US3926872A - Flame-retardant cellulosics containing graft copolymerized acrylic esters or amides - Google Patents

Flame-retardant cellulosics containing graft copolymerized acrylic esters or amides Download PDF

Info

Publication number
US3926872A
US3926872A US508724A US50872474A US3926872A US 3926872 A US3926872 A US 3926872A US 508724 A US508724 A US 508724A US 50872474 A US50872474 A US 50872474A US 3926872 A US3926872 A US 3926872A
Authority
US
United States
Prior art keywords
mole
monomer
flame
dry
cellulosic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US508724A
Inventor
Nathan Allen Edelson
Robert W Faessinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Tissue Co
Original Assignee
Scott Paper Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scott Paper Co filed Critical Scott Paper Co
Priority to US508724A priority Critical patent/US3926872A/en
Priority to US05/565,413 priority patent/US3969440A/en
Application granted granted Critical
Publication of US3926872A publication Critical patent/US3926872A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/02Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin
    • D06M14/04Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin of vegetal origin, e.g. cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/224Phosphorus triamides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/24Esteramides
    • C07F9/2404Esteramides the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/2408Esteramides the ester moiety containing a substituent or a structure which is considered as characteristic of hydroxyalkyl compounds

Definitions

  • ABSTRACT Graft copolymerization of cellulosics with specific novel acrylic esters or amides produces essentiafly permanently fire retardant ce11ulosic fibers.
  • the fibers can be graft copolymerized before or after the fibers are made into fabrics or webs.
  • This invention relates to specific acrylic esters and amides that can be graft copolymerized onto a cellulosic substrate to impart essentially permanent fire retardant properties to a cellulosic substrate and to cellulosic substrates copolymerized with said compounds.
  • Cotton, linen and other cellulosic fibrous materials in fabric form have been impregnated with phosphoric acid, organic or inorganic ammonium salts of phosphoric acid, sulfonic acid or its organic and inorganic ammonium salts.
  • borax, boric acid, ammonium borate and the like in order to render the cellulosic fabric flame retardant and in some cases self-extinguishing.
  • such reagents usually do not combine chemically or physically to the fabric and water leaches out the beneficial fire retardant property.
  • Thermosetting resins rich in phosphorus and nitrogen, have been devised which when patted on the cellulosic substrate and consequently cured with heat in the presence of a catalyst, improves the permanent (durable) nature of the non-flammable characteristic of the treated fabric. Flame retardancy achieved by this technique usually is durable to a number of home launderings but the fabric so treated suffers from a loss of hand, loss of tear strength and a reduction in abrasion resistance through a stiffening of the textile structure.
  • Reduced flammability may be imparted to synthetic cellulosic fiber such as rayon, during its manufacture by incorporating a fire retarding reagent in the viscose dopev Subsequent regeneration of such a treated dope yields cellulose (rayon) having the fire retarding reagent physically entrapped within its structure.
  • a fire retarding reagent must be inert to the high alkalinity of viscose dope, be capable of passing freely through the extremely fine orifice of the rayon spinnerette and capable also of withstanding the action of the highly acidic regeneration bath and subsequent finishing steps of the rayon process.
  • the reagent should be insoluble in water and the usual dry cleaning solvents. To satisfy all these requirements is both costly and technically difficult.
  • graft copolymerization of cellulosics (fiber or fabric) with a phosphorous or halogen containing vinyl compound has been shown to impart a degree of flame retardancy to the grafted substrate.
  • the presence of amino (or amido) nitrogen groups enhances the fire retardant action.
  • halogen containing vinyl compounds should have a relatively labile halogen atom in order to be effective but with such compounds the grafted cellulosic substrate gradually loses strength through the depolymerization of its cellulose backbone by the catalytic action of the halogenic acid being slowly liberated.
  • R N R wherein R hydrogen or methyl; R is a lower substituted or unsubstituted alkylene group, R R,, R and R are selected from the group consisting of methyl and ethyl; X O or NH; and Y O or NH.
  • the flame retardant monomers defined by the general formula when graft copolymerized onto a cellulosic substrate impart flame retardancy to the resulting novel graft copolymerized product.
  • R is a lower alkylene group connecting the X and Y atoms and preferably has 1 to 3 carbon atoms.
  • This alkylene group can be substituted or unsubstituted with substituents such as halogen or other substituents that do not prevent the flame retardant ability of the monomer when grafted onto cellulosic substrates.
  • substituents such as halogen or other substituents that do not prevent the flame retardant ability of the monomer when grafted onto cellulosic substrates.
  • the grafting of a monomer of the above general formula onto a cellulosic fiber or fabric results in a permanently fire retardant cellulosic product that is capable of withstanding at least about 50 home laun derings or dry cleanings.
  • the particular method employed for grafting the monomer onto the cellulosic substrate is not critical and there are many known techniques for grafting such monomers onto cellulosic substrates. Examples of such techniques are disclosed in US. Pat. No. 2,955.0[5 issued to N. Segrow, et al.; US. Pat. No. 3,083,l l8 issued to D. J. Bridgefort; and US. Pat. No.
  • the novel monomers of this invention may be graft copolymerized onto the cellulosic fiber before or after it is made into a fabric.
  • the fabric can be all cellulosic fibers or a blend of cellulosic fibers with non-cellulosic fibers or yarn.
  • the non-cellulosic fiber content of the blended fabric will not be rendered fire retardant by the monomers of the present invention. Therefore, the flame retardancy of a fabric blend also depends upon the amount and flammability of the noncellulosic componentv
  • the amount of monomers graft copolymerized onto the cellulosic substrate depends upon the degree of flame retardancy desired.
  • sufficient monomers should be graft copolymerized onto the substrate so that the resulting product contains at least about 0.5% phosphorus based upon the total weight of the graft copolymerized product.
  • phosphorus contents between 1.5% and 3.5% phosphorus content is particularly preferred. Phosphd rus contents above 3.5% to about 5.0% are very effective while phosphorus contents above about 5.0% while effective are less economical than the preferred phosphorus contents since the increased cost for large amounts of monomers may not justify the difference in flame retardancy imparted by the greater monomer added on to the substrate.
  • there is no exact upper limit to the amount of monomer that can be grafted onto the cellulosic substrate the main consideration being an economic one.
  • the mono mers of the present invention may be used in combination with other monomers in order to achieve a higher nitrogen content on the resulting graft copolymerized product or to impart properties in addition to fire retardancy.
  • Cellulosic containing fabrics that have been graft copolymerized with monomers of the present invention may thereafter be further treated with permanent press resins (wrinkle resistant) with little or no loss in the substrates strength, characteristics or loss in hand.
  • EXAM PLE l A 4-neck 1 liter flask equipped with an lnframo Electrical stirrer, a water condenser, a pressure equalizing spearatory funnel and a thermometer was charged with 500 mls. dry diethyl ether; 76.5 g. (0.5 mole) phosphorus oxychloride; 50.5 g. (0.5 mole) dry triethylamine; and 68 g (0.5 mole) dry Z-hydroxyethylmethacrylate. During the addition of reagents, the temperature of the flasks contents was controlled in the lC to C. temperature range. After stirring the reaction mixture at room temperature for a suitable reaction time (72 hrs.
  • triethylamine hydrochloride was filtered off at an essentially quantitative yield. The filtrate was placed back into the reaction flask without isolation of the dichlorophosphatoethyl methacrylate intemiediate. The reaction flask was then charged with 101 g. (1 mole) dry triethylamine and 45 g. 1 mole) dry dimethylamine. The addition of the two amines was accomplished in the l0 to 10C range and afterwards the reaction mixture was stirred at room temperature for a suitable reaction period 72 hrs.). The reaction mixture was next filtered to remove the triethylamine hydrochloride by-product and the volatile impurities; then diethyl ether was removed by distillation.
  • Methacryloxyethylorthophosphorotetramethyldiamidate was obtained at a yield of 60% of the theoretical for the two step reaction sequence.
  • This is a compound of the general formula in which R R R R and R, all equal CH;,: X and Y O. and R is -C. ,H
  • the proper ties are the same as reported in Example 11.
  • EXAMPLE 11 This example involved identical reagents. reaction times, temperatures and purification steps to Example 1. The difference between the two procedures involved the use of reactants in a different order of addition. Example 11 eliminates the troublesome addition side reaction of dimethylamine to 2-hydroxyethylmethacrylate which can occur.
  • the reaction flask was first charged with dry diethyl ether (500 mls. 76.5 g. (0.5 mole) phosphorus oxychloride'. 101 g. (1 mole) dry triethylamine; and 45 g. (1 mole) dry dimethylamine. After stirring the reaction mixture at room temperature for three days, the triethylamine hydrochloride was filtered off.
  • EXAMPLE 111 Run 3a In accordance with the teachings of US. Pat. No. 3,359,224, an approximately ten gram piece of circular rayon knit was dithiocarbonated for 15 minutes in 250 mls. of an emulsion prepared from 1% sodium hydroxide, 0.96% carbon disulfide and 2 drops of an alkylaryl polyether alcohol surfactant (Rohm and Haas Triton X-l55). The dithiocarbonated substrate was next thoroughly washed with distilled water and suspended for a few minutes in a 200 ml. solution containing 0.004% Mohrs salt (ferrous ammonium sulfate).
  • the ferrated substrate was washed with distilled water and suspended in a monomer system consisting of hydrogen peroxide (3 ml. of 30% solution), the monomer from Example 11, Methacryloxyethylorthophosphorotetramethyldiamidate (5 grams), and 500 ml. H 0.
  • the polymerization was maintained in a rotating oven for 2 /2 hours at 5557C. following which. the rayon substrate was washed thoroughly with tap water and suspended for a few minutes in a 0.2% sodium bisulfite solution.
  • the graft product was thoroughly washed with water and oven dried at 1001 10C. for 2 hours. A conversion of monomer to polymer of 56% was achieved.
  • Run 3a The procedure of Run 3a was repeated two additional times thereby resulting in runs 3(a), 3(b) and 3(c). This repetition of Run 30 was done in order to determine the consistency of the graph copolymerization process and the product obtained thereby.
  • the graft copolymerized product of runs 3(a). 3(b) and 3(0) were subjected to 50 washes and then tested for Vertical Flame rating according to ASTM standard Test D 626 551. The samples were also tested for phosphorus and nitrogen present after graft copolymerization had taken place and also after the sample was subjected to 50 washes. The results are reported in Table I appearing at the end of this specification.
  • Example 111 The procedure of Example 111 was repeated with the monomer of Example 11 with the exception that the monomer was purified by distillation before it was used in the process of Example 111. The results are reported in Table l as run Ex. 4. The major difference in the results of Example IV vs. the results of Example 111 is in the grafting efficiency, that is, the percent of the monomer that was grafted onto the cellulosic substrate. When the monomer was purified by distillization prior to the graft copolymerization. essentially 100% of the monomer was grafted onto the substrate while in Examples 111(a) (b) (0) approximately 59% of the monomer was grafted on to the substrate.
  • EXAMPLE V Methacryloxyethylorthophosphorotetramethyldiamidate monomer from Example 11 (7 grams) was added to a solution of 250 ml. water containing a small quantity of a quaternary ammonium surfactant. A ten gram piece of rayon circular knit sock was added to the system, the system sparged with nitrogen, and ml. of Ce(l ⁇ ll-1 2(l IO 0.1 M in HNO was added and graft copolymerization was carried out in accordance with the teachings of US. Pat. No. 2,955,015. The reaction mixture was maintained at room temperature with a nitrogen sparge for two hours. A percent conversion of monomer to grafted polymer of 50% was obtained and the resulting graft product was flame retardant as measured by the Vertical Flame Test ASTM Standard D 626-551 (2 inch char. rating of 2).
  • EXAMPLE VI A ferrous/ hydrogen peroxide redox graft copolymerization was also carried out in the manner described in U.S. Pat. No. 3,083,118.
  • a rayon circular knit sock (10 g.) was soaked first in a 0.2% Mohrs salt solution for 10 minutes at room temperature and then was heated at 6070C. for 4 hours in the polymerization medium consisting of 500 ml. water, 3 ml. 30% hydrogen peroxide, a polyoxyethylene sorbitan trioleate surfactant and seven grams of methacryloxyethylorthophosphorotetramethyldiamidate prepared according to Example [1.
  • the percent conversion of monomer to grafted polymer was 78% of the theoretical.
  • the resulting graft product was shown to be flame retardant as measured by the Vertical Flame Test (1% char. rating of 2).
  • EXAMPLE V11 A 4-neck 1 liter flask equipped with an lnframo Electrical stirrer, a water condenser, a pressure equalizing separatory funnel and a thermometer was charged with 500 ml. dry diethyl ether; 76.5 g. (0.5 mole), phosphorus oxycholoride; 50.5 (0.5 mole) dry triethylamine; and 68 g. (0.5 mole) of dry 2-hydroxyethylmethacrylate. The addition of reagents was controlled in the 10 to 10C. temperature range. The reaction mixture was stirred at room temperature for a suitable reaction time (72 hrs.) and triethylamine hydrochloride was filtered off in essentially a quantitative yield.
  • the reaction flask was first charged with dry diethyl ether (500 mls.); 76.5 g. (0.5 mole) phosphorus oxychloride; 101 g. (1 mole) dry triethylamine; and 73 g. (1 mole) dry diethylamine. After stirring the reaction mixture at room temperature for 3 days. the triethylamine hydrochloride was filtered off. The filtrate without benefit of purification by distillation was recharged into the reaction flask and reacted in a second step with 68 g. (0.5 mole) hydroxyethylmethacrylate and 50.5 g. (0.5 mole) dry triethylamine. After reacting at room temperature for 72 hours. the product was isolated in 90% yield of the theoretical.
  • EXAMPLE X A 1 liter reaction flask was first charged with dry toluene (500 ml); 765 g. (0.5 mole) phosphorus oxychloride; 101 g. 1 mole) dry triethylamine and 45 g. 1 mole) dry dimethylamine. After stirring the reaction mixture at room temperature overnight, the triethylamine hydrochloride was filtered off. Vapor phase chromatographic analyses of the filtrate showed the his (dimethylamido) chlorophosphate to be obtained in 80% yield of the theoretical. A portion of this material after solvent removal 56.8 g.
  • the material is a compound of the general formula in which R, H; X and Y NHR C H and R R R and R CH;,
  • EXAMPLE X1 A 1 liter reaction flask was first charged with dry toluene (500 m1.)', 76.5 g. (0.5 mole) phosphorus oxychloride; 101 g. (1 mole) dry triethylamine, and 45 g. (1 mole) dry dimethylamine. After stirring the reaction mixture at room temperature overnight, the triethylamine hydrochloride was filtered off. Vapor phase chromatographic analyses of the filtrate showed the bis(- dimethylamido) cltlnrnphosphate to be obtained in yield of the theoretical. A portion of this material free of toluene, 56.8 g.
  • the product was determined to have the following physical properties: index of refraction at 20C 1.4652; density at 25C. 1.1300 N calc 17.9, N obs. 17.9.
  • the material gave a 20% conversion of monomer to polymer on carrying out a graft copolymerization according to US. Pat. No. 3,359,224 yielding a flame retardant product at 35% add-on as measured by match test and the Vertical Flame Test (rating of 2, 1% inch char).
  • EXAMPLE X A sample of the monomer prepared in Example [X was graft copolymerized with a cotton knit fabric according to the teachings of US. Pat. No. 3,359,224. A grafting efficiency of 38% was achieved giving a flame retardant product (2 /2 inch char, rating of 2) at a polymer content of 21.8% based upon the weight of the graft copolymerized product.
  • EXAMPLE Xlll A sample of the monomer prepared in Example Vlll was graft copolymerized with a cotton/polyester blend (65:35) according to the teachings of U8. Pat. No. 3,359,224. A grafting efficiency of 58% was achieved giving a flame retardant product (2% inch char, rating of 3) at a polymer content of 25.7% based upon the Weight of the graft copolymerized product.
  • EXAMPLE A A sample of diethylphosphonomethyl methacrylate monomer was graft copolymerized with a rayon knit fabric according to the teachings of US. Pat. No. 3,359,224. A grafting efficiency of was achieved with sufficient monomer to result in 5.92% phosphorus added onto the substrate. A poor rating was achieved on the vertical flame test (5 inch tear length, rating of 5).
  • R is hydrogen or methyl;
  • R is a substituted or unsubstituted lower alkylene group,
  • R R R and R are independently selected from either methyl and NH to result in at least 0.5% phophorus content on the graft copolymerized cellulosic fibers based upon the total weight of the graft copolymerized fibers.
  • the flame retardant cellulosic fibers of claim 1 having sufficient compound to result in between 0.5% and 5.0% phosphorus content.
  • the flame retardant cellulosic fibers of claim 1 having sufficient compound to result in between l.5% and 3.5% phosphorus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Graft copolymerization of cellulosics with specific novel acrylic esters or amides produces essentially permanently fire retardant cellulosic fibers. The fibers can be graft copolymerized before or after the fibers are made into fabrics or webs.

Description

United States Patent [191 Edelson et a1.
FLAMERETARDANT CELLULOSICS CONTAINING CRAFT COPOLYMERIZED ACRYLIC ESTERS OR AMIDES Inventors: Nathan Allen Edelson, Cynwyd;
Robert W. Faessinger, Media, both of Pa.
Scott Paper Company, Philadelphia, Pa.
Filed: Sept. 23, 1974 Appl. No.: 508,724
Related US, Application Data Continuation-impart of Ser. No. 325,101, Jan. 19, 1973, abandoned.
Assignee:
References Cited UNITED STATES PATENTS 2/1942 Thomas 8/116 Dec. 16, 1975 2,955,015 10/1960 Segro 8/116 3,346,545 10/1967 Sehm 260/89.7 3,351,617 11/1967 Jaeger 260/89.7 3,359,224 12/1967 Faessinger et a1. 26011 7.4 3,519,607 7/1970 Welch 260180 3,524,901 8/1970 Majvar.... 260/80 3,583,938 6/1971 Okada et a1. 8/194 3,766,252 10/1973 Schmidt et a1 260/486 FORElGN PATENTS OR APPLICATIONS 736,508 6/1966 Canada 260/139.5
829.576 2/1960 United Kingdom 260/561 877,905 9/1961 United Kingdom 260/952 1,202,869 1/1960 France 260/944 1,594,915 8/1969 Germany Primary Examiner-Me1vin G01dstein Assistant Examiner-Edward Woodberry Attorney, Agent, or Firm-N. .1. DeBenedictis; .1. W. Kane, Jr.
[57] ABSTRACT Graft copolymerization of cellulosics with specific novel acrylic esters or amides produces essentiafly permanently fire retardant ce11ulosic fibers. The fibers can be graft copolymerized before or after the fibers are made into fabrics or webs.
4 Claims, No Drawings FLAME-RETARDANT CELLULOSICS CONTAINING GRAF T COPOLYMERIZED ACRYLIC ESTERS OR AMIDES RELATED APPLICATION This application is a continuation-impart of Ser. No. 325,10l. filed .lan. l9, 1973 and now abandoned.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to specific acrylic esters and amides that can be graft copolymerized onto a cellulosic substrate to impart essentially permanent fire retardant properties to a cellulosic substrate and to cellulosic substrates copolymerized with said compounds.
2. Description of the Prior Art Cellulosic textiles are very flammable especially when in a napped or brushed form. This hazard has been recognized for many years and a variety of methods have been employed to suppress this flammability. Some methods achieved a high level of non-flammability but were not permanent, that is, their flame retardancy was lost after one or more washings. Other methods imparted essentially permanent flame retardancy although they seriously impaired the textile qualities of the cellulosic material.
Cotton, linen and other cellulosic fibrous materials in fabric form have been impregnated with phosphoric acid, organic or inorganic ammonium salts of phosphoric acid, sulfonic acid or its organic and inorganic ammonium salts. borax, boric acid, ammonium borate and the like in order to render the cellulosic fabric flame retardant and in some cases self-extinguishing. However, such reagents usually do not combine chemically or physically to the fabric and water leaches out the beneficial fire retardant property.
Thermosetting resins, rich in phosphorus and nitrogen, have been devised which when patted on the cellulosic substrate and consequently cured with heat in the presence of a catalyst, improves the permanent (durable) nature of the non-flammable characteristic of the treated fabric. Flame retardancy achieved by this technique usually is durable to a number of home launderings but the fabric so treated suffers from a loss of hand, loss of tear strength and a reduction in abrasion resistance through a stiffening of the textile structure.
Reduced flammability may be imparted to synthetic cellulosic fiber such as rayon, during its manufacture by incorporating a fire retarding reagent in the viscose dopev Subsequent regeneration of such a treated dope yields cellulose (rayon) having the fire retarding reagent physically entrapped within its structure. Such fire retarding reagents must be inert to the high alkalinity of viscose dope, be capable of passing freely through the extremely fine orifice of the rayon spinnerette and capable also of withstanding the action of the highly acidic regeneration bath and subsequent finishing steps of the rayon process. In addition, the reagent should be insoluble in water and the usual dry cleaning solvents. To satisfy all these requirements is both costly and technically difficult.
Graft copolymerization of cellulosics (fiber or fabric) with a phosphorous or halogen containing vinyl compound has been shown to impart a degree of flame retardancy to the grafted substrate. The presence of amino (or amido) nitrogen groups enhances the fire retardant action. However. halogen containing vinyl compounds should have a relatively labile halogen atom in order to be effective but with such compounds the grafted cellulosic substrate gradually loses strength through the depolymerization of its cellulose backbone by the catalytic action of the halogenic acid being slowly liberated.
SUMMARY OF THE INVENTION Acrylic esters or amides of the following general formula:
R N R wherein R hydrogen or methyl; R is a lower substituted or unsubstituted alkylene group, R R,, R and R are selected from the group consisting of methyl and ethyl; X O or NH; and Y O or NH. The flame retardant monomers defined by the general formula when graft copolymerized onto a cellulosic substrate impart flame retardancy to the resulting novel graft copolymerized product. With reference to the general formula, R is a lower alkylene group connecting the X and Y atoms and preferably has 1 to 3 carbon atoms. This alkylene group can be substituted or unsubstituted with substituents such as halogen or other substituents that do not prevent the flame retardant ability of the monomer when grafted onto cellulosic substrates. Those skilled in the art could readily develop benign substituents for the alkalene group and still obtain compounds employing the discovery disclosed herein.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The grafting of a monomer of the above general formula onto a cellulosic fiber or fabric results in a permanently fire retardant cellulosic product that is capable of withstanding at least about 50 home laun derings or dry cleanings. The particular method employed for grafting the monomer onto the cellulosic substrate is not critical and there are many known techniques for grafting such monomers onto cellulosic substrates. Examples of such techniques are disclosed in US. Pat. No. 2,955.0[5 issued to N. Segrow, et al.; US. Pat. No. 3,083,l l8 issued to D. J. Bridgefort; and US. Pat. No. 3,359,224 issued to Faessinger et al.. which patents are incorporated herein by reference as if fully reprinted herein. The preferred method is the grafting techniques described in US. Pat. No. 3,359,224 with the monomers of Examples II or IX.
The novel monomers of this invention may be graft copolymerized onto the cellulosic fiber before or after it is made into a fabric. When copolymerized onto a cellulosic fabric, the fabric can be all cellulosic fibers or a blend of cellulosic fibers with non-cellulosic fibers or yarn. However, the non-cellulosic fiber content of the blended fabric will not be rendered fire retardant by the monomers of the present invention. Therefore, the flame retardancy of a fabric blend also depends upon the amount and flammability of the noncellulosic componentv The amount of monomers graft copolymerized onto the cellulosic substrate depends upon the degree of flame retardancy desired. Preferably, sufficient monomers should be graft copolymerized onto the substrate so that the resulting product contains at least about 0.5% phosphorus based upon the total weight of the graft copolymerized product. Between 1.5% and 3.5% phosphorus content is particularly preferred. Phosphd rus contents above 3.5% to about 5.0% are very effective while phosphorus contents above about 5.0% while effective are less economical than the preferred phosphorus contents since the increased cost for large amounts of monomers may not justify the difference in flame retardancy imparted by the greater monomer added on to the substrate. However, there is no exact upper limit to the amount of monomer that can be grafted onto the cellulosic substrate, the main consideration being an economic one. Furthermore, the mono mers of the present invention may be used in combination with other monomers in order to achieve a higher nitrogen content on the resulting graft copolymerized product or to impart properties in addition to fire retardancy. Cellulosic containing fabrics that have been graft copolymerized with monomers of the present invention may thereafter be further treated with permanent press resins (wrinkle resistant) with little or no loss in the substrates strength, characteristics or loss in hand.
EXAM PLE l A 4-neck 1 liter flask equipped with an lnframo Electrical stirrer, a water condenser, a pressure equalizing spearatory funnel and a thermometer was charged with 500 mls. dry diethyl ether; 76.5 g. (0.5 mole) phosphorus oxychloride; 50.5 g. (0.5 mole) dry triethylamine; and 68 g (0.5 mole) dry Z-hydroxyethylmethacrylate. During the addition of reagents, the temperature of the flasks contents was controlled in the lC to C. temperature range. After stirring the reaction mixture at room temperature for a suitable reaction time (72 hrs. triethylamine hydrochloride was filtered off at an essentially quantitative yield. The filtrate was placed back into the reaction flask without isolation of the dichlorophosphatoethyl methacrylate intemiediate. The reaction flask was then charged with 101 g. (1 mole) dry triethylamine and 45 g. 1 mole) dry dimethylamine. The addition of the two amines was accomplished in the l0 to 10C range and afterwards the reaction mixture was stirred at room temperature for a suitable reaction period 72 hrs.). The reaction mixture was next filtered to remove the triethylamine hydrochloride by-product and the volatile impurities; then diethyl ether was removed by distillation. Methacryloxyethylorthophosphorotetramethyldiamidate was obtained at a yield of 60% of the theoretical for the two step reaction sequence. This is a compound of the general formula in which R R R R and R, all equal CH;,: X and Y O. and R is -C. ,H The proper ties are the same as reported in Example 11.
EXAMPLE 11 This example involved identical reagents. reaction times, temperatures and purification steps to Example 1. The difference between the two procedures involved the use of reactants in a different order of addition. Example 11 eliminates the troublesome addition side reaction of dimethylamine to 2-hydroxyethylmethacrylate which can occur. The reaction flask was first charged with dry diethyl ether (500 mls. 76.5 g. (0.5 mole) phosphorus oxychloride'. 101 g. (1 mole) dry triethylamine; and 45 g. (1 mole) dry dimethylamine. After stirring the reaction mixture at room temperature for three days, the triethylamine hydrochloride was filtered off. A small portion of the filtrate was concentrated and then distilled (b.p. 9395C. at 4mm. pressure) to give pure bis(dimethylamido) cholorophosphate containing 17.8% phosphorus by analysis compared to the calculated value of 18.2%. Vapor phase chromatograph analysis of the filtrate showed this intermediate to be obtained in an yield of the theoretical.
The major portion of the filtrate, without benefit of purification by distillation was charged again into the reaction flask and reacted in a second step with 68 g. (0.5 mole) dry Z-hydroxyethylmethacrylate and 50.5 g. (0.5 mole) dry triethylamine. After reaction at room temperature for 72 hours, the solvent and volatile impurities were removed by flash evaporation. The residue was then distilled to give essentially pure Methacryloxyethylorthophosphorotetramethyldiamidate which is colorless, water soluble, liquid possessing an amine-like odor and a boiling point of l40.5141C. at 4 mm. pressure. The vapor phase chromatography analysis of the material showed greater than 99% purity. In addition, the infrared spectrum was shown to be consistent with the proposed structure. Other physical properties include index of refraction at 20C. 1.4605; density at 25C. 1.108; N calc. 10.6. N observed 10.5; P calc. 11.7, 1 observed 12.0. The material was synthesized in a 65% overall yield of the theoretical.
EXAMPLE 111 Run 3a. In accordance with the teachings of US. Pat. No. 3,359,224, an approximately ten gram piece of circular rayon knit was dithiocarbonated for 15 minutes in 250 mls. of an emulsion prepared from 1% sodium hydroxide, 0.96% carbon disulfide and 2 drops of an alkylaryl polyether alcohol surfactant (Rohm and Haas Triton X-l55). The dithiocarbonated substrate was next thoroughly washed with distilled water and suspended for a few minutes in a 200 ml. solution containing 0.004% Mohrs salt (ferrous ammonium sulfate). Following this, the ferrated substrate was washed with distilled water and suspended in a monomer system consisting of hydrogen peroxide (3 ml. of 30% solution), the monomer from Example 11, Methacryloxyethylorthophosphorotetramethyldiamidate (5 grams), and 500 ml. H 0. The polymerization was maintained in a rotating oven for 2 /2 hours at 5557C. following which. the rayon substrate was washed thoroughly with tap water and suspended for a few minutes in a 0.2% sodium bisulfite solution. The graft product was thoroughly washed with water and oven dried at 1001 10C. for 2 hours. A conversion of monomer to polymer of 56% was achieved.
The procedure of Run 3a was repeated two additional times thereby resulting in runs 3(a), 3(b) and 3(c). This repetition of Run 30 was done in order to determine the consistency of the graph copolymerization process and the product obtained thereby. The graft copolymerized product of runs 3(a). 3(b) and 3(0) were subjected to 50 washes and then tested for Vertical Flame rating according to ASTM standard Test D 626 551. The samples were also tested for phosphorus and nitrogen present after graft copolymerization had taken place and also after the sample was subjected to 50 washes. The results are reported in Table I appearing at the end of this specification.
EXAMPLE [V The procedure of Example 111 was repeated with the monomer of Example 11 with the exception that the monomer was purified by distillation before it was used in the process of Example 111. The results are reported in Table l as run Ex. 4. The major difference in the results of Example IV vs. the results of Example 111 is in the grafting efficiency, that is, the percent of the monomer that was grafted onto the cellulosic substrate. When the monomer was purified by distillization prior to the graft copolymerization. essentially 100% of the monomer was grafted onto the substrate while in Examples 111(a) (b) (0) approximately 59% of the monomer was grafted on to the substrate.
EXAMPLE V Methacryloxyethylorthophosphorotetramethyldiamidate monomer from Example 11 (7 grams) was added to a solution of 250 ml. water containing a small quantity of a quaternary ammonium surfactant. A ten gram piece of rayon circular knit sock was added to the system, the system sparged with nitrogen, and ml. of Ce(l\ll-1 2(l IO 0.1 M in HNO was added and graft copolymerization was carried out in accordance with the teachings of US. Pat. No. 2,955,015. The reaction mixture was maintained at room temperature with a nitrogen sparge for two hours. A percent conversion of monomer to grafted polymer of 50% was obtained and the resulting graft product was flame retardant as measured by the Vertical Flame Test ASTM Standard D 626-551 (2 inch char. rating of 2).
EXAMPLE VI A ferrous/ hydrogen peroxide redox graft copolymerization was also carried out in the manner described in U.S. Pat. No. 3,083,118. A rayon circular knit sock (10 g.) was soaked first in a 0.2% Mohrs salt solution for 10 minutes at room temperature and then was heated at 6070C. for 4 hours in the polymerization medium consisting of 500 ml. water, 3 ml. 30% hydrogen peroxide, a polyoxyethylene sorbitan trioleate surfactant and seven grams of methacryloxyethylorthophosphorotetramethyldiamidate prepared according to Example [1. The percent conversion of monomer to grafted polymer was 78% of the theoretical. The resulting graft product was shown to be flame retardant as measured by the Vertical Flame Test (1% char. rating of 2).
EXAMPLE V11 A 4-neck 1 liter flask equipped with an lnframo Electrical stirrer, a water condenser, a pressure equalizing separatory funnel and a thermometer was charged with 500 ml. dry diethyl ether; 76.5 g. (0.5 mole), phosphorus oxycholoride; 50.5 (0.5 mole) dry triethylamine; and 68 g. (0.5 mole) of dry 2-hydroxyethylmethacrylate. The addition of reagents was controlled in the 10 to 10C. temperature range. The reaction mixture was stirred at room temperature for a suitable reaction time (72 hrs.) and triethylamine hydrochloride was filtered off in essentially a quantitative yield. The filtrate was replaced into the reaction flask without isolation of the dichlorophosphatothylmethacrylate intermediate. The reaction flask was then charged with 101 g. (1 mole) of dry triethylamine and 73 g. (1 mole) of dry diethylamine. The addition of the two amines was accomplished in the 10 to 10C. range and afterwards the reaction mixture was stirred at room temperature for three days. The solvent and volatile impurities were removed by flash evaporation. The reaction yield of product was 87% of the theoretical. Distillation of the material gave a center cut fraction boiling at 143144C./0.7 mm. pressure. This distilled monomer, Methacryloxyethylorthophosphorotetraethyldiamidate, gave the following analysis: P calc. 9.70; P obs. 9.23; N calc. 8.75, N obs. 8.20.
In three separate runs. different amounts of the monomer (runs A and B with undistilled monomer and run C was distilled monomer) was subjected to graft copolymerizations according to US. Pat. No. 3,359,224 onto a rayon knit. The percent conversion of monomer to grafted polymer, and the analysis of the grafted product gave the results reported in Table 11 appearing at the end of this specification. It was found that distillation aided the grafting efficiency of this monomer. The monomer product is a compound of the general formula in which R, is CH;,; X and Y 0, R C v H and R R R and R CH CH EXAMPLE Vlll Example Vll involved identical reagents, reaction times, temperature and purification steps to Example V1. The difference between the two procedures invovled the use of reactants in a different order of addition. In this Example, the reaction flask was first charged with dry diethyl ether (500 mls.); 76.5 g. (0.5 mole) phosphorus oxychloride; 101 g. (1 mole) dry triethylamine; and 73 g. (1 mole) dry diethylamine. After stirring the reaction mixture at room temperature for 3 days. the triethylamine hydrochloride was filtered off. The filtrate without benefit of purification by distillation was recharged into the reaction flask and reacted in a second step with 68 g. (0.5 mole) hydroxyethylmethacrylate and 50.5 g. (0.5 mole) dry triethylamine. After reacting at room temperature for 72 hours. the product was isolated in 90% yield of the theoretical.
EXAMPLE [X A l-liter reaction flask was first charged with dry toluene (500 ml.); 76.5 g. (0.5 mole) phosphorus oxychloride; 101 g. (1 mole) dry triethylamine, and 45 g. 1 mole) dry dimethylamine. After stirring the reaction mixture at room temperature overnight. the triethylamine hydrochloride was filtered off. Vapor phase chromatograph analysis of the filtrate showed the bis (dimethylamido) chlorophosphate to be obtained in yield of the theoretical. A portion of this material free oftoluene, 51.3 g. (0.30 mole), was added to a reaction flask containing glycidyl acrylate 32 g. (0.25 mole) in dry acetone at room temperature. The reaction mixture was heated to reflux for 19 hours then cooled to room temperature and the solvent removed via flash evaporation. The residue was then passed through a molecular still using xylene as a solvent to heat the column. The non-volatile fraction was collected in 63.5% yield. This product, which could not be distilled even under reduced pressure without gelation taking place. was found to have an infrared spectrum consistent with its structure. The off-white product was determined to have the following physical properties: "p 1.4824; density at 25C. 1.18; N calc 9.4%, N obs. 10.00. The material gave a 30% conversion of monomer to polymer on carrying out a graft copolymerization according to US. Pat. No. 3,359,224 yielding a flame retardant product at 26% polymer add-on as measured 7 by the match test and the Vertical Flame Test rating 01 2, 1% inch char). The product is a compound of the general formula in which R, H; X and Y R C;;HC]'. R3. R4 R5 and R|;
EXAMPLE X A 1 liter reaction flask was first charged with dry toluene (500 ml); 765 g. (0.5 mole) phosphorus oxychloride; 101 g. 1 mole) dry triethylamine and 45 g. 1 mole) dry dimethylamine. After stirring the reaction mixture at room temperature overnight, the triethylamine hydrochloride was filtered off. Vapor phase chromatographic analyses of the filtrate showed the his (dimethylamido) chlorophosphate to be obtained in 80% yield of the theoretical. A portion of this material after solvent removal 56.8 g. (0.33 mole) was then reacted in a second step with the hydrochloride of N-(Z-aminoethyl) acrylamide 54.8 g. (0.33 mole) in the presence of triethylamine as acid acceptor and benzene as solvent at 70C. for 6 hours. [The N-(2- aminoethyl) acrylamide hydrochloride was obtained in 84% yield from the reaction of ethylenediamine with methacryloyl chloride at room temperature. Analysis of this hydrochloride intermediate gave N calc. 17.00, N obs. 16.61. The infrared spectra was also shown to be consistent with the structure. The melting point was determined to be greater than 270C]. After removal of solvent via flash evaporator, the residue was distilled to give a boiling point of 84 85C. at 4 mm pressure. The purified material was recovered in 31% yield. An infrared spectrum was shown to be consistent with the structure. The product was determined to have the following physical properties: index of refraction at C 1.4647; density at C. 1.1 189, P calc. 11.8%, P obs. 11.7%. The material is a compound of the general formula in which R, H; X and Y NHR C H and R R R and R CH;,
The material gave a 15% conversion of monomer to polymer on carrying out a graft copolymerization according to US. Pat. No. 3,359,224 yielding a flame retardant product at 36% polymer add-on as measured by match test and the Vertical Flame Test (rating of 2, 1% inch char).
EXAMPLE X1 A 1 liter reaction flask was first charged with dry toluene (500 m1.)', 76.5 g. (0.5 mole) phosphorus oxychloride; 101 g. (1 mole) dry triethylamine, and 45 g. (1 mole) dry dimethylamine. After stirring the reaction mixture at room temperature overnight, the triethylamine hydrochloride was filtered off. Vapor phase chromatographic analyses of the filtrate showed the bis(- dimethylamido) cltlnrnphosphate to be obtained in yield of the theoretical. A portion of this material free of toluene, 56.8 g. (0.33 mole) was added to a reaction flask containing anhydrous N-Methylolacrylamide 33.3 g. (0.33 mole). benzene, and triethylamine as acid acceptor. The reaction mixture was heated to reflux for six hours, cooled to room temperature, and filtered to remove solid amine hydrochloride. Solvent was then removed from the filtrate by flash evaporation and the residue distilled to give a boiling point of 100-101C. at 4 mm. pressure. The purified material was recovered in 24% yield. The product is a compound of the general formula in which R l H: X Y R2=CHz and R3, R4, R5 and R CH An infrared spectrum was shown to be consistent with the structure. The product was determined to have the following physical properties: index of refraction at 20C 1.4652; density at 25C. 1.1300 N calc 17.9, N obs. 17.9. The material gave a 20% conversion of monomer to polymer on carrying out a graft copolymerization according to US. Pat. No. 3,359,224 yielding a flame retardant product at 35% add-on as measured by match test and the Vertical Flame Test (rating of 2, 1% inch char).
EXAMPLE X" A sample of the monomer prepared in Example [X was graft copolymerized with a cotton knit fabric according to the teachings of US. Pat. No. 3,359,224. A grafting efficiency of 38% was achieved giving a flame retardant product (2 /2 inch char, rating of 2) at a polymer content of 21.8% based upon the weight of the graft copolymerized product.
EXAMPLE Xlll A sample of the monomer prepared in Example Vlll was graft copolymerized with a cotton/polyester blend (65:35) according to the teachings of U8. Pat. No. 3,359,224. A grafting efficiency of 58% was achieved giving a flame retardant product (2% inch char, rating of 3) at a polymer content of 25.7% based upon the Weight of the graft copolymerized product.
EXAMPLE A A sample of diethylphosphonomethyl methacrylate monomer was graft copolymerized with a rayon knit fabric according to the teachings of US. Pat. No. 3,359,224. A grafting efficiency of was achieved with sufficient monomer to result in 5.92% phosphorus added onto the substrate. A poor rating was achieved on the vertical flame test (5 inch tear length, rating of 5).
1|): \clltL-ll flame not tested. sample sclf-exlingurshsng to a flame generated by a lighted match.
TABLE ll Grafting U Washes U Washes U Washes Vertical Flame Run Efficiency 7k F calc, 7! P obs. C? P obs. r N calcl 99 N obs. Char Rating A 64 217 2.]2 (21) L96 L27 1%" I B 43 266 246 (u) 2.40 l.t l l 'a" 2 C 73 L60 L62 LS] 144 L44 Wit" 2 [a] Not tested.
we clam: ethyl; X is oxygen or NH and Y is oxygen or 1. Flame retardant cellulosic fibers graft copolymer' ized with sufficient compound having the general formula:
wherein R, is hydrogen or methyl; R is a substituted or unsubstituted lower alkylene group, R R R and R are independently selected from either methyl and NH to result in at least 0.5% phophorus content on the graft copolymerized cellulosic fibers based upon the total weight of the graft copolymerized fibers.
2. The flame retardant cellulosic fibers of claim 1 wherein the fibers are in fabric form.
3. The flame retardant cellulosic fibers of claim 1 having sufficient compound to result in between 0.5% and 5.0% phosphorus content.
4. The flame retardant cellulosic fibers of claim 1 having sufficient compound to result in between l.5% and 3.5% phosphorus.
'zgfigf UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 I 22,872 Dated December 16, 1975 Invantoz-(a) Nathan Allen Edelson/Robert W. Faessinger It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, change formula by removing connector from "if!" and insert connector between --E-.
Column 4, line 28, after "10.6" insert a semi-colon Column 6, line 12, change "was" to --with.
Column 8, line 14, remove "Y" (first occurrence) Column 8, Table 1, Change the first column heading from "Grafting" to --Grafting Efficiency-.
Table 1, Change the second column heading from 0 Washes Efficiency," to -0 Washes--.
Column 9, change formula to read:
R O O R l n n CH2=C-C''X- (R2) -Y-]?-N--R4 R NR Signed and Scaled this Thirtieth Day of November 1976 r [SEAL] v Arrest.-
RUTH C. MASON C. MARSHALL DANN Attesting Officer Commissioner oj'Parems and Trademarks

Claims (4)

1. FLAME RETARDANT CELLULOSIC FIBERS GRAFT COPOLYMERIZED WITH SUFFICIENT COMPOUND HAVING THE GENERAL FORMULA:
2. The flame retardant cellulosic fibers of claim 1 wherein the fibers are in fabric form.
3. The flame retardant cellulosic fibers of claim 1 having sufficient compound to result in between 0.5% and 5.0% phosphorus content.
4. The flame retardant cellulosic fibers of claim 1 having sufficient compound to result in between 1.5% and 3.5% phosphorus.
US508724A 1973-01-19 1974-09-23 Flame-retardant cellulosics containing graft copolymerized acrylic esters or amides Expired - Lifetime US3926872A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US508724A US3926872A (en) 1973-01-19 1974-09-23 Flame-retardant cellulosics containing graft copolymerized acrylic esters or amides
US05/565,413 US3969440A (en) 1974-09-23 1975-04-07 Phosphorus containing acrylic esters and amides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32510173A 1973-01-19 1973-01-19
US508724A US3926872A (en) 1973-01-19 1974-09-23 Flame-retardant cellulosics containing graft copolymerized acrylic esters or amides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US32510173A Continuation-In-Part 1973-01-19 1973-01-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/565,413 Division US3969440A (en) 1974-09-23 1975-04-07 Phosphorus containing acrylic esters and amides

Publications (1)

Publication Number Publication Date
US3926872A true US3926872A (en) 1975-12-16

Family

ID=26984772

Family Applications (1)

Application Number Title Priority Date Filing Date
US508724A Expired - Lifetime US3926872A (en) 1973-01-19 1974-09-23 Flame-retardant cellulosics containing graft copolymerized acrylic esters or amides

Country Status (1)

Country Link
US (1) US3926872A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097543A (en) * 1976-05-12 1978-06-27 Mobil Oil Corporation Selective disproportionation of toluene
US20110110632A1 (en) * 2002-11-29 2011-05-12 Olivier Pinto Flame retardant cable

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2401440A (en) * 1942-02-18 1946-06-04 Monsanto Chemicals Cellulose phosphonamides
US2955015A (en) * 1957-06-05 1960-10-04 American Cyanamid Co Graft polymerization of certain esters of acrylic acid with cellulose substrate
US3346545A (en) * 1964-10-30 1967-10-10 Goodrich Co B F Olefinically unsaturated phosphate and phosphonate monomers and process for making same and polymers therefrom
US3351617A (en) * 1963-09-18 1967-11-07 Ciba Ltd Polymerizable monomers containing phosphorus and process for their manufacture
US3359224A (en) * 1966-07-06 1967-12-19 Scott Paper Co Thioated cellulosic/amylaceous substrate-ethylenically unsaturated monomer graft copolymer
US3519607A (en) * 1962-06-29 1970-07-07 Union Carbide Corp Polymerization of vinyl phosphoryl compounds
US3524901A (en) * 1968-01-22 1970-08-18 Dow Chemical Co Flame retardant vinyl esters containing acrylic or methacrylic phosphate esters
US3583938A (en) * 1968-12-23 1971-06-08 Mitsubishi Rayon Co Flame retardant fiber and process for manufacturing the same
US3766252A (en) * 1970-10-27 1973-10-16 Hoechst Ag Unsaturated carboxylic acid derivatives containing phosphorus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2401440A (en) * 1942-02-18 1946-06-04 Monsanto Chemicals Cellulose phosphonamides
US2955015A (en) * 1957-06-05 1960-10-04 American Cyanamid Co Graft polymerization of certain esters of acrylic acid with cellulose substrate
US3519607A (en) * 1962-06-29 1970-07-07 Union Carbide Corp Polymerization of vinyl phosphoryl compounds
US3351617A (en) * 1963-09-18 1967-11-07 Ciba Ltd Polymerizable monomers containing phosphorus and process for their manufacture
US3346545A (en) * 1964-10-30 1967-10-10 Goodrich Co B F Olefinically unsaturated phosphate and phosphonate monomers and process for making same and polymers therefrom
US3359224A (en) * 1966-07-06 1967-12-19 Scott Paper Co Thioated cellulosic/amylaceous substrate-ethylenically unsaturated monomer graft copolymer
US3524901A (en) * 1968-01-22 1970-08-18 Dow Chemical Co Flame retardant vinyl esters containing acrylic or methacrylic phosphate esters
US3583938A (en) * 1968-12-23 1971-06-08 Mitsubishi Rayon Co Flame retardant fiber and process for manufacturing the same
US3766252A (en) * 1970-10-27 1973-10-16 Hoechst Ag Unsaturated carboxylic acid derivatives containing phosphorus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097543A (en) * 1976-05-12 1978-06-27 Mobil Oil Corporation Selective disproportionation of toluene
US20110110632A1 (en) * 2002-11-29 2011-05-12 Olivier Pinto Flame retardant cable

Similar Documents

Publication Publication Date Title
US3906136A (en) Process of flame retarding substrates by applying hexahydratriazine phosphonate derivatives
US3374292A (en) Phosphono carboxamides
US3577270A (en) Process for rendering cellulosic fibers flame resistant
US4034141A (en) Brominated phosphoramidates
EP0240622A1 (en) Antistatic agents for synthetic fibers and methods for producing such agents
US4092108A (en) Compositions and process for imparting durable flame resistance to cellulosic textiles
US3901650A (en) Textile flame retardants
US3338883A (en) Process for modifying polymeric materials, and modifier reactants for such use
US3926872A (en) Flame-retardant cellulosics containing graft copolymerized acrylic esters or amides
US3639539A (en) Phosphorus-containing n n-dimethylolcarboxylic acid amides
US3579532A (en) Bis-phosphono-propionamide substituted ethylene glycols and imidazolidinones
US3969440A (en) Phosphorus containing acrylic esters and amides
US4265945A (en) Quaternary ureidomethyl phosphonium salts
US2861901A (en) Bromine containing nitrilo methylol-phosphorus polymers
US4007236A (en) Brominated phosphoramidates
US3719448A (en) Organo-phosphorus compounds containing perfluoroalkyl radicals and their application to cellulosic textiles
US3669725A (en) Flameproofing of polyester-cellulose fibre materials
US3816068A (en) Flame retardant for cellulosic fabrics
US3849409A (en) Hexahydrotriazine phosphonate derivatives
US4177300A (en) Phosphonoxycarboxamide flame retarding compositions
US4162279A (en) Phosphonoxycarboxamides
US3477802A (en) Modification of cellulose,polyvinyl alcohol and starch with compounds characterized by ethylene radicals having an electron attracting group which stabilizes carbanions on one carbon atom thereof and an alkoxy or hydroxy group on the other
US4049754A (en) Tribromoneopentyl phosphorus reactive flame retardants
US2767107A (en) Antistatic treatment of hydrophobic resin articles
US3894122A (en) Phosphorus compounds containing amide groups