US8619605B2 - Method and apparatus for maintaining port state tables in a forwarding plane of a network element - Google Patents
Method and apparatus for maintaining port state tables in a forwarding plane of a network element Download PDFInfo
- Publication number
- US8619605B2 US8619605B2 US12/772,457 US77245710A US8619605B2 US 8619605 B2 US8619605 B2 US 8619605B2 US 77245710 A US77245710 A US 77245710A US 8619605 B2 US8619605 B2 US 8619605B2
- Authority
- US
- United States
- Prior art keywords
- port
- fdu
- ports
- local
- network element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000008569 process Effects 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 20
- 230000006870 function Effects 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000004590 computer program Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 18
- 230000003287 optical effect Effects 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/24—Multipath
- H04L45/245—Link aggregation, e.g. trunking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/28—Routing or path finding of packets in data switching networks using route fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/58—Association of routers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/55—Prevention, detection or correction of errors
- H04L49/557—Error correction, e.g. fault recovery or fault tolerance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/30—Peripheral units, e.g. input or output ports
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/50—Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
Definitions
- Data communication networks may include various computers, servers, nodes, routers, switches, hubs, proxies, and other devices coupled to and configured to pass data to one another. These devices are referred to herein as “network elements,” and may provide a variety of network resources on a network. Data is communicated through data communication networks by passing protocol data units (such as packets, cells, frames, or segments) between the network elements over communication links on the network. A particular protocol data unit may be handled by multiple network elements and cross multiple communication links as it travels between its source and its destination over the network. Hosts such as computers, telephones, cellular telephones, Personal Digital Assistants, and other types of consumer electronics connect to and transmit/receive data over the communication network and, hence, are users of the communication services offered by the communication network.
- protocol data units such as packets, cells, frames, or segments
- Network elements are typically implemented to have a control plane that controls operation of the network element and a data plane that handles traffic flowing through the network.
- the data plane typically will have a collection of line cards having ports that connect to links on the network. Data is received at a particular port, switched within the data plane, and output at one or more other ports onto other links on the network.
- the data plane is typically implemented in hardware so that all of the decisions as to how to handle the data are performed using hardware lookups, etc.
- Ports can fail for many reasons, including line card failure, failure of the link connected to the port (e.g. line cut), far-end line card failure, etc.
- multi-link trunk (MLT), Link Aggregation Group (LAG) and logical ports are synonymous and these terms are used interchangeably.
- LMT multi-link trunk
- LAG Link Aggregation Group
- logical ports are synonymous and these terms are used interchangeably.
- the internal forwarding datapath within the network element may fail which may cause a port or set of ports to appear to have failed, or there may be some other failures along the logical/virtual connection to the port's external peer endpoint. There are numerous reasons why a port may fail.
- a port fails, traffic destined to the port should be diverted to flow out an alternate port to enable connectivity to be restored through the network.
- traffic destined to the port should be diverted to flow out an alternate port to enable connectivity to be restored through the network.
- the network element e.g. to minimize down-time and packet loss, the quicker the rerouting of traffic can occur the better.
- the traffic should be spread across the remaining ports rather than all moved from the failing port to a particular designated alternate port to prevent the designated alternate port from being overloaded with traffic.
- Embodiments of the invention significantly overcome such deficiencies and provide mechanisms and techniques that provide a method and apparatus for maintaining port state tables in a forwarding plane of a network element. It is very critical to minimize network down time and packet loss, and provide seamless failover in network devices when such failures occur.
- This invention allows very fast and efficient detection and distribution of the port states within a cluster of nodes. This mechanism enables the fast path to perform seamless fast reroute in the advent of such failures without dynamic assistance from management and/or control plane software.
- the method includes periodically determining a state of a first set of ports associated with a first Forwarding Data Unit (FDU), the first FDU being one of a plurality of FDUs implementing forwarding functions within the forwarding plane of the network element.
- the method further includes using the determined state to update a first port state table of the port state database associated with the first FDU.
- the method includes transmitting the determined state to each other FDUs on the network element to enable each of the other FDUs to store the state of the first set of ports in a port state database local to each of the other FDUs.
- FIG. 1 Other embodiments include a computer readable medium having computer readable code thereon for maintaining port state tables in a forwarding plane of a network element.
- the computer readable medium includes instructions for periodically determining a state of a first set of ports associated with a first Forwarding Data Unit (FDU), the first FDU being one of a plurality of FDUs implementing forwarding functions within the forwarding plane of the network element.
- the computer readable medium further includes instructions for using the determined state to update a first port state table of the port state database associated with the first FDU.
- the computer readable medium includes instructions for transmitting the determined state to each other FDUs on the network element to enable each of the other FDUs to store the state of the first set of ports in a port state database local to each of the other FDUs.
- Still other embodiments include a computerized device (network element), configured to process all the method operations disclosed herein as embodiments of the invention.
- the computerized device includes a memory system, a processor, communications interface in an interconnection mechanism connecting these components.
- the memory system is encoded with a process that provides for maintaining port state tables in a forwarding plane of a network element as explained herein that when performed (e.g. when executing) on the processor, operates as explained herein within the computerized device to perform all of the method embodiments and operations explained herein as embodiments of the invention.
- any computerized device that performs or is programmed maintain port state tables in a forwarding plane of a network element as explained herein is an embodiment of the invention.
- a computer program product is one embodiment that has a computer-readable medium including computer program logic encoded thereon that when performed in a computerized device provides associated operations for maintaining port state tables in a forwarding plane of a network element as explained herein.
- the computer program logic when executed on at least one processor with a computing system, causes the processor to perform the operations (e.g., the methods) indicated herein as embodiments of the invention.
- Such arrangements of the invention are typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (e.g., CD-ROM), floppy or hard disk or other a medium such as firmware or microcode in one or more ROM or RAM or PROM chips or as an Application Specific Integrated Circuit (ASIC) or as downloadable software images in one or more modules, shared libraries, etc.
- the software or firmware or other such configurations can be installed onto a computerized device to cause one or more processors in the computerized device to perform the techniques explained herein as embodiments of the invention.
- Software processes that operate in a collection of computerized devices, such as in a group of data communications devices or other entities can also provide the system of the invention.
- the system of the invention can be distributed between many software processes on several data communications devices, or all processes could run on a small set of dedicated computers, or on one computer alone.
- the embodiments of the invention can be embodied strictly as a software program, as software and hardware, or as hardware and/or circuitry alone, such as within a data communications device.
- the features of the invention, as explained herein, may be employed in data communications devices and/or software systems for such devices such as those manufactured by Avaya, Inc. of Lincroft, N.J.
- FIG. 1 is a functional block diagram showing a first example of organizing a cluster of nodes
- FIG. 2 is a functional block diagram showing another example of organizing a cluster of nodes
- FIG. 3 is a functional block diagram showing another example of organizing a cluster of nodes
- FIG. 4 is a functional block diagram showing another example of organizing a cluster of nodes
- FIG. 5 is a functional block diagram showing another example of organizing a cluster of nodes
- FIG. 6 is a functional block diagram showing another example of organizing a cluster of nodes
- FIG. 7 is a functional block diagram of an example communication network
- FIG. 8 is a functional block diagram of an example network element
- FIG. 9 is a functional block diagram of an example line card that may be used in a network element such as the network element of FIG. 8 ;
- FIG. 10 is a functional block diagram of an example port database that may be used in a line card such as the line card of FIG. 9 ;
- FIG. 11 is a functional block diagram of an example cluster of network elements showing the flow of port state information between the components of the datapath within the node cluster;
- FIG. 12 illustrates an example computer system architecture for a network element that maintains a port state table in accordance with embodiments of the invention
- FIG. 13 comprises a flow diagram of a method for maintaining port state tables in accordance with embodiments of the invention.
- FIG. 14 comprises a flow diagram of a method for updating a port state table within a network element in accordance with embodiments of the invention.
- FIG. 1 shows an example of two network elements (network element 1 and network element 2 ) connected by multiple links 24 a - d that have been grouped to form a multi-link trunk 22 .
- each of the links 24 a - d in the MLT 22 may be used by either of the network elements to forward data to the other.
- network element 1 may select one of the links 24 a - 24 d from the MLT 22 and transmit the packet over that link to network element 2 .
- FIG. 2 shows another example way in which network elements may be interconnected.
- network element 1 and network element 2 are interconnected by an inter-switch trunk (IST) 26 which may be a single link or itself may be a multi-link trunk.
- IST inter-switch trunk
- the MLT is called a Split Multi-Link Trunk (SMLT).
- Network elements 1 and 2 may each have one or more links that connects to network element 3 , which may be grouped together to form a SMLT 23 .
- network element 1 has data (e.g.
- network element 1 may either select one of the SMLT links connected to it or may transmit the packet on one of the links associated with the Inter-Switch Trunk 26 to enable the network element 2 to forward the data on one of its links associated with the SMLT to network element 3 .
- FIG. 3 shows another example in which network element 1 does not have any links connected to the SMLT 23 , but is connected by ISTs 25 and 26 to two other network elements (network element 2 and network element 3 ) that do have ports connected to the links associated with the SMLT.
- network element 1 if network element 1 has data to send on the SMLT, it will select one of the IST links (note that each IST link may itself be a SMLT) and forward the data on to either network element 2 or 3 .
- the ISTs may be physical and extend directly between two network elements or may be logical and extend on tunnels through one or more intermediate network elements.
- FIG. 4 shows another example in which network element 1 also participates in the SMLT 23 .
- network element 1 may forward the data on one of its links associated with the SMLT 23 or may forward the data on one of the links associated with one of the ISTs 25 or 26 to enable the data to be forwarded on the SMLT 23 .
- FIGS. 5 and 6 show another way of interconnecting network elements in a square SMLT arrangement.
- four network elements are interconnected via ISTs 25 - 28 in a square arrangement
- the four network elements are interconnected via ISTs 25 - 30 in a meshed arrangement.
- the ISTs may be physical and extend directly between two network elements or may be logical and extend on tunnels through one or more intermediate network elements.
- FIG. 7 shows an example communication network 10 in which subscribers 12 connect to an edge switch 14 .
- the edge switch 14 connects to core switches 16 which forward data through the network on links 18 .
- Each of these switches may be a physical rouswitchter or may be multiple devices connected together to operate as a cluster.
- Each of the links 18 may be a MLT or, where the router/switch is implemented as multiple physical devices, may be a SMLT.
- From a network routing standpoint there may be multiple ways for a packet to traverse the network.
- the edge switch A may be able to transmit a packet to edge switch B through core switches C and D or, alternatively, may be able to transmit the packet through core switches E and F.
- a network layer routing protocol may be used to determine the path to be used for transmission of the packet.
- cluster is used to refer to one or more nodes providing node-level resiliency at the network level.
- network element 1 would be a cluster; in FIG. 2 network elements 1 and 2 would be a cluster, and in FIGS. 3 and 4 network elements 1 , 2 , and 3 would be a cluster and in FIGS. 5 and 6 network elements 1 - 4 would be a cluster.
- FIGS. 5 and 6 network elements 1 - 4 would be a cluster.
- Inter-Switch Trunks may be physical links that extend from one network element to a neighboring network element in the cluster, or may be logical links that tunnel through one or more intermediate network elements within the cluster.
- the node that receives a packet from a non-IST port will be referred to as a local node. All other nodes within the cluster are referred to as remote nodes with respect to the received packet.
- the IST is selected on a rotational basis. This is done to prevent repeatedly selecting the same IST and is used in place of a hashing function.
- MLT Multi-Link Trunk
- MLT-ID MLT group ID
- An MLT with all its port members only on one node is referred to as a normal MLT group.
- An MLT group where its port members are on two or more nodes is referred to as a Split MLT or SMLT group.
- a logical port When a logical port is implemented as a MLT or SMLT, there are actually multiple physical ports that are capable of forwarding a packet to its next hop on the network. Accordingly, if one of the ports of a MLT/SMLT fails, it would be advantageous to cause the packet to be forwarded on one of the remaining ports so that the packet can traverse the network rather than being dropped. Likewise, rather than designate a primary and backup port for each port in the MLT/SMLT, it would be advantageous to load share the packets across the remaining ports of the MLT/SMLT so that the packets may be distributed across the remaining ports that are UP. According to an embodiment, this process is implemented in hardware so that the fastpath (dataplane) can automatically accommodate individual and multiple port failures and automatically redirect packet traffic across the remaining ports in an equitable manner.
- the fastpath dataplane
- FIG. 8 shows a functional block diagram of an example network element 20 which may be used as any of the network elements shown in any of FIGS. 1-6 .
- the network element includes a control plane 31 and a data plane 32 .
- the control plane has one or more CPUs 34 and generally run control processes such as routing processes, management processes, etc.
- the control plane programs the data plane to instruct the data plane how to forward data on the network.
- the data plane 32 may be constructed using many different architectures and the example shown in FIG. 8 is only one example of one such architecture.
- the data plane includes a plurality of line cards 36 each of which implements multiple physical ports which connect to links in the network.
- the line cards in this embodiment are interconnected by a switch fabric 40 , although in other embodiments the line cards may be directly interconnected and perform switching functions in a distributed manner.
- each line card 36 includes a plurality of ports 38 which physically connect to the links on the network.
- the line card also includes one or more functional units 42 that process packets received from the attached ports.
- the functional unit that processes packets from attached ports in both ingress and egress directions, and makes forwarding decisions is referred to as a Forwarding Datapath Unit or FDU 42 .
- the line card may also include a Management/Control Processor (MCP) 44 that interacts with the control plane to enable the control plane to program instructions into the FDU 42 and optionally other components on the line card so that the FDU 42 will handle data appropriately on the network.
- MCP 44 also periodically checks the status of the FDU 42 and other components of the line card to detect when a failure occurs.
- each FDU 42 maintains a port state database 46 .
- This port state database 46 maintains the physical link states and connection states for its local as well as all remote ports.
- the port state database 46 includes two tables—a local port data table 48 and a remote port data table 50 .
- the local port data table 48 maintains the port states belonging to the local node
- the remote port data table 50 maintains the port states belonging to the remote nodes within the cluster.
- the FDU keeps the MLT port members on the local node in the local table, and the port members on all other remote nodes in the remote table.
- the FDU When the FDU receives a packet, it is required to find a port within the MLT (or SMLT) that is UP to forward the packet on toward its destination on the network.
- a port is either in an UP state or in a DOWN state.
- the FDU will need to determine which of the local ports is in the UP state so that it does not attempt to forward the packet over a port that is DOWN.
- the ports associated with the MLT are not all local (e.g. SMLT)
- the FDU will need to select a port on a separate physical network element that is associated with the SMLT and has an UP state.
- each FDU maintains a port state database 46 that it uses to maintain the state of each port within the cluster.
- the database maintains the physical link states and connection states for its local as well as all remote ports.
- the database includes two tables—namely a local table 48 and remote table 50 .
- the local table maintains the port states belonging to all FDUs on the local node, and the remote table maintains the port states of all ports on all remote nodes within the cluster.
- the FDU keeps the state of the MLT port members that are on the local node within the local table, and keeps the state of the MLT port members that are on all other remote nodes in the remote table.
- the local table also maintains the state of all IST ports. When a packet is received, the FDU will use the port state database to determine a port for the packet that is UP and forward the packet to that port to be output on the network.
- each FDU (in each line card) is required to synchronize with the FDUs in all other line cards within the local network element as well as with all other FDUs in other network elements within the cluster.
- each line card maintains heartbeat timers.
- a heartbeat engine 54 generates a heartbeat packet and sends the heartbeat packet to the local FDU 42 on that line card.
- the heartbeat packet carries the local physical link status of all ports on the line card to inform the local FDU of the state of the ports on that line card.
- the packet indicates the Global Port ID (GPID) and a network element ID.
- the FDU uses this state to update its local port state database.
- the FDU will also forward the packet to all of the other FDUs within the local node, as well as to all other FDUs on other nodes within the cluster.
- Each FDU uses the port state carried by the packet to update its port state database.
- each line card/FDU will also maintain a set of timers associated with all other FDUs within the local node and all other FDUs on other nodes within the cluster.
- Each FDU expects to receive periodic heartbeat packets from every other local and remote FDU.
- a local reception timer is maintained per FDU (for each FDU on the local network element as well as for each FDU on each remote network element within the cluster).
- a FDU failure is detected if the corresponding reception timer expires.
- each port associated with the FDU will be set to DOWN so that packets are not sent to ports associated with that FDU until it is restored.
- the heartbeat packets allow the FDUs to convey state information to each other and allow each FDU to know the state of all ports in the dataplane. As described below, this allows the dataplane to automatically adjust to port failures so that data may be redirected to ports that are UP and away from ports that are Down. All this happens without intervention from the control plane and, hence, the control plane is not notified of a failure of a particular port/line card.
- the management/control processor 44 periodically injects and extracts heartbeat packets into and out of its local FDU 42 . Each injected heartbeat packet completely loops through the target FDU and associated ports and then is extracted back to the processor.
- the management heartbeat packet traverses all functional blocks in both ingress and egress datapaths. Each time the control processor injects a management heartbeat packet of this nature, it kicks off its corresponding reception timer. The control processor detects a failure of the line card if the reception timer expires. The processor uses this information to set a system alarm which will be conveyed to the control plane 30 . The control plane may thus learn about a data plane failure. However, since the dataplane has a self-healing mechanism to accommodate port failures and redirect traffic accordingly, the control plane is not required to be involved in redirecting traffic and, hence, notification of the control plane of the failure is not critical to restoration of traffic through the network element.
- Heartbeat packets are also used by each FDU to determine the state of its ports.
- each FDU maintains a pair of timers per attached port that is configured in a logical/virtual connection. One of the timers is used to generate heartbeat packets to be sent over the connection. The other timer (reception timer) is used to detect connection failure. This timer expires if the heartbeat packet from the other endpoint of the connection is not received in time.
- the FDU updates its port state table with the arrival of heartbeat packets and reception timer expirations.
- Each FDU on each line card maintains its own port state table 46 .
- This table maintains the physical link states and connection states for its local ports as well as all remote ports of all FDUs in the cluster.
- the FDU uses the received heartbeat packets and timer expiration messages (due to connection time-out or remote FDU failure) to update the table.
- the table is partitioned into two segments: port states belonging to local node and port states belonging to the remote nodes.
- the port state table also maintains MLT and SMLT group information.
- the port state table is used by the forwarding logic to perform fast reroute as explained in greater detail below.
- FIG. 11 shows dissemination of the port state packet within a cluster of four nodes, in which the dark arrows represents the flow of the port state packet to all FDUs in the cluster.
- packet 1 will be generated containing the state of each port associated with a particular FDU.
- This packet is shown with reference numeral 1 in the top left line card of the top left network element.
- This packet will be passed to the FDU so that the FDU can update its port state database to reflect the current status of its ports.
- the packet will then be passed to each of the other FDUs within the local node (arrows 2 ). In one embodiment this may be implemented by causing the packet to be broadcast by the switch fabric to all other FDUs within the local node.
- the packet will also be forwarded to other nodes within the cluster (arrows 3 ) so that the state of the port may be distributed (arrows 4 ) to each FDU associated with each node of the cluster.
- a FDU Whenever a FDU receives a packet containing port state information, it will use the information to update its own port state database. This enables the port state database of all FDUs in the cluster to be synchronized.
- the port state packet carries information about each of its ports.
- the packet will specify the source node ID and the Global Port ID (GPID).
- the Global Port ID is the globally unique identifier (globally unique within a node) that enables the port to be uniquely identified within the port database.
- this port state information will enable the FDUs to select an available port for a particular data packet with confidence that the selected port is UP.
- the FDUs in the cluster will stop selecting those ports and will instead select alternate ports within the MLT/SMLT associated with the down port to be used to handle the packet.
- the datapath is able to automatically accommodate port failures, line card failures, etc., to re-route packets to available alternate ports without involvement of the control plane.
- rerouting of packets may be done quickly within a network element and between clusters of network elements in under 10 ms.
- FIG. 12 is a block diagram illustrating example architecture of a Forwarding Data Unit (FDU) 110 that executes, runs, interprets, operates or otherwise performs a port state table application 140 - 1 and port state table process 140 - 2 suitable for use in explaining example configurations disclosed herein.
- the FDU 110 includes an interconnection mechanism 111 such as a data bus or other circuitry that couples a memory system 112 , a processor 113 , an input/output interface 114 , and a communications interface 115 .
- the communications interface 115 enables the FDU 110 to communicate with other devices (i.e., other computers) on a network (not shown).
- the memory system 112 is any type of computer readable medium, and in this example, is encoded with a port state table application 140 - 1 as explained herein.
- the port state table application 140 - 1 may be embodied as software code such as data and/or logic instructions (e.g., code stored in the memory or on another computer readable medium such as a removable disk) that supports processing functionality according to different embodiments described herein.
- the processor 113 accesses the memory system 112 via the interconnect 111 in order to launch, run, execute, interpret or otherwise perform the logic instructions of a port state table application 140 - 1 . Execution of a port state table application 140 - 1 in this manner produces processing functionality in the port state table process 140 - 2 .
- the port state table process 140 - 2 represents one or more portions or runtime instances of a port state table application 140 - 1 (or the entire a port state table application 140 - 1 ) performing or executing within or upon the processor 113 in the FDU 110 at runtime.
- example configurations disclosed herein include the port state table application 140 - 1 itself (i.e., in the form of un-executed or non-performing logic instructions and/or data).
- the port state table application 140 - 1 may be stored on a computer readable medium (such as a floppy disk), hard disk, electronic, magnetic, optical, or other computer readable medium.
- a port state table application 140 - 1 may also be stored in a memory system 112 such as in firmware, read only memory (ROM), or, as in this example, as executable code in, for example, Random Access Memory (RAM).
- ROM read only memory
- RAM Random Access Memory
- FIG. 1 In addition to these embodiments, it should also be noted that other embodiments herein include the execution of a port state table application 140 - 1 in the processor 113 as the port state table process 140 - 2 .
- the FDU 110 may include other processes and/or software and hardware components, such as an operating system not shown in this example.
- processor 113 of FDU 110 accesses memory system 112 via the interconnect 111 in order to launch, run, execute, interpret or otherwise perform the logic instructions of the port state table application 140 - 1 .
- Execution of port state table application 140 - 1 produces processing functionality in port state table process 140 - 2 .
- the port state table process 140 - 2 represents one or more portions of the port state table application 140 - 1 (or the entire application) performing within or upon the processor 113 in the computer system 100 .
- embodiments herein include the port state table application 140 - 1 itself (i.e., the un-executed or non-performing logic instructions and/or data).
- the port state table application 140 - 1 can be stored on a computer readable medium such as a floppy disk, hard disk, or optical medium.
- the port state table application 140 - 1 can also be stored in a memory type system such as in firmware, read only memory (ROM), or, as in this example, as executable code within the memory system 112 (e.g., within Random Access Memory or RAM).
- port state table application 140 - 1 in processor 113 as the port state table process 140 - 2 .
- the FDU 110 can include other processes and/or software and hardware components, such as an operating system that controls allocation and use of hardware resources associated with the FDU 110 .
- FIGS. 13 and 14 Flow diagrams of the presently disclosed methods are depicted in FIGS. 13 and 14 .
- the rectangular elements are herein denoted “processing blocks” and represent computer software instructions or groups of instructions.
- the processing blocks represent steps performed by functionally equivalent circuits such as a digital signal processor circuit or an application specific integrated circuit (ASIC).
- ASIC application specific integrated circuit
- the flow diagrams do not depict the syntax of any particular programming language. Rather, the flow diagrams illustrate the functional information one of ordinary skill in the art requires to fabricate circuits or to generate computer software to perform the processing required in accordance with the present invention. It should be noted that many routine program elements, such as initialization of loops and variables and the use of temporary variables are not shown.
- Method 200 begins with processing block 202 which discloses periodically determining a state of a first set of ports associated with a first Forwarding Data Unit (FDU), the first FDU being one of a plurality of FDUs implementing forwarding functions within the forwarding plane of the network element.
- FDU Forwarding Data Unit
- Processing block 204 states using the determined state to update a first port state table of the port state database associated with the first FDU.
- the first port state database includes a local port data table and a remote port data table, and wherein physical link states and connection states for local ports are maintained in the local port data table and wherein physical link states and connection states for remote ports are maintained in the remote port data table.
- the process includes maintaining Multi-Link Trunk (MLT) port member state that are on the first FDU within the local port data table and maintaining Multi-Link Trunk (MLT) port member state that are on the other FDUs within the remote port data table.
- MLT Multi-Link Trunk
- Processing continues with processing block 210 which recites transmitting the determined state to each other FDU on the network element to enable each of the other FDUs to store the state of the first set of ports in a port state database local to each of the other FDUs.
- Processing block 212 discloses maintaining physical link states and connection states for local ports and remote ports in the first port state database.
- Processing block 214 states using the port state database by the forwarding plane to perform fast reroute of packets.
- Method 250 begins with processing block 252 which discloses receiving a heartbeat packet containing local physical link status of ports on a line card containing the first FDU and wherein the first FDU uses the local physical link status of ports on the line card of the heartbeat packet to update the port state database.
- Processing block 254 states maintaining a timer for each of the other FDUs to determine if heartbeat packets are received from the other FDUs, wherein in the event a timer expires before receiving a heartbeat packet from the FDU associated with that timer, each port associated with that FDU is determined to be in the DOWN state so that packets are not sent to ports having the DOWN state until that FDU is restored.
- Processing block 256 recites maintaining a pair of local timers per attached port of the first FDU, the attached port configured in a logical/virtual connection wherein one of the local timers is used to generate heartbeat packets to be sent over the attached port and wherein another of the local timers is used to detect connection failure of the attached port when a connection failure exists when the sent heartbeat packet is not received.
- Processing block 258 discloses the first FDU updates its port state database with the arrival of heartbeat packets and timer expirations.
- the device(s) or computer systems that integrate with the processor(s) may include, for example, a personal computer(s), workstation(s) (e.g., Sun, HP), personal digital assistant(s) (PDA(s)), handheld device(s) such as cellular telephone(s), laptop(s), handheld computer(s), or another device(s) capable of being integrated with a processor(s) that may operate as provided herein. Accordingly, the devices provided herein are not exhaustive and are provided for illustration and not limitation.
- references to “a microprocessor” and “a processor”, or “the microprocessor” and “the processor,” may be understood to include one or more microprocessors that may communicate in a stand-alone and/or a distributed environment(s), and may thus be configured to communicate via wired or wireless communications with other processors, where such one or more processor may be configured to operate on one or more processor-controlled devices that may be similar or different devices.
- Use of such “microprocessor” or “processor” terminology may thus also be understood to include a central processing unit, an arithmetic logic unit, an application-specific integrated circuit (IC), and/or a task engine, with such examples provided for illustration and not limitation.
- references to memory may include one or more processor-readable and accessible memory elements and/or components that may be internal to the processor-controlled device, external to the processor-controlled device, and/or may be accessed via a wired or wireless network using a variety of communications protocols, and unless otherwise specified, may be arranged to include a combination of external and internal memory devices, where such memory may be contiguous and/or partitioned based on the application.
- references to a database may be understood to include one or more memory associations, where such references may include commercially available database products (e.g., SQL, Informix, Oracle) and also proprietary databases, and may also include other structures for associating memory such as links, queues, graphs, trees, with such structures provided for illustration and not limitation.
- References to a network may include one or more intranets and/or the Internet, as well as a virtual network. References herein to microprocessor instructions or microprocessor-executable instructions, in accordance with the above, may be understood to include programmable hardware.
- a computer usable medium can include a readable memory device, such as a hard drive device, a CD-ROM, a DVD-ROM, or a computer diskette, having computer readable program code segments stored thereon.
- the computer readable medium can also include a communications link, either optical, wired, or wireless, having program code segments carried thereon as digital or analog signals.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Small-Scale Networks (AREA)
Abstract
Description
Claims (20)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/772,457 US8619605B2 (en) | 2009-05-13 | 2010-05-03 | Method and apparatus for maintaining port state tables in a forwarding plane of a network element |
BRPI1002963-0A BRPI1002963A2 (en) | 2009-05-13 | 2010-05-13 | method and apparatus for maintaining port state tables in a network element routing plan |
KR1020100044964A KR101700141B1 (en) | 2009-05-13 | 2010-05-13 | Method and apparatus for maintaining port state tables in a forwarding plane of a network element |
CN201010178193.1A CN101888333B (en) | 2009-05-13 | 2010-05-13 | Method and apparatus for maintaining port state tables in a forwarding plane of a network element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17802009P | 2009-05-13 | 2009-05-13 | |
US12/772,457 US8619605B2 (en) | 2009-05-13 | 2010-05-03 | Method and apparatus for maintaining port state tables in a forwarding plane of a network element |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100293200A1 US20100293200A1 (en) | 2010-11-18 |
US8619605B2 true US8619605B2 (en) | 2013-12-31 |
Family
ID=42542789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/772,457 Active 2032-09-23 US8619605B2 (en) | 2009-05-13 | 2010-05-03 | Method and apparatus for maintaining port state tables in a forwarding plane of a network element |
Country Status (6)
Country | Link |
---|---|
US (1) | US8619605B2 (en) |
EP (1) | EP2252013A1 (en) |
JP (1) | JP5361794B2 (en) |
KR (1) | KR101700141B1 (en) |
CN (1) | CN101888333B (en) |
BR (1) | BRPI1002963A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140301401A1 (en) * | 2013-04-07 | 2014-10-09 | Hangzhou H3C Technologies Co., Ltd. | Providing aggregation link groups in logical network device |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8139492B1 (en) | 2009-06-09 | 2012-03-20 | Juniper Networks, Inc. | Local forwarding bias in a multi-chassis router |
US8355319B2 (en) * | 2011-02-02 | 2013-01-15 | Telefonaktiebolaget L M Ericsson (Publ) | Multicast dual join for ring network topologies |
CN102447639B (en) * | 2012-01-17 | 2016-03-09 | 华为技术有限公司 | A kind of policy routing method and device |
JP2013197627A (en) * | 2012-03-15 | 2013-09-30 | Fujitsu Ltd | Data processing apparatus, data transmitting/receiving apparatus, and data transmitting/receiving control method |
WO2013136526A1 (en) * | 2012-03-16 | 2013-09-19 | 株式会社日立製作所 | Distributed application-integrating network system |
US9559897B2 (en) | 2012-12-21 | 2017-01-31 | Brocade Communications Systems, Inc. | Device ID assignment in a system of devices |
US9853889B2 (en) | 2013-05-20 | 2017-12-26 | Brocade Communications Systems, Inc. | Broadcast and multicast traffic reduction in stacking systems |
US9313102B2 (en) | 2013-05-20 | 2016-04-12 | Brocade Communications Systems, Inc. | Configuration validation in a mixed node topology |
US10284499B2 (en) | 2013-08-22 | 2019-05-07 | Arris Enterprises Llc | Dedicated control path architecture for systems of devices |
US9185049B2 (en) | 2013-10-31 | 2015-11-10 | Brocade Communications Systems, Inc. | Techniques for simplifying stacking trunk creation and management |
US9577932B2 (en) | 2014-02-12 | 2017-02-21 | Brocade Communications Systems, Inc. | Techniques for managing ternary content-addressable memory (TCAM) resources in heterogeneous systems |
US9692695B2 (en) | 2014-03-27 | 2017-06-27 | Brocade Communications Systems, Inc. | Techniques for aggregating hardware routing resources in a multi-packet processor networking system |
US9692652B2 (en) * | 2014-04-03 | 2017-06-27 | Brocade Communications Systems, Inc. | Framework for reliably communicating port information in a system of devices |
US9667494B2 (en) | 2014-06-30 | 2017-05-30 | International Business Machines Corporation | Abstraction layer and distribution scope for a logical switch router architecture |
CN104184834A (en) * | 2014-09-11 | 2014-12-03 | 东莞宇龙通信科技有限公司 | File transmission method and device and terminal |
US10003525B2 (en) | 2014-11-14 | 2018-06-19 | Fisher-Rosemount Systems, Inc. | Methods and apparatus to provide redundancy in a process control system |
CN105850077B (en) * | 2014-12-01 | 2019-06-28 | 华为技术有限公司 | The recognition methods and equipment of heartbeat packet timer |
US10091059B2 (en) | 2014-12-16 | 2018-10-02 | Arris Enterprises Llc | Handling connections between network devices that support multiple port communication modes |
US9946676B2 (en) * | 2015-03-26 | 2018-04-17 | Intel Corporation | Multichip package link |
CN105049248A (en) * | 2015-07-09 | 2015-11-11 | 北京宇航系统工程研究所 | Network state fast detection method of SDH (synchronous digital hierarchy) device |
US9628480B2 (en) * | 2015-07-27 | 2017-04-18 | Bank Of America Corporation | Device blocking tool |
JP6468566B2 (en) * | 2016-02-03 | 2019-02-13 | 日本電信電話株式会社 | Data transmission control system and method, and data transmission control program |
CN106059791B (en) * | 2016-05-13 | 2020-04-14 | 华为技术有限公司 | Link switching method of service in storage system and storage device |
US10382444B2 (en) * | 2016-05-23 | 2019-08-13 | Bank Of America Corporation | Device blocking tool |
US10404569B2 (en) * | 2016-08-22 | 2019-09-03 | General Electric Company | Internet of things associate |
US11042416B2 (en) * | 2019-03-06 | 2021-06-22 | Google Llc | Reconfigurable computing pods using optical networks |
CN109889411B (en) * | 2019-03-22 | 2020-09-11 | 新华三技术有限公司 | Data transmission method and device |
US11171863B2 (en) * | 2019-08-12 | 2021-11-09 | Hewlett Packard Enterprise Development Lp | System and method for lag performance improvements |
KR102217114B1 (en) * | 2020-07-24 | 2021-02-18 | 넷록스 주식회사 | Method for controlling of accelerating edge platform network and electronic device using the same |
CN113852547B (en) * | 2021-09-10 | 2023-07-25 | 锐捷网络股份有限公司 | Message forwarding method and device, line card and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000072531A1 (en) | 1999-05-24 | 2000-11-30 | Broadcom Corporation | Apparatus and method for distributing a load across a trunk group |
US6535489B1 (en) | 1999-05-21 | 2003-03-18 | Advanced Micro Devices, Inc. | Method and apparatus in a network switch for handling link failure and link recovery in a trunked data path |
US20030142680A1 (en) * | 2002-01-28 | 2003-07-31 | Naoki Oguchi | Device, network, and system for forwarding frames between geographically dispersed user networks |
EP1729461A1 (en) | 2005-06-02 | 2006-12-06 | Broadcom Corporation | Dynamic port failover |
US8189599B2 (en) * | 2005-08-23 | 2012-05-29 | Rpx Corporation | Omni-protocol engine for reconfigurable bit-stream processing in high-speed networks |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4851961B2 (en) * | 2007-02-27 | 2012-01-11 | 三菱電機株式会社 | Observation station, monitoring control system, monitoring control controller, communication control device, and LAN switch device |
JP4830942B2 (en) * | 2007-03-28 | 2011-12-07 | 日本電気株式会社 | Communication apparatus, communication system, and LAG management table management method used therefor |
CN101094157B (en) * | 2007-08-20 | 2011-09-21 | 中兴通讯股份有限公司 | Method for implementing network interconnection by using link aggregation |
CN101252532B (en) * | 2008-03-18 | 2010-08-25 | 华为技术有限公司 | Equipment and method for collocating Ethernet link polymerization terminal port |
-
2010
- 2010-05-03 US US12/772,457 patent/US8619605B2/en active Active
- 2010-05-13 JP JP2010110782A patent/JP5361794B2/en not_active Expired - Fee Related
- 2010-05-13 KR KR1020100044964A patent/KR101700141B1/en active IP Right Grant
- 2010-05-13 CN CN201010178193.1A patent/CN101888333B/en not_active Expired - Fee Related
- 2010-05-13 BR BRPI1002963-0A patent/BRPI1002963A2/en not_active IP Right Cessation
- 2010-05-13 EP EP10162773A patent/EP2252013A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6535489B1 (en) | 1999-05-21 | 2003-03-18 | Advanced Micro Devices, Inc. | Method and apparatus in a network switch for handling link failure and link recovery in a trunked data path |
WO2000072531A1 (en) | 1999-05-24 | 2000-11-30 | Broadcom Corporation | Apparatus and method for distributing a load across a trunk group |
US20030142680A1 (en) * | 2002-01-28 | 2003-07-31 | Naoki Oguchi | Device, network, and system for forwarding frames between geographically dispersed user networks |
EP1729461A1 (en) | 2005-06-02 | 2006-12-06 | Broadcom Corporation | Dynamic port failover |
US8189599B2 (en) * | 2005-08-23 | 2012-05-29 | Rpx Corporation | Omni-protocol engine for reconfigurable bit-stream processing in high-speed networks |
Non-Patent Citations (1)
Title |
---|
European Search Report dated Sep. 10, 2010. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140301401A1 (en) * | 2013-04-07 | 2014-10-09 | Hangzhou H3C Technologies Co., Ltd. | Providing aggregation link groups in logical network device |
Also Published As
Publication number | Publication date |
---|---|
CN101888333A (en) | 2010-11-17 |
BRPI1002963A2 (en) | 2012-03-20 |
JP5361794B2 (en) | 2013-12-04 |
JP2010283811A (en) | 2010-12-16 |
KR101700141B1 (en) | 2017-02-13 |
US20100293200A1 (en) | 2010-11-18 |
EP2252013A1 (en) | 2010-11-17 |
CN101888333B (en) | 2015-06-17 |
KR20100122870A (en) | 2010-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8619605B2 (en) | Method and apparatus for maintaining port state tables in a forwarding plane of a network element | |
US8351429B2 (en) | Method and apparatus for providing fast reroute of a packet that may be forwarded on one of a plurality of equal cost multipath routes through a network | |
US8385335B2 (en) | Method and apparatus for providing fast reroute of a unicast packet within a network element to an available port associated with a multi-link trunk | |
US8351431B2 (en) | Method and apparatus for providing fast reroute of a multicast packet within a network element to an available port associated with a multi-link trunk | |
US8477791B2 (en) | Method and apparatus for locally implementing port selection via synchronized port state databases maintained by the forwarding plane of a network element | |
US8817593B2 (en) | Method and apparatus providing failover for a point to point tunnel for wireless local area network split-plane environments | |
US8730793B2 (en) | Method and apparatus providing network redundancy and high availability to remote network nodes | |
US9628375B2 (en) | N-node link aggregation group (LAG) systems that can support various topologies | |
US8861338B2 (en) | Routed split multilink trunking for IPv6 | |
KR101563102B1 (en) | System and method for virtual fabric link failure recovery | |
US8446818B2 (en) | Routed split multi-link trunking resiliency for wireless local area network split-plane environments | |
US8432789B2 (en) | Split multi-link trunking (SMLT) hold-down timer for internet protocol (IP) multicast | |
US8861334B2 (en) | Method and apparatus for lossless link recovery between two devices interconnected via multi link trunk/link aggregation group (MLT/LAG) | |
US8634417B2 (en) | Method and apparatus providing selective flow redistribution across Multi Link Trunk/Link Aggregation Group (MLT/LAG) after port member failure and recovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AVAYA INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASSARPOUR, HAMID;REEL/FRAME:024324/0525 Effective date: 20100503 |
|
AS | Assignment |
Owner name: BANK OF NEW YORK MELLON TRUST, NA, AS NOTES COLLATERAL AGENT, THE, PENNSYLVANIA Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA INC., A DELAWARE CORPORATION;REEL/FRAME:025863/0535 Effective date: 20110211 Owner name: BANK OF NEW YORK MELLON TRUST, NA, AS NOTES COLLAT Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA INC., A DELAWARE CORPORATION;REEL/FRAME:025863/0535 Effective date: 20110211 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., PENNSYLVANIA Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA, INC.;REEL/FRAME:029608/0256 Effective date: 20121221 Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., P Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA, INC.;REEL/FRAME:029608/0256 Effective date: 20121221 |
|
AS | Assignment |
Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE, Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA, INC.;REEL/FRAME:030083/0639 Effective date: 20130307 Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., THE, PENNSYLVANIA Free format text: SECURITY AGREEMENT;ASSIGNOR:AVAYA, INC.;REEL/FRAME:030083/0639 Effective date: 20130307 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS INC.;OCTEL COMMUNICATIONS CORPORATION;AND OTHERS;REEL/FRAME:041576/0001 Effective date: 20170124 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: AVAYA INTEGRATED CABINET SOLUTIONS INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: OCTEL COMMUNICATIONS LLC (FORMERLY KNOWN AS OCTEL COMMUNICATIONS CORPORATION), CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: AVAYA INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 029608/0256;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:044891/0801 Effective date: 20171128 Owner name: AVAYA INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 025863/0535;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST, NA;REEL/FRAME:044892/0001 Effective date: 20171128 Owner name: AVAYA INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: OCTEL COMMUNICATIONS LLC (FORMERLY KNOWN AS OCTEL Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: VPNET TECHNOLOGIES, INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: AVAYA INTEGRATED CABINET SOLUTIONS INC., CALIFORNI Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531 Effective date: 20171128 Owner name: AVAYA INC., CALIFORNIA Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 030083/0639;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:045012/0666 Effective date: 20171128 |
|
AS | Assignment |
Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS LLC;OCTEL COMMUNICATIONS LLC;AND OTHERS;REEL/FRAME:045034/0001 Effective date: 20171215 Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW Y Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS LLC;OCTEL COMMUNICATIONS LLC;AND OTHERS;REEL/FRAME:045034/0001 Effective date: 20171215 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS LLC;OCTEL COMMUNICATIONS LLC;AND OTHERS;REEL/FRAME:045124/0026 Effective date: 20171215 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA MANAGEMENT L.P.;INTELLISIST, INC.;AND OTHERS;REEL/FRAME:053955/0436 Effective date: 20200925 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, DELAWARE Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:AVAYA INC.;INTELLISIST, INC.;AVAYA MANAGEMENT L.P.;AND OTHERS;REEL/FRAME:061087/0386 Effective date: 20220712 |
|
AS | Assignment |
Owner name: AVAYA INTEGRATED CABINET SOLUTIONS LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001 Effective date: 20230403 Owner name: AVAYA MANAGEMENT L.P., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001 Effective date: 20230403 Owner name: AVAYA INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001 Effective date: 20230403 Owner name: AVAYA HOLDINGS CORP., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001 Effective date: 20230403 |
|
AS | Assignment |
Owner name: WILMINGTON SAVINGS FUND SOCIETY, FSB (COLLATERAL AGENT), DELAWARE Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:AVAYA MANAGEMENT L.P.;AVAYA INC.;INTELLISIST, INC.;AND OTHERS;REEL/FRAME:063742/0001 Effective date: 20230501 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:AVAYA INC.;AVAYA MANAGEMENT L.P.;INTELLISIST, INC.;REEL/FRAME:063542/0662 Effective date: 20230501 |
|
AS | Assignment |
Owner name: AVAYA MANAGEMENT L.P., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: CAAS TECHNOLOGIES, LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: HYPERQUALITY II, LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: HYPERQUALITY, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: ZANG, INC. (FORMER NAME OF AVAYA CLOUD INC.), NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: VPNET TECHNOLOGIES, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: OCTEL COMMUNICATIONS LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: AVAYA INTEGRATED CABINET SOLUTIONS LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: INTELLISIST, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: AVAYA INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622 Effective date: 20230501 Owner name: AVAYA INTEGRATED CABINET SOLUTIONS LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 53955/0436);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063705/0023 Effective date: 20230501 Owner name: INTELLISIST, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 53955/0436);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063705/0023 Effective date: 20230501 Owner name: AVAYA INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 53955/0436);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063705/0023 Effective date: 20230501 Owner name: AVAYA MANAGEMENT L.P., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 53955/0436);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063705/0023 Effective date: 20230501 Owner name: AVAYA INTEGRATED CABINET SOLUTIONS LLC, NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 61087/0386);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063690/0359 Effective date: 20230501 Owner name: INTELLISIST, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 61087/0386);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063690/0359 Effective date: 20230501 Owner name: AVAYA INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 61087/0386);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063690/0359 Effective date: 20230501 Owner name: AVAYA MANAGEMENT L.P., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 61087/0386);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063690/0359 Effective date: 20230501 |
|
AS | Assignment |
Owner name: AVAYA LLC, DELAWARE Free format text: (SECURITY INTEREST) GRANTOR'S NAME CHANGE;ASSIGNOR:AVAYA INC.;REEL/FRAME:065019/0231 Effective date: 20230501 |