US4647805A - Dynamoelectric machine - Google Patents
Dynamoelectric machine Download PDFInfo
- Publication number
- US4647805A US4647805A US06/809,286 US80928685A US4647805A US 4647805 A US4647805 A US 4647805A US 80928685 A US80928685 A US 80928685A US 4647805 A US4647805 A US 4647805A
- Authority
- US
- United States
- Prior art keywords
- rotor
- flow path
- axis
- transfer tube
- dynamoelectric machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 239000002826 coolant Substances 0.000 claims description 39
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000005755 formation reaction Methods 0.000 claims description 10
- 238000001816 cooling Methods 0.000 description 15
- 238000004804 winding Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
- H02K9/193—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2205/00—Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
- H02K2205/12—Machines characterised by means for reducing windage losses or windage noise
Definitions
- This invention relates to dynamoelectric machines, and more particularly, to improved rotor cooling in dynamoelectric machines.
- Liquid cooling of the machine stator does not provide a particular difficulty since stator components are stationary and it is a relatively simple matter to establish the requisite connections for a liquid flow path throughout the stator sufficient to provide the desired degree of cooling.
- cooling rotor component presents more of a problem in that means for conducting the coolant from a stationary part of the machine to the rotor are required; and this typically requires couplings, unions or any of a variety of other known means.
- the present invention is directed to overcoming one or more of the above problems.
- the first facet of the invention is achieved in a dynamoelectric machine having a stator including an armature.
- a rotor is journalled for rotation about an axis within the armature.
- the machine includes a pump as well as a sump and means are provided to define a liquid flow path within the rotor.
- the flow path has coaxial ends located on the rotational axis of the rotor.
- a first transfer tube is disposed on the axis and is connected to one of the flow path ends as well as to the pump and a second transfer tube is disposed on the axis and coaxially surrounds the first transfer tube.
- the second transfer tube is connected to the other of the flow path ends and to the sump.
- the transfer tubes each have journal formations on each of their ends and are rotatable relative to both the rotor and the stator. During operation of the machine, rotation of the rotor and the presence of the journal formations tend to provide a dynamic seal at each such location to further enhance the ability of the machine to prevent leakage.
- a stator there is a stator, a rotor, a pump and a sump as before.
- An inlet is provided to a coolant flow path on the rotor, which inlet is located on the rotational axis of the rotor.
- the inlet is connected to the pump.
- An outlet from the flow path is also located on the rotor and is hydraulically spaced from the inlet and disposed radially outwardly of the inlet as well as radially inwardly of a part of the flow path located hydraulically between the inlet and the outlet.
- FIGURE is a sectional view of a dynamoelectric machine in the form of brushless generator made according to the invention.
- a dynamoelectric machine made according to the invention is illustrated in the drawing in the form of a so-called brushless generator.
- the invention is not limited to brushless generators or even to generators, but may find applicability in dynamoelectric machines employed as motors.
- the machine includes a housing 10 disposed about a stator, generally designated 12.
- the stator 12 includes an armature 14 as well as windings, the end turns 16 of which may be seen.
- the stator 14 includes a cylindrical inner opening 18 for receipt of a rotor, generally designated 20.
- the rotor 20 is a multiple pole rotor having main field windings 22 with coolant passages 24 in heat exchange relation therewith.
- the specific type of coolant passages 24 and their interrelationship with the windings 22 may be ascertained in greater detail by reference to the commonly assigned application of Vaghani et al, Ser. No. 755,255, filed July 15, 1985 and entitled “Generator Rotor Cooling", now U.S. Pat. No. 4,603,272, the details of which are herein incorporated by reference.
- the rotor components thus far described are disposed upon a hollow shaft 26 which is journalled within the opening 18 by means of bearings 28 at the input end of the shaft 26 and by bearings 30 oppositely thereof.
- the windings 22 constitute the main field winding for the generator to induce current within the stator 12.
- alternating current normally three-phase
- a full wave rectifier (not shown) received within a rectifier housing 32 disposed within the hollow of the shaft 26.
- Terminals such as shown at 34 provide a three- phase alternating current input to the rectifier from an exciter, generally designated 36, having an armature 38 located on the shaft 26.
- a magnetic field for the exciter 36 is provided by current directed through exciter stator windings 40, after rectification, from field windings 42 of a permanent magnet generator, generally designated 44 including permanent magnets 46 carried by the shaft 26.
- a spiralled conduit 48 within the housing 10 may provide so-called "back iron” cooling for various stator components, and forms no part of the present invention.
- a pump 50 has an output 52 connected to the rotor 20 and an inlet 54 connected to a sump shown schematically at 56.
- the pump 50 provides a coolant under pressure, usually oil to also act as a lubricant, to a first transfer tube 58 disposed on the rotational axis of the rotor 20.
- the transfer tube 58 has journal-like formations 60 on its opposite ends, which formations are generally spherical.
- the right-hand end of the transfer tube 58 is rotatably received in a sleeve 62 defining a first port within the housing 10. It will be seen that the sleeve 62 is disposed within a bore 64 in the housing 10 located on the axis of rotation of the rotor 20 and specifically, in a reduced diameter portion 65 of such bore 64.
- the left-hand end of the transfer tube 58 is received in a recess 66 in a cap 68 forming part of the rectifier housing 32.
- the coolant may be flowed from the pump 50 through the transfer tube 58 at high pressure to the interior of the rectifier housing 32 to cool rectifier components contained therein.
- a port allows the coolant to exit the housing 32 and pass between the boundary of the housing 32 and the interior of the rotor shaft 26 as illustrated by an arrow 70.
- the coolant thus tends to cool the exterior of the rectifier housing 32 as well as to absorb any heat conducted to the shaft 26.
- the coolant flow path includes passages 72 through a distributor 74 within the shaft 26, as shown by an arrow 76, to allow communication to an axial groove 78 and diagonal bores 80 to the coolant passages 24, as shown by an arrow 82.
- the passages 24 are generally U-shaped and thus, fluid may emerge from each of the passage 24 as illustrated by an arrow 84 to move radially inwardly through a diagonal bore 80 ultimately to pockets 86 (only one of which is shown) in the distributor 74 and then radially inwardly through bores 88 to the exterior of the transfer tube 58.
- This flow is shown by an arrow 90 and brings the coolant to the interior of a bore 91 in the distributor 74 and aligned with the bore 64 in the housing 10.
- a second transfer tube 92 is located on the axis of rotation of the rotor 20 in coaxial relation and surrounding relation to the transfer tube 58.
- Both the distributor 74 and the housing 10 include sleeves 98 similar to the sleeve 62, but somewhat larger, to receive journal formations 100 on respective end of the second transfer tube 92.
- the journal formations 100 may be identical to journal formations 60 on the first transfer tube 58 and allow the transfer tube 92 to rotate with respect to both of the sleeves 98.
- the bore 64 in the housing 10 opens via a bore 102 to line 104 extending to the sump 56.
- a prime mover is coupled to the shaft 26 to rotate the rotor 20 and some suitable source of power for driving the pump 50 is provided. Coolant under high pressure will enter the rotor flow path via the first transfer tube 58. Because of the presence of the journal formations 60 and relative rotation occurring between the various components, a dynamic seal will be formed at such locations that will tend to prevent even the high pressure coolant from leaking. However, to the extent that it does leak, it leaks into a low pressure area defined by the bore 64 and the second transfer tube 92.
- the latter also has the benefit of dynamic sealing provided by the journal formations 100 and because of the low pressure in this area, there will be very little, if any, tendency for the coolant to leak radially outwardly of the second transfer tube 92 to travel along the sides of the rotor to the air gap at the opening 18. As a consequence, windage losses are avoided in the inventive structure.
- annular pools of coolant will still remain at location radially outwardly of the second transfer tube 92 and will continue to absorb heat as their temperature increases.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
Description
Claims (8)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/809,286 US4647805A (en) | 1985-12-16 | 1985-12-16 | Dynamoelectric machine |
JP61504555A JPS63501998A (en) | 1985-12-16 | 1986-08-04 | Generator |
PCT/US1986/001606 WO1987003748A1 (en) | 1985-12-16 | 1986-08-04 | Cooling arrangement of rotor in dynamoelectric machine |
EP19860905492 EP0250447A4 (en) | 1985-12-16 | 1986-08-04 | Cooling arrangement of rotor in dynamoelectric machine. |
IL80744A IL80744A0 (en) | 1985-12-16 | 1986-11-24 | Dynamoelectric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/809,286 US4647805A (en) | 1985-12-16 | 1985-12-16 | Dynamoelectric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
US4647805A true US4647805A (en) | 1987-03-03 |
Family
ID=25200964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/809,286 Expired - Fee Related US4647805A (en) | 1985-12-16 | 1985-12-16 | Dynamoelectric machine |
Country Status (5)
Country | Link |
---|---|
US (1) | US4647805A (en) |
EP (1) | EP0250447A4 (en) |
JP (1) | JPS63501998A (en) |
IL (1) | IL80744A0 (en) |
WO (1) | WO1987003748A1 (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683389A (en) * | 1985-12-23 | 1987-07-28 | Sundstrand Corporation | Oil scavenge system |
US4932446A (en) * | 1988-10-25 | 1990-06-12 | Sundstrand Corporation | Coaxial pressure fill fitting and standpipe drain |
US5127485A (en) * | 1988-06-29 | 1992-07-07 | Aisin Aw Co., Ltd. | Electric motorized wheel with integral motorized cooling oil pump |
US5218252A (en) * | 1992-02-11 | 1993-06-08 | Sundstrand Corporation | Dynamoelectric machines with stator positioning |
US5237227A (en) * | 1992-04-27 | 1993-08-17 | Huss John B | Exciter rotor flow through cooling |
US5347188A (en) * | 1992-09-09 | 1994-09-13 | Sunstrand Corporation | Electric machine with enhanced liquid cooling |
US5365133A (en) * | 1992-07-14 | 1994-11-15 | Eemco/Datron, Inc. | Miniature rotating rectifier assembly |
US5589720A (en) * | 1992-09-10 | 1996-12-31 | Elin Motoren Gmbh | Electric motor with cooling device |
US5828148A (en) * | 1997-03-20 | 1998-10-27 | Sundstrand Corporation | Method and apparatus for reducing windage losses in rotating equipment and electric motor/generator employing same |
US6651762B1 (en) * | 1997-09-04 | 2003-11-25 | General Electric Company | AC motorized wheel arrangement |
US20040066098A1 (en) * | 2002-10-04 | 2004-04-08 | Doherty Kieran P.J. | High speed generator with the main rotor housed inside the shaft |
US20040079566A1 (en) * | 2002-10-24 | 2004-04-29 | General Electric Company | Stator insulation protection system |
US20050151431A1 (en) * | 2004-01-14 | 2005-07-14 | Caterpillar Inc. | Cooling system for an electric motor |
US7208854B1 (en) | 2006-03-09 | 2007-04-24 | Hamilton Sundstrand Corporation | Rotor cooling system for synchronous machines with conductive sleeve |
US20100164310A1 (en) * | 2008-12-30 | 2010-07-01 | Caterpillar Inc. | Liquid cooled permanent magnet rotor |
US20100264759A1 (en) * | 2009-04-20 | 2010-10-21 | Douglas George Shafer | Integrated brushless starter/generator system |
US20100283334A1 (en) * | 2009-05-07 | 2010-11-11 | Lemmers Jr Glenn C | Generator main stator back-iron cooling sleeve |
US20110285222A1 (en) * | 2010-05-18 | 2011-11-24 | Remy Technologies, Llc | Sleeve Member for an Electric Machine |
US20110298315A1 (en) * | 2010-06-04 | 2011-12-08 | Remy Technologies, Llc | Electric Machine Cooling System and Method |
US8201317B2 (en) * | 2009-05-06 | 2012-06-19 | Hamilton Sundstrand Corporation | Generator rotor with improved hollow shaft |
US8604651B2 (en) | 2011-02-18 | 2013-12-10 | Hamilton Sundstrand Space Systems International, Inc. | Cooling of permanent magnet electric machine |
WO2014025928A2 (en) * | 2012-08-08 | 2014-02-13 | Ac Propulsion, Inc. | Liquid cooled electric motor |
US8760015B2 (en) | 2011-02-18 | 2014-06-24 | Hamilton Sundstrand Corporation | Cooling of permanent magnet electric machine |
US8847444B2 (en) | 2010-11-12 | 2014-09-30 | Hamilton Sundstrand Space Systems International, Inc. | Cooling of permanent magnet electric machine |
US20150097451A1 (en) * | 2013-10-09 | 2015-04-09 | Fu Ding Electronical Technology (Jiashan) Co.,Ltd. | Motor with cooling device |
DE102014222959A1 (en) * | 2014-11-11 | 2016-05-12 | Volkswagen Aktiengesellschaft | Cooling jacket for an electric machine |
US20160233744A1 (en) * | 2015-02-09 | 2016-08-11 | Toyota Jidosha Kabushiki Kaisha | Rotary electric machine |
US9559569B2 (en) | 2012-02-13 | 2017-01-31 | Ge Aviation Systems Llc | Arrangement for cooling an electric machine with a layer of thermally conducting and electrically insulating material |
US11155357B2 (en) * | 2019-01-03 | 2021-10-26 | Ge Aviation Systems Llc | Generator with jet pump having motive fluid for fluidly coupling to a cooling circuit |
US11616414B2 (en) | 2016-08-02 | 2023-03-28 | Integral Powertrain Ltd. | Rotary device, a motor and a method of cooling a motor |
WO2023055343A1 (en) * | 2021-09-28 | 2023-04-06 | Siemens Energy, Inc. | High current density electric machine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7591147B2 (en) | 2006-11-01 | 2009-09-22 | Honeywell International Inc. | Electric motor cooling jacket resistor |
DE102019211559A1 (en) * | 2019-08-01 | 2021-02-04 | Zf Friedrichshafen Ag | Electrical machine of a vehicle with a cooling fluid supply |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2894155A (en) * | 1955-03-21 | 1959-07-07 | Gen Electric | Liquid cooled dynamoelectric machine |
US3060335A (en) * | 1961-02-07 | 1962-10-23 | Garrett Corp | Fluid cooled dynamoelectric machine |
US3260872A (en) * | 1964-04-13 | 1966-07-12 | Bendix Corp | Oil cooled generator design |
US3261295A (en) * | 1964-06-03 | 1966-07-19 | Crane Co | Motor driven pump |
US3524090A (en) * | 1966-12-07 | 1970-08-11 | Bbc Brown Boveri & Cie | Shaft couplings for mechanically and electrically connecting the rotor shaft of a turbogenerator with a separate shaft |
US3543062A (en) * | 1967-08-10 | 1970-11-24 | Giuseppe Banchieri | Direct wire cooling in synchronous electrical machines |
US3686522A (en) * | 1970-06-15 | 1972-08-22 | Boris Leonidovich Konovalov | Rotor with a liquid-cooled winding for an electrical machine |
US4341093A (en) * | 1980-12-01 | 1982-07-27 | Mitsubishi Denki Kabushiki Kaisha | Device for leading cooling liquid out of rotary electric machine with liquid cooled rotor |
US4364241A (en) * | 1980-12-02 | 1982-12-21 | Mitsubishi Denki Kabushiki Kaisha | Device for draining cooling liquid from rotary electric machine with liquid cooled rotor |
US4470772A (en) * | 1982-05-20 | 1984-09-11 | Tecumseh Products Company | Direct suction radial compressor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1031428A (en) * | 1963-10-16 | 1966-06-02 | Vsesouzny Nii Elektromekhaniki | The cooling of dynamo electric machines |
US3629634A (en) * | 1970-07-06 | 1971-12-21 | Gen Motors Corp | Conduit arrangement for a liquid-cooled dynamoelectric machine |
US4155019A (en) * | 1973-06-27 | 1979-05-15 | Kraftwerk Union Aktiengesellschaft | Coupling assembly for mutually coupling a generator rotor having a superconductive exciter winding and a shaft carrying exciter current leads |
US4514652A (en) * | 1983-07-13 | 1985-04-30 | Sundstrand Corporation | Liquid cooled high speed synchronous machine |
US5424593A (en) * | 1985-07-15 | 1995-06-13 | Sundstrand Corporation | Generator rotor cooling |
-
1985
- 1985-12-16 US US06/809,286 patent/US4647805A/en not_active Expired - Fee Related
-
1986
- 1986-08-04 EP EP19860905492 patent/EP0250447A4/en not_active Withdrawn
- 1986-08-04 JP JP61504555A patent/JPS63501998A/en active Pending
- 1986-08-04 WO PCT/US1986/001606 patent/WO1987003748A1/en not_active Application Discontinuation
- 1986-11-24 IL IL80744A patent/IL80744A0/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2894155A (en) * | 1955-03-21 | 1959-07-07 | Gen Electric | Liquid cooled dynamoelectric machine |
US3060335A (en) * | 1961-02-07 | 1962-10-23 | Garrett Corp | Fluid cooled dynamoelectric machine |
US3260872A (en) * | 1964-04-13 | 1966-07-12 | Bendix Corp | Oil cooled generator design |
US3261295A (en) * | 1964-06-03 | 1966-07-19 | Crane Co | Motor driven pump |
US3524090A (en) * | 1966-12-07 | 1970-08-11 | Bbc Brown Boveri & Cie | Shaft couplings for mechanically and electrically connecting the rotor shaft of a turbogenerator with a separate shaft |
US3543062A (en) * | 1967-08-10 | 1970-11-24 | Giuseppe Banchieri | Direct wire cooling in synchronous electrical machines |
US3686522A (en) * | 1970-06-15 | 1972-08-22 | Boris Leonidovich Konovalov | Rotor with a liquid-cooled winding for an electrical machine |
US4341093A (en) * | 1980-12-01 | 1982-07-27 | Mitsubishi Denki Kabushiki Kaisha | Device for leading cooling liquid out of rotary electric machine with liquid cooled rotor |
US4364241A (en) * | 1980-12-02 | 1982-12-21 | Mitsubishi Denki Kabushiki Kaisha | Device for draining cooling liquid from rotary electric machine with liquid cooled rotor |
US4470772A (en) * | 1982-05-20 | 1984-09-11 | Tecumseh Products Company | Direct suction radial compressor |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683389A (en) * | 1985-12-23 | 1987-07-28 | Sundstrand Corporation | Oil scavenge system |
US5127485A (en) * | 1988-06-29 | 1992-07-07 | Aisin Aw Co., Ltd. | Electric motorized wheel with integral motorized cooling oil pump |
US4932446A (en) * | 1988-10-25 | 1990-06-12 | Sundstrand Corporation | Coaxial pressure fill fitting and standpipe drain |
US5218252A (en) * | 1992-02-11 | 1993-06-08 | Sundstrand Corporation | Dynamoelectric machines with stator positioning |
US5237227A (en) * | 1992-04-27 | 1993-08-17 | Huss John B | Exciter rotor flow through cooling |
WO1993022817A1 (en) * | 1992-04-27 | 1993-11-11 | Sundstrand Corporation | Exciter rotor flow through cooling |
US5365133A (en) * | 1992-07-14 | 1994-11-15 | Eemco/Datron, Inc. | Miniature rotating rectifier assembly |
US5347188A (en) * | 1992-09-09 | 1994-09-13 | Sunstrand Corporation | Electric machine with enhanced liquid cooling |
US5589720A (en) * | 1992-09-10 | 1996-12-31 | Elin Motoren Gmbh | Electric motor with cooling device |
US5828148A (en) * | 1997-03-20 | 1998-10-27 | Sundstrand Corporation | Method and apparatus for reducing windage losses in rotating equipment and electric motor/generator employing same |
US6651762B1 (en) * | 1997-09-04 | 2003-11-25 | General Electric Company | AC motorized wheel arrangement |
US20040066098A1 (en) * | 2002-10-04 | 2004-04-08 | Doherty Kieran P.J. | High speed generator with the main rotor housed inside the shaft |
US6897581B2 (en) * | 2002-10-04 | 2005-05-24 | Honeywell International Inc. | High speed generator with the main rotor housed inside the shaft |
US20040079566A1 (en) * | 2002-10-24 | 2004-04-29 | General Electric Company | Stator insulation protection system |
US20050151431A1 (en) * | 2004-01-14 | 2005-07-14 | Caterpillar Inc. | Cooling system for an electric motor |
US7009317B2 (en) * | 2004-01-14 | 2006-03-07 | Caterpillar Inc. | Cooling system for an electric motor |
US7208854B1 (en) | 2006-03-09 | 2007-04-24 | Hamilton Sundstrand Corporation | Rotor cooling system for synchronous machines with conductive sleeve |
US8022582B2 (en) | 2008-12-30 | 2011-09-20 | Caterpillar Inc. | Liquid cooled permanent magnet rotor |
US20100164310A1 (en) * | 2008-12-30 | 2010-07-01 | Caterpillar Inc. | Liquid cooled permanent magnet rotor |
US8296927B2 (en) | 2008-12-30 | 2012-10-30 | Caterpillar Inc. | Assembly method for liquid cooled permanent magnet rotor |
US20100264759A1 (en) * | 2009-04-20 | 2010-10-21 | Douglas George Shafer | Integrated brushless starter/generator system |
US8450888B2 (en) * | 2009-04-20 | 2013-05-28 | General Electric Company | Integrated brushless starter/generator system |
US8201317B2 (en) * | 2009-05-06 | 2012-06-19 | Hamilton Sundstrand Corporation | Generator rotor with improved hollow shaft |
US20100283334A1 (en) * | 2009-05-07 | 2010-11-11 | Lemmers Jr Glenn C | Generator main stator back-iron cooling sleeve |
US9006942B2 (en) | 2009-05-07 | 2015-04-14 | Hamilton Sundstrand Corporation | Generator main stator back-iron cooling sleeve |
US20110285222A1 (en) * | 2010-05-18 | 2011-11-24 | Remy Technologies, Llc | Sleeve Member for an Electric Machine |
US8659191B2 (en) * | 2010-05-18 | 2014-02-25 | Remy Technologies, Llc | Sleeve member for an electric machine |
US20110298315A1 (en) * | 2010-06-04 | 2011-12-08 | Remy Technologies, Llc | Electric Machine Cooling System and Method |
US9054565B2 (en) * | 2010-06-04 | 2015-06-09 | Remy Technologies, Llc | Electric machine cooling system and method |
US8847444B2 (en) | 2010-11-12 | 2014-09-30 | Hamilton Sundstrand Space Systems International, Inc. | Cooling of permanent magnet electric machine |
US8760015B2 (en) | 2011-02-18 | 2014-06-24 | Hamilton Sundstrand Corporation | Cooling of permanent magnet electric machine |
US8604651B2 (en) | 2011-02-18 | 2013-12-10 | Hamilton Sundstrand Space Systems International, Inc. | Cooling of permanent magnet electric machine |
US9559569B2 (en) | 2012-02-13 | 2017-01-31 | Ge Aviation Systems Llc | Arrangement for cooling an electric machine with a layer of thermally conducting and electrically insulating material |
WO2014025928A3 (en) * | 2012-08-08 | 2014-04-17 | Ac Propulsion, Inc. | Liquid cooled electric motor |
US8970075B2 (en) | 2012-08-08 | 2015-03-03 | Ac Propulsion, Inc. | Liquid cooled electric motor |
WO2014025928A2 (en) * | 2012-08-08 | 2014-02-13 | Ac Propulsion, Inc. | Liquid cooled electric motor |
US9564788B2 (en) * | 2013-10-09 | 2017-02-07 | Fu Ding Electronical Technology (Jiashan) Co., Ltd. | Motor with cooling device |
US20150097451A1 (en) * | 2013-10-09 | 2015-04-09 | Fu Ding Electronical Technology (Jiashan) Co.,Ltd. | Motor with cooling device |
DE102014222959A1 (en) * | 2014-11-11 | 2016-05-12 | Volkswagen Aktiengesellschaft | Cooling jacket for an electric machine |
US20160233744A1 (en) * | 2015-02-09 | 2016-08-11 | Toyota Jidosha Kabushiki Kaisha | Rotary electric machine |
CN105871099A (en) * | 2015-02-09 | 2016-08-17 | 丰田自动车株式会社 | Rotary electric machine |
US11616414B2 (en) | 2016-08-02 | 2023-03-28 | Integral Powertrain Ltd. | Rotary device, a motor and a method of cooling a motor |
US11155357B2 (en) * | 2019-01-03 | 2021-10-26 | Ge Aviation Systems Llc | Generator with jet pump having motive fluid for fluidly coupling to a cooling circuit |
WO2023055343A1 (en) * | 2021-09-28 | 2023-04-06 | Siemens Energy, Inc. | High current density electric machine |
Also Published As
Publication number | Publication date |
---|---|
IL80744A0 (en) | 1987-02-27 |
EP0250447A1 (en) | 1988-01-07 |
WO1987003748A1 (en) | 1987-06-18 |
JPS63501998A (en) | 1988-08-04 |
EP0250447A4 (en) | 1988-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4647805A (en) | Dynamoelectric machine | |
US4311932A (en) | Liquid cooling for induction motors | |
US5424593A (en) | Generator rotor cooling | |
US5189325A (en) | Liquid cooling the rotor of an electrical machine | |
US2285960A (en) | Dynamoelectric machine | |
US3733502A (en) | Liquid cooled rotor for dynamoelectric machines | |
US2894155A (en) | Liquid cooled dynamoelectric machine | |
WO1985000475A1 (en) | Liquid cooled high speed synchronous machines | |
US6759771B2 (en) | High speed generator with integrally formed rotor coil support wedges | |
EP1481460A1 (en) | Generator with improved lubrication and cooling system | |
US4110643A (en) | Induction motor | |
US20210265886A1 (en) | Rotor assembly and method of cooling | |
US4513218A (en) | Rotor cooling in rotary electric machines | |
US2462451A (en) | Dynamoelectric machine | |
US2381122A (en) | Cooling means for dynamoelectric machines | |
US3617782A (en) | Synchronous machine provided with liquid-cooled comb-shaped rotor | |
US11025135B2 (en) | Electrical machine with liquid cooling | |
WO1997047884A2 (en) | Apparatus for providing pressurized liquid to a device, high speed flood cooled motor/generator therefor | |
US3895246A (en) | Liquid cooled rotor for dynamoelectric machines | |
GB2099229A (en) | Rotary dynamoelectric machine | |
GB2627823A (en) | Stator sealing member | |
WO2023055343A1 (en) | High current density electric machine | |
JPH09317681A (en) | Connection method of canned motor pump | |
CA1078444A (en) | Inside-out inductor motor/alternator with high intertia smooth rotor | |
JPS6011696A (en) | Down hole pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUNDSTRAND CORPORATION, A CORP. OF DE. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:FLYGARE, WAYNE A.;VAGHANI, VALLABH V.;READMAN, JOHN;REEL/FRAME:004506/0245 Effective date: 19851210 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19990303 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |