US7083631B2 - Percutaneous bypass graft and securing system - Google Patents
Percutaneous bypass graft and securing system Download PDFInfo
- Publication number
- US7083631B2 US7083631B2 US10/243,260 US24326002A US7083631B2 US 7083631 B2 US7083631 B2 US 7083631B2 US 24326002 A US24326002 A US 24326002A US 7083631 B2 US7083631 B2 US 7083631B2
- Authority
- US
- United States
- Prior art keywords
- graft
- dilator
- tissue
- body lumen
- positioning device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/11—Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/064—Blood vessels with special features to facilitate anastomotic coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2421—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with non-pivoting rigid closure members
- A61F2/2424—Ball valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
- A61B2017/00247—Making holes in the wall of the heart, e.g. laser Myocardial revascularization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
- A61B2017/00247—Making holes in the wall of the heart, e.g. laser Myocardial revascularization
- A61B2017/00252—Making holes in the wall of the heart, e.g. laser Myocardial revascularization for by-pass connections, i.e. connections from heart chamber to blood vessel or from blood vessel to blood vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/11—Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
- A61B2017/1107—Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis for blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/11—Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
- A61B2017/1135—End-to-side connections, e.g. T- or Y-connections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00351—Heart
- A61B2018/00392—Transmyocardial revascularisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0004—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
- A61F2/0009—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse placed in or outside the body opening close to the surface of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0004—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
- A61F2/0022—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse placed deep in the body opening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2475—Venous valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M29/00—Dilators with or without means for introducing media, e.g. remedies
- A61M29/02—Dilators made of swellable material
Definitions
- the present invention relates to grafts implantable to bypass an obstruction or other undesirable condition within a vessel or other tubular organ, and more particularly to systems for deploying such grafts and fixation elements for securing them.
- bypass grafts are particularly useful in treating vascular diseases, but have other applications including treatment of urinary incontinence, infertility, and gastrointestinal defects such as occlusions and ulcers.
- Stenosed vessels cause ischemia which potentially leads to tissue infarction.
- Conventional techniques to treat partially occluded vessels include balloon angioplasty, stent deployment, and surgery to attach a graft to bypass the stenosed lesion.
- Surgical implantation of a bypass graft typically requires performing a thoracotomy, placing the patient on a cardiopulmonary bypass system, and using cardioplegia to induce cardiac arrest. This permits a suturing of the graft between cardiac vessels without the risk of excess blood loss or the need to accommodate motion of the heart.
- bypass grafts involve a thoracostomy to produce a conduit to the stenosed lesion.
- This approach uses endoscopic visualization to position the graft.
- the delivery for such graft requires modified surgical instruments (e.g., clamps, scissors, scalpels, etc.) and further involves ports inserted through small (approximately one inch) incisions to provide access into the thoracic cavity.
- Another object is to provide a more effective fixation means for securing a deployed bypass graft.
- a further object is to provide a system for bypass graft deployment, in which features incorporated within the graft reduce the time and difficulty of deployment.
- Yet another object is to provide an improved process for deploying and securing grafts along body lumens to bypass obstructions and other undesirable features within the lumens.
- the graft includes a tubular graft wall having opposite first and second open ends.
- the graft defines a fluid flow lumen between these ends.
- the tubular graft is adapted for a selected placement with the first end at a first location in body tissue and the second end at a second location in body tissue, to provide a fluid flow path between the first and second locations to bypass an obstruction between those locations.
- the graft also includes a graft fixation mechanism operable to heat the graft wall at least near the first end following placement, to thermally secure the graft wall and adjacent tissue.
- the preferred fixation apparatus is an electrically conductive heating element mounted to the graft wall near the first end.
- the element can be annular, and may incorporate a feature to mechanically secure the graft, e.g., a collet or a grommet.
- an electrically conductive heating element or other fixation apparatus can be used to secure the second end of the graft at the second location.
- the heating elements can be coupled to an RF power source and used in conjunction with an indifferent electrode, to secure the graft by ohmic heating.
- the system includes an elongate and flexible carrier having a proximal end and a distal end.
- the carrier is insertable by the distal end for intralumenal movement toward a selected site along a body lumen while the proximal end remains outside the body.
- a tissue perforating mechanism near the distal end of the carrier, is positionable at a first location near the selected site, and operable from the proximal end of the carrier to form a first opening through tissue at the first location. Further, the mechanism is positionable at a second location near the selected site and operable to form a second opening through tissue at the second location.
- An elongate graft guide supported by the carrier and disposed near the distal end, is movable into a guiding position in which the guide extends from the first location through the first opening to the second location and through the second opening.
- the system further includes a tubular graft adapted to be mounted to the carrier for movement along the carrier.
- a graft controller is operable to move the graft distally along the carrier toward the graft guide, and then distally along the graft guide when the guide is in the guiding position, to a bypass location in which the graft extends from the first location to the second location and also extends through the first and second openings.
- the preferred carrier is a catheter having a catheter lumen.
- An elongate dilator is contained slideably within the lumen, and has a tapered distal tip.
- An elongate needle is slideably contained within the dilator.
- the dilator provides the graft guide, while the tissue perforating mechanism includes the needle and the distal tip of the dilator.
- a distal end region of the catheter provides the graft guide.
- the dilator and needle are used to perforate and dilate tissue to form the first and second openings.
- the dilator is not used to guide the graft, but is used to guide the catheter, particularly the distal end region which in turn is used for positioning the graft after withdrawal of the dilator.
- an alternative system for implanting a bypass graft without the need for a catheter.
- This system includes a tissue dilating member having at its distal end a tissue dilating tip converging in the distal direction.
- a tissue puncturing tool is supported within the dilating member and extends in the distal direction from the dilating tip.
- the tool is adapted to puncture or perforate a tissue wall to form an orifice enlargeable by the dilating tip.
- the system includes a graft with a substantially fluid impervious graft wall. First, second and third openings are formed through the graft wall at first, second and third spaced-apart regions of the wall, respectively.
- the graft is adapted for a removable mounting on the dilating member in which the dilating member extends through the first and third openings, with the first opening near the dilating tip and the third opening proximally of the first opening. This enables use of the dilating member to insert the first region of the graft wall into a first orifice in the tissue wall, for fixation of the first region in the first orifice.
- the graft further is slideable relative to the dilating member to permit a proximal withdrawal of the dilating member from the first region after its fixation, and further to allow an insertion of the dilating member into the second opening for securing the second region of the graft wall within a second orifice in the tissue wall.
- the graft provides a fluid flow conduit between the first orifice and the second orifice.
- a closure mechanism is provided for closing the third opening, following withdrawal of the dilating member from the graft, after the first and second regions have been secured.
- Another aspect of the present invention is a process for translumenally deploying a bypass graft, including the following steps:
- tissue perforating mechanism mounted near a distal end of the catheter to form a first opening through a tissue wall defining the body lumen
- tissue perforating mechanism advancing tissue perforating mechanism through the first opening, and then to a selected location spaced apart from the first opening, then using the mechanism to form a second opening through tissue at the selected location;
- bypass grafts are deployed more easily using techniques that are considerably less invasive, and upon deployment are more reliably secured.
- FIG. 1 is a side view, partially in section, of a bypass graft constructed according to the present invention an d secured within a vessel;
- FIGS. 2–7 illustrate alternative couplings for mechanically fixing the opposite ends of bypass grafts
- FIG. 8 illustrates an alternative embodiment graft incorporating structural supports
- FIGS. 9–16 illustrate alternative embodiment grafts incorporating valves
- FIGS. 17 and 18 are side sectional views of a bypass graft and system for securing the graft to a vessel wall, in accordance with the present invention.
- FIGS. 19 and 20 illustrate tissue dilators of alternative embodiment deployment systems employing thermal bonding
- FIG. 21 is a schematic illustration of a circuit for thermal bonding
- FIGS. 22–25 illustrate alternative embodiment dilators
- FIG. 26 illustrates a tissue perforating needle used with the dilators of the various deployment systems
- FIG. 27 is a sectional view of a needle and dilator contained within a catheter
- FIG. 28 illustrates an alternative embodiment dilator within a catheter
- FIGS. 29 a–h illustrate a series of steps of a percutaneous deployment and fixation of a bypass graft according to the present invention
- FIGS. 30 a–d illustrate an alternative deployment and fixation procedure
- FIGS. 31 a–c illustrate a further alternative deployment and fixation
- FIG. 32 shows several bypass grafts secured to the heart
- FIGS. 33 and 34 illustrate an alternative graft secured within a vessel.
- bypass graft 16 secured within a blood vessel 18 , in a manner to bypass a lesion 20 within the vessel.
- Bypass graft 16 has a tubular wall 22 formed of a graft material, e.g., a polymer such as PTFE, urethane, polyimide, nylon, silicone, or polyethylene.
- the polymer may be extruded, blow molded, or dipped, and formed either directly into a tubing, or formed first as a sheet having opposed ends or edges bonded together to provide the tubular configuration.
- the edge bond can be formed by a variety of methods including ultrasonic welding, thermal bonding, sewing, adhesives, or with radio frequency (RF) energy.
- the graft can be a saphenous vein or other vessel from the patient.
- bypass graft 16 incorporates a radially expandable stent 26 .
- the graft incorporates a similar stent 28 at its distal end region 30 .
- the stents are radially expanded using a dilatation balloon or a mechanism such as those described in co-pending patent application Ser. No. 08/911,838 entitled “Mechanical Stent and Graft Delivery System,” filed Aug. 15, 1997.
- the graft end regions can have a self-expanding structure, as described in co-pending patent application Ser. No. 08/932,566 entitled “Radially Expanding Prostheses and Systems for Their Deployment,” filed Sep. 19, 1997. In either event, each stent and its surrounding graft material are expanded into intimate contact with wall 22 of vessel 18 , thus to secure the graft.
- graft 16 bypasses lesion 20 , in the sense that a medial region 32 of the graft is disposed outside of vessel 18 .
- the graft can be considered to exit the vessel at an exit opening or orifice 34 through vessel wall 35 , and re-enter the vessel at a return opening or orifice 36 .
- FIG. 2 illustrates an annular collet 38 attached to one end of a graft 40 .
- the collet may be laminated or bonded to the graft, and is pre-formed to have a segment 42 extending radially beyond the graft. Segment 42 also is collapsible into a low profile to facilitate introduction through vasculature and deployment through the vessel wall. When released, the collet assumes the pre-formed configuration as shown.
- a portion 44 of the graft may extend along collet segment 42 to secure the vessel wall between the graft material and the collet and provide additional support for attaching the graft to the vessel.
- FIGS. 3 and 4 illustrate a collet 46 in which the radially extending collet segment is comprised of eight radially extended collet members 48 .
- a membrane 50 may be joined to the collet members to prevent fluid flow through the tissue wall puncture site.
- FIG. 5 shows a further alternative support mechanism in the form of an annular grommet 52 secured to end region 54 of a graft 56 .
- the grommet incorporates a convergence 58 to facilitate insertion through a vessel wall orifice, and a necked down feature 60 to capture the vessel wall immediately about the orifice.
- flexible bands 62 can be fixed to an end region of a graft 64 as shown in FIGS. 6 and 7 .
- Each band or other flexible member is compressible into the reduced profile shown in FIG. 6 and remains in that profile while constrained, e.g., by a surrounding catheter.
- band 62 assumes the radially enlarged, more circular profile shown in FIG. 7 .
- Pluralities of such bands can be provided in crossing patterns at the graft ends, if desired.
- the graft can incorporate structural support members 66 .
- the support members can be constructed of metal or a polymer having a higher modulus of elasticity than the graft material. As shown in FIG. 8 , support members 66 can be distributed throughout the graft, with a greater density at the graft end regions to enhance fixation within openings through tissue. Support members 66 can have elliptical or rectangular profiles that enhance their strength in a selected direction.
- support members can be used in lieu of stents 26 and 28 for securing graft ends within a vessel.
- the support members may be laminated in the graft material. Fabrication can involve extruding or dipping an initial graft layer, winding the support members on the layer, then extruding or dipping to form a second layer covering the support members. Alternatively, the separate layers may be bonded together, or support members may be threaded through the graft material.
- thermal bonding may be employed to augment the mechanical fixation and form a more positive fluid seal.
- electrode strips 68 are mounted to the graft near the graft ends, and coupled through wires 70 to an energy source (e.g., an RF generator) which generates a current to heat adjacent tissue.
- an energy source e.g., an RF generator
- the graft edges are thermally secured to the vessel all by a coagulation of the tissue to the electrode, or by desiccation of the vessel wall to provide an interference fit between the reduced-diameter vessel and the graft, especially where the graft and support members exert a radial force. This better secures the graft to the vessel wall and prevents leaks at the graft edges.
- Suitable materials for the electrodes which are body compatible as well as electrically conductive, are platinum, platinum-iridium, stainless steel, and gold.
- signal wires 70 are removed from the graft by delivering a D.C. current through the signal wires at an amplitude sufficient to cause a breakdown of the signal wire, e.g., at a reduced-diameter weak point near its associated electrode.
- the signal wire can be cleaved, or mechanically removed by applying tension to sever the wire at a reduced-diameter neck region.
- FIGS. 9–16 show a variety of graft constructions.
- a valve 72 includes a valve ball 74 within a surrounding structure that provides a valve seat 76 on one side of the ball, and upper and lower retainers 78 and 80 on the other side of the ball.
- the valve is open and allows flow in the direction of the arrows, around the valve ball and through open spaces between the valve ball and surrounding structure in the area not occupied by the upper and lower retainers.
- valve functions as a pressure relief valve in that the flow from left to right as viewed in the figure must be sufficient to overcome the tendency of retainers 78 and 80 to urge the ball valve against the valve seat.
- FIG. 11 shows a valve 82 designed to react to the muscular contraction to restore normal vessel function. Muscular contraction forces the valve ends inward, opening the valve to permit fluid flow.
- the force required to open the valve may be selected, depending on the material, wall thickness, length, and geometry.
- a solid valve requires more force than a valve in which material is selectively removed to maintain the valve function yet decrease the required compressive force to open the valve.
- FIGS. 12–14 show a one-way valve 84 having a membrane 86 that closes over valve support struts 88 when no external pressure is present.
- membrane 86 distends outwardly away from the struts as seen in FIG. 14 , permitting the flow of fluids. Fluid flow in the opposite direction (right to left as viewed in FIGS. 12 and 14 ) is prevented.
- FIGS. 9–10 and 12 – 14 act as pressure relief valves, in the sense that they may be tailored to require a selected force to open them, and they remain open only when the applied pressure exceeds the valve resistance. As a result, these valves characteristically remain open for short periods of time.
- FIGS. 15 and 16 show a pressure relief valve 90 that opens due to pressure exerted on the valve, and remains open until a compressive closure force is applied.
- Valve 90 includes a plunger 92 movable within a surrounding structure including a valve seat 94 and a knob structure 96 for retaining the valve against the valve seat.
- the outer structure which can be the graft itself, includes a flexible section 98 including a protrusion 100 that can be flexed radially inwardly responsive to external pressure.
- the knob structure maintains the valve closed until pressure against the valve, i.e., acting from left to right as viewed in FIG. 16 , exceeds a selected threshold and opens the valve to allow rightward flow. Even after such pressure subsides, the valve remains open until external, radially inward pressure is applied to compress flexible section 98 of the graft. This moves the plunger leftward, returning it beyond the knob structure against the valve seat, thus closing the valve once again.
- Valve 90 is particularly well-suited for treating urinary incontinence.
- bladder pressure exceeds the relief valve pressure threshold, the valve is opened to permit the flow of urine.
- muscular contractions or other external squeezing flexes section 98 to return plunger 92 to the valve seat, thus closing the valve.
- Systems for deploying grafts may require an incision, or alternatively may involve translumenal delivery for a substantially noninvasive procedure.
- the system must restrain the graft during introduction through sheathes positioned via the Seldinger technique or a surgical cut-down, advancement through the vasculature and into the target vessel. Unwanted perforations of the vessel or other tissue must be avoided. This requires flexibility to follow a guide wire positioned in the target vessel. Further, the system must facilitate easy and accurate deployment of the graft and delivery components. If a partially deployed graft needs to be altered as to location, the system should permit recapture and repositioning.
- Graft delivery systems may incorporate the capacity to mechanically create intimate contact of the graft with surrounded tissue, especially at the graft ends. This capability is discussed in the aforementioned application Ser. No. 08/911,838 entitled “Mechanical Stent and Graft Delivery System.”
- FIGS. 17 and 18 show a bypass graft deployment system 102 that requires an incision.
- the system includes a dilator 104 having a tapered (distally converging) distal tip 106 .
- a needle 108 is mounted coaxially within the dilator, and has a sharp cutting edge 110 for puncturing or perforating tissue.
- a bypass graft 112 having a grommet 114 or other suitable fixation mechanism, is supported on and surrounds the dilator.
- Needle 108 which can be slideably contained within the dilator if desired, is introduced into the insertion port and punctures a wall 116 of a vessel 118 on one side of a stenosed lesion 120 .
- the dilator then is advanced over the needle to enlarge the puncture to provide an orifice for fixation of the graft.
- graft 112 is advanced over the dilator sufficiently to position grommet 114 within the orifice.
- a first region 122 of the graft is secured, so that an opening 124 of the graft is in fluid communication with vessel 118 .
- graft 112 has two further openings: an opening 126 surrounded by graft material and a second grommet 128 ; and a more proximally disposed opening 130 , where no grommet or other fixation device is provided.
- the dilator and needle are withdrawn from opening 126 , and further are withdrawn from a region 132 of the graft surrounding opening 130 so that the dilator and needle are completely free of the graft. Then opening 130 , which is provided only to allow access of the dilator and needle, is closed to prevent fluid leakage from the graft.
- One suitable closure mechanism is a purse-string, formed by threading a suture through the graft material in region 132 .
- Other closure mechanisms include staples or adhesives.
- the bypass graft may have four or more openings to accommodate three or more fluid couplings to vasculature or organ cavities.
- FIG. 19 shows a dilator 136 with a central lumen 138 for a needle (needle not shown).
- the dilator also incorporates a lumen 140 , through which a signal wire can extend for coupling with a dilator electrode 142 .
- Electrode 142 delivers RF energy to a grommet 144 at the distal end of a graft 146 surrounding the dilator, thus to thermally secure the grommet to a tissue wall 148 of a vessel 150 .
- a dilator 152 includes, along with a central needle lumen 154 , a signal wire lumen 156 and a balloon inflation lumen 158 open to a balloon 160 near the distal end of the dilator.
- the dilator supports a surrounding graft 162 having a collet 164 at its distal end.
- balloon 160 is inflated to temporarily secure the dilator, which also bends a portion of collet 164 into the retaining position as shown.
- An electrode 170 mounted on the exterior of balloon 160 , receives a current from a signal wire contained in lumen 156 , for thermally bonding collet 164 to the surrounding tissue. After thermal bonding, the balloon is deflated and the dilator withdrawn.
- FIG. 21 illustrates a schematic circuit for ohmic heating of tissue, useable in conjunction with electrode 170 , other dilator supported electrodes, or electrodes mounted directly to a graft as previously described.
- An RF power generator 174 is coupled to the electrode through a signal wire 176 .
- An indifferent electrode 178 spaced apart from electrode 170 and typically placed on a patient externally, is coupled to the RF generator through a conductor 180 .
- a current is generated through tissue between electrodes 170 and 178 , heating the tissue to form the bond.
- FIGS. 22 and 23 are sectional views of a distal region of a dilator 182 , taken at different angles to show different lumens through the dilator.
- Lumens 184 and 186 in FIG. 22 accommodate signal wires to sensors or transducers 188 and 190 (further discussed below), which can be used to direct placement of the dilator at puncture sites.
- Sensor 188 is positioned for axial sensing, while a sensor 190 is oriented for lateral sensing.
- Several sensors 190 can be angularly spaced apart from one another about the dilator circumference.
- Lumens 192 and 194 shown in FIG. 23 , accommodate signal wires 196 to electrodes 198 used for thermal bonding.
- a steering mechanism can be incorporated into the dilator to facilitate positioning of the dilator and needle for tissue perforations.
- a ring 198 is embedded in the dilator distal tip, surrounding needle lumen 200 .
- a wire 202 is attached to ring 198 . By pulling wire 202 , the distal tip can be biased downwardly as viewed in the figure.
- magnets may be incorporated into the dilator near its distal tip, as indicated at 206 for a dilator 208 shown in FIG. 25 .
- Such magnets may be formed of ferrite materials, or alternatively may be formed by winding conductive coils around the dilator to form electromagnets when current is supplied.
- the dilator magnets are used in conjunction with a guide wire 209 advanced beyond a stenosed lesion 210 within a vessel 212 .
- the guide wire is formed of metal, and to further enhance magnetic attraction may incorporate a magnet 214 of opposite polarity to the dilator magnet. Magnetic positioning facilitates placing bypass grafts through tortuous vessels or over long distances beyond the lesion. Alternatively, known imaging techniques can be used to locate the dilator magnets.
- a needle also can be provided with steering capability, in particular by forming a hollow needle 216 and securing a wire 218 to a distal portion of a needle through a weld or solder joint 220 .
- a sensor 222 at the needle tip, coupled to wires 224 contained within the needle lumen, can be used to sense a position of the needle tip.
- a further needle enhancement is a stop 226 . When open as shown in FIG. 26 , stop 226 limits the degree to which needle 216 can be inserted into tissue, thus preventing excessive, damaging perforations. At the same time, stop 226 is collapsible into a diameter substantially the same as that of the needle when the needle is withdrawn into a dilator.
- Intralumenal graft deployment systems also utilize dilators and needles as described, but further incorporate catheters.
- a suitable arrangement as shown in FIG. 27 , includes a needle 228 surrounded by a dilator 230 , which in turn is surrounded by a catheter 232 , all components being coaxial and circular in profile.
- FIG. 28 An alternative arrangement, shown in FIG. 28 , incorporates noncircular features into a dilator 234 and a lumen of a catheter 236 .
- the non-circular matching features allow transmittal of torque from catheter 236 to dilator 234 , enabling selective rotation of the dilator by rotating the catheter.
- FIGS. 29 a– 29 h illustrate progressive steps in a percutaneous, intralumenal deployment of a graft 238 , to bypass a lesion in a vessel 240 .
- the system includes a catheter 242 with a lumen 244 containing graft 238 , a dilator 246 and a needle 248 within the dilator.
- the catheter and other components are advanced intralumenally to the proximal side of lesion 250 as shown in FIG. 29 a .
- Sensors 252 facilitate positioning.
- Such sensors can include ultrasonic transducers of piezoelectric material, infrared transducers, or fiber-optic elements.
- a radiopaque contrast material may be injected to enhance fluoroscopic visualization.
- needle 248 is advanced to puncture vessel wall 254 .
- a stop 256 restricts movement of a needle if necessary.
- dilator 246 is advanced, collapsing stop 256 and enlarging the puncture to provide a suitable orifice through the vessel wall.
- the orifice and dilator tend to form a seal, preventing excess blood leakage as the dilator is advanced along and outside of the vessel.
- the dilator may have a pre-shaped distal end to facilitate positioning, as shown in FIG. 29 c.
- needle 248 is advanced beyond the dilator to puncture vessel wall 254 ( FIG. 29 d ).
- stop 256 prevents excessive needle advancement, if necessary.
- the stop can limit needle travel relative to the dilator.
- dilator 246 is advanced over the needle ( FIG. 29 e ), collapsing the stop and enlarging the puncture by its distal tip, entering the vessel once again.
- needle 248 may be completely retracted if desired.
- graft 238 then is advanced over dilator 246 , until the graft reenters the vessel, i.e., has its opposite ends contained, each in its respective orifice.
- a collet 258 at the distal end of the graft prevents graft retraction, and a collet 260 anchors the proximal end of the graft.
- the dilator can be retracted back into catheter 242 , as shown in FIG. 29 g .
- a hollow stylet 262 is used to advance the graft, and also to maintain the graft in place during subsequent withdrawal of the dilator.
- the catheter, stylet and dilator are withdrawn, leaving graft 238 secured, as seen in FIG. 29 h.
- FIGS. 30 a–d show an Alternative system and graft deployment process, in which a graft 264 is guided to its bypass location within a catheter rather than over a dilator.
- the system includes a catheter 266 containing a dilator 268 , which in turn contains a puncturing needle 270 . These components are advanced to a position proximate a lesion 272 within a vessel 274 .
- Dilator 268 is pre-formed with a bend at its distal region, and when positioned as shown in FIG. 30 a , is directed upwardly toward the vessel wall as shown, to direct the needle toward the first intended puncture.
- dilator 268 can be advanced over the needle, outside of and along the vessel.
- the dilator is rotated, preferably by the catheter using non-circular profile features as described above, to reorient the tip and point it back toward the vessel as shown in FIG. 30 b .
- Catheter 266 is advanced along the dilator, through the orifice and outside of the vessel.
- a balloon 276 surrounding the catheter can be inflated at this point, to maintain the catheter against proximal withdrawal.
- needle 270 is advanced to form the puncture for a reentry orifice ( FIG. 30 c ).
- the dilator tip is used to enlarge the orifice, permitting advancement of the dilator into vessel 274 , followed by advancement of catheter 266 over the dilator, through the orifice and into the vessel as well.
- Balloon 276 can be reinflated at this point, to temporarily secure the catheter.
- a graft can be inserted into the catheter and moved distally along the catheter using a stylet 278 , until the graft reaches a bypass location in which each end of the graft is contained within its respective orifice. Withdrawal of the catheter (not shown), while the stylet maintains the graft in the bypass location, allows collets or other fixation mechanisms to expand and secure the graft.
- This procedure is particularly suited for smaller lesions, where the dilator need travel only a short distance along the vessel.
- FIGS. 31 a–c illustrate a further alternative system and procedure for forming a bypass from a vessel to an organ cavity.
- a catheter 280 containing a dilator 282 and a needle 284 is advanced to an intended puncture site 286 within a vessel 288 .
- the puncture is formed as previously described, and the dilator is advanced through tissue to an organ cavity 290 .
- the catheter is advanced over the dilator, becoming open to the cavity as shown in FIG. 31 b .
- Collets 293 and 295 secure the catheter.
- a valve 296 within the catheter limits flow to the direction indicated by the arrow.
- a graft 298 incorporating a valve 300 is positioned near lesion 302 , to prevent backflow toward the lesion.
- FIG. 32 illustrates two bypass grafts 304 and 306 used to couple the aorta to coronary vasculature in accordance with the present invention.
- FIG. 33 illustrates a graft 306 collapsed around a catheter body 308 , deployed in a target vessel across a stenosed lesion 310 .
- the catheter and graft are translumenally advanced to the position shown.
- the opposite ends of the graft contain expandable stents 314 and 316 , expanded in place with a mechanism such as those described in the aforementioned application Ser. No. 08/911,838.
- the graft ends can have self-expanding characteristics.
- FIG. 34 shows the graft expanded.
- the ends are fully expanded into intimate contact with the vessel wall.
- graft 306 is expanded only to a nominal diameter.
- the diameter is selected to reduce the flow of resistance and increase cardiac output, yet prevent damage to the endothelial wall. For example, a 50% expansion usually is sufficient to open the vessel while preventing excess damage.
- a large space between the exterior of the graft and the vessel wall accommodates growth of the stenosed lesion, and tends to contain such growth along the vessel wall so that the vessel remains open.
- graft 308 should have inherent radial stability, for example, by employing structural supports as previously discussed.
- graft structural stability and fixation can be enhanced by forming grafts with two or more layers, with pockets formed between the layers to contain biocompatible foams which solidify when activated to provide further support. Drug solutions also can be provided in such pockets.
- channels may be formed through the lesion by cutting a slit through the vessel wall in the targeted region.
- a mechanical deployment system as described in the aforementioned patent application Ser. No. 08/911,838 can be used to form the required channel.
- a more easily deployed graft is more reliably secured, to effectively bypass lesions and other blockages.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Surgery (AREA)
- Transplantation (AREA)
- Gastroenterology & Hepatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pulmonology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Prostheses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/243,260 US7083631B2 (en) | 1996-11-08 | 2002-09-12 | Percutaneous bypass graft and securing system |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3073396P | 1996-11-08 | 1996-11-08 | |
US08/966,003 US5989276A (en) | 1996-11-08 | 1997-11-07 | Percutaneous bypass graft and securing system |
US09/415,776 US6293955B1 (en) | 1996-09-20 | 1999-10-08 | Percutaneous bypass graft and securing system |
US09/903,219 US20010051809A1 (en) | 1996-11-08 | 2001-07-10 | Percutaneous bypass graft and securing system |
US10/243,260 US7083631B2 (en) | 1996-11-08 | 2002-09-12 | Percutaneous bypass graft and securing system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/903,219 Continuation US20010051809A1 (en) | 1996-11-08 | 2001-07-10 | Percutaneous bypass graft and securing system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030014061A1 US20030014061A1 (en) | 2003-01-16 |
US7083631B2 true US7083631B2 (en) | 2006-08-01 |
Family
ID=21855718
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/966,003 Expired - Fee Related US5989276A (en) | 1996-09-20 | 1997-11-07 | Percutaneous bypass graft and securing system |
US09/903,219 Abandoned US20010051809A1 (en) | 1996-11-08 | 2001-07-10 | Percutaneous bypass graft and securing system |
US09/991,455 Expired - Fee Related US6652544B2 (en) | 1996-11-08 | 2001-11-21 | Percutaneous bypass graft and securing system |
US10/243,488 Abandoned US20030014063A1 (en) | 1996-11-08 | 2002-09-12 | Percutaneous bypass graft and securing system |
US10/243,260 Expired - Fee Related US7083631B2 (en) | 1996-11-08 | 2002-09-12 | Percutaneous bypass graft and securing system |
US10/243,325 Abandoned US20030014062A1 (en) | 1996-11-08 | 2002-09-12 | Percutaneous bypass graft and securing system |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/966,003 Expired - Fee Related US5989276A (en) | 1996-09-20 | 1997-11-07 | Percutaneous bypass graft and securing system |
US09/903,219 Abandoned US20010051809A1 (en) | 1996-11-08 | 2001-07-10 | Percutaneous bypass graft and securing system |
US09/991,455 Expired - Fee Related US6652544B2 (en) | 1996-11-08 | 2001-11-21 | Percutaneous bypass graft and securing system |
US10/243,488 Abandoned US20030014063A1 (en) | 1996-11-08 | 2002-09-12 | Percutaneous bypass graft and securing system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/243,325 Abandoned US20030014062A1 (en) | 1996-11-08 | 2002-09-12 | Percutaneous bypass graft and securing system |
Country Status (5)
Country | Link |
---|---|
US (6) | US5989276A (en) |
EP (1) | EP1011458A2 (en) |
JP (1) | JP2001503657A (en) |
AU (1) | AU721415B2 (en) |
WO (1) | WO1998019625A2 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040049213A1 (en) * | 2001-02-21 | 2004-03-11 | Terrence Buelna | Anastomosis occlusion device |
US20050171563A1 (en) * | 2002-04-17 | 2005-08-04 | Russell Heinrich | Method and apparatus for anastomosis including an expandable anchor |
US20050277965A1 (en) * | 2004-06-14 | 2005-12-15 | Rox Medical, Inc. | Devices for arterio-venous fistula creation |
US20060089707A1 (en) * | 2004-08-11 | 2006-04-27 | Emory University | Vascular conduit device and system for implanting |
US20070027526A1 (en) * | 2005-07-27 | 2007-02-01 | Cook Critical Care Incorporated | Stent/graft device and method for open surgical placement |
US20070208410A1 (en) * | 2005-09-02 | 2007-09-06 | Medtronic Vascular, Inc. | Methods and Apparatus for Treatment of Aneurysms Adjacent to Branch Arteries |
US20080283572A1 (en) * | 2007-05-16 | 2008-11-20 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Surgical stapling instrument with chemical sealant |
US20080283571A1 (en) * | 2007-05-16 | 2008-11-20 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Sensing surgical fastener |
US20080283576A1 (en) * | 2007-05-16 | 2008-11-20 | Searete Llc. A Limited Liability Corporation Of The State Of Delaware | Surgical fastening device with cutter |
US20090125100A1 (en) * | 2007-11-13 | 2009-05-14 | Cook Incorporated | Intraluminal Bypass Prosthesis and Prosthesis Delivery and Deployment Kit |
WO2010107950A1 (en) * | 2009-03-17 | 2010-09-23 | Cytograft Tissue Engineering, Inc. | Guided percutaneous bypass |
US7810691B2 (en) | 2007-05-16 | 2010-10-12 | The Invention Science Fund I, Llc | Gentle touch surgical stapler |
US7823761B2 (en) | 2007-05-16 | 2010-11-02 | The Invention Science Fund I, Llc | Maneuverable surgical stapler |
US20100318173A1 (en) * | 2007-12-21 | 2010-12-16 | Kumaran Kolandaivelu | Endovascular devices/catheter platforms and methods for achieving congruency in sequentially deployed devices |
US8414635B2 (en) | 1999-02-01 | 2013-04-09 | Idev Technologies, Inc. | Plain woven stents |
US8419788B2 (en) | 2006-10-22 | 2013-04-16 | Idev Technologies, Inc. | Secured strand end devices |
US8485411B2 (en) | 2007-05-16 | 2013-07-16 | The Invention Science Fund I, Llc | Gentle touch surgical stapler |
WO2013163227A1 (en) | 2012-04-23 | 2013-10-31 | Pq Bypass, Inc. | Methods and systems for bypassing occlusions in a femoral artery |
US8876881B2 (en) | 2006-10-22 | 2014-11-04 | Idev Technologies, Inc. | Devices for stent advancement |
US9023095B2 (en) | 2010-05-27 | 2015-05-05 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
US9308015B2 (en) | 2007-04-24 | 2016-04-12 | Emory University | Conduit device and system for implanting a conduit device in a tissue wall |
US9320875B2 (en) | 2011-02-01 | 2016-04-26 | Emory University | Systems for implanting and using a conduit within a tissue wall |
US9532773B2 (en) | 2011-01-28 | 2017-01-03 | Apica Cardiovascular Limited | Systems for sealing a tissue wall puncture |
US10028741B2 (en) | 2013-01-25 | 2018-07-24 | Apica Cardiovascular Limited | Systems and methods for percutaneous access, stabilization and closure of organs |
US10278851B2 (en) | 2016-10-07 | 2019-05-07 | Pq Bypass, Inc. | Systems and methods for delivering stent grafts |
US10485909B2 (en) | 2014-10-31 | 2019-11-26 | Thoratec Corporation | Apical connectors and instruments for use in a heart wall |
US10518012B2 (en) | 2013-03-15 | 2019-12-31 | Apk Advanced Medical Technologies, Inc. | Devices, systems, and methods for implanting and using a connector in a tissue wall |
Families Citing this family (220)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL124037A (en) * | 1995-10-13 | 2003-01-12 | Transvascular Inc | Device and system for interstitial transvascular intervention |
ES2206684T3 (en) | 1996-02-02 | 2004-05-16 | Transvascular, Inc. | SYSTEM FOR INTERSTICIAL TRANSVASCULAR INTERVENTION. |
WO1998019625A2 (en) * | 1996-11-08 | 1998-05-14 | Houser Russell A | Percutaneous bypass graft and securing system |
AU744343B2 (en) | 1997-04-11 | 2002-02-21 | Transvascular, Inc. | Methods and apparatus for transmyocardial direct coronary revascularization |
US6193734B1 (en) * | 1998-01-23 | 2001-02-27 | Heartport, Inc. | System for performing vascular anastomoses |
US20020144696A1 (en) | 1998-02-13 | 2002-10-10 | A. Adam Sharkawy | Conduits for use in placing a target vessel in fluid communication with a source of blood |
US6651670B2 (en) | 1998-02-13 | 2003-11-25 | Ventrica, Inc. | Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication |
US6808498B2 (en) | 1998-02-13 | 2004-10-26 | Ventrica, Inc. | Placing a guide member into a heart chamber through a coronary vessel and delivering devices for placing the coronary vessel in communication with the heart chamber |
US6352543B1 (en) * | 2000-04-29 | 2002-03-05 | Ventrica, Inc. | Methods for forming anastomoses using magnetic force |
US6241741B1 (en) | 1998-03-09 | 2001-06-05 | Corvascular Surgical Systems, Inc. | Anastomosis device and method |
US6176864B1 (en) * | 1998-03-09 | 2001-01-23 | Corvascular, Inc. | Anastomosis device and method |
US6945980B2 (en) | 1998-06-03 | 2005-09-20 | Medtronic, Inc. | Multiple loop tissue connector apparatus and methods |
US6613059B2 (en) | 1999-03-01 | 2003-09-02 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
US6641593B1 (en) | 1998-06-03 | 2003-11-04 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
US6361559B1 (en) * | 1998-06-10 | 2002-03-26 | Converge Medical, Inc. | Thermal securing anastomosis systems |
US6264662B1 (en) * | 1998-07-21 | 2001-07-24 | Sulzer Vascutek Ltd. | Insertion aid for a bifurcated prosthesis |
US6461320B1 (en) * | 1998-08-12 | 2002-10-08 | Cardica, Inc. | Method and system for attaching a graft to a blood vessel |
US6254564B1 (en) | 1998-09-10 | 2001-07-03 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
US6261304B1 (en) | 1998-09-10 | 2001-07-17 | Percardia, Inc. | Delivery methods for left ventricular conduit |
EP1119299A1 (en) * | 1998-10-02 | 2001-08-01 | Stereotaxis, Inc. | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
AU2851000A (en) | 1999-01-15 | 2000-08-01 | Ventrica, Inc. | Methods and devices for forming vascular anastomoses |
US6475226B1 (en) | 1999-02-03 | 2002-11-05 | Scimed Life Systems, Inc. | Percutaneous bypass apparatus and method |
US8118822B2 (en) | 1999-03-01 | 2012-02-21 | Medtronic, Inc. | Bridge clip tissue connector apparatus and methods |
EP1161185A2 (en) * | 1999-03-09 | 2001-12-12 | St. Jude Medical Cardiovascular Group, Inc. | Medical grafting methods and apparatus |
US6695859B1 (en) | 1999-04-05 | 2004-02-24 | Coalescent Surgical, Inc. | Apparatus and methods for anastomosis |
US7981126B2 (en) | 1999-04-16 | 2011-07-19 | Vital Access Corporation | Locking compression plate anastomosis apparatus |
US6726694B2 (en) * | 1999-04-16 | 2004-04-27 | Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) | Intraluminally directed anvil apparatus and related methods and systems |
US6623494B1 (en) | 1999-04-16 | 2003-09-23 | Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) | Methods and systems for intraluminally directed vascular anastomosis |
US6428550B1 (en) * | 1999-05-18 | 2002-08-06 | Cardica, Inc. | Sutureless closure and deployment system for connecting blood vessels |
US7285235B2 (en) * | 1999-05-19 | 2007-10-23 | Medtronic, Inc. | Manufacturing conduits for use in placing a target vessel in fluid communication with a source of blood |
US6699256B1 (en) * | 1999-06-04 | 2004-03-02 | St. Jude Medical Atg, Inc. | Medical grafting apparatus and methods |
US7300444B1 (en) | 1999-07-28 | 2007-11-27 | Cardica, Inc. | Surgical system and method for connecting hollow tissue structures |
US6391038B2 (en) * | 1999-07-28 | 2002-05-21 | Cardica, Inc. | Anastomosis system and method for controlling a tissue site |
US7303570B2 (en) | 1999-07-28 | 2007-12-04 | Cardica, Inc. | Anastomosis tool having a connector holder |
US6253768B1 (en) | 1999-08-04 | 2001-07-03 | Percardia, Inc. | Vascular graft bypass |
US7815590B2 (en) | 1999-08-05 | 2010-10-19 | Broncus Technologies, Inc. | Devices for maintaining patency of surgically created channels in tissue |
US6494889B1 (en) | 1999-09-01 | 2002-12-17 | Converge Medical, Inc. | Additional sutureless anastomosis embodiments |
US20020173809A1 (en) * | 1999-09-01 | 2002-11-21 | Fleischman Sidney D. | Sutureless anastomosis system deployment concepts |
US6702828B2 (en) | 1999-09-01 | 2004-03-09 | Converge Medical, Inc. | Anastomosis system |
US8529583B1 (en) | 1999-09-03 | 2013-09-10 | Medtronic, Inc. | Surgical clip removal apparatus |
US6635214B2 (en) | 1999-09-10 | 2003-10-21 | Ventrica, Inc. | Manufacturing conduits for use in placing a target vessel in fluid communication with a source of blood |
US6605053B1 (en) | 1999-09-10 | 2003-08-12 | Percardia, Inc. | Conduit designs and related methods for optimal flow control |
AU7997900A (en) * | 1999-10-08 | 2001-04-23 | General Hospital Corporation, The | Percutaneous stent graft and method for vascular bypass |
US6926730B1 (en) | 2000-10-10 | 2005-08-09 | Medtronic, Inc. | Minimally invasive valve repair procedure and apparatus |
US20030130671A1 (en) * | 1999-11-23 | 2003-07-10 | Duhaylongsod Francis G. | Anastomosis device and method |
US6602263B1 (en) | 1999-11-30 | 2003-08-05 | St. Jude Medical Atg, Inc. | Medical grafting methods and apparatus |
US20040068278A1 (en) * | 1999-12-06 | 2004-04-08 | Converge Medical Inc. | Anastomosis systems |
NL1014559C2 (en) * | 2000-02-11 | 2001-08-14 | Surgical Innovations Vof | Umbrella stent. |
NL1014364C2 (en) * | 2000-02-11 | 2001-08-14 | Surgical Innovations Vof | Endoluminal grafting method for treating body conduit e.g. artery, aorta, involves introducing side graft into side branch through primary graft, afterwhich side graft is fixed to primary graft |
SE523427C2 (en) * | 2000-03-20 | 2004-04-20 | Jan Otto Solem | Catheter system for bypassing an artery block |
US6551332B1 (en) | 2000-03-31 | 2003-04-22 | Coalescent Surgical, Inc. | Multiple bias surgical fastener |
US20050080439A1 (en) * | 2000-04-29 | 2005-04-14 | Carson Dean F. | Devices and methods for forming magnetic anastomoses and ports in vessels |
US7232449B2 (en) * | 2000-04-29 | 2007-06-19 | Medtronic, Inc. | Components, systems and methods for forming anastomoses using magnetism or other coupling means |
US8518062B2 (en) | 2000-04-29 | 2013-08-27 | Medtronic, Inc. | Devices and methods for forming magnetic anastomoses between vessels |
US6554764B1 (en) | 2000-11-13 | 2003-04-29 | Cardica, Inc. | Graft vessel preparation device and methods for using the same |
US20020143347A1 (en) * | 2000-12-13 | 2002-10-03 | Ventrica, Inc. | Extravascular anastomotic components and methods for forming vascular anastomoses |
US7909837B2 (en) * | 2000-12-13 | 2011-03-22 | Medtronic, Inc. | Methods, devices and systems for forming magnetic anastomoses |
US20020183769A1 (en) * | 2001-05-30 | 2002-12-05 | St. Jude Medical Atg, Inc. | Medical grafting methods and apparatus |
US6858035B2 (en) | 2001-07-05 | 2005-02-22 | Converge Medical, Inc. | Distal anastomosis system |
US20060064119A9 (en) * | 2001-07-05 | 2006-03-23 | Converge Medical, Inc. | Vascular anastomosis systems |
US20030229365A1 (en) * | 2002-06-10 | 2003-12-11 | Whayne James G. | Angled vascular anastomosis system |
US6972023B2 (en) * | 2001-07-05 | 2005-12-06 | Converge Medical, Inc. | Distal anastomosis system |
US6626920B2 (en) | 2001-07-05 | 2003-09-30 | Converge Medical, Inc. | Distal anastomosis system |
US7708712B2 (en) | 2001-09-04 | 2010-05-04 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
AU2002349994A1 (en) * | 2001-10-22 | 2003-05-06 | Interventional Therapies, L.L.C. | Removable sleeve |
US7182771B1 (en) | 2001-12-20 | 2007-02-27 | Russell A. Houser | Vascular couplers, techniques, methods, and accessories |
US8012164B1 (en) | 2002-01-22 | 2011-09-06 | Cardica, Inc. | Method and apparatus for creating an opening in the wall of a tubular vessel |
US7887575B2 (en) * | 2002-05-22 | 2011-02-15 | Boston Scientific Scimed, Inc. | Stent with segmented graft |
US20040034406A1 (en) * | 2002-08-19 | 2004-02-19 | Thramann Jeffrey J. | Vascular stent grafts |
AU2003263936A1 (en) * | 2002-08-19 | 2004-03-03 | Jeffrey J. Thramann M.D. | Vascular stent grafts |
US20040122362A1 (en) * | 2002-09-10 | 2004-06-24 | Houser Russell A. | Pseudo aneurysm repair system |
US8066724B2 (en) | 2002-09-12 | 2011-11-29 | Medtronic, Inc. | Anastomosis apparatus and methods |
US8105345B2 (en) | 2002-10-04 | 2012-01-31 | Medtronic, Inc. | Anastomosis apparatus and methods |
US20040111143A1 (en) * | 2002-12-06 | 2004-06-10 | Fischell Robert E. | Introducer sheath for the ostial placement of a stent |
US8092450B2 (en) * | 2003-01-21 | 2012-01-10 | Baylis Medical Company Inc. | Magnetically guidable energy delivery apparatus and method of using same |
US7655021B2 (en) * | 2003-03-10 | 2010-02-02 | Boston Scientific Scimed, Inc. | Dilator with expandable member |
WO2004087236A2 (en) * | 2003-03-28 | 2004-10-14 | Board Of Regents, The University Of Texas System | Stents and methods for creating an anastomosis |
US20040225233A1 (en) * | 2003-05-09 | 2004-11-11 | Frankowski Brian J. | Magnetic guidewires |
CA2529512A1 (en) * | 2003-06-18 | 2004-12-29 | The Board Of Trustees Of The Leland Stanford Junior University | Electro-adhesive tissue manipulator |
US8002740B2 (en) | 2003-07-18 | 2011-08-23 | Broncus Technologies, Inc. | Devices for maintaining patency of surgically created channels in tissue |
US8308682B2 (en) | 2003-07-18 | 2012-11-13 | Broncus Medical Inc. | Devices for maintaining patency of surgically created channels in tissue |
US7182769B2 (en) | 2003-07-25 | 2007-02-27 | Medtronic, Inc. | Sealing clip, delivery systems, and methods |
US20050043749A1 (en) | 2003-08-22 | 2005-02-24 | Coalescent Surgical, Inc. | Eversion apparatus and methods |
US20050060020A1 (en) * | 2003-09-17 | 2005-03-17 | Scimed Life Systems, Inc. | Covered stent with biologically active material |
US8394114B2 (en) | 2003-09-26 | 2013-03-12 | Medtronic, Inc. | Surgical connection apparatus and methods |
EP1682041A2 (en) * | 2003-10-10 | 2006-07-26 | QUADRI, Arshad | System and method for endoluminal grafting of bifurcated and branched vessels |
US20050149093A1 (en) * | 2003-10-30 | 2005-07-07 | Pokorney James L. | Valve bypass graft device, tools, and method |
US7879047B2 (en) | 2003-12-10 | 2011-02-01 | Medtronic, Inc. | Surgical connection apparatus and methods |
US20050273159A1 (en) * | 2004-01-22 | 2005-12-08 | Opie John C | Monocusp valve construction and defect closure device for deep vein regurgitation |
US8425539B2 (en) | 2004-04-12 | 2013-04-23 | Xlumena, Inc. | Luminal structure anchoring devices and methods |
US20050228413A1 (en) * | 2004-04-12 | 2005-10-13 | Binmoeller Kenneth F | Automated transluminal tissue targeting and anchoring devices and methods |
US8162963B2 (en) | 2004-06-17 | 2012-04-24 | Maquet Cardiovascular Llc | Angled anastomosis device, tools and method of using |
US8409167B2 (en) | 2004-07-19 | 2013-04-02 | Broncus Medical Inc | Devices for delivering substances through an extra-anatomic opening created in an airway |
US7641688B2 (en) * | 2004-09-16 | 2010-01-05 | Evera Medical, Inc. | Tissue augmentation device |
US9486216B2 (en) * | 2004-09-27 | 2016-11-08 | David W. Wright | Fastener apparatus for tissue and methods of deployment and manufacture |
US8328837B2 (en) | 2004-12-08 | 2012-12-11 | Xlumena, Inc. | Method and apparatus for performing needle guided interventions |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
GB2423132A (en) * | 2005-02-15 | 2006-08-16 | Martin Lister | Ball heart valve |
CN103190942A (en) * | 2005-05-12 | 2013-07-10 | 阿尔斯塔西斯公司 | Access and closure device and method |
US9480589B2 (en) * | 2005-05-13 | 2016-11-01 | Boston Scientific Scimed, Inc. | Endoprosthesis delivery system |
AU2006251888B2 (en) * | 2005-05-20 | 2009-12-10 | The Cleveland Clinic Foundation | Apparatus and methods for repairing the function of a diseased valve and method for making same |
US20060276883A1 (en) * | 2005-06-01 | 2006-12-07 | Cook Incorporated | Tapered and distally stented elephant trunk stent graft |
US20080109058A1 (en) * | 2005-06-01 | 2008-05-08 | Cook Incorporated | Intraoperative Anastomosis Method |
US8784437B2 (en) * | 2005-06-09 | 2014-07-22 | Xlumena, Inc. | Methods and devices for endosonography-guided fundoplexy |
US8777967B2 (en) * | 2005-06-09 | 2014-07-15 | Xlumena, Inc. | Methods and devices for anchoring to tissue |
US8025655B2 (en) | 2005-09-12 | 2011-09-27 | Bridgepoint Medical, Inc. | Endovascular devices and methods |
US7918870B2 (en) | 2005-09-12 | 2011-04-05 | Bridgepoint Medical, Inc. | Endovascular devices and methods |
EP1924315B1 (en) | 2005-09-12 | 2019-12-04 | Bridgepoint Medical, Inc. | Endovascular devices |
US11020141B2 (en) | 2005-09-12 | 2021-06-01 | Bridgepoint Medical, Inc. | Endovascular devices and methods |
US8083727B2 (en) | 2005-09-12 | 2011-12-27 | Bridgepoint Medical, Inc. | Endovascular devices and methods for exploiting intramural space |
DE102005046333B3 (en) * | 2005-09-27 | 2006-10-19 | Viega Gmbh & Co. Kg | Press-tool for connecting pipes has jaws whose rear ends can overlap as they are opened, allowing them to be used on large diameter pipes |
US20080039878A1 (en) * | 2006-07-06 | 2008-02-14 | Williams Michael S | Systems and methods for restoring function of diseased bowel |
US7722665B2 (en) | 2006-07-07 | 2010-05-25 | Graft Technologies, Inc. | System and method for providing a graft in a vascular environment |
US8613698B2 (en) | 2006-07-10 | 2013-12-24 | Mcneil-Ppc, Inc. | Resilient device |
US10004584B2 (en) | 2006-07-10 | 2018-06-26 | First Quality Hygienic, Inc. | Resilient intravaginal device |
US7717892B2 (en) | 2006-07-10 | 2010-05-18 | Mcneil-Ppc, Inc. | Method of treating urinary incontinence |
US10219884B2 (en) | 2006-07-10 | 2019-03-05 | First Quality Hygienic, Inc. | Resilient device |
CN104257450B (en) | 2006-07-10 | 2017-05-10 | 第一次质量卫生公司 | Resilient Device |
US11666377B2 (en) | 2006-09-29 | 2023-06-06 | Boston Scientific Medical Device Limited | Electrosurgical device |
US20210121227A1 (en) | 2006-09-29 | 2021-04-29 | Baylis Medical Company Inc. | Connector system for electrosurgical device |
US9060802B2 (en) | 2006-11-21 | 2015-06-23 | Bridgepoint Medical, Inc. | Endovascular devices and methods for exploiting intramural space |
US10888354B2 (en) | 2006-11-21 | 2021-01-12 | Bridgepoint Medical, Inc. | Endovascular devices and methods for exploiting intramural space |
US11298511B2 (en) | 2006-11-21 | 2022-04-12 | Bridgepoint Medical, Inc. | Endovascular devices and methods for exploiting intramural space |
US20080234717A1 (en) * | 2007-03-20 | 2008-09-25 | Medtronic Vascular, Inc. | Helical Screw Puncture Tip |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US7988026B2 (en) | 2007-09-06 | 2011-08-02 | Cardica, Inc. | Endocutter with staple feed |
US9168039B1 (en) | 2007-09-06 | 2015-10-27 | Cardica, Inc. | Surgical stapler with staples of different sizes |
US8070036B1 (en) | 2007-09-06 | 2011-12-06 | Cardica, Inc | True multi-fire surgical stapler configured to fire staples of different sizes |
US8632556B2 (en) | 2007-10-22 | 2014-01-21 | Bridgepoint Medical, Inc. | Methods and devices for crossing chronic total occlusions |
US20090125097A1 (en) * | 2007-11-13 | 2009-05-14 | Medtronic Vascular, Inc. | Device and Method for Stent Graft Fenestration in Situ |
US20090198329A1 (en) | 2008-02-01 | 2009-08-06 | Kesten Randy J | Breast implant with internal flow dampening |
EP3251719B1 (en) | 2008-02-05 | 2020-10-21 | Bridgepoint Medical, Inc. | Crossing occlusions in blood vessels |
US8337425B2 (en) | 2008-02-05 | 2012-12-25 | Bridgepoint Medical, Inc. | Endovascular device with a tissue piercing distal probe and associated methods |
US11992238B2 (en) | 2008-02-05 | 2024-05-28 | Boston Scientific Scimed, Inc. | Endovascular device with a tissue piercing distal probe and associated methods |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
ES2903231T3 (en) | 2008-02-26 | 2022-03-31 | Jenavalve Tech Inc | Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart |
US8177836B2 (en) | 2008-03-10 | 2012-05-15 | Medtronic, Inc. | Apparatus and methods for minimally invasive valve repair |
EP2291128B1 (en) | 2008-04-28 | 2016-08-31 | Bridgepoint Medical, Inc. | Apparatus for crossing occlusions in blood vessels |
US8454632B2 (en) * | 2008-05-12 | 2013-06-04 | Xlumena, Inc. | Tissue anchor for securing tissue layers |
US9820746B2 (en) * | 2008-07-28 | 2017-11-21 | Incube Laboratories LLC | System and method for scaffolding anastomoses |
IT1392503B1 (en) * | 2009-01-07 | 2012-03-09 | Sambusseti | ORTHOTOPIC ENDOPROSTHESIS OF ARTIFICIAL BLADDER |
US8518060B2 (en) | 2009-04-09 | 2013-08-27 | Medtronic, Inc. | Medical clip with radial tines, system and method of using same |
US20110137394A1 (en) * | 2009-05-29 | 2011-06-09 | Xlumena, Inc. | Methods and systems for penetrating adjacent tissue layers |
US9364259B2 (en) * | 2009-04-21 | 2016-06-14 | Xlumena, Inc. | System and method for delivering expanding trocar through a sheath |
US8357193B2 (en) * | 2009-05-29 | 2013-01-22 | Xlumena, Inc. | Apparatus and method for deploying stent across adjacent tissue layers |
US9381041B2 (en) | 2009-04-21 | 2016-07-05 | Xlumena, Inc. | Methods and devices for access across adjacent tissue layers |
US20100268029A1 (en) * | 2009-04-21 | 2010-10-21 | Xlumena, Inc. | Methods and apparatus for advancing a device from one body lumen to another |
US8668704B2 (en) | 2009-04-24 | 2014-03-11 | Medtronic, Inc. | Medical clip with tines, system and method of using same |
US8591451B2 (en) * | 2009-07-07 | 2013-11-26 | Marwan Tabbara | Surgical methods, devices, and kits |
US20140155804A1 (en) * | 2009-07-07 | 2014-06-05 | Marwan Tabbara | Surgical devices and kits |
US20110054487A1 (en) * | 2009-09-02 | 2011-03-03 | Circulite, Inc. | Coaxial transseptal guide-wire and needle assembly |
EP2477558B1 (en) | 2009-09-14 | 2016-08-10 | CircuLite, Inc. | Endovascular anastomotic connector device and delivery system |
US8333727B2 (en) * | 2009-10-08 | 2012-12-18 | Circulite, Inc. | Two piece endovascular anastomotic connector |
US9750866B2 (en) | 2010-02-11 | 2017-09-05 | Circulite, Inc. | Cannula lined with tissue in-growth material |
WO2011100552A1 (en) * | 2010-02-11 | 2011-08-18 | Circulte, Inc. | Devices, methods and systems for establishing supplemental blood flow in the circulatory system |
JP2013521016A (en) | 2010-02-26 | 2013-06-10 | ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ | System and method for intraluminal valve generation |
EP2575681B1 (en) | 2010-05-25 | 2022-06-22 | JenaValve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
CN103118607B (en) * | 2010-07-16 | 2015-09-23 | 伊西康内外科公司 | Bile is guided to the device of enteral from gallbladder |
EP2699169B1 (en) | 2011-04-20 | 2018-02-14 | The Board of Trustees of The Leland Stanford Junior University | Systems for endoluminal valve creation |
EP2706940B1 (en) | 2011-05-13 | 2016-12-14 | Broncus Medical, Inc. | Methods and devices for ablation of tissue |
US8709034B2 (en) | 2011-05-13 | 2014-04-29 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US8979842B2 (en) | 2011-06-10 | 2015-03-17 | Medtronic Advanced Energy Llc | Wire electrode devices for tonsillectomy and adenoidectomy |
JP6257515B2 (en) | 2011-06-15 | 2018-01-10 | フラクシス インコーポレイテッド | Anastomotic connector and system for delivery |
WO2013078235A1 (en) | 2011-11-23 | 2013-05-30 | Broncus Medical Inc | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
EP2811923B1 (en) | 2012-02-07 | 2019-10-16 | Intervene, Inc. | System for endoluminal valve creation |
WO2013177591A1 (en) * | 2012-05-25 | 2013-11-28 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Vascular anastomosis stent |
EP4000677A1 (en) | 2012-05-31 | 2022-05-25 | Baylis Medical Company Inc. | Radiofrequency perforation apparatus |
WO2013187927A1 (en) | 2012-06-15 | 2013-12-19 | Phraxis Inc. | Arterial and venous anchor devices forming an anastomotic connector and system for delivery |
EP2900175A4 (en) | 2012-09-28 | 2015-08-19 | Rox Medical Inc | Methods, systems and devices for treating hypertension |
EP2943151B1 (en) | 2013-01-10 | 2017-07-19 | Intervene, Inc. | System for endoluminal valve creation |
EP2948097A4 (en) | 2013-01-23 | 2016-09-28 | Rox Medical Inc | Methods, systems and devices for treating cardiac arrhythmias |
CA2902191C (en) | 2013-02-21 | 2019-01-15 | Xlumena, Inc. | Devices and methods for forming an anastomosis |
US11937873B2 (en) | 2013-03-12 | 2024-03-26 | Boston Scientific Medical Device Limited | Electrosurgical device having a lumen |
CA3220441A1 (en) | 2013-03-15 | 2015-09-17 | Boston Scientific Medical Device Limited | Electrosurgical device having a distal aperture |
EP3030306B1 (en) | 2013-08-07 | 2020-03-04 | Baylis Medical Company Inc. | Devices for puncturing tissue |
WO2015028209A1 (en) | 2013-08-30 | 2015-03-05 | Jenavalve Technology Gmbh | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US10231613B2 (en) | 2013-09-27 | 2019-03-19 | Intervene, Inc. | Visualization devices, systems, and methods for informing intravascular procedures on blood vessel valves |
US20150174371A1 (en) * | 2013-12-23 | 2015-06-25 | Cook Medical Technologies Llc | System for bypassing vascular occlusion having puncturing mechanism and method |
US10188419B2 (en) | 2014-03-24 | 2019-01-29 | Intervene, Inc. | Visualization devices for use during percutaneous tissue dissection and associated systems and methods |
WO2016085420A1 (en) * | 2014-11-28 | 2016-06-02 | Bebi̇ller Yazilim Medi̇kal Endüstri̇yel Tarimsal Araştirmalar Ve Tarim Ürünleri̇ Ti̇caret Ve Sanayi̇ Li̇mi̇ted Şi̇rketi̇ | Catheter maintaining blood flow by vein bypass |
US10603018B2 (en) | 2014-12-16 | 2020-03-31 | Intervene, Inc. | Intravascular devices, systems, and methods for the controlled dissection of body lumens |
EP3730094B1 (en) | 2015-03-20 | 2024-04-24 | JenaValve Technology, Inc. | Heart valve prosthesis delivery system |
EP4403138A3 (en) | 2015-05-01 | 2024-10-09 | JenaValve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
MA44837A (en) * | 2015-08-25 | 2018-07-04 | Innovein Inc | VENOUS VALVE PROSTHESIS |
US10912647B2 (en) | 2015-08-25 | 2021-02-09 | Innovein, Inc. | Vascular valve prosthesis |
CN113558754B (en) | 2015-09-09 | 2024-08-02 | 波士顿科学医疗设备有限公司 | Needle for gaining access to epicardium and system for accessing pericardial cavity |
CA3010700C (en) | 2016-01-07 | 2024-06-18 | Baylis Medical Company Inc. | Hybrid transseptal dilator and methods of using the same |
US10646247B2 (en) | 2016-04-01 | 2020-05-12 | Intervene, Inc. | Intraluminal tissue modifying systems and associated devices and methods |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11304698B2 (en) | 2016-07-25 | 2022-04-19 | Virender K. Sharma | Cardiac shunt device and delivery system |
CN114587469A (en) | 2016-07-25 | 2022-06-07 | 维兰德.K.沙马 | Magnetic anastomosis device and delivery system |
EP3970631A1 (en) | 2017-01-11 | 2022-03-23 | Virender K. Sharma | Cardiac shunt device and delivery system |
JP7094965B2 (en) | 2017-01-27 | 2022-07-04 | イエナバルブ テクノロジー インク | Heart valve imitation |
EP3379222B1 (en) | 2017-03-22 | 2020-12-30 | Methode Electronics Malta Ltd. | Magnetoelastic based sensor assembly |
US10751056B2 (en) | 2017-10-23 | 2020-08-25 | High Desert Radiology, P.C. | Methods and apparatus for percutaneous bypass graft |
US11224725B2 (en) | 2017-12-05 | 2022-01-18 | Baylis Medical Company Inc. | Transseptal guide wire puncture system |
WO2019139898A1 (en) * | 2018-01-09 | 2019-07-18 | Univeristy Of Pittsburgh - Of The Commonwealth System Of Higher Education | Electromagetic system for rapid cannulation of fenestrated endovascular grafts |
US11491832B2 (en) | 2018-02-27 | 2022-11-08 | Methode Electronics, Inc. | Towing systems and methods using magnetic field sensing |
US11135882B2 (en) | 2018-02-27 | 2021-10-05 | Methode Electronics, Inc. | Towing systems and methods using magnetic field sensing |
WO2019168565A1 (en) | 2018-02-27 | 2019-09-06 | Methode Electronics,Inc. | Towing systems and methods using magnetic field sensing |
US11084342B2 (en) | 2018-02-27 | 2021-08-10 | Methode Electronics, Inc. | Towing systems and methods using magnetic field sensing |
US11221262B2 (en) | 2018-02-27 | 2022-01-11 | Methode Electronics, Inc. | Towing systems and methods using magnetic field sensing |
US11014417B2 (en) | 2018-02-27 | 2021-05-25 | Methode Electronics, Inc. | Towing systems and methods using magnetic field sensing |
US11647980B2 (en) | 2018-12-27 | 2023-05-16 | Avent, Inc. | Methods for needle identification on an ultrasound display screen by determining a meta-frame rate of the data signals |
US11464485B2 (en) | 2018-12-27 | 2022-10-11 | Avent, Inc. | Transducer-mounted needle assembly with improved electrical connection to power source |
US11759190B2 (en) | 2019-10-18 | 2023-09-19 | Boston Scientific Medical Device Limited | Lock for medical devices, and related systems and methods |
US11801087B2 (en) | 2019-11-13 | 2023-10-31 | Boston Scientific Medical Device Limited | Apparatus and methods for puncturing tissue |
US11724070B2 (en) | 2019-12-19 | 2023-08-15 | Boston Scientific Medical Device Limited | Methods for determining a position of a first medical device with respect to a second medical device, and related systems and medical devices |
US11931098B2 (en) | 2020-02-19 | 2024-03-19 | Boston Scientific Medical Device Limited | System and method for carrying out a medical procedure |
US12082792B2 (en) | 2020-02-25 | 2024-09-10 | Boston Scientific Medical Device Limited | Systems and methods for creating a puncture between aorta and the left atrium |
US11986209B2 (en) | 2020-02-25 | 2024-05-21 | Boston Scientific Medical Device Limited | Methods and devices for creation of communication between aorta and left atrium |
US11819243B2 (en) | 2020-03-19 | 2023-11-21 | Boston Scientific Medical Device Limited | Medical sheath and related systems and methods |
US11826075B2 (en) | 2020-04-07 | 2023-11-28 | Boston Scientific Medical Device Limited | Elongated medical assembly |
US12011279B2 (en) | 2020-04-07 | 2024-06-18 | Boston Scientific Medical Device Limited | Electro-anatomic mapping system |
JP2023521165A (en) | 2020-06-17 | 2023-05-23 | ボストン サイエンティフィック メディカル デバイス リミテッド | electroanatomical mapping system |
US11938285B2 (en) | 2020-06-17 | 2024-03-26 | Boston Scientific Medical Device Limited | Stop-movement device for elongated medical assembly |
US11937796B2 (en) | 2020-06-18 | 2024-03-26 | Boston Scientific Medical Device Limited | Tissue-spreader assembly |
US12042178B2 (en) | 2020-07-21 | 2024-07-23 | Boston Scientific Medical Device Limited | System of medical devices and method for pericardial puncture |
US12005202B2 (en) | 2020-08-07 | 2024-06-11 | Boston Scientific Medical Device Limited | Catheter having tissue-engaging device |
US11980412B2 (en) | 2020-09-15 | 2024-05-14 | Boston Scientific Medical Device Limited | Elongated medical sheath |
Citations (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4214587A (en) | 1979-02-12 | 1980-07-29 | Sakura Chester Y Jr | Anastomosis device and method |
US4366819A (en) | 1980-11-17 | 1983-01-04 | Kaster Robert L | Anastomotic fitting |
US4368736A (en) | 1980-11-17 | 1983-01-18 | Kaster Robert L | Anastomotic fitting |
US4607637A (en) | 1983-07-22 | 1986-08-26 | Anders Berggren | Surgical instrument for performing anastomosis with the aid of ring-like fastening elements and the fastening elements for performing anastomosis |
US4624257A (en) | 1982-06-24 | 1986-11-25 | Anders Berggren | Surgical instrument for performing anastomosis |
US4657019A (en) | 1984-04-10 | 1987-04-14 | Idea Research Investment Fund, Inc. | Anastomosis devices and kits |
US4665906A (en) | 1983-10-14 | 1987-05-19 | Raychem Corporation | Medical devices incorporating sim alloy elements |
US4787386A (en) | 1984-04-10 | 1988-11-29 | Idea Research Investment Fund, Inc. | Anastomosis devices, and kits |
US4917087A (en) | 1984-04-10 | 1990-04-17 | Walsh Manufacturing (Mississuaga) Limited | Anastomosis devices, kits and method |
US4917091A (en) | 1982-06-24 | 1990-04-17 | Unilink Ab | Annular fastening means |
US4950227A (en) | 1988-11-07 | 1990-08-21 | Boston Scientific Corporation | Stent delivery system |
US5067957A (en) | 1983-10-14 | 1991-11-26 | Raychem Corporation | Method of inserting medical devices incorporating SIM alloy elements |
US5078736A (en) | 1990-05-04 | 1992-01-07 | Interventional Thermodynamics, Inc. | Method and apparatus for maintaining patency in the body passages |
US5156613A (en) | 1991-02-13 | 1992-10-20 | Interface Biomedical Laboratories Corp. | Collagen welding rod material for use in tissue welding |
US5190546A (en) | 1983-10-14 | 1993-03-02 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
US5234447A (en) | 1990-08-28 | 1993-08-10 | Robert L. Kaster | Side-to-end vascular anastomotic staple apparatus |
US5391156A (en) | 1992-06-30 | 1995-02-21 | Ethicon, Inc. | Flexible encoscopic surgical port |
US5405322A (en) | 1993-08-12 | 1995-04-11 | Boston Scientific Corporation | Method for treating aneurysms with a thermal source |
US5443497A (en) | 1993-11-22 | 1995-08-22 | The Johns Hopkins University | Percutaneous prosthetic by-pass graft and method of use |
US5503635A (en) | 1993-11-12 | 1996-04-02 | United States Surgical Corporation | Apparatus and method for performing compressional anastomoses |
US5571167A (en) | 1991-07-03 | 1996-11-05 | Maginot; Thomas J. | Bypass grafting method |
US5591226A (en) | 1995-01-23 | 1997-01-07 | Schneider (Usa) Inc. | Percutaneous stent-graft and method for delivery thereof |
US5628784A (en) | 1994-01-18 | 1997-05-13 | Strecker; Ernst P. | Endoprosthesis that can be percutaneously implanted in the body of a patient |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5665117A (en) | 1995-11-27 | 1997-09-09 | Rhodes; Valentine J. | Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use |
US5669934A (en) | 1991-02-13 | 1997-09-23 | Fusion Medical Technologies, Inc. | Methods for joining tissue by applying radiofrequency energy to performed collagen films and sheets |
US5676670A (en) | 1996-06-14 | 1997-10-14 | Beth Israel Deaconess Medical Center | Catheter apparatus and method for creating a vascular bypass in-vivo |
US5690675A (en) | 1991-02-13 | 1997-11-25 | Fusion Medical Technologies, Inc. | Methods for sealing of staples and other fasteners in tissue |
US5695504A (en) | 1995-02-24 | 1997-12-09 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
US5697968A (en) | 1995-08-10 | 1997-12-16 | Aeroquip Corporation | Check valve for intraluminal graft |
US5702418A (en) | 1995-09-12 | 1997-12-30 | Boston Scientific Corporation | Stent delivery system |
US5713917A (en) | 1995-10-30 | 1998-02-03 | Leonhardt; Howard J. | Apparatus and method for engrafting a blood vessel |
US5720755A (en) | 1995-01-18 | 1998-02-24 | Dakov; Pepi | Tubular suturing device and methods of use |
US5725544A (en) | 1993-12-23 | 1998-03-10 | Oticon A/S | Method and instrument for establishing the receiving site of a coronary artery bypass graft |
US5728133A (en) | 1996-07-09 | 1998-03-17 | Cardiologics, L.L.C. | Anchoring device and method for sealing percutaneous punctures in vessels |
US5749895A (en) | 1991-02-13 | 1998-05-12 | Fusion Medical Technologies, Inc. | Method for bonding or fusion of biological tissue and material |
US5755778A (en) | 1996-10-16 | 1998-05-26 | Nitinol Medical Technologies, Inc. | Anastomosis device |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5779718A (en) | 1992-10-09 | 1998-07-14 | United States Surgical Corporation | Method of anastomosing a vessel using a surgical clip applier |
US5797920A (en) | 1996-06-14 | 1998-08-25 | Beth Israel Deaconess Medical Center | Catheter apparatus and method using a shape-memory alloy cuff for creating a bypass graft in-vivo |
US5810884A (en) | 1996-09-09 | 1998-09-22 | Beth Israel Deaconess Medical Center | Apparatus and method for closing a vascular perforation after percutaneous puncture of a blood vessel in a living subject |
US5814005A (en) | 1991-12-23 | 1998-09-29 | Ela Medical S.A. | Ventricular cannulation device |
US5824015A (en) | 1991-02-13 | 1998-10-20 | Fusion Medical Technologies, Inc. | Method for welding biological tissue |
US5824036A (en) * | 1995-09-29 | 1998-10-20 | Datascope Corp | Stent for intraluminal grafts and device and methods for delivering and assembling same |
US5861003A (en) | 1996-10-23 | 1999-01-19 | The Cleveland Clinic Foundation | Apparatus and method for occluding a defect or aperture within body surface |
US5868759A (en) | 1997-10-10 | 1999-02-09 | United States Surgical Corporation | Surgical clip applier |
US5868761A (en) | 1992-10-09 | 1999-02-09 | United States Surgical Corporation | Surgical clip applier |
US5871536A (en) | 1993-11-08 | 1999-02-16 | Lazarus; Harrison M. | Intraluminal vascular graft and method |
US5931842A (en) | 1996-11-07 | 1999-08-03 | Vascular Science Inc. | Methods and apparatus for handling tubing used in medical procedures |
US5938696A (en) | 1994-02-09 | 1999-08-17 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5938672A (en) | 1996-07-26 | 1999-08-17 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other blood vessels |
US5944738A (en) | 1998-02-06 | 1999-08-31 | Aga Medical Corporation | Percutaneous catheter directed constricting occlusion device |
US5944019A (en) | 1996-08-13 | 1999-08-31 | Heartstent Corporation | Closed chest coronary bypass |
US5944750A (en) | 1997-06-30 | 1999-08-31 | Eva Corporation | Method and apparatus for the surgical repair of aneurysms |
US5944730A (en) | 1997-05-19 | 1999-08-31 | Cardio Medical Solutions, Inc. | Device and method for assisting end-to-side anastomosis |
US5954735A (en) | 1996-02-29 | 1999-09-21 | Oticon A/S | Method and anastomotic instrument for use when performing an end-to-side anastomosis |
US5957940A (en) | 1997-06-30 | 1999-09-28 | Eva Corporation | Fasteners for use in the surgical repair of aneurysms |
US5964782A (en) | 1997-09-18 | 1999-10-12 | Scimed Life Systems, Inc. | Closure device and method |
US5968053A (en) | 1997-01-31 | 1999-10-19 | Cardiac Assist Technologies, Inc. | Method and apparatus for implanting a graft in a vessel of a patient |
US5968089A (en) | 1996-08-21 | 1999-10-19 | Krajicek; Milan | Internal shield of an anastomosis in a vascular system |
US5968090A (en) | 1997-09-08 | 1999-10-19 | United States Surgical Corp. | Endovascular graft and method |
US5972023A (en) | 1994-08-15 | 1999-10-26 | Eva Corporation | Implantation device for an aortic graft method of treating aortic aneurysm |
US5972017A (en) | 1997-04-23 | 1999-10-26 | Vascular Science Inc. | Method of installing tubular medical graft connectors |
US5984955A (en) | 1997-09-11 | 1999-11-16 | Wisselink; Willem | System and method for endoluminal grafting of bifurcated or branched vessels |
US5989276A (en) | 1996-11-08 | 1999-11-23 | Advanced Bypass Technologies, Inc. | Percutaneous bypass graft and securing system |
US5989287A (en) | 1998-05-06 | 1999-11-23 | Av Healing Llc | Vascular graft assemblies and methods for implanting same |
US5993468A (en) | 1995-10-31 | 1999-11-30 | Oticon A/S | Method and anastomotic instrument for use when performing an end-to-side anastomosis |
US6001124A (en) | 1997-10-09 | 1999-12-14 | Vascular Science, Inc. | Oblique-angle graft connectors |
US6004347A (en) | 1993-04-22 | 1999-12-21 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
US6007576A (en) | 1998-02-06 | 1999-12-28 | Mcclellan; Scott B. | End to side anastomic implant |
US6010529A (en) | 1996-12-03 | 2000-01-04 | Atrium Medical Corporation | Expandable shielded vessel support |
US6017352A (en) | 1997-09-04 | 2000-01-25 | Kensey Nash Corporation | Systems for intravascular procedures and methods of use |
US6019788A (en) | 1996-11-08 | 2000-02-01 | Gore Enterprise Holdings, Inc. | Vascular shunt graft and junction for same |
US6030370A (en) | 1997-02-05 | 2000-02-29 | Aesculap Ag And Co. Kg | Surgical instrument |
US6030392A (en) | 1995-01-18 | 2000-02-29 | Motorola, Inc. | Connector for hollow anatomical structures and methods of use |
US6030395A (en) | 1997-05-22 | 2000-02-29 | Kensey Nash Corporation | Anastomosis connection system |
US6036702A (en) | 1997-04-23 | 2000-03-14 | Vascular Science Inc. | Medical grafting connectors and fasteners |
US6036703A (en) | 1998-02-06 | 2000-03-14 | Ethicon Endo-Surgery Inc. | Method and apparatus for establishing anastomotic passageways |
US6048362A (en) | 1998-01-12 | 2000-04-11 | St. Jude Medical Cardiovascular Group, Inc. | Fluoroscopically-visible flexible graft structures |
US6059824A (en) | 1998-12-23 | 2000-05-09 | Taheri; Syde A. | Mated main and collateral stent and method for treatment of arterial disease |
US6063114A (en) | 1997-09-04 | 2000-05-16 | Kensey Nash Corporation | Connector system for vessels, ducts, lumens or hollow organs and methods of use |
US6068654A (en) | 1997-12-23 | 2000-05-30 | Vascular Science, Inc. | T-shaped medical graft connector |
US6071305A (en) | 1996-11-25 | 2000-06-06 | Alza Corporation | Directional drug delivery stent and method of use |
US6074416A (en) | 1997-10-09 | 2000-06-13 | St. Jude Medical Cardiovascular Group, Inc. | Wire connector structures for tubular grafts |
US6113612A (en) | 1998-11-06 | 2000-09-05 | St. Jude Medical Cardiovascular Group, Inc. | Medical anastomosis apparatus |
US6117147A (en) | 1998-09-30 | 2000-09-12 | Sulzer Carbomedics Inc. | Device and method for reinforcing an anastomotic site |
US6120432A (en) | 1997-04-23 | 2000-09-19 | Vascular Science Inc. | Medical grafting methods and apparatus |
US6149681A (en) | 1996-09-20 | 2000-11-21 | Converge Medical, Inc. | Radially expanding prostheses and systems for their deployment |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6293955B1 (en) | 1996-09-20 | 2001-09-25 | Converge Medical, Inc. | Percutaneous bypass graft and securing system |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US491708A (en) * | 1893-02-14 | Electric motor and dynamo mica insulator | ||
US4036705A (en) * | 1974-09-03 | 1977-07-19 | Eidschun Jr Charles Douglas | Method for metal exchange |
JPS6425265U (en) * | 1987-08-06 | 1989-02-13 | ||
US5035702A (en) * | 1990-06-18 | 1991-07-30 | Taheri Syde A | Method and apparatus for providing an anastomosis |
US5122154A (en) * | 1990-08-15 | 1992-06-16 | Rhodes Valentine J | Endovascular bypass graft |
CA2079417C (en) * | 1991-10-28 | 2003-01-07 | Lilip Lau | Expandable stents and method of making same |
FR2683449A1 (en) * | 1991-11-08 | 1993-05-14 | Cardon Alain | ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION. |
CA2134997C (en) * | 1994-11-03 | 2009-06-02 | Ian M. Penn | Stent |
CA2175720C (en) * | 1996-05-03 | 2011-11-29 | Ian M. Penn | Bifurcated stent and method for the manufacture and delivery of same |
US5709713A (en) * | 1995-03-31 | 1998-01-20 | Cardiovascular Concepts, Inc. | Radially expansible vascular prosthesis having reversible and other locking structures |
JP2701020B2 (en) * | 1995-10-11 | 1998-01-21 | 関西ペイント株式会社 | Automotive coating protection sheet |
IL124037A (en) * | 1995-10-13 | 2003-01-12 | Transvascular Inc | Device and system for interstitial transvascular intervention |
EP0804119B1 (en) | 1995-10-30 | 2001-04-04 | Koninklijke Philips Electronics N.V. | Vacuum-cleaner-hose assembly having a swivel bend and vacuum cleaner comprising such assembly |
IL125416A0 (en) * | 1996-02-02 | 1999-03-12 | Transvascular Inc | Methods and apparatus for connecting openings formed in adjacent blood vessels or other anatomical structures |
ES2206684T3 (en) * | 1996-02-02 | 2004-05-16 | Transvascular, Inc. | SYSTEM FOR INTERSTICIAL TRANSVASCULAR INTERVENTION. |
JP2000504594A (en) * | 1996-02-02 | 2000-04-18 | トランスバスキュラー インコーポレイテッド | Method and apparatus for blocking flow in a blood vessel |
EP1006916A4 (en) * | 1996-08-26 | 2004-11-10 | Transvascular Inc | Methods and apparatus for transmyocardial direct coronary revascularization |
EP0944366B1 (en) * | 1996-11-04 | 2006-09-13 | Advanced Stent Technologies, Inc. | Extendible double stent |
AU5162698A (en) * | 1996-11-07 | 1998-05-29 | Vascular Science Inc. | Tubular body structure marking methods and apparatus |
WO1998019632A1 (en) * | 1996-11-07 | 1998-05-14 | Vascular Science Inc. | Artificial tubular body organ grafts |
AU5168398A (en) * | 1996-11-07 | 1998-05-29 | Vascular Science Inc. | Steerable instrument for use in medical procedures |
WO1998019629A2 (en) * | 1996-11-07 | 1998-05-14 | Vascular Science Inc. | Medical grafting connectors and fasteners |
WO1998019634A2 (en) * | 1996-11-07 | 1998-05-14 | Vascular Science Inc. | Medical grafting methods and apparatus |
WO1998019630A2 (en) * | 1996-11-07 | 1998-05-14 | Vascular Science Inc. | Tubular medical graft connectors |
WO1998019608A1 (en) * | 1996-11-07 | 1998-05-14 | Vascular Science Inc. | Medical instrument with extendable snare |
WO1998019631A1 (en) * | 1996-11-07 | 1998-05-14 | Vascular Science Inc. | Artificial medical graft methods and apparatus |
EP0894475A1 (en) * | 1997-07-31 | 1999-02-03 | Medtronic, Inc. | Temporary vascular seal for anastomosis |
US6361559B1 (en) * | 1998-06-10 | 2002-03-26 | Converge Medical, Inc. | Thermal securing anastomosis systems |
NL1010386C2 (en) * | 1998-10-23 | 2000-04-26 | Eric Berreklouw | Anastomosis device. |
US6152937A (en) * | 1998-11-06 | 2000-11-28 | St. Jude Medical Cardiovascular Group, Inc. | Medical graft connector and methods of making and installing same |
US6126007A (en) * | 1998-12-30 | 2000-10-03 | St. Jude Medical, Inc. | Tissue valve holder |
EP1161185A2 (en) * | 1999-03-09 | 2001-12-12 | St. Jude Medical Cardiovascular Group, Inc. | Medical grafting methods and apparatus |
EP1235521A2 (en) * | 1999-12-06 | 2002-09-04 | Converge Medical, Inc. | End-side anastomosis systems |
-
1997
- 1997-11-07 WO PCT/US1997/020494 patent/WO1998019625A2/en not_active Application Discontinuation
- 1997-11-07 JP JP52184998A patent/JP2001503657A/en not_active Ceased
- 1997-11-07 EP EP97950588A patent/EP1011458A2/en not_active Withdrawn
- 1997-11-07 US US08/966,003 patent/US5989276A/en not_active Expired - Fee Related
- 1997-11-07 AU AU53551/98A patent/AU721415B2/en not_active Ceased
-
2001
- 2001-07-10 US US09/903,219 patent/US20010051809A1/en not_active Abandoned
- 2001-11-21 US US09/991,455 patent/US6652544B2/en not_active Expired - Fee Related
-
2002
- 2002-09-12 US US10/243,488 patent/US20030014063A1/en not_active Abandoned
- 2002-09-12 US US10/243,260 patent/US7083631B2/en not_active Expired - Fee Related
- 2002-09-12 US US10/243,325 patent/US20030014062A1/en not_active Abandoned
Patent Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4214587A (en) | 1979-02-12 | 1980-07-29 | Sakura Chester Y Jr | Anastomosis device and method |
US4366819A (en) | 1980-11-17 | 1983-01-04 | Kaster Robert L | Anastomotic fitting |
US4368736A (en) | 1980-11-17 | 1983-01-18 | Kaster Robert L | Anastomotic fitting |
US4917090A (en) | 1982-06-24 | 1990-04-17 | Unilink, Inc. | Method for performing an anastomosis |
US4624257A (en) | 1982-06-24 | 1986-11-25 | Anders Berggren | Surgical instrument for performing anastomosis |
US4917091A (en) | 1982-06-24 | 1990-04-17 | Unilink Ab | Annular fastening means |
US4607637A (en) | 1983-07-22 | 1986-08-26 | Anders Berggren | Surgical instrument for performing anastomosis with the aid of ring-like fastening elements and the fastening elements for performing anastomosis |
US5067957A (en) | 1983-10-14 | 1991-11-26 | Raychem Corporation | Method of inserting medical devices incorporating SIM alloy elements |
US5190546A (en) | 1983-10-14 | 1993-03-02 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
US4665906A (en) | 1983-10-14 | 1987-05-19 | Raychem Corporation | Medical devices incorporating sim alloy elements |
US5597378A (en) | 1983-10-14 | 1997-01-28 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
US4787386A (en) | 1984-04-10 | 1988-11-29 | Idea Research Investment Fund, Inc. | Anastomosis devices, and kits |
US4917087A (en) | 1984-04-10 | 1990-04-17 | Walsh Manufacturing (Mississuaga) Limited | Anastomosis devices, kits and method |
US4657019A (en) | 1984-04-10 | 1987-04-14 | Idea Research Investment Fund, Inc. | Anastomosis devices and kits |
US4950227A (en) | 1988-11-07 | 1990-08-21 | Boston Scientific Corporation | Stent delivery system |
US5078736A (en) | 1990-05-04 | 1992-01-07 | Interventional Thermodynamics, Inc. | Method and apparatus for maintaining patency in the body passages |
US5234447A (en) | 1990-08-28 | 1993-08-10 | Robert L. Kaster | Side-to-end vascular anastomotic staple apparatus |
US5824015A (en) | 1991-02-13 | 1998-10-20 | Fusion Medical Technologies, Inc. | Method for welding biological tissue |
US5156613A (en) | 1991-02-13 | 1992-10-20 | Interface Biomedical Laboratories Corp. | Collagen welding rod material for use in tissue welding |
US5690675A (en) | 1991-02-13 | 1997-11-25 | Fusion Medical Technologies, Inc. | Methods for sealing of staples and other fasteners in tissue |
US5749895A (en) | 1991-02-13 | 1998-05-12 | Fusion Medical Technologies, Inc. | Method for bonding or fusion of biological tissue and material |
US5669934A (en) | 1991-02-13 | 1997-09-23 | Fusion Medical Technologies, Inc. | Methods for joining tissue by applying radiofrequency energy to performed collagen films and sheets |
US5571167A (en) | 1991-07-03 | 1996-11-05 | Maginot; Thomas J. | Bypass grafting method |
US5749375A (en) | 1991-07-03 | 1998-05-12 | Maginot; Thomas J. | Method for implanting an end portion of a graft within the body of a patient during a bypass grafting procedure |
US5934286A (en) | 1991-07-03 | 1999-08-10 | Maginot Vascular Systems | Bypass grafting method which uses a number of balloon catheters to inhibit blood flow to an anastomosis site |
US5979455A (en) | 1991-07-03 | 1999-11-09 | Maginot Vascular Systems | Method for directing blood flow in the body of a patient with a graft and stent assembly |
US5814005A (en) | 1991-12-23 | 1998-09-29 | Ela Medical S.A. | Ventricular cannulation device |
US5391156A (en) | 1992-06-30 | 1995-02-21 | Ethicon, Inc. | Flexible encoscopic surgical port |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5868761A (en) | 1992-10-09 | 1999-02-09 | United States Surgical Corporation | Surgical clip applier |
US5779718A (en) | 1992-10-09 | 1998-07-14 | United States Surgical Corporation | Method of anastomosing a vessel using a surgical clip applier |
US6004347A (en) | 1993-04-22 | 1999-12-21 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
US5405322A (en) | 1993-08-12 | 1995-04-11 | Boston Scientific Corporation | Method for treating aneurysms with a thermal source |
US5871536A (en) | 1993-11-08 | 1999-02-16 | Lazarus; Harrison M. | Intraluminal vascular graft and method |
US5503635A (en) | 1993-11-12 | 1996-04-02 | United States Surgical Corporation | Apparatus and method for performing compressional anastomoses |
US5443497A (en) | 1993-11-22 | 1995-08-22 | The Johns Hopkins University | Percutaneous prosthetic by-pass graft and method of use |
US5868770A (en) | 1993-12-23 | 1999-02-09 | Oticon A/S | Method and instrument for establishing the receiving site of a coronary artery bypass graft |
US5725544A (en) | 1993-12-23 | 1998-03-10 | Oticon A/S | Method and instrument for establishing the receiving site of a coronary artery bypass graft |
US5797934A (en) | 1993-12-23 | 1998-08-25 | Oticon A/S | Method, instrument and anastomotic fitting for use when performing an end-to-side anastomosis |
US5628784A (en) | 1994-01-18 | 1997-05-13 | Strecker; Ernst P. | Endoprosthesis that can be percutaneously implanted in the body of a patient |
US5938696A (en) | 1994-02-09 | 1999-08-17 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5972023A (en) | 1994-08-15 | 1999-10-26 | Eva Corporation | Implantation device for an aortic graft method of treating aortic aneurysm |
US6030392A (en) | 1995-01-18 | 2000-02-29 | Motorola, Inc. | Connector for hollow anatomical structures and methods of use |
US5720755A (en) | 1995-01-18 | 1998-02-24 | Dakov; Pepi | Tubular suturing device and methods of use |
US5755775A (en) | 1995-01-23 | 1998-05-26 | Schneider (Usa) Inc. | Percutaneous stent-graft and method for delivery thereof |
US5591226A (en) | 1995-01-23 | 1997-01-07 | Schneider (Usa) Inc. | Percutaneous stent-graft and method for delivery thereof |
US5695504A (en) | 1995-02-24 | 1997-12-09 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
US5697968A (en) | 1995-08-10 | 1997-12-16 | Aeroquip Corporation | Check valve for intraluminal graft |
US5702418A (en) | 1995-09-12 | 1997-12-30 | Boston Scientific Corporation | Stent delivery system |
US5824036A (en) * | 1995-09-29 | 1998-10-20 | Datascope Corp | Stent for intraluminal grafts and device and methods for delivering and assembling same |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US5713917A (en) | 1995-10-30 | 1998-02-03 | Leonhardt; Howard J. | Apparatus and method for engrafting a blood vessel |
US5993468A (en) | 1995-10-31 | 1999-11-30 | Oticon A/S | Method and anastomotic instrument for use when performing an end-to-side anastomosis |
US5665117A (en) | 1995-11-27 | 1997-09-09 | Rhodes; Valentine J. | Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5954735A (en) | 1996-02-29 | 1999-09-21 | Oticon A/S | Method and anastomotic instrument for use when performing an end-to-side anastomosis |
US5676670A (en) | 1996-06-14 | 1997-10-14 | Beth Israel Deaconess Medical Center | Catheter apparatus and method for creating a vascular bypass in-vivo |
US5797920A (en) | 1996-06-14 | 1998-08-25 | Beth Israel Deaconess Medical Center | Catheter apparatus and method using a shape-memory alloy cuff for creating a bypass graft in-vivo |
US5728133A (en) | 1996-07-09 | 1998-03-17 | Cardiologics, L.L.C. | Anchoring device and method for sealing percutaneous punctures in vessels |
US5938672A (en) | 1996-07-26 | 1999-08-17 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other blood vessels |
US5944019A (en) | 1996-08-13 | 1999-08-31 | Heartstent Corporation | Closed chest coronary bypass |
US5968089A (en) | 1996-08-21 | 1999-10-19 | Krajicek; Milan | Internal shield of an anastomosis in a vascular system |
US5810884A (en) | 1996-09-09 | 1998-09-22 | Beth Israel Deaconess Medical Center | Apparatus and method for closing a vascular perforation after percutaneous puncture of a blood vessel in a living subject |
US6149681A (en) | 1996-09-20 | 2000-11-21 | Converge Medical, Inc. | Radially expanding prostheses and systems for their deployment |
US6293955B1 (en) | 1996-09-20 | 2001-09-25 | Converge Medical, Inc. | Percutaneous bypass graft and securing system |
US5755778A (en) | 1996-10-16 | 1998-05-26 | Nitinol Medical Technologies, Inc. | Anastomosis device |
US5861003A (en) | 1996-10-23 | 1999-01-19 | The Cleveland Clinic Foundation | Apparatus and method for occluding a defect or aperture within body surface |
US5976178A (en) | 1996-11-07 | 1999-11-02 | Vascular Science Inc. | Medical grafting methods |
US5931842A (en) | 1996-11-07 | 1999-08-03 | Vascular Science Inc. | Methods and apparatus for handling tubing used in medical procedures |
US5989276A (en) | 1996-11-08 | 1999-11-23 | Advanced Bypass Technologies, Inc. | Percutaneous bypass graft and securing system |
US6019788A (en) | 1996-11-08 | 2000-02-01 | Gore Enterprise Holdings, Inc. | Vascular shunt graft and junction for same |
US6071305A (en) | 1996-11-25 | 2000-06-06 | Alza Corporation | Directional drug delivery stent and method of use |
US6010529A (en) | 1996-12-03 | 2000-01-04 | Atrium Medical Corporation | Expandable shielded vessel support |
US5968053A (en) | 1997-01-31 | 1999-10-19 | Cardiac Assist Technologies, Inc. | Method and apparatus for implanting a graft in a vessel of a patient |
US6030370A (en) | 1997-02-05 | 2000-02-29 | Aesculap Ag And Co. Kg | Surgical instrument |
US5972017A (en) | 1997-04-23 | 1999-10-26 | Vascular Science Inc. | Method of installing tubular medical graft connectors |
US6120432A (en) | 1997-04-23 | 2000-09-19 | Vascular Science Inc. | Medical grafting methods and apparatus |
US6036702A (en) | 1997-04-23 | 2000-03-14 | Vascular Science Inc. | Medical grafting connectors and fasteners |
US5944730A (en) | 1997-05-19 | 1999-08-31 | Cardio Medical Solutions, Inc. | Device and method for assisting end-to-side anastomosis |
US6056762A (en) | 1997-05-22 | 2000-05-02 | Kensey Nash Corporation | Anastomosis system and method of use |
US6036705A (en) | 1997-05-22 | 2000-03-14 | Kensey Nash Corporation | Anastomosis connection system and method of use |
US6030395A (en) | 1997-05-22 | 2000-02-29 | Kensey Nash Corporation | Anastomosis connection system |
US5944750A (en) | 1997-06-30 | 1999-08-31 | Eva Corporation | Method and apparatus for the surgical repair of aneurysms |
US5957940A (en) | 1997-06-30 | 1999-09-28 | Eva Corporation | Fasteners for use in the surgical repair of aneurysms |
US6017352A (en) | 1997-09-04 | 2000-01-25 | Kensey Nash Corporation | Systems for intravascular procedures and methods of use |
US6063114A (en) | 1997-09-04 | 2000-05-16 | Kensey Nash Corporation | Connector system for vessels, ducts, lumens or hollow organs and methods of use |
US5968090A (en) | 1997-09-08 | 1999-10-19 | United States Surgical Corp. | Endovascular graft and method |
US5984955A (en) | 1997-09-11 | 1999-11-16 | Wisselink; Willem | System and method for endoluminal grafting of bifurcated or branched vessels |
US5964782A (en) | 1997-09-18 | 1999-10-12 | Scimed Life Systems, Inc. | Closure device and method |
US6074416A (en) | 1997-10-09 | 2000-06-13 | St. Jude Medical Cardiovascular Group, Inc. | Wire connector structures for tubular grafts |
US6001124A (en) | 1997-10-09 | 1999-12-14 | Vascular Science, Inc. | Oblique-angle graft connectors |
US5868759A (en) | 1997-10-10 | 1999-02-09 | United States Surgical Corporation | Surgical clip applier |
US6068654A (en) | 1997-12-23 | 2000-05-30 | Vascular Science, Inc. | T-shaped medical graft connector |
US6048362A (en) | 1998-01-12 | 2000-04-11 | St. Jude Medical Cardiovascular Group, Inc. | Fluoroscopically-visible flexible graft structures |
US6036703A (en) | 1998-02-06 | 2000-03-14 | Ethicon Endo-Surgery Inc. | Method and apparatus for establishing anastomotic passageways |
US5944738A (en) | 1998-02-06 | 1999-08-31 | Aga Medical Corporation | Percutaneous catheter directed constricting occlusion device |
US6007576A (en) | 1998-02-06 | 1999-12-28 | Mcclellan; Scott B. | End to side anastomic implant |
US5989287A (en) | 1998-05-06 | 1999-11-23 | Av Healing Llc | Vascular graft assemblies and methods for implanting same |
US6117147A (en) | 1998-09-30 | 2000-09-12 | Sulzer Carbomedics Inc. | Device and method for reinforcing an anastomotic site |
US6113612A (en) | 1998-11-06 | 2000-09-05 | St. Jude Medical Cardiovascular Group, Inc. | Medical anastomosis apparatus |
US6059824A (en) | 1998-12-23 | 2000-05-09 | Taheri; Syde A. | Mated main and collateral stent and method for treatment of arterial disease |
Non-Patent Citations (5)
Title |
---|
Gorisch, W. et al., (1982) "Heat-induced contraction of blood vessels" Lasers in Surgery and Medicine 2:1-13. |
Gragg, A.H. et al., (1982) "Endovascular diothermic vessel occlusion" Radiology 144:303-308. |
Heijmen et al., (1999) A novel one-shot anastomotic stapler prototype for coronary bypass grafting on the beating heart: feasibility in the pig J. Thorac. Cardiovascul. Surg. 117:117-125. |
Obora et al., "Nonsuture Microvascular Anastomosis Using Magnet Rings," Neurol. Med. Chir. 20,pp. 497-505. * |
Yusuf, S. W. et al. (1994). "Transfemoral Endoluminal Repair of Abdominal Aortic Aneurysm with Bifuricated Graft," Lancet 344(8923):650-651. |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9925074B2 (en) | 1999-02-01 | 2018-03-27 | Board Of Regents, The University Of Texas System | Plain woven stents |
US8974516B2 (en) | 1999-02-01 | 2015-03-10 | Board Of Regents, The University Of Texas System | Plain woven stents |
US8876880B2 (en) | 1999-02-01 | 2014-11-04 | Board Of Regents, The University Of Texas System | Plain woven stents |
US8414635B2 (en) | 1999-02-01 | 2013-04-09 | Idev Technologies, Inc. | Plain woven stents |
US7537599B2 (en) * | 2001-02-21 | 2009-05-26 | Novare Surgical Systems, Inc. | Anastomosis occlusion device |
US20040049213A1 (en) * | 2001-02-21 | 2004-03-11 | Terrence Buelna | Anastomosis occlusion device |
US20050171563A1 (en) * | 2002-04-17 | 2005-08-04 | Russell Heinrich | Method and apparatus for anastomosis including an expandable anchor |
US20100286717A1 (en) * | 2002-04-17 | 2010-11-11 | Tyco Healthcare Group Lp | Method and Apparatus for Anastomosis Including an Expandable Anchor |
US8480694B2 (en) * | 2002-04-17 | 2013-07-09 | Covidien Lp | Method and apparatus for anastomosis including an expandable anchor |
US7780687B2 (en) * | 2002-04-17 | 2010-08-24 | Tyco Healthcare Group Lp | Method and apparatus for anastomosis including expandable anchor |
US8236014B2 (en) | 2004-06-14 | 2012-08-07 | Rox Medical, Inc. | Methods for arterio-venous fistula creation |
US8641747B2 (en) * | 2004-06-14 | 2014-02-04 | Rox Medical, Inc. | Devices for arterio-venous fistula creation |
US20050277964A1 (en) * | 2004-06-14 | 2005-12-15 | Rox Medical, Inc. | Methods for arterio-venous fistula creation |
US20050277965A1 (en) * | 2004-06-14 | 2005-12-15 | Rox Medical, Inc. | Devices for arterio-venous fistula creation |
US9138228B2 (en) * | 2004-08-11 | 2015-09-22 | Emory University | Vascular conduit device and system for implanting |
US20060089707A1 (en) * | 2004-08-11 | 2006-04-27 | Emory University | Vascular conduit device and system for implanting |
US8821565B2 (en) | 2005-07-27 | 2014-09-02 | Cook Medical Technologies Llc | Stent/graft device for open surgical placement |
US20070027526A1 (en) * | 2005-07-27 | 2007-02-01 | Cook Critical Care Incorporated | Stent/graft device and method for open surgical placement |
US8202311B2 (en) | 2005-07-27 | 2012-06-19 | Cook Medical Technologies Llc | Stent/graft device and method for open surgical placement |
US20070208410A1 (en) * | 2005-09-02 | 2007-09-06 | Medtronic Vascular, Inc. | Methods and Apparatus for Treatment of Aneurysms Adjacent to Branch Arteries |
US9408730B2 (en) | 2006-10-22 | 2016-08-09 | Idev Technologies, Inc. | Secured strand end devices |
US9585776B2 (en) | 2006-10-22 | 2017-03-07 | Idev Technologies, Inc. | Secured strand end devices |
US10470902B2 (en) | 2006-10-22 | 2019-11-12 | Idev Technologies, Inc. | Secured strand end devices |
US8966733B2 (en) | 2006-10-22 | 2015-03-03 | Idev Technologies, Inc. | Secured strand end devices |
US8876881B2 (en) | 2006-10-22 | 2014-11-04 | Idev Technologies, Inc. | Devices for stent advancement |
US9408729B2 (en) | 2006-10-22 | 2016-08-09 | Idev Technologies, Inc. | Secured strand end devices |
US8739382B2 (en) | 2006-10-22 | 2014-06-03 | Idev Technologies, Inc. | Secured strand end devices |
US9149374B2 (en) | 2006-10-22 | 2015-10-06 | Idev Technologies, Inc. | Methods for manufacturing secured strand end devices |
US9629736B2 (en) | 2006-10-22 | 2017-04-25 | Idev Technologies, Inc. | Secured strand end devices |
US8419788B2 (en) | 2006-10-22 | 2013-04-16 | Idev Technologies, Inc. | Secured strand end devices |
US9895242B2 (en) | 2006-10-22 | 2018-02-20 | Idev Technologies, Inc. | Secured strand end devices |
US9950146B2 (en) | 2007-04-24 | 2018-04-24 | Emory Univeristy | Conduit device and system for implanting a conduit device in a tissue wall |
US9308015B2 (en) | 2007-04-24 | 2016-04-12 | Emory University | Conduit device and system for implanting a conduit device in a tissue wall |
US11027103B2 (en) | 2007-04-24 | 2021-06-08 | Emory University | Conduit device and system for implanting a conduit device in a tissue wall |
US8485411B2 (en) | 2007-05-16 | 2013-07-16 | The Invention Science Fund I, Llc | Gentle touch surgical stapler |
US20080283571A1 (en) * | 2007-05-16 | 2008-11-20 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Sensing surgical fastener |
US8172120B2 (en) | 2007-05-16 | 2012-05-08 | The Invention Science Fund I, Llc | Maneuverable surgical stapler |
US8157147B2 (en) | 2007-05-16 | 2012-04-17 | The Invention Science Fund I, Llc | Surgical stapling instrument with chemical sealant |
US7975894B2 (en) | 2007-05-16 | 2011-07-12 | The Invention Science Fund I, Llc | Sensing surgical fastener |
US7931182B2 (en) | 2007-05-16 | 2011-04-26 | The Invention Science Fund I, Llc | Steerable surgical stapler |
US20080283572A1 (en) * | 2007-05-16 | 2008-11-20 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Surgical stapling instrument with chemical sealant |
US7922064B2 (en) | 2007-05-16 | 2011-04-12 | The Invention Science Fund, I, LLC | Surgical fastening device with cutter |
US7810691B2 (en) | 2007-05-16 | 2010-10-12 | The Invention Science Fund I, Llc | Gentle touch surgical stapler |
US7798385B2 (en) | 2007-05-16 | 2010-09-21 | The Invention Science Fund I, Llc | Surgical stapling instrument with chemical sealant |
US20100301094A1 (en) * | 2007-05-16 | 2010-12-02 | Boyden Edward S | Surgical stapling instrument with chemical sealant |
US20080283576A1 (en) * | 2007-05-16 | 2008-11-20 | Searete Llc. A Limited Liability Corporation Of The State Of Delaware | Surgical fastening device with cutter |
US7832611B2 (en) | 2007-05-16 | 2010-11-16 | The Invention Science Fund I, Llc | Steerable surgical stapler |
US7823761B2 (en) | 2007-05-16 | 2010-11-02 | The Invention Science Fund I, Llc | Maneuverable surgical stapler |
US9445809B2 (en) | 2007-05-16 | 2016-09-20 | Deep Science, Llc | Gentle touch surgical stapler |
US20090125100A1 (en) * | 2007-11-13 | 2009-05-14 | Cook Incorporated | Intraluminal Bypass Prosthesis and Prosthesis Delivery and Deployment Kit |
US20100318173A1 (en) * | 2007-12-21 | 2010-12-16 | Kumaran Kolandaivelu | Endovascular devices/catheter platforms and methods for achieving congruency in sequentially deployed devices |
WO2010107950A1 (en) * | 2009-03-17 | 2010-09-23 | Cytograft Tissue Engineering, Inc. | Guided percutaneous bypass |
US12121460B2 (en) | 2010-05-27 | 2024-10-22 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
US9023095B2 (en) | 2010-05-27 | 2015-05-05 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
US10357232B2 (en) | 2011-01-28 | 2019-07-23 | Apica Cardiovascular Limited | Systems for sealing a tissue wall puncture |
US9532773B2 (en) | 2011-01-28 | 2017-01-03 | Apica Cardiovascular Limited | Systems for sealing a tissue wall puncture |
US10499949B2 (en) | 2011-02-01 | 2019-12-10 | Emory University | Systems for implanting and using a conduit within a tissue wall |
US9320875B2 (en) | 2011-02-01 | 2016-04-26 | Emory University | Systems for implanting and using a conduit within a tissue wall |
US10265206B2 (en) | 2012-04-23 | 2019-04-23 | Pq Bypass, Inc. | Methods and systems for bypassing occlusions in a femoral artery |
US9259340B2 (en) | 2012-04-23 | 2016-02-16 | Pq Bypass, Inc. | Methods and systems for bypassing occlusions in a femoral artery |
WO2013163227A1 (en) | 2012-04-23 | 2013-10-31 | Pq Bypass, Inc. | Methods and systems for bypassing occlusions in a femoral artery |
US10028741B2 (en) | 2013-01-25 | 2018-07-24 | Apica Cardiovascular Limited | Systems and methods for percutaneous access, stabilization and closure of organs |
US11116542B2 (en) | 2013-01-25 | 2021-09-14 | Apica Cardiovascular Limited | Systems and methods for percutaneous access, stabilization and closure of organs |
US10518012B2 (en) | 2013-03-15 | 2019-12-31 | Apk Advanced Medical Technologies, Inc. | Devices, systems, and methods for implanting and using a connector in a tissue wall |
US10485909B2 (en) | 2014-10-31 | 2019-11-26 | Thoratec Corporation | Apical connectors and instruments for use in a heart wall |
US10278851B2 (en) | 2016-10-07 | 2019-05-07 | Pq Bypass, Inc. | Systems and methods for delivering stent grafts |
US11090177B2 (en) | 2016-10-07 | 2021-08-17 | Pq Bypass, Inc. | Systems and methods for delivering stent grafts |
Also Published As
Publication number | Publication date |
---|---|
US20020052637A1 (en) | 2002-05-02 |
US6652544B2 (en) | 2003-11-25 |
WO1998019625A2 (en) | 1998-05-14 |
WO1998019625A3 (en) | 1998-07-02 |
US20010051809A1 (en) | 2001-12-13 |
EP1011458A2 (en) | 2000-06-28 |
US5989276A (en) | 1999-11-23 |
US20030014062A1 (en) | 2003-01-16 |
AU721415B2 (en) | 2000-07-06 |
JP2001503657A (en) | 2001-03-21 |
US20030014063A1 (en) | 2003-01-16 |
US20030014061A1 (en) | 2003-01-16 |
AU5355198A (en) | 1998-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7083631B2 (en) | Percutaneous bypass graft and securing system | |
US6293955B1 (en) | Percutaneous bypass graft and securing system | |
US20230270538A1 (en) | Methods and systems for providing or maintaining fluid flow through body passages | |
AU2021232831B2 (en) | Fenestration devices, systems, and methods | |
US7169164B2 (en) | Apparatus for implanting devices in atrial appendages | |
US20050124937A1 (en) | Expandable percutaneous sheath | |
US20020033180A1 (en) | Device, an introducer and a method for providing a supplemental flow of blood | |
US20070010781A1 (en) | Implantable aorto-coronary sinus shunt for myocardial revascularization | |
US20070010780A1 (en) | Methods of implanting an aorto-coronary sinus shunt for myocardial revascularization | |
WO2007002616A2 (en) | Implantable aorto-coronary sinus shunt for myocardial revascularization and method of usng the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JAFCO G-8 (A) INVESTMENT ENTERPRISE PARTNERSHIP, J Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421 Effective date: 20030917 Owner name: JAFCO G-8 (B) INVESTMENT ENTERPRISE PARTNERSHIP, J Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421 Effective date: 20030917 Owner name: JAFCO GC-1 INVESTMENT ENTERPRISE PARTNERSHIP, JAPA Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421 Effective date: 20030917 Owner name: HAMILTON TECHNOLOGY VENTURES L.P., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421 Effective date: 20030917 Owner name: EDWARDS LIFESCIENCES, LLC, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421 Effective date: 20030917 Owner name: FORWARD VENTURES IV B, L.P., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421 Effective date: 20030917 Owner name: FORWARD VENTURES IV, L.P., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421 Effective date: 20030917 Owner name: ST. PAUL VENTURE CAPITAL VI, LLC, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:CONVERGE MEDICAL, INC.;REEL/FRAME:014025/0421 Effective date: 20030917 |
|
AS | Assignment |
Owner name: CONVERGE MEDICAL, INC., CALIFORNIA Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNORS:ST. PAUL VENTURE CAPITAL VI, LLC;FORWARD VENTURES IV, LP;FORWARD VENTURES IV B, LP;AND OTHERS;REEL/FRAME:014128/0591 Effective date: 20031022 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100801 |