US4818584A - Arresting delamination in composite laminate - Google Patents
Arresting delamination in composite laminate Download PDFInfo
- Publication number
- US4818584A US4818584A US07/128,027 US12802787A US4818584A US 4818584 A US4818584 A US 4818584A US 12802787 A US12802787 A US 12802787A US 4818584 A US4818584 A US 4818584A
- Authority
- US
- United States
- Prior art keywords
- adhesive
- delamination
- laminate
- strips
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
- B32B7/14—Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/12—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/03—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B2038/0052—Other operations not otherwise provided for
- B32B2038/0072—Orienting fibers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/18—Aircraft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/902—High modulus filament or fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24058—Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24826—Spot bonds connect components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2848—Three or more layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2852—Adhesive compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2852—Adhesive compositions
- Y10T428/287—Adhesive compositions including epoxy group or epoxy polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
Definitions
- FIG. 1b is an end view of the composite laminate with the respective layers of FIG. 1a, showing angles at which the respective strips are emplaced in the composite laminate.
- FIG. 2b shows a cross-sectional view of the laminate structure specifically showing the diffusion of the adhesive away from the central strip of adhesive.
- FIG. 4a is a graph, or plot, showing a typical cure cycle, with temperature (°F.) on the y-axis and time (minutes) on the x-axis.
- FIG. 5 is a partial schematic view showing spacing and delamination sizes.
- 1b will be comprised of a plurality of strips of tape, which may be about three or four inches wide.
- a type of prefabricated tape is frequently referred to as prepreg tape and may be, for example, three inches wide.
- Narrow strips of adhesive 19 that have a fracture toughness greater than the resin are employed intermediate the strips of tape 11 in forming each respective layer.
- the viscosities of both the laminating resin and the adhesive 19 are reduced causing the adhesive to diffuse and mingle with the laminating resin to form the zones, or regions, of increased toughness 21, FIG. 2a and 2b.
- This invention can employ any one of the adhesives that have a fracture toughness greater than the resin.
- the adhesive must have a T-peel strength of 30 pounds per inch (lb./in.) or better.
- the T-peel test is a recognized test in which test speciment are adhered together and the force required to pull them apart measured.
- the adhesive must also have metal-to-metal peel strength of 20 lb/in or better.
- the metal-to-metal peel strength is a recognized test in which metal test specimens are adhered together and the force required to pull them apart measured. In both cases, the higher the numbers, the better is the adhesive.
- a suitable adhesive has been found to be FM-73, an adhesive available from American Cyanamid Company. It is an epoxy resin modified with a minor amount of added for toughness nitrile rubber and butadiene rubber; and commonly referred to by engineers in this technology as "epoxy adhesive.” It has a fracture toughness greater than the fracture toughness of the resin.
- the adhesive will have a critical Mode I strain energy release rate, G IC , (in energy release per unit area of debonding) in the range of 5 or more inch pounds per square inch.
- G IC critical Mode I strain energy release rate
- fracture toughness is a terminology that is employed by engineers in this art.
- the narrow strip of adhesive may be, for example, about a quarter of an inch or more in width.
- the adhesive could itself be impregnated into a strip and then the strip could be laid down intermediate the respective strips containing the resin and the high tensile strength fiber if desired. It is probably easier to manufacture the laminate composite with the adhesive strips already incorporated into the respective planes such that the manufacturing process would employ the method of this invention.
- any method that would result in the desired high structural strength laminate with the strips of adhesive intermediate respective strips of resin containing the high strength fibers could be employed.
- any delamination such as the intra-layer delamination 23 or the inter-layer delamination 25 is arrested upon reaching the nearest toughened zone 21, or zone of increased toughness formed by diffusion of adhesive into the resinous matrix; and is thereby constrained to a localized region between adjacent toughened zones provided by the adhesive of the respective angled strips of tape 11.
- the selected adhesive must be compatible with the cure cycle of the prepreg tape so as not to give off excess volatiles or decompose as a result of the temperatures experienced during the cure and postcure cycles.
- the selected adhesive must also be chemically compatible with the resin system in the prepreg tape so as not to react chemically during the cure and postcure cycles.
- the selected adhesive should have a thickness in the uncured state equal to or greater than that of the prepreg tape so that the pressure applied to the prepreg tape during the cure cycle will also be felt by the adhesive and thus promote the desired extent of diffusion and mingling of the adhesive with the laminating resin.
- FIG. 5 illustrates a plan view of a composite laminate containing adhesive strips spaced S* inches apart where S* is the quantity to be defined. Also shown is a delamination placed midway between two adhesive strips with the direction of growth specified as normal, or perpendicular, to the direction of the adhesive strips. Given this set of conditions, it is possible using state-of-the-art computational techniques to calculate for some critical loading condition, the values of Mode I and Mode II strain energy release rates, G 1 and G II , respectively, as a function of the delamination size S. The resulting curves defining G I and G II are shown in FIG. 6. For a value of S equal to 0.0, both G I and G II are equal 0.0.
- a laminate had the strips of adhesive (FM-73) placed side by side with the strips of resin and fiber. It was cut into 1 inch wide test specimens designated AS 1/3502. A typical test specimen was polished and photographed. The American Cyanamid FM-73 adhesive had diffused sufficiently to form blocking toughened areas 21 of the desired extent, such that when the delamination encountered these toughened areas, delamination was stopped.
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/128,027 US4818584A (en) | 1987-12-03 | 1987-12-03 | Arresting delamination in composite laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/128,027 US4818584A (en) | 1987-12-03 | 1987-12-03 | Arresting delamination in composite laminate |
Publications (1)
Publication Number | Publication Date |
---|---|
US4818584A true US4818584A (en) | 1989-04-04 |
Family
ID=22433236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/128,027 Expired - Fee Related US4818584A (en) | 1987-12-03 | 1987-12-03 | Arresting delamination in composite laminate |
Country Status (1)
Country | Link |
---|---|
US (1) | US4818584A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447411A (en) * | 1993-06-10 | 1995-09-05 | Martin Marietta Corporation | Light weight fan blade containment system |
FR2720111A1 (en) * | 1994-05-20 | 1995-11-24 | Gen Electric | System for the containment of the fins of a turbine engine. |
US20100166988A1 (en) * | 2006-07-12 | 2010-07-01 | Astrium Sas | Assembly of prepregs for producing structures, for example ones which deploy through inflation |
US20110003137A1 (en) * | 2008-04-16 | 2011-01-06 | Enzo Cosentino | Composite laminate with self-healing layer |
US20110165976A1 (en) * | 2010-01-05 | 2011-07-07 | Chuang H Y | Ball bat including multiple failure planes |
US20140020221A1 (en) * | 2009-03-09 | 2014-01-23 | The Boeing Company | Bonded patch having multiple zones of fracture toughness |
US8708845B2 (en) | 2010-01-05 | 2014-04-29 | Easton Sports, Inc. | Ball bat including multiple failure planes |
US8979682B2 (en) | 2011-12-21 | 2015-03-17 | Easton Baseball/Softball Inc. | Ball bat including a reinforced, low-durability region for deterring barrel alteration |
US9393768B2 (en) | 2009-03-09 | 2016-07-19 | The Boeing Company | Discretely tailored multi-zone bondline for fail-safe structural repair |
US9492975B2 (en) | 2009-03-09 | 2016-11-15 | The Boeing Company | Structural bonded patch with tapered adhesive design |
US10159878B2 (en) | 2015-08-27 | 2018-12-25 | Easton Diamond Sports, Llc | Composite ball bat including a barrel with structural regions separated by a porous non-adhesion layer |
US10940377B2 (en) | 2018-06-19 | 2021-03-09 | Easton Diamond Sports, Llc | Composite ball bats with transverse fibers |
US11013967B2 (en) | 2017-07-19 | 2021-05-25 | Easton Diamond Sports, Llc | Ball bats with reduced durability regions for deterring alteration |
US11167190B2 (en) | 2017-07-19 | 2021-11-09 | Easton Diamond Sports, Llc | Ball bats with reduced durability regions for deterring alteration |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3528950A (en) * | 1967-07-03 | 1970-09-15 | Trw Inc | Polyimide polymers |
US3578544A (en) * | 1968-01-18 | 1971-05-11 | Phillips Petroleum Co | Reinforced microporous laminates |
US3745149A (en) * | 1971-09-29 | 1973-07-10 | Nasa | Preparation of polyimides from mixtures of monomeric diamines and esters of polycarboxylic acids |
US3878020A (en) * | 1971-01-11 | 1975-04-15 | Eastman Kodak Co | Method of making plywood cores |
US3891490A (en) * | 1974-06-06 | 1975-06-24 | Raychem Corp | Welded polymeric articles and process |
US3993818A (en) * | 1975-02-28 | 1976-11-23 | United Technologies Corporation | Resin bonded composite articles and process for fabrication thereof |
US4034137A (en) * | 1976-12-06 | 1977-07-05 | John Z. Delorean Corporation | Composite sheet structure and method for manufacturing same |
US4166170A (en) * | 1977-10-06 | 1979-08-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Mixed diamines for lower melting addition polyimide preparation and utilization |
US4233258A (en) * | 1979-02-13 | 1980-11-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for preparing addition type polyimide prepregs |
US4263367A (en) * | 1979-11-07 | 1981-04-21 | United Technologies Corporation | Discontinuous graphite fiber reinforced glass composites |
US4309473A (en) * | 1978-12-08 | 1982-01-05 | Toho Beslon Co., Ltd. | Non-tacky strand prepreg comprising a resin composition containing a combination of (1) a thermosetting resin and (2) a high molecular weight epoxy resin and a process for forming an article from the same |
US4350728A (en) * | 1980-10-02 | 1982-09-21 | The United States Of America As Represented By The Secretary Of The Navy | Cross reinforcement in a graphite-epoxy laminate |
US4368234A (en) * | 1979-12-21 | 1983-01-11 | Mcdonnell Douglas Corporation | Woven material and layered assembly thereof |
US4406724A (en) * | 1981-11-02 | 1983-09-27 | Jerome D. Gelula | Method for producing unwoven novel oriented pre-stressed web |
US4416929A (en) * | 1981-07-02 | 1983-11-22 | Proform, Inc. | Multilayer stitched knitted fiberglass composite |
US4446192A (en) * | 1979-06-11 | 1984-05-01 | Trelleborg Ab | Wear-resistant rubber product and a method of making same |
US4454184A (en) * | 1979-05-05 | 1984-06-12 | Arthur Britton | Sheet material comprising layers of aligned strands completely surrounded by adhesive |
US4455186A (en) * | 1983-04-27 | 1984-06-19 | Battelle Memorial Institute | Self-contained exothermic applicator and process |
US4489123A (en) * | 1981-01-09 | 1984-12-18 | Technische Hogeschool Delft | Laminate of metal sheet material and threads bonded thereto, as well as processes for the manufacture thereof |
US4496621A (en) * | 1982-05-28 | 1985-01-29 | Le Carbone-Lorraine | Reinforced impregnated graphite structures and process for making same |
US4529645A (en) * | 1982-10-19 | 1985-07-16 | Minnesota Mining And Manufacturing Company | Polyethylene-terephthalate-backed adhesive tape or extreme dimensional stability |
US4581284A (en) * | 1983-03-01 | 1986-04-08 | Dornier Gmbh | Fiber compound material |
US4604319A (en) * | 1984-06-01 | 1986-08-05 | American Cyanamid Company | Thermoplastic interleafed resin matrix composites with improved impact strength and toughness |
US4710416A (en) * | 1985-04-08 | 1987-12-01 | Uni-Grip, Inc. | Core structure for use in a seal |
-
1987
- 1987-12-03 US US07/128,027 patent/US4818584A/en not_active Expired - Fee Related
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3528950A (en) * | 1967-07-03 | 1970-09-15 | Trw Inc | Polyimide polymers |
US3578544A (en) * | 1968-01-18 | 1971-05-11 | Phillips Petroleum Co | Reinforced microporous laminates |
US3878020A (en) * | 1971-01-11 | 1975-04-15 | Eastman Kodak Co | Method of making plywood cores |
US3745149A (en) * | 1971-09-29 | 1973-07-10 | Nasa | Preparation of polyimides from mixtures of monomeric diamines and esters of polycarboxylic acids |
US3891490A (en) * | 1974-06-06 | 1975-06-24 | Raychem Corp | Welded polymeric articles and process |
US3993818A (en) * | 1975-02-28 | 1976-11-23 | United Technologies Corporation | Resin bonded composite articles and process for fabrication thereof |
US4034137A (en) * | 1976-12-06 | 1977-07-05 | John Z. Delorean Corporation | Composite sheet structure and method for manufacturing same |
US4166170A (en) * | 1977-10-06 | 1979-08-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Mixed diamines for lower melting addition polyimide preparation and utilization |
US4309473A (en) * | 1978-12-08 | 1982-01-05 | Toho Beslon Co., Ltd. | Non-tacky strand prepreg comprising a resin composition containing a combination of (1) a thermosetting resin and (2) a high molecular weight epoxy resin and a process for forming an article from the same |
US4233258A (en) * | 1979-02-13 | 1980-11-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for preparing addition type polyimide prepregs |
US4454184A (en) * | 1979-05-05 | 1984-06-12 | Arthur Britton | Sheet material comprising layers of aligned strands completely surrounded by adhesive |
US4446192A (en) * | 1979-06-11 | 1984-05-01 | Trelleborg Ab | Wear-resistant rubber product and a method of making same |
US4263367A (en) * | 1979-11-07 | 1981-04-21 | United Technologies Corporation | Discontinuous graphite fiber reinforced glass composites |
US4368234A (en) * | 1979-12-21 | 1983-01-11 | Mcdonnell Douglas Corporation | Woven material and layered assembly thereof |
US4350728A (en) * | 1980-10-02 | 1982-09-21 | The United States Of America As Represented By The Secretary Of The Navy | Cross reinforcement in a graphite-epoxy laminate |
US4489123A (en) * | 1981-01-09 | 1984-12-18 | Technische Hogeschool Delft | Laminate of metal sheet material and threads bonded thereto, as well as processes for the manufacture thereof |
US4416929A (en) * | 1981-07-02 | 1983-11-22 | Proform, Inc. | Multilayer stitched knitted fiberglass composite |
US4406724A (en) * | 1981-11-02 | 1983-09-27 | Jerome D. Gelula | Method for producing unwoven novel oriented pre-stressed web |
US4496621A (en) * | 1982-05-28 | 1985-01-29 | Le Carbone-Lorraine | Reinforced impregnated graphite structures and process for making same |
US4529645A (en) * | 1982-10-19 | 1985-07-16 | Minnesota Mining And Manufacturing Company | Polyethylene-terephthalate-backed adhesive tape or extreme dimensional stability |
US4581284A (en) * | 1983-03-01 | 1986-04-08 | Dornier Gmbh | Fiber compound material |
US4455186A (en) * | 1983-04-27 | 1984-06-19 | Battelle Memorial Institute | Self-contained exothermic applicator and process |
US4604319A (en) * | 1984-06-01 | 1986-08-05 | American Cyanamid Company | Thermoplastic interleafed resin matrix composites with improved impact strength and toughness |
US4604319B1 (en) * | 1984-06-01 | 1995-07-04 | American Cyanamid Co | Thermoplastic interleafed resin matrix composites with improved impact strength and toughness |
US4710416A (en) * | 1985-04-08 | 1987-12-01 | Uni-Grip, Inc. | Core structure for use in a seal |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447411A (en) * | 1993-06-10 | 1995-09-05 | Martin Marietta Corporation | Light weight fan blade containment system |
FR2720111A1 (en) * | 1994-05-20 | 1995-11-24 | Gen Electric | System for the containment of the fins of a turbine engine. |
US20100166988A1 (en) * | 2006-07-12 | 2010-07-01 | Astrium Sas | Assembly of prepregs for producing structures, for example ones which deploy through inflation |
US9381719B2 (en) * | 2006-07-12 | 2016-07-05 | Astrium Sas | Assembly of prepregs for producing structures, for example ones which deploy through inflation |
US20110003137A1 (en) * | 2008-04-16 | 2011-01-06 | Enzo Cosentino | Composite laminate with self-healing layer |
US8361609B2 (en) | 2008-04-16 | 2013-01-29 | Airbus Operations Limited | Composite laminate with self-healing layer |
US9492975B2 (en) | 2009-03-09 | 2016-11-15 | The Boeing Company | Structural bonded patch with tapered adhesive design |
US9393651B2 (en) * | 2009-03-09 | 2016-07-19 | The Boeing Company | Bonded patch having multiple zones of fracture toughness |
US9393768B2 (en) | 2009-03-09 | 2016-07-19 | The Boeing Company | Discretely tailored multi-zone bondline for fail-safe structural repair |
US20140020221A1 (en) * | 2009-03-09 | 2014-01-23 | The Boeing Company | Bonded patch having multiple zones of fracture toughness |
US20140213395A1 (en) * | 2010-01-05 | 2014-07-31 | Easton Sports, Inc. | Ball bat including multiple failure planes |
US8708845B2 (en) | 2010-01-05 | 2014-04-29 | Easton Sports, Inc. | Ball bat including multiple failure planes |
US8376881B2 (en) | 2010-01-05 | 2013-02-19 | Easton Sports, Inc. | Ball bat including multiple failure planes |
US8182377B2 (en) | 2010-01-05 | 2012-05-22 | Easton Sports, Inc. | Ball bat including multiple failure planes |
US20110165976A1 (en) * | 2010-01-05 | 2011-07-07 | Chuang H Y | Ball bat including multiple failure planes |
US9744416B2 (en) * | 2010-01-05 | 2017-08-29 | Easton Diamond Sports, Llc | Ball bat including multiple failure planes |
US8979682B2 (en) | 2011-12-21 | 2015-03-17 | Easton Baseball/Softball Inc. | Ball bat including a reinforced, low-durability region for deterring barrel alteration |
US9463364B2 (en) | 2011-12-21 | 2016-10-11 | Easton Baseball/Softball Inc. | Ball bat including a reinforced, low-durability region for deterring barrel alteration |
US10159878B2 (en) | 2015-08-27 | 2018-12-25 | Easton Diamond Sports, Llc | Composite ball bat including a barrel with structural regions separated by a porous non-adhesion layer |
US11013967B2 (en) | 2017-07-19 | 2021-05-25 | Easton Diamond Sports, Llc | Ball bats with reduced durability regions for deterring alteration |
US11167190B2 (en) | 2017-07-19 | 2021-11-09 | Easton Diamond Sports, Llc | Ball bats with reduced durability regions for deterring alteration |
US10940377B2 (en) | 2018-06-19 | 2021-03-09 | Easton Diamond Sports, Llc | Composite ball bats with transverse fibers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4818584A (en) | Arresting delamination in composite laminate | |
US4274901A (en) | Method of making a partial interlaminar separation composite system | |
US4229473A (en) | Partial interlaminar separation system for composites | |
EP0056288B1 (en) | Laminate of metal sheet material and threads bonded thereto, as well as processes for the manufacture thereof | |
US4808461A (en) | Composite structure reinforcement | |
US7198692B2 (en) | Paste-bond clevis joint | |
US4500589A (en) | Laminate of aluminum sheet material and aramid fibers | |
RU2618055C2 (en) | Composite materials bonding | |
EP0703837B1 (en) | A reinforced joint for composite structures and method of joining composite parts | |
Aymerich et al. | Static and fatigue behaviour of stitched graphite/epoxy composite laminates | |
US8540916B2 (en) | Curved structural part made of composite material and a process for manufacturing such a part | |
Lagace | Notch sensitivity and stacking sequence of laminated composites | |
US20040023581A1 (en) | Z-pin closeout joint and method of assembly | |
Zhou et al. | Failure analysis of composite laminates with free edge | |
Aktaş et al. | Improving strength performance of adhesively bonded single-lap composite joints | |
Sohn et al. | Processing of carbon-fibre/epoxy composites with cost-effective interlaminar reinforcement | |
JPH0575575B2 (en) | ||
Hiremath et al. | An experimental investigation on the adhesive, shear strength, and failure modes of glass fibre reinforced polymer flat‐joggle‐flat composite joints over different bonding techniques | |
Marom et al. | Stress concentrations and transverse modes of failure in composites with a soft fibre-matrix interlayer | |
Hart-Smith | Adhesively bonded joints for fibrous composite structures | |
JPH01320146A (en) | Molding intermediate product and moldings | |
Benkheira et al. | Comparison of double-and single-bonded repairs to symmetrical composite structures | |
Mar et al. | Characterization of splitting process in graphite/epoxy composites | |
Li et al. | Increased fracture toughness of graphite-epoxy composites through intermittent interlaminar bonding | |
de Almeida et al. | Effect of the free edge finishing on the tensile strength of carbon/epoxy laminates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL DYNAMICS CORPORATION, FORT WORTH TARRANT T Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:EISENMANN, JAMES R.;REEL/FRAME:004805/0043 Effective date: 19871203 Owner name: GENERAL DYNAMICS CORPORATION,TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EISENMANN, JAMES R.;REEL/FRAME:004805/0043 Effective date: 19871203 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: LOCKHEED CORPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL DYNAMICS CORPORATION;REEL/FRAME:006635/0057 Effective date: 19930226 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20010404 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |