US6406657B1 - Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid - Google Patents

Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid Download PDF

Info

Publication number
US6406657B1
US6406657B1 US09/415,291 US41529199A US6406657B1 US 6406657 B1 US6406657 B1 US 6406657B1 US 41529199 A US41529199 A US 41529199A US 6406657 B1 US6406657 B1 US 6406657B1
Authority
US
United States
Prior art keywords
web
liquid
wetting
fibrous
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/415,291
Inventor
Philip D. Eitzman
Alan D. Rousseau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23645115&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US6406657(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US09/415,291 priority Critical patent/US6406657B1/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EITZMAN, PHILIP D., ROUSSEAU, ALAN D.
Priority to JP2001529835A priority patent/JP4518725B2/en
Priority to PCT/US2000/001829 priority patent/WO2001026778A1/en
Priority to CNB008139342A priority patent/CN1212199C/en
Priority to EP00903414A priority patent/EP1229988B1/en
Priority to CA002385770A priority patent/CA2385770A1/en
Priority to AT00903414T priority patent/ATE370781T1/en
Priority to DE60036127T priority patent/DE60036127T2/en
Priority to PL00354171A priority patent/PL354171A1/en
Priority to AU25161/00A priority patent/AU767679B2/en
Priority to KR1020027004450A priority patent/KR100627757B1/en
Priority to BRPI0014559-9A priority patent/BR0014559B1/en
Priority to RU2002108690/15A priority patent/RU2266771C2/en
Priority to US10/162,753 priority patent/US6824718B2/en
Publication of US6406657B1 publication Critical patent/US6406657B1/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/12Aldehydes; Ketones
    • D06M13/127Mono-aldehydes, e.g. formaldehyde; Monoketones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • D06M13/148Polyalcohols, e.g. glycerol or glucose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/352Heterocyclic compounds having five-membered heterocyclic rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/355Heterocyclic compounds having six-membered heterocyclic rings
    • D06M13/358Triazines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/10Processes in which the treating agent is dissolved or dispersed in organic solvents; Processes for the recovery of organic solvents thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups

Definitions

  • the present invention relates to a method of charging a fibrous web by wetting it with a wetting agent and then contacting it with an aqueous polar liquid, followed by drying.
  • the invention also pertains to an apparatus that is useful for carrying out the inventive method.
  • Nonwoven webs are commonly used as filters in respirators to protect the wearer from inhaling airborne contaminants.
  • U.S. Pat. Nos. 4,536,440, 4,807,619, 5,307,796, and 5,804,295 disclose examples of respirators that use these filters.
  • the electric charge enhances the ability of the nonwoven web to capture particles that are suspended in a fluid.
  • the nonwoven web captures the particles as the fluid passes through the web.
  • the nonwoven web typically contains fibers that comprise dielectric—that is, nonconductive—polymers. Electrically-charged dielectric articles are often referred to as “electrets”, and a variety of techniques have been developed over the years for producing these products.
  • Fibrous electret webs also have been produced by charging them with a corona.
  • U.S. Pat. No. 4,588,537 to Klaase et al. shows a fibrous web that is continuously fed into a corona discharge device while positioned adjacent to one major surface of a substantially-closed dielectric foil.
  • the corona is produced from a high-voltage source that is connected to oppositely-charged thin tungsten wires.
  • Another high-voltage technique for imparting an electrostatic charge to a nonwoven web is described in U.S. Pat. No. 4,592,815 to Nakao. In this charging process, the web is brought into tight contact with a smooth-surfaced ground electrode.
  • Fibrous electret webs also may be produced from polymer films or foils, as described in U.S. Patents Re. 30,782, Re. 31,285, and Re. 32,171 to van Turnhout.
  • the polymer films or foils are electrostatically charged before being fibrillated into fibers that are subsequently collected and processed into a nonwoven fibrous filter.
  • Tribocharging also can occur when high-velocity uncharged jets of gases or liquids are passed over the surface of a dielectric film.
  • Coufal et al. disclose that when jets of an uncharged fluid strike the surface of the dielectric film, the surface becomes charged.
  • a more recent development uses water to impart electric charge to a nonwoven fibrous web (see U.S. Pat. No. 5,496,507 to Angadjivand et al.). Pressurized jets of water or a stream of water droplets are impinged onto a nonwoven web that contains nonconductive microfibers to create the electric charge. The resulting charge provides filtration-enhancing properties. Subjecting the web to an air corona discharge treatment before the hydrocharging operation can further enhance charging.
  • An oily-mist resistant electret filter media for example, has been provided by including a fluorochemical additive in melt-blown polypropylene microfibers; see U.S. Pat. Nos. 5,411,576 and 5,472,481 to Jones et al.
  • the fluorochemical additive has a melting point of at least 25° C. and a molecular weight of about 500 to 2500.
  • U.S. Pat. No. 5,908,598 to Rousseau et al. describes a method where an additive is blended with a thermoplastic resin to form a fibrous web. Jets of water or a stream of water droplets are impinged onto the web at a pressure sufficient to provide the web with filtration-enhancing electret charge. The web is subsequently dried.
  • the additives may be (i) a thermally stable organic compound or oligomer, which compound or oligomer contains at least one perfluorinated moiety, (ii) a thermally stable organic triazine compound or oligomer which contains at least one nitrogen atom in addition to those in the triazine group, or (iii) a combination of (i) and (ii).
  • Japanese Patent Kokoku JP60-947 describes electrets that comprise poly 4-methyl-1-pentene and at least one compound selected from (a) a compound containing a phenol hydroxy group, (b) a higher aliphatic carboxylic acid and its metal salts, (c) a thiocarboxylate compound, (d) a phosphorous compound, and (e) an ester compound.
  • the patent indicates that the electrets have long-term storage stability.
  • filter webs can be produced without deliberately post-charging or electrizing the fibers or the fiber webs (see U.S. Pat. No. 5,780,153 to Chou et al.).
  • the fibers are made from a copolymer that comprises: a copolymer of ethylene, 5 to 25 weight percent of (meth)acrylic acid, and optionally, though less preferably, up to 40 weight percent of an alkyl (meth)acrylate whose alkyl groups have from 1 to 8 carbon atoms.
  • Five to 70% of the acid groups are neutralized with a metal ion, particularly an ion of zinc, sodium, lithium, or magnesium, or a mixture of these.
  • the copolymer has a melt index of 5 to 1000 grams (g) per 10 minutes.
  • the remainder may be a polyolefin such as polypropylene or polyethylene.
  • the fibers may be produced through a melt-blowing process and may be cooled quickly with water to prevent excess bonding.
  • the patent discloses that the fibers have high static retention of any existing or deliberate, specifically induced, static charge.
  • the present invention provides a new method for making a fibrous electret web.
  • the method comprises: wetting a fibrous web, which web comprises nonconductive fibers, with a wetting agent; saturating the wetted web in an aqueous polar liquid; and substantially drying the web.
  • the fibrous web may be a woven web or a nonwoven web, and it may be used as a filter element in a finished article such as a respirator or filter cartridge.
  • the present method differs from known charging methods in that the web is wetted with a wetting agent before being saturated with an aqueous polar liquid.
  • the inventors discovered that the wetting step is beneficial in that it can allow a better performing filter to be provided as measured by the Quality Factor parameter described below.
  • the wetting step may increase the measured charge density of the fibrous web and thus enable the better performance to be obtained.
  • “laqueous” means that the aqueous polar liquid contains at least about 10% water by volume.
  • fibrous means possessing fibers and possibly other ingredients.
  • fibrous electret web means a web that contains fibers and that exhibits a quasi-permanent electric charge.
  • liquid means the state of matter between a solid and a gas.
  • nonconductive means possessing a volume resistivity of about 10 14 ohm ⁇ cm or greater at room temperature (22° C.).
  • nonwoven means a structure or portion of a structure in which fibers are held together by a means other than weaving.
  • polar liquid means a liquid that has a dipole moment of at least about 0.5 Debye and that has a dielectric constant of at least about 10.
  • polymer means an organic material that contains repeating linked molecular units or groups, regularly or irregularly arranged.
  • polymeric means containing a polymer and optionally other ingredients.
  • polymeric fiber-forming material means a composition that contains a polymer, or that contains monomers capable of producing a polymer, and possibly contains other ingredients, and that is capable of being formed into solid fibers.
  • quadrature-permanent means that the electric charge resides in the web under standard atmospheric conditions (22° C., 101,300 Pascals atmospheric pressure, and 50% humidity) for a time period long enough to be significantly measurable.
  • “saturating” means wetting the web with the maximum, or substantially the maximum, amount possible of a liquid.
  • web means a structure that is significantly larger in two dimensions than in a third and that is air permeable.
  • wetting means contacting or coating substantially all the surface area of the web that is desired to be wetted.
  • wetting liquid means a liquid that meets the Wetting Test described below and that dissolves in the aqueous liquid that is used to saturate the web.
  • FIG. 1 is a partially-broken schematic side view of an apparatus 10 for wetting and drying a fibrous web 20 in accordance with the present invention.
  • FIG. 2 is a partially-broken schematic side view of an alternate apparatus 10 ′ for wetting a web 20 using pressure-driven flow in accordance with the present invention.
  • FIG. 3 is a partially-broken schematic side view of another alternate apparatus 10 ′′ for wetting a web 20 using pressure in accordance with the present invention.
  • FIG. 4 is an example of a filtering face mask 50 that can utilize an electret filter medium that has been produced in accordance with the present invention.
  • an electrostatic charge is imparted to a fibrous web by wetting it with a wetting agent, saturating it with an aqueous polar liquid, and drying it substantially.
  • the web may be partially dried after wetting with the wetting agent.
  • the aqueous polar liquid is water. Intimate contact between the web fibers and the aqueous polar liquid may help maximize the electric charge that is imparted to the fibers.
  • Nonwoven fibrous electret webs that have been produced in accordance with the present invention exhibit at least a quasi-permanent electric charge.
  • the nonwoven fibrous electret webs exhibit a “persistent” electric charge, which means that the electric charge resides in the fibers, and hence the nonwoven web, for at least the commonly-accepted useful life of the product in which the electret is employed.
  • DOP Penetration and Pressure Drop Test One test for determining filtration performance of a fibrous web is known as the DOP Penetration and Pressure Drop Test, discussed below.
  • the test involves forcing dioctyl phthalate (DOP) particles through the fibrous web and measuring the penetration of the particles through the web and the pressure drop across the web. From the measured DOP penetration and pressure drop, a quality factor (QF) may be calculated.
  • QF quality factor
  • the filtration efficiency of an electret can be generally estimated from an Initial Quality Factor, QF i .
  • An Initial Quality Factor, QF i is a Quality Factor QF that has been measured before the nonwoven fibrous electret web has been loaded—that is, before the web has been exposed to an aerosol that is intended to be filtered.
  • Preferred nonwoven fibrous electret webs that are produced according to the invention may possess sufficient electric charge to enable the product to exhibit a QF i value of greater than 0.2 (millimeters (mm) H 2 O) ⁇ 1 , more preferably greater than 0.4 (mm H 2 O) —1 , still more preferably greater than 0.7 (mm H 2 O) ⁇ 1 , and even more preferably greater than 0.9 (mm H 2 O) ⁇ 1 when tested according to the DOP Penetration and Pressure Drop Test described below.
  • the initial quality factor of a nonwoven fibrous electret web of the invention preferably exceeds, by at least a factor of 2, the QF i value of an untreated web of essentially the same construction, and more preferably by a factor of at least 10.
  • FIG. 1 schematically illustrates a method for wetting and saturating a fibrous web 20 .
  • the fibrous web 20 is directed to a first mechanism 21 that is adapted to wet 5 the fibrous web 20 .
  • the web 20 moves through a series of rollers to a first vessel 22 that contains wetting liquid 24 .
  • a nip that comprises rollers 25 , 26 compresses and releases the fibrous web 20 while it is submerged in the liquid 24 .
  • the wetting agent 24 can better enter the interstitial spaces between the fibers to fully wet the web 20 .
  • the nip is beneficial to the wetting step because it assists in removing gas from the web.
  • the web 20 After emerging from the first vessel 22 , the web 20 then is directed to a second mechanism 27 that is adapted to saturate the fibrous web 20 .
  • Web 20 enters a second vessel 28 that contains an aqueous polar liquid 30 , which saturates the web 20 in vessel 28 , and in so doing makes intimate contact with the fibers in the web 20 .
  • the web can be removed from the second vessel 28 so that it can be dried using drying system 31 .
  • drying system 31 To dry web 20 , it can be directed through a ringer 32 that includes mating rollers 34 and 36 . Rollers 34 and 36 squeeze excess liquid from the web 20 before the web passes to an active drying apparatus that includes moisture-removing elements 40 , 42 disposed on opposing sides of the web 20 .
  • the active drying apparatus may be an external source that consumes supplied energy for purposes of encouraging all moisture to leave the web.
  • An active drying apparatus may include a heat source such as a flow-through oven, a vacuum source, or an air source such as a convective air apparatus, i.e., a stream of a drying gas. These drying mechanisms may or may not be used in conjunction with mechanical mechanisms such as a centrifuge or rollers to squeeze the polar liquid from the fibrous web.
  • a passive drying mechanism such as ambient air drying, may be used to dry the fibrous web—although air drying is generally not practical for high speed manufacturing requirements.
  • the invention contemplates essentially any operation or apparatus that is capable of encouraging moisture to leave the web without causing significant structural damage to the final product.
  • the resulting electret web can then be cut into sheets, rolled for storage, or formed into various articles, such as respirators or filters.
  • the web can be transported through the apparatus by essentially any device that is capable of moving the web from the mechanism 21 to the second mechanism 25 first and then to the drier 31 .
  • a driven roller is an example of a transport that may be suitable for this purpose, as well as a conveyor, belt, or nip.
  • the nonwoven web Upon being dried, the nonwoven web possesses sufficient electric charge to qualify as an electret 43 .
  • the resulting electret web 43 may also be subjected to further charging techniques that might further enhance the electret charge on the web or might perform some other alteration to the electret charge that could possibly improve filtration performance.
  • the nonwoven fibrous electret web could be exposed to a corona charging operation after (or perhaps before) producing an electret using the process described above. The web could be charged, for example, as described in U.S. Pat. No. 4,588,537 to Klaase et al., or as described in U.S. Pat. No. 4,592,815 to Nakao.
  • the web could also be further hydrocharged as described in U.S. Pat. No. 5,496,507 to Angadjivand et al.
  • the charge of the fibrous electret web also may be supplemented using charging techniques disclosed in the commonly assigned U.S. Patent applications entitled Method and Apparatus for Making a Nonwoven Fibrous Electret from Free-Fiber and Polar Liquid (Attorney Docket No. 52830USA3A); Method of Making a Fibrous Electret Web Using A Nonaqueous Polar Liquid (Attorney Docket No. 52829USA6A), all filed on the same day as the present document.
  • FIG. 2 illustrates an alternate embodiment for wetting and/or saturating the fibrous web 20 .
  • the web 20 travels sequentially from a mechanism 21 ′ that wets the liquid, to a mechanism 25 that saturates the web, and then to a mechanism 31 that dries the web.
  • a vacuum bar 38 encourages the wetting liquid 24 to flow through the fibrous web 20 by creating a low pressure condition on one side of the web 20 .
  • the vacuum bar 38 is hollow and is permeable to liquid flow on the side closest to the web 20 .
  • the interior of the vacuum bar 38 is held at a pressure sufficiently lower than the vessel 22 so that the wetting liquid will flow through the web 20 and into the vacuum bar 38 .
  • Equipment that uses submerged vacuum bars is marketed by TUE-ESCALE Indus. of Flowery Branch, Ga., U.S.A.
  • FIG. 3 illustrates another alternate embodiment in which the fibrous web is sequentially wetted in a first stage 21 ′′, followed by being saturated in a second stage 25 , which in turn is followed by a drying step 31 .
  • the pressurized vessel 22 ′ has a cover 44 that has a pair of slots 46 through which the fibrous web 20 can travel.
  • the elevated pressure in vessel 22 ′ can be maintained or controlled by adding the wetting liquid through port 48 , as necessary.
  • any gas trapped in the fibrous web 20 is compressed and occupies a smaller volume.
  • the wetting liquid 24 can flow into the web 20 as the gas is compressed.
  • sonic or ultrasonic vibrations could be used to wet web 20 with the wetting liquid.
  • a sonic or ultrasonic generator may be used to vibrate the wetting liquid 24 while the web 20 is immersed in the liquid. The vibrations should be of sufficient amplitude to cause any gas trapped in the web 20 to break up into small bubbles that will be easily displaced from the web by the wetting liquid.
  • the fibrous web may be sprayed with the wetting agent and/or a polar aqueous liquid using the method and apparatus disclosed in U.S. Pat. No. 5,496,507 to Angadjivand et al.
  • any apparatus or method that helps remove gas from the web is contemplated for use in achieving adequate web wetting.
  • the whole web is shown being wetted and saturated in the Figures, this is not necessary for practicing the present invention. It may be desirable, for example, to wet and saturate only portions of a web to create a web that has selected areas that act as an electret.
  • the relative ease with which a given fibrous web can be wet is dependent on the surface energy of the fibrous web and the surface tension of the wetting liquid. Less work is required to wet a fibrous web with a wetting liquid that has a surface tension that is substantially less than the surface energy of the web, particularly when compared to the work that is required to wet a fibrous web with wetting liquid that has a surface tension that is equal to or greater than the surface energy of the web.
  • the wetting liquid preferably has a surface tension that is less than the surface energy of the fibrous web, and more preferably is at least 5 dynes per centimeter (dynes/cm) less than the surface energy of the fibrous web.
  • a liquid that qualifies as a “wetting liquid” is one that satisfies the Wetting Test.
  • the Wetting Test is performed as follows. First, a dry test specimen is placed on a smooth, horizontal surface. A small drop—approximately 5 millimeters in diameter (0.05 ml volume)—is placed on the test specimen using a dropping bottle. The drop is observed for 10 seconds. If the drop substantially soaks into the web within this time frame, then the liquid qualifies as a wetting liquid. Preferably the drop will soak into the web—that is, satisfy the Wetting Test—within about 5 seconds, and more preferably within about 2 seconds.
  • the wetting liquid also is capable of dissolving in the aqueous liquid that is used to saturate the web. The wetting liquid should be capable of yielding a single phase when dissolved in the aqueous liquid.
  • the surface tension of the aqueous polar liquid plays an important role in imparting an electric charge to the fibrous web. Effective charging may be difficult to establish unless the surface tension of the aqueous polar liquid is greater than the surface energy of the fibrous web.
  • the surface tension of the polar aqueous liquid is preferably 5 dynes/cm greater than the surface energy of the fibrous web and more preferably 10 dynes/cm greater than the surface energy of the fibrous web.
  • Polypropylene is a polymer that is commonly used to create melt-blown fibrous webs. It has a surface energy of about 30 dynes/cm. In webs that have more than one type of fiber, the fiber with the higher surface energy might be charged more than fibers with a lower surface energy.
  • a wetting liquid can facilitate the wetting of fibrous webs with an aqueous polar liquid by removing trapped gas.
  • Useful wetting liquids may include solutions of surfactants, such as detergents, in polar aqueous liquids.
  • the surfactant can be a nonionic surfactant such as t-octylphenoxypolyethoxyethanol, an anionic surfactant such as sodium lauryl sulfate, or a cationic surfactant such as alkyldimethylbenzylammonium chloride.
  • Other wetting liquids may include water-miscible solvents that can wet a nonwoven web in pure form or as part of an aqueous solution due to the low surface tension of the solvent.
  • the wetting liquid can be an alcohol such as isopropanol, ethanol, methanol, 2-propanol, or a ketone such as acetone, or combinations of the alcohols and/or ketones.
  • the wetting liquid may also include the use of alcohols or ketones by themselves or in conjunction with water as an aqueous solution.
  • the method of the invention can be carried out in a batchwise process, which involves a stepwise soaking of the web in the wetting liquid, followed by being submerged in an aqueous polar liquid for a designated period of time, removing the web from the aqueous polar liquid, and then allowing the web to dry.
  • Energy or mechanical work can be applied to the wetting liquid, aqueous polar liquid, and/or the fibrous web to improve wetting and/or saturation as discussed above. The use of these procedures can enable the electret web to be produced continuously.
  • the velocity of the wetting liquid and/or aqueous polar liquid relative to the nonwoven web is preferably less than about 50 meters/second (m/s), and more preferably less than about 25 m/s.
  • Lower velocities are generally desirable to avoid damaging the web, which may occur when the web is relatively delicate—for example, a web that contains melt-blown microfibers.
  • Nonwoven fibrous webs that contain microfibers can be damaged if excess energy or mechanical work is used to achieve liquid wetting or saturation. Care therefore should be taken when handling a microfiber-containing web.
  • the wetting liquid is in contact with the nonwoven web for at least 0.001 seconds, more preferably for at least 1 to 10 seconds in a continuous process before contacting the web with the aqueous polar liquid.
  • the aqueous polar liquid is preferably wetted on the fibers of the fibrous web for at least 0.001 seconds, and typically for 1 second to 5 minutes.
  • Aqueous polar liquids suitable for use in the present method have a dipole moment of at least 0.5 Debye, and more preferably at least 0.75 Debye, and still more preferably at least 1.0 Debye.
  • the dielectric constant is at least 10, preferably at least 20, and more preferably at least 40.
  • Aqueous polar liquids that have higher dielectric constants tend to create webs that show greater filtration performance enhancement.
  • nonaqueous components that may be used in the aqueous polar liquids include methanol, ethylene glycol, dimethyl sulfoxide, dimethylformamide, acetonitrile, and acetone, among others.
  • the aqueous polar liquid and the wetting agent preferably do not leave a conductive, non-volatile residue that would mask or otherwise dissipate charge on the web.
  • Water has a dipole moment of about 1.85 and a dielectric constant of about 78 to 80.
  • the aqueous polar liquid comprises at least 10 volume % water, more preferably at least 30 volume % water, still more preferably at least 50 volume % water, and even more preferably at least 80 volume % water.
  • One hundred % water may also be used.
  • Water is a preferred polar liquid because it is inexpensive, and no significant dangerous or harmful vapors or pollutants are generated when it contacts the molten or semi-molten fiber-forming material.
  • purified water made through, for example, distillation, reverse osmosis, or deionization, is used in the present invention rather than simply tap water. Purified water is preferred because non-pure water can hinder effective fiber charging.
  • Webs suitable for use in this present invention may be made from a variety of techniques, including air laid processes, wet laid processes, and melt blown processes such as described in Van A. Wente, Superfine Thermoplastic Fibers , 48 I NDUS . E NGN . C HEM . 1342-46 and in Report No. 4364 of the Naval Research Laboratories, published May 25, 1954, entitled Manufacture of Super Fine Organic Fibers by Van A. Wente et al.
  • Microfibers, particularly meltblown microfibers are particularly suitable for use in fibrous webs that are used as filters.
  • “Microfiber” means fiber(s) that have an effective diameter of about 25 micrometers or less. Effective fiber diameter can be calculated using equation number 12 in Davies, C.
  • the microfibers preferably have an effective fiber diameter of less than about 20 micrometers, and more preferably about 1 to about 10 micrometers.
  • Staple fibers may also be combined with the microfibers to provide a more lofty, less dense web. Reducing web density can reduce the pressure drop across the web. Lower pressure drops are desirable in personal respirators because it can make the respirator more comfortable to wear.
  • no more than about 90 weight percent staple fibers are present, more preferably no more than about 70 weight percent. Webs that contain staple fibers are disclosed in U.S. Pat. No. 4,118,531 to Hauser.
  • the nonwoven web preferably has a basis weight less than about 500 grams/meter 2 (g/m 2 ), more preferably about 5 to about 400 g/m 2 , and still more preferably about 20 to 100 g/m 2 .
  • the basis weight can be controlled, for example, by changing either die throughput or collector speed.
  • the thickness of the nonwoven web for many filtration applications is about 0.25 to about 20 millimeters (mm), more typically about 0.5 to about 4 mm.
  • the nonwoven web preferably has a solidity (a unitless parameter that defines the solids fraction in the web) of at least 0.03, more preferably about 0.04 to about 0.15, and still more preferably about 0.05 to about 0.1.
  • the inventive method can impart a generally uniform charge distribution throughout the resulting nonwoven web, without regard to basis weight, thickness, or solidity of the resulting media.
  • Active particulate also may be included in the electret webs for various purposes, including sorbent purposes, catalytic purposes, and others.
  • U.S. Pat. No. 5,696,199 to Senkus et al. describes various active particulate that may be suitable. Active particulate that has sorptive properties—such as activated carbon or alumina—may be included in the web to remove organic vapors during filtration operations. The active particulate may be present in general in amounts up to about 80 volume percent of the contents of the web.
  • Particle-loaded nonwoven webs are described, for example, in U.S. Pat. Nos. 3,971,373 to Braun, U.S. Pat. No. 4,100,324 to Anderson, and U.S. Pat. No. 4,429,001 to Kolpin et al.
  • Polymers which may be suitable for use in producing fibers that are useful in this invention, include thermoplastic organic nonconductive polymers. These polymers are generally capable of retaining a high quantity of trapped charge and are capable of being processed into fibers, such as through a melt-blowing apparatus or a spun-bonding apparatus.
  • thermoplastic refers to a polymeric material that softens when exposed to heat.
  • organic means the backbone of the polymer includes carbon atoms.
  • Preferred polymers include polyolefins, such as polypropylene, poly-4-methyl-1-pentene, blends or copolymers containing one or more of these polymers, and combinations of these polymers.
  • Other polymers may include polyethylene, other polyolefins, polyvinylchlorides, polystyrenes, polycarbonates, polyethylene terephthalate, other polyesters, and combinations of these polymers and other nonconductive polymers.
  • the fibers may be made from these polymers in conjunction with other suitable additives.
  • the fibers also may be extruded or otherwise formed to have multiple polymer components. See U.S. Pat. No. 4,729,371 to Krueger and Dyrud and U.S. Pat. Nos. 4,795,668, and 4,547,420 to Krueger and Meyer.
  • the different polymer components may be arranged concentrically or longitudinally along the length of the fiber to create, for example, bicomponent fibers.
  • the fibers may be arranged to form a macroscopically homogeneous web, which is a web that is made from fibers that each have the same general composition.
  • the fibers used in the invention do not need to contain ionomers, particularly metal ion neutralized copolymers of ethylene and acrylic or methacrylic acid or both to produce a fibrous product suitable for filtration applications.
  • Nonwoven fibrous electret webs can be suitably produced from the polymers described above without containing 5 to 25 weight percent (meth)acrylic acid with acid groups partially neutralized with metal ions.
  • the performance of the electret web can be enhanced by including additives in fiber-forming material before contacting it to a polar liquid.
  • Appropriate additives can be added to the fiber-forming material before the fibers are produced.
  • an “oily-mist performance enhancing additive” is used in conjunction with the fibers or the fiber-forming materials.
  • An “oily-mist performance enhancing additive” is a component which, when added to the fiber-forming material, or for example, is placed on the resulting fiber, is capable of enhancing the oily aerosol filtering ability of the nonwoven fibrous electret web.
  • Fluorochemicals can be added to the polymeric material to enhance electret performance.
  • U.S. Pat. Nos. 5,411,576 and 5,472,481 to Jones et al. describe the use of a melt-processable fluorochemical additive that has a melt temperature of at least 25° C. and has a molecular weight of about 500 to 2500. This fluorochemical additive may be employed to provide better oily-mist resistance.
  • One additive class that is known to enhance electrets that have been charged with water jets are compounds that have a perfluorinated moiety and a fluorine content of at least 18% by weight of the additive—see U.S. Pat. No. 5,908,598 to Rousseau et al.
  • An additive of this type is a fluorochemical oxazolidinone described in U.S. Pat. No. 5,411,576 as “Additive A” of at least 0.1% by weight of the thermoplastic material.
  • the additive ChimassorbTM and/or the above additives are present in an amount of about 0.1% to about 5% by weight of the polymer; more preferably, the additive(s) is present in an amount from about 0.2% to about 2% by weight of the polymer; and still more preferably is present in an amount from about 0.2 to about 1 weight % of the polymer.
  • Some other hindered amines are also known to increase the filtration-enhancing charge imparted to the web site.
  • Fibers that contain additives can be quenched after shaping a heated molten blend of the polymer and additive—followed by annealing and charging steps—to create an electret article.
  • Enhanced filtration performance can be imparted to the article by making the electret in this manner—see U.S. patent application Ser. No. 08/941,864, which corresponds to International Publication WO 99/16533.
  • Additives also may be placed on the web after its formation by, for example, using the surface fluorination technique described in U.S. patent application Ser. No. 09/109,497, filed Jul. 2, 1998 by Jones et al.
  • the polymeric fiber-forming material has a volume resistivity of 10 14 ohm ⁇ cm or greater at room temperature. Preferably, the volume resistivity is about 10 16 ohm ⁇ cm or greater. Resistivity of the polymeric fiber-forming material can be measured according to standardized test ASTM D 257-93.
  • the fiber-forming material used to form the melt blown fibers also should be substantially free from components such as antistatic agents, which could increase the electrical conductivity or otherwise interfere with the fiber's ability to accept and hold electrostatic charges.
  • Nonwoven webs of this invention may be used in filtering masks that are adapted to cover at least the nose and mouth of a wearer.
  • FIG. 4 illustrates a filtering face mask 50 that may be constructed to contain an electrically-charged nonwoven web that is produced according to the present invention.
  • the generally cup-shaped body portion 52 is adapted to fit over the mouth and nose of the wearer.
  • a strap or harness system 54 may be provided to support the mask 50 on the wearer's face.
  • the harness 54 may employ more than one strap 56 and may come in a variety of configurations—see, for example, U.S. Pat. No. 4,827,924 to Japuntich et al., U.S. Pat. No. 5,237,986 to Seppalla et al., and U.S. Pat. No. 5,464,010 to Byram.
  • nonwoven fibrous electret webs examples include U.S. Pat. No. 4,536,440 to Berg, U.S. Pat. No. 4,807,619 to Dyrud et al., U.S. Pat. No. 4,883,547 to Japuntich, U.S. Pat. No. 5,307,796 to Kronzer et al., and U.S. Pat. No. 5,374,458 to Burgio.
  • the nonwoven fibrous electret web is used as a filter in the cub-shaped mask body.
  • the electret filter media also may be used, for example, in a filter cartridge for a respirator, such as the filter cartridge disclosed in U.S. Pat.
  • a nonwoven fibrous electret web produced in accordance with the present invention may be substantially unpolarized in a plane normal to the plane of the web. Fibers that have been charged in this manner ideally exhibit the charge configuration shown in FIG. 5C of U.S. patent application Ser. No. 08/865,362. If the fibrous web is also subjected to a corona charging operation, it would exhibit a charge configuration similar to the configuration shown in FIG. 5B of that patent application. A web, formed from fibers charged solely using the present method, typically has unpolarized trapped charge throughout the volume of the web.
  • Substantially unpolarized trapped charge refers to a fibrous electret web that exhibits less than 1 ⁇ C/m 2 of detectable discharge current using TSDC analysis, where the denominator is the electrode surface area. This charge configuration can be shown by subjecting the web to thermally-simulated discharge current (TSDC).
  • TSDC thermally-simulated discharge current
  • Thermally-stimulated discharge analysis involves heating an electret web so that the frozen or trapped charge regains mobility and moves to some lower energy configuration to generate a detectable external discharge current.
  • thermally-stimulated discharge current see Lavergne et al., A review of Thermo-Stimulated Current , IEEE E LECTRICAL I NSULATION M AGAZNE , vol. 9, no. 2, 5-21, 1993, and Chen et al., Analysis of Thermally Stimulated Process , Pergamon Press, 1981.
  • An electric charge polarization can be induced in a web that has been charged according to the present invention by elevating the temperature to some level above the glass transition temperature (T g ) of the polymer, which is the temperature where a polymer changes to a viscous or rubbery condition from a hard and relatively-brittle one.
  • T g glass transition temperature
  • T m polymer's melting point
  • the discharge current is plotted on the y axis (ordinate) against the temperature on the x axis (abscissa).
  • the peak (current maximum) position and shape of the discharge current are characteristics of the mechanism by which the charges have been stored in the electret web. For electret webs that contain a charge, the peak maximum and shape are related to the configuration of the charge trapped in the electret material. The amount of charge produced in the outside circuit due to movement of the charge inside the electret web to a lower energy state upon heating can be determined by integrating the discharge peak(s).
  • Fibrous electret webs of the invention exhibit a Measured Charge Density, which is a measure of the relative amount of unpolarized trapped charge.
  • the Measured Charge Density can be ascertained using the procedure described below.
  • Fibrous electret webs of the invention preferably exhibit a Measured Charge Density of at least 0.3 microcoloumbs per square meter ( ⁇ C/m 2 ), more preferably a Measured Charge Density of at least 0.6 ⁇ C/m 2 , and still more preferably at least 0.9 ⁇ C/m 2 . In some instances, Measured Charge Density can exceed 7 ⁇ C/m 2 .
  • the nonwoven web was prepared generally as described by Van A. Wente, 48 I NDUS . & E NGN . C HEM . 1342-46 (1956).
  • the thermoplastic resin was ESCORENE 3505G polypropylene (available from Exxon Corp.) unless otherwise specified.
  • the extruder was a Berstorff 60 millimeter (mm), 44 to 1, eight barrel zone, co-rotating twin screw extruder. When an additive was incorporated in the resin, it was prepared as a 10-15 weight % concentrate in a Werner Pfleiderer 30 mm, 36 to 1 corotating twin screw extruder.
  • the water was purified by reverse osmosis and deionization.
  • the basis weight of the web was about 54-60 grams/meter 2 , unless otherwise specified.
  • the DOP Penetration and Pressure Drop Test was performed by forcing dioctyl phthalate (DOP) 0.3 micrometer mass median diameter particles through a sample of the nonwoven web which is 11.45 centimeter (4.5 inches) diameter at a rate of 42.5 liters/minute. The face velocity on the sample was 6.9 centimeters per second (cm/s).
  • the DOP particles were generated using a TSI No. 212 sprayer (available from TSI of St. Paul, Minn.) with four orifices and 207 kilo pascals (kPa) (30 psi) of clean air at a concentration of between about 70 and about 110 milligrams/meter 3 .
  • the samples were exposed to the aerosol of DOP particles for 30 seconds.
  • the penetration of the DOP particles through the samples was measured using an optical scattering chamber, Percent Penetration Meter Model TPA-8F available from Air Techniques Inc. of Baltimore, Md.
  • the pressure drop ( ⁇ P) across the sample was measured using an electronic manometer and reported in millimeters of water.
  • the DOP penetration and pressure drop values were used to calculate a quality factor “QF value” from the natural log (1n) of the DOP penetration by the following formula:
  • Electric charge polarizations were induced in four samples of each web by (i) heating each sample to a temperature of 100° C., (ii) poling each sample in the presence of a DC field of 2.5 kilovolts per millimeter (KV/mm) at 100° C. for poling periods of 5, 10, 15 or 20 minutes, and (iii) cooling each sample to ⁇ 50° C. in the presence of the DC field to “freeze” the trapped and poled charge in the web. Each web sample was then reheated so that the frozen charge regained mobility and moved to a lower energy state, generating a detectable external discharge current. Specifically, after poling in the DC field mentioned above, each web sample was reheated from about ⁇ 50° C.
  • the uncorrected measured charge density of each sample was determined by calculating the area under the discharge peaks and dividing the result by the area of the sample.
  • the uncorrected measured charge density of each web was set equal to highest value of uncorrected measured charge density among the four samples analyzed for each web.
  • Polarization and subsequent thermally-stimulated discharge was performed using a Solomat TSC/RMA Model 91000 with a pivot electrode, distributed by TherMold Partners, L.P., Thermal Analysis Instruments of Stanford, Conn.
  • the measured charge density arising from trapped, unpolarized charge can be determined by analyzing an untreated web of the same composition and physical characteristics.
  • the measured charge density of the treated web is determined by subtracting the uncorrected measured charge density of the untreated from the uncorrected measured charge density of the treated web.
  • a nonwoven web that contained blown polypropylene microfibers was prepared as described above using ESCORENE 3505G polypropylene (available from Exxon Corp.). The effective fiber diameter of the samples was about 8-9 ⁇ m. Individual samples about 22 inches by about 11 inches (55.9 cm by 27.9 cm) were cut from this web. One sample was soaked in isopropanol, removed, hung up in a fume hood while excess isopropanol dripped off. The sample was then immersed in about 8 liters of deionized water for about 10 to 20 minutes, removed, passed through a wringer to remove excess water, and air dried overnight. Comparative sample C1 was soaked in isopropanol, removed, passed through a wringer, and air dried overnight. Comparative sample C2 was unwetted.
  • Circular samples about 5.25 inches in diameter (13.3 cm) were cut from the samples and were subjected to the DOP Penetration and Pressure Drop Test using the center 4.5 inches (11.4 cm) of each circle.
  • QF i was calculated for each sample as described above. The results of the two evaluations conducted for each web sample were averaged and are given in Table 1.
  • Example 1 wetted with isopropanol followed by saturation with water demonstrated a significantly higher Initial Quality Factor than the comparative samples.
  • a web that contained blown polypropylene microfibers was prepared according to Example 1 and Comparative Examples C1-C2, except 1 weight % of a fluorochemical oxazolidinone additive, described in U.S. Pat. No. 5,411,576 as “Additive A,” was added to the polypropylene melt prior to forming the blown microfibers.
  • Additive A has the following formula:
  • the web also was annealed at about 140° C. for about 10 minutes. Samples were cut and were wetted as described in Example 1 and Comparative Examples C1-C2. All samples had an effective fiber diameter of about 8-9 ⁇ m and had a basis weight of about 57 grams/meter 2 . Samples were cut and were evaluated for filtration performance as in the previous examples. The results of duplicate evaluations were averaged and are given in Table 3.
  • a web that contained blown polypropylene microfibers was prepared as described in Example 1 and Comparative Examples C1-C2 except that about 0.5 wt % Chimassorb 944 LF was added to the polypropylene melt before forming the blown microfibers. Samples were cut and were wetted as described in Example 1 and Comparative Examples C1-C2. All samples had similar effective fiber diameters and basis weights. Samples were cut and were evaluated for filtration performance as in the previous examples. The results are given in Table 5.
  • Example 3 shows that water can be used to enhance filtration performance of nonwoven polymeric webs.
  • Example 3 did not show an improvement over Example 1, even though it contained the ChimassorbTM additive. This result is believed to have occurred because ChimassorbTM is soluble in isopropanol.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Filtering Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Electrostatic Separation (AREA)

Abstract

A method for imparting an electrostatic charge to a nonwoven fibrous web 20. The fibrous web 20 is wetted with a wetting liquid 24, followed by being saturated with an aqueous polar liquid 30 and drying 31. The resulting dried product is an electret article 43 that could be used as an air filter in, for example, a respirator 50.

Description

The present invention relates to a method of charging a fibrous web by wetting it with a wetting agent and then contacting it with an aqueous polar liquid, followed by drying. The invention also pertains to an apparatus that is useful for carrying out the inventive method.
BACKGROUND
Electrically-charged nonwoven webs are commonly used as filters in respirators to protect the wearer from inhaling airborne contaminants. U.S. Pat. Nos. 4,536,440, 4,807,619, 5,307,796, and 5,804,295 disclose examples of respirators that use these filters. The electric charge enhances the ability of the nonwoven web to capture particles that are suspended in a fluid. The nonwoven web captures the particles as the fluid passes through the web. The nonwoven web typically contains fibers that comprise dielectric—that is, nonconductive—polymers. Electrically-charged dielectric articles are often referred to as “electrets”, and a variety of techniques have been developed over the years for producing these products.
Early work relating to electrically-charging polymer foils is described by P. W. Chudleigh in Mechanism of Charge Transfer to a Polymer Surface by a Conducting Liquid Contact, 21 APPL. PHYS. LETT., 547-48 (Dec. 1, 1972), and in Charging of Polymer Foils Using Liquid Contacts, 47 J. APPL. PHYS., 4475-83 (October 1976). Chudleigh's method involves charging a polyfluoroethylene polymer foil by applying a voltage to the foil. The voltage is applied through a conducting liquid that contacts the foil surface.
An early-known technique for making a polymeric electret in fibrous form is disclosed in U.S. Pat. No. 4,215,682 to Kubic and Davis. In this method, the fibers are bombarded with electrically-charged particles as they issue from a die orifice. The fibers are created using a “melt-blowing” process, where a stream of gas, which is blown at high velocity next to the die orifice, draws out the extruded polymeric material and cools it into a solidified fiber. The bombarded melt-blown fibers accumulate randomly on a collector to create the fibrous electret web. The patent mentions that filtering efficiency can be improved by a factor of two or more when the melt-blown fibers are electrically-charged in this fashion.
Fibrous electret webs also have been produced by charging them with a corona. U.S. Pat. No. 4,588,537 to Klaase et al., for example, shows a fibrous web that is continuously fed into a corona discharge device while positioned adjacent to one major surface of a substantially-closed dielectric foil. The corona is produced from a high-voltage source that is connected to oppositely-charged thin tungsten wires. Another high-voltage technique for imparting an electrostatic charge to a nonwoven web is described in U.S. Pat. No. 4,592,815 to Nakao. In this charging process, the web is brought into tight contact with a smooth-surfaced ground electrode.
Fibrous electret webs also may be produced from polymer films or foils, as described in U.S. Patents Re. 30,782, Re. 31,285, and Re. 32,171 to van Turnhout. The polymer films or foils are electrostatically charged before being fibrillated into fibers that are subsequently collected and processed into a nonwoven fibrous filter.
Mechanical approaches too have been used to impart an electric charge to fibers. U.S. Pat. No. 4,798,850 to Brown describes a filter material that contains a mixture of two different crimped synthetic polymer fibers that have been carded into a fleece and then needled to form a felt. The patent describes mixing the fibers well so that they become electrically-charged during the carding. The process disclosed in Brown is commonly referred to as “tribocharging”.
Tribocharging also can occur when high-velocity uncharged jets of gases or liquids are passed over the surface of a dielectric film. In U.S. Pat. No. 5,280,406, Coufal et al. disclose that when jets of an uncharged fluid strike the surface of the dielectric film, the surface becomes charged.
A more recent development uses water to impart electric charge to a nonwoven fibrous web (see U.S. Pat. No. 5,496,507 to Angadjivand et al.). Pressurized jets of water or a stream of water droplets are impinged onto a nonwoven web that contains nonconductive microfibers to create the electric charge. The resulting charge provides filtration-enhancing properties. Subjecting the web to an air corona discharge treatment before the hydrocharging operation can further enhance charging.
Adding certain additives to the web has improved the performance of electrets. An oily-mist resistant electret filter media, for example, has been provided by including a fluorochemical additive in melt-blown polypropylene microfibers; see U.S. Pat. Nos. 5,411,576 and 5,472,481 to Jones et al. The fluorochemical additive has a melting point of at least 25° C. and a molecular weight of about 500 to 2500.
U.S. Pat. No. 5,908,598 to Rousseau et al. describes a method where an additive is blended with a thermoplastic resin to form a fibrous web. Jets of water or a stream of water droplets are impinged onto the web at a pressure sufficient to provide the web with filtration-enhancing electret charge. The web is subsequently dried. The additives may be (i) a thermally stable organic compound or oligomer, which compound or oligomer contains at least one perfluorinated moiety, (ii) a thermally stable organic triazine compound or oligomer which contains at least one nitrogen atom in addition to those in the triazine group, or (iii) a combination of (i) and (ii).
Other electrets that contain additives are described in U.S. Pat. No. 5,057,710 to Nishiura. The polypropylene electrets disclosed in Nishiura contain at least one stabilizer selected from hindered amines, nitrogen-containing hindered phenols, and metal-containing hindered phenols. The patent discloses that an electret that contains these additives can offer high heat-stability. The electret treatment was carried out by placing the nonwoven fabric sheet between a needle-like electrode and an earth electrode. U.S. Pat. Nos. 4,652,282 and 4,789,504 to Ohmori et al. describe incorporating a fatty acid metal salt in an insulating polymer to maintain high dust-removing performance over a long period of time. Japanese Patent Kokoku JP60-947 describes electrets that comprise poly 4-methyl-1-pentene and at least one compound selected from (a) a compound containing a phenol hydroxy group, (b) a higher aliphatic carboxylic acid and its metal salts, (c) a thiocarboxylate compound, (d) a phosphorous compound, and (e) an ester compound. The patent indicates that the electrets have long-term storage stability.
A recently-published U.S. patent discloses that filter webs can be produced without deliberately post-charging or electrizing the fibers or the fiber webs (see U.S. Pat. No. 5,780,153 to Chou et al.). The fibers are made from a copolymer that comprises: a copolymer of ethylene, 5 to 25 weight percent of (meth)acrylic acid, and optionally, though less preferably, up to 40 weight percent of an alkyl (meth)acrylate whose alkyl groups have from 1 to 8 carbon atoms. Five to 70% of the acid groups are neutralized with a metal ion, particularly an ion of zinc, sodium, lithium, or magnesium, or a mixture of these. The copolymer has a melt index of 5 to 1000 grams (g) per 10 minutes. The remainder may be a polyolefin such as polypropylene or polyethylene. The fibers may be produced through a melt-blowing process and may be cooled quickly with water to prevent excess bonding. The patent discloses that the fibers have high static retention of any existing or deliberate, specifically induced, static charge.
SUMMARY OF THE INVENTION
The present invention provides a new method for making a fibrous electret web. In brief summary, the method comprises: wetting a fibrous web, which web comprises nonconductive fibers, with a wetting agent; saturating the wetted web in an aqueous polar liquid; and substantially drying the web. The fibrous web may be a woven web or a nonwoven web, and it may be used as a filter element in a finished article such as a respirator or filter cartridge.
The present method differs from known charging methods in that the web is wetted with a wetting agent before being saturated with an aqueous polar liquid. The inventors discovered that the wetting step is beneficial in that it can allow a better performing filter to be provided as measured by the Quality Factor parameter described below. The wetting step may increase the measured charge density of the fibrous web and thus enable the better performance to be obtained.
As used in this document:
“laqueous” means that the aqueous polar liquid contains at least about 10% water by volume.
“electric charge” means that there is charge separation.
“fibrous” means possessing fibers and possibly other ingredients.
“fibrous electret web” means a web that contains fibers and that exhibits a quasi-permanent electric charge.
“liquid” means the state of matter between a solid and a gas.
“nonconductive” means possessing a volume resistivity of about 1014 ohm·cm or greater at room temperature (22° C.).
“nonwoven” means a structure or portion of a structure in which fibers are held together by a means other than weaving.
“polar liquid” means a liquid that has a dipole moment of at least about 0.5 Debye and that has a dielectric constant of at least about 10.
“polymer” means an organic material that contains repeating linked molecular units or groups, regularly or irregularly arranged.
“polymeric” means containing a polymer and optionally other ingredients.
“polymeric fiber-forming material” means a composition that contains a polymer, or that contains monomers capable of producing a polymer, and possibly contains other ingredients, and that is capable of being formed into solid fibers.
“quasi-permanent” means that the electric charge resides in the web under standard atmospheric conditions (22° C., 101,300 Pascals atmospheric pressure, and 50% humidity) for a time period long enough to be significantly measurable.
“saturating” means wetting the web with the maximum, or substantially the maximum, amount possible of a liquid.
“web” means a structure that is significantly larger in two dimensions than in a third and that is air permeable.
“wetting” means contacting or coating substantially all the surface area of the web that is desired to be wetted.
“wetting liquid” means a liquid that meets the Wetting Test described below and that dissolves in the aqueous liquid that is used to saturate the web.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a partially-broken schematic side view of an apparatus 10 for wetting and drying a fibrous web 20 in accordance with the present invention.
FIG. 2 is a partially-broken schematic side view of an alternate apparatus 10′ for wetting a web 20 using pressure-driven flow in accordance with the present invention.
FIG. 3 is a partially-broken schematic side view of another alternate apparatus 10″ for wetting a web 20 using pressure in accordance with the present invention.
FIG. 4 is an example of a filtering face mask 50 that can utilize an electret filter medium that has been produced in accordance with the present invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
In the present invention, an electrostatic charge is imparted to a fibrous web by wetting it with a wetting agent, saturating it with an aqueous polar liquid, and drying it substantially. The web may be partially dried after wetting with the wetting agent. In one embodiment, the aqueous polar liquid is water. Intimate contact between the web fibers and the aqueous polar liquid may help maximize the electric charge that is imparted to the fibers.
Nonwoven fibrous electret webs that have been produced in accordance with the present invention exhibit at least a quasi-permanent electric charge. Preferably, the nonwoven fibrous electret webs exhibit a “persistent” electric charge, which means that the electric charge resides in the fibers, and hence the nonwoven web, for at least the commonly-accepted useful life of the product in which the electret is employed.
One test for determining filtration performance of a fibrous web is known as the DOP Penetration and Pressure Drop Test, discussed below. The test involves forcing dioctyl phthalate (DOP) particles through the fibrous web and measuring the penetration of the particles through the web and the pressure drop across the web. From the measured DOP penetration and pressure drop, a quality factor (QF) may be calculated. The filtration efficiency of an electret can be generally estimated from an Initial Quality Factor, QFi. An Initial Quality Factor, QFi, is a Quality Factor QF that has been measured before the nonwoven fibrous electret web has been loaded—that is, before the web has been exposed to an aerosol that is intended to be filtered.
Preferred nonwoven fibrous electret webs that are produced according to the invention may possess sufficient electric charge to enable the product to exhibit a QFi value of greater than 0.2 (millimeters (mm) H2O)−1, more preferably greater than 0.4 (mm H2O)—1, still more preferably greater than 0.7 (mm H2O)−1, and even more preferably greater than 0.9 (mm H2O)−1 when tested according to the DOP Penetration and Pressure Drop Test described below. The initial quality factor of a nonwoven fibrous electret web of the invention preferably exceeds, by at least a factor of 2, the QFi value of an untreated web of essentially the same construction, and more preferably by a factor of at least 10.
FIG. 1 schematically illustrates a method for wetting and saturating a fibrous web 20. As shown, the fibrous web 20 is directed to a first mechanism 21 that is adapted to wet 5 the fibrous web 20. The web 20 moves through a series of rollers to a first vessel 22 that contains wetting liquid 24. A nip that comprises rollers 25, 26 compresses and releases the fibrous web 20 while it is submerged in the liquid 24. When the fibrous web 20 re-expands, the wetting agent 24 can better enter the interstitial spaces between the fibers to fully wet the web 20. The nip is beneficial to the wetting step because it assists in removing gas from the web.
After emerging from the first vessel 22, the web 20 then is directed to a second mechanism 27 that is adapted to saturate the fibrous web 20. Web 20 enters a second vessel 28 that contains an aqueous polar liquid 30, which saturates the web 20 in vessel 28, and in so doing makes intimate contact with the fibers in the web 20.
Once the web has been saturated with the aqueous polar liquid, it can be removed from the second vessel 28 so that it can be dried using drying system 31. To dry web 20, it can be directed through a ringer 32 that includes mating rollers 34 and 36. Rollers 34 and 36 squeeze excess liquid from the web 20 before the web passes to an active drying apparatus that includes moisture-removing elements 40, 42 disposed on opposing sides of the web 20.
The active drying apparatus may be an external source that consumes supplied energy for purposes of encouraging all moisture to leave the web. An active drying apparatus may include a heat source such as a flow-through oven, a vacuum source, or an air source such as a convective air apparatus, i.e., a stream of a drying gas. These drying mechanisms may or may not be used in conjunction with mechanical mechanisms such as a centrifuge or rollers to squeeze the polar liquid from the fibrous web. Alternatively, a passive drying mechanism, such as ambient air drying, may be used to dry the fibrous web—although air drying is generally not practical for high speed manufacturing requirements. The invention contemplates essentially any operation or apparatus that is capable of encouraging moisture to leave the web without causing significant structural damage to the final product. The resulting electret web can then be cut into sheets, rolled for storage, or formed into various articles, such as respirators or filters.
The web can be transported through the apparatus by essentially any device that is capable of moving the web from the mechanism 21 to the second mechanism 25 first and then to the drier 31. A driven roller is an example of a transport that may be suitable for this purpose, as well as a conveyor, belt, or nip.
Upon being dried, the nonwoven web possesses sufficient electric charge to qualify as an electret 43. The resulting electret web 43 may also be subjected to further charging techniques that might further enhance the electret charge on the web or might perform some other alteration to the electret charge that could possibly improve filtration performance. For example, the nonwoven fibrous electret web could be exposed to a corona charging operation after (or perhaps before) producing an electret using the process described above. The web could be charged, for example, as described in U.S. Pat. No. 4,588,537 to Klaase et al., or as described in U.S. Pat. No. 4,592,815 to Nakao. Alternatively—or in conjunction with the noted charging techniques—the web could also be further hydrocharged as described in U.S. Pat. No. 5,496,507 to Angadjivand et al. The charge of the fibrous electret web also may be supplemented using charging techniques disclosed in the commonly assigned U.S. Patent applications entitled Method and Apparatus for Making a Nonwoven Fibrous Electret from Free-Fiber and Polar Liquid (Attorney Docket No. 52830USA3A); Method of Making a Fibrous Electret Web Using A Nonaqueous Polar Liquid (Attorney Docket No. 52829USA6A), all filed on the same day as the present document.
FIG. 2 illustrates an alternate embodiment for wetting and/or saturating the fibrous web 20. Similar to the embodiment shown in FIG. 1, the web 20 travels sequentially from a mechanism 21′ that wets the liquid, to a mechanism 25 that saturates the web, and then to a mechanism 31 that dries the web. In this embodiment, however, a vacuum bar 38 encourages the wetting liquid 24 to flow through the fibrous web 20 by creating a low pressure condition on one side of the web 20. The vacuum bar 38 is hollow and is permeable to liquid flow on the side closest to the web 20. The interior of the vacuum bar 38 is held at a pressure sufficiently lower than the vessel 22 so that the wetting liquid will flow through the web 20 and into the vacuum bar 38. Equipment that uses submerged vacuum bars is marketed by TUE-ESCALE Indus. of Flowery Branch, Ga., U.S.A.
FIG. 3 illustrates another alternate embodiment in which the fibrous web is sequentially wetted in a first stage 21″, followed by being saturated in a second stage 25, which in turn is followed by a drying step 31. At the first mechanism 21″, the fibrous web 20 is exposed to the wetting liquid 24 under a high static pressure. The pressurized vessel 22′ has a cover 44 that has a pair of slots 46 through which the fibrous web 20 can travel. The elevated pressure in vessel 22′ can be maintained or controlled by adding the wetting liquid through port 48, as necessary. As the web enters the vessel 22′, any gas trapped in the fibrous web 20 is compressed and occupies a smaller volume. The wetting liquid 24 can flow into the web 20 as the gas is compressed.
In lieu of the nip rollers 25, 26, the vacuum bar 38, or the pressurized vessel 22′ described above, sonic or ultrasonic vibrations could be used to wet web 20 with the wetting liquid. A sonic or ultrasonic generator may be used to vibrate the wetting liquid 24 while the web 20 is immersed in the liquid. The vibrations should be of sufficient amplitude to cause any gas trapped in the web 20 to break up into small bubbles that will be easily displaced from the web by the wetting liquid.
Alternatively, the fibrous web may be sprayed with the wetting agent and/or a polar aqueous liquid using the method and apparatus disclosed in U.S. Pat. No. 5,496,507 to Angadjivand et al. Essentially any apparatus or method that helps remove gas from the web is contemplated for use in achieving adequate web wetting. Although the whole web is shown being wetted and saturated in the Figures, this is not necessary for practicing the present invention. It may be desirable, for example, to wet and saturate only portions of a web to create a web that has selected areas that act as an electret.
The relative ease with which a given fibrous web can be wet is dependent on the surface energy of the fibrous web and the surface tension of the wetting liquid. Less work is required to wet a fibrous web with a wetting liquid that has a surface tension that is substantially less than the surface energy of the web, particularly when compared to the work that is required to wet a fibrous web with wetting liquid that has a surface tension that is equal to or greater than the surface energy of the web. The wetting liquid preferably has a surface tension that is less than the surface energy of the fibrous web, and more preferably is at least 5 dynes per centimeter (dynes/cm) less than the surface energy of the fibrous web.
A liquid that qualifies as a “wetting liquid” is one that satisfies the Wetting Test. The Wetting Test is performed as follows. First, a dry test specimen is placed on a smooth, horizontal surface. A small drop—approximately 5 millimeters in diameter (0.05 ml volume)—is placed on the test specimen using a dropping bottle. The drop is observed for 10 seconds. If the drop substantially soaks into the web within this time frame, then the liquid qualifies as a wetting liquid. Preferably the drop will soak into the web—that is, satisfy the Wetting Test—within about 5 seconds, and more preferably within about 2 seconds. The wetting liquid also is capable of dissolving in the aqueous liquid that is used to saturate the web. The wetting liquid should be capable of yielding a single phase when dissolved in the aqueous liquid.
The surface tension of the aqueous polar liquid plays an important role in imparting an electric charge to the fibrous web. Effective charging may be difficult to establish unless the surface tension of the aqueous polar liquid is greater than the surface energy of the fibrous web. The surface tension of the polar aqueous liquid is preferably 5 dynes/cm greater than the surface energy of the fibrous web and more preferably 10 dynes/cm greater than the surface energy of the fibrous web. Polypropylene is a polymer that is commonly used to create melt-blown fibrous webs. It has a surface energy of about 30 dynes/cm. In webs that have more than one type of fiber, the fiber with the higher surface energy might be charged more than fibers with a lower surface energy.
A wetting liquid can facilitate the wetting of fibrous webs with an aqueous polar liquid by removing trapped gas. Useful wetting liquids may include solutions of surfactants, such as detergents, in polar aqueous liquids. The surfactant can be a nonionic surfactant such as t-octylphenoxypolyethoxyethanol, an anionic surfactant such as sodium lauryl sulfate, or a cationic surfactant such as alkyldimethylbenzylammonium chloride. Other wetting liquids may include water-miscible solvents that can wet a nonwoven web in pure form or as part of an aqueous solution due to the low surface tension of the solvent. Preferably, the wetting liquid can be an alcohol such as isopropanol, ethanol, methanol, 2-propanol, or a ketone such as acetone, or combinations of the alcohols and/or ketones. The wetting liquid may also include the use of alcohols or ketones by themselves or in conjunction with water as an aqueous solution.
The method of the invention can be carried out in a batchwise process, which involves a stepwise soaking of the web in the wetting liquid, followed by being submerged in an aqueous polar liquid for a designated period of time, removing the web from the aqueous polar liquid, and then allowing the web to dry. Energy or mechanical work can be applied to the wetting liquid, aqueous polar liquid, and/or the fibrous web to improve wetting and/or saturation as discussed above. The use of these procedures can enable the electret web to be produced continuously.
For applications where the steps of wetting or saturating are performed by mechanical methods such as spraying the wetting liquid and/or aqueous polar liquid onto the web, or agitating the web in the presence of these fluids, the velocity of the wetting liquid and/or aqueous polar liquid relative to the nonwoven web is preferably less than about 50 meters/second (m/s), and more preferably less than about 25 m/s. Lower velocities are generally desirable to avoid damaging the web, which may occur when the web is relatively delicate—for example, a web that contains melt-blown microfibers. Nonwoven fibrous webs that contain microfibers can be damaged if excess energy or mechanical work is used to achieve liquid wetting or saturation. Care therefore should be taken when handling a microfiber-containing web.
Preferably, the wetting liquid is in contact with the nonwoven web for at least 0.001 seconds, more preferably for at least 1 to 10 seconds in a continuous process before contacting the web with the aqueous polar liquid. The aqueous polar liquid is preferably wetted on the fibers of the fibrous web for at least 0.001 seconds, and typically for 1 second to 5 minutes.
Aqueous polar liquids suitable for use in the present method have a dipole moment of at least 0.5 Debye, and more preferably at least 0.75 Debye, and still more preferably at least 1.0 Debye. The dielectric constant is at least 10, preferably at least 20, and more preferably at least 40. Aqueous polar liquids that have higher dielectric constants tend to create webs that show greater filtration performance enhancement. Examples of nonaqueous components that may be used in the aqueous polar liquids include methanol, ethylene glycol, dimethyl sulfoxide, dimethylformamide, acetonitrile, and acetone, among others. The aqueous polar liquid and the wetting agent preferably do not leave a conductive, non-volatile residue that would mask or otherwise dissipate charge on the web.
Water has a dipole moment of about 1.85 and a dielectric constant of about 78 to 80. The aqueous polar liquid comprises at least 10 volume % water, more preferably at least 30 volume % water, still more preferably at least 50 volume % water, and even more preferably at least 80 volume % water. One hundred % water may also be used. Water is a preferred polar liquid because it is inexpensive, and no significant dangerous or harmful vapors or pollutants are generated when it contacts the molten or semi-molten fiber-forming material. Preferably purified water, made through, for example, distillation, reverse osmosis, or deionization, is used in the present invention rather than simply tap water. Purified water is preferred because non-pure water can hinder effective fiber charging.
Webs suitable for use in this present invention may be made from a variety of techniques, including air laid processes, wet laid processes, and melt blown processes such as described in Van A. Wente, Superfine Thermoplastic Fibers, 48 INDUS. ENGN. CHEM. 1342-46 and in Report No. 4364 of the Naval Research Laboratories, published May 25, 1954, entitled Manufacture of Super Fine Organic Fibers by Van A. Wente et al. Microfibers, particularly meltblown microfibers, are particularly suitable for use in fibrous webs that are used as filters. “Microfiber” means fiber(s) that have an effective diameter of about 25 micrometers or less. Effective fiber diameter can be calculated using equation number 12 in Davies, C. N., The Separation of Airborne Dust and Particles, INST. MECH. ENGN., LONDON PROC. 1B (1952). For filtering applications, the microfibers preferably have an effective fiber diameter of less than about 20 micrometers, and more preferably about 1 to about 10 micrometers.
Staple fibers may also be combined with the microfibers to provide a more lofty, less dense web. Reducing web density can reduce the pressure drop across the web. Lower pressure drops are desirable in personal respirators because it can make the respirator more comfortable to wear. Preferably, no more than about 90 weight percent staple fibers are present, more preferably no more than about 70 weight percent. Webs that contain staple fibers are disclosed in U.S. Pat. No. 4,118,531 to Hauser.
For filtration applications, the nonwoven web preferably has a basis weight less than about 500 grams/meter2 (g/m2), more preferably about 5 to about 400 g/m2, and still more preferably about 20 to 100 g/m2. In making melt-blown fiber webs, the basis weight can be controlled, for example, by changing either die throughput or collector speed. The thickness of the nonwoven web for many filtration applications is about 0.25 to about 20 millimeters (mm), more typically about 0.5 to about 4 mm. The nonwoven web preferably has a solidity (a unitless parameter that defines the solids fraction in the web) of at least 0.03, more preferably about 0.04 to about 0.15, and still more preferably about 0.05 to about 0.1. The inventive method can impart a generally uniform charge distribution throughout the resulting nonwoven web, without regard to basis weight, thickness, or solidity of the resulting media.
Active particulate also may be included in the electret webs for various purposes, including sorbent purposes, catalytic purposes, and others. U.S. Pat. No. 5,696,199 to Senkus et al. describes various active particulate that may be suitable. Active particulate that has sorptive properties—such as activated carbon or alumina—may be included in the web to remove organic vapors during filtration operations. The active particulate may be present in general in amounts up to about 80 volume percent of the contents of the web. Particle-loaded nonwoven webs are described, for example, in U.S. Pat. Nos. 3,971,373 to Braun, U.S. Pat. No. 4,100,324 to Anderson, and U.S. Pat. No. 4,429,001 to Kolpin et al.
Polymers, which may be suitable for use in producing fibers that are useful in this invention, include thermoplastic organic nonconductive polymers. These polymers are generally capable of retaining a high quantity of trapped charge and are capable of being processed into fibers, such as through a melt-blowing apparatus or a spun-bonding apparatus. The term “thermoplastic” refers to a polymeric material that softens when exposed to heat. The term “organic” means the backbone of the polymer includes carbon atoms. Preferred polymers include polyolefins, such as polypropylene, poly-4-methyl-1-pentene, blends or copolymers containing one or more of these polymers, and combinations of these polymers. Other polymers may include polyethylene, other polyolefins, polyvinylchlorides, polystyrenes, polycarbonates, polyethylene terephthalate, other polyesters, and combinations of these polymers and other nonconductive polymers.
The fibers may be made from these polymers in conjunction with other suitable additives. The fibers also may be extruded or otherwise formed to have multiple polymer components. See U.S. Pat. No. 4,729,371 to Krueger and Dyrud and U.S. Pat. Nos. 4,795,668, and 4,547,420 to Krueger and Meyer. The different polymer components may be arranged concentrically or longitudinally along the length of the fiber to create, for example, bicomponent fibers. The fibers may be arranged to form a macroscopically homogeneous web, which is a web that is made from fibers that each have the same general composition.
The fibers used in the invention do not need to contain ionomers, particularly metal ion neutralized copolymers of ethylene and acrylic or methacrylic acid or both to produce a fibrous product suitable for filtration applications. Nonwoven fibrous electret webs can be suitably produced from the polymers described above without containing 5 to 25 weight percent (meth)acrylic acid with acid groups partially neutralized with metal ions.
The performance of the electret web can be enhanced by including additives in fiber-forming material before contacting it to a polar liquid. Appropriate additives can be added to the fiber-forming material before the fibers are produced. Preferably, an “oily-mist performance enhancing additive” is used in conjunction with the fibers or the fiber-forming materials. An “oily-mist performance enhancing additive” is a component which, when added to the fiber-forming material, or for example, is placed on the resulting fiber, is capable of enhancing the oily aerosol filtering ability of the nonwoven fibrous electret web.
Fluorochemicals can be added to the polymeric material to enhance electret performance. U.S. Pat. Nos. 5,411,576 and 5,472,481 to Jones et al. describe the use of a melt-processable fluorochemical additive that has a melt temperature of at least 25° C. and has a molecular weight of about 500 to 2500. This fluorochemical additive may be employed to provide better oily-mist resistance. One additive class that is known to enhance electrets that have been charged with water jets are compounds that have a perfluorinated moiety and a fluorine content of at least 18% by weight of the additive—see U.S. Pat. No. 5,908,598 to Rousseau et al. An additive of this type is a fluorochemical oxazolidinone described in U.S. Pat. No. 5,411,576 as “Additive A” of at least 0.1% by weight of the thermoplastic material.
Other possible additives are thermally stable organic triazine compounds or oligomers, which compounds or oligomers contain at least one nitrogen atom in addition to those in the triazine ring. Another additive known to enhance electrets charged by jets of water is Chimassorb™ 944 LF (poly[[6-(1,1,3,3,-tetramethylbutyl) amino]-s-triazine-2,4-diyl][[(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]]), available from Ciba-Geigy Corp. Chimassorb™ 944 and “Additive A” may be combined. Preferably the additive Chimassorb™ and/or the above additives are present in an amount of about 0.1% to about 5% by weight of the polymer; more preferably, the additive(s) is present in an amount from about 0.2% to about 2% by weight of the polymer; and still more preferably is present in an amount from about 0.2 to about 1 weight % of the polymer. Some other hindered amines are also known to increase the filtration-enhancing charge imparted to the web site.
Fibers that contain additives can be quenched after shaping a heated molten blend of the polymer and additive—followed by annealing and charging steps—to create an electret article. Enhanced filtration performance can be imparted to the article by making the electret in this manner—see U.S. patent application Ser. No. 08/941,864, which corresponds to International Publication WO 99/16533. Additives also may be placed on the web after its formation by, for example, using the surface fluorination technique described in U.S. patent application Ser. No. 09/109,497, filed Jul. 2, 1998 by Jones et al.
The polymeric fiber-forming material has a volume resistivity of 1014 ohm·cm or greater at room temperature. Preferably, the volume resistivity is about 1016 ohm·cm or greater. Resistivity of the polymeric fiber-forming material can be measured according to standardized test ASTM D 257-93. The fiber-forming material used to form the melt blown fibers also should be substantially free from components such as antistatic agents, which could increase the electrical conductivity or otherwise interfere with the fiber's ability to accept and hold electrostatic charges.
Nonwoven webs of this invention may be used in filtering masks that are adapted to cover at least the nose and mouth of a wearer.
FIG. 4 illustrates a filtering face mask 50 that may be constructed to contain an electrically-charged nonwoven web that is produced according to the present invention. The generally cup-shaped body portion 52 is adapted to fit over the mouth and nose of the wearer. A strap or harness system 54 may be provided to support the mask 50 on the wearer's face. Although a single strap 56 is illustrated in FIG. 4, the harness 54 may employ more than one strap 56 and may come in a variety of configurations—see, for example, U.S. Pat. No. 4,827,924 to Japuntich et al., U.S. Pat. No. 5,237,986 to Seppalla et al., and U.S. Pat. No. 5,464,010 to Byram.
Examples of other filtering face masks where nonwoven fibrous electret webs may be used include U.S. Pat. No. 4,536,440 to Berg, U.S. Pat. No. 4,807,619 to Dyrud et al., U.S. Pat. No. 4,883,547 to Japuntich, U.S. Pat. No. 5,307,796 to Kronzer et al., and U.S. Pat. No. 5,374,458 to Burgio. As shown in these patents, the nonwoven fibrous electret web is used as a filter in the cub-shaped mask body. The electret filter media also may be used, for example, in a filter cartridge for a respirator, such as the filter cartridge disclosed in U.S. Pat. No. Re. 35,062 to Brostrom et al. or in U.S. Pat. No. 5,062,421 to Burns and Reischel. Mask 50 thus is presented for illustration purposes only, and use of the present electret filter media is not limited to the embodiment disclosed.
Applicants believe that the present charging method deposits both positive and negative charge onto the fibers such that the positive and negative charge is randomly dispersed throughout the web. Random charge dispersal produces an unpolarized web. Thus, a nonwoven fibrous electret web produced in accordance with the present invention may be substantially unpolarized in a plane normal to the plane of the web. Fibers that have been charged in this manner ideally exhibit the charge configuration shown in FIG. 5C of U.S. patent application Ser. No. 08/865,362. If the fibrous web is also subjected to a corona charging operation, it would exhibit a charge configuration similar to the configuration shown in FIG. 5B of that patent application. A web, formed from fibers charged solely using the present method, typically has unpolarized trapped charge throughout the volume of the web. “Substantially unpolarized trapped charge” refers to a fibrous electret web that exhibits less than 1 μC/m2 of detectable discharge current using TSDC analysis, where the denominator is the electrode surface area. This charge configuration can be shown by subjecting the web to thermally-simulated discharge current (TSDC).
Thermally-stimulated discharge analysis involves heating an electret web so that the frozen or trapped charge regains mobility and moves to some lower energy configuration to generate a detectable external discharge current. For a discussion on thermally-stimulated discharge current, see Lavergne et al., A review of Thermo-Stimulated Current, IEEE ELECTRICAL INSULATION MAGAZNE, vol. 9, no. 2, 5-21, 1993, and Chen et al., Analysis of Thermally Stimulated Process, Pergamon Press, 1981.
An electric charge polarization can be induced in a web that has been charged according to the present invention by elevating the temperature to some level above the glass transition temperature (Tg) of the polymer, which is the temperature where a polymer changes to a viscous or rubbery condition from a hard and relatively-brittle one. The glass-transition temperature, Tg, is below the polymer's melting point (Tm). After raising the polymer above its Tg, the sample is cooled in the presence of a DC electric field to freeze-in the polarization of the trapped charge. Thermally-stimulated discharge currents can then be measured by reheating the electret material at a constant heating rate and measuring the current generated in an external circuit. An instrument useful for performing the polarization and subsequent thermally-stimulated discharge is a Solomat TSC/ARMA model 91000 with a pivot electrode, distributed by TherMold Partners, L. P., Thermal Analysis Instruments of Stamford, Conn.
The discharge current is plotted on the y axis (ordinate) against the temperature on the x axis (abscissa). The peak (current maximum) position and shape of the discharge current are characteristics of the mechanism by which the charges have been stored in the electret web. For electret webs that contain a charge, the peak maximum and shape are related to the configuration of the charge trapped in the electret material. The amount of charge produced in the outside circuit due to movement of the charge inside the electret web to a lower energy state upon heating can be determined by integrating the discharge peak(s).
Fibrous electret webs of the invention exhibit a Measured Charge Density, which is a measure of the relative amount of unpolarized trapped charge. The Measured Charge Density can be ascertained using the procedure described below. Fibrous electret webs of the invention preferably exhibit a Measured Charge Density of at least 0.3 microcoloumbs per square meter (μC/m2), more preferably a Measured Charge Density of at least 0.6 μC/m2, and still more preferably at least 0.9 μC/m2. In some instances, Measured Charge Density can exceed 7 μC/m2.
Advantages and other properties and details of this invention are further illustrated in the following Examples. Although the examples serve this purpose, the particular ingredients and amounts used and other conditions are not to be construed in a manner that would unduly limit the scope of this invention. For example, while the Examples illustrate inventive methods that produce products on an individual basis, the processes can also be performed continuously. The Examples selected for disclosure below are merely illustrative of how to make a preferred embodiment of the invention and how the articles may generally perform.
EXAMPLES
Sample Preparation
The nonwoven web was prepared generally as described by Van A. Wente, 48 INDUS. & ENGN. CHEM. 1342-46 (1956). The thermoplastic resin was ESCORENE 3505G polypropylene (available from Exxon Corp.) unless otherwise specified. The extruder was a Berstorff 60 millimeter (mm), 44 to 1, eight barrel zone, co-rotating twin screw extruder. When an additive was incorporated in the resin, it was prepared as a 10-15 weight % concentrate in a Werner Pfleiderer 30 mm, 36 to 1 corotating twin screw extruder. The water was purified by reverse osmosis and deionization. The basis weight of the web was about 54-60 grams/meter2, unless otherwise specified.
DOP Penetration and Pressure Drop Test
The DOP Penetration and Pressure Drop Test was performed by forcing dioctyl phthalate (DOP) 0.3 micrometer mass median diameter particles through a sample of the nonwoven web which is 11.45 centimeter (4.5 inches) diameter at a rate of 42.5 liters/minute. The face velocity on the sample was 6.9 centimeters per second (cm/s). The DOP particles were generated using a TSI No. 212 sprayer (available from TSI of St. Paul, Minn.) with four orifices and 207 kilo pascals (kPa) (30 psi) of clean air at a concentration of between about 70 and about 110 milligrams/meter3. The samples were exposed to the aerosol of DOP particles for 30 seconds. The penetration of the DOP particles through the samples was measured using an optical scattering chamber, Percent Penetration Meter Model TPA-8F available from Air Techniques Inc. of Baltimore, Md. The pressure drop (ΔP) across the sample was measured using an electronic manometer and reported in millimeters of water.
The DOP penetration and pressure drop values were used to calculate a quality factor “QF value” from the natural log (1n) of the DOP penetration by the following formula:
QF[1/mm H2O]=−(1n ((DOP Pen %)/100))/ΔAP[mm H2O]
All samples tested below were tested for an Initial Quality Factor, QFi.
As indicated above, higher initial QF values are indicative of better filtration performance.
Measured Charge Density
Electric charge polarizations were induced in four samples of each web by (i) heating each sample to a temperature of 100° C., (ii) poling each sample in the presence of a DC field of 2.5 kilovolts per millimeter (KV/mm) at 100° C. for poling periods of 5, 10, 15 or 20 minutes, and (iii) cooling each sample to −50° C. in the presence of the DC field to “freeze” the trapped and poled charge in the web. Each web sample was then reheated so that the frozen charge regained mobility and moved to a lower energy state, generating a detectable external discharge current. Specifically, after poling in the DC field mentioned above, each web sample was reheated from about −50° C. to about 160° C. at a heating rate of about 3° C./minute. The external current generated was measured as a function of temperature. The uncorrected measured charge density of each sample was determined by calculating the area under the discharge peaks and dividing the result by the area of the sample. The uncorrected measured charge density of each web was set equal to highest value of uncorrected measured charge density among the four samples analyzed for each web. Polarization and subsequent thermally-stimulated discharge was performed using a Solomat TSC/RMA Model 91000 with a pivot electrode, distributed by TherMold Partners, L.P., Thermal Analysis Instruments of Stanford, Conn. The measured charge density arising from trapped, unpolarized charge can be determined by analyzing an untreated web of the same composition and physical characteristics. The measured charge density of the treated web is determined by subtracting the uncorrected measured charge density of the untreated from the uncorrected measured charge density of the treated web.
Example 1 and Comparative Examples C1-C2
A nonwoven web that contained blown polypropylene microfibers was prepared as described above using ESCORENE 3505G polypropylene (available from Exxon Corp.). The effective fiber diameter of the samples was about 8-9 μm. Individual samples about 22 inches by about 11 inches (55.9 cm by 27.9 cm) were cut from this web. One sample was soaked in isopropanol, removed, hung up in a fume hood while excess isopropanol dripped off. The sample was then immersed in about 8 liters of deionized water for about 10 to 20 minutes, removed, passed through a wringer to remove excess water, and air dried overnight. Comparative sample C1 was soaked in isopropanol, removed, passed through a wringer, and air dried overnight. Comparative sample C2 was unwetted.
Circular samples about 5.25 inches in diameter (13.3 cm) were cut from the samples and were subjected to the DOP Penetration and Pressure Drop Test using the center 4.5 inches (11.4 cm) of each circle. QFi was calculated for each sample as described above. The results of the two evaluations conducted for each web sample were averaged and are given in Table 1.
TABLE 1
Effect of Aqueous Treatment on Filtration Performance
Pressure Drop Penetration QFi
Example Treatment (mm water) (%) (mm H2O)−1
1 Isopropanol; 2.68 33.2 0.41
Water
C1 Isopropanol 2.72 82.9 0.069
C2 None 2.48 83.4 0.073
The data show that the nonwoven web of Example 1 wetted with isopropanol followed by saturation with water demonstrated a significantly higher Initial Quality Factor than the comparative samples.
Samples according to Examples 1, C1 and C2 were reproduced and evaluated for Quality Factor and Measured Charge Density as described above.
TABLE 2
Measured Charge Density
Uncorrected
Measured
Charge
QFi Density Measured Charge
Example Treatment (mm H2O)−1 (μC/m2) Density (μC/m2)
1 Isopropanol; 0.45 1.00 0.95
Water
C1 Isopropanol 0.09 0.07 0.02
C2 None 0.09 0.05 0.0
The data of Table 2 show that the nonwoven web of Example 1 wetted with isopropanol, followed by saturation with water, demonstrated a significantly higher Initial Quality Factor and Measured Charge Density over the comparative examples.
Example 2 and Comparative Examples C3-C4
A web that contained blown polypropylene microfibers was prepared according to Example 1 and Comparative Examples C1-C2, except 1 weight % of a fluorochemical oxazolidinone additive, described in U.S. Pat. No. 5,411,576 as “Additive A,” was added to the polypropylene melt prior to forming the blown microfibers. Additive A has the following formula:
Figure US06406657-20020618-C00001
The web also was annealed at about 140° C. for about 10 minutes. Samples were cut and were wetted as described in Example 1 and Comparative Examples C1-C2. All samples had an effective fiber diameter of about 8-9 μm and had a basis weight of about 57 grams/meter2. Samples were cut and were evaluated for filtration performance as in the previous examples. The results of duplicate evaluations were averaged and are given in Table 3.
TABLE 3
Effect of Aqueous Treatment on Filtration
Performance Polypropylene Plus Fluorochemical
Pressure Drop Penetration QFi
Example Treatment (mm water) (%) (mm H2O)−1
2 Isopropanol; 2.16 14.1 0.91
Water
C3 Isopropanol 2.11 42.2 0.41
C4 None 2.10 85.9 0.072
The data of Table 3 show that the presence of the additive resulted in a higher Initial Quality Factor for the samples of Examples 2 and C3 than the Initial Quality Factor for the samples of Examples 1 and C1.
Samples according to Examples 2, C3, and C4 were reproduced and were evaluated for Initial Quality Factor and Measured Charge Density.
TABLE 4
Measured Charge Density for
Fibers that Contained Polypropylene Plus Fluorochemical
Uncorrected
Measured
Charge Measured Charge
QFi Density Density
Example Treatment (mm H2O)−1 (μC/m2) (μC/m2)
2 Isopropanol; 0.72 16.6 7.65
Water
C3 Isopropanol 0.17 10.58 1.63
C4 None 0.14 8.95 0.0
The data in Table 4 show that the nonwoven web of Example 2 wetted with isopropanol, followed by saturation with water, demonstrated a significantly higher Initial Quality Factor and Measured Charge Density than the web of Example 1 that did not contain the additive.
Example 3 and Comparative Examples C5-C6
A web that contained blown polypropylene microfibers was prepared as described in Example 1 and Comparative Examples C1-C2 except that about 0.5 wt % Chimassorb 944 LF was added to the polypropylene melt before forming the blown microfibers. Samples were cut and were wetted as described in Example 1 and Comparative Examples C1-C2. All samples had similar effective fiber diameters and basis weights. Samples were cut and were evaluated for filtration performance as in the previous examples. The results are given in Table 5.
TABLE 5
Effect of Aqueous Treatment on Filtration
Performance Polypropylene Plus Chimassorb ™ 944
Pressure Drop Penetration QFi
Example Treatment (mm water) (%) (mm H2O)−1
3 Isopropanol; 2.56 53.3 0.25
Water
C5 Isopropanol 2.45 83.4 0.074
C6 None 2.52 85.7 0.061
The data of Table 5 show that wetting the web in isopropanol followed by soaking in water and drying enhances the filtration performance of all three filter web samples relative to the unwetted samples. Example 3 shows that water can be used to enhance filtration performance of nonwoven polymeric webs. Example 3 did not show an improvement over Example 1, even though it contained the Chimassorb™ additive. This result is believed to have occurred because Chimassorb™ is soluble in isopropanol.
All the patents and patent applications cited above, including those discussed in the Background, are incorporated by reference into this document in total.
The present invention may be suitably practiced in the absence of any limitation not explicitly described in this document.

Claims (46)

What is claimed is:
1. A method of making a fibrous electret web, which method comprises:
wetting a fibrous web, which web contains nonconductive polymeric fibers, with a wetting liquid;
saturating the wetted web in an aqueous polar liquid; and then
substantially drying the web.
2. The method of claim 1, wherein the aqueous polar liquid is water.
3. The method of claim 2, wherein the water is purified, and wherein the web comprises a nonwoven fibrous web.
4. The method of claim 3, wherein the fibers are microfibers that contain polypropylene and an oily-mist performance enhancing additive.
5. The method of claim 1, wherein the fibrous electret web is capable of demonstrating a quality factor of at least 0.2 (mm H2O)−1 when tested according to the DOP Penetration and Pressure Drop Test.
6. The method of claim 1, wherein the fibrous electret web is capable of demonstrating a quality factor of at least 0.4 (mm H2O)−1 when tested according to the DOP Penetration and Pressure Drop Test.
7. The method of claim 1, wherein the fibrous electret web is capable of demonstrating a quality factor of at least 0.7 (mm H2O)−1 when tested according to the DOP Penetration and Pressure Drop Test.
8. The method of claim 1, wherein the fibers comprises about 1 wt % fluorochemical oxazolidinone and the fibrous electret web is capable of demonstrating a quality factor of at least 0.9 (mm H2O)−1 when tested according to the DOP Penetration and Pressure Drop Test.
9. The method of claim 1, wherein the polymeric fibers comprise an additive that is selected from the group consisting of a thermally-stable organic compound or oligomer containing at least one perfluorinated moiety, a thermally stable organic triazine compound or oligomer containing at least one nitrogen atom in addition to those in the triazine group, or a combination thereof, hindered amines, fluorochemical oxazolidinone, poly[[6-(1,1,3,3,-tetramethylbutyl) amino]-s-triazine-2,4-diyl][[(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]], or combination thereof.
10. The method of claim 1, wherein the fibers further comprise an oily-mist performance enhancing additive and wherein the method further comprises the step of annealing the fibrous web before to the step of wetting the web.
11. The method of claim 1, wherein the web comprises microfibers.
12. The method of claim 1, wherein fibers contain a fluorochemical additive in or on the fibers.
13. The method of claim 1, wherein the web is wetted by compressing the web and permitting the web to return to an uncompressed state while immersed in the wetting liquid.
14. The method of claim 1, wherein the web is wetted by directing a flow of the wetting liquid through the web.
15. The method of claim 1, wherein the web is wetted by sonically vibrating the wetting liquid while in contact with the web.
16. The method of claim 1, wherein the web is wetted by pressurizing the wetting liquid.
17. The method of claim 1, wherein the web is wetted by soaking the web in the wetting liquid.
18. The method of claim 1, further comprising the step of removing excess wetting liquid before saturating the web with the polar aqueous liquid.
19. The method of claim 1, wherein the web is saturated by compressing the web and permitting the web to return to an uncompressed state while being immersed in the aqueous polar liquid.
20. The method of claim 1, wherein the web is air dried.
21. The method of claim 1, wherein the web is dried by exposing the web to heat.
22. The method of claim 1, wherein the web is dried by exposing the web to a static vacuum.
23. The method of claim 1, wherein the web is dried by exposing the web to a stream of a heated drying gas.
24. The method of claim 1, wherein the web is dried by mechanically removing the polar aqueous liquid.
25. The method of claim 1, wherein the fibers comprise polypropylene, poly-4-methyl-1-pentene, or blends or copolymers containing one or both of these materials.
26. The method of claim 1, wherein the fibers comprise a polyolefin, polyvinylchloride, a polystyrene, a polycarbonate, a polyester, or a blend thereof.
27. The method of claim 1, wherein the fibrous electret web is substantially unpolarized in a plane normal to a plane of the web when subjected to thermally stimulated discharge.
28. The method of claim 1, wherein the fibrous electret web exhibits substantially no discharging current when subjected to thermally stimulated discharge.
29. The method of claim 1, wherein the fibrous electret web exhibits substantially no net charge.
30. The method of claim 1, wherein the web is a macroscopically homogeneous web.
31. The method of claim 1, wherein the fibrous electret web has an unpolarized charge.
32. The method of claim 1, wherein the web has a Measured Charge Density of at least 0.3 μC/m2.
33. The method of claim 1, wherein the wetting liquid satisfies the Wetting Test within 5 seconds.
34. The method of claim 1, wherein the wetting liquid satisfies the Wetting Test within 2 seconds.
35. A filtration mask adapted to cover the nose and mouth of a wearer comprising the fibrous electret web of claim 1.
36. The method of claim 1, wherein the aqueous polar liquid has a dipole moment of at least 0.5 Debye.
37. The method of claim 1, wherein the aqueous polar liquid has a dipole moment of at least 0.75 Debye.
38. The method of claim 1, wherein the aqueous polar liquid has a dipole moment of at least 1 Debye.
39. The method of claim 1, wherein the aqueous polar liquid has a dielectric constant of at least 10.
40. The method of claim 1, wherein the aqueous polar liquid has a dielectric constant of at least 20.
41. The method of claim 1, wherein the aqueous polar liquid has a dielectric constant of at least 40.
42. The method of claim 1, wherein the aqueous polar liquid has a dipole moment of at least 0.5 Debye and has a dielectric constant of at least 10.
43. The method of claim 1, wherein the aqueous polar liquid has a dipole moment of at least 0.75 Debye and has a dielectric constant of at least 20.
44. The method of claim 1, wherein the aqueous polar liquid and the wetting agent do not leave a conductive, non-volatile residue on the fibrous electret web.
45. The method of claim 1, wherein the fibers have fluorine atoms on their surfaces.
46. The method of claim 42, wherein the resulting fibrous electret web is substantially unpolarized in a plane normal to the plane of the web.
US09/415,291 1999-10-08 1999-10-08 Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid Expired - Lifetime US6406657B1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US09/415,291 US6406657B1 (en) 1999-10-08 1999-10-08 Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
RU2002108690/15A RU2266771C2 (en) 1999-10-08 2000-01-24 Method and a device for manufacture of a fibrous electret linen with application of a wetting liquid and a water polar liquid
DE60036127T DE60036127T2 (en) 1999-10-08 2000-01-24 METHOD FOR PRODUCING A WEB OF ELECTRIC FIBERS USING A FILLING LIQUID AND AN AQUEOUS, POLYIVE LIQUID
KR1020027004450A KR100627757B1 (en) 1999-10-08 2000-01-24 Method and Apparatus for Making a Fibrous Electret Web Using a Wetting Liquid and an Aqueous Polar Liquid
CNB008139342A CN1212199C (en) 1999-10-08 2000-01-24 Method and apparatus for making fibrous electret web using wetting liquid and aqueous polar liquid
EP00903414A EP1229988B1 (en) 1999-10-08 2000-01-24 Method for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
CA002385770A CA2385770A1 (en) 1999-10-08 2000-01-24 Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
AT00903414T ATE370781T1 (en) 1999-10-08 2000-01-24 METHOD FOR PRODUCING A FABRIC FROM ELECTRICAL FIBERS USING A WEETING LIQUID AND AN AQUEOUS POLAR LIQUID
JP2001529835A JP4518725B2 (en) 1999-10-08 2000-01-24 Method and apparatus for producing fiber electret webs using wet and aqueous polar liquids
PL00354171A PL354171A1 (en) 1999-10-08 2000-01-24 Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
AU25161/00A AU767679B2 (en) 1999-10-08 2000-01-24 Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
PCT/US2000/001829 WO2001026778A1 (en) 1999-10-08 2000-01-24 Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
BRPI0014559-9A BR0014559B1 (en) 1999-10-08 2000-01-24 method for producing a continuous sheet of fibrous electret, and filtering mask.
US10/162,753 US6824718B2 (en) 1999-10-08 2002-06-04 Process of making a fibrous electret web

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/415,291 US6406657B1 (en) 1999-10-08 1999-10-08 Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/162,753 Continuation US6824718B2 (en) 1999-10-08 2002-06-04 Process of making a fibrous electret web

Publications (1)

Publication Number Publication Date
US6406657B1 true US6406657B1 (en) 2002-06-18

Family

ID=23645115

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/415,291 Expired - Lifetime US6406657B1 (en) 1999-10-08 1999-10-08 Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
US10/162,753 Expired - Lifetime US6824718B2 (en) 1999-10-08 2002-06-04 Process of making a fibrous electret web

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/162,753 Expired - Lifetime US6824718B2 (en) 1999-10-08 2002-06-04 Process of making a fibrous electret web

Country Status (13)

Country Link
US (2) US6406657B1 (en)
EP (1) EP1229988B1 (en)
JP (1) JP4518725B2 (en)
KR (1) KR100627757B1 (en)
CN (1) CN1212199C (en)
AT (1) ATE370781T1 (en)
AU (1) AU767679B2 (en)
BR (1) BR0014559B1 (en)
CA (1) CA2385770A1 (en)
DE (1) DE60036127T2 (en)
PL (1) PL354171A1 (en)
RU (1) RU2266771C2 (en)
WO (1) WO2001026778A1 (en)

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020190434A1 (en) * 1999-10-08 2002-12-19 3M Innovative Properties Company Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
US20030054716A1 (en) * 2001-09-07 2003-03-20 3M Innovative Properties Company Method of making an electret
US6660210B2 (en) 1998-07-02 2003-12-09 3M Innovative Properties Company Method of making fluorinated electrets
US20040055604A1 (en) * 2002-09-23 2004-03-25 Viner Andrew S. Filter element that has a thermo-formed housing around filter material
US20040076753A1 (en) * 2002-09-25 2004-04-22 Ballard Power Systems Inc. Impregnation of porous substrates
US20060090754A1 (en) * 2004-10-29 2006-05-04 3M Innovative Properties Company Respiratory protection device that has rapid threaded clean air source attachment
US20060196157A1 (en) * 2005-03-03 2006-09-07 Greer Paul A Conformal filter cartridges and methods
US20060243138A1 (en) * 2005-05-02 2006-11-02 3M Innovative Properties Company Electret article having high fluorosaturation ratio
US20060243139A1 (en) * 2005-05-02 2006-11-02 3M Innovative Properties Company Electret article having heteroatoms and low fluorosaturation ratio
US20060254419A1 (en) * 2005-05-12 2006-11-16 Leonard William K Method and apparatus for electric treatment of substrates
US20070235903A1 (en) * 2006-04-11 2007-10-11 Hui Chin Electret materials
US20080284050A1 (en) * 2005-11-10 2008-11-20 El-Marco, S.R.O. Method and Device for Production of Nanofibres Through Electrostatic Spinning of Solutions or Melts of Polymers
WO2009038904A1 (en) 2007-09-20 2009-03-26 3M Innovative Properties Company Filtering face-piece respirator that has expandable mask body
US20090293279A1 (en) * 2008-06-02 2009-12-03 3M Innovative Properties Company Method of making electret articles based on zeta potential
US20100043639A1 (en) * 2005-10-19 2010-02-25 3M Innovative Properties Company Highly charged, charge stable nanofiber web
WO2010096285A2 (en) 2009-02-20 2010-08-26 3M Innovative Properties Company Antimicrobial electret web
US20100252047A1 (en) * 2009-04-03 2010-10-07 Kirk Seth M Remote fluorination of fibrous filter webs
WO2010114820A3 (en) * 2009-04-03 2011-02-10 3M Innovative Properties Company Processing aids for olefinic webs, including electret webs
US20110041471A1 (en) * 2007-12-06 2011-02-24 Sebastian John M Electret webs with charge-enhancing additives
EP2298096A2 (en) 2009-09-18 2011-03-23 3M Innovative Properties Co. Filtering face respirator having grasping feature indicator
EP2298095A2 (en) 2009-09-18 2011-03-23 3M Innovative Properties Co. Horizontal flat-fold filtering face-piece respirator having indicia of symmetry
EP2298419A1 (en) 2009-09-18 2011-03-23 3M Innovative Properties Co. Flat-fold filtering face-piece respirator having structural weld pattern
US20110091717A1 (en) * 2008-06-30 2011-04-21 Weiss Douglas E Method for in situ formation of metal nanoclusters within a porous substrate field
EP2314353A1 (en) 2009-10-23 2011-04-27 3M Innovative Properties Company Filtering face-piece respirator having parallel line weld pattern in mask body
US20110137082A1 (en) * 2008-06-02 2011-06-09 Li Fuming B Charge-enhancing additives for electrets
US20110154987A1 (en) * 2008-06-02 2011-06-30 Li Fuming B Electret webs with charge-enhancing additives
WO2011090586A2 (en) 2009-12-30 2011-07-28 3M Innovative Properties Company Filtering face-piece respirator having an auxetic mesh in the mask body
EP2412407A1 (en) 2010-07-26 2012-02-01 3M Innovative Properties Co. Filtering face-piece respiratory having foam shaping layer
EP2428127A2 (en) 2007-05-03 2012-03-14 3M Innovative Properties Company Maintenance-free respirator that has concave portions on opposing sides of mask top section
WO2012064507A1 (en) 2010-11-08 2012-05-18 3M Innovative Properties Company Zinc oxide containing filter media and methods of forming the same
WO2012068091A2 (en) 2010-11-19 2012-05-24 3M Innovative Properties Company Filtering face-piece respirator having an overmolded face seal
WO2012166513A2 (en) 2011-05-27 2012-12-06 Clarcor Air Filtration Products, Inc. Filter frame housing and filter for animal confinement building
WO2013019764A2 (en) 2011-08-01 2013-02-07 3M Innovative Properties Company Respiratory assembly including latching mechanism
US20130047856A1 (en) * 2010-05-07 2013-02-28 Japan Vilene Company, Ltd. Electrically charged filter and mask
US8747505B2 (en) 2010-06-22 2014-06-10 Clarcor Air Filtration Products, Inc. V-bank air filtration system such as for animal confinement
US8790449B2 (en) 2009-04-03 2014-07-29 3M Innovative Properties Company Electret webs with charge-enhancing additives
WO2014172308A2 (en) 2013-04-19 2014-10-23 3M Innovative Properties Company Electret webs with charge-enhancing additives
US9034068B2 (en) 2012-06-05 2015-05-19 Clarcor Air Filtration Products, Inc. Box filter with orientation device
WO2015080913A1 (en) 2013-11-26 2015-06-04 3M Innovative Properties Company Dimensionally-stable melt blown nonwoven fibrous structures, and methods and apparatus for making same
JP2015112585A (en) * 2013-12-16 2015-06-22 三菱電機株式会社 Filter electrification processor and filter electrification processing method
WO2015130591A1 (en) 2014-02-27 2015-09-03 3M Innovative Properties Company Respirator having elastic straps having openwork structure
US9126135B2 (en) 2010-06-22 2015-09-08 Clarcor Air Filtration Products, Inc. V-bank air filtration system such as for animal confinement
WO2015199972A1 (en) 2014-06-23 2015-12-30 3M Innovative Properties Company Electret webs with charge-enhancing additives
WO2016028553A1 (en) 2014-08-18 2016-02-25 3M Innovative Properties Company Respirator including polymeric netting and method of forming same
WO2016069342A1 (en) 2014-10-31 2016-05-06 3M Innovative Properties Company Respirator having corrugated filtering structure
US9510626B2 (en) 2013-02-01 2016-12-06 3M Innovative Properties Company Sleeve-fit respirator cartridge
WO2017058880A1 (en) 2015-09-30 2017-04-06 3M Innovative Properties Company Foldable face-piece respirator with exhalation valve
WO2017066284A1 (en) 2015-10-12 2017-04-20 3M Innovative Properties Company Filtering face-piece respirator including functional material and method of forming same
WO2017083289A1 (en) 2015-11-11 2017-05-18 3M Innovative Properties Company Shape retaining flat-fold respirator
US9687766B2 (en) 2011-05-27 2017-06-27 Clarcor Air Filtration Products, Inc. Collapsible and/or assembled filter housing and filter used therewith
US9700743B2 (en) 2012-07-31 2017-07-11 3M Innovative Properties Company Respiratory assembly including latching mechanism
US9802187B2 (en) 2011-06-30 2017-10-31 3M Innovative Properties Company Non-woven electret fibrous webs and methods of making same
US9815068B2 (en) 2012-12-28 2017-11-14 3M Innovative Properties Company Electret webs with charge-enhancing additives
WO2018081227A1 (en) 2016-10-28 2018-05-03 3M Innovative Properties Company Respirator including reinforcing element
WO2018127831A1 (en) 2017-01-05 2018-07-12 3M Innovative Properties Company Electret webs with charge-enhancing additives
US10040621B2 (en) 2014-03-20 2018-08-07 3M Innovative Properties Company Filtering face-piece respirator dispenser
EP3375308A1 (en) 2017-03-17 2018-09-19 3M Innovative Properties Company Foldable face - piece respirator of the ffp-3 type
EP3391943A1 (en) 2007-05-03 2018-10-24 3M Innovative Properties Company Maintenance-free flat-fold respirator that includes a graspable tab
US10182603B2 (en) 2012-12-27 2019-01-22 3M Innovative Properties Company Filtering face-piece respirator having strap-activated folded flange
WO2019130150A2 (en) 2017-12-28 2019-07-04 3M Innovative Properties Company Ceramic-coated fibers including a flame-retarding polymer, and methods of making nonwoven structures
US10669481B2 (en) 2015-07-07 2020-06-02 3M Innovative Properties Company Substituted benzotriazole phenolate salts and antioxidant compositions formed therefrom
US10724171B2 (en) 2015-07-07 2020-07-28 3M Innovative Properties Company Electret webs with charge-enhancing additives
WO2020223638A1 (en) 2019-05-01 2020-11-05 Ascend Performance Materials Operations Llc Filter media comprising polyamide nanofiber layer
WO2020261150A1 (en) 2019-06-28 2020-12-30 3M Innovative Properties Company Core-sheath fibers, nonwoven fibrous web, and respirator including the same
WO2020261035A1 (en) 2019-06-26 2020-12-30 3M Innovative Properties Company Method of making a nonwoven fiber web, nonwoven fiber web, and multi-component fiber
WO2020261034A1 (en) 2019-06-28 2020-12-30 3M Innovative Properties Company Filter assembly, prefilter assembly, and respirator including the same
US10919867B2 (en) 2015-07-07 2021-02-16 3M Innovative Properties Company Substituted benzotriazole phenols
WO2021074863A1 (en) 2019-10-16 2021-04-22 3M Innovative Properties Company Dual-function melt additives
WO2021074746A1 (en) 2019-10-16 2021-04-22 3M Innovative Properties Company Substituted benzimidazole melt additives
WO2021111290A1 (en) 2019-12-03 2021-06-10 3M Innovative Properties Company Aromatic-heterocyclic ring melt additives
WO2021111246A1 (en) 2019-12-03 2021-06-10 3M Innovative Properties Company Thiolate salt melt additives
US11053373B2 (en) 2015-07-07 2021-07-06 3M Innovative Properties Company Polymeric matrices with ionic additives
WO2021152426A1 (en) 2020-01-27 2021-08-05 3M Innovative Properties Company Substituted thiol melt additives
WO2021152422A1 (en) 2020-01-27 2021-08-05 3M Innovative Properties Company Substituted thiolate salt melt additives
US11083916B2 (en) 2008-12-18 2021-08-10 3M Innovative Properties Company Flat fold respirator having flanges disposed on the mask body
US11116998B2 (en) 2012-12-27 2021-09-14 3M Innovative Properties Company Filtering face-piece respirator having folded flange
DE102020107746A1 (en) 2020-03-20 2021-09-23 Solvamed Gmbh Improved respirator
WO2022034444A1 (en) 2020-08-11 2022-02-17 3M Innovative Properties Company Electret webs with benzoate salt charge-enhancing additives
WO2022034437A1 (en) 2020-08-11 2022-02-17 3M Innovative Properties Company Electret webs with carboxylic acid or carboxylate salt charge-enhancing additives
WO2022091060A1 (en) 2020-11-02 2022-05-05 3M Innovative Properties Company Core-sheath fibers, nonwoven fibrous web, and filtering articles including the same
WO2022130080A1 (en) 2020-12-18 2022-06-23 3M Innovative Properties Company Electrets comprising a substituted cyclotriphosphazene compound and articles therefrom
US11413481B2 (en) 2015-05-12 2022-08-16 3M Innovative Properties Company Respirator tab
WO2023031697A1 (en) 2021-09-01 2023-03-09 3M Innovative Properties Company Anti-virus respirator and mask
US11813581B2 (en) 2017-07-14 2023-11-14 3M Innovative Properties Company Method and adapter for conveying plural liquid streams
US11904191B2 (en) 2007-05-03 2024-02-20 3M Innovative Properties Company Anti-fog respirator
EP4349419A1 (en) 2022-10-07 2024-04-10 3M Innovative Properties Company Disposable, flat-fold respirator having increased stiffness in selected areas
US11992585B2 (en) 2020-03-13 2024-05-28 Julian HENLEY Electro-ionic devices for improved protection from airborne biopathogens
US12017232B2 (en) 2020-03-13 2024-06-25 Julian HENLEY Electro-ionic mask devices for improved protection from airborne biopathogens

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581213B2 (en) * 2000-10-11 2010-11-17 東レ株式会社 Manufacturing method of electret processed product
JP4581212B2 (en) * 2000-10-11 2010-11-17 東レ株式会社 Manufacturing method of electret processed product
JP4670143B2 (en) * 2000-12-04 2011-04-13 東レ株式会社 Manufacturing method of electret processed product
JP4686896B2 (en) * 2001-05-11 2011-05-25 東レ株式会社 Manufacturing method of electret processed product
JP3932981B2 (en) * 2001-06-18 2007-06-20 東レ株式会社 Method and apparatus for manufacturing electret processed products
US6969484B2 (en) * 2001-06-18 2005-11-29 Toray Industries, Inc. Manufacturing method and device for electret processed product
US7573637B2 (en) * 2004-08-03 2009-08-11 Seiko Epson Corporation Intrinsic polarizer and method of manufacturing an intrinsic polarizer
WO2006128237A1 (en) * 2005-05-31 2006-12-07 Commonwealth Scientific And Industrial Research Organisation Electrostatic filter media and a process for the manufacture thereof
US8063264B2 (en) * 2005-08-26 2011-11-22 Michael Spearman Hemostatic media
US7875675B2 (en) 2005-11-23 2011-01-25 Milgard Manufacturing Incorporated Resin for composite structures
US7901762B2 (en) 2005-11-23 2011-03-08 Milgard Manufacturing Incorporated Pultruded component
US8101107B2 (en) 2005-11-23 2012-01-24 Milgard Manufacturing Incorporated Method for producing pultruded components
US8597016B2 (en) 2005-11-23 2013-12-03 Milgard Manufacturing Incorporated System for producing pultruded components
US7390351B2 (en) * 2006-02-09 2008-06-24 3M Innovative Properties Company Electrets and compounds useful in electrets
US8058194B2 (en) * 2007-07-31 2011-11-15 Kimberly-Clark Worldwide, Inc. Conductive webs
US20090163686A1 (en) * 2007-12-20 2009-06-25 3M Innovative Properties Company Method of making an intrinsic polarizer
US20110064936A1 (en) * 2009-09-17 2011-03-17 Massachusetts Institute Of Technology Method of Asymmetrically Functionalizing Porous Materials
KR101144448B1 (en) * 2009-12-03 2012-06-14 현대자동차주식회사 Electrostatic non-woven intake filter manufacturing method and its products
CN103781956B (en) * 2011-06-30 2016-09-28 3M创新有限公司 Non-woven electret fiber net and preparation method thereof
US20130168893A1 (en) * 2011-12-29 2013-07-04 Hollingsworth & Vose Company Charging of filter media
US9072991B2 (en) * 2012-04-24 2015-07-07 Southern Felt Company, Inc. Conductive filter media
CN103566775B (en) * 2012-10-30 2015-10-21 山东九章膜技术有限公司 The Preparation equipment of composite separating film
US9408424B2 (en) 2013-01-10 2016-08-09 3M Innovative Properties Company Filtering face-piece respirator having a face seal comprising a water-vapor-breathable layer
FR3007666A1 (en) * 2013-06-27 2015-01-02 Valeo Transmissions Materiaux De Friction ANTIBACTERIAL FILTER AND AIR VENTILATION SYSTEM OF THE HABITABLE OF AN ASSOCIATED MOTOR VEHICLE
WO2016096883A1 (en) * 2014-12-18 2016-06-23 Oerlikon Textile Gmbh & Co. Kg Device for loading a fibre web
KR102389599B1 (en) * 2016-09-30 2022-04-22 타피러스 컴퍼니 리미티드 An apparatus for manufacturing an electret article, and a method for charging a non-conductive sheet
CN106964199B (en) * 2017-05-04 2022-08-09 浙江金海高科股份有限公司 Liquid charging method and device for electret material
CN112218981A (en) * 2018-05-17 2021-01-12 田纳西大学研究基金会 Method for saturating a nonwoven fabric with a liquid and method for producing an electret therefor
US11180867B2 (en) 2019-03-20 2021-11-23 University Of Kentucky Research Foundation Continuous wet-spinning process for the fabrication of PEDOT:PSS fibers with high electrical conductivity, thermal conductivity and Young's modulus
DE102020132743A1 (en) 2019-12-13 2021-06-17 Denso Corporation ELECTRIC
CN111495035B (en) * 2020-02-28 2022-09-06 中科贝思达(厦门)环保科技股份有限公司 Electret nanofiber air filtering material and preparation method thereof
WO2023026214A2 (en) * 2021-08-26 2023-03-02 North Carolina State University Charged nonwoven material
US20230330585A1 (en) * 2022-04-14 2023-10-19 Hollingsworth & Vose Company High efficiency filter media

Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366721A (en) 1966-07-21 1968-01-30 Monsanto Co Process for treating filaments
US3793715A (en) * 1970-08-26 1974-02-26 Kureha Chemical Ind Co Ltd Process for producing high-quality electrets
US3959421A (en) 1974-04-17 1976-05-25 Kimberly-Clark Corporation Method for rapid quenching of melt blown fibers
US4118531A (en) 1976-08-02 1978-10-03 Minnesota Mining And Manufacturing Company Web of blended microfibers and crimped bulking fibers
US4204828A (en) 1978-08-01 1980-05-27 Allied Chemical Corporation Quench system for synthetic fibers using fog and flowing air
US4215682A (en) 1978-02-06 1980-08-05 Minnesota Mining And Manufacturing Company Melt-blown fibrous electrets
US4277430A (en) 1978-08-01 1981-07-07 Allied Chemical Corporation Quench process for synthetic fibers using fog and flowing air
US4288584A (en) 1978-08-10 1981-09-08 Uniroyal Ltd. Electret made of branched alpha-olefin polymer
USRE30782E (en) 1974-03-25 1981-10-27 Minnesota Mining And Manufacturing Company Method for the manufacture of an electret fibrous filter
US4340563A (en) 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
USRE31285E (en) 1976-12-23 1983-06-21 Minnesota Mining And Manufacturing Company Method for manufacturing a filter of electrically charged electret fiber material and electret filters obtained according to said method
JPS60947A (en) 1983-06-01 1985-01-07 大日本インキ化学工業株式会社 Cylindrical shape made of resin
JPS6015137A (en) 1983-07-08 1985-01-25 凸版印刷株式会社 Manufacture of square pillar vessel
US4515007A (en) * 1983-01-04 1985-05-07 The United States Of America As Represented By The United States Department Of Energy Method of and apparatus for testing the integrity of filters
US4536440A (en) 1984-03-27 1985-08-20 Minnesota Mining And Manufacturing Company Molded fibrous filtration products
US4548628A (en) 1982-04-26 1985-10-22 Asahi Kasei Kogyo Kabushiki Kaisha Filter medium and process for preparing same
US4588537A (en) 1983-02-04 1986-05-13 Minnesota Mining And Manufacturing Company Method for manufacturing an electret filter medium
US4592815A (en) 1984-02-10 1986-06-03 Japan Vilene Co., Ltd. Method of manufacturing an electret filter
US4594202A (en) 1984-01-06 1986-06-10 Pall Corporation Method of making cylindrical fibrous filter structures
US4652282A (en) 1984-03-19 1987-03-24 Toyo Boseki Kabushiki Kaisha Electretized material for a dust filter
JPS63132625A (en) * 1986-11-21 1988-06-04 日本バイリーン株式会社 Wiping cloth and its production
US4789504A (en) 1984-03-19 1988-12-06 Toyo Boseki Kabushiki Kaisha Electretized material for a dust filter
US4798850A (en) 1986-05-19 1989-01-17 National Research Development Corporation Blended-fibre filter material
US4874659A (en) 1984-10-24 1989-10-17 Toray Industries Electret fiber sheet and method of producing same
US4874399A (en) 1988-01-25 1989-10-17 Minnesota Mining And Manufacturing Company Electret filter made of fibers containing polypropylene and poly(4-methyl-1-pentene)
US4931230A (en) 1986-05-08 1990-06-05 Minnesota Mining And Manufacturing Company Method for preparing radiation resistant polypropylene articles
US4950549A (en) 1987-07-01 1990-08-21 Minnesota Mining And Manufacturing Company Polypropylene articles and method for preparing same
US5057710A (en) 1988-05-13 1991-10-15 Toray Industries, Inc. Electret materials and the method for preparing the electret materials
US5078925A (en) 1987-07-01 1992-01-07 Minnesota Mining And Manufacturing Company Preparing polypropylene articles
US5151321A (en) * 1984-08-29 1992-09-29 Kimberly-Clark Corporation Method of making conductive, water and/or alcohol repellent nonwoven fabric and resulting product
US5254378A (en) 1986-05-08 1993-10-19 Minnesota Mining And Manufacturing Company Radiation resistant polypropylene articles and method for preparing same
US5280406A (en) 1992-06-18 1994-01-18 International Business Machines Corporation Jet deposition of electrical charge on a dielectric surface
US5370830A (en) 1992-09-23 1994-12-06 Kimberly-Clark Corporation Hydrosonic process for forming electret filter media
US5401446A (en) 1992-10-09 1995-03-28 The University Of Tennessee Research Corporation Method and apparatus for the electrostatic charging of a web or film
US5411576A (en) 1993-03-26 1995-05-02 Minnesota Mining And Manufacturing Company Oily mist resistant electret filter media and method for filtering
WO1995022646A1 (en) 1994-02-22 1995-08-24 Kimberly-Clark Corporation Improved nonwoven barrier and method of making the same
WO1996000093A1 (en) 1994-06-27 1996-01-04 Kimberly-Clark Corporation Improved nonwoven barrier and method of making the same
US5496507A (en) 1993-08-17 1996-03-05 Minnesota Mining And Manufacturing Company Method of charging electret filter media
US5525397A (en) 1993-12-27 1996-06-11 Kao Corporation Cleaning sheet comprising a network layer and at least one nonwoven layer of specific basis weight needled thereto
US5592357A (en) 1992-10-09 1997-01-07 The University Of Tennessee Research Corp. Electrostatic charging apparatus and method
WO1997007272A1 (en) * 1995-08-14 1997-02-27 Minnesota Mining And Manufacturing Company Fibrous webs having enhanced electret properties
US5645627A (en) * 1995-02-28 1997-07-08 Hollingsworth & Vose Company Charge stabilized electret filter media
US5665278A (en) 1996-01-17 1997-09-09 J & M Laboratories, Inc. Airless quench method and apparatus for meltblowing
US5705219A (en) * 1991-04-22 1998-01-06 Atotech Deutschland Gmbh Method for coating surfaces with finely particulate materials
US5780153A (en) 1996-09-12 1998-07-14 E. I. Du Pont De Nemours And Company Meltblown ionomer microfibers and non-woven webs made therefrom for gas filters
US5834384A (en) * 1995-11-28 1998-11-10 Kimberly-Clark Worldwide, Inc. Nonwoven webs with one or more surface treatments

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2739258B2 (en) 1991-03-14 1998-04-15 河合石灰工業株式会社 Method for removing hydrogen chloride and / or sulfur oxide in incinerator
US5413811A (en) 1994-03-18 1995-05-09 Kimberly-Clark Corporation Chemical and mechanical softening process for nonwoven web
US6213122B1 (en) 1997-10-01 2001-04-10 3M Innovative Properties Company Electret fibers and filter webs having a low level of extractable hydrocarbons
US6238466B1 (en) 1997-10-01 2001-05-29 3M Innovative Properties Company Electret articles and filters with increased oily mist resistance
US6068799A (en) 1997-10-01 2000-05-30 3M Innovative Properties Company Method of making electret articles and filters with increased oily mist resistance
US6432175B1 (en) 1998-07-02 2002-08-13 3M Innovative Properties Company Fluorinated electret
US6398947B2 (en) 1999-09-27 2002-06-04 Exxon Mobil Oil Corporation Reformate upgrading using zeolite catalyst
US6375886B1 (en) 1999-10-08 2002-04-23 3M Innovative Properties Company Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid
US6406657B1 (en) 1999-10-08 2002-06-18 3M Innovative Properties Company Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
US6454986B1 (en) * 1999-10-08 2002-09-24 3M Innovative Properties Company Method of making a fibrous electret web using a nonaqueous polar liquid

Patent Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366721A (en) 1966-07-21 1968-01-30 Monsanto Co Process for treating filaments
US3793715A (en) * 1970-08-26 1974-02-26 Kureha Chemical Ind Co Ltd Process for producing high-quality electrets
USRE30782E (en) 1974-03-25 1981-10-27 Minnesota Mining And Manufacturing Company Method for the manufacture of an electret fibrous filter
USRE32171E (en) 1974-03-25 1986-06-03 Minnesota Mining And Manufacturing Company Method for the manufacture of an electret fibrous filter
US3959421A (en) 1974-04-17 1976-05-25 Kimberly-Clark Corporation Method for rapid quenching of melt blown fibers
US4118531A (en) 1976-08-02 1978-10-03 Minnesota Mining And Manufacturing Company Web of blended microfibers and crimped bulking fibers
USRE31285E (en) 1976-12-23 1983-06-21 Minnesota Mining And Manufacturing Company Method for manufacturing a filter of electrically charged electret fiber material and electret filters obtained according to said method
US4215682A (en) 1978-02-06 1980-08-05 Minnesota Mining And Manufacturing Company Melt-blown fibrous electrets
US4277430A (en) 1978-08-01 1981-07-07 Allied Chemical Corporation Quench process for synthetic fibers using fog and flowing air
US4204828A (en) 1978-08-01 1980-05-27 Allied Chemical Corporation Quench system for synthetic fibers using fog and flowing air
US4288584A (en) 1978-08-10 1981-09-08 Uniroyal Ltd. Electret made of branched alpha-olefin polymer
US4340563A (en) 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4548628A (en) 1982-04-26 1985-10-22 Asahi Kasei Kogyo Kabushiki Kaisha Filter medium and process for preparing same
US4515007A (en) * 1983-01-04 1985-05-07 The United States Of America As Represented By The United States Department Of Energy Method of and apparatus for testing the integrity of filters
US4588537A (en) 1983-02-04 1986-05-13 Minnesota Mining And Manufacturing Company Method for manufacturing an electret filter medium
JPS60947A (en) 1983-06-01 1985-01-07 大日本インキ化学工業株式会社 Cylindrical shape made of resin
JPS6015137A (en) 1983-07-08 1985-01-25 凸版印刷株式会社 Manufacture of square pillar vessel
US4594202A (en) 1984-01-06 1986-06-10 Pall Corporation Method of making cylindrical fibrous filter structures
US4592815A (en) 1984-02-10 1986-06-03 Japan Vilene Co., Ltd. Method of manufacturing an electret filter
US4789504A (en) 1984-03-19 1988-12-06 Toyo Boseki Kabushiki Kaisha Electretized material for a dust filter
US4652282A (en) 1984-03-19 1987-03-24 Toyo Boseki Kabushiki Kaisha Electretized material for a dust filter
US4536440A (en) 1984-03-27 1985-08-20 Minnesota Mining And Manufacturing Company Molded fibrous filtration products
US5151321A (en) * 1984-08-29 1992-09-29 Kimberly-Clark Corporation Method of making conductive, water and/or alcohol repellent nonwoven fabric and resulting product
US4874659A (en) 1984-10-24 1989-10-17 Toray Industries Electret fiber sheet and method of producing same
US5254378A (en) 1986-05-08 1993-10-19 Minnesota Mining And Manufacturing Company Radiation resistant polypropylene articles and method for preparing same
US4931230A (en) 1986-05-08 1990-06-05 Minnesota Mining And Manufacturing Company Method for preparing radiation resistant polypropylene articles
US4798850A (en) 1986-05-19 1989-01-17 National Research Development Corporation Blended-fibre filter material
JPS63132625A (en) * 1986-11-21 1988-06-04 日本バイリーン株式会社 Wiping cloth and its production
US4950549A (en) 1987-07-01 1990-08-21 Minnesota Mining And Manufacturing Company Polypropylene articles and method for preparing same
US5078925A (en) 1987-07-01 1992-01-07 Minnesota Mining And Manufacturing Company Preparing polypropylene articles
US4874399A (en) 1988-01-25 1989-10-17 Minnesota Mining And Manufacturing Company Electret filter made of fibers containing polypropylene and poly(4-methyl-1-pentene)
US5057710A (en) 1988-05-13 1991-10-15 Toray Industries, Inc. Electret materials and the method for preparing the electret materials
US5705219A (en) * 1991-04-22 1998-01-06 Atotech Deutschland Gmbh Method for coating surfaces with finely particulate materials
US5280406A (en) 1992-06-18 1994-01-18 International Business Machines Corporation Jet deposition of electrical charge on a dielectric surface
US5370830A (en) 1992-09-23 1994-12-06 Kimberly-Clark Corporation Hydrosonic process for forming electret filter media
US5401446A (en) 1992-10-09 1995-03-28 The University Of Tennessee Research Corporation Method and apparatus for the electrostatic charging of a web or film
US5592357A (en) 1992-10-09 1997-01-07 The University Of Tennessee Research Corp. Electrostatic charging apparatus and method
US5411576A (en) 1993-03-26 1995-05-02 Minnesota Mining And Manufacturing Company Oily mist resistant electret filter media and method for filtering
US5472481A (en) 1993-03-26 1995-12-05 Minnesota Mining And Manufacturing Company Oily mist resistant electret filter media
US5496507A (en) 1993-08-17 1996-03-05 Minnesota Mining And Manufacturing Company Method of charging electret filter media
US5525397A (en) 1993-12-27 1996-06-11 Kao Corporation Cleaning sheet comprising a network layer and at least one nonwoven layer of specific basis weight needled thereto
WO1995022646A1 (en) 1994-02-22 1995-08-24 Kimberly-Clark Corporation Improved nonwoven barrier and method of making the same
WO1996000093A1 (en) 1994-06-27 1996-01-04 Kimberly-Clark Corporation Improved nonwoven barrier and method of making the same
US5645627A (en) * 1995-02-28 1997-07-08 Hollingsworth & Vose Company Charge stabilized electret filter media
WO1997007272A1 (en) * 1995-08-14 1997-02-27 Minnesota Mining And Manufacturing Company Fibrous webs having enhanced electret properties
US5908598A (en) * 1995-08-14 1999-06-01 Minnesota Mining And Manufacturing Company Fibrous webs having enhanced electret properties
US5919847A (en) 1995-08-14 1999-07-06 Minnesota Mining And Manufacturing Company Composition useful for making electret fibers
US5968635A (en) 1995-08-14 1999-10-19 Minnesota Mining And Manufacturing Company Fibrous webs useful for making electret filter media
US5976208A (en) 1995-08-14 1999-11-02 Minnesota Mining And Manufacturing Company Electret filter media containing filtration enhancing additives
US5834384A (en) * 1995-11-28 1998-11-10 Kimberly-Clark Worldwide, Inc. Nonwoven webs with one or more surface treatments
US5665278A (en) 1996-01-17 1997-09-09 J & M Laboratories, Inc. Airless quench method and apparatus for meltblowing
US5780153A (en) 1996-09-12 1998-07-14 E. I. Du Pont De Nemours And Company Meltblown ionomer microfibers and non-woven webs made therefrom for gas filters

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Chudleigh, P.W., Charging of Polymer Foils Using Liquid Contacts, Appl. Phys. Lett., v. 21, n. 11 (Dec. 1, 1972).
Chudleigh, P.W., Mechanism of Charge Transfer to a Polymer Surface by a Conducting Liquid Contact, Journal of Applied Physiscs, v. 47, n. 10 (Oct. 1976).
Japan Technology Highlights, Removal of Static Electricity with Water Spray, v.6, n. 23, pp. 5-6 (Nov. 15, 1995).
Quin, G-W. et al., The Effect of Water-quenching on the Electrostatic Charging of Fibers and Fabrics During the Melt-blowing Process, J. Text. Inst. 1999, Part 1, No. 2
Strobel, M. et al., Plasma Fluorination of Polyolefins, Journal of Polymer Science: Part A: Polymer Chemistry, v. 25, 1295-1307 (1987).
Wente, Van A., Superfine Thermoplastic Fibers, Industrial and Engineering Chemistry, v. 48, n. 8, pp-1342-1346 (Aug. 1956).
Yatsuzuka, K. et al., Electrification of Polymer Surface Caused by Sliding Ultrapure Water, IEEE Transactions on Industry Applications, v. 32, n. 4 (Jul./Aug. 1996)

Cited By (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660210B2 (en) 1998-07-02 2003-12-09 3M Innovative Properties Company Method of making fluorinated electrets
US6953544B2 (en) 1998-07-02 2005-10-11 3M Innovative Properties Company Method of making a respirator that has a fluorinated electret
US20040207125A1 (en) * 1998-07-02 2004-10-21 3M Innovative Properties Company Method of making a respirator that has a fluorinated electret
US6808551B2 (en) 1998-07-02 2004-10-26 3M Innovative Properties Company Method of using fluorinated electrets
US6824718B2 (en) 1999-10-08 2004-11-30 3M Innovative Properties Company Process of making a fibrous electret web
US20020190434A1 (en) * 1999-10-08 2002-12-19 3M Innovative Properties Company Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
US20030054716A1 (en) * 2001-09-07 2003-03-20 3M Innovative Properties Company Method of making an electret
US6874499B2 (en) 2002-09-23 2005-04-05 3M Innovative Properties Company Filter element that has a thermo-formed housing around filter material
US20050161045A1 (en) * 2002-09-23 2005-07-28 3M Innovative Properties Company Method of making a filter cartridge that uses thermoforming step
US20040055604A1 (en) * 2002-09-23 2004-03-25 Viner Andrew S. Filter element that has a thermo-formed housing around filter material
US7497217B2 (en) 2002-09-23 2009-03-03 3M Innovative Properties Company Method of making a filter cartridge using a thermoforming step
US20040076753A1 (en) * 2002-09-25 2004-04-22 Ballard Power Systems Inc. Impregnation of porous substrates
US7320722B2 (en) 2004-10-29 2008-01-22 3M Innovative Properties Company Respiratory protection device that has rapid threaded clean air source attachment
US20060090754A1 (en) * 2004-10-29 2006-05-04 3M Innovative Properties Company Respiratory protection device that has rapid threaded clean air source attachment
US20060196157A1 (en) * 2005-03-03 2006-09-07 Greer Paul A Conformal filter cartridges and methods
US7419526B2 (en) 2005-03-03 2008-09-02 3M Innovative Properties Company Conformal filter cartridges and methods
US20060243139A1 (en) * 2005-05-02 2006-11-02 3M Innovative Properties Company Electret article having heteroatoms and low fluorosaturation ratio
US20060243138A1 (en) * 2005-05-02 2006-11-02 3M Innovative Properties Company Electret article having high fluorosaturation ratio
US20070222119A1 (en) * 2005-05-02 2007-09-27 3M Innovative Properties Company Electret article having heteroatoms and low fluorosaturation ratio
US7244291B2 (en) 2005-05-02 2007-07-17 3M Innovative Properties Company Electret article having high fluorosaturation ratio
US7244292B2 (en) 2005-05-02 2007-07-17 3M Innovative Properties Company Electret article having heteroatoms and low fluorosaturation ratio
US7553440B2 (en) 2005-05-12 2009-06-30 Leonard William K Method and apparatus for electric treatment of substrates
US20100263696A1 (en) * 2005-05-12 2010-10-21 Leonard William K Method and apparatus for electric treatment of substrates
US20060254419A1 (en) * 2005-05-12 2006-11-16 Leonard William K Method and apparatus for electric treatment of substrates
US20090272269A1 (en) * 2005-05-12 2009-11-05 Leonard William K Method and apparatus for electric treatment of substrates
US8323554B2 (en) 2005-05-12 2012-12-04 Leonard William K Method and apparatus for electric
US7758327B2 (en) 2005-05-12 2010-07-20 Leonard William K Method and apparatus for electric treatment of substrates
US7985060B2 (en) 2005-05-12 2011-07-26 Leonard William K Method and apparatus for electric treatment of substrates
US20100043639A1 (en) * 2005-10-19 2010-02-25 3M Innovative Properties Company Highly charged, charge stable nanofiber web
US7691168B2 (en) 2005-10-19 2010-04-06 3M Innovative Properties Company Highly charged, charge stable nanofiber web
US20080284050A1 (en) * 2005-11-10 2008-11-20 El-Marco, S.R.O. Method and Device for Production of Nanofibres Through Electrostatic Spinning of Solutions or Melts of Polymers
US20070235903A1 (en) * 2006-04-11 2007-10-11 Hui Chin Electret materials
US7666931B2 (en) 2006-04-11 2010-02-23 Ciba Specialty Chemicals Corporation Electret materials
US11877604B2 (en) 2007-05-03 2024-01-23 3M Innovative Properties Company Maintenance-free respirator that has concave portions on opposing sides of mask top section
EP4134136A1 (en) 2007-05-03 2023-02-15 3M Innovative Properties Company Maintenance-free flat-fold respirator that includes a graspable tab
EP2428127A2 (en) 2007-05-03 2012-03-14 3M Innovative Properties Company Maintenance-free respirator that has concave portions on opposing sides of mask top section
EP3391943A1 (en) 2007-05-03 2018-10-24 3M Innovative Properties Company Maintenance-free flat-fold respirator that includes a graspable tab
US11904191B2 (en) 2007-05-03 2024-02-20 3M Innovative Properties Company Anti-fog respirator
WO2009038904A1 (en) 2007-09-20 2009-03-26 3M Innovative Properties Company Filtering face-piece respirator that has expandable mask body
US8529671B2 (en) 2007-12-06 2013-09-10 3M Innovative Properties Comany Electret webs with charge-enhancing additives
US20110041471A1 (en) * 2007-12-06 2011-02-24 Sebastian John M Electret webs with charge-enhancing additives
US20090293279A1 (en) * 2008-06-02 2009-12-03 3M Innovative Properties Company Method of making electret articles based on zeta potential
US8613795B2 (en) 2008-06-02 2013-12-24 3M Innovative Properties Company Electret webs with charge-enhancing additives
US20110137082A1 (en) * 2008-06-02 2011-06-09 Li Fuming B Charge-enhancing additives for electrets
US20110154987A1 (en) * 2008-06-02 2011-06-30 Li Fuming B Electret webs with charge-enhancing additives
US7765698B2 (en) 2008-06-02 2010-08-03 3M Innovative Properties Company Method of making electret articles based on zeta potential
US20110091717A1 (en) * 2008-06-30 2011-04-21 Weiss Douglas E Method for in situ formation of metal nanoclusters within a porous substrate field
US11083916B2 (en) 2008-12-18 2021-08-10 3M Innovative Properties Company Flat fold respirator having flanges disposed on the mask body
WO2010096285A2 (en) 2009-02-20 2010-08-26 3M Innovative Properties Company Antimicrobial electret web
US20110290119A1 (en) * 2009-02-20 2011-12-01 3M Innovative Properties Company Antimicrobial electret web
KR101679894B1 (en) 2009-04-03 2016-11-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Processing aids for olefinic webs, including electret webs
US20100252047A1 (en) * 2009-04-03 2010-10-07 Kirk Seth M Remote fluorination of fibrous filter webs
WO2010114826A1 (en) 2009-04-03 2010-10-07 3M Innovative Properties Company Remote fluorination of fibrous filter webs
US20110162653A1 (en) * 2009-04-03 2011-07-07 3M Innovative Properties Company Remote fluorination of fibrous filter webs
WO2010114820A3 (en) * 2009-04-03 2011-02-10 3M Innovative Properties Company Processing aids for olefinic webs, including electret webs
US10464001B2 (en) 2009-04-03 2019-11-05 3M Innovative Properties Company Remote fluorination of fibrous filter webs
CN102439209B (en) * 2009-04-03 2014-10-29 3M创新有限公司 Processing aids for olefinic webs, including electret webs
US9284669B2 (en) 2009-04-03 2016-03-15 3M Innovative Properties Company Processing aids for olefinic webs, including electret webs
RU2475575C1 (en) * 2009-04-03 2013-02-20 3М Инновейтив Пропертиз Компани Processing aids for olefinic canvas in particular electret canvas
CN102439209A (en) * 2009-04-03 2012-05-02 3M创新有限公司 Processing aids for olefinic webs, including electret webs
US8790449B2 (en) 2009-04-03 2014-07-29 3M Innovative Properties Company Electret webs with charge-enhancing additives
US9826786B2 (en) 2009-09-18 2017-11-28 3M Innovative Properties Company Horizontal flat-fold filtering face-piece respirator having indicia of symmetry
EP2298095A2 (en) 2009-09-18 2011-03-23 3M Innovative Properties Co. Horizontal flat-fold filtering face-piece respirator having indicia of symmetry
EP2298419A1 (en) 2009-09-18 2011-03-23 3M Innovative Properties Co. Flat-fold filtering face-piece respirator having structural weld pattern
EP2298096A2 (en) 2009-09-18 2011-03-23 3M Innovative Properties Co. Filtering face respirator having grasping feature indicator
EP2314353A1 (en) 2009-10-23 2011-04-27 3M Innovative Properties Company Filtering face-piece respirator having parallel line weld pattern in mask body
WO2011090586A2 (en) 2009-12-30 2011-07-28 3M Innovative Properties Company Filtering face-piece respirator having an auxetic mesh in the mask body
US20130047856A1 (en) * 2010-05-07 2013-02-28 Japan Vilene Company, Ltd. Electrically charged filter and mask
US9289632B2 (en) * 2010-05-07 2016-03-22 Japan Vilene Company, Ltd. Electrically charged filter and mask
US8747505B2 (en) 2010-06-22 2014-06-10 Clarcor Air Filtration Products, Inc. V-bank air filtration system such as for animal confinement
US9126135B2 (en) 2010-06-22 2015-09-08 Clarcor Air Filtration Products, Inc. V-bank air filtration system such as for animal confinement
EP2412407A1 (en) 2010-07-26 2012-02-01 3M Innovative Properties Co. Filtering face-piece respiratory having foam shaping layer
US8753434B2 (en) 2010-11-08 2014-06-17 3M Innovative Properties Company Zinc oxide containing filter media and methods of forming the same
US8585808B2 (en) 2010-11-08 2013-11-19 3M Innovative Properties Company Zinc oxide containing filter media and methods of forming the same
WO2012064507A1 (en) 2010-11-08 2012-05-18 3M Innovative Properties Company Zinc oxide containing filter media and methods of forming the same
WO2012068091A2 (en) 2010-11-19 2012-05-24 3M Innovative Properties Company Filtering face-piece respirator having an overmolded face seal
US9049838B2 (en) 2011-05-27 2015-06-09 Clarcor Air Filtration Products, Inc. Filter frame housing and filter for animal confinement building
US9687766B2 (en) 2011-05-27 2017-06-27 Clarcor Air Filtration Products, Inc. Collapsible and/or assembled filter housing and filter used therewith
US9049839B2 (en) 2011-05-27 2015-06-09 Clarcor Air Filtration Products, Inc. Filter system using plastic frames along structural wall of animal confinement building
US9185877B2 (en) 2011-05-27 2015-11-17 Clarcor Air Filtration Products, Inc. Collapsible and/or assembled filter housing and filter used therewith
WO2012166513A2 (en) 2011-05-27 2012-12-06 Clarcor Air Filtration Products, Inc. Filter frame housing and filter for animal confinement building
US10507416B2 (en) 2011-05-27 2019-12-17 Clarcor Air Filtration Products, Inc. Inlet frame and filter assembly including an inlet frame
US9510557B2 (en) 2011-05-27 2016-12-06 Clarcor Air Filtration Products, Inc. Non V-bank filter for animal confinement facility
US9802187B2 (en) 2011-06-30 2017-10-31 3M Innovative Properties Company Non-woven electret fibrous webs and methods of making same
WO2013019764A2 (en) 2011-08-01 2013-02-07 3M Innovative Properties Company Respiratory assembly including latching mechanism
US9034068B2 (en) 2012-06-05 2015-05-19 Clarcor Air Filtration Products, Inc. Box filter with orientation device
US9700743B2 (en) 2012-07-31 2017-07-11 3M Innovative Properties Company Respiratory assembly including latching mechanism
US11116998B2 (en) 2012-12-27 2021-09-14 3M Innovative Properties Company Filtering face-piece respirator having folded flange
US10182603B2 (en) 2012-12-27 2019-01-22 3M Innovative Properties Company Filtering face-piece respirator having strap-activated folded flange
US9815068B2 (en) 2012-12-28 2017-11-14 3M Innovative Properties Company Electret webs with charge-enhancing additives
US10391338B2 (en) 2013-02-01 2019-08-27 3M Innovative Properties Company Sleeve-fit respirator cartridge
US9510626B2 (en) 2013-02-01 2016-12-06 3M Innovative Properties Company Sleeve-fit respirator cartridge
WO2014172308A2 (en) 2013-04-19 2014-10-23 3M Innovative Properties Company Electret webs with charge-enhancing additives
US9815067B2 (en) 2013-04-19 2017-11-14 3M Innovative Properties Company Electret webs with charge-enhancing additives
WO2015080913A1 (en) 2013-11-26 2015-06-04 3M Innovative Properties Company Dimensionally-stable melt blown nonwoven fibrous structures, and methods and apparatus for making same
US11105018B2 (en) 2013-11-26 2021-08-31 3M Innovative Properties Company Dimensionally-stable melt blown nonwoven fibrous structures, and methods and apparatus for making same
US10400354B2 (en) 2013-11-26 2019-09-03 3M Innovative Properties Company Process of making dimensionally-stable melt blown nonwoven fibrous structures
JP2015112585A (en) * 2013-12-16 2015-06-22 三菱電機株式会社 Filter electrification processor and filter electrification processing method
WO2015130591A1 (en) 2014-02-27 2015-09-03 3M Innovative Properties Company Respirator having elastic straps having openwork structure
US10653901B2 (en) 2014-02-27 2020-05-19 3M Innovative Properties Company Respirator having elastic straps having openwork structure
US10040621B2 (en) 2014-03-20 2018-08-07 3M Innovative Properties Company Filtering face-piece respirator dispenser
WO2015199972A1 (en) 2014-06-23 2015-12-30 3M Innovative Properties Company Electret webs with charge-enhancing additives
US10240269B2 (en) 2014-06-23 2019-03-26 3M Innovative Properties Company Electret webs with charge-enhancing additives
US11033763B2 (en) 2014-08-18 2021-06-15 3M Innovative Properties Company Respirator including polymeric netting and method of forming same
WO2016028553A1 (en) 2014-08-18 2016-02-25 3M Innovative Properties Company Respirator including polymeric netting and method of forming same
WO2016069342A1 (en) 2014-10-31 2016-05-06 3M Innovative Properties Company Respirator having corrugated filtering structure
US11413481B2 (en) 2015-05-12 2022-08-16 3M Innovative Properties Company Respirator tab
US10919867B2 (en) 2015-07-07 2021-02-16 3M Innovative Properties Company Substituted benzotriazole phenols
US11053373B2 (en) 2015-07-07 2021-07-06 3M Innovative Properties Company Polymeric matrices with ionic additives
US11078419B2 (en) 2015-07-07 2021-08-03 3M Innovative Properties Company Substituted benzotriazole phenolate salts and antioxidant compositions formed therefrom
US10669481B2 (en) 2015-07-07 2020-06-02 3M Innovative Properties Company Substituted benzotriazole phenolate salts and antioxidant compositions formed therefrom
US10724171B2 (en) 2015-07-07 2020-07-28 3M Innovative Properties Company Electret webs with charge-enhancing additives
WO2017058880A1 (en) 2015-09-30 2017-04-06 3M Innovative Properties Company Foldable face-piece respirator with exhalation valve
WO2017066284A1 (en) 2015-10-12 2017-04-20 3M Innovative Properties Company Filtering face-piece respirator including functional material and method of forming same
US11213080B2 (en) 2015-11-11 2022-01-04 3M Innovative Properties Company Shape retaining flat-fold respirator
WO2017083289A1 (en) 2015-11-11 2017-05-18 3M Innovative Properties Company Shape retaining flat-fold respirator
WO2018081227A1 (en) 2016-10-28 2018-05-03 3M Innovative Properties Company Respirator including reinforcing element
WO2018127831A1 (en) 2017-01-05 2018-07-12 3M Innovative Properties Company Electret webs with charge-enhancing additives
EP3375308A1 (en) 2017-03-17 2018-09-19 3M Innovative Properties Company Foldable face - piece respirator of the ffp-3 type
US11813581B2 (en) 2017-07-14 2023-11-14 3M Innovative Properties Company Method and adapter for conveying plural liquid streams
WO2019130150A2 (en) 2017-12-28 2019-07-04 3M Innovative Properties Company Ceramic-coated fibers including a flame-retarding polymer, and methods of making nonwoven structures
WO2020223638A1 (en) 2019-05-01 2020-11-05 Ascend Performance Materials Operations Llc Filter media comprising polyamide nanofiber layer
WO2020261035A1 (en) 2019-06-26 2020-12-30 3M Innovative Properties Company Method of making a nonwoven fiber web, nonwoven fiber web, and multi-component fiber
US12000071B2 (en) 2019-06-26 2024-06-04 Solventum Intellectual Properties Company Method of making a nonwoven fiber web, nonwoven fiber web, and multi-component fiber
WO2020261034A1 (en) 2019-06-28 2020-12-30 3M Innovative Properties Company Filter assembly, prefilter assembly, and respirator including the same
WO2020261150A1 (en) 2019-06-28 2020-12-30 3M Innovative Properties Company Core-sheath fibers, nonwoven fibrous web, and respirator including the same
WO2021074746A1 (en) 2019-10-16 2021-04-22 3M Innovative Properties Company Substituted benzimidazole melt additives
WO2021074863A1 (en) 2019-10-16 2021-04-22 3M Innovative Properties Company Dual-function melt additives
WO2021111246A1 (en) 2019-12-03 2021-06-10 3M Innovative Properties Company Thiolate salt melt additives
WO2021111290A1 (en) 2019-12-03 2021-06-10 3M Innovative Properties Company Aromatic-heterocyclic ring melt additives
WO2021152422A1 (en) 2020-01-27 2021-08-05 3M Innovative Properties Company Substituted thiolate salt melt additives
WO2021152426A1 (en) 2020-01-27 2021-08-05 3M Innovative Properties Company Substituted thiol melt additives
US11982031B2 (en) 2020-01-27 2024-05-14 3M Innovative Properties Company Substituted thiol melt additives
US12017232B2 (en) 2020-03-13 2024-06-25 Julian HENLEY Electro-ionic mask devices for improved protection from airborne biopathogens
US11992585B2 (en) 2020-03-13 2024-05-28 Julian HENLEY Electro-ionic devices for improved protection from airborne biopathogens
DE102020107746A1 (en) 2020-03-20 2021-09-23 Solvamed Gmbh Improved respirator
WO2022034437A1 (en) 2020-08-11 2022-02-17 3M Innovative Properties Company Electret webs with carboxylic acid or carboxylate salt charge-enhancing additives
WO2022034444A1 (en) 2020-08-11 2022-02-17 3M Innovative Properties Company Electret webs with benzoate salt charge-enhancing additives
WO2022091060A1 (en) 2020-11-02 2022-05-05 3M Innovative Properties Company Core-sheath fibers, nonwoven fibrous web, and filtering articles including the same
WO2022130080A1 (en) 2020-12-18 2022-06-23 3M Innovative Properties Company Electrets comprising a substituted cyclotriphosphazene compound and articles therefrom
WO2023031697A1 (en) 2021-09-01 2023-03-09 3M Innovative Properties Company Anti-virus respirator and mask
EP4349419A1 (en) 2022-10-07 2024-04-10 3M Innovative Properties Company Disposable, flat-fold respirator having increased stiffness in selected areas

Also Published As

Publication number Publication date
RU2266771C2 (en) 2005-12-27
CN1212199C (en) 2005-07-27
CN1384767A (en) 2002-12-11
JP2003514998A (en) 2003-04-22
KR100627757B1 (en) 2007-03-08
BR0014559B1 (en) 2011-01-25
ATE370781T1 (en) 2007-09-15
DE60036127D1 (en) 2007-10-04
PL354171A1 (en) 2003-12-29
KR20020038801A (en) 2002-05-23
DE60036127T2 (en) 2008-05-21
EP1229988A1 (en) 2002-08-14
BR0014559A (en) 2002-06-11
AU767679B2 (en) 2003-11-20
WO2001026778A1 (en) 2001-04-19
EP1229988B1 (en) 2007-08-22
US6824718B2 (en) 2004-11-30
AU2516100A (en) 2001-04-23
US20020190434A1 (en) 2002-12-19
JP4518725B2 (en) 2010-08-04
CA2385770A1 (en) 2001-04-19

Similar Documents

Publication Publication Date Title
US6406657B1 (en) Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
US6454986B1 (en) Method of making a fibrous electret web using a nonaqueous polar liquid
US6375886B1 (en) Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid
US6743464B1 (en) Method of making electrets through vapor condensation
AU2000269086A1 (en) Method of making electrets through vapor condensation

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EITZMAN, PHILIP D.;ROUSSEAU, ALAN D.;REEL/FRAME:010391/0004

Effective date: 19991101

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

B1 Reexamination certificate first reexamination

Free format text: THE PATENTABILITY OF CLAIMS 1-4, 6-35 AND 38-46 IS CONFIRMED.CLAIMS 5, 36 AND 37 ARE DETERMINED TO BE PATENTABLE AS AMENDED.

FPAY Fee payment

Year of fee payment: 12