΔΣ scheme”. Inductive elements 503 a-c in respective ones of tag terminals 501 a-c modify the incoming RF signal, such as from reader device 502, in accordance with a coupled impedance characteristic, Z, of inductive elements 503 a-c. A variable impedance circuit (not shown in FIG. 5) has an output electrically connected to inductive element 503 a-c. A band-pass delta sigma modulator is coupled to an input of the variable impedance circuit to digitally control the output of the variable impedance circuit, such that coupled impedance Z of inductive element 503 a-c may be adjusted by changing the output of the variable impedance circuit.
FIG. 6 a shows, in one embodiment, inductive coupling Z-ΔΣ apparatus 600 a for generating quadrature amplitude (QAM) signals. Input data bits are applied to LUT (Look Up Table) 601 to generate the I and Q signals 608, 609. The I Q signals 608,609 are then up-converted to fs/4 and then applied to band-pass delta sigma modulator 502 which is sampled at fs.
FIG. 6 b shows, in one embodiment, 600B process for implementing of a system generating 64QAM data. The incoming IQ data at step 610 is used, at step 611 to generate the 64QAM data. The data is then up-sampled at step 612 and up-converted at step 613 to fs/4. A 4th order band pass delta sigma modulator may then be applied to the signal at step 614, modulating the coupled impedance of inductive element 603 of a tag device of an RFID system. The output may then be demodulated by the reader of the RFID system and attendant output constellation diagram can be plotted for a given different level of signal-to-noise (SNR) ratio.
FIG. 6 c shows a constellation diagram representation of the 64QAM system output with a signal to noise ratio of 13 dB.
FIG. 6 d shows a constellation diagram representation of the 64QAM system output with a signal to noise ratio of 22 dB.
The constellation diagrams of FIGS. 6 c and 6 d show 64QAM modulation produced by applying the Z-ΔΣ scheme including the band-pass delta sigma modulator. The constellation diagrams are produced by taking the output from the inductive element of the tag device, that is, what the band-pass delta sigma modulator is driving, and then passing it through a reader device. The reader device performs down-conversion using the reader device's carrier signal RF frequency, digitizing the data via an analog to digital converter (ADC), then down-sampling the data and passing it through a digital filter, and finally demodulating the IQ data. The constellation plots of FIGS. 6 c and 6 d shown represents the demodulated data.
With regard to the clocking function utilized by the wireless tag terminal, such as for driving the band-pass delta sigma modulator, generation of the clocking function may be provided by a clock circuit within the tag reader, or via a clock circuit generation based on the frequency of the incoming RF signal provided by the reader device of the RFID network.
For example, in the instance of using the signal from the reader to enable the clocking function, if the reader is at frf, the clock used by the tag will be frf, or some frequency, frf/N, where N is some integer; that is frf is divided by N to generate the clocking function.
Although preferred embodiments of the invention have been described herein with regard to passive and semi-passive RFID communication networks, it is contemplated, and indeed it will be understood by those skilled in the art, that the solutions presented herein may be applied to other aspects of wireless communication. Accordingly, a person of ordinary skill in the art would understand that the specific embodiments described herein, while illustrative are not necessarily comprehensive. Thus, other various modifications may be made those skilled in the art without departing from the scope of the invention as defined by the claims.

Claims (16)

What is claimed is:
1. An inductive coupling apparatus for modifying an incoming radio frequency (RF) signal comprising:
an inductive element;
a variable impedance circuit having an output electrically coupled to the inductive element; and
at least one band-pass delta sigma (ΔΣ) modulator coupled to the variable impedance circuit and digitally controlling the output of the variable impedance circuit;
wherein the incoming RF signal is modified as the coupled impedance (Z) of the inductive element is adjusted in accordance with the output of the variable impedance circuit.
2. The inductive coupling apparatus of claim 1 wherein an output of the at least one band-pass delta sigma modulator switches the output of the variable impedance circuit between at least two states to adjust the coupled impedance.
3. The inductive coupling apparatus of claim 1 wherein an input signal applied to the band-pass delta sigma modulator comprises a complex modulation signal offset from the incoming radio frequency signal by +/−ωo.
4. The inductive coupling apparatus of claim 3 wherein the complex modulation signal consists of one of a GMSK, QPSK, nPSK, nQAM, and an OFDM signal.
5. The inductive coupling apparatus of claim 1 wherein an output of the band-pass delta sigma modulator is one of a return to zero (RTZ) and a non-return to zero (NRZ) type signal.
6. The inductive coupling apparatus of claim 1 comprising an IQ up-conversion modulator wherein the digitally controlled output is generated from an in-phase-quadrature (IQ) up-converted signal input to the band-pass delta sigma modulator.
7. The inductive coupling apparatus of claim 6 wherein the IQ up-conversion modulator up converts data around fs divided by 4, where fs is the sampling frequency of the band-pass delta sigma modulator.
8. The inductive coupling apparatus of claim 6 wherein input data provided to the IQ up-conversion module consists of one of a GMSK, QPSK, nPSK, nQAM, and an OFDM signal format.
9. The inductive coupling apparatus of claim 1 further comprising at least one filter device at the variable impedance circuit to filter out of band noise output from the band-pass delta sigma modulator.
10. The inductive coupling apparatus of claim 6, the inductive coupling apparatus comprising part of a tag terminal electromagnetically coupled to a reader device within a radio frequency identification (RFID) system wherein generation of data from the IQ up-conversion modulator is based on a clock circuit internal to the tag terminal.
11. The inductive coupling apparatus of claim 6, the inductive coupling apparatus comprising part of a tag terminal electromagnetically coupled to a reader device within a radio frequency identification (RFID) system, the reader device providing the incoming RF signal at a carrier signal frequency, wherein generation of data from the IQ up-conversion modulator is based on a clock circuit using the carrier signal frequency, frf, divided by M, where M represents a positive numerical value.
12. The inductive coupling apparatus of claim 6, the inductive coupling apparatus comprising part of a tag terminal electromagnetically coupled to a reader device within a radio frequency identification (RFID) system wherein clocking for the IQ up-conversion modulator is based on a clock circuit internal to the tag terminal.
13. The inductive coupling apparatus of claim 6, the inductive coupling apparatus comprising part of a tag terminal electromagnetically coupled to a reader device within a radio frequency identification (RFID) system, the reader device providing the incoming RF signal at a carrier signal frequency, wherein clocking for the IQ up-conversion modulator is based on a clock circuit using the carrier signal frequency, frf, divided by N, where N represents a positive numerical value.
14. The inductive coupling apparatus of claim 1 wherein the inductive element comprises part of a tag terminal, the tag terminal electromagnetically coupled to a reader device within a radio frequency identification (RFID) system, the RFID system comprising clocking the band-pass delta sigma modulator using a clock circuit within the tag reader.
15. The inductive coupling apparatus of claim 1 wherein the inductive element comprises part of a tag terminal, the tag terminal electromagnetically coupled to a reader device within a radio frequency identification (RFID) system, the reader device providing the incoming RF signal at a carrier signal frequency, the RFID system comprising clocking the band-pass delta sigma modulator using a clock circuit generated based on the carrier signal frequency divided by L, where L represents a positive numerical value.
16. The inductive coupling apparatus of claim 1 wherein the inductive element comprises part of a tag terminal, the tag terminal electromagnetically coupled to a reader device within a radio frequency identification (RFID) system, the reader device providing the incoming RF signal at a carrier signal frequency, wherein the reader device performs down-conversion on the modified RF signal using the carrier signal frequency, digitizing the IQ data via an analog to digital converter (ADC), down-sampling the digitized IQ data, digitally filtering the digitized IQ data, then demodulating the digitally filtered IQ data.
US13/482,083 2012-05-29 2012-05-29 Method and apparatus for generating dedicated data channels in inductive coupled RFID systems using band-pass modulation Active 2032-12-27 US9014625B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/482,083 US9014625B2 (en) 2012-05-29 2012-05-29 Method and apparatus for generating dedicated data channels in inductive coupled RFID systems using band-pass modulation
PCT/CA2012/000569 WO2013177659A1 (en) 2012-05-29 2012-06-11 Method and apparatus for generating dedicated data channels in inductive coupled rfid systems using band-pass modulation
KR1020147030542A KR101619687B1 (en) 2012-05-29 2012-06-11 Method and apparatus for generating dedicated data channels in inductive coupled rfid systems using band-pass modulation
CN201280073516.8A CN104335494B (en) 2012-05-29 2012-06-11 For the method and device for producing dedicated data channel in the RFID system using the inductive of bandpass modulation
JP2015510584A JP6010689B2 (en) 2012-05-29 2012-06-11 Method and apparatus for generating a dedicated data channel in an inductively coupled RFID system using bandpass modulation
EP12877871.9A EP2856657B1 (en) 2012-05-29 2012-06-11 Method and apparatus for generating dedicated data channels in inductive coupled rfid systems using band-pass modulation
CN201710137966.3A CN107103351B (en) 2012-05-29 2012-06-11 Method and apparatus for generating dedicated data channels in inductively coupled RFID systems employing bandpass modulation
IN9474DEN2014 IN2014DN09474A (en) 2012-05-29 2014-11-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/482,083 US9014625B2 (en) 2012-05-29 2012-05-29 Method and apparatus for generating dedicated data channels in inductive coupled RFID systems using band-pass modulation

Publications (2)

Publication Number Publication Date
US20130324033A1 US20130324033A1 (en) 2013-12-05
US9014625B2 true US9014625B2 (en) 2015-04-21

Family

ID=49670800

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/482,083 Active 2032-12-27 US9014625B2 (en) 2012-05-29 2012-05-29 Method and apparatus for generating dedicated data channels in inductive coupled RFID systems using band-pass modulation

Country Status (7)

Country Link
US (1) US9014625B2 (en)
EP (1) EP2856657B1 (en)
JP (1) JP6010689B2 (en)
KR (1) KR101619687B1 (en)
CN (2) CN107103351B (en)
IN (1) IN2014DN09474A (en)
WO (1) WO2013177659A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201702265SA (en) 2014-09-22 2017-04-27 Drnc Holdings Inc Transmission apparatus for a wireless device using delta-sigma modulation
JP6454596B2 (en) * 2015-05-13 2019-01-16 株式会社日立製作所 transceiver

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523726A (en) * 1994-10-13 1996-06-04 Westinghouse Electric Corporation Digital quadriphase-shift keying modulator
US20080246667A1 (en) * 2005-03-11 2008-10-09 Innovision Research & Technology Plc Near Field Communications, Nfc, Communicators and Nfc Communications Enabled Devices
US20100052869A1 (en) * 2008-09-04 2010-03-04 Robert Stewart Combination full-duplex and half-duplex electronic identification tag
US8384519B2 (en) * 2003-07-22 2013-02-26 Nokia Corporation Reader device for radio frequency identification transponder with transponder functionality
US8548087B2 (en) * 2004-04-14 2013-10-01 Broadcom Corporation Long training sequence for MIMO WLAN systems

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3205875C2 (en) * 1982-02-18 1984-03-08 Siemens AG, 1000 Berlin und 8000 München Adjustable equalizer circuit
JP3419484B2 (en) * 1992-03-30 2003-06-23 株式会社東芝 Modulator, transmitter
JP3650317B2 (en) * 2000-08-23 2005-05-18 日本電信電話株式会社 Electromagnetic field receiver
US7986234B2 (en) * 2003-08-11 2011-07-26 Sony Corporation Wireless communication system and wireless communication apparatus
JP4355711B2 (en) * 2006-04-20 2009-11-04 フェリカネットワークス株式会社 Information processing terminal, IC card, portable communication device, wireless communication method, and program
JP5031847B2 (en) * 2006-12-22 2012-09-26 イセラ・カナダ・ユーエルシー Digital linear transmitter architecture
JP4930093B2 (en) * 2007-02-21 2012-05-09 セイコーエプソン株式会社 Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment
JP2009130389A (en) * 2007-11-19 2009-06-11 Felica Networks Inc Communication apparatus, tuning frequency adjustment method and program
US8344921B2 (en) 2010-11-04 2013-01-01 Mediatek Inc. Sigma-delta modulator with SAR ADC and truncater having order lower than order of integrator and related sigma-delta modulation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523726A (en) * 1994-10-13 1996-06-04 Westinghouse Electric Corporation Digital quadriphase-shift keying modulator
US8384519B2 (en) * 2003-07-22 2013-02-26 Nokia Corporation Reader device for radio frequency identification transponder with transponder functionality
US8548087B2 (en) * 2004-04-14 2013-10-01 Broadcom Corporation Long training sequence for MIMO WLAN systems
US20080246667A1 (en) * 2005-03-11 2008-10-09 Innovision Research & Technology Plc Near Field Communications, Nfc, Communicators and Nfc Communications Enabled Devices
US20100052869A1 (en) * 2008-09-04 2010-03-04 Robert Stewart Combination full-duplex and half-duplex electronic identification tag

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
International Search Report and Written Opinion, Mailed Feb. 18, 2013, for Corresponding PCT International Patent Application No. PCT/CA2012/000569.
Sommarek, et al., "A Digital Modulator with Bandpass Delta-Sigma Modulator", Sold-State Circuits Conference, 2004, ESSCIRC 2004, Proceedings of the 30th European, pp. 159-162, Sep. 21-23, 2004. *

Also Published As

Publication number Publication date
EP2856657A1 (en) 2015-04-08
IN2014DN09474A (en) 2015-07-17
JP6010689B2 (en) 2016-10-19
JP2015517755A (en) 2015-06-22
CN107103351A (en) 2017-08-29
CN107103351B (en) 2020-05-01
EP2856657A4 (en) 2016-01-27
US20130324033A1 (en) 2013-12-05
KR101619687B1 (en) 2016-05-10
CN104335494A (en) 2015-02-04
EP2856657B1 (en) 2019-04-17
CN104335494B (en) 2017-03-29
KR20150005943A (en) 2015-01-15
WO2013177659A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
US9349029B2 (en) Transmission apparatus for a wireless device
KR101786417B1 (en) Apparatus for generating dedicated data channels in backscatter rfid system using band-pass delta sygma modulator
US10419254B2 (en) Transmission apparatus for a wireless device using delta-sigma modulation
US9178731B2 (en) Transmission apparatus for a wireless device using delta-sigma modulation
EP2856658B1 (en) Apparatus for generating dedicated data channels in inductive coupled rfid
US9014625B2 (en) Method and apparatus for generating dedicated data channels in inductive coupled RFID systems using band-pass modulation
CN113556152B (en) Circuit and communication method for near field communication
WO2014192569A1 (en) Communication device, communication system, and communication method

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAG-COMM INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MANKU, TAJINDER;REEL/FRAME:028278/0969

Effective date: 20120528

AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:TAG-COMM INC.;REEL/FRAME:030936/0561

Effective date: 20130515

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: TAG-COMM INC., CANADA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:QUALCOMM INCORPORATED;REEL/FRAME:039482/0790

Effective date: 20160402

AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TAG-COMM INC.;REEL/FRAME:039502/0761

Effective date: 20160402

AS Assignment

Owner name: DRNC HOLDINGS, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAG-COMM INC.;REEL/FRAME:040182/0057

Effective date: 20160812

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8