US8871057B2 - Process for the production of nano-fibrillar cellulose suspensions - Google Patents

Process for the production of nano-fibrillar cellulose suspensions Download PDF

Info

Publication number
US8871057B2
US8871057B2 US13/138,647 US201013138647A US8871057B2 US 8871057 B2 US8871057 B2 US 8871057B2 US 201013138647 A US201013138647 A US 201013138647A US 8871057 B2 US8871057 B2 US 8871057B2
Authority
US
United States
Prior art keywords
process according
filler
fibres
suspension
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/138,647
Other versions
US20120094953A1 (en
Inventor
Patrick A. C. Gane
Joachim Schoelkopf
Daniel Gantenbein
Michel Schenker
Michael Pohl
Beat Kübler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FiberLean Technologies Ltd
Original Assignee
Omya International AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40718712&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US8871057(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US13/138,647 priority Critical patent/US8871057B2/en
Application filed by Omya International AG filed Critical Omya International AG
Assigned to OMYA DEVELOPMENT AG reassignment OMYA DEVELOPMENT AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUBLER, BEAT, GANE, PATRICK A, SCHENKER, MICHEL, POHL, MICHAEL, GANTENBEIN, DANIEL, SCHOELKOPF, JOACHIM
Publication of US20120094953A1 publication Critical patent/US20120094953A1/en
Assigned to OMYA INTERNATIONAL AG reassignment OMYA INTERNATIONAL AG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: OMYA DEVELOPMENT AG
Publication of US8871057B2 publication Critical patent/US8871057B2/en
Application granted granted Critical
Assigned to FIBERLEAN TECHNOLOGIES LIMITED reassignment FIBERLEAN TECHNOLOGIES LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FIBERLEANTM TECHNOLOGIES LIMITED
Assigned to OMYA-HOLDING AG reassignment OMYA-HOLDING AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OMYA INTERNATIONAL AG
Assigned to FIBERLEANTM TECHNOLOGIES LIMITED reassignment FIBERLEANTM TECHNOLOGIES LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OMYA-HOLDING AG
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/14Disintegrating in mills
    • D21B1/16Disintegrating in mills in the presence of chemical agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • D21H15/04Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration crimped, kinked, curled or twisted fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Definitions

  • the present invention relates to a process for producing nano-fibrillar cellulose suspensions and the nano-fibrillar cellulose obtained by this process.
  • Cellulose is the structural component of the primary cell wall of green plants and is the most common organic compound on Earth. It is of high interest in many applications and industries.
  • Cellulose is the major constituent of paper and cardboard and of textiles made from cotton, linen, and other plant fibres. Cellulose can be converted into cellophane, a thin transparent film, and into rayon, an important fibre that has been used for textiles since the beginning of the 20th century. Both cellophane and rayon are known as “regenerated cellulose fibres”.
  • Cellulose fibres are also used in liquid filtration, to create a filter bed of inert material. Cellulose is further used to make hydrophilic and highly absorbent sponges.
  • cellulose is mainly obtained from wood pulp and cotton. It is mainly used to produce cardboard and paper; and to a smaller extent it is converted into a wide variety of derivative products.
  • Pulp fibres are built up mainly from cellulose and other organic components (hemicellulose and lignin).
  • the cellulose macromolecules (composed of 1-4 glycosidic linked ⁇ -D-Glucose molecules) are linked together by hydrogen bonds to form a so called primary fibril (micelle) which has crystalline and amorphous domains.
  • Several primary fibrils (around 55) form a so called microfibril. Around 250 of these microfibrils form a fibril.
  • the fibrils are arranged in different layers (which can contain lignin and/or hemicellulose) to form a fibre.
  • the individual fibres are bound together by lignin as well.
  • the pulps used in papermaking are often obtained by grinding the wood and an optional processing by heat and chemistry to remove undesired compounds from the cellulosic fibres.
  • the fibres are ground and cut to a certain fineness (depending on the desired properties).
  • the grinding of the fibres is achieved with a refiner (such as a conic rotor-stator mill or disc- or double-disc refiners).
  • the refiner also fibrillates the fibres on the surface which means that some fibrils are partially pulled out of the surface of the fibre. This leads to a better retention of, and, frequently, a better adhesion to, pigments which may be added in paper production, and also to an enhanced potential of hydrogen bonding between the fibres of the paper. This results in improved mechanical properties.
  • a side-effect is also that the paper becomes denser and more transparent because of a loss of light scattering as the size of the scattering centres moves away from the accepted optimum of half the wave length of light (glassine and greaseproof papers).
  • micro fibrillation When fibres become refined under applied energy they become fibrillated as the cell walls are broken and torn into attached strips, i.e. into fibrils. If this breakage is continued to separate the fibrils from the body of the fibre, it releases the fibrils. The breakdown of fibres into microfibrils is referred to as “micro fibrillation”. This process may be continued until there are no fibres left and only fibrils of nano size (thickness) remain.
  • the breakdown to primary fibrils may be referred to as “nano-fibrillation”, where there may be a smooth transition between the two regimes.
  • a process for preparing microfibrillated cellulose comprising passing a liquid suspension of fibrous cellulose through a high pressure homogenizer having a small diameter orifice in which the suspension is subjected to a pressure drop of at least 3000 psi and a high velocity shearing action followed by a high velocity decelerating impact against a solid surface, repeating the passage of said suspension through the orifice until said cellulose suspension becomes a substantially stable suspension, said process converting said cellulose into microfibrillated cellulose without substantial chemical change of the cellulose starting material.
  • U.S. Pat. No. 6,183,596 B1 discloses a process for producing super microfibrillated cellulose by passing a slurry of a previously beaten pulp through a rubbing apparatus having two or more grinders which are arranged so that they can be rubbed together to microfibrillate the pulp to obtain microfibrillated cellulose and further super microfibrillate the obtained microfibrillated cellulose with a high-pressure homogenizer to obtain the super microfibrillated cellulose.
  • ultra-fine friction grinders can be used, wherein the grinder reduces the fibres into fines by mechanical shearing (cf. e.g. U.S. Pat. No. 6,214,163 B1).
  • the mechanical production of nano-fibrillar cellulose often has the problem of an increasing viscosity during the fibrillation process. This can stop the process completely or increase the needed specific energy.
  • Nano-fibrillar cellulose in the context of the present invention means fibres, which are at least partially broken down to primary fibrils.
  • fibrillating in the context of the present invention means any process which predominantly breaks down the fibres and fibrils along their long axis resulting in the decrease of the diameter of the fibres and fibrils, respectively.
  • Cellulose fibres which can be used in the process of the present invention may be such contained in pulps selected from the group comprising eucalyptus pulp, spruce pulp, pine pulp, beech pulp, hemp pulp, cotton pulp, and mixtures thereof.
  • pulps selected from the group comprising eucalyptus pulp, spruce pulp, pine pulp, beech pulp, hemp pulp, cotton pulp, and mixtures thereof.
  • the use of kraft pulp, especially bleached long fibre kraft pulp may be especially preferred.
  • all or part of this cellulose fibre may be issued from a step of recycling a material comprising cellulose fibres.
  • the pulp may also be recycled pulp.
  • the size of the cellulose fibres in principle is not critical.
  • Useful in the present invention generally are any fibres commercially available and processable in the device used for their fibrillation.
  • cellulose fibres may have a length of from 50 mm to 0.1 ⁇ m.
  • Such fibres, as well as such having a length of preferably 20 mm to 0.5 ⁇ m, more preferably from 10 mm to 1 mm, and typically from 2 to 5 mm, can be advantageously used in the present invention, wherein also longer and shorter fibres may be useful.
  • the cellulose fibres are provided in the form of a suspension, especially an aqueous suspension.
  • a suspension especially an aqueous suspension.
  • such suspensions have a solids content of from 0.2 to 35 wt-%, more preferably 0.25 to 10 wt-%, especially 1 to 5 wt-%, and most preferably 2 to 4.5 wt-%, e.g. 1.3 wt-% or 3.5 wt-%.
  • the at least one filler and/or pigment is selected from the group comprising precipitated calcium carbonate (PCC); natural ground calcium carbonate (GCC); dolomite; talc; bentonite; clay; magnesite; satin white; sepiolite, huntite, diatomite; silicates; and mixtures thereof.
  • PCC precipitated calcium carbonate
  • GCC natural ground calcium carbonate
  • Precipitated calcium carbonate which may have vateritic, calcitic or aragonitic crystal structure, and/or natural ground calcium carbonate, which may be selected from marble, limestone and/or chalk, are especially preferred.
  • ultrafine discrete prismatic, scalenohedral or rhombohedral precipitated calcium carbonate may be advantageous.
  • the fillers and/or pigments can be provided in the form of a powder, although they are preferably added in the form of a suspension, such as an aqueous suspension.
  • a suspension such as an aqueous suspension.
  • the solids content of the suspension is not critical as long as it is a pumpable liquid.
  • the filler and/or pigment particles have a median particle size of from 0.5 to 15 ⁇ m, preferably 0.7 to 10 ⁇ m, more preferably 1 to 5 ⁇ m and most preferably 1.1 to 2 ⁇ m.
  • the filler and/or pigment particles have a median particle size of from 0.03 to 15 ⁇ m, preferably 0.1 to 10 ⁇ m, more preferably 0.2 to 5 ⁇ m and most preferably 0.2 to 4 ⁇ m, e.g. 1.5 ⁇ m or 3.2 ⁇ m.
  • d 50 For the determination of the weight median particle size, d 50 , for particles having a d 50 greater than 0.5 ⁇ m, a Sedigraph 5100 device from the company Micromeritics, USA was used. The measurement was performed in an aqueous solution of 0.1 wt-% Na 4 P 2 O 7 . The samples were dispersed using a high-speed stirrer and ultrasound. For the determination of the volume median particle size for particles having a d 50 ⁇ 500, a Malvern Zetasizer Nano ZS from the company Malvern, UK was used. The measurement was performed in an aqueous solution of 0.1 wt % Na 4 P 2 O 7 . The samples were dispersed using a high-speed stirrer and ultrasound.
  • the fillers and/or pigments may be associated with dispersing agents such as those selected from the group comprising homopolymers or copolymers of polycarboxylic acids and/or their salts or derivatives such as esters based on, e.g. acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, e.g. acryl amide or acrylic esters such as methylmethacrylate, or mixtures thereof; alkali polyphosphates, phosphonic-, citric- and tartaric acids and the salts or esters thereof; or mixtures thereof.
  • dispersing agents such as those selected from the group comprising homopolymers or copolymers of polycarboxylic acids and/or their salts or derivatives such as esters based on, e.g. acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, e.g. acryl amide or acrylic esters such as methylmethacrylate, or mixtures thereof; al
  • the combination of fibres and at least one filler and/or pigment can be carried out by adding the filler and/or pigment to the fibres in one or several steps.
  • the fibres can be added to the filler and/or pigment in one or several steps.
  • the filler and/or pigment as well as the fibres can be added entirely or in portions before or during the fibrillating step. However, the addition before fibrillating is preferred.
  • the size of the fillers and/or pigments as well as the size of the fibres can change.
  • the pH of the combination of cellulose fibres and at least one filler and/or pigment is adjusted to a pH of 10 to 12, e.g. 11.
  • This adjustment to alkaline pH can be done via addition of preferably milk of lime (Ca(OH) 2 ) or any other base. After co-processing, the pH in the suspension might then have to be adjusted again to about 7.5 to 9.5, e.g. 8.5.
  • the pH of the suspension comprising the combination of fibres and pigment and/or filler should not be less than 6.
  • the pH may be re-adjusted by commonly used acids or buffers in order to avoid the drop of the Schopper Riegler degree due to the influence of a pH increase.
  • the combination is stored for 2 to 12 hours, preferably 3 to 10 hours, more preferably 4 to 8 hours, e.g. 6 hours, prior to fibrillating it, as this ideally results in swelling of the fibres facilitating the fibrillation and thus leads to a faster increase of freeness (°SR) and lower specific refining energy consumption for the same °SR freeness.
  • Fibre swelling may be facilitated by storage at increased pH, as well as by addition of cellulose solvents like, e.g. copper(II)ethylenediamine, iron-sodium-tartrate or lithium-chlotine/dimethylacetamine, or by any other method known in the art.
  • cellulose solvents e.g. copper(II)ethylenediamine, iron-sodium-tartrate or lithium-chlotine/dimethylacetamine, or by any other method known in the art.
  • the weight ratio of fibres to fillers and/or pigments on a dry weight basis is from 1:10 to 10:1, more preferably 1:6 to 6:1, typically 1:4 to 4:1, especially 1:3 to 3:1, and most preferably 1:2 to 2:1, e.g. 1:1.
  • 70 wt-% of bleached longfibre kraft pulp is fibrillated in the presence 30 wt-% ultrafine discrete prismatic (or rhombohedral) PCC, relating to the total dry weight of pulp and PCC, respectively.
  • cellulose fibrillation is the increase of the Schopper Riegler degree (°SR).
  • the Schopper-Riegler degree is a measure of the rate at which a diluted pulp suspension may be de-watered and is specified according to the Zellcheming Merkblatt V17/61 and standardized in ISO 5267/1.
  • the value is determined by smoothly dispersing the pulp in water and putting it into a drainage chamber where a sealing cone is closed.
  • the sealing cone is lifted pneumatically from the drainage chamber, and, depending on the condition of the fibre suspension, the water flows more or less quickly from the drainage chamber through a side outlet into a measuring cylinder.
  • the water is measured in the cylinder, wherein 10 ml water correspond to 1°SR, and the higher the Schopper-Riegler value, the finer the fibres.
  • the combination is fibrillated until the Schopper Riegler degree is increased by ⁇ 4°SR, particularly ⁇ 6°SR, more preferably ⁇ 8°SR, most preferably ⁇ 10°SR, especially ⁇ 15°SR.
  • the combination of fibres and filler and/or pigment is fibrillated until a final Schopper-Riegler degree of the resulting suspension of ⁇ 30°SR, preferably ⁇ 45°SR, more preferably ⁇ 50 °SR, particularly ⁇ 60°SR, e.g. ⁇ 70°SR, especially ⁇ 80°SR is reached.
  • the final Schopper Riegler degree is ⁇ 95 °SR.
  • the starting Schopper-Riegler degree may be from about 5 to about 90°SR, preferably it is ⁇ 10°SR, preferably ⁇ 25°SR, more preferably ⁇ 40°SR, e.g. ⁇ 60 or ⁇ 75°SR. It may also be greater than 80°SR, if the ⁇ °SR resulting by the fibrillating step is ⁇ 4°SR.
  • the fibre suspension is usually processed by subjecting it to several passages through the fibrillation device.
  • the change in Schopper Riegler degree per passage is higher for the process of the present invention than for fibre suspensions fibrillated in the absence of pigment and/or filler, until no further essential increase can be observed in both cases.
  • Fibrillating is carried out by means of any device useful therefore, as mentioned above.
  • the device is selected from the group comprising ultra-fine friction grinders such as a Super Mass Colloider, refiners, and homogenizers.
  • the temperature of the suspension in the homogenizer is preferably above 60° C., more preferably above 80° C. and even more preferably above 90° C.
  • Another aspect of the present invention is the suspension of nano-fibrillar cellulose obtained by the processes according to the invention.
  • an aspect of the invention is the advantageous use of the suspension of nano-fibrillar cellulose obtained by the processes according to the invention in paper manufacturing and/or paper finishing.
  • nano-fibrillar cellulose suspensions according to the present invention can improve paper strength and may allow for an increase in filler load in uncoated freesheet papers.
  • nano-fibrillar cellulose Due to their mechanical strength properties the nano-fibrillar cellulose however is also advantageously used in applications such as in material composites, plastics, paints, rubber, concrete, ceramics, adhesives, food, or in wound-healing applications.
  • the figures described below and the examples and experiments serve to illustrate the present invention and should not restrict it in any way.
  • FIG. 1 shows the °SR/passage for pulp suspensions fibrillated with and without different natural ground calcium carbonates.
  • FIG. 2 shows the °SR/passage for pulp suspensions fibrillated with different fillers/pigments.
  • FIG. 3 shows the °SR/running time for pulp suspensions ground in a ball mill with and without natural ground calcium carbonate.
  • FIG. 4 shows the °SR/running time for pulp suspensions ground with and without natural ground calcium carbonate added before or after fibrillation.
  • eucalyptus pulp with a °SR of 25 was treated first in an ultra-fine friction grinder at 4 wt-% solids content with and without the addition of GCC.
  • a similar experiment was run on an homogenizer with eucalyptus pulp at 1.5 wt-% solids content with and without GCC.
  • eucalyptus pulp in the form of dry mats 500 g per mat (700 ⁇ 1 000 ⁇ 1.5 mm) was used. 170 g pulp thereof was torn into pieces of 40 ⁇ 40 mm. 3 830 g tap water was added. The suspension was stirred in a 10 dm 3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspension was stirred for at least 15 minutes at 2000 rpm.
  • the suspension was then fibrillated with an ultra-fine friction grinder (Supermasscolloider from Masuko Sangyo Co. Ltd, Japan (Model MKCA 6-2)).
  • the grinding stones were silicon carbide with a grit class of 46 (grit size 297-420 ⁇ m).
  • the gap between the grinding stones was chosen to be the dynamic 0-point as described in the manual delivered by the supplier.
  • the speed of the rotating grinder was adjusted to be 1200 rpm.
  • the suspension was recirculated several times and samples were taken.
  • the Schopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1.
  • eucalyptus pulp in the form of dry mats of 500 g per mat (700 ⁇ 1 000 ⁇ 1.5 mm) was used. 170 g pulp thereof was torn into pieces of 40 ⁇ 40 mm. 160 g Omyacarb 1-AV was added. 3 830 g tap water was added. The suspension was stirred in a 10 dm 3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspension was stirred for at least 15 minutes at 2000 rpm. The suspension had a pH of about 7.5.
  • the suspension was then fibrillated with an ultra-fine friction grinder (Supermasscolloider from Masuko Sangyo Co. Ltd, Japan (Model MKCA 6-2)).
  • the grinding stones were silicon carbide with a grit class of 46 (grit size 297-420 ⁇ m).
  • the gap between the grinding stones was chosen to be the dynamic 0-point as described in the manual delivered by the supplier.
  • the speed of the rotating grinder was adjusted to be 1200 rpm.
  • the suspension was recirculated several times and samples were taken.
  • the Schopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1. The additional filler was not considered for the requested 2 g/l pulp consistency for the measurement.
  • eucalyptus pulp in the form of dry mats of 500 g per mat (700 ⁇ 1 000 ⁇ 1.5 mm) was used. 170 g pulp thereof was torn into pieces of 40 ⁇ 40 mm. 160 g Omyacarb 10-AV was added. 3 830 g tap water was added. The suspension was stirred in a 10 dm 3 bucket at 2 000 rpm using a dissolver disk with a diameter of 70 mm. The suspension was stirred for at least 15 minutes at 2 000 rpm. The suspension had a pH of about 7.2.
  • the suspension was then fibrillated with an ultra-fine friction grinder (Supermasscolloider from Masuko Sangyo Co. Ltd, Japan (Model MKCA 6-2)).
  • the grinding stones were silicon carbide with a grit class of 46 (grit size 297-420 ⁇ m).
  • the gap between the grinding stones was chosen to be the dynamic 0-point as described in the manual delivered by the supplier.
  • the speed of the rotating grinder was adjusted to be 1200 rpm.
  • the suspension was recirculated several times and samples were taken.
  • the Schopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1.
  • the additional filler was not considered for the requested 2 g/l pulp consistency for the measurement.
  • FIG. 1 shows the development of the °SR as a function of passages through the Sup ermasscolloider. It becomes apparent that the addition of GCC increases the efficiency of the device per passage.
  • eucalyptus pulp in the form of dry mats 500 g per mat (700 ⁇ 1 000 ⁇ 1.5 mm) was used. 47 g pulp thereof was torn into pieces of 40 ⁇ 40 mm. 2953 g tap water was added. The suspension was stirred in a 5 dm 3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspension was stirred for at least 15 minutes at 2000 rpm.
  • This suspension was fed into the Homogenizer (GEA Niro Soavi NS2006L) but did not run through the machine.
  • eucalyptus pulp in the form of dry mats of 500 g per mat (700 ⁇ 1000 ⁇ 1.5 mm) was used. 47 g pulp thereof was torn into pieces of 40 ⁇ 40 mm. 45 g Omyacarb 1-AV was added. 2953 g tap water was added. The suspension was stirred in a 5 dm 3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspension was stirred for at least 15 minutes at 2000 rpm.
  • This suspension was fed into the Homogenizer (GEA Niro Soavi NS2006L).
  • the flow through the homogenizer was between 100 and 200 g min ⁇ 1 and the pressure was adjusted to be between 200 and 400 bar.
  • the suspension was recirculated several times and samples were taken.
  • the Schopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1. The additional filler was not considered for the requested 2 g/l pulp consistency for the measurement.
  • the comparative sample that contained no GCC could not be fed through the homogenizer. Only the GCC containing sample showed a good runnability. Schopper-Riegler values are reported in Table 1 after 5 and 10 passages through the homogenizer.
  • An aqueous suspension was formed of the above carbonate and pulp such that this suspension had a solids content of approximately 4 wt-% and a carbonate:pulp weight ratio of 29:71.
  • a Schopper-Riegler (°SR) of the obtained suspension of 92°SR was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1.
  • aqueous suspension was formed of the above carbonate and pulp such that this suspension had a solids content of approximately 9.8 wt-% and a carbonate:pulp weight ratio of 75:25. This suspension presented an 18°SR.
  • a Schopper-Riegler (°SR) of the obtained suspension of 73°SR was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1.
  • An aqueous suspension was formed of the above pulp such that this suspension had a solids content of approximately 4.5 wt-%.
  • a Schopper-Riegler (°SR) of the obtained suspension of 65°SR was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1.
  • eucalyptus or pine pulp was treated in an ultra-fine friction grinder with the addition of the filler or pigment as indicated here below.
  • the pulp indicated in the Table below in the form of dry mats, was used. 90 g pulp thereof was torn into pieces of 40 ⁇ 40 mm. The filler indicated in the Table below was added in the indicated amount, along with 2 190 g of tap water. The suspensions were each stirred in a 10 dm 3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspensions were each stirred for at least 10 minutes at 2000 rpm.
  • the suspensions were then fibrillated with an ultra-fine friction grinder (Supermasscolloider from Masuko Sangyo Co. Ltd, Japan (Model MKCA 6-2)).
  • the grinding stones were silicon carbide with a grit class of 46 (grit size 297-420 ⁇ m).
  • the gap between the grinding stones was set to be the dynamic 0-point as described in the manual delivered by the supplier. For each the tests below, the gap between the grinding stones were further closed from this 0-point by 5 increments, corresponding to an adjustment of ⁇ 50 ⁇ m, as soon as the first material passed between the stones.
  • the speed of the rotating grinder was adjusted to be 2000 rpm for the first 5 passages, and decreased to 1500 rpm for passage 6 and to 1000 rpm for passage 7. Following each passage, the rpm of the friction grinder was increased to approximately 2600 rpm for a period of 5 seconds in order to ensure that a maximum of materials was extracted from the friction grinder before commencing the following passage directly thereafter.
  • the Schopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1. The additional filler was not considered for the requested 2 g/l pulp consistency for the measurement. So the pulp consistency was constant for Tests a and b at 2 g/l.
  • FIG. 2 shows the development of the °SR as a function of passages through the Supermasscolloider. It becomes apparent that the addition of filler results in an efficient °SR development in the device per passage (compared to tests g and f below), also for other pulp types than Eucalyptus and other filler types than GCC and PCC.
  • eucalyptus pulp was treated in a ball mill with and without the addition of the filler or pigment as indicated here below.
  • the pulp indicated in the table below in the form of dry mats, was used. 88 g pulp thereof was torn into pieces of 40 ⁇ 40 mm.
  • Omyacarb 1-AV was added in the amount indicated in the Table below, along with 5000 g of tap water. The suspensions were each stirred in a 10 dm 3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspensions were each stirred for at least 10 minutes at 2000 rpm.
  • FIG. 3 shows the development of the °SR as a function of passages through the ball mill. It is apparent that the addition of filler does not positively influence the °SR development in the device over time.
  • Tests e to g were processed with an ultra-fine friction grinder (Supermasscolloider from Masuko Sangyo Co. Ltd, Japan (Model MKCA 6-2) with mounted silicon carbide stones having a grit class of 46 (grit size 297-420 ⁇ m).
  • the gap between the stones was adjusted to “ ⁇ 50” ⁇ m (dynamic 0-point, as described in the manual delivered by the supplier).
  • the speed of the rotating grinder was set to 2000 rpm for passes 1-5, to 1500 rpm for pass 6 and to 1000 rpm for pass 7. Samples for Shopper-Riegler degree measurements were taken before grinding, after passes 5, 6 and 7.
  • the Shopper-Riegler degree was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1.
  • the additional filler was not considered for the requested 2 g/l pulp consistency for the measurement. So the pulp consistency was constant for all tests e to g at 2 g/l.
  • FIG. 4 shows that the addition of filler (test g) to a nanocellulosic suspension that was produced in the absence of filler (test f) leads to increased °SR values, but not to a change of steepness (that means no efficiency increase).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Paper (AREA)
  • Paints Or Removers (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Adhesive Tapes (AREA)
  • Artificial Filaments (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

The present invention relates to a process for the production of suspensions of nano-fibrillar cellulose by providing cellulose fibers and at least one filler and/or pigment; combining the cellulose fibers and the at least one filler and/or pigment; and fibrillating the cellulose fibers in the presence of at least one filler and/or pigment, as well as the suspensions of nano-fibrillar cellulose obtained by this process and their uses.

Description

This is a U.S. national phase of PCT Application No. PCT/EP2010/054231, filed Mar. 30, 2010, which claims priority to European Patent Application No. 09156683.6, filed Mar.30, 2009 and U.S. Provisional Application No. 61/212,108 filed Apr. 6, 2009.
The present invention relates to a process for producing nano-fibrillar cellulose suspensions and the nano-fibrillar cellulose obtained by this process.
Cellulose is the structural component of the primary cell wall of green plants and is the most common organic compound on Earth. It is of high interest in many applications and industries.
Cellulose is the major constituent of paper and cardboard and of textiles made from cotton, linen, and other plant fibres. Cellulose can be converted into cellophane, a thin transparent film, and into rayon, an important fibre that has been used for textiles since the beginning of the 20th century. Both cellophane and rayon are known as “regenerated cellulose fibres”.
Cellulose fibres are also used in liquid filtration, to create a filter bed of inert material. Cellulose is further used to make hydrophilic and highly absorbent sponges.
For industrial use, cellulose is mainly obtained from wood pulp and cotton. It is mainly used to produce cardboard and paper; and to a smaller extent it is converted into a wide variety of derivative products.
Cellulose pulp as a raw material is processed out of wood or stems of plants such as hemp, linen and manila. Pulp fibres are built up mainly from cellulose and other organic components (hemicellulose and lignin). The cellulose macromolecules (composed of 1-4 glycosidic linked β-D-Glucose molecules) are linked together by hydrogen bonds to form a so called primary fibril (micelle) which has crystalline and amorphous domains. Several primary fibrils (around 55) form a so called microfibril. Around 250 of these microfibrils form a fibril.
The fibrils are arranged in different layers (which can contain lignin and/or hemicellulose) to form a fibre. The individual fibres are bound together by lignin as well.
The pulps used in papermaking are often obtained by grinding the wood and an optional processing by heat and chemistry to remove undesired compounds from the cellulosic fibres.
The fibres are ground and cut to a certain fineness (depending on the desired properties). The grinding of the fibres is achieved with a refiner (such as a conic rotor-stator mill or disc- or double-disc refiners). The refiner also fibrillates the fibres on the surface which means that some fibrils are partially pulled out of the surface of the fibre. This leads to a better retention of, and, frequently, a better adhesion to, pigments which may be added in paper production, and also to an enhanced potential of hydrogen bonding between the fibres of the paper. This results in improved mechanical properties. A side-effect is also that the paper becomes denser and more transparent because of a loss of light scattering as the size of the scattering centres moves away from the accepted optimum of half the wave length of light (glassine and greaseproof papers).
When fibres become refined under applied energy they become fibrillated as the cell walls are broken and torn into attached strips, i.e. into fibrils. If this breakage is continued to separate the fibrils from the body of the fibre, it releases the fibrils. The breakdown of fibres into microfibrils is referred to as “micro fibrillation”. This process may be continued until there are no fibres left and only fibrils of nano size (thickness) remain.
If the process goes further and breaks these fibrils down into smaller and smaller fibrils, they eventually become cellulose fragments. The breakdown to primary fibrils may be referred to as “nano-fibrillation”, where there may be a smooth transition between the two regimes.
The achievable fineness with conventional refiners however is limited. Also, a number of other apparati for breaking down particles are not capable of breaking down cellulose fibres to nano-fibrils, such as fluffers mentioned in US 2001/0045264, which are only capable of separating given size fractions of fibres from each other.
Similarly, in WO 02/090651 a method for recycling pulp rejects generated during manufacturing of paper, paperboard or cardboard is described, wherein cleaner rejects containing among other things fibres, pigments and/or fibres are milled to a certain grain size by ball mills. However, no mention is made of the fibrillation of the fibres present, let alone the fibrillation into nano-fibrils.
If a further breakdown of the fibres into nano-fibrils is desired other methods are needed.
For example, in U.S. Pat. No. 4,374,702 a process for preparing microfibrillated cellulose is described comprising passing a liquid suspension of fibrous cellulose through a high pressure homogenizer having a small diameter orifice in which the suspension is subjected to a pressure drop of at least 3000 psi and a high velocity shearing action followed by a high velocity decelerating impact against a solid surface, repeating the passage of said suspension through the orifice until said cellulose suspension becomes a substantially stable suspension, said process converting said cellulose into microfibrillated cellulose without substantial chemical change of the cellulose starting material.
U.S. Pat. No. 6,183,596 B1 discloses a process for producing super microfibrillated cellulose by passing a slurry of a previously beaten pulp through a rubbing apparatus having two or more grinders which are arranged so that they can be rubbed together to microfibrillate the pulp to obtain microfibrillated cellulose and further super microfibrillate the obtained microfibrillated cellulose with a high-pressure homogenizer to obtain the super microfibrillated cellulose.
Furthermore, ultra-fine friction grinders can be used, wherein the grinder reduces the fibres into fines by mechanical shearing (cf. e.g. U.S. Pat. No. 6,214,163 B1).
There are a number of problems regarding the fibrillation of cellulose fibres, which have to be overcome.
For example, the mechanical production of nano-fibrillar cellulose often has the problem of an increasing viscosity during the fibrillation process. This can stop the process completely or increase the needed specific energy.
The efficiency of the breakdown processes often is rather low, and there is a considerable amount of fibres just cut, but not fibrillated into fibrils.
Therefore, there is a continuous need for providing more efficient processes for producing nano-fibrillar cellulose suspensions, and it is one objective of the present invention to provide a new and efficient process for the production of nano-fibrillar cellulose suspensions.
It has been found that the addition and co-processing of certain fillers and/or pigments with cellulose fibre containing pulp may have a positive influence on the fibrillating process in many respects, as described in more detail below.
Thus, the process of the present invention is characterized by the following steps:
  • (a) providing cellulose fibres;
  • (b) providing at least one filler and/or pigment;
  • (c) combining the cellulose fibres and the at least one filler and/or pigment;
  • (d) fibrillating the cellulose fibres in the presence of the at least one filler and/or pigment.
Nano-fibrillar cellulose in the context of the present invention means fibres, which are at least partially broken down to primary fibrils.
In this respect, fibrillating in the context of the present invention means any process which predominantly breaks down the fibres and fibrils along their long axis resulting in the decrease of the diameter of the fibres and fibrils, respectively.
Cellulose fibres, which can be used in the process of the present invention may be such contained in pulps selected from the group comprising eucalyptus pulp, spruce pulp, pine pulp, beech pulp, hemp pulp, cotton pulp, and mixtures thereof. In this respect, the use of kraft pulp, especially bleached long fibre kraft pulp may be especially preferred. In one embodiment, all or part of this cellulose fibre may be issued from a step of recycling a material comprising cellulose fibres. Thus, the pulp may also be recycled pulp.
The size of the cellulose fibres in principle is not critical. Useful in the present invention generally are any fibres commercially available and processable in the device used for their fibrillation. Depending on their origin, cellulose fibres may have a length of from 50 mm to 0.1 μm. Such fibres, as well as such having a length of preferably 20 mm to 0.5 μm, more preferably from 10 mm to 1 mm, and typically from 2 to 5 mm, can be advantageously used in the present invention, wherein also longer and shorter fibres may be useful.
It is advantageous for the use in the present invention that the cellulose fibres are provided in the form of a suspension, especially an aqueous suspension. Preferably such suspensions have a solids content of from 0.2 to 35 wt-%, more preferably 0.25 to 10 wt-%, especially 1 to 5 wt-%, and most preferably 2 to 4.5 wt-%, e.g. 1.3 wt-% or 3.5 wt-%.
The at least one filler and/or pigment is selected from the group comprising precipitated calcium carbonate (PCC); natural ground calcium carbonate (GCC); dolomite; talc; bentonite; clay; magnesite; satin white; sepiolite, huntite, diatomite; silicates; and mixtures thereof. Precipitated calcium carbonate, which may have vateritic, calcitic or aragonitic crystal structure, and/or natural ground calcium carbonate, which may be selected from marble, limestone and/or chalk, are especially preferred.
In a special embodiment, the use of ultrafine discrete prismatic, scalenohedral or rhombohedral precipitated calcium carbonate may be advantageous.
The fillers and/or pigments can be provided in the form of a powder, although they are preferably added in the form of a suspension, such as an aqueous suspension. In this case, the solids content of the suspension is not critical as long as it is a pumpable liquid.
In a preferred embodiment, the filler and/or pigment particles have a median particle size of from 0.5 to 15 μm, preferably 0.7 to 10 μm, more preferably 1 to 5 μm and most preferably 1.1 to 2 μm.
Especially preferably, the filler and/or pigment particles have a median particle size of from 0.03 to 15 μm, preferably 0.1 to 10 μm, more preferably 0.2 to 5 μm and most preferably 0.2 to 4 μm, e.g. 1.5 μm or 3.2 μm.
For the determination of the weight median particle size, d50, for particles having a d50 greater than 0.5 μm, a Sedigraph 5100 device from the company Micromeritics, USA was used. The measurement was performed in an aqueous solution of 0.1 wt-% Na4P2O7. The samples were dispersed using a high-speed stirrer and ultrasound. For the determination of the volume median particle size for particles having a d50≦500, a Malvern Zetasizer Nano ZS from the company Malvern, UK was used. The measurement was performed in an aqueous solution of 0.1 wt % Na4P2O7. The samples were dispersed using a high-speed stirrer and ultrasound.
The fillers and/or pigments may be associated with dispersing agents such as those selected from the group comprising homopolymers or copolymers of polycarboxylic acids and/or their salts or derivatives such as esters based on, e.g. acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, e.g. acryl amide or acrylic esters such as methylmethacrylate, or mixtures thereof; alkali polyphosphates, phosphonic-, citric- and tartaric acids and the salts or esters thereof; or mixtures thereof.
The combination of fibres and at least one filler and/or pigment can be carried out by adding the filler and/or pigment to the fibres in one or several steps. As well, the fibres can be added to the filler and/or pigment in one or several steps. The filler and/or pigment as well as the fibres can be added entirely or in portions before or during the fibrillating step. However, the addition before fibrillating is preferred.
During the fibrillation process, the size of the fillers and/or pigments as well as the size of the fibres can change.
In one embodiment before fibrillating the pH of the combination of cellulose fibres and at least one filler and/or pigment is adjusted to a pH of 10 to 12, e.g. 11.
This adjustment to alkaline pH can be done via addition of preferably milk of lime (Ca(OH)2) or any other base. After co-processing, the pH in the suspension might then have to be adjusted again to about 7.5 to 9.5, e.g. 8.5.
Generally, the pH of the suspension comprising the combination of fibres and pigment and/or filler should not be less than 6.
It might also be necessary to stabilize the pH, e.g. upon addition of PCC to a fibre suspension, which might lead to an increase of the pH, and a drop of the °SR. In this case the pH may be re-adjusted by commonly used acids or buffers in order to avoid the drop of the Schopper Riegler degree due to the influence of a pH increase.
Furthermore, in one embodiment, the combination is stored for 2 to 12 hours, preferably 3 to 10 hours, more preferably 4 to 8 hours, e.g. 6 hours, prior to fibrillating it, as this ideally results in swelling of the fibres facilitating the fibrillation and thus leads to a faster increase of freeness (°SR) and lower specific refining energy consumption for the same °SR freeness.
Fibre swelling may be facilitated by storage at increased pH, as well as by addition of cellulose solvents like, e.g. copper(II)ethylenediamine, iron-sodium-tartrate or lithium-chlotine/dimethylacetamine, or by any other method known in the art.
Preferably, the weight ratio of fibres to fillers and/or pigments on a dry weight basis is from 1:10 to 10:1, more preferably 1:6 to 6:1, typically 1:4 to 4:1, especially 1:3 to 3:1, and most preferably 1:2 to 2:1, e.g. 1:1.
For example, in one especially preferred embodiment 70 wt-% of bleached longfibre kraft pulp is fibrillated in the presence 30 wt-% ultrafine discrete prismatic (or rhombohedral) PCC, relating to the total dry weight of pulp and PCC, respectively.
One indication of cellulose fibrillation according to the present invention is the increase of the Schopper Riegler degree (°SR).
The Schopper-Riegler degree (°SR) is a measure of the rate at which a diluted pulp suspension may be de-watered and is specified according to the Zellcheming Merkblatt V17/61 and standardized in ISO 5267/1.
The value is determined by smoothly dispersing the pulp in water and putting it into a drainage chamber where a sealing cone is closed. The sealing cone is lifted pneumatically from the drainage chamber, and, depending on the condition of the fibre suspension, the water flows more or less quickly from the drainage chamber through a side outlet into a measuring cylinder. The water is measured in the cylinder, wherein 10 ml water correspond to 1°SR, and the higher the Schopper-Riegler value, the finer the fibres.
For measuring the Schopper Riegler degree any devices suitable therefore can be used, such as the “Automatic Freeness Tester” supplied by Rycobel, Belgium.
Preferably the combination is fibrillated until the Schopper Riegler degree is increased by ≧4°SR, particularly ≧6°SR, more preferably ≧8°SR, most preferably ≧10°SR, especially ≧15°SR.
In a preferred embodiment the combination of fibres and filler and/or pigment is fibrillated until a final Schopper-Riegler degree of the resulting suspension of ≧30°SR, preferably ≧45°SR, more preferably ≧50 °SR, particularly ≧60°SR, e.g. ≧70°SR, especially ≧80°SR is reached.
In a special embodiment, it is however preferred that the final Schopper Riegler degree is ≦95 °SR.
The starting Schopper-Riegler degree may be from about 5 to about 90°SR, preferably it is ≦10°SR, preferably ≦25°SR, more preferably ≦40°SR, e.g. ≦60 or ≦75°SR. It may also be greater than 80°SR, if the Δ°SR resulting by the fibrillating step is ≦4°SR.
Looking at the Schopper Riegler degree, it has also been found that the process according to the present invention is much more efficient than fibrillating fibre suspensions in the absence of pigments and/or fillers.
This can be seen by an increased °SR per passage. In order to optimize the fibrillation, the fibre suspension is usually processed by subjecting it to several passages through the fibrillation device.
In this respect, it can be observed that according to the process of the present invention, the °SR per passage is markedly higher than with fibre suspensions only.
This effect can be immediately observed and occurs until a certain number of passages, when no further increase of the °SR is achieved any more.
Thus, in a special embodiment, the change in Schopper Riegler degree per passage is higher for the process of the present invention than for fibre suspensions fibrillated in the absence of pigment and/or filler, until no further essential increase can be observed in both cases.
Also, it can be observed that the simple addition of pigment and/or filler to an already fibrillated system does not in itself lead to as great an increase in the Schopper Riegler degrees as observed when fibrillating in the presence of pigment and/or filler.
Fibrillating is carried out by means of any device useful therefore, as mentioned above. Preferably the device is selected from the group comprising ultra-fine friction grinders such as a Super Mass Colloider, refiners, and homogenizers. In the case of fibrillating in a homogenizer and also in an ultra fine friction grinder, the temperature of the suspension in the homogenizer is preferably above 60° C., more preferably above 80° C. and even more preferably above 90° C.
Another aspect of the present invention is the suspension of nano-fibrillar cellulose obtained by the processes according to the invention.
Furthermore, an aspect of the invention is the advantageous use of the suspension of nano-fibrillar cellulose obtained by the processes according to the invention in paper manufacturing and/or paper finishing.
The nano-fibrillar cellulose suspensions according to the present invention can improve paper strength and may allow for an increase in filler load in uncoated freesheet papers.
Due to their mechanical strength properties the nano-fibrillar cellulose however is also advantageously used in applications such as in material composites, plastics, paints, rubber, concrete, ceramics, adhesives, food, or in wound-healing applications. The figures described below and the examples and experiments serve to illustrate the present invention and should not restrict it in any way.
DESCRIPTION OF THE FIGURES
FIG. 1 shows the °SR/passage for pulp suspensions fibrillated with and without different natural ground calcium carbonates.
FIG. 2 shows the °SR/passage for pulp suspensions fibrillated with different fillers/pigments.
FIG. 3 shows the °SR/running time for pulp suspensions ground in a ball mill with and without natural ground calcium carbonate.
FIG. 4 shows the °SR/running time for pulp suspensions ground with and without natural ground calcium carbonate added before or after fibrillation.
EXAMPLES
1. Increase of °SR/Passage Using GCC
For examining the development of the °SR/passage, eucalyptus pulp with a °SR of 25 was treated first in an ultra-fine friction grinder at 4 wt-% solids content with and without the addition of GCC. A similar experiment was run on an homogenizer with eucalyptus pulp at 1.5 wt-% solids content with and without GCC.
Material
  • GCC: Omyacarb 1-AV (solids content 100 wt % based on weight of fibres present) available from Omya AG. The weight median particle size d50=1.7 μm measured by Sedigraph 5100.
    • Omyacarb 10-AV (solids content 100 wt-% based on weight of fibres present) available from Omya AG. The weight median particle size d50 is 10.0 μm measured by Sedigraph 5100.
  • Pulp: Eucalyptus pulp with 25°SR and an equivalent aqueous suspension pH of 7.6.
Example 1 Ultrafine Friction Grinder
For the comparative example eucalyptus pulp in the form of dry mats of 500 g per mat (700×1 000×1.5 mm) was used. 170 g pulp thereof was torn into pieces of 40×40 mm. 3 830 g tap water was added. The suspension was stirred in a 10 dm3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspension was stirred for at least 15 minutes at 2000 rpm.
The suspension was then fibrillated with an ultra-fine friction grinder (Supermasscolloider from Masuko Sangyo Co. Ltd, Japan (Model MKCA 6-2)). The grinding stones were silicon carbide with a grit class of 46 (grit size 297-420 μm). The gap between the grinding stones was chosen to be the dynamic 0-point as described in the manual delivered by the supplier. The speed of the rotating grinder was adjusted to be 1200 rpm. The suspension was recirculated several times and samples were taken. The Schopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1.
For the inventive example eucalyptus pulp in the form of dry mats of 500 g per mat (700×1 000×1.5 mm) was used. 170 g pulp thereof was torn into pieces of 40×40 mm. 160 g Omyacarb 1-AV was added. 3 830 g tap water was added. The suspension was stirred in a 10 dm3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspension was stirred for at least 15 minutes at 2000 rpm. The suspension had a pH of about 7.5.
The suspension was then fibrillated with an ultra-fine friction grinder (Supermasscolloider from Masuko Sangyo Co. Ltd, Japan (Model MKCA 6-2)). The grinding stones were silicon carbide with a grit class of 46 (grit size 297-420 μm). The gap between the grinding stones was chosen to be the dynamic 0-point as described in the manual delivered by the supplier. The speed of the rotating grinder was adjusted to be 1200 rpm. The suspension was recirculated several times and samples were taken. The Schopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1. The additional filler was not considered for the requested 2 g/l pulp consistency for the measurement.
For the inventive example eucalyptus pulp in the form of dry mats of 500 g per mat (700×1 000×1.5 mm) was used. 170 g pulp thereof was torn into pieces of 40×40 mm. 160 g Omyacarb 10-AV was added. 3 830 g tap water was added. The suspension was stirred in a 10 dm3 bucket at 2 000 rpm using a dissolver disk with a diameter of 70 mm. The suspension was stirred for at least 15 minutes at 2 000 rpm. The suspension had a pH of about 7.2.
The suspension was then fibrillated with an ultra-fine friction grinder (Supermasscolloider from Masuko Sangyo Co. Ltd, Japan (Model MKCA 6-2)). The grinding stones were silicon carbide with a grit class of 46 (grit size 297-420 μm).
The gap between the grinding stones was chosen to be the dynamic 0-point as described in the manual delivered by the supplier. The speed of the rotating grinder was adjusted to be 1200 rpm. The suspension was recirculated several times and samples were taken. The Schopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1. The additional filler was not considered for the requested 2 g/l pulp consistency for the measurement.
Results
FIG. 1 shows the development of the °SR as a function of passages through the Sup ermasscolloider. It becomes apparent that the addition of GCC increases the efficiency of the device per passage.
Example 2 Homogenizer
For the comparative example eucalyptus pulp in the form of dry mats of 500 g per mat (700×1 000×1.5 mm) was used. 47 g pulp thereof was torn into pieces of 40×40 mm. 2953 g tap water was added. The suspension was stirred in a 5 dm3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspension was stirred for at least 15 minutes at 2000 rpm.
This suspension was fed into the Homogenizer (GEA Niro Soavi NS2006L) but did not run through the machine.
For the inventive example eucalyptus pulp in the form of dry mats of 500 g per mat (700×1000×1.5 mm) was used. 47 g pulp thereof was torn into pieces of 40×40 mm. 45 g Omyacarb 1-AV was added. 2953 g tap water was added. The suspension was stirred in a 5 dm3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspension was stirred for at least 15 minutes at 2000 rpm.
This suspension was fed into the Homogenizer (GEA Niro Soavi NS2006L). The flow through the homogenizer was between 100 and 200 g min−1 and the pressure was adjusted to be between 200 and 400 bar. The suspension was recirculated several times and samples were taken. The Schopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1. The additional filler was not considered for the requested 2 g/l pulp consistency for the measurement.
Results
The comparative sample that contained no GCC could not be fed through the homogenizer. Only the GCC containing sample showed a good runnability. Schopper-Riegler values are reported in Table 1 after 5 and 10 passages through the homogenizer.
TABLE 1
Passages ° SR
0 25
5 74
10 91

2. Increase of °SR Using PCC in a Refiner
Example 3 Ultrafine PCC
Material
  • PCC: Ultrafine prismatic PCC. The weight median particle size d50=1.14 μm measured by Sedigraph 5100 (100 wt-% of particles have a diameter <2 μm; 27 wt-% of particles have a diameter <1 um).
    • This PCC was provided in the form of an aqueous suspension having a solids content of 7.9 wt-%.
  • Pulp: Longfibre bleached kraft pulp with 16°SR and an equivalent aqueous suspension pH of between 6 and 8.
An aqueous suspension was formed of the above carbonate and pulp such that this suspension had a solids content of approximately 4 wt-% and a carbonate:pulp weight ratio of 29:71.
Approximately 12.5 dm3 of this suspension were circulated during a period of 9 minutes through an Esther Wyss R 1 L Labor-Refiner under 5.4 kW.
A Schopper-Riegler (°SR) of the obtained suspension of 92°SR was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1.
Example 4 Coarse PCC
a) Suspension According to the Invention
Material
  • PCC: Scalenohedral PCC. The weight median particle size d50=3.27 μm measured by Sedigraph 5100 (11 wt-% of particles have a diameter<2 μm; 4 wt-% of particles have a diameter<1 um). This PCC was provided in the form of an aqueous suspension having a solids content of 15.8%.
  • Pulp: Eucalyptus with 38°SR and an equivalent aqueous suspension pH of between 6 and 8.
An aqueous suspension was formed of the above carbonate and pulp such that this suspension had a solids content of approximately 9.8 wt-% and a carbonate:pulp weight ratio of 75:25. This suspension presented an 18°SR.
Approximately 38 m3 of this suspension was circulated during a period of 17.5 hours through a Metso Refiner RF-0 under 92 kW at a flow rate of 63 m3/hour.
A Schopper-Riegler (°SR) of the obtained suspension of 73°SR was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1.
b) Comparative Suspension
Material
  • PCC: Scalenohedral PCC. The weight median particle size d50=3.27 μm measured by Sedigraph 5100 (11 wt-% of particles have a diameter<2 μm; 4 wt-% of particles have a diameter<1 μm). This PCC was provided in the form of an aqueous suspension having a solids content of 15.8%.
  • Pulp: Eucalyptus with 38°SR and an equivalent aqueous suspension pH of between 6 and 8.
An aqueous suspension was formed of the above pulp such that this suspension had a solids content of approximately 4.5 wt-%.
Approximately 20 m3 of this suspension was circulated during a period of 17.5 hours through a Metso Refiner RF-0 under 92 kW at a flow rate of 63 m3/hour.
A Schopper-Riegler (°SR) of the obtained suspension of 65°SR was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1.
To this suspension, the above scalenohedral PCC was added in an amount so as to obtain a carbonate : pulp weight ratio of 75:25. A Schopper-Riegler (°SR) of the obtained suspension of 25°SR was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1.
This clearly shows that the presence of calcium carbonate during the fibrillation step is essential for obtaining a high Schopper Riegler degree, i.e. an efficient fibrillation of the cellulose fibres.
3. Increase of °SR/Passage Using Different Fillers or Pigments and/or Different Pulps
For examining the development of the °SR/passage, eucalyptus or pine pulp was treated in an ultra-fine friction grinder with the addition of the filler or pigment as indicated here below.
Material
  • GCC: Aqueous suspension of natural ground calcium carbonate dispersed with polymeric acrylic acid-based dispersant, solids content 50 wt-%). The volume median particle size d50 is 246 nm measured by Malvern Zetasizer Nano ZS.
  • Talc: Finntalc F40 available from Mondo Minerals.
  • Pulp: Eucalyptus pulp in the form of dry mats, with 17 to 20°SR, a brightness of 88.77% (ISO 2470-2) and an equivalent aqueous suspension pH of between 7 and 8.
    • Pine pulp in the form of dry mats, with 17 to 20°SR, a brightness of 88.19% (ISO 2470-2) and an equivalent aqueous suspension pH of between 7 and 8.
Example 5 Ultrafine Friction Grinder
In the following examples, the pulp indicated in the Table below, in the form of dry mats, was used. 90 g pulp thereof was torn into pieces of 40×40 mm. The filler indicated in the Table below was added in the indicated amount, along with 2 190 g of tap water. The suspensions were each stirred in a 10 dm3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspensions were each stirred for at least 10 minutes at 2000 rpm.
The suspensions were then fibrillated with an ultra-fine friction grinder (Supermasscolloider from Masuko Sangyo Co. Ltd, Japan (Model MKCA 6-2)). The grinding stones were silicon carbide with a grit class of 46 (grit size 297-420 μm). Prior to commencing the following tests, the gap between the grinding stones was set to be the dynamic 0-point as described in the manual delivered by the supplier. For each the tests below, the gap between the grinding stones were further closed from this 0-point by 5 increments, corresponding to an adjustment of −50 μm, as soon as the first material passed between the stones. The speed of the rotating grinder was adjusted to be 2000 rpm for the first 5 passages, and decreased to 1500 rpm for passage 6 and to 1000 rpm for passage 7. Following each passage, the rpm of the friction grinder was increased to approximately 2600 rpm for a period of 5 seconds in order to ensure that a maximum of materials was extracted from the friction grinder before commencing the following passage directly thereafter. The Schopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1. The additional filler was not considered for the requested 2 g/l pulp consistency for the measurement. So the pulp consistency was constant for Tests a and b at 2 g/l.
Test a) b)
Type pulp: Eucalyptus Pine
Type filler/pigment GCC Finntalc F40
Amount filler/pigment 90 g [180 g] 90 g
(g dry, [g suspension])
Weight ratio 1:1 1:1
filler/pigment:fibre

Results
FIG. 2 shows the development of the °SR as a function of passages through the Supermasscolloider. It becomes apparent that the addition of filler results in an efficient °SR development in the device per passage (compared to tests g and f below), also for other pulp types than Eucalyptus and other filler types than GCC and PCC.
4. Increase of °SR/Passage of Comparative Example Treating Pulp in a Ball Mill with and Without GCC
For examining the development of the °SR/passage, eucalyptus pulp was treated in a ball mill with and without the addition of the filler or pigment as indicated here below.
Material
  • GCC: Omyacarb 1-AV in the form of a powder, available from Omya AG. The weight median particle size d50=1.7 μm measured by Sedigraph 5100.
  • Pulp: Eucalyptus pulp in the form of dry mats, with 17 to 20°SR, a brightness of 88.77% (ISO 2470-2) and an equivalent aqueous suspension pH of between 7 and 8.
Example 6 Ball Mill
In the following examples, the pulp indicated in the table below, in the form of dry mats, was used. 88 g pulp thereof was torn into pieces of 40×40 mm. Omyacarb 1-AV was added in the amount indicated in the Table below, along with 5000 g of tap water. The suspensions were each stirred in a 10 dm3 bucket at 2000 rpm using a dissolver disk with a diameter of 70 mm. The suspensions were each stirred for at least 10 minutes at 2000 rpm.
1600 g of each suspension was then introduced in a 3 dm3 porcelain vessel filled with 3500 g of Verac beads having a bead diameter of 2 cm. The vessel was closed and rotated 43 rpm for a period of 24 hours. The Schopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1. The additional filler was not considered for the requested 2 g/l pulp consistency for the measurement. So the pulp consistency was constant for Tests c and d at 2 g/l.
Test c) d)
Type pulp Eucalyptus Eucalyptus
Type filler/pigment None Omyacarb 1-AV
Amount filler/pigment 0 g 28.2 g
(g dry, [g suspension])
Weight ratio n/a 1:1
filler/pigment:fibre

Results
FIG. 3 shows the development of the °SR as a function of passages through the ball mill. It is apparent that the addition of filler does not positively influence the °SR development in the device over time.
5. Beneficial Effect of Filler
Example 7 Ultrafine Friction Grinder
Tests e to g were processed with an ultra-fine friction grinder (Supermasscolloider from Masuko Sangyo Co. Ltd, Japan (Model MKCA 6-2) with mounted silicon carbide stones having a grit class of 46 (grit size 297-420 μm). The gap between the stones was adjusted to “−50” μm (dynamic 0-point, as described in the manual delivered by the supplier). The speed of the rotating grinder was set to 2000 rpm for passes 1-5, to 1500 rpm for pass 6 and to 1000 rpm for pass 7. Samples for Shopper-Riegler degree measurements were taken before grinding, after passes 5, 6 and 7. The Shopper-Riegler degree (°SR) was measured according to the Zellcheming Merkblatt V/7/61 and standardized in ISO 5267/1. The additional filler was not considered for the requested 2 g/l pulp consistency for the measurement. So the pulp consistency was constant for all tests e to g at 2 g/l.
Material:
  • Omyacarb 1 AV Omyacarb 1-AV available from Omya AG; Fine calcium carbonate powder, manufactured from a high purity, white marble; The weight median particle size d50 is 1.7 μm measured by Sedigraph 5100.
  • Eucalyptus pulp Dry mat, brightness: 88.77% (ISO 2470-2), equivalent pulp suspension pH between 7 and 8 and °SR between 17 and 20
    Test e):
90 g dry Eucalyptus pulp, 2910 g tap water and 90 g Omyacarb 1 AV (1:1 pulp to filler, dry/dry) were mixed using a Pendraulik stirrer at 2000 rpm with a mounted dissolver disk (d=70 mm) for at least 10 minutes. This mixture was processed with the Supermasscolloider as described above in the according paragraph. Samples were taken and measured as described above in the according paragraph.
Test f) (Comparative Test):
90 g dry Eucalyptus pulp and 2910 g tap water were mixed using a Pendraulik stirrer at 2000 rpm with a mounted dissolver disk (d=70 mm) for at least 10 minutes. This mixture was processed with the Supermasscolloider as described above in the according paragraph. Samples were taken and measured as described above in the according paragraph.
Test g) (Comparative Test):
Same as test f) but 90 g Omyacarb 1 AV added after fibrillation.
Results
FIG. 4 shows that the addition of filler (test g) to a nanocellulosic suspension that was produced in the absence of filler (test f) leads to increased °SR values, but not to a change of steepness (that means no efficiency increase).
However a nanocellulosic suspension that was produced in the presence of filler (test e) shows a higher increase of °SR compared to the comparative tests (g and f).
6. Use of Nano-Fibrillar Cellulose Suspension in Paper Making
60 g dry of a sulphated paste of wood and fibres composed of 80% birch and 20% pine, with a freeness value of 23°SR, is diluted in 10 dm3 of water. To this dilution is added approximately 1.5 g dry of the nano-fibrillar cellulose suspension produced according to Example 1 using Omyacarb 1-AV, as well as a 62 wt-% suspension of a pre-dispersed natural ground calcium carbonate (marble) having a microcrystalline, rhombohedral particle shape and a weight median particle size d50 of 0.8 μm (measured by Sedigraph 5100). The latter is added in an amount so as to obtain an overall filler content of 30+/−0.5% based on the final paper weight. After 15 minutes of agitation and following addition of 0.06% by dry weight, relative to the dry weight of the paper, of a polyacrylamide retention aid, a sheet with a grammage of 75 g/m2 is formed using Rapid-Kothen type hand sheet former.

Claims (50)

The invention claimed is:
1. A process for the production of a nano-fibrillar cellulose suspension comprising the steps of:
(a) providing cellulose fibres;
(b) providing a filler;
(c) combining the cellulose fibres from step (a) and the filler from step (b); and
(d) fibrillating the cellulose fibres and the filler from step (c) to obtain a nano-fibrillar cellulose suspension,
wherein the filler is calcium carbonate, and wherein in step (d) the weight ratio of fibres to filler on a dry weight basis is from 1:10 to 10:1.
2. The process according to claim 1, wherein the cellulose fibres in step (a) are contained in pulps selected from eucalyptus pulp, spruce pulp, pine pulp, beech pulp, hemp pulp, cotton pulp, or any mixture thereof.
3. The process according to claim 1, wherein the cellulose fibres in step (a) are contained in kraft pulp.
4. The process according to claim 1, wherein the cellulose fibres in step (a) are contained in bleached longfibre kraft pulp.
5. The process according to claim 1, wherein the cellulose fibres in step (a) are provided in the form of a suspension.
6. The process according to claim 1, wherein the cellulose fibres in step (a) are provided in the form of a suspension at a solids content of from 0.2 to 35 wt-%.
7. The process according to claim 1, wherein the cellulose fibres in step (a) are provided in the form of a suspension at a solids content of from 0.25 to 10 wt-%.
8. The process according to claim 1, wherein the cellulose fibres in step (a) are provided in the form of a suspension at a solids content of from 1 to 5 wt-%.
9. The process according to claim 1, wherein the cellulose fibres in step (a) are provided in the form of a suspension at a solids content of from 2 to 4.5 wt-%.
10. The process according to claim 1, wherein the cellulose fibres in step (a) are provided in the form of a suspension at a solids content of about 1.3 or about 3.5 wt-%.
11. The process according to claim 1, wherein the filler in step (b) is precipitated calcium carbonate.
12. The process according to claim 1, wherein the filler in step (b) is precipitated calcium carbonate having a vateritic, a calcitic or an aragonitic crystal structure.
13. The process according to claim 1, wherein the filler in step (b) is natural ground calcium carbonate.
14. The process according to claim 1, wherein the filler in step (b) is natural ground calcium carbonate selected from marble, limestone and/or chalk.
15. The process according to claim 11, wherein the precipitated calcium carbonate in step (b) is ultrafine discrete prismatic, scalenohedral or rhombohedral precipitated calcium carbonate.
16. The process according to claim 1, wherein the filler in step (b) is in the form of particles having a median particle size of from 0.03 to 15 μm.
17. The process according to claim 1, wherein the filler in step (b) is in the form of particles having a median particle size of from 0.2 to 5 μm.
18. The process according to claim 1, wherein the filler in step (b) is in the form of particles having a median particle size of from 0.2 to 4 μm.
19. The process according to claim 1, wherein the filler particles in step (b) is in the form of particles having a median particle size of about 1.5 or about 3.2 μm.
20. The process according to claim 1, wherein the filler in step (b) comprises a dispersing agent.
21. The process according to claim 20, wherein the dispersing agent is selected from homopolymers or copolymers of polycarboxylic acids and/or their salts or esters, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, acryl amide or acrylic esters, or mixtures thereof; alkali polyphosphates, phosphonic-, citric- or tartaric acids, salts or esters thereof; or mixtures thereof.
22. The process according to claim 1, wherein before fibrillating in step (d), the pH of the combination of the cellulose fibres and the filler is adjusted to a pH of 10 to 12.
23. The process according to claim 1, wherein after fibrillating in step (d), the pH of the suspension is re-adjusted to a pH of 7.5 to 9.5.
24. The process according to claim 1, wherein after fibrillating in step (d), the pH of the suspension is re-adjusted to a pH of about 8.5.
25. The process according to claim 1, wherein the combination resulting from step (c) is stored for 2 to 12 hours prior to fibrillating in step (d).
26. The process according to claim 1, wherein the combination resulting from step (c) is stored for 3 to 10 hours, prior to fibrillating in step (d).
27. The process according to claim 1, wherein the combination resulting from step (c) is stored for 4 to 8 hours, prior to fibrillating in step (d).
28. The process according to claim 1, wherein a cellulose solvent is added to the combination in step (c) prior to fibrillating in step (d).
29. The process according to claim 28, wherein the cellulose solvent is copper(II)ethylenediamine, iron-sodium-tartrate or lithium-chloride/ dimethylacetamine.
30. The process according to claim 1, wherein in step (d) the weight ratio of fibres to filler on a dry weight basis is from 1:6 to 6:1.
31. The process according to claim 1, wherein in step (d) the weight ratio of fibres to filler on a dry weight basis is from 1:4 to 4:1.
32. The process according to claim 1, wherein in step (d) the weight ratio of fibres to filler on a dry weight basis is from 1:3 to 3:1.
33. The process according to claim 1, wherein in step (d) the weight ratio of fibres to filler on a dry weight basis is from 1:2 to 2:1.
34. The process according to claim 1, wherein in step (d) 70 wt-% of bleached longfibre kraft pulp is fibrillated in the presence 30 wt-% ultrafine discrete prismatic or rhombohedral precipitated calcium carbonate (PCC), relative to the total dry weight of pulp and PCC, respectively.
35. The process according to claim 1, wherein the combination from step (c) is fibrillated in step (d) until a Schopper Riegler degree is increased by ≧4°SR.
36. The process according to claim 1, wherein the combination from step (c) is fibrillated in step (d) until a Schopper Riegler degree is increased by ≧6°SR.
37. The process according to claim 1, wherein the combination from step (c) is fibrillated in step (d) until a Schopper Riegler degree is increased by ≧8°SR.
38. The process according to claim 1, wherein the combination from step (c) is fibrillated in step (d) until a Schopper Riegler degree is increased by ≧10°SR.
39. The process according to claim 1, wherein the combination from step (c) is fibrillated in step (d) until a Schopper Riegler degree is increased by ≧15°SR.
40. The process according to claim 1, wherein the combination of fibres and filler from step (c) is fibrillated in step (d) until a final Schopper-Riegler degree of ≧30°SR is reached.
41. The process according to claim 1, wherein the combination of fibres and filler from step (c) is fibrillated in step (d) until a final Schopper-Riegler degree of ≧45°SR is reached.
42. The process according to claim 1, wherein the combination of fibres and filler from step (c) is fibrillated in step (d) until a final Schopper-Riegler degree of ≧50°SR is reached.
43. The process according to claim 1, wherein the combination of fibres and filler from step (c) is fibrillated in step (d) until a final Schopper-Riegler degree of ≧60°SR is reached.
44. The process according to claim 1, wherein the combination of fibres and filler from step (c) is fibrillated in step (d) until a final Schopper-Riegler degree of ≧70°SR is reached.
45. The process according to claim 1, wherein the combination of fibres and filler from step (c) is fibrillated in step (d) until a final Schopper-Riegler degree of ≧80°SR is reached.
46. The process according to claim 1, wherein the fibrillating in step (d) is carried out by a device selected from an ultra-fine friction grinder, a refiner, or a homogenizer.
47. The process according to claim 1, wherein the fibrillating in step (d) is carried out by an ultra-fine friction grinder or a homogenizer, and wherein the temperature of the suspension in the ultra-fine friction grinder or the homogenizer is above 60° C.
48. The process according to claim 1, wherein the fibrillating in step (d) is carried out by an ultra-fine friction grinder or a homogenizer, and wherein the temperature of the suspension in the ultra-fine friction grinder or the homogenizer is above 80° C.
49. The process according to claim 1, wherein the fibrillating in step (d) is carried out by an ultra-fine friction grinder or a homogenizer, and wherein the temperature of the suspension in the ultra-fine friction grinder or the homogenizer is above 90° C.
50. A process for the production of a nano-fibrillar cellulose suspension comprising the steps of:
(a) providing cellulose fibres;
(b) providing a filler;
(c) combining the cellulose fibres from step (a) and the filler from step (b); and
(d) fibrillating the cellulose fibres and the filler from step (c) to obtain a nano-fibrillar cellulose suspension,
wherein the filler comprises calcium carbonate and one or more of dolomite, talc, bentonite, clay, magnesite, satin white, sepiolite, huntite, diatomite, and a silicate, and wherein in step (d) the weight ratio of fibres to filler on a dry weight basis is from 1:10 to 10:1.
US13/138,647 2009-03-30 2010-03-30 Process for the production of nano-fibrillar cellulose suspensions Active 2030-05-22 US8871057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/138,647 US8871057B2 (en) 2009-03-30 2010-03-30 Process for the production of nano-fibrillar cellulose suspensions

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP09156683.6 2009-03-30
EP09156683.6A EP2236664B1 (en) 2009-03-30 2009-03-30 Process for the production of nano-fibrillar cellulose suspensions
EP09156683 2009-03-30
US21210809P 2009-04-06 2009-04-06
PCT/EP2010/054231 WO2010112519A1 (en) 2009-03-30 2010-03-30 Process for the production of nano-fibrillar cellulose suspensions
US13/138,647 US8871057B2 (en) 2009-03-30 2010-03-30 Process for the production of nano-fibrillar cellulose suspensions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/054231 A-371-Of-International WO2010112519A1 (en) 2009-03-30 2010-03-30 Process for the production of nano-fibrillar cellulose suspensions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/474,705 Continuation US10301774B2 (en) 2009-03-30 2014-09-02 Process for the production of nano-fibrillar cellulose suspensions

Publications (2)

Publication Number Publication Date
US20120094953A1 US20120094953A1 (en) 2012-04-19
US8871057B2 true US8871057B2 (en) 2014-10-28

Family

ID=40718712

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/138,647 Active 2030-05-22 US8871057B2 (en) 2009-03-30 2010-03-30 Process for the production of nano-fibrillar cellulose suspensions
US14/474,705 Active US10301774B2 (en) 2009-03-30 2014-09-02 Process for the production of nano-fibrillar cellulose suspensions
US16/381,754 Active US10982387B2 (en) 2009-03-30 2019-04-11 Process for the production of nano-fibrillar cellulose suspensions
US17/193,338 Abandoned US20210262164A1 (en) 2009-03-30 2021-03-05 Process for the production of nano-fibrillar cellulose suspensions

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/474,705 Active US10301774B2 (en) 2009-03-30 2014-09-02 Process for the production of nano-fibrillar cellulose suspensions
US16/381,754 Active US10982387B2 (en) 2009-03-30 2019-04-11 Process for the production of nano-fibrillar cellulose suspensions
US17/193,338 Abandoned US20210262164A1 (en) 2009-03-30 2021-03-05 Process for the production of nano-fibrillar cellulose suspensions

Country Status (23)

Country Link
US (4) US8871057B2 (en)
EP (6) EP3617400B1 (en)
JP (4) JP5666553B2 (en)
KR (4) KR101734486B1 (en)
CN (2) CN102378839B (en)
AR (1) AR075960A1 (en)
BR (1) BRPI1013180B8 (en)
CA (1) CA2755493C (en)
CL (1) CL2010000279A1 (en)
CO (1) CO6450680A2 (en)
DK (4) DK2808440T3 (en)
ES (4) ES2745638T3 (en)
FI (1) FI3617400T3 (en)
HU (3) HUE045496T2 (en)
MY (1) MY157010A (en)
PL (4) PL2808440T3 (en)
PT (3) PT3617400T (en)
RU (2) RU2015109771A (en)
SI (3) SI2236664T1 (en)
TW (1) TWI529279B (en)
UA (1) UA108985C2 (en)
UY (1) UY32533A (en)
WO (1) WO2010112519A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130126112A1 (en) * 2010-04-27 2013-05-23 Patrick A.C. Gane Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US20130277089A1 (en) * 2011-01-04 2013-10-24 Teijin Aramid B.V. Electrical insulating paper
US20150299955A1 (en) * 2012-11-03 2015-10-22 Upm-Kymmene Corporation Method for producing nanofibrillar cellulose
US9718980B2 (en) 2012-08-14 2017-08-01 Goldeast Paper (Jiangsu) Co., Ltd Coating composition and coated paper
US10100232B2 (en) 2007-12-20 2018-10-16 University Of Tennessee Research Foundation Wood adhesives containing reinforced additives for structural engineering products
US10294371B2 (en) 2009-03-30 2019-05-21 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose gels
US10301774B2 (en) 2009-03-30 2019-05-28 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
US20190284762A1 (en) * 2014-05-30 2019-09-19 Borregaard As Microfibrillated cellulose
US10577469B2 (en) 2015-10-14 2020-03-03 Fiberlean Technologies Limited 3D-formable sheet material
US10975499B2 (en) 2012-08-24 2021-04-13 Domtar Paper Company, Llc Surface enhanced pulp fibers, methods of making surface enhanced pulp fibers, products incorporating surface enhanced pulp fibers, and methods of making products incorporating surface enhanced pulp fibers
US11155697B2 (en) 2010-04-27 2021-10-26 Fiberlean Technologies Limited Process for the production of gel-based composite materials
US11441271B2 (en) 2018-02-05 2022-09-13 Domtar Paper Company Llc Paper products and pulps with surface enhanced pulp fibers and increased absorbency, and methods of making same
US11473245B2 (en) 2016-08-01 2022-10-18 Domtar Paper Company Llc Surface enhanced pulp fibers at a substrate surface
US11499269B2 (en) * 2016-10-18 2022-11-15 Domtar Paper Company Llc Method for production of filler loaded surface enhanced pulp fibers
US11524921B2 (en) * 2018-02-13 2022-12-13 Russell MOOLMAN Composite materials containing hemp and nanocellulose
US11608596B2 (en) 2019-03-26 2023-03-21 Domtar Paper Company, Llc Paper products subjected to a surface treatment comprising enzyme-treated surface enhanced pulp fibers and methods of making the same
WO2023180806A1 (en) 2022-03-23 2023-09-28 Fiberlean Technologies Limited Resin reinforced with nanocellulose for wood-based panel products
WO2024110786A1 (en) 2022-11-22 2024-05-30 Fiberlean Technologies Limited Barrier coatings applied to nanocellulose-coated paper and paperboard
WO2024110781A1 (en) 2022-11-22 2024-05-30 Fiberlean Technologies Limited Sequential application of layers, comprising nanocellulose, onto the surface of paper or paperboard substrates
US12104327B2 (en) 2019-09-23 2024-10-01 Domtar Paper Company, Llc Tissues and paper towels incorporating surface enhanced pulp fibers and methods of making the same
US12116732B2 (en) 2019-09-23 2024-10-15 Domtar Paper Company, Llc Paper products incorporating surface enhanced pulp fibers and having decoupled wet and dry strengths and methods of making the same
WO2024218566A1 (en) 2023-04-21 2024-10-24 Fiberlean Technologies Limited Barrier layers comprising nanocellulose onto the surface of paper or paperboard substrates at the wet end of a papermaking process

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI124724B (en) 2009-02-13 2014-12-31 Upm Kymmene Oyj A process for preparing modified cellulose
GB0908401D0 (en) 2009-05-15 2009-06-24 Imerys Minerals Ltd Paper filler composition
FI125818B (en) * 2009-06-08 2016-02-29 Upm Kymmene Corp Method for making paper
US20120237761A1 (en) * 2009-11-24 2012-09-20 Kao Corporation Membrane structure, process for making membrane structure, and aqueous dispersion for forming membrane structure
US8974634B2 (en) * 2009-12-01 2015-03-10 Nippon Paper Industries Co., Ltd. Cellulose nanofibers
US20130000856A1 (en) * 2010-03-15 2013-01-03 Upm-Kymmene Oyj Method for improving the properties of a paper product and forming an additive component and the corresponding paper product and additive component and use of the additive component
FI123869B (en) * 2010-04-07 2013-11-29 Teknologian Tutkimuskeskus Vtt Process for producing paint or varnish
GB201019288D0 (en) * 2010-11-15 2010-12-29 Imerys Minerals Ltd Compositions
WO2012115590A1 (en) 2011-02-24 2012-08-30 Innventia Ab Single-step method for production of nano pulp by acceleration and disintegration of raw material
MX343378B (en) * 2011-06-03 2016-11-03 Omya Int Ag Process for manufacturing coated substrates.
HUE028506T2 (en) * 2011-06-03 2016-12-28 Omya Int Ag Process for manufacturing coated substrates
SE536780C2 (en) * 2011-10-26 2014-08-05 Stora Enso Oyj Process for preparing a dispersion comprising nanoparticles and a dispersion prepared according to the process
US10731298B2 (en) 2012-06-15 2020-08-04 University Of Maine System Board Of Trustees Release paper and method of manufacture
CN102720087B (en) * 2012-06-15 2016-05-11 金东纸业(江苏)股份有限公司 The preparation method of slurry, slurry and the paper being made by it
US9359678B2 (en) 2012-07-04 2016-06-07 Nanohibitor Technology Inc. Use of charged cellulose nanocrystals for corrosion inhibition and a corrosion inhibiting composition comprising the same
US9222174B2 (en) 2013-07-03 2015-12-29 Nanohibitor Technology Inc. Corrosion inhibitor comprising cellulose nanocrystals and cellulose nanocrystals in combination with a corrosion inhibitor
KR102058518B1 (en) * 2012-07-13 2019-12-23 사피 네덜란드 서비시즈 비.브이. Low Energy Method for the Preparation of non-derivatized Nanocellulose
FI127817B (en) * 2012-08-21 2019-03-15 Upm Kymmene Corp Method for making paper product and paper product
FR2994983B1 (en) * 2012-08-30 2015-03-13 Inst Polytechnique Grenoble PAPER SUPPORT OPACIFICATION LAYER
SE538243C2 (en) 2012-11-09 2016-04-12 Stora Enso Oyj Process for forming and then drying a composite material comprising a microfibrillated cellulose
JP5884722B2 (en) * 2012-12-21 2016-03-15 王子ホールディングス株式会社 Method for producing fine cellulose fiber dispersion
CA2906283C (en) * 2013-03-15 2024-06-25 Imerys Minerals Limited Process for treating microfibrillated cellulose
US20150072581A1 (en) * 2013-09-11 2015-03-12 Empire Technology Development Llc Nanocellulose Composites and Methods for their Preparation and Use
JP6345925B2 (en) * 2013-10-03 2018-06-20 中越パルプ工業株式会社 Nanocomposite and method for producing nanocomposite
AT515174B1 (en) * 2013-10-15 2019-05-15 Chemiefaser Lenzing Ag Cellulose suspension, process for its preparation and use
SE538770C2 (en) * 2014-05-08 2016-11-15 Stora Enso Oyj Process for making a thermoplastic fiber composite material and a fabric
IL232719A0 (en) * 2014-05-20 2014-08-31 Yissum Res Dev Co Use of nano crystalline cellulose in construction applications
PL230426B1 (en) * 2014-07-23 2018-10-31 Inst Biopolimerow I Wlokien Chemicznych Method for producing nanofibres from the stems of annual plants
US9970159B2 (en) 2014-12-31 2018-05-15 Innovatech Engineering, LLC Manufacture of hydrated nanocellulose sheets for use as a dermatological treatment
US9816230B2 (en) * 2014-12-31 2017-11-14 Innovatech Engineering, LLC Formation of hydrated nanocellulose sheets with or without a binder for the use as a dermatological treatment
SE540016E (en) 2015-08-27 2021-03-16 Stora Enso Oyj Method and apparatus for producing microfibrillated cellulose fiber
CN105220566A (en) * 2015-09-30 2016-01-06 江苏琛亚印材科技有限公司 List in a kind of paper printing is coated with the back of the body and is coated with emulsion and preparation method thereof
CN105421131B (en) * 2015-10-30 2017-05-10 重庆市南川区金鑫纸业有限公司 Pulping method for inner core layer of paper pulp
EP3176321A1 (en) * 2015-12-04 2017-06-07 SAPPI Netherlands Services B.V. Process to reduce the overall energy consumption in the production of nanocellulose
PT3400333T (en) 2016-01-05 2020-06-30 Stora Enso Oyj Method for forming a composite comprising mfc and a composite produced by the method
JP6699014B2 (en) * 2016-02-16 2020-05-27 モリマシナリー株式会社 Manufacturing method of resin material reinforcing material, manufacturing method of fiber reinforced resin material, and resin material reinforcing material
BR112018069538B1 (en) 2016-04-05 2023-01-17 Fiberlean Technologies Limited PAPER OR CARDBOARD PRODUCT AND METHOD OF MANUFACTURING A PAPER OR CARDBOARD PRODUCT
US11846072B2 (en) 2016-04-05 2023-12-19 Fiberlean Technologies Limited Process of making paper and paperboard products
KR102137795B1 (en) 2016-04-22 2020-08-14 파이버린 테크놀로지스 리미티드 Fibers containing microfibrous cellulose and methods for producing fibers and non-woven materials prepared therefrom
JP6836029B2 (en) * 2016-05-18 2021-02-24 マーブルワークス株式会社 Natural stone plate material and its processing method
US10463205B2 (en) 2016-07-01 2019-11-05 Mercer International Inc. Process for making tissue or towel products comprising nanofilaments
US10724173B2 (en) 2016-07-01 2020-07-28 Mercer International, Inc. Multi-density tissue towel products comprising high-aspect-ratio cellulose filaments
US10570261B2 (en) * 2016-07-01 2020-02-25 Mercer International Inc. Process for making tissue or towel products comprising nanofilaments
CN110139961B (en) 2016-09-19 2023-01-06 美世国际有限公司 Absorbent paper products having unique physical strength properties
FR3059345B1 (en) * 2016-11-29 2020-06-12 Centre Technique De L'industrie, Des Papiers, Cartons Et Celluloses BINDING COMPOSITION BASED ON VEGETABLE FIBERS AND MINERAL FILLERS, ITS PREPARATION AND ITS USE
CN111183032B (en) * 2017-08-14 2023-07-04 宝丽格公司 Microfibrillated cellulose as rheology modifier in adhesives
KR102437217B1 (en) * 2018-02-08 2022-08-26 주식회사 엘지화학 Method for manufacturing cellulose nanofiber
SE543549C2 (en) * 2018-03-02 2021-03-23 Stora Enso Oyj Method for manufacturing a composition comprising microfibrillated cellulose
JP7273058B2 (en) 2018-04-12 2023-05-12 マーサー インターナショナル インコーポレイテッド Methods for improving high aspect ratio cellulose filament blends
RU2692349C1 (en) * 2018-09-07 2019-06-24 федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Method of producing cellulose-containing gel
PT115074B (en) 2018-10-10 2020-10-26 The Navigator Company, S.A. MINERAL LOAD FLAKES CONJUGATED WITH MICROFIBRILLES AND CELLULOSE NANOFIBRILLES FOR APPLICATION IN THE PRODUCTION OF PAPER MATERIAL WITH IMPROVED PAPER PROPERTIES
JP6836252B2 (en) * 2019-04-07 2021-02-24 株式会社ワンウィル Water-based paint
SE543616C2 (en) * 2019-06-17 2021-04-20 Stora Enso Oyj A method to produce a fibrous product comprising microfibrillated cellulose
FR3100038B1 (en) 2019-08-21 2022-01-28 Kadant Lamort METHOD FOR PREPARING FUNCTIONALIZED CELLULOSE FIBERS
CN111253810A (en) * 2020-04-02 2020-06-09 杭州蓝田涂料有限公司 Water-based inorganic floor coating and preparation method thereof
MX2023002583A (en) * 2020-09-11 2023-03-13 Fiberlean Tech Ltd Filler compositions comprising microfibrillated cellulose and microporous inorganic particulate material composites for paper and paperboard application with improved mechanical properties.
BR112023025737A2 (en) 2021-06-09 2024-02-27 Soane Mat Llc ARTICLES OF MANUFACTURING COMPRISING NANOCELLULOSE ELEMENTS
CN113549375A (en) * 2021-08-10 2021-10-26 北京城建智投建设集团有限公司 Novel coating without formaldehyde and preparation method thereof
IT202200026532A1 (en) * 2022-12-22 2024-06-22 Lucense S C A R L PAPER PRODUCTION MIXTURE, ESPECIALLY FOR RECYCLED PAPER AND ITS MANUFACTURING PROCEDURE

Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2169473A (en) * 1935-02-08 1939-08-15 Cellulose Res Corp Method of producing cellulose pulp
GB663621A (en) 1943-07-31 1951-12-27 Anglo Internat Ind Ltd Method of preparing a hydrophilic cellulose gel
US2583548A (en) * 1948-03-17 1952-01-29 Vanderbilt Co R T Production of pigmented cellulosic pulp
US3730830A (en) 1971-11-24 1973-05-01 Eastman Kodak Co Process for making paper
US3794558A (en) 1969-06-19 1974-02-26 Crown Zellerbach Corp Loading of paper furnishes with gelatinizable material
US4087317A (en) 1975-08-04 1978-05-02 Eucatex S.A. Industria E Comercio High yield, low cost cellulosic pulp and hydrated gels therefrom
US4374702A (en) 1979-12-26 1983-02-22 International Telephone And Telegraph Corporation Microfibrillated cellulose
US4426258A (en) * 1981-03-06 1984-01-17 Courtaulds Limited Drying wood pulp in the presence of an alkali metal sulphite
US4474949A (en) 1983-05-06 1984-10-02 Personal Products Company Freeze dried microfibrilar cellulose
US4481077A (en) 1983-03-28 1984-11-06 International Telephone And Telegraph Corporation Process for preparing microfibrillated cellulose
US4481076A (en) 1983-03-28 1984-11-06 International Telephone And Telegraph Corporation Redispersible microfibrillated cellulose
US4495245A (en) 1983-07-14 1985-01-22 E. I. Du Pont De Nemours And Company Inorganic fillers modified with vinyl alcohol polymer and cationic melamine-formaldehyde resin
US4952278A (en) 1989-06-02 1990-08-28 The Procter & Gamble Cellulose Company High opacity paper containing expanded fiber and mineral pigment
US5156719A (en) * 1990-03-09 1992-10-20 Pfizer Inc. Acid-stabilized calcium carbonate, process for its production and method for its use in the manufacture of acidic paper
US5531821A (en) 1995-08-24 1996-07-02 Ecc International Inc. Surface modified calcium carbonate composition and uses therefor
EP0726356A1 (en) 1995-02-08 1996-08-14 Generale Sucriere Microfibrillated cellulose and process for making the same from vegetable pulps having primary walls, especially from sugar beet pulp
JPH10237220A (en) 1996-12-24 1998-09-08 Asahi Chem Ind Co Ltd Aqueous suspension composition and water-dispersible dry composition
WO1998056860A1 (en) * 1997-06-12 1998-12-17 Ecc International Inc. Filler composition for groundwood-containing grades of paper
EP0949294A1 (en) 1996-12-24 1999-10-13 Asahi Kasei Kogyo Kabushiki Kaisha Aqueous suspension composition and water-dispersible dry composition
US6074524A (en) 1996-10-23 2000-06-13 Weyerhaeuser Company Readily defibered pulp products
US6159335A (en) 1997-02-21 2000-12-12 Buckeye Technologies Inc. Method for treating pulp to reduce disintegration energy
US6183596B1 (en) 1995-04-07 2001-02-06 Tokushu Paper Mfg. Co., Ltd. Super microfibrillated cellulose, process for producing the same, and coated paper and tinted paper using the same
US20010045264A1 (en) 2000-05-26 2001-11-29 Jorg Rheims Process and a fluffer device for treatment of a fiber stock suspension
US6436232B1 (en) 1996-02-20 2002-08-20 M-Real Oyj. Procedure for adding a filler into a pulp based on cellulose fibers
US6468393B1 (en) 1994-05-07 2002-10-22 Arjo Wiggins Fine Papers Limited Patterned paper
WO2002090651A1 (en) 2001-05-08 2002-11-14 Alpha Calcit Füllstoff Gesellschaft Mbh Method for recycling pulp rejects
EP0852588B1 (en) 1995-09-29 2003-01-08 Rhodia Chimie Surface-modified cellulose microfibrils, method for making same, and use thereof as a filler in composite materials
WO2003033815A2 (en) 2001-10-17 2003-04-24 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cellulosic products containing calcium carbonate filler
US20040108081A1 (en) 2002-12-09 2004-06-10 Specialty Minerals (Michigan) Inc. Filler-fiber composite
US20040131854A1 (en) 2001-04-24 2004-07-08 Outi Aho Filler and a process for the production thereof
CA2437616A1 (en) 2003-08-04 2005-02-04 Mohini M. Sain Manufacturing of nano-fibrils from natural fibres, agro based fibres and root fibres
US20050116010A1 (en) 2002-03-25 2005-06-02 Lars Gronroos Fibrous web and process for the production thereof
EP1538257A1 (en) 2002-07-18 2005-06-08 Japan Absorbent Technology Institute Method and apparatus for producing microfibrillated cellulose
TW200609278A (en) 2004-05-25 2006-03-16 Hokuetsu Paper Mills Sheet-like nonflammable molded form
JP2007262594A (en) 2006-03-27 2007-10-11 Kimura Chem Plants Co Ltd Functional cellulosic material high in functional particle content and method for producing the same
US20080023161A1 (en) 2004-12-14 2008-01-31 Reinhard Gather Method and apparatus for loading fibers or cellulose which are contained in a suspension with a filler
US20080060774A1 (en) 2006-09-12 2008-03-13 Zuraw Paul J Paperboard containing microplatelet cellulose particles
US20080146701A1 (en) 2003-10-22 2008-06-19 Sain Mohini M Manufacturing process of cellulose nanofibers from renewable feed stocks
US7462232B2 (en) 2002-05-14 2008-12-09 Fmc Corporation Microcrystalline cellulose compositions
WO2010015726A1 (en) 2008-08-04 2010-02-11 Teknillinen Korkeakoulu Engineered composite product and method of making the same
WO2010092239A1 (en) 2009-02-13 2010-08-19 Upm-Kymmene Oyj A method for producing modified cellulose
EP2236664A1 (en) 2009-03-30 2010-10-06 Omya Development AG Process for the production of nano-fibrillar cellulose suspensions
EP2236545A1 (en) 2009-03-30 2010-10-06 Omya Development AG Process for the production of nano-fibrillar cellulose gels
US20100272980A1 (en) 2007-12-21 2010-10-28 Mitsubishi Chemical Corporation Fiber composite
US20100272938A1 (en) 2009-04-22 2010-10-28 Bemis Company, Inc. Hydraulically-Formed Nonwoven Sheet with Microfibers
WO2010131016A2 (en) 2009-05-15 2010-11-18 Imerys Minerals Limited Paper filler composition
WO2011134939A1 (en) 2010-04-27 2011-11-03 Omya Development Ag Process for the manufacture of structured materials using nano-fibrillar cellulose gels
WO2011134938A1 (en) 2010-04-27 2011-11-03 Omya Development Ag Process for the production of gel-based composite materials
US20110277947A1 (en) 2010-05-11 2011-11-17 Fpinnovations Cellulose nanofilaments and method to produce same
US20120125547A1 (en) 2009-06-12 2012-05-24 Mitsubishi Chemical Corporation Modified cellulose fibers and cellulose composite thereof
US20120132383A1 (en) 2009-04-29 2012-05-31 Upm-Kymmene Corporation Method for producing furnish, furnish and paper
US20120216718A1 (en) 2009-11-16 2012-08-30 Lars Berglund Strong Nanopaper
US20120277351A1 (en) 2009-12-01 2012-11-01 Nippon Paper Industries Co., Ltd. Cellulose nanofibers
US20120318471A1 (en) 2010-02-10 2012-12-20 Tarja Turkki Process for the preparation of a pigment-fibre composite
US20130053454A1 (en) 2010-05-12 2013-02-28 Stora Enso Oyj Process for the production of a composition comprising fibrillated cellulose and a composition
US20130133848A1 (en) 2008-06-17 2013-05-30 Akzo Nobel N.V. Cellulosic product
US20130180680A1 (en) 2010-09-22 2013-07-18 Stora Enso Oyj Paper or paperboard product and a process for production of a paper or paperboard product
US20130284387A1 (en) 2010-11-16 2013-10-31 Oji Holdings Corporation Cellulose Fiber Assembly and Method for Preparing the Same, Fibrillated Cellulose Fibers and Method for Preparing the Same, and Cellulose Fiber Composite
US20130345416A1 (en) 2011-02-10 2013-12-26 Upm-Kymmene Corporation Method for processing nanofibrillar cellulose and product obtained by the method
US20140058077A1 (en) 2011-02-10 2014-02-27 Upm-Kymmene Corporation Method for fabricating fiber products and composites

Family Cites Families (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US168783A (en) 1875-10-11 Improvement in gasoline-burners
US57307A (en) 1866-08-21 Improved fabric to be used as a substitute for japanned leather
US1538257A (en) 1921-09-22 1925-05-19 Norbert L Obrecht Buffer for automobiles
US2006209A (en) 1933-05-25 1935-06-25 Champion Coated Paper Company Dull finish coated paper
US3075710A (en) 1960-07-18 1963-01-29 Ignatz L Feld Process for wet grinding solids to extreme fineness
DE2151445A1 (en) 1970-11-03 1972-05-04 Tamag Basel Ag Process for processing tobacco substitute plant parts to form a tobacco substitute film
US3765921A (en) 1972-03-13 1973-10-16 Engelhard Min & Chem Production of calcined clay pigment from paper wastes
SU499366A1 (en) 1972-10-23 1976-01-15 Всесоюзное научно-производственное объединение целлюлозно-бумажной промышленности The method of grinding fibrous materials
IT1001664B (en) 1973-11-08 1976-04-30 Sir Soc Italiana Resine Spa MICROFIBROUS PRODUCT SUITABLE FOR ES SERE USED IN THE PRODUCTION OF SYNTHETIC CARDS AND RELATED PROCESS OF PREPARATION
US3921581A (en) 1974-08-01 1975-11-25 Star Kist Foods Fragrant animal litter and additives therefor
US4026762A (en) 1975-05-14 1977-05-31 P. H. Glatfelter Co. Use of ground limestone as a filler in paper
FI54818C (en) 1977-04-19 1979-03-12 Valmet Oy FOERFARANDE FOER FOERBAETTRING AV EN THERMOMECHANICAL MASS EGENSKAPER
DE2831633C2 (en) 1978-07-19 1984-08-09 Kataflox Patentverwaltungs-Gesellschaft mbH, 7500 Karlsruhe Process for the production of a fire protection agent
JPS5581548A (en) 1978-12-13 1980-06-19 Kuraray Co Ltd Bundle of fine fiber and their preparation
US4229250A (en) 1979-02-28 1980-10-21 Valmet Oy Method of improving properties of mechanical paper pulp without chemical reaction therewith
US4318959A (en) 1979-07-03 1982-03-09 Evans Robert M Low-modulus polyurethane joint sealant
US4460737A (en) 1979-07-03 1984-07-17 Rpm, Inc. Polyurethane joint sealing for building structures
US4356060A (en) 1979-09-12 1982-10-26 Neckermann Edwin F Insulating and filler material comprising cellulose fibers and clay, and method of making same from paper-making waste
DE3015250C2 (en) 1980-04-21 1982-06-09 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Method and device for processing mineral fiber scrap of various types, in particular with regard to its organic components
US4510020A (en) 1980-06-12 1985-04-09 Pulp And Paper Research Institute Of Canada Lumen-loaded paper pulp, its production and use
US4464287A (en) 1980-10-31 1984-08-07 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4452721A (en) 1980-10-31 1984-06-05 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4487634A (en) 1980-10-31 1984-12-11 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4378381A (en) 1980-10-31 1983-03-29 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4500546A (en) 1980-10-31 1985-02-19 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4341807A (en) 1980-10-31 1982-07-27 International Telephone And Telegraph Corporation Food products containing microfibrillated cellulose
US4452722A (en) 1980-10-31 1984-06-05 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
EP0051230B1 (en) 1980-10-31 1984-07-04 Deutsche ITT Industries GmbH Suspensions containing microfibrillated cullulose, and process for their preparation
NL190422C (en) 1981-06-15 1994-02-16 Itt Microfibre Fibrillated Cellulose, Process for its Preparation, and Paper Product Containing Such Microfibrillated Cellulose.
CH648071A5 (en) 1981-06-15 1985-02-28 Itt Micro-fibrillated cellulose and process for producing it
CN1028660C (en) 1984-09-17 1995-05-31 埃尔塔克系统公司 Inorganic-polymer composite fiber and its production and use
US4744987A (en) 1985-03-08 1988-05-17 Fmc Corporation Coprocessed microcrystalline cellulose and calcium carbonate composition and its preparation
GB8508431D0 (en) 1985-04-01 1985-05-09 English Clays Lovering Pochin Paper coating apparatus
US5104411A (en) 1985-07-22 1992-04-14 Mcneil-Ppc, Inc. Freeze dried, cross-linked microfibrillated cellulose
US4820813A (en) 1986-05-01 1989-04-11 The Dow Chemical Company Grinding process for high viscosity cellulose ethers
US4705712A (en) 1986-08-11 1987-11-10 Chicopee Corporation Operating room gown and drape fabric with improved repellent properties
SE455795B (en) 1986-12-03 1988-08-08 Mo Och Domsjoe Ab PROCEDURE AND DEVICE FOR PREPARING FILLING PAPER
US4761203A (en) 1986-12-29 1988-08-02 The Buckeye Cellulose Corporation Process for making expanded fiber
US5244542A (en) 1987-01-23 1993-09-14 Ecc International Limited Aqueous suspensions of calcium-containing fillers
JP2528487B2 (en) 1987-12-10 1996-08-28 日本製紙株式会社 Method for producing pulp having improved filler yield and method for producing paper
US5227024A (en) 1987-12-14 1993-07-13 Daniel Gomez Low density material containing a vegetable filler
JP2874161B2 (en) 1988-01-27 1999-03-24 トヨタ自動車株式会社 Fuel injection rate control device for diesel engine
US4983258A (en) 1988-10-03 1991-01-08 Prime Fiber Corporation Conversion of pulp and paper mill waste solids to papermaking pulp
JP2645575B2 (en) * 1988-10-12 1997-08-25 三菱製紙株式会社 Coated paper for printing
FR2647128B1 (en) 1989-05-18 1991-12-27 Aussedat Rey PROCESS FOR PRODUCING A PLANAR, FIBROUS, FLEXIBLE, DIFFICULTLY TEARABLE SUBSTRATE AND SUBSTRATE OBTAINED
JPH0611793B2 (en) 1989-08-17 1994-02-16 旭化成工業株式会社 Suspension of micronized cellulosic material and method for producing the same
US5009886A (en) 1989-10-02 1991-04-23 Floss Products Corporation Dentifrice
US5279663A (en) 1989-10-12 1994-01-18 Industrial Progesss, Inc. Low-refractive-index aggregate pigments products
US5312484A (en) 1989-10-12 1994-05-17 Industrial Progress, Inc. TiO2 -containing composite pigment products
US5228900A (en) 1990-04-20 1993-07-20 Weyerhaeuser Company Agglomeration of particulate materials with reticulated cellulose
JP2976485B2 (en) 1990-05-02 1999-11-10 王子製紙株式会社 Method for producing fine fiberized pulp
US5274199A (en) 1990-05-18 1993-12-28 Sony Corporation Acoustic diaphragm and method for producing same
JP3082927B2 (en) 1990-07-25 2000-09-04 旭化成工業株式会社 Contact lens cleaning cleaner
US5316621A (en) 1990-10-19 1994-05-31 Kanzaki Paper Mfg. Co., Ltd. Method of pulping waste pressure-sensitive adhesive paper
JP2940563B2 (en) 1990-12-25 1999-08-25 日本ピー・エム・シー株式会社 Refining aid and refining method
US5098520A (en) 1991-01-25 1992-03-24 Nalco Chemcial Company Papermaking process with improved retention and drainage
GB9101965D0 (en) 1991-01-30 1991-03-13 Sandoz Ltd Improvements in or relating to organic compounds
FR2672315B1 (en) 1991-01-31 1996-06-07 Hoechst France NEW PROCESS FOR REFINING PAPER PULP.
US5223090A (en) 1991-03-06 1993-06-29 The United States Of America As Represented By The Secretary Of Agriculture Method for fiber loading a chemical compound
MX9203903A (en) 1991-07-02 1993-01-01 Du Pont FIBRID THICKENERS AND THE PROCESS FOR THEIR MANUFACTURE.
JPH0598589A (en) 1991-10-01 1993-04-20 Oji Paper Co Ltd Production of finely ground fibrous material from cellulose particle
US5290830A (en) * 1991-11-06 1994-03-01 The Goodyear Tire And Rubber Company Reticulated bacterial cellulose reinforcement for elastomers
DE4202598C1 (en) 1992-01-30 1993-09-02 Stora Feldmuehle Ag, 4000 Duesseldorf, De
US5240561A (en) 1992-02-10 1993-08-31 Industrial Progress, Inc. Acid-to-alkaline papermaking process
FR2689530B1 (en) 1992-04-07 1996-12-13 Aussedat Rey NEW COMPLEX PRODUCT BASED ON FIBERS AND FILLERS, AND METHOD FOR MANUFACTURING SUCH A NEW PRODUCT.
US5510041A (en) 1992-07-16 1996-04-23 Sonnino; Maddalena Process for producing an organic material with high flame-extinguishing power, and product obtained thereby
WO1994004745A1 (en) 1992-08-12 1994-03-03 International Technology Management Associates, Ltd. Algal pulps and pre-puls and paper products made therefrom
SE501216C2 (en) * 1992-08-31 1994-12-12 Eka Nobel Ab Aqueous, stable suspension of colloidal particles and their preparation and use
JPH06240588A (en) 1993-02-17 1994-08-30 Teijin Ltd Cationic dyeing of meta-type aramide fiber
GB2275876B (en) 1993-03-12 1996-07-17 Ecc Int Ltd Grinding alkaline earth metal pigments
DE4311488A1 (en) 1993-04-07 1994-10-13 Sued Chemie Ag Process for the preparation of sorbents based on cellulose fibers, comminuted wood material and clay minerals
US5496934A (en) 1993-04-14 1996-03-05 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nucleic acids encoding a cellulose binding domain
DE4312463C1 (en) 1993-04-16 1994-07-28 Pluss Stauffer Ag CaCO3 3 -Talkum coating pigment slurry, process for its preparation and its use
US5487419A (en) 1993-07-09 1996-01-30 Microcell, Inc. Redispersible microdenominated cellulose
US5385640A (en) 1993-07-09 1995-01-31 Microcell, Inc. Process for making microdenominated cellulose
US5443902A (en) 1994-01-31 1995-08-22 Westvaco Corporation Postforming decorative laminates
US5837376A (en) 1994-01-31 1998-11-17 Westvaco Corporation Postforming decorative laminates
KR100256636B1 (en) * 1994-04-12 2000-05-15 김충섭 Manufacturing method for improving the amount of fillers and reinforcing the strength of scott internal interrity in paper
JP3421446B2 (en) 1994-09-08 2003-06-30 特種製紙株式会社 Method for producing powder-containing paper
JP2967804B2 (en) * 1995-04-07 1999-10-25 特種製紙株式会社 Ultrafine fibrillated cellulose, method for producing the same, method for producing coated paper using ultrafine fibrillated cellulose, and method for producing dyed paper
US5840320A (en) 1995-10-25 1998-11-24 Amcol International Corporation Method of applying magnesium-rich calcium montmorillonite to skin for oil and organic compound sorption
JPH09124702A (en) 1995-11-02 1997-05-13 Nisshinbo Ind Inc Production of alkali-soluble cellulose
DE19543310C2 (en) 1995-11-21 2000-03-23 Herzog Stefan Process for the preparation of an organic thickening and suspension aid
DE19601245A1 (en) 1996-01-16 1997-07-17 Haindl Papier Gmbh Roller printing paper with coldset suitability and method for its production
EP0790135A3 (en) 1996-01-16 1998-12-09 Haindl Papier Gmbh Method of preparing a print-support for contactless ink-jet printing process, paper prepared by this process and use thereof
JP3634488B2 (en) 1996-02-16 2005-03-30 大日本印刷株式会社 Thermal transfer image receiving sheet
DE19627553A1 (en) 1996-07-09 1998-01-15 Basf Ag Process for the production of paper and cardboard
US6117305A (en) 1996-07-12 2000-09-12 Jgc Corporation Method of producing water slurry of SDA asphaltene
SK3599A3 (en) 1996-07-15 2000-04-10 Rhodia Chimie Sa Composition containing cellulose nanofibrils, the preparation method thereof, an aqueous suspension containing cellulose nanofibrils and the use of this composition and suspension
US6306334B1 (en) 1996-08-23 2001-10-23 The Weyerhaeuser Company Process for melt blowing continuous lyocell fibers
AT405847B (en) 1996-09-16 1999-11-25 Zellform Ges M B H METHOD FOR PRODUCING BLANKS OR SHAPED BODIES FROM CELLULOSE FIBERS
US6083317A (en) * 1996-11-05 2000-07-04 Imerys Pigments, Inc. Stabilized calcium carbonate composition using sodium silicate and one or more weak acids or alum and uses therefor
US6083582A (en) 1996-11-13 2000-07-04 Regents Of The University Of Minnesota Cellulose fiber based compositions and film and the process for their manufacture
US5817381A (en) 1996-11-13 1998-10-06 Agricultural Utilization Research Institute Cellulose fiber based compositions and film and the process for their manufacture
ATE349885T1 (en) 1996-11-19 2007-01-15 Extenday Ip Ltd PLANT TREATMENT SUBSTANCE AND METHOD OF USE
JPH10158303A (en) 1996-11-28 1998-06-16 Bio Polymer Res:Kk Alkali solution or gelled product of fine fibrous cellulose
FI105112B (en) * 1997-01-03 2000-06-15 Megatrex Oy Method and apparatus for defibrating fibrous material
US6037380A (en) 1997-04-11 2000-03-14 Fmc Corporation Ultra-fine microcrystalline cellulose compositions and process
US6117804A (en) 1997-04-29 2000-09-12 Han Il Mulsan Co., Ltd. Process for making a mineral powder useful for fiber manufacture
US20020031592A1 (en) 1999-11-23 2002-03-14 Michael K. Weibel Method for making reduced calorie cultured cheese products
WO1998055693A1 (en) 1997-06-04 1998-12-10 Pulp And Paper Research Institute Of Canada Dendrimeric polymers for the production of paper and board
CN1086189C (en) 1997-06-12 2002-06-12 食品机械和化工公司 Ultra-fine microcrystalline cellulose compositions and process for their manufacture
JP2002515936A (en) 1997-06-12 2002-05-28 エフエムシー コーポレイション Ultrafine microcrystalline cellulose composition and process for its production
EP1002059B1 (en) 1997-07-04 2007-12-26 Novozymes A/S Endo-beta-1,4-glucanases from saccharothrix
SE510506C2 (en) * 1997-07-09 1999-05-31 Assidomaen Ab Kraft paper and process for making this and valve bag
US6579410B1 (en) 1997-07-14 2003-06-17 Imerys Minerals Limited Pigment materials and their preparation and use
JP3948071B2 (en) * 1997-09-12 2007-07-25 王子製紙株式会社 Water-decomposable nonwoven fabric and method for producing the same
FR2768620B1 (en) 1997-09-22 2000-05-05 Rhodia Chimie Sa ORAL FORMULATION COMPRISING ESSENTIALLY AMORPHOUS CELLULOSE NANOFIBRILLES
JP3478083B2 (en) * 1997-10-07 2003-12-10 特種製紙株式会社 Method for producing fine fibrillated cellulose
FI106140B (en) 1997-11-21 2000-11-30 Metsae Serla Oyj Filler used in papermaking and process for its manufacture
FI108238B (en) 1998-02-09 2001-12-14 Metsae Serla Oyj Fine material to be used in papermaking, process for making it and pulp and paper containing the fine material
FR2774702B1 (en) 1998-02-11 2000-03-31 Rhodia Chimie Sa ASSOCIATION BASED ON MICROFIBRILLES AND MINERAL PARTICLES PREPARATION AND USES
JPH11269769A (en) 1998-03-19 1999-10-05 Toray Ind Inc Waterproof cloth
WO1999049133A1 (en) 1998-03-23 1999-09-30 Pulp And Paper Research Institute Of Canada Method for producing pulp and paper with calcium carbonate filler
WO1999054045A1 (en) 1998-04-16 1999-10-28 Megatrex Oy Method and apparatus for processing pulp stock derived from a pulp or paper mill
US20040146605A1 (en) 1998-05-11 2004-07-29 Weibel Michael K Compositions and methods for improving curd yield of coagulated milk products
JP2981555B1 (en) 1998-12-10 1999-11-22 農林水産省蚕糸・昆虫農業技術研究所長 Protein microfibril, method for producing the same, and composite material
US6726807B1 (en) 1999-08-26 2004-04-27 G.R. International, Inc. (A Washington Corporation) Multi-phase calcium silicate hydrates, methods for their preparation, and improved paper and pigment products produced therewith
JP2001205216A (en) * 2000-01-24 2001-07-31 Nuclear Fuel Ind Ltd Processing method for removing hardly decomposable organic halide
WO2001066600A1 (en) 2000-03-09 2001-09-13 Hercules Incorporated Stabilized microfibrillar cellulose
DE10115941B4 (en) 2000-04-04 2006-07-27 Mi Soo Seok Process for the production of fibers with functional mineral powder and fibers made therefrom
CN2437616Y (en) * 2000-04-19 2001-07-04 深圳市新海鸿实业有限公司 Iron barrel with antiforging cover having seal ring
WO2001085345A1 (en) 2000-05-10 2001-11-15 Rtp Pharma Inc. Media milling
WO2001098231A1 (en) 2000-06-23 2001-12-27 Kabushiki Kaisha Toho Material Concrete material for greening
WO2002028795A2 (en) 2000-10-04 2002-04-11 James Hardie Research Pty Limited Fiber cement composite materials using sized cellulose fibers
US6787497B2 (en) 2000-10-06 2004-09-07 Akzo Nobel N.V. Chemical product and process
US20020095892A1 (en) 2001-01-09 2002-07-25 Johnson Charles O. Cantilevered structural support
US7048900B2 (en) 2001-01-31 2006-05-23 G.R. International, Inc. Method and apparatus for production of precipitated calcium carbonate and silicate compounds in common process equipment
US20060201646A1 (en) 2001-03-14 2006-09-14 Savicell Spa Aqueous suspension providing high opacity to paper
DE10115421A1 (en) 2001-03-29 2002-10-02 Voith Paper Patent Gmbh Process and preparation of pulp
FI117870B (en) 2001-04-24 2011-06-27 M Real Oyj Coated fiber web and method of making it
FI117873B (en) 2001-04-24 2007-03-30 M Real Oyj Fiber web and method of making it
US20020198293A1 (en) 2001-06-11 2002-12-26 Craun Gary P. Ambient dry paints containing finely milled cellulose particles
FR2831565B1 (en) 2001-10-30 2004-03-12 Internat Paper Sa NOVEL BLANCHIE MECHANICAL PAPER PULP AND MANUFACTURING METHOD THEREOF
TWI238214B (en) 2001-11-16 2005-08-21 Du Pont Method of producing micropulp and micropulp made therefrom
JP3641690B2 (en) 2001-12-26 2005-04-27 関西ティー・エル・オー株式会社 High-strength material using cellulose microfibrils
JP2005517100A (en) 2002-02-02 2005-06-09 ボイス ペ−パ− パテント ゲ−エムベ−ハ− Method for preparing fibers contained in pulp suspension
FI20020521A0 (en) 2002-03-19 2002-03-19 Raisio Chem Oy Paper surface treatment composition and its use
AU2003263985A1 (en) 2002-08-15 2004-03-03 Donaldson Company, Inc. Polymeric microporous paper coating
SE0203743D0 (en) 2002-12-18 2002-12-18 Korsnaes Ab Publ Fiber suspension of enzyme treated sulphate pulp and carboxymethylcellulose for surface application in paperboard and paper production
JP3867117B2 (en) 2003-01-30 2007-01-10 兵庫県 Novel composite using flat cellulose particles
US7022756B2 (en) 2003-04-09 2006-04-04 Mill's Pride, Inc. Method of manufacturing composite board
US7497924B2 (en) 2003-05-14 2009-03-03 International Paper Company Surface treatment with texturized microcrystalline cellulose microfibrils for improved paper and paper board
US7037405B2 (en) 2003-05-14 2006-05-02 International Paper Company Surface treatment with texturized microcrystalline cellulose microfibrils for improved paper and paper board
FI119563B (en) 2003-07-15 2008-12-31 Fp Pigments Oy Process and apparatus for the pre-processing of fibrous materials for the production of paper, paperboard or other equivalent
DE10335751A1 (en) 2003-08-05 2005-03-03 Voith Paper Patent Gmbh Method for loading a pulp suspension and arrangement for carrying out the method
US6893492B2 (en) 2003-09-08 2005-05-17 The United States Of America As Represented By The Secretary Of Agriculture Nanocomposites of cellulose and clay
US7726592B2 (en) 2003-12-04 2010-06-01 Hercules Incorporated Process for increasing the refiner production rate and/or decreasing the specific energy of pulping wood
ES2630379T3 (en) 2003-12-22 2017-08-21 Akzo Nobel Chemicals International B.V. Loading material for a papermaking process
US20050256262A1 (en) 2004-03-08 2005-11-17 Alain Hill Coating or composite moulding or mastic composition comprising additives based on cellulose microfibrils
JP2005270891A (en) * 2004-03-26 2005-10-06 Tetsuo Kondo Wet crushing method of polysaccharide
WO2005100489A1 (en) 2004-04-13 2005-10-27 Kita-Boshi Pencil Co., Ltd. Liquid clay
EP1738019A1 (en) 2004-04-23 2007-01-03 Huntsman Advanced Materials (Switzerland) GmbH Method for dyeing or printing textile materials
BRPI0402485B1 (en) 2004-06-18 2012-07-10 composite containing plant fibers, industrial waste and mineral fillers and manufacturing process.
JP2006008857A (en) 2004-06-25 2006-01-12 Asahi Kasei Chemicals Corp Highly dispersible cellulose composition
SE530267C3 (en) 2004-07-19 2008-05-13 Add X Biotech Ab Degradable packaging of a polyolefin
CA2581361A1 (en) 2004-10-15 2006-04-20 Stora Enso Ab Process for producing a paper or board and a paper or board produced according to the process
US20080265222A1 (en) * 2004-11-03 2008-10-30 Alex Ozersky Cellulose-Containing Filling Material for Paper, Tissue, or Cardboard Products, Method for the Production Thereof, Paper, Tissue, or Carboard Product Containing Such a Filling Material, or Dry Mixture Used Therefor
EP1743976A1 (en) 2005-07-13 2007-01-17 SAPPI Netherlands Services B.V. Coated paper for offset printing
US20060266485A1 (en) 2005-05-24 2006-11-30 Knox David E Paper or paperboard having nanofiber layer and process for manufacturing same
FI122674B (en) 2005-06-23 2012-05-15 M Real Oyj A method for manufacturing a fiber web
US7700764B2 (en) 2005-06-28 2010-04-20 Akzo Nobel N.V. Method of preparing microfibrillar polysaccharide
WO2007006368A2 (en) 2005-07-12 2007-01-18 Voith Patent Gmbh Method for loading fibers contained in a pulp suspension
WO2007014161A2 (en) 2005-07-22 2007-02-01 Sustainable Solutions, Inc. Cotton fiber particulate and method of manufacture
WO2007069262A1 (en) 2005-12-14 2007-06-21 Hilaal Alam A method of producing nanoparticles and stirred media mill thereof
US20070148365A1 (en) 2005-12-28 2007-06-28 Knox David E Process and apparatus for coating paper
JP5419120B2 (en) 2006-02-02 2014-02-19 中越パルプ工業株式会社 Method for imparting water repellency and oil resistance using cellulose nanofibers
DE07709298T1 (en) 2006-02-08 2014-01-30 Stfi-Packforsk Ab Process for the preparation of microfibrillated cellulose
EP1987195B1 (en) 2006-02-23 2011-12-21 J. Rettenmaier & Söhne GmbH + Co. KG Base paper and production thereof
US8187421B2 (en) 2006-03-21 2012-05-29 Georgia-Pacific Consumer Products Lp Absorbent sheet incorporating regenerated cellulose microfiber
US7718036B2 (en) 2006-03-21 2010-05-18 Georgia Pacific Consumer Products Lp Absorbent sheet having regenerated cellulose microfiber network
US8187422B2 (en) 2006-03-21 2012-05-29 Georgia-Pacific Consumer Products Lp Disposable cellulosic wiper
GB0606080D0 (en) 2006-03-27 2006-05-03 Imerys Minerals Ltd Method for producing particulate calcium carbonate
US7790276B2 (en) 2006-03-31 2010-09-07 E. I. Du Pont De Nemours And Company Aramid filled polyimides having advantageous thermal expansion properties, and methods relating thereto
EP2014828B1 (en) 2006-04-21 2014-03-05 Nippon Paper Industries Co., Ltd. Cellulose-based fibrous material
DE102006029642B3 (en) * 2006-06-28 2008-02-28 Voith Patent Gmbh Method for loading a pulp suspension with filler
JP2008007899A (en) 2006-06-30 2008-01-17 Uchu Kankyo Kogaku Kenkyusho:Kk Information recording paper
WO2008008576A2 (en) 2006-07-13 2008-01-17 Meadwestvaco Corporation Selectively reinforced paperboard cartons
US8444808B2 (en) 2006-08-31 2013-05-21 Kx Industries, Lp Process for producing nanofibers
JP2008075214A (en) * 2006-09-21 2008-04-03 Kimura Chem Plants Co Ltd Method for producing nanofiber and nanofiber
WO2008063040A1 (en) 2006-11-21 2008-05-29 Fernandez Garcia Carlos Javier Method for premixing and addition of fibres in the dry state
JP2008150719A (en) * 2006-12-14 2008-07-03 Forestry & Forest Products Research Institute Cellulose nano-fiber and method for producing the same
EP1936032A1 (en) 2006-12-18 2008-06-25 Akzo Nobel N.V. Method of producing a paper product
WO2008076071A1 (en) 2006-12-21 2008-06-26 Akzo Nobel N.V. Process for the production of cellulosic product
JP2008169497A (en) 2007-01-10 2008-07-24 Kimura Chem Plants Co Ltd Method for producing nanofiber, and nanofiber
GB0702248D0 (en) 2007-02-05 2007-03-14 Ciba Sc Holding Ag Manufacture of Filled Paper
KR20100016267A (en) 2007-04-05 2010-02-12 아크조 노벨 엔.브이. Process for improving optical properties of paper
FI120651B (en) 2007-04-30 2010-01-15 Linde Ag A method of reducing energy consumption by grinding a pulp suspension in a paper-making process
EP2216345B1 (en) 2007-11-26 2014-07-02 The University of Tokyo Cellulose nanofiber, production method of same and cellulose nanofiber dispersion
DE102007059736A1 (en) 2007-12-12 2009-06-18 Omya Development Ag Surface mineralized organic fibers
JP5351417B2 (en) 2007-12-28 2013-11-27 日本製紙株式会社 Cellulose oxidation method, cellulose oxidation catalyst, and cellulose nanofiber production method
CN101952508B (en) 2008-03-31 2013-01-23 日本制纸株式会社 Additive for papermaking and paper containing the same
JP4981735B2 (en) 2008-03-31 2012-07-25 日本製紙株式会社 Method for producing cellulose nanofiber
BRPI0911075B1 (en) 2008-04-03 2019-04-09 Innventia Ab COMPOSITION FOR PRINTING PAPER COATING
SE0800807L (en) 2008-04-10 2009-10-11 Stfi Packforsk Ab New procedure
US7776807B2 (en) 2008-07-11 2010-08-17 Conopco, Inc. Liquid cleansing compositions comprising microfibrous cellulose suspending polymers
MX2008011629A (en) 2008-09-11 2009-08-18 Copamex S A De C V Anti-adhesive resistant to heat, grease and fracture, and process to manufacture the same.
FI122032B (en) 2008-10-03 2011-07-29 Teknologian Tutkimuskeskus Vtt Fiber product having a barrier layer and process for its preparation
MX2011003483A (en) 2008-11-28 2011-04-21 Kior Inc Comminution and densification of biomass particles.
EP2196579A1 (en) 2008-12-09 2010-06-16 Borregaard Industries Limited, Norge Method for producing microfibrillated cellulose
JP2010168716A (en) 2008-12-26 2010-08-05 Oji Paper Co Ltd Method of production of microfibrous cellulose sheet
JP2010202987A (en) 2009-02-27 2010-09-16 Asahi Kasei Corp Composite sheet material and method for producing the same
WO2010102802A1 (en) 2009-03-11 2010-09-16 Borregaard Industries Limited, Norge Method for drying microfibrilated cellulose
US8268391B2 (en) 2009-03-13 2012-09-18 Nanotech Industries, Inc. Biodegradable nano-composition for application of protective coatings onto natural materials
SE0950534A1 (en) 2009-07-07 2010-10-12 Stora Enso Oyj Method for producing microfibrillar cellulose
SE0950535A1 (en) 2009-07-07 2010-10-12 Stora Enso Oyj Method for producing microfibrillar cellulose
FI124142B (en) 2009-10-09 2014-03-31 Upm Kymmene Corp Process for precipitating calcium carbonate and xylan, a process-made product and its use
CA2777115C (en) 2009-10-20 2018-06-12 Basf Se Method for producing paper, paperboard and cardboard having high dry strength
SE0950819A1 (en) 2009-11-03 2011-05-04 Stora Enso Oyj A coated substrate, a process for producing a coated substrate, a package and a dispersion coating
EP2319984B1 (en) * 2009-11-04 2014-04-02 Kemira Oyj Process for production of paper
FI123289B (en) 2009-11-24 2013-01-31 Upm Kymmene Corp Process for the preparation of nanofibrillated cellulosic pulp and its use in papermaking or nanofibrillated cellulose composites
SE535014C2 (en) 2009-12-03 2012-03-13 Stora Enso Oyj A paper or paperboard product and a process for manufacturing a paper or paperboard product
SE536746C2 (en) 2010-05-12 2014-07-08 Stora Enso Oyj A composition containing microfibrillated cellulose and a process for making a composition
EP2395148A1 (en) 2010-06-11 2011-12-14 Voith Patent GmbH Method for producing a lined paper
GB201019288D0 (en) 2010-11-15 2010-12-29 Imerys Minerals Ltd Compositions
FI126513B (en) 2011-01-20 2017-01-13 Upm Kymmene Corp Method for improving strength and retention and paper product
US20160273165A1 (en) 2011-01-20 2016-09-22 Upm-Kymmene Corporation Method for improving strength and retention, and paper product
HUE028506T2 (en) 2011-06-03 2016-12-28 Omya Int Ag Process for manufacturing coated substrates
FI126041B (en) 2011-09-12 2016-06-15 Stora Enso Oyj Method for controlling retention and intermediate used in the process
GB201222285D0 (en) 2012-12-11 2013-01-23 Imerys Minerals Ltd Cellulose-derived compositions
FI124838B (en) 2013-04-12 2015-02-13 Upm Kymmene Corp Analytical method
GB2528487A (en) 2014-07-23 2016-01-27 Airbus Operations Ltd Apparatus and method for testing materials

Patent Citations (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2169473A (en) * 1935-02-08 1939-08-15 Cellulose Res Corp Method of producing cellulose pulp
GB663621A (en) 1943-07-31 1951-12-27 Anglo Internat Ind Ltd Method of preparing a hydrophilic cellulose gel
US2583548A (en) * 1948-03-17 1952-01-29 Vanderbilt Co R T Production of pigmented cellulosic pulp
US3794558A (en) 1969-06-19 1974-02-26 Crown Zellerbach Corp Loading of paper furnishes with gelatinizable material
US3730830A (en) 1971-11-24 1973-05-01 Eastman Kodak Co Process for making paper
US4087317A (en) 1975-08-04 1978-05-02 Eucatex S.A. Industria E Comercio High yield, low cost cellulosic pulp and hydrated gels therefrom
US4374702A (en) 1979-12-26 1983-02-22 International Telephone And Telegraph Corporation Microfibrillated cellulose
US4426258A (en) * 1981-03-06 1984-01-17 Courtaulds Limited Drying wood pulp in the presence of an alkali metal sulphite
US4481076A (en) 1983-03-28 1984-11-06 International Telephone And Telegraph Corporation Redispersible microfibrillated cellulose
US4481077A (en) 1983-03-28 1984-11-06 International Telephone And Telegraph Corporation Process for preparing microfibrillated cellulose
US4474949A (en) 1983-05-06 1984-10-02 Personal Products Company Freeze dried microfibrilar cellulose
US4495245A (en) 1983-07-14 1985-01-22 E. I. Du Pont De Nemours And Company Inorganic fillers modified with vinyl alcohol polymer and cationic melamine-formaldehyde resin
US4952278A (en) 1989-06-02 1990-08-28 The Procter & Gamble Cellulose Company High opacity paper containing expanded fiber and mineral pigment
US5156719A (en) * 1990-03-09 1992-10-20 Pfizer Inc. Acid-stabilized calcium carbonate, process for its production and method for its use in the manufacture of acidic paper
US6468393B1 (en) 1994-05-07 2002-10-22 Arjo Wiggins Fine Papers Limited Patterned paper
EP0726356A1 (en) 1995-02-08 1996-08-14 Generale Sucriere Microfibrillated cellulose and process for making the same from vegetable pulps having primary walls, especially from sugar beet pulp
US5964983A (en) 1995-02-08 1999-10-12 General Sucriere Microfibrillated cellulose and method for preparing a microfibrillated cellulose
US6183596B1 (en) 1995-04-07 2001-02-06 Tokushu Paper Mfg. Co., Ltd. Super microfibrillated cellulose, process for producing the same, and coated paper and tinted paper using the same
US6214163B1 (en) 1995-04-07 2001-04-10 Tokushu Paper Mfg. Co., Ltd. Super microfibrillated cellulose, process for producing the same, and coated paper and tinted paper using the same
US5531821A (en) 1995-08-24 1996-07-02 Ecc International Inc. Surface modified calcium carbonate composition and uses therefor
EP0852588B1 (en) 1995-09-29 2003-01-08 Rhodia Chimie Surface-modified cellulose microfibrils, method for making same, and use thereof as a filler in composite materials
US6436232B1 (en) 1996-02-20 2002-08-20 M-Real Oyj. Procedure for adding a filler into a pulp based on cellulose fibers
US6074524A (en) 1996-10-23 2000-06-13 Weyerhaeuser Company Readily defibered pulp products
JPH10237220A (en) 1996-12-24 1998-09-08 Asahi Chem Ind Co Ltd Aqueous suspension composition and water-dispersible dry composition
EP0949294A1 (en) 1996-12-24 1999-10-13 Asahi Kasei Kogyo Kabushiki Kaisha Aqueous suspension composition and water-dispersible dry composition
US6159335A (en) 1997-02-21 2000-12-12 Buckeye Technologies Inc. Method for treating pulp to reduce disintegration energy
WO1998056860A1 (en) * 1997-06-12 1998-12-17 Ecc International Inc. Filler composition for groundwood-containing grades of paper
US20010045264A1 (en) 2000-05-26 2001-11-29 Jorg Rheims Process and a fluffer device for treatment of a fiber stock suspension
US20040131854A1 (en) 2001-04-24 2004-07-08 Outi Aho Filler and a process for the production thereof
WO2002090651A1 (en) 2001-05-08 2002-11-14 Alpha Calcit Füllstoff Gesellschaft Mbh Method for recycling pulp rejects
US20040168783A1 (en) 2001-05-08 2004-09-02 Dieter Munchow Method for recycling pulp rejects
WO2003033815A2 (en) 2001-10-17 2003-04-24 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cellulosic products containing calcium carbonate filler
US20050116010A1 (en) 2002-03-25 2005-06-02 Lars Gronroos Fibrous web and process for the production thereof
US7462232B2 (en) 2002-05-14 2008-12-09 Fmc Corporation Microcrystalline cellulose compositions
EP1538257A1 (en) 2002-07-18 2005-06-08 Japan Absorbent Technology Institute Method and apparatus for producing microfibrillated cellulose
US7381294B2 (en) 2002-07-18 2008-06-03 Japan Absorbent Technology Institute Method and apparatus for manufacturing microfibrillated cellulose fiber
US20040108081A1 (en) 2002-12-09 2004-06-10 Specialty Minerals (Michigan) Inc. Filler-fiber composite
CA2437616A1 (en) 2003-08-04 2005-02-04 Mohini M. Sain Manufacturing of nano-fibrils from natural fibres, agro based fibres and root fibres
US20080146701A1 (en) 2003-10-22 2008-06-19 Sain Mohini M Manufacturing process of cellulose nanofibers from renewable feed stocks
TW200609278A (en) 2004-05-25 2006-03-16 Hokuetsu Paper Mills Sheet-like nonflammable molded form
US20080023161A1 (en) 2004-12-14 2008-01-31 Reinhard Gather Method and apparatus for loading fibers or cellulose which are contained in a suspension with a filler
JP2007262594A (en) 2006-03-27 2007-10-11 Kimura Chem Plants Co Ltd Functional cellulosic material high in functional particle content and method for producing the same
US20080060774A1 (en) 2006-09-12 2008-03-13 Zuraw Paul J Paperboard containing microplatelet cellulose particles
US20100272980A1 (en) 2007-12-21 2010-10-28 Mitsubishi Chemical Corporation Fiber composite
US20110274908A1 (en) 2007-12-21 2011-11-10 Mitsubishi Chemical Corporation Fiber composite
US8012573B2 (en) 2007-12-21 2011-09-06 Mitsubishi Chemical Corporation Fiber composite
US20130133848A1 (en) 2008-06-17 2013-05-30 Akzo Nobel N.V. Cellulosic product
US20110186252A1 (en) 2008-08-04 2011-08-04 Upm-Kymmene Corporation Engineered composite product and method of making the same
WO2010015726A1 (en) 2008-08-04 2010-02-11 Teknillinen Korkeakoulu Engineered composite product and method of making the same
WO2010092239A1 (en) 2009-02-13 2010-08-19 Upm-Kymmene Oyj A method for producing modified cellulose
US20120043039A1 (en) 2009-02-13 2012-02-23 Upm-Kymmene Oyj Method for producing modified cellulose
US20120094953A1 (en) 2009-03-30 2012-04-19 Omya Development Ag Process for the production of nano-fibrillar cellulose suspensions
US20120107480A1 (en) 2009-03-30 2012-05-03 Gane Patrick A C Process for the production of nano-fibrillar cellulose gels
EP2236545A1 (en) 2009-03-30 2010-10-06 Omya Development AG Process for the production of nano-fibrillar cellulose gels
WO2010115785A1 (en) 2009-03-30 2010-10-14 Omya Development Ag Process for the production of nano-fibrillar cellulose gels
EP2236545B1 (en) 2009-03-30 2014-08-27 Omya International AG Process for the production of nano-fibrillar cellulose gels
EP2236664A1 (en) 2009-03-30 2010-10-06 Omya Development AG Process for the production of nano-fibrillar cellulose suspensions
WO2010112519A1 (en) 2009-03-30 2010-10-07 Omya Development Ag Process for the production of nano-fibrillar cellulose suspensions
US20100272938A1 (en) 2009-04-22 2010-10-28 Bemis Company, Inc. Hydraulically-Formed Nonwoven Sheet with Microfibers
US20120132383A1 (en) 2009-04-29 2012-05-31 Upm-Kymmene Corporation Method for producing furnish, furnish and paper
WO2010131016A2 (en) 2009-05-15 2010-11-18 Imerys Minerals Limited Paper filler composition
US20110259537A1 (en) 2009-05-15 2011-10-27 Imerys Minerals Limited Paper filler composition
US8231764B2 (en) 2009-05-15 2012-07-31 Imerys Minerals, Limited Paper filler method
US20120125547A1 (en) 2009-06-12 2012-05-24 Mitsubishi Chemical Corporation Modified cellulose fibers and cellulose composite thereof
US20120216718A1 (en) 2009-11-16 2012-08-30 Lars Berglund Strong Nanopaper
US20120277351A1 (en) 2009-12-01 2012-11-01 Nippon Paper Industries Co., Ltd. Cellulose nanofibers
US20120318471A1 (en) 2010-02-10 2012-12-20 Tarja Turkki Process for the preparation of a pigment-fibre composite
US20130126112A1 (en) 2010-04-27 2013-05-23 Patrick A.C. Gane Process for the manufacture of structured materials using nano-fibrillar cellulose gels
WO2011134938A1 (en) 2010-04-27 2011-11-03 Omya Development Ag Process for the production of gel-based composite materials
WO2011134939A1 (en) 2010-04-27 2011-11-03 Omya Development Ag Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US20110277947A1 (en) 2010-05-11 2011-11-17 Fpinnovations Cellulose nanofilaments and method to produce same
US20130053454A1 (en) 2010-05-12 2013-02-28 Stora Enso Oyj Process for the production of a composition comprising fibrillated cellulose and a composition
US20130180680A1 (en) 2010-09-22 2013-07-18 Stora Enso Oyj Paper or paperboard product and a process for production of a paper or paperboard product
US20130284387A1 (en) 2010-11-16 2013-10-31 Oji Holdings Corporation Cellulose Fiber Assembly and Method for Preparing the Same, Fibrillated Cellulose Fibers and Method for Preparing the Same, and Cellulose Fiber Composite
US20130345416A1 (en) 2011-02-10 2013-12-26 Upm-Kymmene Corporation Method for processing nanofibrillar cellulose and product obtained by the method
US20140058077A1 (en) 2011-02-10 2014-02-27 Upm-Kymmene Corporation Method for fabricating fiber products and composites

Non-Patent Citations (68)

* Cited by examiner, † Cited by third party
Title
Auad, M. L., et al., "Characterization of nanocellulose-reinforced shape memory polyurethanes," Polymer International, 2008, 57, 651-659. Online Publication Date: Dec. 13, 2007. *
Campinhos, Jr. E., "Sustainable plantations of high-yield Eucalyptus trees for production of fiber: the Aracruz case." New Forests, 1999, 17, 129-143. *
Charani et al. "Rheological Characterization of High Concentrated MFC Gel from Kenaf Unbleached Pulp." 2013, Cellulose, vol. 20, pp. 727-740.
Chauhan et al. "Use of Nanotechnology or High Performane Cellulosic and Papermaking Products." 2012, Cellulose Chemistry and Technology, 46(5-6), pp. 389-400.
Communication dated Aug. 6, 2013 for European Application No. EP 11716257.8.
Communication dated Feb. 15, 2013 for European Application No. 11716257.
Communication dated Feb. 21, 2013 for European Application No. EP 10713884.4.
Communication dated Feb. 7, 2013 for European Application No. EP 09156683.6.
Communication dated Feb. 7, 2013 for European Application No. EP 09156703.2.
Communication dated Jan. 2, 2014 for European Application No. EP 09156683.6.
Communication dated Jan. 2, 2014 for European Application No. EP 10713884.4.
Communication dated Jul. 31, 2013 for European Application No. EP 09156683.6.
Communication dated Jul. 31, 2013 for European Application No. EP 09156703.2.
Communication dated Jun. 27, 2011 for European Application No. EP 09156683.6.
Communication dated Mar. 15, 2013 for European Application No. 10161166.3.
Communication dated Mar. 15, 2013 for European Application No. EP 10161173.9.
Communication dated Mar. 26, 2014 for European Application No. EP 10711423.3.
Communication dated May 20, 2011 for European Application No. EP 09156703.2.
Communication dated Oct. 11, 2013 for European Application No. EP 1179499.
Communication dated Sep. 24, 2012 for European Application No. EP 10711423.3.
Dupont, A.-L., "Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a disslution method using paper substrates and stability of the solutions," Polymer, 2003, 44, 4117-4126. *
European Search Opinion dated Jun. 26, 2009 for European Application No. EP 09156683.6.
European Search Report dated Jun. 26, 2009 for European Application No. EP 09156703.2.
European Search Report dated Sep. 7, 2010 for European Application No. EP 10161173.9.
European Search Report dated Sep. 8, 2010 for European Application No. 10161166.3.
Examination Report dated Feb. 11, 2014 for Taiwanese Application No. 099109562.
Falini, G., et al., "Oriented Crystallization of Vaterite in Collagenous Matrices," Chem. Eur. J., 1998, 4, 1048-1052. *
First Office Action dated Oct. 23, 2013 for Chinese Application No. 201080015263.X.
Hubbe et al. "What happens to cellulosic fibers during papermaking and recycling? A Review." BioResources 2(4): pp. 739-788.
Hubbe, "Mini-encyclopedia ofpPapermaking wet-end chemistry: Fibrillation." NC State University Internet Citation p. 1.
International Search Report dated Aug. 17, 2010 for PCT Application No. PCT/EP2010/054233.
International Search Report dated Jun. 7, 2010 for PCT Application No. PCT/EP2010/054231.
International Search Report dated Nov. 3, 2011 for PCT Application No. PCT/EP2011/056540.
Kenny, M., et al., "Lime and Limestone," Ullmann's Encyclopedia of Industrial Chemistry. 2012. vol. 21, 37-69. *
Little et al. "Hydrated Lime-more than just a filler." National Lime Association.
Office Action dated Jan. 16, 2013 for Chinese Application No. 201080015262.5.
Office Action dated Jan. 28, 2014 for Japanese Application No. 2012-502646.
Office Action dated Jan. 7, 2014 for Canadian Application No. 2,755,495.
Office Action dated Sep. 24, 2012 for European Application No. 10711 423.3-2115.
Office Action for Russian Application No. 2011143811.
Office Action for Russian Application No. 2011143854.
Office Action for Ukrainian Application No. a 2011 12682.
Opietnik et al. "TENCEL® Gel-A Novel Cellulose Micro Suspension." 2013, Lenzinger Berichte, vol. 91, pp. 89-92.
Patt, R., et al., "Paper and Pulp," Ullmann's Encyclopedia of Industrial Chemistry. Published online: Jun. 2000. *
Response to the Communication dated Nov. 5, 2013 for European Application No. EP 11716257.8.
Shen et al. "Carbohydrate-based fillers and pigments for papermaking: A review" 2011, Carbohydrate Polymers, vol. 85, 17-22.
Siró et al. "Microfibrillated cellulose and new nanocomposite materials: A Review." Cellulose (2010): 17, pp. 459-494.
Sixta, "Handbook of Pulp." Wood Structure and Morphology, vol. 1, pp. 41 and 42.
The European Search Report dated Jun. 26, 2009 for European Application No. EP 09156683.6.
Third Party Observations dated Apr. 19, 2013 for European Application No. EP 10161173.9.
Third Party Observations dated Feb. 17, 2012 for European Application No. EP 10711423.3.
Third Party Observations dated Feb. 17, 2012 for European Application No. EP 1073884.4.
Third Party Observations dated Feb. 4, 2013 for European Application No. EP 11716257.8.
Third Party Observations dated Feb. 4, 2013 for European Application No. EP 11719499.3.
Third Party Observations dated Jan. 9, 2012 for European Application No. EP 10161173.9.
Third Party Observations dated Jun. 11, 2012 for European Application No. 10161166.3.
Third Party Observations dated Jun. 11, 2012 for European Application No. EP 10161173.9.
Third Party Observations dated Jun. 11, 2012 for European Application No. EP 10711423.3.
Third Party Observations dated Jun. 11, 2012 for European Application No. EP 1073884.4.
Third Party Observations dated Jun. 6, 2012 for European Application No. EP 09156683.6.
Third Party Observations dated Jun. 6, 2012 for European Application No. EP 09156703.2.
Third Party Observations dated May 18, 2011 for European Application No. EP 09156703.2.
Third Party Observations dated May 27, 2011 for European Application No. 09156683.6.
Third Party Observations dated Oct. 21, 2011 for European Application No. EP 09156683.6.
Third Party Observations dated Oct. 21, 2011 for European Application No. EP 09156703.2.
Writen Opinion of the Internatonal Searching Authorty dated Oct. 27, 2012 for PCT Applicaton No. PCT/EP2011/056540.
Written Opinion of the International Searching Authority dated Sep. 30, 2011 for PCT Applicaton No. PCT/EP2010/054233.
Written Opinion of the International Searching Authority for PCT Application No. PCT/EP2010/054231.

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100232B2 (en) 2007-12-20 2018-10-16 University Of Tennessee Research Foundation Wood adhesives containing reinforced additives for structural engineering products
US10982387B2 (en) 2009-03-30 2021-04-20 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
US10294371B2 (en) 2009-03-30 2019-05-21 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose gels
US10975242B2 (en) 2009-03-30 2021-04-13 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose gels
US10301774B2 (en) 2009-03-30 2019-05-28 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
US10100467B2 (en) * 2010-04-27 2018-10-16 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US10633796B2 (en) 2010-04-27 2020-04-28 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US11155697B2 (en) 2010-04-27 2021-10-26 Fiberlean Technologies Limited Process for the production of gel-based composite materials
US20130126112A1 (en) * 2010-04-27 2013-05-23 Patrick A.C. Gane Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US10053817B2 (en) * 2010-04-27 2018-08-21 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US20150330024A1 (en) * 2010-04-27 2015-11-19 Omya International Ag Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US20130277089A1 (en) * 2011-01-04 2013-10-24 Teijin Aramid B.V. Electrical insulating paper
US9718980B2 (en) 2012-08-14 2017-08-01 Goldeast Paper (Jiangsu) Co., Ltd Coating composition and coated paper
US10975499B2 (en) 2012-08-24 2021-04-13 Domtar Paper Company, Llc Surface enhanced pulp fibers, methods of making surface enhanced pulp fibers, products incorporating surface enhanced pulp fibers, and methods of making products incorporating surface enhanced pulp fibers
US9797093B2 (en) * 2012-11-03 2017-10-24 Upm-Kymmene Corporation Method for producing nanofibrillar cellulose
US20150299955A1 (en) * 2012-11-03 2015-10-22 Upm-Kymmene Corporation Method for producing nanofibrillar cellulose
US20190284762A1 (en) * 2014-05-30 2019-09-19 Borregaard As Microfibrillated cellulose
US10577469B2 (en) 2015-10-14 2020-03-03 Fiberlean Technologies Limited 3D-formable sheet material
US11932740B2 (en) 2015-10-14 2024-03-19 Fiberlean Technologies Limited 3D-formable sheet material
US11384210B2 (en) 2015-10-14 2022-07-12 Fiberlean Technologies Limited 3-D formable sheet material
US11473245B2 (en) 2016-08-01 2022-10-18 Domtar Paper Company Llc Surface enhanced pulp fibers at a substrate surface
US11499269B2 (en) * 2016-10-18 2022-11-15 Domtar Paper Company Llc Method for production of filler loaded surface enhanced pulp fibers
US11441271B2 (en) 2018-02-05 2022-09-13 Domtar Paper Company Llc Paper products and pulps with surface enhanced pulp fibers and increased absorbency, and methods of making same
US12104324B2 (en) 2018-02-05 2024-10-01 Domtar Paper Company, Llc Paper products and pulps with surface enhanced pulp fibers and increased absorbency, and methods of making same
US11524921B2 (en) * 2018-02-13 2022-12-13 Russell MOOLMAN Composite materials containing hemp and nanocellulose
US11608596B2 (en) 2019-03-26 2023-03-21 Domtar Paper Company, Llc Paper products subjected to a surface treatment comprising enzyme-treated surface enhanced pulp fibers and methods of making the same
US12104327B2 (en) 2019-09-23 2024-10-01 Domtar Paper Company, Llc Tissues and paper towels incorporating surface enhanced pulp fibers and methods of making the same
US12116732B2 (en) 2019-09-23 2024-10-15 Domtar Paper Company, Llc Paper products incorporating surface enhanced pulp fibers and having decoupled wet and dry strengths and methods of making the same
WO2023180807A1 (en) 2022-03-23 2023-09-28 Fiberlean Technologies Limited Nanocellulose and resin make down processes and systems
WO2023180806A1 (en) 2022-03-23 2023-09-28 Fiberlean Technologies Limited Resin reinforced with nanocellulose for wood-based panel products
WO2024110786A1 (en) 2022-11-22 2024-05-30 Fiberlean Technologies Limited Barrier coatings applied to nanocellulose-coated paper and paperboard
WO2024110781A1 (en) 2022-11-22 2024-05-30 Fiberlean Technologies Limited Sequential application of layers, comprising nanocellulose, onto the surface of paper or paperboard substrates
WO2024218566A1 (en) 2023-04-21 2024-10-24 Fiberlean Technologies Limited Barrier layers comprising nanocellulose onto the surface of paper or paperboard substrates at the wet end of a papermaking process

Also Published As

Publication number Publication date
EP3617400B1 (en) 2022-09-21
AR075960A1 (en) 2011-05-11
SI2236664T1 (en) 2016-02-29
ES2810048T3 (en) 2021-03-08
PL2414584T3 (en) 2020-11-16
KR20170049629A (en) 2017-05-10
UY32533A (en) 2010-10-29
DK2236664T3 (en) 2016-03-14
PT3617400T (en) 2022-12-30
PL2236664T3 (en) 2016-06-30
ES2928765T3 (en) 2022-11-22
PL3617400T3 (en) 2023-01-02
WO2010112519A1 (en) 2010-10-07
JP6810109B2 (en) 2021-01-06
KR101734486B1 (en) 2017-05-11
CA2755493A1 (en) 2010-10-07
KR102098517B1 (en) 2020-04-08
RU2549323C2 (en) 2015-04-27
BRPI1013180A2 (en) 2016-04-12
CN102378839A (en) 2012-03-14
SI2414584T1 (en) 2020-11-30
HUE045496T2 (en) 2019-12-30
EP2236664A1 (en) 2010-10-06
US10982387B2 (en) 2021-04-20
US20140371172A1 (en) 2014-12-18
US20190234017A1 (en) 2019-08-01
JP2012522145A (en) 2012-09-20
DK3617400T3 (en) 2022-11-14
HUE050586T2 (en) 2020-12-28
CA2755493C (en) 2016-06-28
EP3617400A1 (en) 2020-03-04
KR101855638B1 (en) 2018-05-04
EP2236664B1 (en) 2015-12-16
EP2414584A1 (en) 2012-02-08
EP2808440A1 (en) 2014-12-03
RU2015109771A (en) 2015-12-10
CN106978748B (en) 2019-08-06
CL2010000279A1 (en) 2011-04-01
KR101920037B1 (en) 2018-11-19
TWI529279B (en) 2016-04-11
JP2017106151A (en) 2017-06-15
DK2414584T3 (en) 2020-08-17
ES2745638T3 (en) 2020-03-03
MY157010A (en) 2016-04-15
EP2808440B1 (en) 2019-08-14
ES2560455T3 (en) 2016-02-19
US20120094953A1 (en) 2012-04-19
TW201038788A (en) 2010-11-01
DK2808440T3 (en) 2019-09-30
PL2808440T3 (en) 2020-01-31
JP2015121010A (en) 2015-07-02
HUE026741T2 (en) 2016-07-28
PT2236664E (en) 2016-03-04
EP4105380A1 (en) 2022-12-21
BRPI1013180B1 (en) 2019-07-02
JP2019007127A (en) 2019-01-17
SI2808440T1 (en) 2019-11-29
CO6450680A2 (en) 2012-05-31
BRPI1013180B8 (en) 2019-07-30
JP6392300B2 (en) 2018-09-19
EP3748070B1 (en) 2023-05-10
EP2414584B1 (en) 2020-06-24
KR20180125048A (en) 2018-11-21
KR20120004478A (en) 2012-01-12
US10301774B2 (en) 2019-05-28
FI3617400T3 (en) 2022-11-30
US20210262164A1 (en) 2021-08-26
CN102378839B (en) 2016-11-02
CN106978748A (en) 2017-07-25
PT2808440T (en) 2019-09-30
JP6434793B2 (en) 2018-12-05
EP3748070A1 (en) 2020-12-09
JP5666553B2 (en) 2015-02-12
UA108985C2 (en) 2015-07-10
RU2011143811A (en) 2013-05-10
KR20180049175A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US10982387B2 (en) Process for the production of nano-fibrillar cellulose suspensions
US20210261781A1 (en) Process for the production of nano-fibrillar cellulose gels

Legal Events

Date Code Title Description
AS Assignment

Owner name: OMYA DEVELOPMENT AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GANE, PATRICK A;SCHOELKOPF, JOACHIM;GANTENBEIN, DANIEL;AND OTHERS;SIGNING DATES FROM 20110927 TO 20111005;REEL/FRAME:027062/0975

AS Assignment

Owner name: OMYA INTERNATIONAL AG, SWITZERLAND

Free format text: CHANGE OF NAME;ASSIGNOR:OMYA DEVELOPMENT AG;REEL/FRAME:031406/0917

Effective date: 20130703

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: FIBERLEAN TECHNOLOGIES LIMITED, ENGLAND

Free format text: CHANGE OF NAME;ASSIGNOR:FIBERLEANTM TECHNOLOGIES LIMITED;REEL/FRAME:040308/0951

Effective date: 20160929

AS Assignment

Owner name: OMYA-HOLDING AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OMYA INTERNATIONAL AG;REEL/FRAME:041119/0481

Effective date: 20160428

Owner name: FIBERLEANTM TECHNOLOGIES LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OMYA-HOLDING AG;REEL/FRAME:041119/0621

Effective date: 20160430

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8