US7131903B2 - Segmented superabrasive grinding device - Google Patents
Segmented superabrasive grinding device Download PDFInfo
- Publication number
- US7131903B2 US7131903B2 US10/523,232 US52323205A US7131903B2 US 7131903 B2 US7131903 B2 US 7131903B2 US 52323205 A US52323205 A US 52323205A US 7131903 B2 US7131903 B2 US 7131903B2
- Authority
- US
- United States
- Prior art keywords
- grinding
- grinding device
- matrix
- segment
- total composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/20—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/20—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
- B24D3/28—Resins or natural or synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/34—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
- B24D3/342—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent
- B24D3/344—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent the bonding agent being organic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/34—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
- B24D3/346—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties utilised during polishing, or grinding operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D5/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
- B24D5/06—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D5/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
- B24D5/06—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
- B24D5/063—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental with segments embedded in a matrix which is rubbed away during the grinding process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D7/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
- B24D7/06—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D7/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
- B24D7/06—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
- B24D7/063—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental with segments embedded in a matrix which is rubbed away during the grinding process
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2003/1034—Materials or components characterised by specific properties
- C09K2003/1078—Fire-resistant, heat-resistant materials
Definitions
- the present invention relates to grinding devices, such as grinding discs and wheels. More particularly, the present invention relates to grinding devices, such as grinding discs and wheels, wherein the grinding device is adapted to perform “dry machining” operations.
- the abrasive pieces are arranged so as to define spaces therebetween for the purpose of allowing cooling fluids to flow over, around, in between and away from the abrasive pieces, thereby flushing swarf from the abrasive pieces and facilitating heat dissipation.
- a grinding device such as, for example, a surface grinding disc or an annular grinding wheel, wherein the device includes a plurality of abrasive segments arranged in an array thereon (or therearound, as the case may be).
- the abrasive pieces may include diamond or superabrasive particles, such as cubic boron nitride (“cBN”) dispersed therein for reasons which are obvious to those of ordinary skill in the art
- cBN cubic boron nitride
- wet machining” operations are undesirable.
- a grinding device such as, for example, a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the abrasive segments include superabrasive particles dispersed therein, and wherein the device is adapted to operate in a “dry machining” environment, that is, for example, without the use of more than a nominal quantity of coolant or other lubricant.
- the efficiency of conventional dry machining operations is limited by the rate at which workpiece material may be removed therefrom without imparting workpiece failure or damage, such as, for example, burning.
- coolants serve an important function of dissipating heat and dry machining is—by definition—machining in a dry or near-dry environment (i.e., without the use of coolants).
- a grinding device such as, for example, a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the plurality of abrasive segments are embedded in a matrix composition adapted to enhance heat dissipation.
- a grinding device such as, for example, a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the plurality of abrasive segments are embedded in a matrix composition adapted to enhance heat dissipation.
- the present invention is for a grinding device, such as a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the plurality of abrasive segments are embedded in a matrix composition, and wherein the device is adapted to perform a “dry machining” operation.
- the abrasive segments may be resin bonded or vitrified and may include diamond or other superhard or superabrasive particles, such as, for example, cubic boron nitride (“cBN”), dispersed therein.
- Both the abrasive segments and the matrix composition include a dry lubricant, such as hexagonal boron nitride, molybdenum disulphide or graphite, dispersed therein.
- the abrasive segments further include a melt phase metal composition, such as bronze or other copper alloys, to aid in heat dissipation.
- a grinding device such as, for example, a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the abrasive segments include superabrasive particles dispersed therein, and wherein the device is adapted to perform “dry machining” operations, that is, machining operations without the use of more than a nominal quantity of coolant or other lubricant.
- a grinding device such as, for example, a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the plurality of abrasive segments are embedded in a matrix composition adapted to enhance heat dissipation.
- a grinding device such as, for example, a surface grinding disc or an annular grinding wheel
- FIG. 1 is a face view of a grinding device according to a preferred embodiment of the present invention
- FIG. 2 is an edge section view of the grinding device of FIG. 1 , shown along section line 2 — 2 of FIG. 1 ;
- FIG. 3 is a partial section view of the grinding device of FIG. 1 , shown along section line 3 — 3 of FIG. 1 ;
- FIG. 4 is a partial face view of a grinding device according to an alternative embodiment of the present invention showing an alternative arrangement of abrasive segments on the device;
- FIG. 5 is a face view of a grinding device according to an alternative embodiment of the present invention.
- FIG. 6 is a section view of the grinding device of FIG. 5 , shown along section line 6 — 6 of FIG. 5 .
- the present invention is for a grinding device, such as a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the plurality of abrasive segments are embedded in a matrix composition, and wherein the device is adapted to operate in a “dry machining” or “near-dry machining” environment.
- a grinding device such as a surface grinding disc or an annular grinding wheel
- a grinding device 10 takes the form of a surface grinding disc suitable for machining substantially flat workpieces, such as, for example, brake rotors, power steering pump rings and rotors, valve plates, coil spring ends, and the like.
- the device 10 includes a circular rigid base 20 , constructed from, for example, aluminum or steel, one or more abrasive segments 30 (sometimes referred to as “buttons”) secured within a matrix composition 40 which is generally circular in shape and conterminous with the base 20 .
- Segments 30 can be viewed as being “embedded” in the matrix composition 40 and may be integrally formed therein or may be inserted into pockets (not shown) formed into the matrix 40 after the matrix has been secured to the base 20 .
- Segments 30 are shown to have a thickness, which is for the purpose of illustration only.
- Matrix 40 preferably extends to the periphery 24 of the base 20 , although it may extend over only a portion over the base 20 towards the periphery 24 thereof. In either case, matrix 40 covers enough of the base 20 and surrounds each of the segments 30 sufficiently to retain segments 30 thereby.
- segments 30 are shown in FIG. 1 arranged in a circular array forming an array path 26 concentric with the device 10 , segments 30 may, alternatively, be arranged in some other array.
- segments 30 are depicted to be arranged along two concentric paths 26 , 26 ′ in abutting relation to one another. Any number of paths, concentric or non-concentric, may be provided without departing from either the spirit or the scope of the present invention. Moreover, segments 30 may be spaced from one another, thereby providing additional matrix composition 40 therebetween It should be pointed out that the present invention is not limited to any particular size, shape or arrangement of segments 30 . Thus, non-circular segments, for example, may be used according to the present invention and not depart from either the spirit or the scope thereof.
- a grinding device 10 may include circular segments 30 in one region thereof and triangular, rectangular, hexagonal or arcuate segments in another region thereof.
- segments 30 need not be provided near the periphery 24 of the device 10 , as shown and depicted in the Figures.
- segments 30 are circular in shape and have a diameter between 1 ⁇ 4 in. and 11 ⁇ 2 in.
- Each segment 30 is spaced from adjacent segments 30 by a distance no greater than 1 ⁇ 2 of the shortest dimension of the workpiece to be machined thereby.
- the matrix 40 is formed so that an exposed surface 42 thereof is substantially coplanar with an abrasive face 32 of the segments 30 , thereby defining a substantially continuous planar face of the device 10 .
- workpieces (not shown) are brought into contact with the face of the device and advanced therealong to machine a substantially flat surface of or into the workpiece.
- a grinding device having abrasive segments comprising: 1) a superabrasive material, such as cBN; 2) a resin bond, such as a polyimide resin; 3) a refractory, non-grinding abrasive grain, such as boron carbide (“BC”); 4) a heat-dissipative melt-phase metal, such as a copper-tin (i.e., bronze) alloy; and, 5) a dry lubricant, such as hexagonal boron nitride (“hBN”).
- a superabrasive material such as cBN
- a resin bond such as a polyimide resin
- 3) a refractory, non-grinding abrasive grain such as boron carbide (“BC”
- 4) a heat-dissipative melt-phase metal such as a copper-tin (i.e., bronze) alloy
- hBN hexagonal boron nitride
- the cBN is provided in an amount ranging between 10% and 43.75% (by volume), and preferably 12% (by volume).
- diamond may be provided in accordance with the foregoing range.
- the cBN is dispersed in a resin bond, preferably a polyimide resin, constituting between 30% and 50% (by volume), and preferably 37.8% (by volume), of the segment (excluding the volume percentage of cBN constituting the segment).
- a glass frit such as, for example, borosilicate glass, may be substituted for the resin bond.
- the refractory, non-grinding abrasive grain such as, for example, BC
- BC grain size is preferably less than or equal to 1 ⁇ 2 the grain size of the average cBN grain, and may be anywhere in the range between 220 and 1000 mesh.
- the melt-phase metal may be selected from the class of copper-tin alloys known as bronze, and constitute between 30% and 68% (by volume, excluding the volume percentage of cBN constituting the segment).
- the melt-phase metal is composed of 34.3% (of the segment, by volume) of copper powder and 9.2% (of the segment, by volume) of tin powder.
- the melt-phase metal serves to enhance heat dissipation through the segment during machining operations.
- the dry lubricant is provided to inhibit the generation of heat due to friction and constitutes at least 1% (by volume), and preferably 2.2% (by volume), of the segment (excluding the volume percentage of cBN constituting the segment).
- the dry lubricant is preferably formed from hBN, but it may alternatively be formed from molybdenum disulphide, graphite, coke or any lithium sterate.
- a grinding device having a matrix surrounding one or more abrasive segments, wherein the matrix comprises: 1) an epoxy resin; 2) a dry lubricant, such as molybdenum disulphide (“MOS”); 3) a porosity filler material, such as a ceramic material shaped into spheroids; and, 4) a refractory non-grinding abrasive grain, such as silicon carbide (“SiC”).
- MOS molybdenum disulphide
- SiC silicon carbide
- the epoxy resin is preferably a two part epoxy with reactive dilutant and anti-foam additives, such as, for example, a two-part epoxy distributed by The Dow Chemical Company or Midland, Mich., identified by Dow product number 331/37-614.
- the matrix comprises 35% (by weight) of the epoxy resin.
- the dry lubricant is preferably MOS provided in an amount ranging between 1% and 5% (by weight), and preferably 1.7% (by weight). Similar to the dry lubricant provided in the segments, the dry lubricant is provide in the matrix for the purpose of inhibiting the generation of heat due to friction.
- the porosity filler material is provided in an amount ranging between 3% and 15% (by weight), and preferably 7.0% (by weight).
- the filler is a 14/40 ceramic bubble material.
- the refractory material is provided for the purpose of wear retardation, and is composed of an abrasive grain such as AlO3, SiC, boron carbide or zirconium oxide in an amount ranging between 10% and 70% (by weight), and preferably 56.3% (by weight).
- the grain size of the refractory material preferably is the same size or smaller than the grain size of the cBN used in the segments.
- a grinding device provides many features, benefits and advantages, including without limitation: improving safety of operation during high-speed grinding, increasing wheel “life”, increasing finish quality, reducing wheel dust, eliminating wheel dressing requirements and improving metallurgical integrity of the workpiece (i.e., no more than % negligible burns, stresses or other subsurface workpiece damage).
- a device 100 takes the form of an annular grinding wheel suitable for cylindrical machining operations to machine generally cylindrical workpieces, such as, for example, crankshaft bearings and pins, camshaft lobes, and the like.
- Device 100 includes a cylindrical base 120 , constructed from, for example, aluminum or steel, one or more abrasive segments 130 secured within an annular matrix composition 140 which at least partially surrounds an outer peripheral surface 124 of the base 120 .
- Segments 130 can be viewed as being “embedded” in the matrix 140 and may be integrally formed therein or may be inserted into pockets (not shown) formed into the matrix 140 after the matrix 140 has been formed around (or otherwise secured to) the base 120 .
- Segments 130 are shown to have a thickness, which is for the purpose of illustration only.
- Matrix 140 is shown to cover the entire peripheral surface 124 of the base, although it may alternatively cover only a portion thereof. In either case, matrix 140 covers enough of the base 120 and is of a sufficient thickness to surround each of the segments 130 to prevent dislodging of the segments 130 during use.
- segments 130 are shown in spaced relation over only a portion of the periphery of the device 100 , segments 130 may be spaced around the entire periphery. Moreover, although segments 130 are shown depicted as circular “buttons”, they may alternatively take the form of arcuate segments (not shown), whether spaced from one another by a nominal distance or in an end-to-end abutting relation.
- composition of the segments 130 and of the matrix 140 according to the present embodiment is the same as the composition of the segments 30 and of the matrix 40 , respectively, of the preferred embodiment hereof.
- Devices 30 , 130 according to the present invention are suitable for performing dry machining operations on hard workpieces at feed rates in excess of 40 meters/second. Indeed, it has been observed that the device 30 according to the preferred embodiment hereof provides optimal dry machining operations at a feed rate of about 50 meters/second.
- the present invention provides a grinding device, such as, for example, a surface grinding disc or an annular grinding wheel, wherein the device includes a plurality of abrasive segments arranged in an array thereon (or therearound, as the case may be).
- the present invention also provides a grinding device, such as, for example, a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the abrasive segments include superabrasive particles dispersed therein, and wherein the device is adapted to perform “dry machining” operations, that is, machining operations without the use of more than a nominal quantity of coolant or other lubricant.
- a grinding device such as, for example, a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the abrasive segments include superabrasive particles dispersed therein, and wherein the device is adapted to perform “dry machining” operations, that is, machining operations without the use of more than a nominal quantity of coolant or other lubricant.
- the present invention even further provides a grinding device, such as, for example, a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the plurality of abrasive segments are embedded in a matrix composition adapted to enhance heat dissipation.
- a grinding device such as, for example, a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the plurality of abrasive segments are embedded in a matrix composition adapted to enhance heat dissipation.
- the present invention provides a method of dry machining workpieces wherein the method provides a grinding device, such as, for example, a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the plurality of abrasive segments are embedded in a matrix composition adapted to enhance heat dissipation.
- a grinding device such as, for example, a surface grinding disc or an annular grinding wheel, constructed from a plurality of abrasive segments arranged in an array thereon, wherein the plurality of abrasive segments are embedded in a matrix composition adapted to enhance heat dissipation.
- the present invention also provides a method of dry machining workpieces with increased machining efficiency, that is, for example, by increasing workpiece material removal rates.
- the present invention even further provides a method of dry machining workpieces constructed from hard materials, which typically are difficult to dry machine using known dry machining methods and devices.
- a grinding device Despite being adapted to perform “dry machining” operations, a grinding device according to the present invention will operate without any loss of function or benefit in a “wet machining” environment and the examples used herein should not be interpreted as limiting the scope of the present invention to only “dry machining” operations or machining environments.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
Claims (29)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/523,232 US7131903B2 (en) | 2002-07-30 | 2003-07-29 | Segmented superabrasive grinding device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39982902P | 2002-07-30 | 2002-07-30 | |
US60399829 | 2002-07-30 | ||
US10/523,232 US7131903B2 (en) | 2002-07-30 | 2003-07-29 | Segmented superabrasive grinding device |
PCT/US2003/023517 WO2004011020A1 (en) | 2002-07-30 | 2003-07-29 | Segmented superabrasive grinding device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050181715A1 US20050181715A1 (en) | 2005-08-18 |
US7131903B2 true US7131903B2 (en) | 2006-11-07 |
Family
ID=31188624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/523,232 Expired - Lifetime US7131903B2 (en) | 2002-07-30 | 2003-07-29 | Segmented superabrasive grinding device |
Country Status (5)
Country | Link |
---|---|
US (1) | US7131903B2 (en) |
KR (1) | KR20050040910A (en) |
AU (1) | AU2003256916A1 (en) |
DE (1) | DE10392985T5 (en) |
WO (1) | WO2004011020A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070144510A1 (en) * | 2005-12-23 | 2007-06-28 | Dong Soo Lee | Processing tips and tools using the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100764037B1 (en) * | 2005-12-23 | 2007-10-08 | 동영다이아몬드공업(주) | Cutting wheel for stone cutting and it's manufacturing process |
WO2009075775A1 (en) * | 2007-12-12 | 2009-06-18 | Saint-Gobain Abrasives, Inc. | Multifunction abrasive tool with hybrid bond |
WO2010034492A1 (en) * | 2008-09-26 | 2010-04-01 | Wendt Gmbh | Microwave plasma sintering |
CN102350667B (en) * | 2011-06-29 | 2013-07-10 | 苏州赛力精密工具有限公司 | Resin metal composite bonding agent and composite bonding agent diamond grinding wheel |
ITVI20120287A1 (en) * | 2012-10-26 | 2014-04-27 | Premier S R L | MILL FOR THE ABRASION OF TILES AND THE LIKE |
CN104087887B (en) * | 2014-06-17 | 2016-09-07 | 宁国东方碾磨材料股份有限公司 | A kind of high hardness spray coating mill section |
GB201507110D0 (en) * | 2015-04-27 | 2015-06-10 | Element Six Ltd And Element Six Abrasives S A | Sintered polycrystalline body |
CN105252436A (en) * | 2015-10-09 | 2016-01-20 | 芜湖市鸿坤汽车零部件有限公司 | Cerium and silicon composite oxidization resin grinding wheel and preparation method thereof |
CN112428164A (en) * | 2020-11-19 | 2021-03-02 | 东台市飞花砂轮有限公司 | Multifunctional anti-cracking and anti-explosion resin grinding wheel |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4505720A (en) * | 1983-06-29 | 1985-03-19 | Minnesota Mining And Manufacturing Company | Granular silicon carbide abrasive grain coated with refractory material, method of making the same and articles made therewith |
US4671021A (en) | 1984-10-22 | 1987-06-09 | Toyoda Van Moppes Limited | Grinding tool |
US5049165A (en) * | 1989-01-30 | 1991-09-17 | Tselesin Naum N | Composite material |
US5654078A (en) * | 1995-05-18 | 1997-08-05 | Ferronato; Sandro Giovanni Giuseppe | Abrasive member for dry grinding and polishing |
US5989114A (en) * | 1997-10-21 | 1999-11-23 | Unova Ip Corp. | Composite grinding and buffing disc with flexible rim |
US6196911B1 (en) * | 1997-12-04 | 2001-03-06 | 3M Innovative Properties Company | Tools with abrasive segments |
US6394888B1 (en) * | 1999-05-28 | 2002-05-28 | Saint-Gobain Abrasive Technology Company | Abrasive tools for grinding electronic components |
US6609963B2 (en) * | 2001-08-21 | 2003-08-26 | Saint-Gobain Abrasives, Inc. | Vitrified superabrasive tool and method of manufacture |
US6755729B2 (en) * | 2001-11-21 | 2004-06-29 | Saint-Cobain Abrasives Technology Company | Porous abrasive tool and method for making the same |
-
2003
- 2003-07-29 WO PCT/US2003/023517 patent/WO2004011020A1/en not_active Application Discontinuation
- 2003-07-29 KR KR1020057001615A patent/KR20050040910A/en not_active Application Discontinuation
- 2003-07-29 US US10/523,232 patent/US7131903B2/en not_active Expired - Lifetime
- 2003-07-29 AU AU2003256916A patent/AU2003256916A1/en not_active Abandoned
- 2003-07-29 DE DE10392985T patent/DE10392985T5/en not_active Ceased
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4505720A (en) * | 1983-06-29 | 1985-03-19 | Minnesota Mining And Manufacturing Company | Granular silicon carbide abrasive grain coated with refractory material, method of making the same and articles made therewith |
US4671021A (en) | 1984-10-22 | 1987-06-09 | Toyoda Van Moppes Limited | Grinding tool |
US5049165A (en) * | 1989-01-30 | 1991-09-17 | Tselesin Naum N | Composite material |
US5049165B1 (en) * | 1989-01-30 | 1995-09-26 | Ultimate Abrasive Syst Inc | Composite material |
US5654078A (en) * | 1995-05-18 | 1997-08-05 | Ferronato; Sandro Giovanni Giuseppe | Abrasive member for dry grinding and polishing |
US5989114A (en) * | 1997-10-21 | 1999-11-23 | Unova Ip Corp. | Composite grinding and buffing disc with flexible rim |
US6196911B1 (en) * | 1997-12-04 | 2001-03-06 | 3M Innovative Properties Company | Tools with abrasive segments |
US6394888B1 (en) * | 1999-05-28 | 2002-05-28 | Saint-Gobain Abrasive Technology Company | Abrasive tools for grinding electronic components |
US6609963B2 (en) * | 2001-08-21 | 2003-08-26 | Saint-Gobain Abrasives, Inc. | Vitrified superabrasive tool and method of manufacture |
US6755729B2 (en) * | 2001-11-21 | 2004-06-29 | Saint-Cobain Abrasives Technology Company | Porous abrasive tool and method for making the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070144510A1 (en) * | 2005-12-23 | 2007-06-28 | Dong Soo Lee | Processing tips and tools using the same |
US7353819B2 (en) | 2005-12-23 | 2008-04-08 | Dong Young Diamond Industrial Co., Ltd. | Processing tips and tools using the same |
Also Published As
Publication number | Publication date |
---|---|
DE10392985T5 (en) | 2005-09-08 |
WO2004011020A1 (en) | 2004-02-05 |
AU2003256916A1 (en) | 2004-02-16 |
KR20050040910A (en) | 2005-05-03 |
AU2003256916A8 (en) | 2004-02-16 |
US20050181715A1 (en) | 2005-08-18 |
WO2004011020A9 (en) | 2004-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6093092A (en) | Abrasive tools | |
EP1066134B9 (en) | Abrasive tools | |
US4671021A (en) | Grinding tool | |
US7131903B2 (en) | Segmented superabrasive grinding device | |
JP2004291213A (en) | Grinding wheel | |
CN208713729U (en) | Skive is used in a kind of grinding | |
JPH10202538A (en) | Porous diamond cutter for cutting pig-iron of casting or steel | |
JPH0822509B2 (en) | Grinding wheel | |
JP2005262350A (en) | Lap surface plate | |
JP3163812U (en) | Barrel polishing machine | |
JPH03104566A (en) | Grinding wheel | |
JPH03256674A (en) | Base disc grinding stone | |
JP2004243465A (en) | Diamond lapping surface plate | |
JPH11207635A (en) | Cup-like grinding wheel and wafer surface grinding method | |
JP2007167997A (en) | Truing tool | |
JP2007015054A (en) | Resin bonded super-grinding tool and grinding wheel using the same | |
JP2001079772A (en) | Milling tool | |
JP3594073B2 (en) | Super abrasive grain lap surface plate | |
JPH08174430A (en) | Electrodeposition grinding wheel for roughly grinding inner surface of cast iron pipe and fitting structure thereof | |
JP3998648B2 (en) | Cup type rotating grindstone | |
JP2000301467A (en) | Grinding wheel for vertical line grinding | |
JPH10264041A (en) | Lapping ultra-abrasive grain wheel | |
JPH08276365A (en) | Ultrafine abrasive grain rotary grinding wheel and substrate for rotary grinding wheel | |
JPH04152066A (en) | Metal bond tool | |
JP2006239852A (en) | Lap wheel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNOVA IP CORP., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GALEN, EDWARD E.;SCHLIE, DONALD R.;REEL/FRAME:016472/0364;SIGNING DATES FROM 20050408 TO 20050413 |
|
AS | Assignment |
Owner name: CINETIC LANDIS GRINDING CORP., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNOVA IP CORP.;REEL/FRAME:017060/0510 Effective date: 20051027 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: FIVES LANDIS CORP., MARYLAND Free format text: CHANGE OF NAME;ASSIGNOR:CINETIC LANDIS CORP.;REEL/FRAME:033485/0572 Effective date: 20140701 Owner name: CINETIC LANDIS CORP., MARYLAND Free format text: CHANGE OF NAME;ASSIGNOR:CINETIC LANDIS GRINDING CORP.;REEL/FRAME:033484/0540 Effective date: 20080430 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |