US7118896B2 - Methods and compositions for modification of lipid biosynthesis - Google Patents
Methods and compositions for modification of lipid biosynthesis Download PDFInfo
- Publication number
- US7118896B2 US7118896B2 US10/378,558 US37855803A US7118896B2 US 7118896 B2 US7118896 B2 US 7118896B2 US 37855803 A US37855803 A US 37855803A US 7118896 B2 US7118896 B2 US 7118896B2
- Authority
- US
- United States
- Prior art keywords
- wax
- seq
- polynucleotide
- sequence
- host cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 150000002632 lipids Chemical class 0.000 title abstract description 16
- 230000004048 modification Effects 0.000 title abstract description 6
- 238000012986 modification Methods 0.000 title abstract description 6
- 230000015572 biosynthetic process Effects 0.000 title description 38
- 239000000203 mixture Substances 0.000 title description 11
- 108010062385 long-chain-alcohol O-fatty-acyltransferase Proteins 0.000 claims abstract description 85
- 230000000694 effects Effects 0.000 claims abstract description 57
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 45
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 37
- 229920001184 polypeptide Polymers 0.000 claims abstract description 33
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 claims abstract description 19
- 108090000623 proteins and genes Proteins 0.000 claims description 140
- 210000004027 cell Anatomy 0.000 claims description 104
- 102000004169 proteins and genes Human genes 0.000 claims description 93
- 239000004164 Wax ester Substances 0.000 claims description 71
- 235000019386 wax ester Nutrition 0.000 claims description 71
- 108091033319 polynucleotide Proteins 0.000 claims description 66
- 102000040430 polynucleotide Human genes 0.000 claims description 66
- 239000002157 polynucleotide Substances 0.000 claims description 66
- 102100036869 Diacylglycerol O-acyltransferase 1 Human genes 0.000 claims description 54
- 241000588624 Acinetobacter calcoaceticus Species 0.000 claims description 53
- 108050004099 Diacylglycerol O-acyltransferase 1 Proteins 0.000 claims description 51
- 239000013598 vector Substances 0.000 claims description 40
- 241000588724 Escherichia coli Species 0.000 claims description 35
- 230000014509 gene expression Effects 0.000 claims description 31
- 241000520873 Pseudomonas citronellolis Species 0.000 claims description 26
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 22
- 230000001580 bacterial effect Effects 0.000 claims description 20
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 16
- 239000002773 nucleotide Substances 0.000 claims description 15
- 125000003729 nucleotide group Chemical group 0.000 claims description 15
- 241000894006 Bacteria Species 0.000 claims description 14
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 13
- 230000001105 regulatory effect Effects 0.000 claims description 13
- 230000000295 complement effect Effects 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- 239000003550 marker Substances 0.000 claims description 11
- 238000000746 purification Methods 0.000 claims description 8
- 230000001939 inductive effect Effects 0.000 claims description 5
- 230000028327 secretion Effects 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 4
- 230000008685 targeting Effects 0.000 claims description 4
- 210000001519 tissue Anatomy 0.000 claims description 4
- 241000238631 Hexapoda Species 0.000 claims description 3
- 210000003463 organelle Anatomy 0.000 claims description 3
- 210000004962 mammalian cell Anatomy 0.000 claims description 2
- 210000005253 yeast cell Anatomy 0.000 claims description 2
- 101710091608 Probable diacyglycerol O-acyltransferase tgs2 Proteins 0.000 claims 2
- 241000233866 Fungi Species 0.000 claims 1
- 102000039446 nucleic acids Human genes 0.000 abstract description 15
- 108020004707 nucleic acids Proteins 0.000 abstract description 15
- 150000002148 esters Chemical class 0.000 abstract description 3
- 101710088335 Diacylglycerol acyltransferase/mycolyltransferase Ag85A Proteins 0.000 abstract description 2
- 101710088334 Diacylglycerol acyltransferase/mycolyltransferase Ag85B Proteins 0.000 abstract description 2
- 101710088427 Diacylglycerol acyltransferase/mycolyltransferase Ag85C Proteins 0.000 abstract description 2
- 235000018102 proteins Nutrition 0.000 description 91
- 239000001993 wax Substances 0.000 description 90
- 235000001014 amino acid Nutrition 0.000 description 52
- 229940024606 amino acid Drugs 0.000 description 51
- 150000001413 amino acids Chemical class 0.000 description 50
- 239000012634 fragment Substances 0.000 description 36
- 101150042222 DGAT1 gene Proteins 0.000 description 28
- 239000013612 plasmid Substances 0.000 description 28
- 108020004414 DNA Proteins 0.000 description 23
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 21
- 102000004190 Enzymes Human genes 0.000 description 18
- 108090000790 Enzymes Proteins 0.000 description 18
- 150000002191 fatty alcohols Chemical class 0.000 description 18
- 238000003780 insertion Methods 0.000 description 18
- 238000004809 thin layer chromatography Methods 0.000 description 18
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 16
- 230000037431 insertion Effects 0.000 description 15
- 241000196324 Embryophyta Species 0.000 description 14
- 239000013604 expression vector Substances 0.000 description 14
- 238000003860 storage Methods 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 229910052799 carbon Inorganic materials 0.000 description 13
- 230000035508 accumulation Effects 0.000 description 10
- 238000009825 accumulation Methods 0.000 description 10
- 238000010367 cloning Methods 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 108091034117 Oligonucleotide Proteins 0.000 description 9
- 230000001588 bifunctional effect Effects 0.000 description 9
- 241000897241 Acinetobacter sp. ADP1 Species 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 241000221095 Simmondsia Species 0.000 description 8
- 150000001335 aliphatic alkanes Chemical class 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000287 crude extract Substances 0.000 description 8
- 150000001982 diacylglycerols Chemical class 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 8
- 108091026890 Coding region Proteins 0.000 description 7
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 7
- -1 Lane D Chemical compound 0.000 description 7
- 230000004071 biological effect Effects 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 7
- 229940050410 gluconate Drugs 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 241000187480 Mycobacterium smegmatis Species 0.000 description 6
- 230000008827 biological function Effects 0.000 description 6
- 150000002185 fatty acyl-CoAs Chemical class 0.000 description 6
- 230000002779 inactivation Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 238000009482 thermal adhesion granulation Methods 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- 241001646725 Mycobacterium tuberculosis H37Rv Species 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 238000012300 Sequence Analysis Methods 0.000 description 5
- 108091081024 Start codon Proteins 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 239000002537 cosmetic Substances 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 101150066555 lacZ gene Proteins 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 4
- FLPJVCMIKUWSDR-UHFFFAOYSA-N 2-(4-formylphenoxy)acetamide Chemical compound NC(=O)COC1=CC=C(C=O)C=C1 FLPJVCMIKUWSDR-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 4
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 4
- 235000004433 Simmondsia californica Nutrition 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 229940098773 bovine serum albumin Drugs 0.000 description 4
- 230000006652 catabolic pathway Effects 0.000 description 4
- 229940074979 cetyl palmitate Drugs 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- NIOYUNMRJMEDGI-UHFFFAOYSA-N hexadecanal Chemical compound CCCCCCCCCCCCCCCC=O NIOYUNMRJMEDGI-UHFFFAOYSA-N 0.000 description 4
- PXDJXZJSCPSGGI-UHFFFAOYSA-N hexadecanoic acid hexadecyl ester Natural products CCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCC PXDJXZJSCPSGGI-UHFFFAOYSA-N 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 239000000176 sodium gluconate Substances 0.000 description 4
- 229940005574 sodium gluconate Drugs 0.000 description 4
- 235000012207 sodium gluconate Nutrition 0.000 description 4
- YCUVUDODLRLVIC-VPHDGDOJSA-N sudan black b Chemical compound C1=CC(=C23)NC(C)(C)NC2=CC=CC3=C1\N=N\C(C1=CC=CC=C11)=CC=C1\N=N\C1=CC=CC=C1 YCUVUDODLRLVIC-VPHDGDOJSA-N 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 102000057234 Acyl transferases Human genes 0.000 description 3
- 108700016155 Acyl transferases Proteins 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 3
- 241000701959 Escherichia virus Lambda Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 3
- 241000186359 Mycobacterium Species 0.000 description 3
- 101100542607 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Rv3740c gene Proteins 0.000 description 3
- 108700035964 Mycobacterium tuberculosis HsaD Proteins 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 3
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 235000009582 asparagine Nutrition 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229960000541 cetyl alcohol Drugs 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 150000002192 fatty aldehydes Chemical class 0.000 description 3
- 238000000855 fermentation Methods 0.000 description 3
- 230000004151 fermentation Effects 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 229960000210 nalidixic acid Drugs 0.000 description 3
- MHWLWQUZZRMNGJ-UHFFFAOYSA-N nalidixic acid Chemical compound C1=C(C)N=C2N(CC)C=C(C(O)=O)C(=O)C2=C1 MHWLWQUZZRMNGJ-UHFFFAOYSA-N 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 239000013615 primer Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 201000008827 tuberculosis Diseases 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- 241001515965 unidentified phage Species 0.000 description 3
- 239000004474 valine Substances 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 241000219195 Arabidopsis thaliana Species 0.000 description 2
- 241000724711 Coconut foliar decay virus Species 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- LEVWYRKDKASIDU-QWWZWVQMSA-N D-cystine Chemical compound OC(=O)[C@H](N)CSSC[C@@H](N)C(O)=O LEVWYRKDKASIDU-QWWZWVQMSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 102100035762 Diacylglycerol O-acyltransferase 2 Human genes 0.000 description 2
- 102000053187 Glucuronidase Human genes 0.000 description 2
- 108010060309 Glucuronidase Proteins 0.000 description 2
- 101001113903 Grapevine leafroll-associated virus 3 (isolate United States/NY1) Protein P4 Proteins 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- 101000927974 Homo sapiens Diacylglycerol O-acyltransferase 1 Proteins 0.000 description 2
- 101000930020 Homo sapiens Diacylglycerol O-acyltransferase 2 Proteins 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 101100481050 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) tgs2 gene Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 241000283222 Physeter catodon Species 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 241001240958 Pseudomonas aeruginosa PAO1 Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- 108010022394 Threonine synthase Proteins 0.000 description 2
- 240000007591 Tilia tomentosa Species 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 238000001261 affinity purification Methods 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 239000013599 cloning vector Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 229960003067 cystine Drugs 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 229960004132 diethyl ether Drugs 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 102000004419 dihydrofolate reductase Human genes 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 239000000185 hemagglutinin Substances 0.000 description 2
- 108090001018 hexadecanal dehydrogenase (acylating) Proteins 0.000 description 2
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 150000004668 long chain fatty acids Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 101150079601 recA gene Proteins 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 239000012064 sodium phosphate buffer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229960002180 tetracycline Drugs 0.000 description 2
- 229930101283 tetracycline Natural products 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000010698 whale oil Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- QRBLKGHRWFGINE-UGWAGOLRSA-N 2-[2-[2-[[2-[[4-[[2-[[6-amino-2-[3-amino-1-[(2,3-diamino-3-oxopropyl)amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-3-[(2r,3s,4s,5s,6s)-3-[(2s,3r,4r,5s)-4-carbamoyl-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)- Chemical compound N=1C(C=2SC=C(N=2)C(N)=O)CSC=1CCNC(=O)C(C(C)=O)NC(=O)C(C)C(O)C(C)NC(=O)C(C(O[C@H]1[C@@]([C@@H](O)[C@H](O)[C@H](CO)O1)(C)O[C@H]1[C@@H]([C@](O)([C@@H](O)C(CO)O1)C(N)=O)O)C=1NC=NC=1)NC(=O)C1=NC(C(CC(N)=O)NCC(N)C(N)=O)=NC(N)=C1C QRBLKGHRWFGINE-UGWAGOLRSA-N 0.000 description 1
- 241000589291 Acinetobacter Species 0.000 description 1
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 108010053754 Aldehyde reductase Proteins 0.000 description 1
- 102100027265 Aldo-keto reductase family 1 member B1 Human genes 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 101100210353 Arabidopsis thaliana WSD1 gene Proteins 0.000 description 1
- 101100156796 Arabidopsis thaliana WSD10 gene Proteins 0.000 description 1
- 101100156797 Arabidopsis thaliana WSD11 gene Proteins 0.000 description 1
- 101100210354 Arabidopsis thaliana WSD2 gene Proteins 0.000 description 1
- 101100210356 Arabidopsis thaliana WSD4 gene Proteins 0.000 description 1
- 101100210357 Arabidopsis thaliana WSD5 gene Proteins 0.000 description 1
- 101100210358 Arabidopsis thaliana WSD6 gene Proteins 0.000 description 1
- 101100210359 Arabidopsis thaliana WSD7 gene Proteins 0.000 description 1
- 101100210360 Arabidopsis thaliana WSD8 gene Proteins 0.000 description 1
- 101100210361 Arabidopsis thaliana WSD9 gene Proteins 0.000 description 1
- 101001074429 Bacillus subtilis (strain 168) Polyketide biosynthesis acyltransferase homolog PksD Proteins 0.000 description 1
- 101000936617 Bacillus velezensis (strain DSM 23117 / BGSC 10A6 / FZB42) Polyketide biosynthesis acyltransferase homolog BaeD Proteins 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 101710167580 Cell shape-determining protein MreC Proteins 0.000 description 1
- 241000283153 Cetacea Species 0.000 description 1
- 241001112695 Clostridiales Species 0.000 description 1
- 102100028630 Cytoskeleton-associated protein 2 Human genes 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 230000007023 DNA restriction-modification system Effects 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 101150102653 Dgat2 gene Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241001331845 Equus asinus x caballus Species 0.000 description 1
- 101001078494 Escherichia coli (strain K12) Ribonuclease G Proteins 0.000 description 1
- 101100390711 Escherichia coli (strain K12) fhuA gene Proteins 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 239000006142 Luria-Bertani Agar Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241000186367 Mycobacterium avium Species 0.000 description 1
- 241000187482 Mycobacterium avium subsp. paratuberculosis Species 0.000 description 1
- 241000186366 Mycobacterium bovis Species 0.000 description 1
- 241000186362 Mycobacterium leprae Species 0.000 description 1
- 101100318689 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Rv2484c gene Proteins 0.000 description 1
- 101100158390 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Rv3480c gene Proteins 0.000 description 1
- 101100481045 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) tgs1 gene Proteins 0.000 description 1
- 241001646722 Mycobacterium tuberculosis CDC1551 Species 0.000 description 1
- 101100301239 Myxococcus xanthus recA1 gene Proteins 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- LTQCLFMNABRKSH-UHFFFAOYSA-N Phleomycin Natural products N=1C(C=2SC=C(N=2)C(N)=O)CSC=1CCNC(=O)C(C(O)C)NC(=O)C(C)C(O)C(C)NC(=O)C(C(OC1C(C(O)C(O)C(CO)O1)OC1C(C(OC(N)=O)C(O)C(CO)O1)O)C=1NC=NC=1)NC(=O)C1=NC(C(CC(N)=O)NCC(N)C(N)=O)=NC(N)=C1C LTQCLFMNABRKSH-UHFFFAOYSA-N 0.000 description 1
- 108010035235 Phleomycins Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 241000283249 Physeteridae Species 0.000 description 1
- 101100425320 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) thrH gene Proteins 0.000 description 1
- 241000589540 Pseudomonas fluorescens Species 0.000 description 1
- 241000589781 Pseudomonas oleovorans Species 0.000 description 1
- 241000589776 Pseudomonas putida Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- 241000119319 Rhodococcus opacus PD630 Species 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000405383 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 Species 0.000 description 1
- 108091058545 Secretory proteins Proteins 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241001446311 Streptomyces coelicolor A3(2) Species 0.000 description 1
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 229940100389 Sulfonylurea Drugs 0.000 description 1
- 102100033451 Thyroid hormone receptor beta Human genes 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 102000008579 Transposases Human genes 0.000 description 1
- 108010020764 Transposases Proteins 0.000 description 1
- BAECOWNUKCLBPZ-HIUWNOOHSA-N Triolein Natural products O([C@H](OCC(=O)CCCCCCC/C=C\CCCCCCCC)COC(=O)CCCCCCC/C=C\CCCCCCCC)C(=O)CCCCCCC/C=C\CCCCCCCC BAECOWNUKCLBPZ-HIUWNOOHSA-N 0.000 description 1
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 241001148470 aerobic bacillus Species 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000013452 biotechnological production Methods 0.000 description 1
- 108010064866 biozym Proteins 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000009015 carbon catabolite repression of transcription Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001585 disappearance potential spectroscopy Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006707 environmental alteration Effects 0.000 description 1
- 230000009483 enzymatic pathway Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 108010083294 ethanol acyltransferase Proteins 0.000 description 1
- VMDLOMDTWVRKEJ-UHFFFAOYSA-N ethanol;methylsulfinylmethane;hydrate Chemical compound O.CCO.CS(C)=O VMDLOMDTWVRKEJ-UHFFFAOYSA-N 0.000 description 1
- 102000005970 fatty acyl-CoA reductase Human genes 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 108010071598 homoserine kinase Proteins 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 230000006372 lipid accumulation Effects 0.000 description 1
- 150000002634 lipophilic molecules Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000005567 liquid scintillation counting Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000012269 metabolic engineering Methods 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 150000002759 monoacylglycerols Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229930001118 polyketide hybrid Natural products 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QAQREVBBADEHPA-IEXPHMLFSA-N propionyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QAQREVBBADEHPA-IEXPHMLFSA-N 0.000 description 1
- 230000030788 protein refolding Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 229940084106 spermaceti Drugs 0.000 description 1
- 239000012177 spermaceti Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 210000001768 subcellular fraction Anatomy 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 210000002377 thylakoid Anatomy 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- 229940117972 triolein Drugs 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
Definitions
- the invention relates generally to newly identified and isolated polynucleotides, proteins encoded by the polynucleotides, methods for producing proteins, and uses for the polynucleotides and proteins. More specifically, the current invention relates to bifunctional wax ester synthase proteins, polynucleotides encoding the proteins, and methods and compositions related thereto.
- TAGs are the dominating storage lipid in animals, plants and eukaryotic microorganisms. TAG biosynthesis is involved in animals in numerous processes such as regulation of plasma TAG concentration, fat storage in adipocytes and milk production (Bell and Coleman, 1980). In plants, TAG synthesis is mainly important for the generation of seed oils (Lassner, 1997) Using diacylglycerol (DAG) as a substrate, three different classes of enzymes are known mediating TAG formation (Lehner and Kuksis, 1996). Acyl-CoA:DAG acyltransferase (DGAT) catalyzes the acylation of DAG using acyl-CoA as a substrate.
- DAG diacylglycerol
- DGAT1 and DGAT2 Two DGAT families designated as DGAT1 and DGAT2 are known, which exhibit no sequence homologies to each other.
- Members of the DGAT1 gene family occur in animals and plants (Cases et al., 1998; Hobbs et al., 1999; Routaboul et al., 1999; Zou et al., 1999), whereas members of the DGAT2 gene family were found in animals (Cases et al., 2001), plants (Bouvier-Navée et al., 2000) and yeasts (Oelkers et al., 2002).
- one DGAT1 related gene and five DGAT2 related genes were identified (Cases et al., 2001).
- DGAT has attracted great interest since it is a potential therapeutical target for obesity treatment (Chen and Farese Jr., 2000).
- Acyl-CoA-independent TAG synthesis is mediated by a phospholipid:DAG acyltransferase found in yeast and plants, which uses phospolipids as acyl donors for DAG esterification (Dahlqvist et al., 2000).
- a third alternative mechanism present in animals and plants is TAG synthesis by a DAG-DAG-transacylase which uses DAG as acyl donor and acceptor yielding TAG and monoacylglycerol (Lehner and Kuksis, 1993; Stobart et al., 1997), but no gene coding such a transacylase could be identified yet.
- Linear wax esters are lipophilic compounds containing a long chain fatty alcohol esterified to a long chain fatty acid. These wax esters are found in a number of diverse organisms ranging from mammals to plants to bacteria. For instance, wax esters are the principal component of spermaceti oil which, until recently, was obtained from the head cavity of sperm whales. Since the world-wide ban on whale hunting, however, the only natural source of wax esters on a commercial scale has been the seeds of jojoba, a bush or shrub that is adapted to growth in hot arid habitats. In jojoba plants, waxes are stored in the seeds of the plant where they serve as a means of energy storage for developing seedlings.
- Wax esters have also been found in several species of bacteria such as Acinetobacter calcoaceticus , a gram negative aerobic bacteria that accumulates wax esters when grown under nitrogen limited conditions. Wax esters from these bacterial sources, however, have not been utilized on a commercial scale.
- Wax esters have a multitude of important commercial applications in a variety of technical areas, including the medical, cosmetics and food industries as well as their more traditional usage as lubricants for mechanical parts and the like.
- the wax esters obtained from jojoba can replace sperm whale oil in most or all traditional uses. They are useful for applications in cosmetics, as a lubricant, as an additive for leather processing, as a carrier for pharmaceuticals and as a solvent. Hydrogenation of the wax to eliminate double bonds produces a hard wax which is useful for surface treatments, in textile sizing, in coating paper containers and in cosmetics (e.g., lipstick and creams).
- wax ester biosynthesis concerns wax biosynthesis in jojoba plants, where it appears that two enzymes catalyze the formation of wax esters.
- the first step of the pathway is catalyzed by a fatty acyl-CoA reductase which reduces very long chain fatty acyl CoA (a very long chain fatty acyl CoA generally having greater than 18 carbons), and is known to catalyze the formation of a long chain alcohol directly from this substrate via an aldehyde intermediate.
- the second enzyme (wax ester synthase), an acyl-CoA-fatty alcohol transferase catalyzes the formation of an ester linkage between acyl-CoA and a fatty alcohol to yield a wax ester.
- the pathway of wax ester biosynthesis in A. calcoaceticus comprises three enzymatic steps involved in the conversion of long-chain acyl-CoA to wax esters.
- acyl-CoA is reduced by an NADPH-dependent acyl-CoA reductase to the corresponding fatty aldehyde.
- the aldehyde is further reduced to the corresponding fatty alcohol catalyzed by the fatty aldehyde reductase.
- an acyl-CoA:fatty alcohol acyl transferase condenses the fatty alcohol with acyl-CoA resulting in the formation of the wax ester.
- Wax ester synthesis and WS activity have been reported for M. tuberculosis (Wang et al., 1972), and TAG accumulation and DGAT activity have been shown for M. smegmatis (Nakagawa et al., 1976; Wun et al., 1977). However, no proteins or genes have been reported to which these activities could be attributed.
- wax ester synthases While several wax ester synthases have been described in terms of their substrate specificities and intracellular locations, very little is known about the proteins associated with this activity and the genes encoding this enzyme. In fact, the only gene encoding a wax ester synthase that has been identified is from jojoba. Thus, a need exists to identify genes encoding wax ester synthases from other species.
- the invention provides an isolated polynucleotide encoding a polypeptide having wax ester synthase/DGAT activity and having a nucleotide sequence at least about 60% homologous to SEQ ID NO:1.
- an isolated polynucleotide in accordance with the invention comprises a polynucleotide that hybridizes to SEQ ID NO:1 under conditions of 5 ⁇ SSC, 50% formamide and 42° C., and which encodes a protein having the same biological function.
- Such polynucleotides may encode the same polypeptide as SEQ ID NO:1.
- the recombinant vector comprising a polynucleotide of the invention.
- the recombinant vector may comprise the polynucleotide linked to one or more regulatory regions and/or any other desired elements.
- the invention provides a protein or polypeptide fragment encoded by the polynucleotide of SEQ ID NO:1 or a fragment thereof having wax ester synthase/DGAT activity.
- a protein comprising the amino acid sequence of SEQ ID NO:4 or a fragment of SEQ ID NO:4 is provided, wherein said fragment has wax ester synthase activity.
- the protein and/or fragment may have wax ester synthase and DGAT activity.
- a protein or polypeptide may comprise one or more of the following amino acid sequences: HHAXVDGV (SEQ ID NO:16), NDVVLA (SEQ ID NO:17), GALRXYL (SEQ ID NO:18), PLXAMVP (SEQ ID NO:19), ISNVPGP (SEQ ID NO:20), REPLYXNGA (SEQ ID NO:21), including one, two, three, four, five or all six of these amino acid sequences.
- a recombinant construct comprising a polynucleotide sequence encoding a conserved polypeptide fragment with wax ester synthase and/or DGAT activity, and further wherein the polypeptide comprises at least one of the following amino acid sequences selected from the group consisting of HHAXVDGV (SEQ ID NO:16), NDVVLA (SEQ ID NO:17), GALRXYL (SEQ ID NO:18), PLXAMVP (SEQ ID NO:19), ISNVPGP (SEQ ID NO:20), REPLYXNGA (SEQ ID NO:21), including one, two, three, four, five or all six of these amino acid sequences.
- the polynucleotide sequence is a bacterial sequence.
- a host cell containing this recombinant construct In one embodiment of the invention, the host cell may be any type of cell.
- a method for producing a wax ester comprising culturing a host cell described above under conditions permitting expression of the polypeptide having wax ester synthase activity.
- the polypeptide may have DGAT activity.
- the method may comprise culturing the cell in one or more substrates for the waxy ester synthase/DGAT.
- the wax ester may or may not be isolated from the host cell or any media in which the host cell is cultured.
- the invention provides a method of modifying accumulation of wax esters in a host cell that comprises transforming a host cell with a recombinant construct of the invention.
- the recombinant construct may comprise a regulatory sequence operably linked to a nucleic acid sequence, said nucleic acid sequence encoding a polynucleotide encoding a polypeptide having wax ester synthase and/or DGAT activity or a fragment thereof, and culturing said host cell under conditions wherein said host cell expresses a polypeptide having wax ester synthase and/or DGAT activity such that said host cell has a modified wax ester composition compared to host cells without the recombinant construct.
- the method comprises increasing the wax ester content of a host cell.
- FIG. 1 shows the results of a thin layer chromatography (“TLC”) analysis of miniTn10Km-induced mutants from A. calcoaceticus BD413 (Ndx r ) after cultivation under storage conditions.
- TAG triolein standard
- WAX cetylpalmitate standard.
- FIG. 2 shows the restriction pattern of the miniTn10Km-harboring 8.4-kbp EcoRI fragment isolated from wax ⁇ mutants of A. calcoaceticus BD413 (Ndx r ).
- FIG. 3 shows the molecular organization of the 6.9-kbp EcoRI-fragment harboring the wax open reading frame from A. calcoaceticus BD413.
- the insertion locus of miniTn10Km is indicated by the triangle.
- FIG. 4 shows the influence of the wax gene on storage lipid accumulation in A. calcoaceticus BD413.
- Cells were cultivated under storage conditions for 24 h.
- Lane A TAG
- Lane B hexadecanol
- Lane C hexadecanal
- Lane D cetylpalmitate
- Lane 1 A. calcoaceticus BD413
- Lane 2 A. calcoaceticus BD413wax ⁇ Km
- Lane 3 A. calcoaceticus BD413 (pSER200-4); Lane 4 , A. calcoaceticus BD413 (pSER200-4:wax).
- FIG. 5 is the nucleotide sequence of the PCRTM-amplified 1.9-kbp fragment from A. calcoaceticus BD413 comprising the wax/dgat gene (SEQ ID NO:3).
- the wax gene is shown in bold face.
- a putative ribosome binding site is double-underlined.
- the EcoRI and BamHI restriction sites used for cloning are underlined.
- FIG. 6 is the nucleotide sequence of the PCRTM-amplified 1.47-kbp wax/dgat gene from A. calcoaceticus BD413 (SEQ ID NO:2). The wax gene is shown in bold face. The linked ribosome binding site (Shine/Dalgarno sequence) for E. coli is double-underlined. The EcoRI and BamHI restriction sites used for cloning are underlined.
- FIG. 7 is the recombinant wax ester biosynthesis in P. citronellolis .
- Cells were cultivated and analyzed by TLC as described in Materials and methods. Wax, cetylpalmitate standard; Lane 1 : P. citronellolis (pBBRIMCS-2) cultivated with 0.3% (w/v) hexadecanol; Lane 2 : P. citronellolis (pBBRIMCS-2) cultivated with 0.3% (w/v) hexadecanol plus 0.5% (w/v) gluconate; Lane 3 : P.
- citronellolis (pBBRIMCS-2:wax) cultivated with 0.3% (w/v) hexadecanol; Lane 4 : P. citronellolis (pBBRIMCS-2:wax) cultivated with 0.3% (w/v) hexadecanol plus 0.5% (w/v) gluconate.
- FIG. 8 depicts the polynucleotide sequence of SEQ ID NO:1.
- FIG. 9 depicts the deduced amino acid sequence of SEQ ID NO:4.
- FIG. 10 shows an alignment of the polypeptide sequence encoded by SEQ ID NO:1 versus deduced bacterial sequences (SEQ ID NOs:24–31). conserveed regions are shown by shading.
- FIG. 11 shows an alignment of the polypeptide sequence encoded by SEQ ID NO:1 versus deduced Arabidopsis thaliana and bacterial sequences (SEQ ID NOs:22–31). conserveed regions are shown by shading.
- FIGS. 12A , B shows properties of the bifunctional WS/DGAT.
- FIG. 12A Reactions catalyzed by the bifunctional enzyme.
- FIG. 12B Hydrophobicity plot (Kyte and Doolittle, 1982) of WS/DGAT (window size 9).
- a putative transmembrane domain predicted by the TMAP program is indicated by the grey bar.
- the black bar region exhibits some homology to a conserved condensing domain containing a putative active site.
- FIGS. 13A , B, C Substrate specificities of the bifunctional WS/DGAT. Measurements were done using insoluble fraction of crude extract of E. coli XL1-Blue (pKS::wax/dgat) obtained after 30 min centrifugation at 35,000 ⁇ g. Values are averages of two independent studies.
- FIG. 13A Fatty alcohol specificity of the WS reaction.
- FIG. 13B Acyl-CoA specificity of the WS reaction.
- FIG. 13C Acyl-CoA specificity of the DGAT reaction.
- the present invention relates to the initial discovery and isolation of the polynucleotide encoding a wax ester synthase (WS) protein from A. calcoaceticus , which protein also has acyl-CoA:diacylglycerol acyltransferase (DGAT) activity (e.g., WS/DGAT). Therefore, when wax ester synthase polypepetides and nucleic acids are referred to herein this specifically includes the inherent bifunctional DGAT activity.
- the sequence from A. calcoaceticus has been determined and is given in SEQ ID NO:1 and is also set forth in FIG. 8 .
- the amino acid sequence of the wax ester synthase/DGAT protein produced by the isolated nucleic acid sequence has been deduced and is given in FIG. 9 and corresponds to SEQ ID NO:4.
- SEQ ID NO:1 a particular embodiment of the nucleotide sequence disclosed herein is given in SEQ ID NO:1, it should be understood that other biologically functional equivalent forms of the nucleic acid sequence of the present invention can be readily isolated using conventional DNA-DNA and DNA-RNA hybridization techniques.
- the present invention also includes nucleotide sequences that hybridize to SEQ ID NO:1 or its complement under moderate to high stringency conditions and encode proteins exhibiting the same or similar biological activity as that of protein of SEQ ID NO:4 disclosed herein.
- One advance of the current invention relates to novel methods for the production of wax esters.
- Jojoba oil is the only alternative natural source of wax esters to sperm whale oil which is used at a commercial scale, but the high production costs restrict its use currently on cosmetical applications.
- the jojoba WS is not functionally expressed in microorganisms like E. coli and S. cerevisiae .
- the inventors have demonstrated WS/DGAT that is active in different bacterial hosts. In P.
- the heterologous expression of WS/DGAT lead to production of wax esters if a long-chain fatty alcohol was provided as carbon source which also delivers fatty acyl-CoA during catabolism by the alkane degradation pathway.
- a long-chain fatty alcohol was provided as carbon source which also delivers fatty acyl-CoA during catabolism by the alkane degradation pathway.
- the fatty alcohol used as carbon source one may vary the composition of the produced wax esters.
- the invention provides the basis, for example, for microbial biotechnological production of jojoba-like wax esters. The fast growth rates, the possibility to influence the wax composition by altering the culture conditions and the easy accessibility of bacteria to genetic and metabolic engineering will support such efforts.
- the invention provides nucleic acid sequences that hybridize to SEQ ID NO:1 or its complement under moderate to high stringency conditions.
- stringency is related to the Tm of the hybrid forrned.
- the Tm (melting temperature) of a nucleic acid hybrid is the temperature at which 50% of the bases are base-paired. For example, if one of the partners in a hybrid is a short oligonucleotide of approximately 20bases, 50% of the duplexes are typically strand separated at the T m . In this case, the T m reflects a time-independent equilibrium that depends on the concentration of oligonucleotide.
- the T m corresponds to a situation in which the strands are held together in structure possibly containing alternating duplex and denatured regions.
- the T m reflects an intramolecular equilibrium that is independent of time and polynucleotide concentration.
- T m is dependent on the composition of the polynucleotide (e.g. length, type of duplex, base composition, and extent of precise base pairing) and the composition of the solvent (e.g. salt concentration and the presence of denaturants such formamide).
- L is the length of the hybrid in base pairs
- the concentration of Na + is in the range of 0.01M to 0.4M
- the G+C content is in the range of 30% to 75%.
- Equations for hybrids involving RNA can be found in the same reference. Alternative equations can be found in Davis et al. (1994).
- hybridizations are usually carried out in solutions of high ionic strength (6 ⁇ SSC or 6 ⁇ SSPE) at a temperature 20–25′ C. below the T m .
- High stringency wash conditions are often determined empirically in preliminary experiments, but usually involve a combination of salt and temperature that is approximately 12–20° C. below the T m .
- One example of such wash conditions is 5 ⁇ SSC, 50% formamide at 42° C.
- An example with higher stringency conditions is 1 ⁇ SSC at 60° C.
- Another example of high stringency wash conditions is 0.1 ⁇ SSPE, 0.1% SDS at 42° C. (Meinkoth and Wahl, 1984).
- An example of even higher stringency wash conditions is 0.1 ⁇ SSPE, 0.1% SDS at 50–65° C.
- high stringency washing is carried out under conditions of 1 ⁇ SSC and 60° C.
- compositions can result in equal stringency conditions for hybridization depending on well known factors such as the concentration of Na + , the % formamide, the temperature, the T m of the hybrid to be formed, and the composition of the hybrid, e.g. DNA-DNA, DNA-RNA, or RNA-RNA.
- the invention also encompasses nucleotide sequences that hybridize under conditions equivalent to those described above.
- polynucleotides that exhibit 90%, preferably 92%, more preferably 95%, and still more preferably 98% sequence identity or homology with SEQ ID NO:1, its respective complement or SEQ ID NO:2. Such nucleotide sequences preferably hybridize to the nucleic acid of SEQ ID NO:1 or its respective complement under high stringency conditions.
- Methods to determine homology are designed to give the largest match between the sequences tested. Moreover, methods to determine homology are codified in publicly available programs. Computer programs which can be used to determine identity/homology between two sequences include, but are not limited to, GCG (Devereux et al., 1984; suite of five BLAST programs, three designed for nucleotide sequences queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, 1994; Birren, et al., 1997). The BLAST X program is publicly available from NCBI and other sources ( BLAST Manual ; Altschul et al., 1990). The well known Smith Waterman algorithm can also be used to determine homology.
- the present invention also involves recombinant polynucleotides comprising the isolated protein along with other sequences.
- Such recombinant polynucleotides are commonly used as cloning or expression vectors although other uses are possible.
- a recombinant polynucleotide is one in which polynucleotide sequences of different organisms have been joined together to form a single unit.
- a cloning vector is a self replicating DNA molecule that serves to transfer a DNA segment into a host cell. The three most common types of cloning vectors are bacterial plasmids, phages, and other viruses.
- An expression vector is a cloning vector designed so that a coding sequence inserted at a particular site will be transcribed and translated into a protein.
- Both cloning and expression vectors contain nucleotide sequences that allow the vectors to replicate in one or more suitable host cells.
- this sequence is generally one that-enables the vector to replicate independently of the host cell chromosomes, and also includes either origins of replication or autonomously replicating sequences.
- Various bacterial and viral origins of replication are well known to those skilled in the art and include, but are not limited to the pBR322 plasmid origin, the 2 plasmid origin, and the SV40, polyoma, adenovirus, VSV and BPV viral origins.
- the polynucleotide sequence of the present invention may be used to produce proteins by the use of recombinant expression vectors containing the sequence.
- a great variety of expression vectors can be used to express a polypeptide of the invention.
- Such vectors include chromosomal, episomal and virus-derived vectors e.g., vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, from viruses such as baculoviruses, papoviruses such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses; pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids.
- All such vectors may be used for expression in accordance with this aspect of the present invention.
- any vector suitable to maintain, propagate or express polynucleotides to express a polypeptide in a host may be used for expression in this regard. Therefore, any other vector that is replicable and viable in the host may be used.
- the appropriate DNA sequence may be inserted into the vector by any of a variety of well-known and routine techniques.
- a DNA sequence for expression is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction endonucleases and then joining the restriction fragments together using T4-:DNA ligase.
- Procedures for restriction and ligation that can be used to this end are well known and routine to those of skill in the art. Suitable procedures in this regard, and for constructing expression vectors using alternative techniques, which also are well known and routine to those-of skill in the art, are set forth in great detail in Sambrook et al., (2001); Ausubel et al. (1995).
- the sequence of interest is operably linked to a suitable regulatory sequence, expression control sequence or promoter recognized by the host cell to direct mRNA synthesis.
- Promoters are untranslated sequences located generally 100 to 1000 base pairs (bp) upstream from the start codon of a structural gene that regulate the transcription and translation of nucleic acid sequences under their control. Promoters are generally classified as either inducible or constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in the environment, e.g. the presence or absence of a nutrient or a change in temperature. Constitutive promoters, in contrast, maintain a relatively constant level of transcription. In addition, useful promoters can also confer appropriate cellular and temporal specificity. Such promoters include those that are developmentally-regulated or organelle, tissue or cell-specific.
- a nucleic acid sequence is operably linked when it is placed into a functional relationship with another nucleic acid sequence.
- DNA for a presequence or secretory leader is operatively linked to DNA for a polypeptide if it is expressed as a preprotein which participates in the secretion of the polypeptide;
- a promoter is operably linked to a coding sequence if it affects the transcription of the sequence;
- a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
- operably linked sequences are contiguous and, in the case of a secretory leader, contiguous and in reading frame. Linking is achieved by blunt end ligation or ligation at restriction enzyme sites. If suitable restriction sites are not available, then synthetic oligonucleotide adapters or linkers can be used as is known to those skilled in the art (Sambrook et al., 2001; Ausubel et al., 1995).
- promoters which are functional in bacterial cells, and have been described in the literature including constitutive, inducible, developmentally regulated, and environmentally regulated promoters.
- promoters also referred to as transcriptional initiation regions
- Representatives of such promoters include the phage lambda PL promoter, the E. coli lac, trp and tac promoters, the SV40 early and late promoters, promoters of retroviral LTRs, the CaMV 35S promoter (Assaad and Signer, 1990), coconut foliar decay virus (CFDV) DNA (U.S. Pat. No.
- Transcript termination regions may be provided by the DNA sequence encoding the WS/DGAT or a convenient transcription termination region derived from a different gene source, for example, the transcript termination region which is naturally associated with the transcript initiation region. The skilled artisan will recognize that any convenient transcript termination region which is capable of terminating transcription in a host cell may be employed in the constructs of the present invention.
- Expression and cloning vectors can and usually do contain a structural gene or selection marker having the necessary regulatory regions for expression in a host and providing for selection of transformant cells.
- the gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like.
- a cytotoxic agent e.g. antibiotic, heavy metal, toxin, etc.
- complementation providing prototrophy to an auxotrophic host, viral immunity or the like.
- one or more markers may be employed, where different conditions for selection are used for the different hosts.
- Non-limiting examples of suitable selection markers include genes that confer resistance to bleomycin, gentamycin, glypho sate, hygromycin, kanamycin, methotrex ate, nalidixic acid, phleomycin, phosphinotricin, spectinomycin, streptomycin, sulfonamide, sulfonylureas, and tetracycline. Maliga et al. (1995). Examples of markers include, but are not limited to, alkaline phosphatase (AP), myc, hemagglutinin (HA), ⁇ glucuronidase (GUS), luciferase, and green fluorescent protein (GFP).
- the vectors contain structural genes providing resistance to kanamycin and nalidixic acid.
- expression vectors can also contain marker sequences operatively linked to a nucleotide sequence for a protein that encode an additional protein used as a marker.
- the result is a hybrid or fusion protein comprising two linked and different proteins.
- the marker protein can provide, for example, an immunological or enzymatic marker for the recombinant protein produced by the expression vector.
- the end of the polynucleotide can be modified by the addition of a sequence encoding an amino acid sequence useful for purification of the protein produced by affinity chromatography.
- Various methods have been devised for the addition of such affinity purification moieties to proteins. Representative examples can be found in U.S. Pat. Nos. 4,703,004, 4,782,137, 4,845,341, 5,935,824, and 5,594,115. Any method known in the art for the addition of nucleotide sequences encoding purification moieties can be used, for example those contained in Innis et al. (1990); Sambrook et al. (2001). More specifically, one embodiment of the present invention provides expression constructs containing the nucleotide sequence represented in SEQ ID NO:1. Such constructs are prepared as demonstrated in the Examples below.
- the present invention includes recombinant constructs comprising the isolated polynucleotide sequence of the present invention.
- the constructs can include a vector, such as a plasmid or viral vector, into which the sequence of the present invention has been inserted, either in the forward or reverse orientation.
- the recombinant construct further comprises regulatory sequences, including for example, a promoter operatively linked to the sequence.
- suitable vectors and promoters are known to those skilled in the art and are commercially available.
- the pCS2+, the pCEP4 (Invitrogen) and the pIRESneo (Clontech) vectors are used. It will be understood by those skilled in the art, however, that other plasmids or vectors may be used as long as they are replicable and viable or capable of expressing the encoded protein in the host.
- the polynucleotide sequence of the present invention can also be part of an expression cassette that at a minimum comprises, operably linked in the 5′ to 3′ direction, a promoter, a polynucleotide of the present invention, and a transcriptional termination signal sequence functional in a host cell.
- the promoter can be of any of the types discussed herein, for example, a tissue specific promoter, a developmentally regulated promoter, an organelle specific promoter, etc.
- the expression cassette can further comprise an operably linked targeting sequence, transit or secretion peptide coding region capable of directing transport of the protein produced.
- the expression cassette can also further comprise a nucleotide sequence encoding a selectable marker and a purification moiety.
- a further embodiment of the present invention relates to transformed host cells containing the constructs comprising the polynucleotide sequence of the present invention.
- the host cell can be a higher eukaryotic cell, such as a mammalian or a plant cell, or a lower eukaryotic cell such as an insect cell or a yeast cell, or the host can be a prokaryotic cell such, as a bacterial cell.
- the host cell is a bacterial cell.
- the host cell is an E. coli cell or a P. citronellolis cell.
- Introduction of the construct into the host cell can be accomplished by a variety of methods including calcium phosphate transfection, DEAE-dextran mediated transfection, Polybrene mediated transfection, protoplast fusion, liposome mediated transfection, direct microinjection into the nuclei, biolistic (gene gun) devices, scrape loading, and electroporation.
- the present invention also relates to proteins encoded by the isolated polynucleotides.
- protein includes fragments, analogs and derivatives of the wax ester synthase-like protein.
- fragment means a polypeptide that retains essentially the same biological function or activity as the wax ester synthase/DGAT encoded by the sequence of the present invention.
- an analog includes a proprotein which can be cleaved to produce an active mature protein.
- the protein of the present invention can be a natural protein, a recombinant protein or a synthetic protein or a polypeptide.
- modifications in the amino acid sequence of a peptide, polypeptide, or protein can result in equivalent, or possibly improved, second generation peptides, etc., that display equivalent or superior functional characteristics when compared-to the original amino acid sequence.
- the present invention accordingly encompasses such modified amino acid sequences.
- Alterations can include amino acid insertions, deletions, substitutions, truncations, fusions, shuffling of subunit sequences, and the like, provided that the peptide sequences produced by such modifications have substantially the same functional properties as the naturally occurring counterpart sequences disclosed herein.
- Biological activity or function can be determined by, for example, the ability of the protein to increase wax ester production in a host cell as depicted in the examples below.
- hydropathic index of amino acids One factor that can be considered in making such changes is the hydropathic index of amino acids.
- the importance of the hydropathic amino acid index in conferring interactive biological function on a protein has been discussed by Kyte and Doolittle (1982). It is accepted that the relative hydropathic character of amino acids contributes to the secondary structure of the resultant protein. This, in turn, affects the interaction of the protein with molecules such as enzymes, substrates, receptors, DNA, -antibodies, antigens, etc.
- each amino acid has been assigned a hydropathic index as follows: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine ( ⁇ 0.4); threonine ( ⁇ 0.7); serine ( ⁇ 0.8); tryptophan ( ⁇ 0.9); tyrosine ( ⁇ 1.3); proline ( ⁇ 1.6); histidine ( ⁇ 3.2); glutamate/glutamane/aspartate/asparagine ( ⁇ 3.5); lysine ( ⁇ 3.9); and arginine ( ⁇ 4.5).
- amino acids in a peptide or protein can be substituted for other amino acids having a similar hydropathic index or score and produce a resultant peptide or protein having similar biological activity, i.e., which still retains biological functionality.
- amino acids having hydropathic indices within 2 are substituted for one another. More preferred substitutions are those wherein the amino acids have hydropathic indices within 1. Most preferred substitutions are those wherein the amino acids have hydropathic indices within 0.5.
- hydrophilicity values have been assigned to amino acids: arginine/lysine (+3.0); aspartate/glutamate (+3.0 1); serine (+0.3); asparagine/glutamane (+0.2); glycine (0); threonine ( ⁇ 0.4); proline ( ⁇ 0.5 1); alanine/histidine ( ⁇ 0.5); cysteine ( ⁇ 1.0); methionine ( ⁇ 1.3); valine ( ⁇ 1.5); leucine/isoleucine ( ⁇ 1.8); tyrosine ( ⁇ 2.3); phenylalanine ( ⁇ 2.5); and tryptophan ( ⁇ 3.4).
- amino acids having hydropathic indices within 2 are preferably substituted for one another, those within 1 are more preferred, and those within 0.5 are most preferred.
- amino acid substitutions in the peptides of the present invention can be based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, etc.
- Exemplary substitutions that take various of the foregoing characteristics into consideration in order to produce conservative amino acid changes resulting in silent changes within the present peptides, etc. can be selected from other members of the class to which the naturally occurring amino acid belongs.
- Amino acids can be divided into the following four groups: (1) acidic amino acids; (2) basic amino acids; (3) neutral polar amino acids; and (4) neutral non-polar amino acids.
- amino acids within these various groups include, but are not limited to: (1) acidic (negatively charged) amino acids such as aspartic acid and glutamic acid; (2) basic (positively charged) amino acids such as arginine, histidine, and lysine; (3) neutral polar amino acids such as glycine, serine, threonine, cysteine, cystine, tyrosine, asparagine, and glutamine; and: (4) neutral non-polar amino acids such as alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine. It should be noted that changes which are not expected to be advantageous can also be useful if these result in the production of functional sequences.
- the fragment, derivative or analog of the proteins encoded by the polynucleotide sequence of the present invention may be, for example and without limitation, (i) one in which one or more amino acid residues are substituted with a conserved or non-conserved amino acid residue, and such substituted amino acid residue may or may not be one encoded by the genetic code; (ii) one in which one or more of the amino acid residues includes a substituent group; (iii) one in which the mature protein is fused to another compound such as a compound to increase the half-life of the protein; (iv) one in which additional amino acids are fused to the protein to aid in purification or in detection and identification; or (v) one in which additional amino acid residues are fused to the protein to aid in modifying tissue distribution or localization of the protein to certain locations such as the cell membrane or extracellular compartments.
- protein also includes forms of the protein to which one or more substituent groups have been added.
- a substituent is an atom or group of atoms that is introduced into a molecule by replacement of another atom or group of atoms.
- groups include, but are not limited to, lipids, phosphate groups, sugars and carbohydrates.
- protein includes, for example, lipoproteins, glycoproteins, phosphoproteins and phospholipoproteins.
- the present invention also includes methods for the production of the protein of interest from cells transformed with a polynucleotide sequence of the present invention.
- Proteins can be expressed in mammalian cells, plant cells, insect cells, yeast, bacteria, bacteriophage, or other appropriate host cells.
- Host cells are genetically transformed to produce the protein of interest by introduction of an expression vector containing the nucleic acid sequence of interest. The characteristics of suitable cloning vectors and the methods for their introduction into host cells have been previously discussed.
- cell-free translation systems can also be employed using RNA derived from the DNA of interest. Methods for cell free translation are known to those skilled in the art. (Davis et al., 1986; Ausubel et al., 1992).
- Host cells are grown under appropriate conditions to a suitable cell density. If the sequence of interest is operably linked to an inducible promoter, the appropriate environmental alteration is made to induce expression. If the protein accumulates in the host cell, the cells are harvested by, for example, centrifugation or filtration. The cells are then disrupted by physical or chemical means to release the protein into the cell extract from which the protein can be purified. If the host cells secrete the protein into the medium, the cells and medium are separated and the medium retained for purification of the protein.
- DHFR dihydrofolate reductase
- Proteins recovered can be purified by a variety of commonly used methods, including, but not limited to, ammonium sulfate precipitation, immuno precipitation, ethanol or acetone precipitation, acid extraction, ion exchange chromatography, size exclusion chromatography, affinity chromatography, high performance liquid chromatography, electrophoresis, thin layer chromatography, and ultra filtration. If required, protein refolding systems can be used to complete the configuration of the protein.
- the wax ester synthase/DGAT protein encoded by the polynucleotide of SEQ ID NO:1 has been shown to catalyze the transfer of an acyl chain from fatty acyl-CoA to fatty alcohol via condensation of the fatty alcohol with the acyl-CoA and gave DGAT activity, thereby resulting in the formation of a wax ester (see Examples below) in several bacterial strains into which this sequence has been recombinantly introduced. Therefore, in one embodiment, a polynucleotide provided by the invention is employed to produce wax ester in bacteria at a relatively affordable cost.
- This wax ester may be utilized in connection with a number of products including cosmetics, industrial lubricants, coatings, food products, livestock feed, and fermentation media.
- Livestock includes, but is not limited to, for example, sheep, mules, hogs, cattle, horses, and other grazing animals, or animals commonly raised for agricultural or food production purposes.
- Fermentation media includes, but is not limited to, for example, a growth media containing, a saccharide, such as glucose, a nitrogen source, a phosphorous source, and agar or other non-digestible polysaccharide, in which the processes of fermentation can occur.
- the term “biological function” or “biological activity” refers to the ability of a wax ester synthase protein to catalyze the transfer of an acyl chain from fatty acyl-CoA to fatty alcohol via condensation of the fatty alcohol with the acyl-CoA, as well as the bifunctional DGAT activity, thereby resulting in the formation of a wax ester.
- complementarity refers to the pairing of bases, purines and pyrimidines, that associate through hydrogen bonding in double stranded nucleic acid.
- the following base pairs are complementary: guanine and cytosine; adenine and thymine; and adenine and uracil.
- the terms include complete and partial complementarity.
- hybridization refers to a process in which a strand of nucleic acid joins with a complementary strand through base pairing.
- the conditions employed in the hybridization of two non-identical, but very similar, complementary nucleic acids vary with the degree of complementarity of the two strands and the length of the strands. Thus the term contemplates partial as well as complete hybridization. Such techniques and conditions are well known to practitioners in this field and further described herein.
- amino acid is used in its broadest sense, and includes naturally occurring amino acids as well as non-naturally occurring amino acids, including amino acid analogs and derivatives. The latter includes molecules containing an amino acid moiety.
- amino acid includes, for example, naturally occurring proteogenic L-amino acids; D-amino acids; chemically modified amino acids such as amino acid analogs and derivatives; naturally occurring non-proteogenic amino acids such as norleucine, -alanine, ornithine, etc.; and chemically synthesized compounds having properties known in the art to be characteristic of amino acids.
- proteogenic indicates that the amino acid can be incorporated into a peptide, polypeptide, or protein in a cell through a metabolic pathway.
- expression cassette means a genetic module comprising a gene and the regulatory regions necessary for its expression, which may be incorporated into a vector.
- secretion sequence or “signal peptide” or “signal sequence” means a sequence that directs newly synthesized secretory or membrane proteins to and through membranes of the endoplasmic reticulum, or from the cytoplasm to the periplasm across the inner membrane of bacteria, or from the matrix of mitochondria into the inner space, or from the stroma of chloroplasts into the thylakoid. Fusion of such a sequence to a gene that is to be expressed in a heterologous host ensures secretion of the recombinant protein from the host cell.
- a “recombinant nucleic acid” is defined either by its method of production or its structure. In reference to its method of production, e.g., a product made by a process, the process is use of recombinant nucleic acid techniques, e.g., involving human intervention in the nucleotide sequence, typically selection or production. Alternatively, it can be a nucleic acid made by generating a sequence comprising fusion of two fragments which are not naturally contiguous to each other, but is meant to exclude products of nature, e.g., naturally occurring mutants.
- products made by transforming cells with any unnaturally occurring vector is encompassed, as are nucleic acids comprising sequences derived using any synthetic oligonucleotide process. Such is often done to replace a codon with a redundant codon encoding the same or a conservative amino acid, while typically introducing or removing a sequence recognition site. Alternatively, it is performed to join together nucleic acid segments of desired functions to generate a single genetic entity comprising a desired combination of functions not found in the commonly available natural forms. Restriction enzyme recognition sites are often the target of such artificial manipulations, but other site specific targets, e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features may be incorporated by design.
- site specific targets e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features may be incorporated by design.
- polynucleotide and “oligonucleotide” are used interchangeably and mean a polymer of at least 2 nucleotides joined together by phosphodiester bonds and may consist of either ribonucleotides or deoxyribonucleotides.
- sequence means the linear order in which monomers occur in a polymer, for example, the order of amino acids in a polypeptide or the order of nucleotides in a polynucleotide.
- peptide and “protein” are used interchangeably and mean a compound that consists of two or more amino acids that are linked by means of peptide bonds.
- recombinant protein means that the protein, whether comprising a native or mutant primary amino acid sequence, is obtained by expression of a gene carried by a recombinant DNA molecule in a cell other than the cell in which that gene and/or protein is naturally found. In other words, the gene is heterologous to the host in which it is expressed. It should be noted that any alteration of a gene, including the addition of a polynucleotide encoding an affinity purification moiety to the gene, makes that gene unnatural for the purposes of this definition, and thus that gene cannot be “naturally” found in any cell.
- targeting sequence means in the context of gene or polynucleotide insertion, a sequence which results in the gene or polynucleotide being inserted at a particular location by homologous recombination.
- targeting sequence refers to a nucleotide sequence encoding an amino acid sequence the presence of which results in a protein being directed to a particular destination within a cell.
- upstream region means a segment of a polynucleotide that is 5′ to a point of reference on the same polynucleotide.
- downstream region means a segment of a polynucleotide that is 3′ to a point of reference on the same polynucleotide.
- the bacterial strains and plasmids used in this study are listed in Table 1.
- Cells of A. calcoaceticus were cultivated aerobically in Luria-Bertani (LB) medium. (Sambrook et al., 2001) in Erlenmeyer flasks without baffles at 30° C.
- LB Luria-Bertani
- MSM mineral salts medium
- storage conditions Cells of E. coli were grown at 37° C. in LB medium.
- citronellolis was cultivated in LB medium at 30° C. Solidified media contained 1.8% (w/v) agar. Antibiotics were added at the following concentrations if appropriate: ampicillin (Ap) 75 ⁇ g ml ⁇ 1 , nalidixic acid (Ndx) 10 ⁇ g ml ⁇ 1 , kanamycin (Km) 50 ⁇ g ml ⁇ 1 , tetracycline (Tc) 12.5 ⁇ g ml ⁇ 1 .
- ampicillin 75 ⁇ g ml ⁇ 1
- Ndx nalidixic acid
- Km kanamycin
- Tc tetracycline
- miniTn10Km-induced mutants of A. calcoaceticus BD413 were created according to Herrero et al. (1990) employing the transposon delivery suicide plasmid pLOFKm which was transferred from E. coli SM10 ( ⁇ pir) to A. calcoaceticus BD413 (Ndx r ) by conjugation by the spot mating technique.
- Mutants of A. calcoaceticus BD413 (Ndx r ) defective in the accumulation of wax esters were identified in accordance to Reiser and Somerville (1997).
- Mutagenized cells were replica plated onto MSM plates containing 1% (w/v) sodium-gluconate and on LB master plates and were incubated for 48 h at 30° C. to induce wax ester accumulation.
- the cells on the MSM agar plates were then stained by irrigating the plates-with a 0.02% (w/v) Sudan Black B solution in 50:4:5 (v/v/v) dimethyl sulfoxide-ethanol-water and gently shaking them for 30 min.
- Chromosomal DNA of miniTn10Km-induced mutants of A. calcoaceticus BD413 was isolated by the method of Marmur (1961). Plasmid DNA was isolated by the method of Bimboim and Doly (1979). DNA restriction fragments were purified from agarose gels using the Nucleotrap-Kit (Macherey-Nagel,Diiren, Germany) following the instructions provided by the manufacturer. Restriction enzymes, T4-ligase and other DNA-manipulating enzymes were purchased from GibcoBRL (Karlsruhe, Germany) and used according to the manufacturer's instructions.
- Competent cells of E. coli were prepared and transformed by the CaCl 2 procedure as described by Hanahan (1983). Transduction of genomic DNA of A. calcoaceticus BD413, which was ligated into cosmid pHC79 DNA, to E. coli S 17-1 was done as described by Hohn and Murray (1977) after in vitro packaging into ⁇ phages employing the Gigapack III Gold packaging extract (Stratagene, Heidelberg, Germany). Conjugation of E. coli S 17-1 (donor) harbouring hybrid plasmids and P. citronellolis (recipient) was performed on solidified NB medium as described by Friedrich et al. (1981). A. calcoaceticus was transformed as described by Palmen et al. (1993) utilizing the high natural competence of this strain.
- Genomic DNA of miniTn10Km-insertion mutants was digested with EcoRI, and the genomic EcoRI fragments were ligated to cosmid pHC79 DNA. After in vitro packaging in; ⁇ phages the recombinant cosmids were transduced into E. coli S17-1. Recombinant E. coli clones were selected by their Km resistance conferred by the miniTn10Km insertion. The hybrid cosmids were isolated, digested with EcoRI and ligated into the plasmid pBluescript SK. The recombinant plasmids were transformed into E. coli XL1-Blue, and clones resistant to Km plus Ap were selected.
- the resulting hybrid plasmids were isolated and digested with EcoRI and NotI, which cuts up- and downstream of the Km resistance gene being part of miniTn10Km (Herrero et al. 1990). The resulting fragments were subcloned into EcoRI and NotI digested pBluescript SK and transformed into E. coli XL1-Blue. The obtained hybrid plasmids contained a EcoRI-NotI fragment which included IS10 R or IS10 L , respectively, plus genomic DNA adjacent to the miniTn10Km insertion. The miniTn10Km insertion locus was determined by DNA sequence analysis of the recombinant plasmids using sequencing primers specific to pBluescript SK.
- the dideoxy chain-termination method (Sanger et al., 1977) was used to determine the DNA sequence employing the Sequi Therm EXCEL TM II long-read cycle sequencing kit (Biozym, Hessisch Oldendorf, Germany) and - - - :IRD800-labelled oligonucleotides (MWG-Biotech, Ebersberg, Germany).
- the primer hopping strategy (Strauss et al., 1986) was applied. Sequencing was performed with a LI-COR DNA model 4000L automatic sequencer (MWG-Biotech, Ebersberg, Germany).
- Sequence data were compared with sequences deposited in the GeneBank database (online available at www.ncbi.nlm.nih.gov) using the program BlastSearch 2.0.10. (Altschul et al., 1997).
- Preliminary sequence data from the A. calcoaceticus BD413 genome project were obtained online from www.genoscope.fr and analyzed with the online program pack Biology WorkBench 3.2 at workbench.sdsc.edu.
- PCRTM amplifications of plasmid or genomic encoded DNA were performed according to Sambrook et al. (2001) in a PCRTM Sprint thermocycler (Hybaid, Teddington, UK) with Platinum Pfx DNA polymerase (GibcoBRL, Düsseldorf, Germany).
- the coding region of the wax/dgat gene including the up- and downstream regions was amplified by tailored PCRTM from genomic DNA of A. calcoaceticus BD413 applying the following oligonucleotides: 5′-AAA GAATTC TGGCCTACATGCAGGCAACTTAA-3′ (5′ end) (SEQ ID NO:5) and 5′-TTT GGATCC GAATTTTCAATACTAGGTACACA-3′ (3′ end) (SEQ ID NO:6) introducing EcoRI and BamHI restriction sites (underlined), respectively.
- the obtained 1908-bp PCRTM product shown in FIG.
- the coding region of the wax/dgat gene without upstream region was amplified by tailored PCRTM from genomic DNA of A. calcoaceticus BD413 applying the following oligonucleotides: 5′-AAA GAATTCAAGGAGGT ATCCACGCTATGCGCCCATTAC-3′ (5′ end) (SEQ ID NO:7) introducing a EcoRI restriction site (underlined) and a ribosome binding site (double underlined) and 5′-TT GGATCC AGGGCTAATTTAGCCCTTTAGTT-3′ (3′ end) (SEQ ID NO:8) introducing a BamHI restriction site (underlined).
- the obtained 1470-bp PCRTM product shown in FIG.
- Cells of E. coli harbouring pBluescript KS, pBBRIMCS-2, pKS:waxEB19, pKS:wax, pBBRIMCS-2:wax and pKS:wax-His 6 C were cultivated in 50 ml LB medium inoculated with 1% (v/v) of an overnight LB preculture for 6 h at 37° C. in the presence of 1 mM IPTG and appropriate antibiotics.
- P. citronellolis harbouring pBBRIMCS-2 and pBBR1MCS-2:wax was cultivated in 50 ml LB medium inoculated with 1% (v/v) of an overnight LB preculture for 6 h at 37° C.
- the 1908-bp PCRTM product described above was cloned into EcoRI and BamHI restricted pBluescript SIC, resulting in—pSK:waxEB19.
- This hybrid plasmid was restricted with NruI, which cuts within the wax/dgat gene, and ligated with ⁇ Km, which was recovered by SmaI digestion of plasmid pSKsym ⁇ Km (Overhage et al., 1999), resulting in the hybrid plasmid pSK:wax ⁇ Km.
- the disrupted wax/dgat gene was isolated from pSK:wax ⁇ Km by digestion with EcoRI and BaMHI and the linear DNA fragment was transformed to A. calcoaceticus BD413. Transformants were selected on LB plates containing 50 ⁇ g Km ml ⁇ 1 . The correct exchange of the wax/dgat gene with the disrupted gene in the obtained knock-out strain A. calcoaceticus .
- BD413wax ⁇ Km was proven by PCRTM using the oligonucleotide primers 5′-AAAGAATTCAAGGAGGTATCCACGCTATGCGCCCATTAC-3′ (5′ end) (SEQ ID NO:11) and 5′-TTTGGATCCAGGGCTAATTTAGCCCTTTAGTT-3′ (3′ end) (SEQ ID NO:12) resulting in a single PCRTM product with the expected size of 2.5 kbp.
- Transposon mutagenesis of an isolated spontaneous Ndx-resistant strain of A. calcoaceticus BD413 was performed to obtain mutants affected in the accumulation of wax esters.
- a total of 4000 miniTn10Km-induced mutants were obtained and screened by Sudan Black B staining for mutants with a reduced or lacking accumulation of storage lipids.
- Eight mutants were isolated exhibiting a lighter staining with the lipophilic dye Sudan Black B.
- TLC analysis of these mutants revealed that all of them were unable to accumulate wax esters under storage conditions but were still able to accumulate triacylglycerols (TAGS) to some extent ( FIG. 1 ).
- TGS triacylglycerols
- Transposon miniTn10Km had inserted with a 9 by palindromic direct repeat (5′-GCGTATGCG-3′) (SEQ ID NO:13) immediately upstream of an ORF with the start codon ATG being part of the direct repeat.
- the putative translational product exhibited highest homology (37%) to the hypothetical 48.4-kDa protein Rv3740c from Mycobacterium tuberculosis H37Rv which belongs to a group of conserved hypothetical proteins in this strain (Cole et al. 1998a; Cole et al. 1998b).
- the knock-out strain exhibited the same phenotype than the miniTn10Km-induced mutants.
- Attempts to complement A. calcoaceticus BD413wax ⁇ Km chemically by feeding with the precursor substrates hexadecanal and hexadecanol failed in reconstituting wax ester biosynthesis indicating that the inactivation of the hypothetical ORF probably did not affect the biosynthesis of precursors.
- a 1.9-kbp fragment comprising the ORF was PCRTM amplified and cloned as a BamHI-EcoRI fragment into pSER200-4which allows constitutive low-level expression in A. calcoaceticus . (Reiser, 1996) resulting in pSER200-4:wax.
- Wax ester synthase activity in crude extracts of different strains of A. calcoaceticus , E. coli and P. citronellolis Values are mean values of experiments done in triplicate.
- pBBRIMCS-2:wax was transferred conjugatively to P. citronellolis , a Gram-negative alkane degrading bacterium unable to accumulate wax esters. Also in this host the wax gene was expressed constitutively resulting in a wax ester synthase activity of 149.7 pmol (mg protein min) ⁇ 1, whereas the control harboring only the vector exhibited an activity of only 0.5 pmol (mg protein min) ⁇ 1. (Table 3).
- pKS:wax-His 6 C was constructed as described in Materials and Methods resulting in the expression of a C-terminal His 6 -tagged protein.
- recombinant E. coli XL1-Blue pKS:wax-His 6 C
- E. coli XL1-Blue expressing the C-terminal His 6 -tagged wax ester synthase exhibited only 17% activity in comparison to E. coli XL1-Blue harbouring the native wax/dgat gene on pKS:wax (Table 3).
- the Wax Gene Encodes a Bifunctional WS/DGAT
- Wild-type A. calcoaceticus ADP1 exhibited a WS activity of 90.37 pmol (mg min) ⁇ 1 and a ca. tenfold lower DGAT activity (Table 4), which corresponded approximately with the amounts of wax esters and TAGs accumulated under storage conditions as estimated by TLC. Inactivation of wax/dgat not only caused the loss of the ability for wax ester and TAG biosynthesis; it also abolished WS and DGAT activity in the transposon-induced mutant as well as in the knock-out mutant (Table 4).
- the bifunctional WS/DGAT comprises 458 amino acids with a theoretical molecular weight of 51.8 kDa and a pI of 9.05. It is a rather amphiphilic protein, and it possesses one putative predicted membrane-spanning region ( FIG. 12B ).
- WS/DGAT homologous genes could be identified in a preliminary genome sequence of the non-pathogenic strain M. smegatis mc 2 155 (see Table 6), which is publicly accessible online via NCBI.
- the gene with the highest similarity exhibits 41.0% amino acids identity to WS/DGAT and 67.2% to the hypothetical protein Rv3734c from M. tuberculosis H37Rv (Table 5).
- Recombinant E. coli expressing this gene (designated as wdh3269) on plasmid pSK:wdh3269 showed a weak WS and DGAT activity which was slightly but reproducible higher than the vector control (Table 1).
- M. smegmatis mc 2 155 cultivated under storage conditions with glucose as sole carbon source exhibited both high WS as well as DGAT activity in vitro (Table 4), but in vivo only TAGs were intracellularly accumulated ( FIG. 13A ).
- M. smegatis mc 2 155 was also capable of substantial wax ester biosynthesis in vivo when 1-hexadecanol was provided as sole carbon source or as a co-substrate ( FIG. 13A ).
- the A. calcoaceticus ADP1 WS/DGAT and the related proteins in Mycobacterium and A. thaliana exhibit in their N-terminal region some partial similarity to a conserved condensing domain found in many multi-domain enzymes synthesizing peptide antibiotics (NCBI Conserved Domain Database accession pfam00668).
- This condensing domain contains an active-site motif (HHXXXDG), whose second histidine residue is strictly conserved and has been demonstrated to be essential for catalytic activity in nonribosomal peptide bond formation (Stachelhaus et al., 1998).
- the WS/DGAT and related proteins also contain this putative active site with the motif (HXXXDG) being strictly conserved ( FIG. 10 ). Thus, it is very likely that this site is catalytically participating in the acyl-CoA acyltransferase reactions involved in wax ester and TAG formation ( FIG. 12A ).
- the motif HHXXXDG corresponding to amino acids 132–138 of the A. calcoaceticus WS/DGAT is highly conserved, and may be the catalytic site responsible for the ester bond formation ( FIG. 10 ). This motif is the putative active site in the condensing domain found in many multi-domain enzymes synthesising peptide antibiotics.
- M. smegatis mc 2 155 possesses both DGAT and WS activity in vitro (Table 4), and that this strain can produce TAGs as well as wax esters in vivo (FIG. 13 A). Wax ester synthesis from unrelated carbon sources like glucose, however, was hampered probably only by the lacking capability of fatty alcohol biosynthesis. Heterologous expression of the homologue from M. smegatis mc 2 155, which exhibits the highest similarity to the A. calcoaceticus ADP1. WS/DGAT (wdh3269), mediated low but significant WS and DGAT activities to recombinant E. coli (Table 4); these low activities could result from low expression of the gene.
- the activities may arise in M. smegmatis mc 2 155 also from WS/DGAT homologues or may be the cumulative result of two or more enzymes.
- some of the WS/DGAT homologues could also participate in biosynthesis of cell wall lipids like mycolic acids, which are responsible for the unique properties of the mycobacterial cell wall and can play crucial roles in pathogenesis.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Fodder In General (AREA)
- Peptides Or Proteins (AREA)
Abstract
The invention provides polypeptides having wax ester synthase and acyl-CoA:diacylglycerol acyltransferase activity. Also provided are the nucleic acids encoding such polypeptides, cells and organisms transformed therewith and methods of use thereof. The invention allows the modification of lipid profiles in host cells and organisms. Novel methods for the production of waxy esters are also provided by the invention.
Description
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/360,774, filed on Mar. 1, 2002, the entire disclosure of which is specifically incorporated herein by reference.
1. Field of the Invention
The invention relates generally to newly identified and isolated polynucleotides, proteins encoded by the polynucleotides, methods for producing proteins, and uses for the polynucleotides and proteins. More specifically, the current invention relates to bifunctional wax ester synthase proteins, polynucleotides encoding the proteins, and methods and compositions related thereto.
2. Description of Related Art
The capability for biosynthesis of neutral lipids is widely distributed in nature and is found in animals, plants as well as microorganisms. In bacteria, the most abundant class of neutral lipids are polyhydroxyalkanoic acids serving as intracellular carbon and energy storage (Steinbüchel, 1991), but also few examples of substantial triacylglycerol (TAG) accumulation have been reported for species mainly belonging to the actinomycetes genera Mycobacterium (Barksdale and Kim, 1977), Nocardia and Rhodococcus (Alvarez et al., 1997) and Streptomyces (Olukoshi and Packter, 1994). Furthermore, biosynthesis of wax esters (oxoesters of long-chain primary fatty alcohols and long-chain fatty acids) has been frequently reported for members of the genus Acinetobacter (Fixter et al., 1986).
TAGs are the dominating storage lipid in animals, plants and eukaryotic microorganisms. TAG biosynthesis is involved in animals in numerous processes such as regulation of plasma TAG concentration, fat storage in adipocytes and milk production (Bell and Coleman, 1980). In plants, TAG synthesis is mainly important for the generation of seed oils (Lassner, 1997) Using diacylglycerol (DAG) as a substrate, three different classes of enzymes are known mediating TAG formation (Lehner and Kuksis, 1996). Acyl-CoA:DAG acyltransferase (DGAT) catalyzes the acylation of DAG using acyl-CoA as a substrate. Two DGAT families designated as DGAT1 and DGAT2 are known, which exhibit no sequence homologies to each other. Members of the DGAT1 gene family occur in animals and plants (Cases et al., 1998; Hobbs et al., 1999; Routaboul et al., 1999; Zou et al., 1999), whereas members of the DGAT2 gene family were found in animals (Cases et al., 2001), plants (Bouvier-Navée et al., 2000) and yeasts (Oelkers et al., 2002). In human, one DGAT1 related gene and five DGAT2 related genes were identified (Cases et al., 2001).
Recently, DGAT has attracted great interest since it is a potential therapeutical target for obesity treatment (Chen and Farese Jr., 2000). Acyl-CoA-independent TAG synthesis is mediated by a phospholipid:DAG acyltransferase found in yeast and plants, which uses phospolipids as acyl donors for DAG esterification (Dahlqvist et al., 2000). A third alternative mechanism present in animals and plants is TAG synthesis by a DAG-DAG-transacylase which uses DAG as acyl donor and acceptor yielding TAG and monoacylglycerol (Lehner and Kuksis, 1993; Stobart et al., 1997), but no gene coding such a transacylase could be identified yet.
Linear wax esters are lipophilic compounds containing a long chain fatty alcohol esterified to a long chain fatty acid. These wax esters are found in a number of diverse organisms ranging from mammals to plants to bacteria. For instance, wax esters are the principal component of spermaceti oil which, until recently, was obtained from the head cavity of sperm whales. Since the world-wide ban on whale hunting, however, the only natural source of wax esters on a commercial scale has been the seeds of jojoba, a bush or shrub that is adapted to growth in hot arid habitats. In jojoba plants, waxes are stored in the seeds of the plant where they serve as a means of energy storage for developing seedlings. Wax esters have also been found in several species of bacteria such as Acinetobacter calcoaceticus, a gram negative aerobic bacteria that accumulates wax esters when grown under nitrogen limited conditions. Wax esters from these bacterial sources, however, have not been utilized on a commercial scale.
Wax esters have a multitude of important commercial applications in a variety of technical areas, including the medical, cosmetics and food industries as well as their more traditional usage as lubricants for mechanical parts and the like. The wax esters obtained from jojoba can replace sperm whale oil in most or all traditional uses. They are useful for applications in cosmetics, as a lubricant, as an additive for leather processing, as a carrier for pharmaceuticals and as a solvent. Hydrogenation of the wax to eliminate double bonds produces a hard wax which is useful for surface treatments, in textile sizing, in coating paper containers and in cosmetics (e.g., lipstick and creams). Sulphurization of the wax or other modifications make the substance useful in specialty lubricant applications, as a textile softener, as a component of printing inks, and as a component in many technical products such as corrosion inhibitors, surfactants, detergents, disinfectants, plasticizers, resins and emulsifiers. For some of these applications the fatty alcohol derived by hydrolysis of the wax ester is the most valuable ingredient derived from the wax ester.
Because the yield of the jojoba plant is extremely low, however, the oil is relatively expensive compared with edible oils from plants or technically comparable materials from petroleum and its use has been limited to cosmetic products. Thus, a need exists to develop an alternate biological source of wax esters. One possibility, in this respect, is to recombinantly engineer a microbial species for efficient production of wax esters. Toward that end, information concerning enzymes and enzymatic pathways which are involved in wax ester biosynthesis, and the nucleic acid sequences that encode these enzymes are needed.
The most detailed information concerning wax ester biosynthesis concerns wax biosynthesis in jojoba plants, where it appears that two enzymes catalyze the formation of wax esters. The first step of the pathway is catalyzed by a fatty acyl-CoA reductase which reduces very long chain fatty acyl CoA (a very long chain fatty acyl CoA generally having greater than 18 carbons), and is known to catalyze the formation of a long chain alcohol directly from this substrate via an aldehyde intermediate. The second enzyme (wax ester synthase), an acyl-CoA-fatty alcohol transferase catalyzes the formation of an ester linkage between acyl-CoA and a fatty alcohol to yield a wax ester.
The pathway of wax ester biosynthesis in A. calcoaceticus, in contrast to the jojoba plant, comprises three enzymatic steps involved in the conversion of long-chain acyl-CoA to wax esters. In the first step, acyl-CoA is reduced by an NADPH-dependent acyl-CoA reductase to the corresponding fatty aldehyde. In the second step, the aldehyde is further reduced to the corresponding fatty alcohol catalyzed by the fatty aldehyde reductase. Finally, an acyl-CoA:fatty alcohol acyl transferase (wax ester synthase) condenses the fatty alcohol with acyl-CoA resulting in the formation of the wax ester.
Wax ester synthesis and WS activity have been reported for M. tuberculosis (Wang et al., 1972), and TAG accumulation and DGAT activity have been shown for M. smegmatis (Nakagawa et al., 1976; Wun et al., 1977). However, no proteins or genes have been reported to which these activities could be attributed.
Irrespective of the species involved, therefore, a key enzymatic step involved in wax ester biosynthesis is the transfer of an acyl chain from fatty acyl-CoA to a fatty alcohol, and this reaction is catalyzed by wax ester synthase. While several wax ester synthases have been described in terms of their substrate specificities and intracellular locations, very little is known about the proteins associated with this activity and the genes encoding this enzyme. In fact, the only gene encoding a wax ester synthase that has been identified is from jojoba. Thus, a need exists to identify genes encoding wax ester synthases from other species. In particular, a need exists to identify genes encoding wax ester synthases from a species that could be engineered to produce wax esters in large quantities and at a relatively affordable cost. The present invention addresses this need by providing polynucleotide sequences encoding bacterial wax ester synthases.
In one aspect, the invention provides an isolated polynucleotide encoding a polypeptide having wax ester synthase/DGAT activity and having a nucleotide sequence at least about 60% homologous to SEQ ID NO:1. In certain embodiments of the invention, an isolated polynucleotide in accordance with the invention comprises a polynucleotide that hybridizes to SEQ ID NO:1 under conditions of 5×SSC, 50% formamide and 42° C., and which encodes a protein having the same biological function. Such polynucleotides may encode the same polypeptide as SEQ ID NO:1.
In another aspect of the invention provides a recombinant vector comprising a polynucleotide of the invention. In certain embodiments, the recombinant vector may comprise the polynucleotide linked to one or more regulatory regions and/or any other desired elements.
In yet another aspect, the invention provides a protein or polypeptide fragment encoded by the polynucleotide of SEQ ID NO:1 or a fragment thereof having wax ester synthase/DGAT activity. In certain embodiments of the invention, a protein comprising the amino acid sequence of SEQ ID NO:4 or a fragment of SEQ ID NO:4 is provided, wherein said fragment has wax ester synthase activity. In certain embodiments of the invention, the protein and/or fragment may have wax ester synthase and DGAT activity. In certain further embodiments of the invention, a protein or polypeptide may comprise one or more of the following amino acid sequences: HHAXVDGV (SEQ ID NO:16), NDVVLA (SEQ ID NO:17), GALRXYL (SEQ ID NO:18), PLXAMVP (SEQ ID NO:19), ISNVPGP (SEQ ID NO:20), REPLYXNGA (SEQ ID NO:21), including one, two, three, four, five or all six of these amino acid sequences.
In still yet another aspect of the invention, a recombinant construct is provided comprising a polynucleotide sequence encoding a conserved polypeptide fragment with wax ester synthase and/or DGAT activity, and further wherein the polypeptide comprises at least one of the following amino acid sequences selected from the group consisting of HHAXVDGV (SEQ ID NO:16), NDVVLA (SEQ ID NO:17), GALRXYL (SEQ ID NO:18), PLXAMVP (SEQ ID NO:19), ISNVPGP (SEQ ID NO:20), REPLYXNGA (SEQ ID NO:21), including one, two, three, four, five or all six of these amino acid sequences. In one embodiment of the invention, the polynucleotide sequence is a bacterial sequence. In still yet another embodiment is provided a host cell containing this recombinant construct. In one embodiment of the invention, the host cell may be any type of cell.
In still yet another aspect, a method is provided a method for producing a wax ester comprising culturing a host cell described above under conditions permitting expression of the polypeptide having wax ester synthase activity. In certain embodiments of the invention, the polypeptide may have DGAT activity. The method may comprise culturing the cell in one or more substrates for the waxy ester synthase/DGAT. The wax ester may or may not be isolated from the host cell or any media in which the host cell is cultured.
In still yet another aspect, the invention provides a method of modifying accumulation of wax esters in a host cell that comprises transforming a host cell with a recombinant construct of the invention. In certain embodiments, the recombinant construct may comprise a regulatory sequence operably linked to a nucleic acid sequence, said nucleic acid sequence encoding a polynucleotide encoding a polypeptide having wax ester synthase and/or DGAT activity or a fragment thereof, and culturing said host cell under conditions wherein said host cell expresses a polypeptide having wax ester synthase and/or DGAT activity such that said host cell has a modified wax ester composition compared to host cells without the recombinant construct. In certain embodiments of the invention, the method comprises increasing the wax ester content of a host cell.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying figures, where:
The present invention relates to the initial discovery and isolation of the polynucleotide encoding a wax ester synthase (WS) protein from A. calcoaceticus, which protein also has acyl-CoA:diacylglycerol acyltransferase (DGAT) activity (e.g., WS/DGAT). Therefore, when wax ester synthase polypepetides and nucleic acids are referred to herein this specifically includes the inherent bifunctional DGAT activity. The sequence from A. calcoaceticus has been determined and is given in SEQ ID NO:1 and is also set forth in FIG. 8 . Moreover, the amino acid sequence of the wax ester synthase/DGAT protein produced by the isolated nucleic acid sequence has been deduced and is given in FIG. 9 and corresponds to SEQ ID NO:4. Although a particular embodiment of the nucleotide sequence disclosed herein is given in SEQ ID NO:1, it should be understood that other biologically functional equivalent forms of the nucleic acid sequence of the present invention can be readily isolated using conventional DNA-DNA and DNA-RNA hybridization techniques. Thus the present invention also includes nucleotide sequences that hybridize to SEQ ID NO:1 or its complement under moderate to high stringency conditions and encode proteins exhibiting the same or similar biological activity as that of protein of SEQ ID NO:4 disclosed herein. Also included in the invention are polynucleotides that exhibit 90%, preferably 92%, more preferably 95% and more 98% sequence identity with SEQ ID NO:1, its complement or SEQ ID NO:2.
One advance of the current invention relates to novel methods for the production of wax esters. A strong demand exists for large-scale production of cheap jojoba-like wax esters which have multiple commercial uses. Jojoba oil is the only alternative natural source of wax esters to sperm whale oil which is used at a commercial scale, but the high production costs restrict its use currently on cosmetical applications. The jojoba WS is not functionally expressed in microorganisms like E. coli and S. cerevisiae. In contrast, the inventors have demonstrated WS/DGAT that is active in different bacterial hosts. In P. citronellolis, the heterologous expression of WS/DGAT lead to production of wax esters if a long-chain fatty alcohol was provided as carbon source which also delivers fatty acyl-CoA during catabolism by the alkane degradation pathway. By variation of the fatty alcohol used as carbon source, one may vary the composition of the produced wax esters. The invention provides the basis, for example, for microbial biotechnological production of jojoba-like wax esters. The fast growth rates, the possibility to influence the wax composition by altering the culture conditions and the easy accessibility of bacteria to genetic and metabolic engineering will support such efforts.
In certain embodiments, the invention provides nucleic acid sequences that hybridize to SEQ ID NO:1 or its complement under moderate to high stringency conditions. As is well known in the art, stringency is related to the Tm of the hybrid forrned. The Tm (melting temperature) of a nucleic acid hybrid is the temperature at which 50% of the bases are base-paired. For example, if one of the partners in a hybrid is a short oligonucleotide of approximately 20bases, 50% of the duplexes are typically strand separated at the Tm. In this case, the Tm reflects a time-independent equilibrium that depends on the concentration of oligonucleotide. In contrast, if both strands are longer, the Tm corresponds to a situation in which the strands are held together in structure possibly containing alternating duplex and denatured regions. In this case, the Tm reflects an intramolecular equilibrium that is independent of time and polynucleotide concentration.
As is also well known in the art, Tm is dependent on the composition of the polynucleotide (e.g. length, type of duplex, base composition, and extent of precise base pairing) and the composition of the solvent (e.g. salt concentration and the presence of denaturants such formamide). An equation for the calculation of Tm can be found in Sambrook, et al. (2001), and is: Tm=81.5° C.−16.6(log10[Na+])=0.41(% G+C)−0.63(% formamide)−600/L). Where L is the length of the hybrid in base pairs, the concentration of Na+ is in the range of 0.01M to 0.4M and the G+C content is in the range of 30% to 75%. Equations for hybrids involving RNA can be found in the same reference. Alternative equations can be found in Davis et al. (1994).
Methods for hybridization and washing are well known in the art and can be found in standard references in molecular biology such as those cited herein. In general, hybridizations are usually carried out in solutions of high ionic strength (6×SSC or 6×SSPE) at a temperature 20–25′ C. below the Tm. High stringency wash conditions are often determined empirically in preliminary experiments, but usually involve a combination of salt and temperature that is approximately 12–20° C. below the Tm. One example of such wash conditions is 5×SSC, 50% formamide at 42° C. An example with higher stringency conditions is 1×SSC at 60° C. Another example of high stringency wash conditions is 0.1×SSPE, 0.1% SDS at 42° C. (Meinkoth and Wahl, 1984). An example of even higher stringency wash conditions is 0.1×SSPE, 0.1% SDS at 50–65° C. In one preferred embodiment, high stringency washing is carried out under conditions of 1×SSC and 60° C.
It is well known to those of ordinary skill in the art that different compositions can result in equal stringency conditions for hybridization depending on well known factors such as the concentration of Na+, the % formamide, the temperature, the Tm of the hybrid to be formed, and the composition of the hybrid, e.g. DNA-DNA, DNA-RNA, or RNA-RNA. Thus the invention also encompasses nucleotide sequences that hybridize under conditions equivalent to those described above.
Also included in the invention are polynucleotides that exhibit 90%, preferably 92%, more preferably 95%, and still more preferably 98% sequence identity or homology with SEQ ID NO:1, its respective complement or SEQ ID NO:2. Such nucleotide sequences preferably hybridize to the nucleic acid of SEQ ID NO:1 or its respective complement under high stringency conditions.
“Homology,” as is well understood in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, “homology” also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as determined by the match between strings of such sequences. “Homology” can be readily calculated by known methods including, but not limited to, those described in Computational Molecular Biology (1988); Biocomputing. Informatics and Genome Projects (1993); Computer Analysis of Sequence Data, Part I (1994); Sequence Analysis in Molecular Biology (1987); Sequence Analysis Prime (1991); and Carillo and Lipman (1988). Methods to determine homology are designed to give the largest match between the sequences tested. Moreover, methods to determine homology are codified in publicly available programs. Computer programs which can be used to determine identity/homology between two sequences include, but are not limited to, GCG (Devereux et al., 1984; suite of five BLAST programs, three designed for nucleotide sequences queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, 1994; Birren, et al., 1997). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual; Altschul et al., 1990). The well known Smith Waterman algorithm can also be used to determine homology.
The present invention also involves recombinant polynucleotides comprising the isolated protein along with other sequences. Such recombinant polynucleotides are commonly used as cloning or expression vectors although other uses are possible. A recombinant polynucleotide is one in which polynucleotide sequences of different organisms have been joined together to form a single unit. A cloning vector is a self replicating DNA molecule that serves to transfer a DNA segment into a host cell. The three most common types of cloning vectors are bacterial plasmids, phages, and other viruses. An expression vector is a cloning vector designed so that a coding sequence inserted at a particular site will be transcribed and translated into a protein.
Both cloning and expression vectors contain nucleotide sequences that allow the vectors to replicate in one or more suitable host cells. In cloning vectors, this sequence is generally one that-enables the vector to replicate independently of the host cell chromosomes, and also includes either origins of replication or autonomously replicating sequences. Various bacterial and viral origins of replication are well known to those skilled in the art and include, but are not limited to the pBR322 plasmid origin, the 2 plasmid origin, and the SV40, polyoma, adenovirus, VSV and BPV viral origins.
The polynucleotide sequence of the present invention may be used to produce proteins by the use of recombinant expression vectors containing the sequence. A great variety of expression vectors can be used to express a polypeptide of the invention. Such vectors include chromosomal, episomal and virus-derived vectors e.g., vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, from viruses such as baculoviruses, papoviruses such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses; pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. All such vectors may be used for expression in accordance with this aspect of the present invention. Generally, any vector suitable to maintain, propagate or express polynucleotides to express a polypeptide in a host may be used for expression in this regard. Therefore, any other vector that is replicable and viable in the host may be used.
The appropriate DNA sequence may be inserted into the vector by any of a variety of well-known and routine techniques. In general, a DNA sequence for expression is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction endonucleases and then joining the restriction fragments together using T4-:DNA ligase. Procedures for restriction and ligation that can be used to this end are well known and routine to those of skill in the art. Suitable procedures in this regard, and for constructing expression vectors using alternative techniques, which also are well known and routine to those-of skill in the art, are set forth in great detail in Sambrook et al., (2001); Ausubel et al. (1995).
In an expression vector, the sequence of interest is operably linked to a suitable regulatory sequence, expression control sequence or promoter recognized by the host cell to direct mRNA synthesis. Promoters are untranslated sequences located generally 100 to 1000 base pairs (bp) upstream from the start codon of a structural gene that regulate the transcription and translation of nucleic acid sequences under their control. Promoters are generally classified as either inducible or constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in the environment, e.g. the presence or absence of a nutrient or a change in temperature. Constitutive promoters, in contrast, maintain a relatively constant level of transcription. In addition, useful promoters can also confer appropriate cellular and temporal specificity. Such promoters include those that are developmentally-regulated or organelle, tissue or cell-specific.
A nucleic acid sequence is operably linked when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operatively linked to DNA for a polypeptide if it is expressed as a preprotein which participates in the secretion of the polypeptide; a promoter is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, operably linked sequences are contiguous and, in the case of a secretory leader, contiguous and in reading frame. Linking is achieved by blunt end ligation or ligation at restriction enzyme sites. If suitable restriction sites are not available, then synthetic oligonucleotide adapters or linkers can be used as is known to those skilled in the art (Sambrook et al., 2001; Ausubel et al., 1995).
Those skilled in the art will recognize that there are a number of promoters which are functional in bacterial cells, and have been described in the literature including constitutive, inducible, developmentally regulated, and environmentally regulated promoters. Of particular interest is the use of promoters (also referred to as transcriptional initiation regions) functional in bacterial host cells. Representatives of such promoters include the phage lambda PL promoter, the E. coli lac, trp and tac promoters, the SV40 early and late promoters, promoters of retroviral LTRs, the CaMV 35S promoter (Assaad and Signer, 1990), coconut foliar decay virus (CFDV) DNA (U.S. Pat. No. 6,303,345), and the endogenous promoters of P. citronellolis, to name just a few of the well-known promoters. It will be understood that numerous promoters not mentioned are suitable for use in this aspect of the invention, are well known, and may be readily employed by those of skill in the manner illustrated by the discussion and the examples herein. Other promoters known to control the expression of genes in prokaryotic or eukaryotic cells can be used and are known to those skilled in the art. Expression vectors may also contain a ribosome binding site for translation initiation, and a transcription terminator. The vector may also contain sequences useful for the amplification of gene expression.
Regulatory transcript termination regions may be provided in expression constructs of this invention as well. Transcript termination regions may be provided by the DNA sequence encoding the WS/DGAT or a convenient transcription termination region derived from a different gene source, for example, the transcript termination region which is naturally associated with the transcript initiation region. The skilled artisan will recognize that any convenient transcript termination region which is capable of terminating transcription in a host cell may be employed in the constructs of the present invention.
Expression and cloning vectors can and usually do contain a structural gene or selection marker having the necessary regulatory regions for expression in a host and providing for selection of transformant cells. The gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like. Depending upon the number of different host species into which the expression construct or components thereof are introduced, one or more markers may be employed, where different conditions for selection are used for the different hosts.
Non-limiting examples of suitable selection markers include genes that confer resistance to bleomycin, gentamycin, glypho sate, hygromycin, kanamycin, methotrex ate, nalidixic acid, phleomycin, phosphinotricin, spectinomycin, streptomycin, sulfonamide, sulfonylureas, and tetracycline. Maliga et al. (1995). Examples of markers include, but are not limited to, alkaline phosphatase (AP), myc, hemagglutinin (HA), β glucuronidase (GUS), luciferase, and green fluorescent protein (GFP). In one embodiment, the vectors contain structural genes providing resistance to kanamycin and nalidixic acid.
In addition, expression vectors can also contain marker sequences operatively linked to a nucleotide sequence for a protein that encode an additional protein used as a marker. The result is a hybrid or fusion protein comprising two linked and different proteins. The marker protein can provide, for example, an immunological or enzymatic marker for the recombinant protein produced by the expression vector.
Additionally, the end of the polynucleotide can be modified by the addition of a sequence encoding an amino acid sequence useful for purification of the protein produced by affinity chromatography. Various methods have been devised for the addition of such affinity purification moieties to proteins. Representative examples can be found in U.S. Pat. Nos. 4,703,004, 4,782,137, 4,845,341, 5,935,824, and 5,594,115. Any method known in the art for the addition of nucleotide sequences encoding purification moieties can be used, for example those contained in Innis et al. (1990); Sambrook et al. (2001). More specifically, one embodiment of the present invention provides expression constructs containing the nucleotide sequence represented in SEQ ID NO:1. Such constructs are prepared as demonstrated in the Examples below.
More particularly, the present invention includes recombinant constructs comprising the isolated polynucleotide sequence of the present invention. The constructs can include a vector, such as a plasmid or viral vector, into which the sequence of the present invention has been inserted, either in the forward or reverse orientation. The recombinant construct further comprises regulatory sequences, including for example, a promoter operatively linked to the sequence. Large numbers of suitable vectors and promoters are known to those skilled in the art and are commercially available. In one preferred embodiment, the pCS2+, the pCEP4 (Invitrogen) and the pIRESneo (Clontech) vectors are used. It will be understood by those skilled in the art, however, that other plasmids or vectors may be used as long as they are replicable and viable or capable of expressing the encoded protein in the host.
The polynucleotide sequence of the present invention can also be part of an expression cassette that at a minimum comprises, operably linked in the 5′ to 3′ direction, a promoter, a polynucleotide of the present invention, and a transcriptional termination signal sequence functional in a host cell. The promoter can be of any of the types discussed herein, for example, a tissue specific promoter, a developmentally regulated promoter, an organelle specific promoter, etc. The expression cassette can further comprise an operably linked targeting sequence, transit or secretion peptide coding region capable of directing transport of the protein produced. The expression cassette can also further comprise a nucleotide sequence encoding a selectable marker and a purification moiety.
A further embodiment of the present invention relates to transformed host cells containing the constructs comprising the polynucleotide sequence of the present invention. The host cell can be a higher eukaryotic cell, such as a mammalian or a plant cell, or a lower eukaryotic cell such as an insect cell or a yeast cell, or the host can be a prokaryotic cell such, as a bacterial cell. In one embodiment, the host cell is a bacterial cell. In one embodiment, the host cell is an E. coli cell or a P. citronellolis cell. Introduction of the construct into the host cell can be accomplished by a variety of methods including calcium phosphate transfection, DEAE-dextran mediated transfection, Polybrene mediated transfection, protoplast fusion, liposome mediated transfection, direct microinjection into the nuclei, biolistic (gene gun) devices, scrape loading, and electroporation.
The present invention also relates to proteins encoded by the isolated polynucleotides. As used herein the term protein includes fragments, analogs and derivatives of the wax ester synthase-like protein. The terms “fragment,” “derivative” and “analog” as used herein mean a polypeptide that retains essentially the same biological function or activity as the wax ester synthase/DGAT encoded by the sequence of the present invention. For example, an analog includes a proprotein which can be cleaved to produce an active mature protein. The protein of the present invention can be a natural protein, a recombinant protein or a synthetic protein or a polypeptide.
Those of ordinary skill in the art are aware that modifications in the amino acid sequence of a peptide, polypeptide, or protein can result in equivalent, or possibly improved, second generation peptides, etc., that display equivalent or superior functional characteristics when compared-to the original amino acid sequence. The present invention accordingly encompasses such modified amino acid sequences. Alterations can include amino acid insertions, deletions, substitutions, truncations, fusions, shuffling of subunit sequences, and the like, provided that the peptide sequences produced by such modifications have substantially the same functional properties as the naturally occurring counterpart sequences disclosed herein. Biological activity or function can be determined by, for example, the ability of the protein to increase wax ester production in a host cell as depicted in the examples below.
One factor that can be considered in making such changes is the hydropathic index of amino acids. The importance of the hydropathic amino acid index in conferring interactive biological function on a protein has been discussed by Kyte and Doolittle (1982). It is accepted that the relative hydropathic character of amino acids contributes to the secondary structure of the resultant protein. This, in turn, affects the interaction of the protein with molecules such as enzymes, substrates, receptors, DNA, -antibodies, antigens, etc.
Based on its hydrophobicity and charge characteristics, each amino acid has been assigned a hydropathic index as follows: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate/glutamane/aspartate/asparagine (−3.5); lysine (−3.9); and arginine (−4.5).
As is known in the art, certain amino acids in a peptide or protein can be substituted for other amino acids having a similar hydropathic index or score and produce a resultant peptide or protein having similar biological activity, i.e., which still retains biological functionality. In making such changes, it is preferable that amino acids having hydropathic indices within 2 are substituted for one another. More preferred substitutions are those wherein the amino acids have hydropathic indices within 1. Most preferred substitutions are those wherein the amino acids have hydropathic indices within 0.5.
Like amino acids can also be substituted on the basis of hydrophilicity. U.S. Pat. No. 4,554,101 discloses that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein. The following hydrophilicity values have been assigned to amino acids: arginine/lysine (+3.0); aspartate/glutamate (+3.0 1); serine (+0.3); asparagine/glutamane (+0.2); glycine (0); threonine (−0.4); proline (−0.5 1); alanine/histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine/isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5); and tryptophan (−3.4). Thus, one amino acid in a peptide, polypeptide, or protein can be substituted by another amino acid having a similar hydrophilicity score and still produce a resultant protein having similar biological activity, i.e., still retaining correct biological function. In making such changes, amino acids having hydropathic indices within 2 are preferably substituted for one another, those within 1 are more preferred, and those within 0.5 are most preferred.
As outlined above, amino acid substitutions in the peptides of the present invention can be based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, etc. Exemplary substitutions that take various of the foregoing characteristics into consideration in order to produce conservative amino acid changes resulting in silent changes within the present peptides, etc., can be selected from other members of the class to which the naturally occurring amino acid belongs. Amino acids can be divided into the following four groups: (1) acidic amino acids; (2) basic amino acids; (3) neutral polar amino acids; and (4) neutral non-polar amino acids. Representative amino acids within these various groups include, but are not limited to: (1) acidic (negatively charged) amino acids such as aspartic acid and glutamic acid; (2) basic (positively charged) amino acids such as arginine, histidine, and lysine; (3) neutral polar amino acids such as glycine, serine, threonine, cysteine, cystine, tyrosine, asparagine, and glutamine; and: (4) neutral non-polar amino acids such as alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine. It should be noted that changes which are not expected to be advantageous can also be useful if these result in the production of functional sequences.
The fragment, derivative or analog of the proteins encoded by the polynucleotide sequence of the present invention may be, for example and without limitation, (i) one in which one or more amino acid residues are substituted with a conserved or non-conserved amino acid residue, and such substituted amino acid residue may or may not be one encoded by the genetic code; (ii) one in which one or more of the amino acid residues includes a substituent group; (iii) one in which the mature protein is fused to another compound such as a compound to increase the half-life of the protein; (iv) one in which additional amino acids are fused to the protein to aid in purification or in detection and identification; or (v) one in which additional amino acid residues are fused to the protein to aid in modifying tissue distribution or localization of the protein to certain locations such as the cell membrane or extracellular compartments.
The term protein also includes forms of the protein to which one or more substituent groups have been added. A substituent is an atom or group of atoms that is introduced into a molecule by replacement of another atom or group of atoms. Such groups include, but are not limited to, lipids, phosphate groups, sugars and carbohydrates. Thus, the term protein includes, for example, lipoproteins, glycoproteins, phosphoproteins and phospholipoproteins.
The present invention also includes methods for the production of the protein of interest from cells transformed with a polynucleotide sequence of the present invention. Proteins can be expressed in mammalian cells, plant cells, insect cells, yeast, bacteria, bacteriophage, or other appropriate host cells. Host cells are genetically transformed to produce the protein of interest by introduction of an expression vector containing the nucleic acid sequence of interest. The characteristics of suitable cloning vectors and the methods for their introduction into host cells have been previously discussed. Alternatively, cell-free translation systems can also be employed using RNA derived from the DNA of interest. Methods for cell free translation are known to those skilled in the art. (Davis et al., 1986; Ausubel et al., 1992).
Host cells are grown under appropriate conditions to a suitable cell density. If the sequence of interest is operably linked to an inducible promoter, the appropriate environmental alteration is made to induce expression. If the protein accumulates in the host cell, the cells are harvested by, for example, centrifugation or filtration. The cells are then disrupted by physical or chemical means to release the protein into the cell extract from which the protein can be purified. If the host cells secrete the protein into the medium, the cells and medium are separated and the medium retained for purification of the protein.
Larger quantities of protein can be obtained from cells carrying amplified copies of the sequence of interest. In this method, the sequence is contained in a vector that carries a selectable marker and transfected into the host cell or the selectable marker is co-transfected into the host cell along with the sequence of interest. Lines of host cells are then selected in which the number of copies of the sequence have been amplified. A number of suitable selectable markers will be readily apparent to those skilled in the art. For example, the dihydrofolate reductase (DHFR) marker is widely used for co-amplification. Exerting selection pressure on host cells by increasing concentrations of methotrexate can result in cells that carry up to 1000 copies of the DHFR gene.
Proteins recovered can be purified by a variety of commonly used methods, including, but not limited to, ammonium sulfate precipitation, immuno precipitation, ethanol or acetone precipitation, acid extraction, ion exchange chromatography, size exclusion chromatography, affinity chromatography, high performance liquid chromatography, electrophoresis, thin layer chromatography, and ultra filtration. If required, protein refolding systems can be used to complete the configuration of the protein.
The wax ester synthase/DGAT protein encoded by the polynucleotide of SEQ ID NO:1 has been shown to catalyze the transfer of an acyl chain from fatty acyl-CoA to fatty alcohol via condensation of the fatty alcohol with the acyl-CoA and gave DGAT activity, thereby resulting in the formation of a wax ester (see Examples below) in several bacterial strains into which this sequence has been recombinantly introduced. Therefore, in one embodiment, a polynucleotide provided by the invention is employed to produce wax ester in bacteria at a relatively affordable cost. This wax ester, in turn, may be utilized in connection with a number of products including cosmetics, industrial lubricants, coatings, food products, livestock feed, and fermentation media. Livestock includes, but is not limited to, for example, sheep, mules, hogs, cattle, horses, and other grazing animals, or animals commonly raised for agricultural or food production purposes. Fermentation media includes, but is not limited to, for example, a growth media containing, a saccharide, such as glucose, a nitrogen source, a phosphorous source, and agar or other non-digestible polysaccharide, in which the processes of fermentation can occur.
As used in reference to a wax ester synthase protein of the present invention, the term “biological function” or “biological activity” refers to the ability of a wax ester synthase protein to catalyze the transfer of an acyl chain from fatty acyl-CoA to fatty alcohol via condensation of the fatty alcohol with the acyl-CoA, as well as the bifunctional DGAT activity, thereby resulting in the formation of a wax ester.
As used herein, the terms “complementary” or “complementarity” refer to the pairing of bases, purines and pyrimidines, that associate through hydrogen bonding in double stranded nucleic acid. The following base pairs are complementary: guanine and cytosine; adenine and thymine; and adenine and uracil. As used herein the terms include complete and partial complementarity.
As used herein, the term “hybridization” refers to a process in which a strand of nucleic acid joins with a complementary strand through base pairing. The conditions employed in the hybridization of two non-identical, but very similar, complementary nucleic acids vary with the degree of complementarity of the two strands and the length of the strands. Thus the term contemplates partial as well as complete hybridization. Such techniques and conditions are well known to practitioners in this field and further described herein.
As used herein, the term “amino acid” is used in its broadest sense, and includes naturally occurring amino acids as well as non-naturally occurring amino acids, including amino acid analogs and derivatives. The latter includes molecules containing an amino acid moiety. One skilled in the art will recognize, in view of this broad definition, that reference herein to an amino acid includes, for example, naturally occurring proteogenic L-amino acids; D-amino acids; chemically modified amino acids such as amino acid analogs and derivatives; naturally occurring non-proteogenic amino acids such as norleucine, -alanine, ornithine, etc.; and chemically synthesized compounds having properties known in the art to be characteristic of amino acids.
As used herein, the term “proteogenic” indicates that the amino acid can be incorporated into a peptide, polypeptide, or protein in a cell through a metabolic pathway.
As used herein, “expression cassette” means a genetic module comprising a gene and the regulatory regions necessary for its expression, which may be incorporated into a vector.
As used herein, “secretion sequence” or “signal peptide” or “signal sequence” means a sequence that directs newly synthesized secretory or membrane proteins to and through membranes of the endoplasmic reticulum, or from the cytoplasm to the periplasm across the inner membrane of bacteria, or from the matrix of mitochondria into the inner space, or from the stroma of chloroplasts into the thylakoid. Fusion of such a sequence to a gene that is to be expressed in a heterologous host ensures secretion of the recombinant protein from the host cell.
As used herein, a “recombinant nucleic acid” is defined either by its method of production or its structure. In reference to its method of production, e.g., a product made by a process, the process is use of recombinant nucleic acid techniques, e.g., involving human intervention in the nucleotide sequence, typically selection or production. Alternatively, it can be a nucleic acid made by generating a sequence comprising fusion of two fragments which are not naturally contiguous to each other, but is meant to exclude products of nature, e.g., naturally occurring mutants. Thus, for example, products made by transforming cells with any unnaturally occurring vector is encompassed, as are nucleic acids comprising sequences derived using any synthetic oligonucleotide process. Such is often done to replace a codon with a redundant codon encoding the same or a conservative amino acid, while typically introducing or removing a sequence recognition site. Alternatively, it is performed to join together nucleic acid segments of desired functions to generate a single genetic entity comprising a desired combination of functions not found in the commonly available natural forms. Restriction enzyme recognition sites are often the target of such artificial manipulations, but other site specific targets, e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features may be incorporated by design.
As used herein, “polynucleotide” and “oligonucleotide” are used interchangeably and mean a polymer of at least 2 nucleotides joined together by phosphodiester bonds and may consist of either ribonucleotides or deoxyribonucleotides.
As used herein, “sequence” means the linear order in which monomers occur in a polymer, for example, the order of amino acids in a polypeptide or the order of nucleotides in a polynucleotide.
As used herein, “peptide” and “protein” are used interchangeably and mean a compound that consists of two or more amino acids that are linked by means of peptide bonds.
As used herein “recombinant protein” means that the protein, whether comprising a native or mutant primary amino acid sequence, is obtained by expression of a gene carried by a recombinant DNA molecule in a cell other than the cell in which that gene and/or protein is naturally found. In other words, the gene is heterologous to the host in which it is expressed. It should be noted that any alteration of a gene, including the addition of a polynucleotide encoding an affinity purification moiety to the gene, makes that gene unnatural for the purposes of this definition, and thus that gene cannot be “naturally” found in any cell.
As used herein, “targeting sequence” means in the context of gene or polynucleotide insertion, a sequence which results in the gene or polynucleotide being inserted at a particular location by homologous recombination. In the context of proteins or peptides, “targeting sequence” refers to a nucleotide sequence encoding an amino acid sequence the presence of which results in a protein being directed to a particular destination within a cell.
As used herein, “upstream region” means a segment of a polynucleotide that is 5′ to a point of reference on the same polynucleotide.
As used herein, “downstream region” means a segment of a polynucleotide that is 3′ to a point of reference on the same polynucleotide.
As used herein, the terms “construct” and “vector” are used interchangeably.
The detailed description set-forth above is provided to aid those skilled in the art in practicing the present invention. Even so, this detailed description should not be construed to-unduly limit the present invention as modifications and variation in the embodiments discussed herein-can be made by those of ordinary skill in the art without departing from the spirit or scope of the present inventive discovery.
All publications, patents, patent applications and other references cited in this application are herein incorporated by reference in their entirety as if each individual publication, patent, patent application or other reference were specifically and individually indicated to be incorporated by reference.
Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
A. Bacterial Strains, Plasmids, Media and Growth Conditions
The bacterial strains and plasmids used in this study are listed in Table 1. Cells of A. calcoaceticus were cultivated aerobically in Luria-Bertani (LB) medium. (Sambrook et al., 2001) in Erlenmeyer flasks without baffles at 30° C. For the induction of wax ester formation cells were cultivated in mineral salts medium (MSM) (Schlegel et al., 1961) with 0.1 g 1−1 NH4Cl and 1% (w/v) sodium gluconate as carbon source. These culture conditions are referred to as “storage conditions”. Cells of E. coli were grown at 37° C. in LB medium. P. citronellolis was cultivated in LB medium at 30° C. Solidified media contained 1.8% (w/v) agar. Antibiotics were added at the following concentrations if appropriate: ampicillin (Ap) 75 μg ml−1, nalidixic acid (Ndx) 10 μg ml−1, kanamycin (Km) 50 μg ml−1, tetracycline (Tc) 12.5 μg ml−1.
TABLE 1 |
Bacterial strains and plasmids used in this study |
Bacterial strain | ||
or plasmid | Relevant characteristics | Source or reference |
Bacteria: | ||
Acinetobacter | ||
calcoaceticus | ||
BD413 | unencapsulated mutant of BD4; | ATCC 33305; Juni and |
wax+ | Janik, 1969 | |
BD413 (Ndxr) | spontaneous Ndxr mutant of BD413 | This study |
ACM7 | miniTn10Km-induced wax− | This study |
mutant of BD413 (Ndxr) | ||
BD413waxΩKm | wax knock-out mutant of BD413 | This study |
Escherichia coli | ||
XL1-Blue | recA1, endA1, gyrA96, thi-1, | Bullock, 1987 |
hsdR17, (r−k | ||
m− 7k), supE44, relA1, λ−, lac− | ||
[F′proABlaclqZΔMS, Tn10(tet)] | ||
S17-1 | recA; harbours the tra genes of | Simon et al., 1983, |
plasmid | ||
RP4 in the chromosome; proA, thi-1 | ||
SM10(Apir) | thi-1, thr, leu, tonA, lacY, supE, | Miller and Mekalanos, |
recA::RP4-2-Tc::Mu, Kmr, λpir | 1988, | |
Pseudomona | Wild-type, wax− | DSM 50332 |
citronellolis | ||
Plasmids: | ||
PLOFKm | MiniTn10Km delivery plasmid, Apr, | Herrero et al., 1990, |
Kmr oriR6K, mobRP4 | ||
PHC79 | Cosmid, Apr, Tcr | Hohn and Collins, |
1980 | ||
PHC79: E8 | MiniTn10Km-harbouring EcoR1 | This study |
fragment | ||
24 | ||
from ACM7 | ||
Pbluescript SK′ | Apr, lacPOZ; T7 and T3 promoter | Stratagene |
Pbluescript KS− | Apr, lacPOZ; T7 and T3 promoter | Stratagene |
PSK: waxEB19 | PCR ™ -amplified 1.9-kbp BamHI- | This study |
EcoRI | ||
fragment comprising wax in | ||
pBluescript | ||
SK− | ||
PKS: waxEB19 | PCR ™ -amplified 1.9-kbp BamHI- | This study |
EcoRI | ||
fragment comprising wax in | ||
pBluescript | ||
KS− | ||
PSKsymΩKm | ΩKm in pSKsym | Overhage et al., 1999 |
wax disrupted by insertion of ΩKm | This study | |
in | ||
pBluescript SK− | ||
PKS: wax | PCR ™ -amplified 1.5-kbp wax with | This study |
sequence in pBluescript KS− | ||
PKS: wax-His6C | PCR ™ -amplified 1.5-kbp wax with | This study |
S/D | ||
sequence and C-terminal His6-tag in | ||
pBluescript KS− | ||
PSER200-4 | A. calcoacefcus expression vector; | Reiser and Somerville, 1997 |
Kmr | ||
PSER200-4; wax | PCR ™ -amplified 1.9-kbp BamHI- | This study |
EcoRI | ||
fragment comprising wax in | ||
pSER200-4 | ||
PBBRIMCS-2 | broad host range, Kmr, IacPOZ | Kovach et al., 1995 |
PBBRIMCS-2: wax | PCR ™-amplified 1.5-kbp wax with | This study |
S/D | ||
Sequence in pBBRIMCS-2 | ||
B. miniTn10Km Mutagenesis
miniTn10Km-induced mutants of A. calcoaceticus BD413 (Ndxr) were created according to Herrero et al. (1990) employing the transposon delivery suicide plasmid pLOFKm which was transferred from E. coli SM10 (λpir) to A. calcoaceticus BD413 (Ndxr) by conjugation by the spot mating technique. Mixtures of donor and recipient were spotted at a 1:1 ratio on LB agar plates containing 50 μM isopopyl-β-D-thiogalactopyranoside (IPTG) for induction of the ISIOR transposase, which is controlled by the ptac promoter, and were incubated for 16 h at 30° C. Cells were suspended in 10 mM MgSO4, and appropriate dilutions were plated on MSM plates containing 1% (w/v) sodium gluconate, 50 μg Km ml−1 and 10 μg Ndx ml−1 for selection of transposon-insertion mutants of A. calcoaceticus BD413 (Ndxr) excluding the presence of auxotrophic mutants.
C. Mutant Screening with Sudan Black B Staining
Mutants of A. calcoaceticus BD413 (Ndxr) defective in the accumulation of wax esters were identified in accordance to Reiser and Somerville (1997). Mutagenized cells were replica plated onto MSM plates containing 1% (w/v) sodium-gluconate and on LB master plates and were incubated for 48 h at 30° C. to induce wax ester accumulation. The cells on the MSM agar plates were then stained by irrigating the plates-with a 0.02% (w/v) Sudan Black B solution in 50:4:5 (v/v/v) dimethyl sulfoxide-ethanol-water and gently shaking them for 30 min. After this step, the staining solution was disposed, and the plates were carefully washed by gently shaking them for 5 min with 70% (v/v) ethanol. Lighter-staining colonies were identified on these plates, and the corresponding colonies from the master plates were subsequently analyzed by thin-layer chromatography (TLC).
D. Thin-Layer Chromatography (TLC)
Cultures of 50 ml MSM with 1% (w/v) sodium gluconate were inoculated with 3 ml of an overnight LB preculture of A. calcoaceticus and incubated for 24 h at 30° C. Cells were harvested by centrifugation and lyophilized. Neutral lipids were isolated from the cells by extracting 1.5 mg lyophilized cell material with 100 μl chloroform/methanol (1:1, v/v) followed by centrifugation at 13,000 rpm for 2 min. 50 μl of the organic phase were spotted onto a silica gel 60 TLC plate (Merck, Darmstadt, Germany) and the neutral lipids were separated by developing the plates in hexane:diethylether:acetic acid (90:15:1, v/v/v). Lipid spots were visualized by spraying the plates with 40% (v/v) sulfuric acid and charring over a Bunsen flame or by exposition to iodine vapor.
E. Isolation and Manipulation of DNA
Chromosomal DNA of miniTn10Km-induced mutants of A. calcoaceticus BD413 (Ndxr) was isolated by the method of Marmur (1961). Plasmid DNA was isolated by the method of Bimboim and Doly (1979). DNA restriction fragments were purified from agarose gels using the Nucleotrap-Kit (Macherey-Nagel,Diiren, Germany) following the instructions provided by the manufacturer. Restriction enzymes, T4-ligase and other DNA-manipulating enzymes were purchased from GibcoBRL (Karlsruhe, Germany) and used according to the manufacturer's instructions.
F. Transfer of DNA
Competent cells of E. coli were prepared and transformed by the CaCl2 procedure as described by Hanahan (1983). Transduction of genomic DNA of A. calcoaceticus BD413, which was ligated into cosmid pHC79 DNA, to E. coli S 17-1 was done as described by Hohn and Murray (1977) after in vitro packaging into λ phages employing the Gigapack III Gold packaging extract (Stratagene, Heidelberg, Germany). Conjugation of E. coli S 17-1 (donor) harbouring hybrid plasmids and P. citronellolis (recipient) was performed on solidified NB medium as described by Friedrich et al. (1981). A. calcoaceticus was transformed as described by Palmen et al. (1993) utilizing the high natural competence of this strain.
G. Genotypic Characterization of the miniTn10 km-Insertion Mutants of A. calcoaceticus BD413 (Ndxr)
Genomic DNA of miniTn10Km-insertion mutants was digested with EcoRI, and the genomic EcoRI fragments were ligated to cosmid pHC79 DNA. After in vitro packaging in; λ phages the recombinant cosmids were transduced into E. coli S17-1. Recombinant E. coli clones were selected by their Km resistance conferred by the miniTn10Km insertion. The hybrid cosmids were isolated, digested with EcoRI and ligated into the plasmid pBluescript SK. The recombinant plasmids were transformed into E. coli XL1-Blue, and clones resistant to Km plus Ap were selected. The resulting hybrid plasmids were isolated and digested with EcoRI and NotI, which cuts up- and downstream of the Km resistance gene being part of miniTn10Km (Herrero et al. 1990). The resulting fragments were subcloned into EcoRI and NotI digested pBluescript SK and transformed into E. coli XL1-Blue. The obtained hybrid plasmids contained a EcoRI-NotI fragment which included IS10R or IS10L, respectively, plus genomic DNA adjacent to the miniTn10Km insertion. The miniTn10Km insertion locus was determined by DNA sequence analysis of the recombinant plasmids using sequencing primers specific to pBluescript SK.
H. DNA Sequencing and Sequence Data Analysis
The dideoxy chain-termination method (Sanger et al., 1977) was used to determine the DNA sequence employing the Sequi Therm EXCEL TM II long-read cycle sequencing kit (Biozym, Hessisch Oldendorf, Germany) and - - - :IRD800-labelled oligonucleotides (MWG-Biotech, Ebersberg, Germany). The primer hopping strategy (Strauss et al., 1986) was applied. Sequencing was performed with a LI-COR DNA model 4000L automatic sequencer (MWG-Biotech, Ebersberg, Germany). Sequence data were compared with sequences deposited in the GeneBank database (online available at www.ncbi.nlm.nih.gov) using the program BlastSearch 2.0.10. (Altschul et al., 1997). Preliminary sequence data from the A. calcoaceticus BD413 genome project were obtained online from www.genoscope.fr and analyzed with the online program pack Biology WorkBench 3.2 at workbench.sdsc.edu.
I. PCR™ Amplifications
PCR™ amplifications of plasmid or genomic encoded DNA were performed according to Sambrook et al. (2001) in a PCR™ Sprint thermocycler (Hybaid, Teddington, UK) with Platinum Pfx DNA polymerase (GibcoBRL, Karlsruhe, Germany).
J. Cloning of wax/dgat and Functional Heterologous Expression
The coding region of the wax/dgat gene including the up- and downstream regions was amplified by tailored PCR™ from genomic DNA of A. calcoaceticus BD413 applying the following oligonucleotides: 5′-AAAGAATTCTGGCCTACATGCAGGCAACTTAA-3′ (5′ end) (SEQ ID NO:5) and 5′-TTTGGATCCGAATTTTCAATACTAGGTACACA-3′ (3′ end) (SEQ ID NO:6) introducing EcoRI and BamHI restriction sites (underlined), respectively. The obtained 1908-bp PCR™ product, shown in FIG. 5 (SEQ ID NO:3), was cloned into EcoRI and BamHI restricted pBluescript KS collinear to the lacZ promoter, resulting in pKS:waxEB 19. Additionally, the obtained 1908-bp PCR™ product was cloned into EcoRI and BamHI restricted pSER200-4, resulting in pSER200-4:wax.
The coding region of the wax/dgat gene without upstream region was amplified by tailored PCR™ from genomic DNA of A. calcoaceticus BD413 applying the following oligonucleotides: 5′-AAAGAATTCAAGGAGGTATCCACGCTATGCGCCCATTAC-3′ (5′ end) (SEQ ID NO:7) introducing a EcoRI restriction site (underlined) and a ribosome binding site (double underlined) and 5′-TTGGATCCAGGGCTAATTTAGCCCTTTAGTT-3′ (3′ end) (SEQ ID NO:8) introducing a BamHI restriction site (underlined). The obtained 1470-bp PCR™ product, shown in FIG. 6 (SEQ ID NO:2), was cloned into EcoRI and BamHI restricted pBluescript KS collinear to the lacZ promoter, resulting in pKS:wax. Additionally, the 1470-bp PCR™ product was cloned into EcoRI and BamHI restricted pBBRIMCS-2 collinear to the lacZ promoter, resulting in pBBRIMCS-2:wax.
For amplification of a DNA fragment encoding a C-terminal His6-tagged wax ester-synthase by tailored PCR™ using pKS:wax as template, the following oligonucleotides were applied: 5′-AAAGAATTCAAGGAGGTATCCACGCTATGCGCCCATTAC-3′ (5′ end) (SEQ ID NO:9) introducing a EcoRI restriction site (underlined) and a ribosome binding site (double underlined) and ′-TTTGGATCCTTAGTGGTGGTGGTGGTGGTGATTGGCTGTTTT AATATCTTCCT-3′ (3′ end) (SEQ ID NO:10) introducing a BamHI restriction site (underlined) and the His6-tag. The obtained 1430-bp PCR™, product was cloned into EcoRI and BamHI restricted pBluescript KS″ collinear to the lacZ promoter, resulting in pKS:wax-His6C.
Cells of E. coli harbouring pBluescript KS, pBBRIMCS-2, pKS:waxEB19, pKS:wax, pBBRIMCS-2:wax and pKS:wax-His6C were cultivated in 50 ml LB medium inoculated with 1% (v/v) of an overnight LB preculture for 6 h at 37° C. in the presence of 1 mM IPTG and appropriate antibiotics. P. citronellolis harbouring pBBRIMCS-2 and pBBR1MCS-2:wax was cultivated in 50 ml LB medium inoculated with 1% (v/v) of an overnight LB preculture for 6 h at 37° C. in the presence of 50 μg Km ml−1. Cells were harvested by centrifugation (10 min, 4,500 rpm at 4° C.), washed with 125 mM sodium phosphate buffer (pH 7.4) and resuspended in 1 ml of the same buffer. Crude extracts were obtained as described below.
50 ml MSM according to Schlegel et al. (1961) were inoculated with 2 ml of LB precultures of P. citronellolis DSM 50332 harbouring pBBRIMCS-2 and pBBRIMCS-2:wax, respectively, and incubated for 48 h at 30° C. with 0.3% (w/v) hexadecanol and 0.3% (w/v) hexadecanol plus 0.5% (w/v) gluconate as carbon sources. Cells were harvested by centrifugation, lyophilized and analyzed for the production of wax esters by TLC.
K. Inactivation of the Wax/dgat Gene of A. calcoaceticus BD413 by Insertion of ΩKm
For inactivation of the wax/dgat gene by insertion of QKm, the 1908-bp PCR™ product described above was cloned into EcoRI and BamHI restricted pBluescript SIC, resulting in—pSK:waxEB19. This hybrid plasmid was restricted with NruI, which cuts within the wax/dgat gene, and ligated with ΩKm, which was recovered by SmaI digestion of plasmid pSKsymΩKm (Overhage et al., 1999), resulting in the hybrid plasmid pSK:waxΩKm. The disrupted wax/dgat gene was isolated from pSK:waxΩKm by digestion with EcoRI and BaMHI and the linear DNA fragment was transformed to A. calcoaceticus BD413. Transformants were selected on LB plates containing 50 μg Km ml−1. The correct exchange of the wax/dgat gene with the disrupted gene in the obtained knock-out strain A. calcoaceticus. BD413waxΩKm was proven by PCR™ using the oligonucleotide primers 5′-AAAGAATTCAAGGAGGTATCCACGCTATGCGCCCATTAC-3′ (5′ end) (SEQ ID NO:11) and 5′-TTTGGATCCAGGGCTAATTTAGCCCTTTAGTT-3′ (3′ end) (SEQ ID NO:12) resulting in a single PCR™ product with the expected size of 2.5 kbp.
L. Preparation of Crude Extracts and Subcellular Fractions
Cells were disrupted by ultrasonification in a Sonopuls GM 200 (Bandelin, Berlin, Germany) with an amplitude of 16 μm (1 min ml−1). Samples were cooled on ice during ultrasonification. Insoluble and soluble protein fractions were obtained after ultracentrifugation at 35,000 g for 30 min. Protein concentrations were determined by the method of Madford (1976). Bovine serum albumin (BSA) fraction V was used as standard.
M. Termination of Wax Ester Synthase Activity
Cells of E. coli were grown for determination of the wax ester synthase activity in the presence of IPTG or in the case of P. citronellolis without IPTG as described above. Measurement of the wax ester synthase activity in A. calcoaceticus was done with cells grown under storage conditions at 30° C. for 24 h. Crude extracts were obtained as described above. Activity of the wax ester synthase was measured in a total volume of 250 μl containing 3.75 mM 1-hexadecanol, 4.63 mg ml−1 BSA, 10 mM MgCl2, 4.72 μM 1-14C-Palmitoyl-CoA (specific activity 1.961 Bq pmol−1) and 125 mM sodium phosphate buffer (pH 7.4). Hexadecanol_and BSA were emulsified by ultrasonification. The assays were incubated at 35° C. for 30 min, and the reactions were stopped by extraction with 500 μl chloroform/methanol (1:1, v/v) for 1 min. After centrifugation the chloroform phase was withdrawn, evaporated to dryness, and 40 μg of chloroform-dissolved unlabeled reference wax ester (cetylpalmitate) were added. The lipids were separated by TLC applying hexane:diethylether:acetic acid (90:15:1, v/v/v) as solvent system. After staining the TLC plate with iodine vapor, the spots corresponding to waxes were scraped from the plates into scintillation vials, mixed with 5 ml of liquid scintillation counting cocktail lipoluma (J. T. Baker, Deventer, Netherlands), and radioactivity was measured using a model LS6500 scintillation counter (Beckmann Instruments, Munich, Germany).
A. Isolation of Wax-Negative (Wax) Mutants of A. calcoaceticus BD413 (Ndxr)
Transposon mutagenesis of an isolated spontaneous Ndx-resistant strain of A. calcoaceticus BD413 was performed to obtain mutants affected in the accumulation of wax esters. A total of 4000 miniTn10Km-induced mutants were obtained and screened by Sudan Black B staining for mutants with a reduced or lacking accumulation of storage lipids. Eight mutants were isolated exhibiting a lighter staining with the lipophilic dye Sudan Black B. TLC analysis of these mutants revealed that all of them were unable to accumulate wax esters under storage conditions but were still able to accumulate triacylglycerols (TAGS) to some extent (FIG. 1 ). These wax mutants were designated ACM for Acinetobacter calcoaceticus mutants.
B. Molecular Characterization of miniTn10Km-Induced Mutants Defective in Wax Esteraccumulation
To map the insertions of miniTn10Km in these mutants, EcoRI fragments, which conferred resistance to Km, were cloned from genomic niutarit DNA. A 8.4-kbp EcoRI fragment was obtained for all eight mutants. For determination of the insertion sequences the 8.4-kbp EcoRI fragments were NotI digested resulting in a 5.1-kbp and a 1.8-kbp EcoRI-NotI fragment for all mutants (FIG. 2 ), which were subsequently subcloned into pBluescript SK. DNA sequence analyses of the transposon insertion loci revealed that miniTn10Km had inserted in the identical position in all analyzed mutants which makes it very likely that all mutants constitutes siblings. Therefore, only one mutant (ACM7) was selected for the subsequent detailed analyses. Transposon miniTn10Km had inserted with a 9 by palindromic direct repeat (5′-GCGTATGCG-3′) (SEQ ID NO:13) immediately upstream of an ORF with the start codon ATG being part of the direct repeat. The putative translational product exhibited highest homology (37%) to the hypothetical 48.4-kDa protein Rv3740c from Mycobacterium tuberculosis H37Rv which belongs to a group of conserved hypothetical proteins in this strain (Cole et al. 1998a; Cole et al. 1998b). Further sequence comparison of the translational product to Mycobacterium tuberculosis H37Rv and Arabidopsis thaliana revealed several particularly well conserved stretches of amino acids (amino acids 132–139, 258–263, 267–273, 283–289, 373–379, 380388 in SEQ ID NO:4). These conserved amino acid sequences are HHAXVDGV (SEQ ID NO:16), NDVVLA (SEQ ID NO:17), GALRXYL (SEQ ID NO:18), PLXAMVP (SEQ ID NO:19), ISNVPGP (SEQ ID NO:20), and REPLYXNGA (SEQ ID NO:21), wherein “X” is any amino acid.
By sequence comparison of the miniTn10Km harbouring 8.4-kbp EcoRI fragment with the genome sequence data of A. calcoaceticus BD413, the DNA sequence of the native 6.9-kbp EcoRI fragment was obtained which revealed the molecular organization shown in FIG. 3 . The hypothetical ORF was obviously not clustered with any genes whose putative translational products might be involved in the biosynthesis of wax esters (FIG. 3 and Table 2).
TABLE 2 |
Identified ORFs on the 6.9-kbp genomic EcoRI-fragment from A. |
calcoaceticus BD413 harboring the wax gene |
Identical | ||
Gene designation | Highest homology to | amino acids |
MreC | Rod-shape determining |
36% |
From P. fluorescens | ||
Maf | Putative inhibitor of |
45% |
Formation Maf from Salmonella | ||
Typhimurium LT2 | ||
axial filament | Cytoplasmic |
58% |
PA4477 from P. aeruginosa PAO1 | ||
Wax | Hypothetical 48.4- |
37% |
Rv3740c from Mycobacterium | ||
| ||
CysH | ||
3′-phosphoadenosine-5′-phosphosul- | 64% | |
Fate reductase (DAPS reductase) | ||
CysH from P. aeruginosa | ||
thrH (partial) | Homoserine-Kinase ThrH (partial) | 68% |
From P. aeruginosa PAO1 | ||
C. Inactivation of the ORF (Wax) from A. calcoaceticus BD413 Adjacent to the miniTn10Km Insertion in Wax Mutants
Since the miniTn10Km insertion mapped 5 by upstream of the ATG start codon of an hypothetical ORF in the wax” mutants but leaving the gene itself intact, the phenotype of a mutant with a defective ORF was unknown. Therefore, ORF was disrupted by insertion of the ΩKm gene and a knock-out strain of A. calcoaceticus BD413 was generated as described in Materials and Methods. The obtained strain A. calcoaceticus BD413waxΩKm was analyzed by TLC for its ability to accumulate wax esters under storage conditions. Inactivation of the hypothetical ORF led to the loss of wax ester accumulation whereas TAGs were still produced to some extent (FIG. 4 ). Thus, the knock-out strain exhibited the same phenotype than the miniTn10Km-induced mutants. Attempts to complement A. calcoaceticus BD413waxΩKm chemically by feeding with the precursor substrates hexadecanal and hexadecanol failed in reconstituting wax ester biosynthesis indicating that the inactivation of the hypothetical ORF probably did not affect the biosynthesis of precursors. A 1.9-kbp fragment comprising the ORF was PCR™ amplified and cloned as a BamHI-EcoRI fragment into pSER200-4which allows constitutive low-level expression in A. calcoaceticus. (Reiser, 1996) resulting in pSER200-4:wax. A. calcoaceticus BD413 harbouring pSER200-4:wax overexpressing the ORF exhibited a twofold higher wax ester synthase activity than the wild-type (Table 3) but the amount of accumulated wax esters was unaltered as estimated by TLC (FIG. 4 ). Wax ester synthase activity in the wax mutants A. calcoaceticus ACM7 and A. calcoaceticus BD413waxΩKm dropped to only 1% of the wild-type level (Table 3).
TABLE 3 |
Wax ester synthase activity in crude extracts of different strains of A. |
calcoaceticus, E. coli and P. citronellolis. |
Values are mean values of experiments done in triplicate. |
Wax ester synthase activity | |||
Strain | [pmol (mg protein)−1 min−1 ] | ||
A. calcoaceticus | |||
BD413 | 101.7 | ||
ACM7 | 1.0 | ||
BD413waxΩKm | 1.4 | ||
BD413 (pSER200-4) | 82.6 | ||
BD413 (pSER200-4: wax) | 199.4 | ||
E. coli | |||
XL1-Blue (pBluescript KS−) | 0.3 | ||
XL1-Blue (pKS: wax) | 117.6 | ||
XL1-BIue (pKS: wax-His6C) | 20.0 | ||
S17-1 (pBBRIMCS-2) | 0.5 | ||
S17-1 (pBBRIMCS-2: wax) | 128.8 | ||
P. citronellolis | |||
pBBRIMCS-2 | 0.5 | ||
pBBRIMCS-2: wax | 149.7 | ||
D. Cloning and Heterologous Expression of the Wax/dgat Gene
From the results presented above it was concluded that the hypothetical ORF could possibly code for the wax ester synthase, which was therefore designated as wax. Thus, the coding region of ORF plus its up and downstream regions was amplified by PCR™, and the obtained 1908 bp PCR™ product was cloned into EcoRI and BamHI restricted pBluescript KS collinear to the lacZ promoter, resulting in pKS:waxEB 19. However, no wax ester synthase activity could be detected in crude extract IPTG-induced cells of recombinant E. coli XL1-Blue harboring pKS:waxEB 19. Since this could be due to the fact that the putative ribosome binding site (5′-GAGG-3′) (SEQ ID NO:14) 11 bp upstream of the ATG start codon of the ORF (FIG. 5 ) was not recognized in E. coli, a truncated fragment was amplified by tailored PCR™ introducing a ribosome binding site for E. coli (5′-AAGGAGGT-3′) (SEQ ID NO:15) 9 bp upstream of the ATG start codon(FIG. 6 , SEQ ID NO:2), which was cloned as a BamHI-EcoRI fragment into pBluescript KS and pBBRIMCS-2, resulting in the construction of pKS:wax and pBBRIMCS-2:wax. These hybrid plasmids were transformed into E. coli XL1-Blue and E. coli S17-1, respectively, and wax ester synthase activity was measured in crude extracts of IPTG-induced cultures. The wax gene was functionally heterologously expressed in E. coli XL1-Blue (pKS:wax) as well as in E. coli S17-1 (pBBRIMCS-2:wax) resulting in an active wax ester synthase with activities of 117.6 and 128.8 pmol (mg protein min)−1, respectively, whereas in the control strains harboring only the vectors activities of only 0.3 and 0.5 pmol (mg protein min)−1, respectively, were determined (Table 3). The enzyme activity was almost equally distributed between the insoluble and soluble fraction of the crude extracts (data not shown). These data clearly show that the wax/dgat gene encodes for an active wax ester synthase. The activity in recombinant E. coli strains harboring the wax gene was even higher than in the origin strain A. calcoaceticus BD413 25 (Table 3).
Additionally, pBBRIMCS-2:wax was transferred conjugatively to P. citronellolis, a Gram-negative alkane degrading bacterium unable to accumulate wax esters. Also in this host the wax gene was expressed constitutively resulting in a wax ester synthase activity of 149.7 pmol (mg protein min)−1, whereas the control harboring only the vector exhibited an activity of only 0.5 pmol (mg protein min)−1. (Table 3).
Numerous Pseudomonas strains have been reported to be able to utilize n-alkanes as sole carbon source (Baptist et al., 1963; Macham and Heydeman, 1974; Williams et al., 1981). Alkane degradation route proceeds via successive terminal oxidations leading to the formation of the corresponding fatty alcohols, fatty aldehydes and fatty acids, which are subsequently esterified to the respective fatty acyl-CoA thioesters and channeled into the β-oxidation cycle (Baptist et al., 1963). The inventors tested a strain of P. citronellolis, for which the inventors have demonstrated heterologous expression of the A. calcoaceticus BD413 wax/dgat gene in a functionally active form (see Table 3), for its ability to utilize long-chain n-alkanes. This strain was able to grow on n-alkaes with chain-length from C 10 up to C 16 as sole carbon source (n-alkaes with chain-lengths longer than C 16 were not -tested) (data not shown). In addition, this strain could utilize also hexadecanol as an intermediate of the alkane degradation pathway as sole carbon source (data not shown). In P. citronellolis harbouring pBBRIMCS-2:wax, the cultivation in MSM with 0.3% (w/v) hexadecanol as sole carbon source led to the formation of small but significant amounts of wax esters as revealed by TLC analysis, whereas no wax esters were detectable in the control strain harbouring only the vector (FIG. 7 ). The uptake of hexadecanol into the cells, its oxidation to fatty acids via the alkane degradation pathway and their subsequent metabolization to acyl-CoA provided obviously sufficiently high intracellular levels of substrates of the wax ester synthase allowing the production of wax esters in the strain expressing the wax ester synthase from A. calcoaceticus BD413. However, no wax esters were formed when the cells were co-cultivated with 0.3% (w/v) hexadecanol plus 0.5% (w/v) gluconate (FIG. 7 ). Alkane oxidation activity has been reported to be subjected to carbon catabolite repression for various strains of P. aeruginosa (Dalhoff and Rehm, 1976; van der Linden, 1963; van Eyk and Bartels, 1968; P. putida (Fish et al., 1982; Grund et al., 1975; P. oleovorans (Staijen et al., 1999). The presence of gluconate has probably repressed the alkane degradation system in P. citronellolis. Therefore, no acyl-CoA thioesters could be formed from hexadecanol via the alkane degradation pathway during co-cultivation on 0.3% (w/v) hexadecanol plus 0.5% (w/v) gluconate, and thus the intracellular acyl-CoA level was to low to promote significant wax ester production in the strain expressing the wax ester synthase of A. calcoaceticus BD413 under this conditions.
E. Generation of Hisb-Tagged Wax Ester Synthase and Purification of the Enzyme
For the purpose of the purification of the wax ester synthase enzyme, pKS:wax-His6C was constructed as described in Materials and Methods resulting in the expression of a C-terminal His6-tagged protein. However, recombinant E. coli XL1-Blue (pKS:wax-His6C) expressing the C-terminal His6-tagged wax ester synthase exhibited only 17% activity in comparison to E. coli XL1-Blue harbouring the native wax/dgat gene on pKS:wax (Table 3). An attempt to purify the C-terminal His6 tagged wax ester synthase chromatographafically using the Ni-NTA Spin Kit (Qiagen, Hilden, Germany) revealed only a very weak binding of the native enzyme on-the Ni-NTA column, resulting in an only 4.3-fold enrichment (data not shown). This indicates that the C-terminus of the protein is obviously not localized on the surface of the native enzyme but in the interior, which could explain that the addition of the 6 histidine residues to the C-terninus of the protein has such a strong negative effect on the enzyme activity.
Wild-type A. calcoaceticus ADP1 exhibited a WS activity of 90.37 pmol (mg min)−1 and a ca. tenfold lower DGAT activity (Table 4), which corresponded approximately with the amounts of wax esters and TAGs accumulated under storage conditions as estimated by TLC. Inactivation of wax/dgat not only caused the loss of the ability for wax ester and TAG biosynthesis; it also abolished WS and DGAT activity in the transposon-induced mutant as well as in the knock-out mutant (Table 4).
TABLE 4 |
Shows WS and DGAT activities in crude cell extracts of different strains. |
Values are averages of at least three independent studies. |
WS activity | DGAT activity | |||
Strain | Plasmid | [pmol (mg min)−1] | [pmol (mg min)−1] | |
A. calcoaceticus | ADP1 | 90.37 | 7.96 | |
ACM7 | 0.20 | 0.11 | ||
ADP1wax/dgat | 0.65 | 0.17 | ||
ΩKm | ||||
E. coli | XL1-Blue | pBluescript KS− | 0.11 | 0.11 |
pKS: wax/dgat | 84.51 | 9.37 | ||
pBluescript SK− | 0.10 | 0.10 | ||
pSK: wdh3269 | 0.65 | 0.31 | ||
S17-1 | pBBRIMCS-2 | 0.11 | 0.10 | |
pBBRIMCS-2: wax/dgat | 99.20 | 25.03 | ||
P. citronellolis | pBBRIMCS-2 | 0.10 | 0.10 | |
pBBRIMCS-2: wax/dgat | 99.20 | 25.03 | ||
P. citronellolis | pBBRIMCS-2 | 0.10 | 0.10 | |
M. smegmatis | mc2155 | 106.54 | 96.44 | |
R. opacus | PD630 | pBBRKmNC903 | 9.59 | 6.66 |
pBBRLKmNC903- | 12.29 | 10/73 | ||
PSK::wdh3269 | ||||
Heterologous expression of wax/dgat conferred the capability to recombinant E. coli XL1-Blue harbouring pKS:wax/dgat to catalyze the acyl-CoA-dependent acylation of fatty alcohol as well as of DAG (FIG. 2A ) at rates similar to those of A. calcoaceticus ADP1 (Table 4). These results clearly show that both WS and DGAT activity arise from wax/dgat, which therefore codes for a bifunctional WS/DGAT enzyme. Furthermore, the studies with the knock-out mutant indicate that no other protein exhibiting WS or DGAT activity contributes significantly to wax ester or TAG biosynthesis in A. calcoaceticus ADP1. This was supported by the fact that no other wax/dgat homologue could be identified by BLAST (Altschul et al., 1997) search in the preliminary A. calcoaceticus ADP1 genome sequence data accessible online at www.genoscope.fr. However, residual trace amounts of TAGs accumulated in the mutants indicate the presence of a minor alternative pathway which is, however, only active at a very low-rate. Functional heterologous expression of wax/dgat was not only demonstrated in E. coli S17-1 but also in Pseudomonas citronellolis (Table 4).
The bifunctional WS/DGAT comprises 458 amino acids with a theoretical molecular weight of 51.8 kDa and a pI of 9.05. It is a rather amphiphilic protein, and it possesses one putative predicted membrane-spanning region (FIG. 12B ).
Heterologous functional expression of the wax/dgat gene in the alkane-degrading bacterium P. citronellolis resulted in an active enzyme which maintained its bifunctionality (Table 4). During cultivation of P. citronellolis (pBBR1MCS-2:wax/dgat) under storage conditions, no accumulation of wax esters could be detected by TLC if 0.5% (w/v) gluconate, 0.3% (w/v) 1-hexadecane or 0.3% (w/v) palmitate were used as carbon sources (data not shown). However, cultivation on 0.3% (w/v) 1-hexadecanol, which can serve as a direct substrate for the WS, resulted in recombinant production of wax esters (FIG. 13B ). No TAG accumulation could be observed under either conditions.
Eight WS/DGAT homologous genes could be identified in a preliminary genome sequence of the non-pathogenic strain M. smegatis mc2155 (see Table 6), which is publicly accessible online via NCBI. The gene with the highest similarity exhibits 41.0% amino acids identity to WS/DGAT and 67.2% to the hypothetical protein Rv3734c from M. tuberculosis H37Rv (Table 5). Recombinant E. coli expressing this gene (designated as wdh3269) on plasmid pSK:wdh3269 showed a weak WS and DGAT activity which was slightly but reproducible higher than the vector control (Table 1).
M. smegmatis mc2155 cultivated under storage conditions with glucose as sole carbon source exhibited both high WS as well as DGAT activity in vitro (Table 4), but in vivo only TAGs were intracellularly accumulated (FIG. 13A ). However, like recombinant P. citronellolis, M. smegatis mc2155 was also capable of substantial wax ester biosynthesis in vivo when 1-hexadecanol was provided as sole carbon source or as a co-substrate (FIG. 13A ).
TABLE 5 |
Wax/DGAT related proteins in M. tuberculosis and A. thaliana. Accession |
numbers correspond to NCBI protein data base. Identities to the |
A. calcoaceticus ADP1 WS/DGAT were based on BLAST search |
results and calculated for full-length sequences. |
Length | Identity | |||
Strain | Protein | (amino acids) | (%) | Accession |
| Rv3740c | 448 | 39.7 | NP_218257 | |
H37Rv | Rv3734c | 454 | 38.6 | NP_218251 | |
Rv1425 | 459 | 34.9 | NP_215941 | ||
Rv3480c | 497 | 34.8 | NP_217997 | ||
Rv2285 | 445 | 33.2 | | ||
Rv0895 | |||||
505 | 31.7 | | |||
Rv3088 | |||||
474 | 28.9 | | |||
Rv3130c | |||||
463 | 27.0 | NP_217646 | |||
Rv3087 | 472 | 26.7 | | ||
Rv1760 | |||||
502 | 25.7 | | |||
Rv0221 | |||||
469 | 23.9 | NP_214735 | |||
Rv2484c | 491 | 22.6 | NP_217000 | ||
Rv3371 | 446 | 20.7 | NP_217888 | ||
A. thaliana | At5g53380 | 483 | 21.3 | NP_200150 | |
At5g16350 | 488 | 20.5 | NP_197139 | ||
At5g12420 | 480 | 19.8 | | ||
At5g22490 | |||||
482 | 18.9 | NP_197641 | |||
At1g72110 | 479 | 16.5 | NP_177356 | ||
At5g37300 | 481 | 16.0 | NP_568547 | ||
At3g49210 | 518 | 15.6 | NP_190490 | ||
At3g49190 | 522 | 15.5 | | ||
At5g53390 | |||||
485 | 15.1 | NP_200151 | |||
At3g49200 | 507 | 14.4 | NP_190489 | ||
The A. calcoaceticus ADP1 WS/DGAT and the related proteins in Mycobacterium and A. thaliana exhibit in their N-terminal region some partial similarity to a conserved condensing domain found in many multi-domain enzymes synthesizing peptide antibiotics (NCBI Conserved Domain Database accession pfam00668). This condensing domain contains an active-site motif (HHXXXDG), whose second histidine residue is strictly conserved and has been demonstrated to be essential for catalytic activity in nonribosomal peptide bond formation (Stachelhaus et al., 1998). The WS/DGAT and related proteins also contain this putative active site with the motif (HXXXDG) being strictly conserved (FIG. 10 ). Thus, it is very likely that this site is catalytically participating in the acyl-CoA acyltransferase reactions involved in wax ester and TAG formation (FIG. 12A ).
The motif HHXXXDG corresponding to amino acids 132–138 of the A. calcoaceticus WS/DGAT is highly conserved, and may be the catalytic site responsible for the ester bond formation (FIG. 10 ). This motif is the putative active site in the condensing domain found in many multi-domain enzymes synthesising peptide antibiotics.
It was shown that M. smegatis mc2155 possesses both DGAT and WS activity in vitro (Table 4), and that this strain can produce TAGs as well as wax esters in vivo (FIG. 13A). Wax ester synthesis from unrelated carbon sources like glucose, however, was hampered probably only by the lacking capability of fatty alcohol biosynthesis. Heterologous expression of the homologue from M. smegatis mc2155, which exhibits the highest similarity to the A. calcoaceticus ADP1. WS/DGAT (wdh3269), mediated low but significant WS and DGAT activities to recombinant E. coli (Table 4); these low activities could result from low expression of the gene. The activities may arise in M. smegmatis mc2155 also from WS/DGAT homologues or may be the cumulative result of two or more enzymes. Alternatively to storage lipid synthesis, some of the WS/DGAT homologues could also participate in biosynthesis of cell wall lipids like mycolic acids, which are responsible for the unique properties of the mycobacterial cell wall and can play crucial roles in pathogenesis.
TABLE 6 |
Distribution of WS/DGAT related proteins in bacteria. |
Data were obtained using BLAST search with microbial genomes at NCBI |
comprising 158 eubacterial + 18 archaeal finished and unfinished |
genome sequences (as of August 2002). Identities were calculated |
for full-length sequences. |
Number of | ||
Strain | related proteins | Highest identity (%) |
M. tuberculosis CDC1551 | 14 | 39.7 |
M. tuberculosis H37Rv | 13 | 39.7 |
M. bovis | 13 | 39.7 |
|
10 | 40.4 |
M. smegmatis mc2155 | 8 | 41.0 |
M. avium subsp. paratuberculosis | 8 | 40.4 |
S. coelicolor A3(2) | 2 | 26.6 |
|
1 | 18.9 |
The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.
- U.S. Pat. No. 4,703,004
- U.S. Pat. No. 4,782,137
- U.S. Pat. No. 4,845,341
- U.S. Pat. No. 5,594,115
- U.S. Pat. No. 5,935,824
- U.S. Pat. No. 6,303,345
- Altschul et al., J. Mol. Biol., 215:403–410, 1990.
- Altschul et al., Nucleic Acids Res., 25:3389–3402, 1997.
- Altschul et al., Nucleic Acids Res., 25:3389–3402, 1997.
- Alvarez et al., Fett/Lipid, 9:239–246, 1997.
- Assaad and Signer, Molec. General Genet., 223:517–520, 1990.
- Ausubel et al., In: Short Protocols in Molecular Biology, 3Ed., John Wiley & Sons, 1995.
- Baptist et al., Biochem. Biophys. Acta, 69:400–47, 1963.
- Barksdale and Kim, Mycobacterium. Bacteriol. Rev., 41:217–372, 1977.
- Bell and Coleman, Annu. Rev. Biochem., 49:459–487, 1980.
- Bimboim and Doly, Nucleic Acids Res., 7:1513–1523, 1979.
- Biocomputing. Informatics and Genome Projects, Smith (Ed.), Academic Press, NY, 1993.
- Birren et al., Genome Analysis, 1:543–559, 1997.
- BLAST Manual, Altschul et al., NCBI NLM NIH, Bethesda, Md. 20894.
- Bouvier-Navé´ et al., Eur. J. Biochem.m., 267:85–96, 2000.
- Bullock, BioTechniques, 5:376–379, 1987.
- Carillo and Lipman, J. Applied Math., 48:1073, 1988.
- Cases et al., J. Biol. Chem.,276:38870–38876, 2001.
- Cases et al., Proc. Natl. Acad. Sci. USA, 95:13018–13023, 1998.
- Chen and Farese, Trends Cardiovasc. Med., 10:188–192, 2000.
- Cole et al., Nature, 393:537–544, 1998a.
- Cole et al., Nature, 396:190–198, 1998b.
- Computational Molecular Biology, Lesk (Ed.), Oxford University Press, NY, 1988.
- Computer Analysis of Sequence Data, Part I, Griffin and Griffin (Eds.), Humana Press, NJ, 1994.
- Coulson, Trends in Biotech., 12:76–80, 1994.
- Dahlqvist et al., Proc. Natl. Acad. Sci. USA, 97:6487–6492, 2000.
- Dalhoff and Rehm, Eur. J. Appl. Microbiol., 3:203–211, 1976.
- Davis et al., Basic Methods in Molecular Biology, 2nd ed., Appleton and Lange, Sec. 6–8, 1994.
- Davis et al., In: Basic Methods in Molecular Biology, Elsevier Science Publishing, 1986.
- Devereux et al., Nucl. Acids Res., 12(1):387, 1984.
- Fish et al., Eur. J. Appl. Microbiol. Biotechnol., 14:259–262, 1982.
- Fixter et al., J. Gen. Microbiol., 132:3147–3157, 1986.
- Friedrich et al., J. Bacteriol. 147:198–205, 1981.
- Grund et al., J. Bacteriol., 123:546–556, 1975.
- Hanahan, J. Mol. Biol., 166:557–580, 1983.
- Herrero et al., J. Bacteriol., 172(11):6557–67, 1990.
- Herrero et al., J. Bacteriol., 172(11):6557–67, 1990.
- Hobbs et al., FEBS Lett., 452:145–149, 1999.
- Hohn and Collins, Gene, 11:291–298, 1980.
- Hohn and Murray, Proc. Natl. Acad. Sci. USA, 74:3259–3263, 1977.
- Innis et al., PCR Protocols, Academic Press, 1990.
- Juni and Janik, Bacteriol., 98:281–288, 1969.
- Kovach et al., Gene, 166:175–176, 1995.
- Kyte and Doolittle, J. Mol. Biol., 157:105–132, 1982.
- Kyte and Doolittle, J. Mol. Biol., 157:105–132, 1982.
- Lassner, Lipid Technol., 9:5–9, 1997.
- Lehner and Kuksis, J. Biol. Chem., 268:8781–8786, 1993.
- Lehner and Kuksis, Prog. Lipid Res., 35:169–201, 1996.
- Macham and Heydeman, J. Gen. Microbiol., 85:77–84, 1974.
- Madford, Anal. Biochem., 72:248–254, 1976.
- Maliga et al., In: Methods in Plant Molecular Biology, Cold Spring Harbor Laboratory Press, NY, 39, 1995.
- Marmur, J. Mol. Biol., 1:208–218, 1961.
- Meinkoth and Wahl, Anal. Biochem., 138:267–284, 1984.
- Miller and Mekalanos, J. Bacteriol., 170:2575–2583, 1988.
- Nakagawa et al., J. Biochem., 80:923–928, 1976.
- Oelkers et al., J. Biol. Chem., 277:8877–8881, 2002.
- Olukoshi and Packter, Microbiology, 140:931–943, 1994.
- Overhage et al., Appl. Micrbiol. Biotechnol., 52:820–828, 1999.
- Palmen et al., J. Gen. Microbiol., 139:295–305, 1993.
- Reiser and Somerville, J. Bacteriol., 179:2969–2975, 1997.
- Routaboul et al., Plant Physiol. Biochem., 37:831–840, 1999.
- Sambrook, et al., Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor, N.Y., 2001.
- Sanger et al., Proc. Natl. Acad. Sci. USA, 74:5463–5467, 1977.
- Schlegel et al. Arch. Mikrobiol., 38:209–222, 1961.
- Schlegel et al., Arch. Mikrobiol., 38:209–222, 1961.
- Sequence Analysis in Molecular Biology, von Heinje (Ed.), Academic Press, NY, 1987.
- Sequence Analysis Primer, Gribskov and Devereux (Eds.), Stockton Press, NY, 1991.
- Simon et al., Bio/Technology, 1:784–791, 1983.
- Stachelhaus et al., J. Biol. Chem., 273:22773–22781, 1998.
- Staijen et al., J. Bacteriol., 181(5):1610–1616, 1999.
- Steinbütchel, In Biomaterials, Byrom, (Ed., ,123–213, MacMillan, London, 1991.
- Stobart et al., Planta, 203:58–66, 1997.
- Strauss et al., Anal. Biochem., 154:353–360, 1986.
- van der Linden, Biochim. Biophys. Acta, 77:157–159, 1963.
- van Eyk and Bartels, J. Bacteriol., 96:706–712, 1968.
- Wang et al., Biochim. Biophys. Acta, 260:41–48, 1972.
- Williams et al., J. Appl. Bacteriol., 50:551–557, 1981.
- Wun et al., Biochim. Biophys. Acta, 488:454–463, 1977.
- Zou et al., Plant J., 19:645–653, 1999.
Claims (21)
1. An isolated polynucleotide encoding the polypeptide of SEQ ID NO:4.
2. An isolated polynucleotide encoding a polypeptide having wax ester synthase/acyl-CoA:diacylglycerol acyltransferase activity, wherein the polynucleotide comprises the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence that hybridizes to the complement thereof under conditions of 5×SSC, 50% formamide and 42° C.
3. The isolated polynucleotide of claim 2 , wherein the polynucleotide encodes the polypeptide encoded by SEQ ID NO:1.
4. The isolated polynucleotide of claim 2 , wherein the polynucleotide is isolated from a bacterium.
5. The isolated polynucleotide of claim 4 , wherein the bacterium is a gram negative bacterium.
6. The isolated polynucleotide of claim 5 , wherein the bacterium is Acinetobacter calcoaceticus.
7. The isolated polynucleotide of claim 2 , comprising the nucleic acid sequence of SEQ ID NO:1 or the complement thereof.
8. A recombinant vector comprising an isolated polynucleotide encoding a polypeptide having wax ester synthase activity and having the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence that hybridizes thereto under conditions of 5× SSC, 50% formamide and 42° C.
9. The recombinant vector of claim 8 further comprising at least one additional sequence selected from the group consisting of
(a) a regulatory sequence operatively coupled to the polynucleotide;
(b) a selection marker operatively coupled to the polynucleotide;
(c) a marker sequence operatively coupled to the polynucleotide;
(d) a purification moiety operatively coupled to the polynucleotide;
(e) a secretion sequence operatively coupled to the polynucleotide; and
(f) a targeting sequence operatively coupled to the polynucleotide.
10. The recombinant vector of claim 9 , wherein the vector comprises a developmentally-regulated, an organelle-specific, a tissue-specific, an inducible, a constitutive or a cell-specific promoter.
11. The recombinant vector of claim 8 , wherein the recombinant vector is selected from the group consisting of pKS:waxEB19, pKS:wax, and pKS:wax-His6C.
12. The recombinant vector of claim 8 , wherein the polypeptide has wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) activity.
13. The recombinant vector of claim 8 , wherein the polynucleotide encodes at least one conserved amino acid sequence selected from the group consisting of HHAXVDGV (SEQ ID NO:16), NDVVLA (SEQ ID NO:17), GALRXYL (SEQ ID NO:18), PLXAMVP (SEQ ID NO:19), ISNVPGP (SEQ ID NO:20), and REPLYXNGA (SEQ ID NO:21).
14. A host cell transformed with the recombinant vector of claim 8 .
15. The host cell of claim 14 , wherein the host cell is selected from the group consisting of a mammalian cell, plant cell, insect cell, yeast cell, fungus cell, and bacterial cell.
16. The host cell of claim 15 , wherein the host cell is selected from the group consisting of E. Coli and Pseudomonas citronellolis.
17. The host cell of claim 14 , wherein the host cell expresses a protein encoded by the recombinant vector.
18. The host cell of claim 17 , wherein the expressed protein is secreted by the host cell.
19. A method for producing a wax ester comprising culturing a host cell of claim 14 in the presence of at least one substrate of said polypeptide having wax ester synthase activity under conditions permitting expression of the polypeptide having wax ester synthase activity.
20. The method of claim 19 , further comprising isolating the wax ester from the host cell or from the medium in which the host cell is cultured.
21. The method of claim 19 , wherein the host cell is a bacterial cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/378,558 US7118896B2 (en) | 2002-03-01 | 2003-03-03 | Methods and compositions for modification of lipid biosynthesis |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36077402P | 2002-03-01 | 2002-03-01 | |
US10/378,558 US7118896B2 (en) | 2002-03-01 | 2003-03-03 | Methods and compositions for modification of lipid biosynthesis |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040009576A1 US20040009576A1 (en) | 2004-01-15 |
US7118896B2 true US7118896B2 (en) | 2006-10-10 |
Family
ID=27789022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/378,558 Expired - Lifetime US7118896B2 (en) | 2002-03-01 | 2003-03-03 | Methods and compositions for modification of lipid biosynthesis |
Country Status (7)
Country | Link |
---|---|
US (1) | US7118896B2 (en) |
EP (1) | EP1481073B1 (en) |
AR (1) | AR038719A1 (en) |
AT (1) | ATE448315T1 (en) |
AU (1) | AU2003225644A1 (en) |
DE (1) | DE60329983D1 (en) |
WO (1) | WO2003074676A2 (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090117629A1 (en) * | 2007-08-27 | 2009-05-07 | Claudia Schmidt-Dannert | Isoprenoid wax ester synthases, isoprenoid acyl coa-synthetases, and uses thereof |
EP2157170A1 (en) | 2006-05-19 | 2010-02-24 | Ls9, Inc. | Production of fatty acids and derivatives thereof |
US20100071259A1 (en) * | 2008-08-18 | 2010-03-25 | Ls9, Inc. | Systems and methods for production of mixed fatty esters |
US20100081178A1 (en) * | 2008-10-23 | 2010-04-01 | Targeted Growth, Inc. | Modified photosynthetic microorganisms for producing triglycerides |
US20100105963A1 (en) * | 2008-10-28 | 2010-04-29 | Ls9, Inc. | Methods and compositions for producing fatty alcohols |
US20100105955A1 (en) * | 2008-10-07 | 2010-04-29 | Ls9, Inc. | Methods and compositions for producing fatty aldehydes |
US20100154293A1 (en) * | 2008-12-23 | 2010-06-24 | Louis Hom | Methods and compositions related to thioesterase enzymes |
US20100184169A1 (en) * | 2008-12-23 | 2010-07-22 | Targeted Growth, Inc. | Modified Photosynthetic Microorganisms With Reduced Glycogen and Their Use in Producing Carbon-Based Products |
US20100199548A1 (en) * | 2007-07-06 | 2010-08-12 | Ls9, Inc. | Systems and methods for the production of fatty esters |
US20100249470A1 (en) * | 2008-05-16 | 2010-09-30 | Ls9, Inc. | Methods and compositions for producing hydrocarbons |
US20100242345A1 (en) * | 2006-05-19 | 2010-09-30 | LS9, Inc | Production of fatty acids & derivatives thereof |
US20100251601A1 (en) * | 2006-05-19 | 2010-10-07 | Ls9, Inc. | Enhanced production of fatty acid derivatives |
US20100274033A1 (en) * | 2009-04-27 | 2010-10-28 | Ls9, Inc. | Production of fatty acid esters |
US20110196180A1 (en) * | 2007-12-21 | 2011-08-11 | Ls9, Inc. | Methods and compositions for producing olefins |
US20110206630A1 (en) * | 2010-02-14 | 2011-08-25 | Ls9, Inc. | Surfactant and cleaning compositions comprising microbially produced branched fatty alcohols |
EP2395074A1 (en) | 2006-05-19 | 2011-12-14 | LS9, Inc. | Production of fatty acids and derivatives thereof |
WO2012135668A1 (en) | 2011-03-31 | 2012-10-04 | Exxonmobil Research And Engineering Company | Metabolic pathway targeting by transcription factor overexpression |
US8349587B2 (en) | 2011-10-31 | 2013-01-08 | Ginkgo Bioworks, Inc. | Methods and systems for chemoautotrophic production of organic compounds |
EP2594633A1 (en) | 2007-03-28 | 2013-05-22 | LS9, Inc. | Enhanced production of fatty acid derivatives |
WO2013126076A1 (en) | 2012-02-24 | 2013-08-29 | Exxonmobil Research And Engineering Company | Enhanced production of fatty acids and fatty acid derivatives by recombinant microorganisms |
EP2706111A1 (en) | 2008-03-03 | 2014-03-12 | Joule Unlimited Technologies, Inc. | Engineered CO2 fixing microorganisms producing carbon-based products of interest |
US8679782B2 (en) | 2009-06-15 | 2014-03-25 | Massachusetts Institute Of Technology | Production of triacylglycerides, fatty acids, and their derivatives |
WO2014074886A1 (en) | 2012-11-09 | 2014-05-15 | Calysta Energy, Inc. | Compositions and methods for biological production of fatty acid derivatives |
US8921090B2 (en) | 2011-09-27 | 2014-12-30 | Exxonmobil Research And Engineering Company | Acyl-ACP wax ester synthases |
US8962299B2 (en) | 2012-02-29 | 2015-02-24 | Exxonmobil Research And Engineering Company | Four-gene pathway for wax ester synthesis |
US8980613B2 (en) | 2010-04-06 | 2015-03-17 | Matrix Genetics, Llc | Modified photosynthetic microorganisms for producing lipids |
US9096834B2 (en) | 2012-02-24 | 2015-08-04 | Exxonmobil Research And Engineering Company | Recombinant microorganisms comprising thioesterase and lysophosphatidic acid acyltransferase genes for fatty acid production |
WO2015175809A1 (en) | 2014-05-15 | 2015-11-19 | Calysta, Inc. | Methods for biological production of very long carbon chain compounds |
US9200298B2 (en) | 2007-06-29 | 2015-12-01 | The Regents Of The University Of California | Host cells and methods for producing isoprenyl alkanoates |
EP2998402A1 (en) | 2008-10-17 | 2016-03-23 | Joule Unlimited Technologies, Inc. | Ethanol production by microorganisms |
US9944959B2 (en) * | 2014-09-02 | 2018-04-17 | Cargill, Incorporated | Production of fatty acids esters |
US10047383B2 (en) | 2013-03-15 | 2018-08-14 | Cargill, Incorporated | Bioproduction of chemicals |
US10337038B2 (en) | 2013-07-19 | 2019-07-02 | Cargill, Incorporated | Microorganisms and methods for the production of fatty acids and fatty acid derived products |
US10376837B2 (en) | 2013-03-14 | 2019-08-13 | The University Of Wyoming Research Corporation | Conversion of carbon dioxide utilizing chemoautotrophic microorganisms systems and methods |
US10465213B2 (en) | 2012-08-10 | 2019-11-05 | Cargill, Incorporated | Microorganisms and methods for the production of fatty acids and fatty acid derived products |
US10557155B2 (en) | 2013-03-14 | 2020-02-11 | The University Of Wyoming Research Corporation | Methods and systems for biological coal-to-biofuels and bioproducts |
US11345938B2 (en) | 2017-02-02 | 2022-05-31 | Cargill, Incorporated | Genetically modified cells that produce C6-C10 fatty acid derivatives |
US11408013B2 (en) | 2013-07-19 | 2022-08-09 | Cargill, Incorporated | Microorganisms and methods for the production of fatty acids and fatty acid derived products |
US11479777B2 (en) | 2012-12-07 | 2022-10-25 | Ginkgo Bioworks, Inc. | Methods and systems for methylotrophic production of organic compounds |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7579012B2 (en) * | 2005-12-07 | 2009-08-25 | University Of Central Florida Research Foundation, Inc. | Targeting of triacylglycerol synthase gene for tuberculosis treatment |
CN102459569B (en) * | 2009-04-10 | 2018-02-23 | Reg生命科学有限责任公司 | The generation of derivative of fatty acid |
ES2707747T3 (en) | 2009-09-25 | 2019-04-04 | Reg Life Sciences Llc | Production of fatty acid derivatives |
ES2899431T3 (en) | 2010-08-06 | 2022-03-11 | Melt&Marble Ab | Methods and products for the production of wax esters |
KR101399945B1 (en) * | 2012-02-20 | 2014-05-29 | 동아대학교 산학협력단 | WES gene from soil metagenome and uses thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993010241A1 (en) | 1991-11-20 | 1993-05-27 | Calgene, Inc. | FATTY ACYL-CoA: FATTY ALCOHOL O-ACYLTRANSFERASES |
US6143538A (en) | 1997-02-20 | 2000-11-07 | The United States Of America As Represented By The United States Department Of Energy | Fatty acyl-CoA reductase |
US6492509B1 (en) | 1994-06-23 | 2002-12-10 | Calgene Llc | Fatty acyl-CoA: fatty alcohol acyltransferases |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4703004A (en) | 1984-01-24 | 1987-10-27 | Immunex Corporation | Synthesis of protein with an identification peptide |
US4782137A (en) | 1984-01-24 | 1988-11-01 | Immunex Corporation | Synthesis of protein with an identification peptide, and hybrid polypeptide incorporating same |
US4845341A (en) | 1988-04-12 | 1989-07-04 | Robertshaw Controls Company | Heating system, control device therefor and methods of making the same |
US5594115A (en) | 1990-04-09 | 1997-01-14 | Pharmacia & Upjohn Company | Process of purifying recombinant proteins and compounds useful in such process |
US5935824A (en) | 1996-01-31 | 1999-08-10 | Technologene, Inc. | Protein expression system |
DE19730502A1 (en) | 1997-07-16 | 1999-01-21 | Max Planck Gesellschaft | Use of a viral DNA as a promoter |
-
2003
- 2003-03-03 DE DE60329983T patent/DE60329983D1/en not_active Expired - Lifetime
- 2003-03-03 AU AU2003225644A patent/AU2003225644A1/en not_active Abandoned
- 2003-03-03 AT AT03743742T patent/ATE448315T1/en not_active IP Right Cessation
- 2003-03-03 EP EP03743742A patent/EP1481073B1/en not_active Expired - Lifetime
- 2003-03-03 US US10/378,558 patent/US7118896B2/en not_active Expired - Lifetime
- 2003-03-03 AR ARP030100706A patent/AR038719A1/en active IP Right Grant
- 2003-03-03 WO PCT/US2003/006472 patent/WO2003074676A2/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993010241A1 (en) | 1991-11-20 | 1993-05-27 | Calgene, Inc. | FATTY ACYL-CoA: FATTY ALCOHOL O-ACYLTRANSFERASES |
US6492509B1 (en) | 1994-06-23 | 2002-12-10 | Calgene Llc | Fatty acyl-CoA: fatty alcohol acyltransferases |
US6143538A (en) | 1997-02-20 | 2000-11-07 | The United States Of America As Represented By The United States Department Of Energy | Fatty acyl-CoA reductase |
Non-Patent Citations (27)
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11046635B2 (en) | 2006-05-19 | 2021-06-29 | Genomatica, Inc. | Recombinant E. coli for enhanced production of fatty acid derivatives |
US20100251601A1 (en) * | 2006-05-19 | 2010-10-07 | Ls9, Inc. | Enhanced production of fatty acid derivatives |
EP2395074A1 (en) | 2006-05-19 | 2011-12-14 | LS9, Inc. | Production of fatty acids and derivatives thereof |
US9017984B2 (en) | 2006-05-19 | 2015-04-28 | REG Life Sciences, LLC | Enhanced production of fatty acid derivatives |
US10844406B2 (en) | 2006-05-19 | 2020-11-24 | Genomatica, Inc. | Production of fatty acids and derivatives thereof |
US8110670B2 (en) | 2006-05-19 | 2012-02-07 | Ls9, Inc. | Enhanced production of fatty acid derivatives |
EP2194119A2 (en) | 2006-05-19 | 2010-06-09 | LS9, Inc. | Production of fatty acids and derivatives thereof |
US8283143B2 (en) | 2006-05-19 | 2012-10-09 | Ls9, Inc. | Enhanced production of fatty acid derivatives |
EP2840131A2 (en) | 2006-05-19 | 2015-02-25 | LS9, Inc. | Production of fatty acids and derivatives thereof |
US11434512B2 (en) | 2006-05-19 | 2022-09-06 | Genomatica, Inc. | Production of fatty acid esters |
US9598706B2 (en) | 2006-05-19 | 2017-03-21 | REG Life Sciences, LLC | Production of fatty acids and derivatives thereof |
EP3623465A2 (en) | 2006-05-19 | 2020-03-18 | Genomatica, Inc. | Production of fatty acids and derivatives thereof |
US20100242345A1 (en) * | 2006-05-19 | 2010-09-30 | LS9, Inc | Production of fatty acids & derivatives thereof |
EP2157170A1 (en) | 2006-05-19 | 2010-02-24 | Ls9, Inc. | Production of fatty acids and derivatives thereof |
EP3369807A2 (en) | 2007-03-28 | 2018-09-05 | REG Life Sciences, LLC | Enhanced production of fatty acid derivatives |
EP2594633A1 (en) | 2007-03-28 | 2013-05-22 | LS9, Inc. | Enhanced production of fatty acid derivatives |
US9200298B2 (en) | 2007-06-29 | 2015-12-01 | The Regents Of The University Of California | Host cells and methods for producing isoprenyl alkanoates |
US20100199548A1 (en) * | 2007-07-06 | 2010-08-12 | Ls9, Inc. | Systems and methods for the production of fatty esters |
US7897369B2 (en) | 2007-08-27 | 2011-03-01 | Regents Of The University Of Minnesota | Isoprenoid wax ester synthases, isoprenoid acyl CoA-synthetases, and uses thereof |
US20090117629A1 (en) * | 2007-08-27 | 2009-05-07 | Claudia Schmidt-Dannert | Isoprenoid wax ester synthases, isoprenoid acyl coa-synthetases, and uses thereof |
US20110196180A1 (en) * | 2007-12-21 | 2011-08-11 | Ls9, Inc. | Methods and compositions for producing olefins |
US8183028B2 (en) | 2007-12-21 | 2012-05-22 | Ls9, Inc. | Methods and compositions for producing olefins |
US8597922B2 (en) | 2007-12-21 | 2013-12-03 | Ls9, Inc. | Methods and compositions for producing olefins |
EP2706111A1 (en) | 2008-03-03 | 2014-03-12 | Joule Unlimited Technologies, Inc. | Engineered CO2 fixing microorganisms producing carbon-based products of interest |
US9670512B2 (en) | 2008-05-16 | 2017-06-06 | REG Life Sciences, LLC | Methods and compositions for producing fatty alcohols or fatty aldehydes |
US8846371B2 (en) | 2008-05-16 | 2014-09-30 | REG Life Sciences, LLC. | Methods and compositions for producing alkanes and alkenes |
US20100249470A1 (en) * | 2008-05-16 | 2010-09-30 | Ls9, Inc. | Methods and compositions for producing hydrocarbons |
US8323924B2 (en) | 2008-05-16 | 2012-12-04 | Ls9, Inc. | Methods and compositions for producing hydrocarbons |
US9481899B2 (en) | 2008-05-16 | 2016-11-01 | REG Life Sciences, LLC | Methods and compositions for producing hydrocarbons |
US10150975B2 (en) | 2008-05-16 | 2018-12-11 | REG Life Sciences, LLC | Methods and compositions for producing hydrocarbons |
US10563231B2 (en) | 2008-05-16 | 2020-02-18 | Genomatica, Inc. | Methods and compositions for producing hydrocarbons |
US8268599B2 (en) | 2008-05-16 | 2012-09-18 | Ls9, Inc. | Method for producing a fatty alcohol or fatty aldehyde |
US8658404B2 (en) | 2008-05-16 | 2014-02-25 | Ls9, Inc. | Methods and compositions for producing fatty alcohols and fatty aldehydes |
US11186854B2 (en) | 2008-05-16 | 2021-11-30 | Genomatica, Inc. | Methods and compositions for producing hydrocarbons |
US20100071259A1 (en) * | 2008-08-18 | 2010-03-25 | Ls9, Inc. | Systems and methods for production of mixed fatty esters |
US8097439B2 (en) | 2008-10-07 | 2012-01-17 | Ls9, Inc. | Methods and compositions for producing fatty aldehydes |
US20100105955A1 (en) * | 2008-10-07 | 2010-04-29 | Ls9, Inc. | Methods and compositions for producing fatty aldehydes |
EP2998402A1 (en) | 2008-10-17 | 2016-03-23 | Joule Unlimited Technologies, Inc. | Ethanol production by microorganisms |
US8394621B2 (en) | 2008-10-23 | 2013-03-12 | Matrix Genetrics, LLC | Modified photosynthetic microorganisms for producing triglycerides |
US8394614B2 (en) | 2008-10-23 | 2013-03-12 | Matrix Genetics, Llc | Modified photosynthetic microorganisms for producing triglycerides |
US9029120B2 (en) | 2008-10-23 | 2015-05-12 | Matrix Genetics, Llc | Modified photosynthetic microorganisms for producing triglycerides |
US20100081178A1 (en) * | 2008-10-23 | 2010-04-01 | Targeted Growth, Inc. | Modified photosynthetic microorganisms for producing triglycerides |
US8999686B2 (en) | 2008-10-28 | 2015-04-07 | REG Life Sciences, LLC | Methods and compositions for producing fatty alcohols |
US9068201B2 (en) | 2008-10-28 | 2015-06-30 | REG Life Sciences, LLC. | Methods and compositions for producing fatty alcohols |
US20100105963A1 (en) * | 2008-10-28 | 2010-04-29 | Ls9, Inc. | Methods and compositions for producing fatty alcohols |
US9890401B2 (en) | 2008-10-28 | 2018-02-13 | REG Life Sciences, LLC | Methods and compositions for producing fatty alcohols |
US10961553B2 (en) | 2008-10-28 | 2021-03-30 | Genomatica, Inc. | Methods and compositions for producing fatty alcohols |
US20100184169A1 (en) * | 2008-12-23 | 2010-07-22 | Targeted Growth, Inc. | Modified Photosynthetic Microorganisms With Reduced Glycogen and Their Use in Producing Carbon-Based Products |
US11021695B2 (en) | 2008-12-23 | 2021-06-01 | Genomatica, Inc. | Methods and compositions related to thioesterase enzymes |
WO2010075483A2 (en) | 2008-12-23 | 2010-07-01 | Ls9, Inc. | Methods and compositions related to thioesterase enzymes |
US9175234B2 (en) | 2008-12-23 | 2015-11-03 | REG Life Sciences, LLC | Methods and compositions related to thioesterase enzymes |
US8835137B2 (en) | 2008-12-23 | 2014-09-16 | Matrix Genetics, Llc | Modified photosynthetic microorganisms with reduced glycogen and their use in producing carbon-based products |
US9587231B2 (en) | 2008-12-23 | 2017-03-07 | REG Life Sciences, LLC | Methods and compositions related to thioesterase enzymes |
US20100154293A1 (en) * | 2008-12-23 | 2010-06-24 | Louis Hom | Methods and compositions related to thioesterase enzymes |
EP3564345A1 (en) | 2008-12-23 | 2019-11-06 | REG Life Sciences, LLC | Methods and compositions related to thioesterase enzymes |
US20100274033A1 (en) * | 2009-04-27 | 2010-10-28 | Ls9, Inc. | Production of fatty acid esters |
US8679782B2 (en) | 2009-06-15 | 2014-03-25 | Massachusetts Institute Of Technology | Production of triacylglycerides, fatty acids, and their derivatives |
US8859259B2 (en) | 2010-02-14 | 2014-10-14 | Ls9, Inc. | Surfactant and cleaning compositions comprising microbially produced branched fatty alcohols |
US20110206630A1 (en) * | 2010-02-14 | 2011-08-25 | Ls9, Inc. | Surfactant and cleaning compositions comprising microbially produced branched fatty alcohols |
US8980613B2 (en) | 2010-04-06 | 2015-03-17 | Matrix Genetics, Llc | Modified photosynthetic microorganisms for producing lipids |
WO2012135668A1 (en) | 2011-03-31 | 2012-10-04 | Exxonmobil Research And Engineering Company | Metabolic pathway targeting by transcription factor overexpression |
US9040264B2 (en) | 2011-03-31 | 2015-05-26 | Exxonmobil Research And Engineering Company | Recombinant cyanobacterium expressing a transcription factor domain protein |
US9017975B2 (en) | 2011-09-27 | 2015-04-28 | Synthetic Genomics, Inc. | Production and secretion of fatty acids and fatty acid derivatives |
US8921090B2 (en) | 2011-09-27 | 2014-12-30 | Exxonmobil Research And Engineering Company | Acyl-ACP wax ester synthases |
US11697829B2 (en) | 2011-10-31 | 2023-07-11 | Ginkgo Bioworks, Inc. | Chemoautotrophic cells comprising an engineered carbon fixation pathway |
US8349587B2 (en) | 2011-10-31 | 2013-01-08 | Ginkgo Bioworks, Inc. | Methods and systems for chemoautotrophic production of organic compounds |
US9902980B2 (en) | 2011-10-31 | 2018-02-27 | Ginkgo Bioworks, Inc. | Methods and systems for chemoautotrophic production of organic compounds |
US10801045B2 (en) | 2011-10-31 | 2020-10-13 | Ginkgo Bioworks, Inc. | Methods for making chemoautotrophic cells by engineering an energy conversion pathway and a carbon fixation pathway |
WO2013126076A1 (en) | 2012-02-24 | 2013-08-29 | Exxonmobil Research And Engineering Company | Enhanced production of fatty acids and fatty acid derivatives by recombinant microorganisms |
US9096834B2 (en) | 2012-02-24 | 2015-08-04 | Exxonmobil Research And Engineering Company | Recombinant microorganisms comprising thioesterase and lysophosphatidic acid acyltransferase genes for fatty acid production |
US8962299B2 (en) | 2012-02-29 | 2015-02-24 | Exxonmobil Research And Engineering Company | Four-gene pathway for wax ester synthesis |
US10465213B2 (en) | 2012-08-10 | 2019-11-05 | Cargill, Incorporated | Microorganisms and methods for the production of fatty acids and fatty acid derived products |
WO2014074886A1 (en) | 2012-11-09 | 2014-05-15 | Calysta Energy, Inc. | Compositions and methods for biological production of fatty acid derivatives |
US9909153B2 (en) | 2012-11-09 | 2018-03-06 | Calysta, Inc. | Compositions and methods for biological production of fatty acid derivatives |
US10113188B2 (en) | 2012-11-09 | 2018-10-30 | Calysta, Inc. | Compositions and methods for biological production of fatty acid derivatives |
US11479777B2 (en) | 2012-12-07 | 2022-10-25 | Ginkgo Bioworks, Inc. | Methods and systems for methylotrophic production of organic compounds |
US10557155B2 (en) | 2013-03-14 | 2020-02-11 | The University Of Wyoming Research Corporation | Methods and systems for biological coal-to-biofuels and bioproducts |
US10376837B2 (en) | 2013-03-14 | 2019-08-13 | The University Of Wyoming Research Corporation | Conversion of carbon dioxide utilizing chemoautotrophic microorganisms systems and methods |
US10815473B2 (en) | 2013-03-15 | 2020-10-27 | Cargill, Incorporated | Acetyl-CoA carboxylases |
US10047383B2 (en) | 2013-03-15 | 2018-08-14 | Cargill, Incorporated | Bioproduction of chemicals |
US11408013B2 (en) | 2013-07-19 | 2022-08-09 | Cargill, Incorporated | Microorganisms and methods for the production of fatty acids and fatty acid derived products |
US10337038B2 (en) | 2013-07-19 | 2019-07-02 | Cargill, Incorporated | Microorganisms and methods for the production of fatty acids and fatty acid derived products |
US12129506B2 (en) | 2013-07-19 | 2024-10-29 | Cargill, Incorporated | Microorganisms and methods for the production of fatty acids and fatty acid derived products |
WO2015175809A1 (en) | 2014-05-15 | 2015-11-19 | Calysta, Inc. | Methods for biological production of very long carbon chain compounds |
US9944959B2 (en) * | 2014-09-02 | 2018-04-17 | Cargill, Incorporated | Production of fatty acids esters |
US10494654B2 (en) | 2014-09-02 | 2019-12-03 | Cargill, Incorporated | Production of fatty acids esters |
US11345938B2 (en) | 2017-02-02 | 2022-05-31 | Cargill, Incorporated | Genetically modified cells that produce C6-C10 fatty acid derivatives |
US12123045B2 (en) | 2017-02-02 | 2024-10-22 | Cargill, Incorporated | Genetically modified cells that produce C6-C10 fatty acid derivatives |
Also Published As
Publication number | Publication date |
---|---|
WO2003074676A3 (en) | 2003-12-31 |
AR038719A1 (en) | 2005-01-26 |
EP1481073A4 (en) | 2005-09-21 |
US20040009576A1 (en) | 2004-01-15 |
ATE448315T1 (en) | 2009-11-15 |
WO2003074676A2 (en) | 2003-09-12 |
EP1481073A2 (en) | 2004-12-01 |
EP1481073B1 (en) | 2009-11-11 |
DE60329983D1 (en) | 2009-12-24 |
AU2003225644A8 (en) | 2003-09-16 |
AU2003225644A1 (en) | 2003-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7118896B2 (en) | Methods and compositions for modification of lipid biosynthesis | |
US8835137B2 (en) | Modified photosynthetic microorganisms with reduced glycogen and their use in producing carbon-based products | |
Magnuson et al. | Regulation of fatty acid biosynthesis in Escherichia coli | |
AU2009308236B2 (en) | Modified photosynthetic microorganisms for producing triglycerides | |
JP6603658B2 (en) | Microorganisms and methods for the production of fatty acids and fatty acid derivatives | |
US20040107459A1 (en) | Diacylglycerol acyltransferase nucleic acid sequences and associated products | |
US20100190219A1 (en) | Production of sphingoid bases using genetically engineered microbial strains | |
Brown et al. | Isolation and characterisation of a maize cDNA that complements a 1-acyl sn-glycerol-3-phosphate acyltransferase mutant of Escherichia coli and encodes a protein which has similarities to other acyltransferases | |
SG178628A1 (en) | Extracellular polyhydroxyalkanoates produced by genetically engineered microorganisms | |
WO2011127069A1 (en) | Modified photosynthetic microorganisms for producing lipids | |
AU2011349444B2 (en) | Modified photosynthetic microorganisms for producing lipids | |
US20150329868A1 (en) | Modified photosynthetic microorganisms for continuous production of carbon-containing compounds | |
US20220112526A1 (en) | Biosynthesis of vanillin from isoeugenol | |
US20230033275A1 (en) | Microorganisms and methods for the production of fatty acids and fatty acid derived products | |
Kalscheuer et al. | In vitro and in vivo biosynthesis of wax diesters by an unspecific bifunctional wax ester synthase/acyl‐CoA: diacylglycerol acyltransferase from Acinetobacter calcoaceticus ADP1 | |
EP1147198A1 (en) | Pyruvate carboxylase from corynebacterium glutamicum | |
JP2015509533A (en) | Modified diacylglycerol acyltransferase proteins and methods of use thereof | |
EP3320088A1 (en) | Extracellular production of designer hydroxyalkanoyloxy alkanoic acids with recombinant bacteria | |
CN108779444A (en) | The method for producing aliphatic acid | |
Kim et al. | Characterization of a soil metagenome-derived gene encoding wax ester synthase | |
EP2294201A1 (en) | Diacylglycerol acyltransferases from flax | |
CA2352473A1 (en) | Fatty acyl-coa: fatty alcohol acyltransferases | |
KR101941745B1 (en) | Microorganisms having an acyltransferase activity and the use thereof | |
CA2339517A1 (en) | Engineering .beta.-ketoacyl acp synthase for novel substrate specificity | |
WO2017001333A1 (en) | Microbiological production of short fatty acids and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MONSANTO TECHNOLOGY, L.L.C., MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KALSCHEUER, RAINER;STEINBUCHEL, ALEXANDER;VOELKER, TONI;REEL/FRAME:014292/0093;SIGNING DATES FROM 20030610 TO 20030620 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |