US3914608A - Rapid exposure of micropatterns with a scanning electron microscope - Google Patents
Rapid exposure of micropatterns with a scanning electron microscope Download PDFInfo
- Publication number
- US3914608A US3914608A US426393A US42639373A US3914608A US 3914608 A US3914608 A US 3914608A US 426393 A US426393 A US 426393A US 42639373 A US42639373 A US 42639373A US 3914608 A US3914608 A US 3914608A
- Authority
- US
- United States
- Prior art keywords
- address
- electrical signals
- scanning electron
- electron microscope
- electron beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010894 electron beam technology Methods 0.000 claims abstract description 63
- 230000001052 transient effect Effects 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 description 7
- 238000013459 approach Methods 0.000 description 5
- 239000000562 conjugate Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 2
- 241000237509 Patinopecten sp. Species 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000020637 scallop Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/302—Controlling tubes by external information, e.g. programme control
- H01J37/3023—Programme control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/147—Arrangements for directing or deflecting the discharge along a desired path
- H01J37/1472—Deflecting along given lines
- H01J37/1474—Scanning means
- H01J37/1475—Scanning means magnetic
Definitions
- ABSTRACT A micropattern is rapidly located and produced with precision on a major surface of a member with a scanning electron microscope.
- the major surface of the member is prepared with an electron resist layer.
- the electron beam of the scanning electron microscope is located at successive coordinate address positions at the major surface by address generator means and low speed deflection means for irradiation of a precision pattern in the electron resist layer by contiguous sub- U.S. l 1 A Scans each coordinate address the electron beam [51] Int. CI. H01J 29/00 i moved through a Subpanem about the coordinate of Search address position a ubscan generator means and high speed deflection means.
- the electron [56] References Cited beam is rapidly stabilized at each address position by UNITED STATES PATENTS generating compensating electrical signals related to 3,491,236 1/1970 Newberry 250/492 transient errors from the low Speed deflection means 3,644,700 2/1972 Kruppa etal Weg 250/492 on inputting the address signals, and inputting the 3,699,304 10/1972 Baldwin et al.... 250/492 compensating electrical signals to the high speed de- 3,749,964 7/1973 Hirata 250/3ll flection means,
- FIG. 36 Ic0mp V t FIG. 30'
- FIG. 6 F l I l l l l l l l I l l 10 lo I0 lo TRANSFER DATA RATE, BITS PER SECOND RAPID EXPOSURE OF MICROPATTERNS WITH A SCANNING ELECTRON MICROSCOPE GOVERNMENT CONTRACT FIELD OF THE INVENTION
- the invention relatesto the making of integrated circuits and other micro-miniature electronic components with submicron accuracy.
- the present invention is an improvement on the electron beam fabrication system described in U.S. Pat. No. 3,679,497, granted July 25, 1972.
- the scanning electron microscope of such fabrication system involves the use of a finely focused electron beam, e.g. 1 micron in diameter, to generate a planar component having submicron accuracy in an electron sensitive resist layer.
- the electron beam is automatically moved through the micropattern by discrete overlapping positions, point-by-point, on command from a digital computer.
- the beam control information is typically stored on a magnetic tape which is fed into the computer where it is used to generate coordinate electrical address signals which are inputted to deflection means and in turn deflect the electron beam to the successive address positions.
- the electron beam fabrication system involves the use of the scanning electron microscope to make a patterned photocathode source (called an electromask”) for the electron image projection system.
- an electromask patterned photocathode source
- the main difficulty is that the scanning electron microscope takes a very long time period to expose a complete micropattern.
- the operating speed depends on a combination of a number of factors: beam current and diameter, speed of beam deflection, electron resist sensitivity, and data rate of the system. Under some conditions, data rate is the primary limiting factor.
- exposure of the pattern field measuring 2000 X 2000 microns with a l micron-diameter scanning beam typically requires that the field be subdivided on 0.5 micron centers into a raster of 4000 X 4000 addresses.
- Such as raster requires l2 bits of information in the X direction and 12 bits of information in the Y direction or a total of 24 bits of information simply to locate each address in the computer.
- the machine word i.e. the number of bits at each address location
- a typical machine word may contain as many as 48 bits.
- the exposure time is in turn fixed by the time required for the system to generateor process the total bits, i.e. 48 X 4000 X 4000, together with intervening exposure times.
- the point-by-point exposure with the scanning electron beam is also limited in resolution by the geometry of the beam.
- the beam is typically circular in crosssection and 1 micron in effective diameter.
- a slightly scalloped edge is formed along the edge or edges of the exposures.
- the edge resolution of the system is therefore restricted by the variation of thescallops.
- the variation can be reduced by placing the address or exposure points closer together. However, this further extends the exposure time and, depending on the storage capacity of the computer, limits the scanning field of each raster.
- An apparatus and method are provided for producing, in a relatively short period of time, a precisely located micropattern on a member by exposure with an electron beam of a scanning electron microscope.
- the member is first prepared by applying over a major surface of the member and electron resist layer. That is, a layer of material that upon selective exposure to an electron beam becomes more or less soluble and preferably more or less etchant resistant (sometimes called an electroresist).
- the electron beam of small cross-sectional dimensions of the scanning electron microscope is located at an address position at the major surface of the member by generating address signals by address generator'means, which typically includes a digital computer, and inputting the address signals to low speed deflection means to cause the electron beam to deflect to prescribed coordinates.
- the located electron beam of the scanning electron microscope is then moved through a subpattern about the address position on the major surface of the member.
- the subscan movement is accomplished by generating subscan signals by a subscan generator means, which also typically includes a digital computer, and inputting the subscan signals to high speed deflection means to cause the electron beam to deflect through the prescribed subpattern.
- the electron beam is thus repeatedly located at successive address locations and moved through contiguous subscan patterns until a prescribed micropattern is defined by differential solubility in the electron resist layer. Subsequently, the resist layer is developed in appropriate solvents, stabilized by thermal or chemical treatments, and the micropattern transferred to the electronic component by diffusion, etching or deposition.
- compensating generator means are additionally provided to more rapidly locate the electron beam at each address position.
- the compensation generator means generates a compensating electrical sig-
- FIG. 1 is a block diagram of the electrical circuit for exposing a micropattern on a member with a scanning electronmicroscope in accordance with the present invention
- FIG. 2 is a schematic showing the details of the present invention in one ordinate of the deflection means of said blocks of FIG. 1; 7
- FIGS. 3A through 3F shows the transient electrical signals at'various points in the circuit of FIG. 2;.
- FIG. 4 is a schematic showing exposure of a micropattern .on a member with a scanning electron microscope in accordance with the prior art
- FIG. 5 is a schematic showing exposure of a micropattern on a member with a scanning electron mic roscope in accordance with the present invention.
- FIG. 6 is a graph illustrating therelative increase in exposure rate with a scanning electron microscope utilizing thepresent invention.
- the member 10 is first prepared by applying over a major surface 1 1 thereof an electron resist layer 12.
- An electron beam 13 of an electron beam microscope is projected through aperture l4 of final lens 15 of the microscope onto resist layer 12 on the major surface of member 10 at 16.
- Electron beam 13 is deflected to an address position 17 at the major surface of member 10 by deflection means, fully described hereinafter, on inputting address signals to said deflection means from address generator means hereinafter described.
- Electron beam 13 is then moved througha subscan 18 at major surface 11 of member 10 by deflection means fully described hereinafter on inputting subscan signals to said deflection means from subscan generator means hereinafter described.
- Both address and subscan commands are preferably formed into a computer program and used to program digital computer 20.
- the address and subscan at each address location may be provided in one machine word or consecutive machine words.
- electrical machine word signals for the address location are inputted by computer 20 through data bus 21 to address position generator 22.
- Address position generator 22 is actuated by the machine word electrical signals to generate electrical signals corresponding to theorthogonal' coordinates (i.e. -X and Y components of the I address 1 location 17 for electron beam 13 at major surface 11 of member 10.
- Coordinate X and Y components of'the address signal are then separately inputted via leads 23 and24, respectively, to operational amplifiers 25 and 26, respectively, of the low speed deflection means.
- the low speed deflection means also includes X-low speed deflection coils 28 and Y-low speed deflection coils 31, which are orthogonally positioned in pairs symmetrically about electron beam 13, to deflect electron beam 13 to the prescribed address position 17.
- the X and Y components of the address signal are inputted from amplifiers 25 and 26 through leads 27 and 30 to deflection coils 28 and 31, respectively, and fed back through leads 29 and 32, respectively, to amplifiers 25 and 26, respectively.
- Locating electron beam 13 at address position 17, the computer 20 inputs electrical machine word signals for subscan through data bus 33 to actuate subscan generator 34.
- Generator 34 is caused by the machine word electrical signals to generate electrical signals in X and Y components, i.e. which are orthogonally related, corresponding to the movement of the electron beam through subscan or subpattern 18 at the address position 17 on major surface 11 of member 10.
- the X and Y components of the subscan electrical signals are inputted through leads 35 and. 36, respectively, to operational amplifiers 37 and 38, respectively, of the high speed deflection means.
- the high speed deflection means also includes X-high speed deflection coils 40 and Y-high speed deflection coils 43, which are orthogonally positioned in pairs symmetrically about the electron beam and typically in the same coordinate system as low speed deflection coils 28 and 31, to deflect the electron beam through the prescribed subscan or subpattern 18.
- the X and Y components of the subscan electrical signals are inputted from amplifiers 37 and 38 through leads 39 and 42, respectively, to deflection coils 40 and 43, respectively, and are fed back through leads 41 and 44, respectively, to amplifiers 37 and 38, respectively.
- X and Y compensation generators 45 and 46 are additionally provided to rapidly position the electron beam at the address location 17.
- the difficulty is that the low speed deflection means have substantial inductances which cause the inputted signals to asymptotically rise to the prescribed generated coordinate address signals. These transient signals cause a time lag in the positioning of the electron beam at each address location.
- Compensation generators 45 and 46 receive the respective X and Y transient electrical signals via leads 47 and 48, respectively, from the feed back to operational amplifiers 25 and 26, respectively, which signals are caused by the respective inductances of low speed deflection means.
- the compensating generators process said component transient signals to produce con jugate or compensating X and Y component electrical signals which are inputted through crossover leads 49 and 50 to operational amplifiers 37 and 38, respectively, of the high speed deflection means.
- high speed deflection coils 40 and 42 are caused to deflect electron beam 13 of the scanning electron microscope to the address location 17 on major surface 11 of member 10 much more rapidly and in turn substantially reduce the time required to position the electron beam at each address and, in turn, substantially reduce the time required to expose the described micropattern in the resist layer 12 on the major surface of member 10.
- FIG. 2 details are shown of the operational amplifiers, low and high speed deflection coils, and compensation generators. The details are shown of the X components of each device with their interconnections. It will be understood that a duplicate arrangement is provided for the Y components, with the Y- deflection coils 31 and 43 positioned in pairs perpendicular to the X-deflection coils 28 and 31 symmetrically about the electron beam 13.
- the X component of the address signal is inputted through lead 23 to operational amplifier 25 of the low speed deflection means.
- the signal has a voltage stepfunction wave form as shown in FIG. 3A, where the voltage corresponds to the desired incremental deflection of the electron beam in the X-component axis.
- the voltage step-function wave form is converted to a current step-function wave form by passage through resistor 51, and the current step function is inputed through lead 52 to amplifier device 53.
- Device 53 has a high current output of the opposite polarity from the input and, as an operational amplifying device, operates to bring the two input terminals to zero.
- the other input lead 54 to amplifier device 53 is grounded.
- the feedback circuit as hereinafter described is such as to bring to input at lead 52 to ground or zero volts.
- the output of amplifier device 53 is a high current step-wave signal which is inputted via lead 27 to lower and upper X-low speed deflection coil pairs 55 and 56 of low speed deflection means.
- Deflection coil pairs 55 and 56 are symmetrically positioned about electron beam 13 opposite each other. The electron beam is thus caused to deflect by upper coil pair 56 through an angle opposite to the direction of desired deflection and then caused to deflect by pair coil 55 through an angle 20 in the opposite direction to provide the described deflection to the address location 17 at major surface 11 of member 10.
- the difference in deflections by the lower and upper coils S and 56 is caused by providing the lower coils with twice the ampere turns of the upper coils. The purpose of this double deflection is to maintain the electron beam centered in the aperture 14 of final lens 15 of the scanning electron microscope.
- the current signal through deflection coils and 56 is not a step-function wave form. Rather, the signal is a transient which asymptotically approaches the current signal desired for the X component of the address location as shown in FIG. 3B.
- This transient is fed back from low speed deflection coils 55 and 56 through lead 29 to amplifier 25, where the signal is processed through resistor 57 to ground.
- the conjugate voltage signal shown in FIG. 3C is formed at 58, which is fed back through lead 59 and resistor 60 (i.e. a matching resistor for resistor 51) to convert the wave form to a current transient signal, and through lead 61 to be added to the inputted stepcurrent waveform in lead 52 to approach zero.
- the conjugate voltage signal at 58 is also inputted to X-compensation generator 45 through lead 47, where the signal passes through resistor 62 to convert it to a current wave form. Also inputted to generator 45 through lead 64 from address position generator 22 is the original address signal as shown in FIG. 3A. Said address signal passes through resistor 65 to convert the signal to a current wave form and thereafter add it to the converted conjugate current signal from the feedback of operational amplifier 25 at 63. The sum current signal formed is the compensating signal, as shown in FIG. 3D, which is outputted to operational amplifier 37 of the high speed deflection means through lead 49.
- the compensating signal is inputted through lead '66 to the amplifier device 67.
- Device 67 has a high current output of the opposite polarity from the input and, as an operational amplifying device, operates to bring the two input terminals to zero.
- the other input lead 68 to amplifier device 67 is grounded.
- the feedback circuit as hereinafter described is such as to bring the input at lead 66 .to ground or zero volts.
- the output of amplifier device 67 is a high current pulse signal which is inputted via lead 39 to lower and upper X-high speed deflection coil pairs 69 and 70 of the high speed deflection means.
- Deflection coil pairs 69 and 70 are low inductance coils positioned symmetrically about electron beam 13 opposite each other, with lower coil pair 69 having twice the ampere turns of upper coil pair 70,
- the amplified compensation pulse forms a magnetic fieldbetween the coils as shown by curve B of FIG. 3E, which complements the magnetic field formed therebetween by low speed deflection coil pairs 55 and 56 shown by curve A of FIG. SE, to form a net deflection magnetic field as shown in FIG. 3E which causes virtually a step deflection of electron beam 13 through an angle 6 and then an angle 2 0 to the address location 17.
- the compensation signal will thus permit deflection times on the order of nanoseconds for typical deflection increments. This feature in turn becomes of considerable importance in reducing the exposure time of the entire micropattem when the accumulated time saved on each deflection is summed.
- the X component of the subscan signal is inputted through lead 36 to operational amplifier 37 of the high speed deflection means.
- the signal will be a voltage modulated signal with the modulation corresponding to changes along the X coordinate of the electron beam deflection as the beam moves through the prescribed subscan 18 about the address position 17.
- the voltage signal inputted is converted to a current modulated signal by resistor 76 and then inputted via lead 66 to amplifier device 67
- the output of device 67 is again a modulated high current which is inputted to lower and upper high speed'deflection coil pairs 69 and 70.
- the electron beam is again provided with a double deflection, first through an angle 0 and then an opposite angle 2 0, by providing the lower coils 69 with twice the ampere turns of upper coils 70.
- the high speed coils have, however, substantially fewer ampere turns than low speed deflection coils 55 and 56 to enable the high speed deflection means to respond at much faster rates but deflecting the electron beam through much smaller angles than the low speed deflection means because of the smaller inductance and smaller magnetic field.
- the typical deflection in each coordinate of the subscan 18 is 8 microns; but it is contemplated that a deflection of up to 32 microns may be provided by the high speed deflection means.
- the current signal through deflection coils 55 and 56 is not quite the same as the input signal. Rather, the signal is a transient which asymptotically approaches the current signal desired for the X component of the subscan as shown in FIG. 3F.
- This transient is fed back from high speed deflection coils 69 and 70 through lead 41 to amplifier 37, where the signal is processed through resistor 71 to ground.
- the conjugate transient voltage signal shown in FIG. 3F is formed at 72, which is fed back through lead 73 'andresistor 74 (i.e. a matching resistor for resistor 76) to convert the wave form to a current transient signal, and through lead 75 to be added with the inputted step-current wave form in lead 66 to approach zero.
- the double deflection system as shown in FIG. 2 is only one way of carrying out the present invention.
- the double deflection system may alternatively form electric fields by the high speed deflection means instead of the magnetic fields as shown, or both low and high speed deflection means may be provided with the same coils by using component signals of different frequencies for the address and subscan deflections.
- the deflection means may operate beyond the final lens 14 witha single set of coils to provide a single deflection directly to the address location and through the subscan.
- the double deflection system as shown in FIG. 2 is used to reduce beam shape distortions in final lens 15 caused by off-axis beam transversal, while at the same time eliminating the necessity for interposing space-consuming deflection coils or electrodes between the final lens 14 and the member 10.
- FIGS. 4 and 5 the results of the present invention are shown with reference to the prior art.
- the prior art method is shown of selectively exposing a micropattern with a scanning electron microscope address-by-address.
- FIG. 5 shows the corresponding exposures with the use of the subscan method herein described.
- the electron beam is deflected to successive address locations 117, micron aprat, to provide a relative smooth exposed edge.
- the geometry still causes scallop variations to occur along the edge formed by exposure of beam 113 at successive address locations 117.
- 24 addresses are needed to address and expose, for example, a 1 cm member a total of 4 X l addresses must be provided, and to expose a 2 X 4.5 micron area as shown in FIG. 4, 24 addresses are needed.
- a typical address work containing 48 bits for exposure of a 2000 X 2000 micron field, it is observed that the scanning microscope is limited by the storage capacity of the signal generator system, as well as the data rate which extends the exposure time.
- Electron beam 13 has center 16 which is deflected to address locations 17 and is then deflected at high speeds through sub- 6 scan is needed, which subscan can be provided by either'the same machine word as for the address location or by a successive machine word.
- the rate of exposure of a micropattern is in turn substantially increased. It can be seen from FIG. that subscans can be made contiguous simply by spacing the address locations. Further, the variations at the edge of the exposure is essentially eliminated, thus increasing the edge resolution of the exposure system.
- FIG. 6 a quantitative comparison is shown between the exposure time of the present invention and the exposure time of the prior art address-byaddress system.
- a 48-bitmachine word is assumed for the prior art system and a 64-bit machine word is assumed for the present invention.
- the ordinate of FIG. 6 has been labeled as the time to expose 25 percent of a 2 inch square resist layer (6 cm expressed in minutes. It will be seen that to accomplish the exposure a data rate exceeding 2 X 10 bits per second is required. This rate will just match the exposure speed permitted by an assumed beam current of 10 amps and an electron resist sensitivity of 10' coulombs per square cm.
- an area equivalent to many point-by-point addresses may be exposed with only one address, as shown in FIG. 5. In this way the number of addresses required for a small geometric unit can be reduced to 1 from a number equal to 4 times the area of the unit in square microns.
- FIG. 6 shows (comparing curves A and B) that address economies ranging up to l00O-fold can be obtained.
- Points C and E, and points D and F show a direct comparison of the reduced exposure time with a typical disc memory (DDC-7302) and typical minidigital computer (PDP-8), respectively.
- DDC-7302 typical disc memory
- PDP-8 typical minidigital computer
- typical exposure times for a 2 inch square resist layer may approach 10 minutes or less assuming a 10" amp beam current, 10' coulombs per centimeter resist sensitivity, a data rate of 4 X 10 bits per second and a high speed dual-deflection system as described hereinbefore.
- the use of such as system to prepare device patterns for complex integrated circuits and large scale integration will reduce the costs of designing and fabricating such circuits even in small custom lot quantities to an almost insignificant level as compared with similar costs using address-by-address electron scanning technology.
- the principal component of such costs at present is computer time.
- the net effect of present invention is to reduce by orders of magnitude the costs of operating such computers in micropattern exposures.
- D. low speed deflection means for deflecting the electron beam of the scanning electron microscope to successive coordinate address positions at the major surface of the member responsive to the electrical signals from the address generator means;
- a subscan generator means for generating electrical signals corresponding to successive subscans for exposing a precision subpattern at the major surface of the member about said coordinate address positions;
- F. high speed deflection means for deflecting the electron beam of the scanning electron microscope through subpatterns about said successive coordinate address positions at the major surface of the member responsive to the electrical signals from the subscan generator means.
- Apparatus for rapid exposure of a precision micropattern on a major surface of a prepared member with a scanning electron microscope as set forth in claim 1 comprising in addition:
- compensation generator means for generating compensating electrical signals corresponding to transient errors from inputting electrical signals from the address generator means to the low speed deflection means;
- a subscan generator means for generating electrical signals corresponding to successive subscans about said coordinate address positions
- E. high speed deflection means for deflecting the electron beam of the scanning electron microscope through subpatterns about said successive coordinate address positions responsive to the electrical signals from the subscan generator means.
- compensation generator means for generating compensating electrical signals corresponding to transient errors from inputting electrical signals from the address generator means to the low speed deflection means;
- cross-over means for inputting the compensating electrical signals to the high speed deflection l I I 8 l
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Beam Exposure (AREA)
Abstract
A micropattern is rapidly located and produced with precision on a major surface of a member with a scanning electron microscope. The major surface of the member is prepared with an electron resist layer. The electron beam of the scanning electron microscope is located at successive coordinate address positions at the major surface by address generator means and low speed deflection means for irradiation of a precision pattern in the electron resist layer by contiguous subscans. At each coordinate address, the electron beam is moved through a subpattern about the coordinate address position by a subscan generator means and high speed deflection means. Preferably, the electron beam is rapidly stabilized at each address position by generating compensating electrical signals related to transient errors from the low speed deflection means on inputting the address signals, and inputting the compensating electrical signals to the high speed deflection means.
Description
1451 Oct. 21, 1975 RAPID EXPOSURE OF MICROPATTERNS WITH A SCANNING ELECTRON MICROSCOPE [75] Inventor: Paul R. Malmberg, Pittsburgh, Pa.
[73] Assignee: Westinghouse Electric Corporation,
Pittsburgh, Pa.
[22] Filed: Dec. 19, 1973 [21] Appl. No.: 426,393
[57] ABSTRACT A micropattern is rapidly located and produced with precision on a major surface of a member with a scanning electron microscope. The major surface of the member is prepared with an electron resist layer. The electron beam of the scanning electron microscope is located at successive coordinate address positions at the major surface by address generator means and low speed deflection means for irradiation of a precision pattern in the electron resist layer by contiguous sub- U.S. l 1 A Scans each coordinate address the electron beam [51] Int. CI. H01J 29/00 i moved through a Subpanem about the coordinate of Search address position a ubscan generator means and high speed deflection means. Preferably, the electron [56] References Cited beam is rapidly stabilized at each address position by UNITED STATES PATENTS generating compensating electrical signals related to 3,491,236 1/1970 Newberry 250/492 transient errors from the low Speed deflection means 3,644,700 2/1972 Kruppa etal..... 250/492 on inputting the address signals, and inputting the 3,699,304 10/1972 Baldwin et al.... 250/492 compensating electrical signals to the high speed de- 3,749,964 7/1973 Hirata 250/3ll flection means,
Primary Examiner-James W. Lawrence Assistant Examiner-B. C. Anderson Attorney, Agent, or FirmC. L. Menzemer 4 Claims, 11 Drawing Figures 37 66 67 ELECTRON BEAM 36 |3 1 IL X-COMPONENT 75 1/ 1 L 1; 68 I |N PU T w: w. E 4
I "5.. a is L 65 64 m Jae-- X-COMPONENT ADDRESS INPUT ADDRESS DEFLECTION SUBSCAN DEFLECTION US. Patent Oct. 21, 1975 Sheetlof3 3,914,608
1 X-COMPQNENT OPERATIONAL X-LOW SPEED AMPLIFIER A 5 DEFLECTION OOILS ADDRESS POSITION J 29 F JGENERATOR 24 OPERATIONAL 301 Y-Low SPEED 22 AMPLIFIER 2 DEFLEOTION COILS Y-COMPONENT 147 I 32 1 \2| S4 45 20 k v x-cOMPENSATION 48 GENERATOR COMPUTER 46 Y-COMPENSATION \49 GENERATOR 5Q as X-CQMPONENT OPERATIONAL X-HIGH SPEED l AMPLIFIER J DEFLECTION cOILS SUBSCAN GENERATOR i 42 f 4 OPERATIONAL A Y-HIGH SPEED 35 Y-COMPONENT AMPLIFIER DEFLECTION COILS X-COMPONENT SUBSCAN INPUT ELECTRON BEAM X-COMPONENT ADDRESS INPUT DEFLECTION ADDRESS DEFLECTION U.S. Patent Oct. 21, 1975 Sheet 2 of3 3,914,608
in V AL 1 4 FIG. 30
FIG. 3b
FIG. 36 Ic0mp V t FIG. 30'
H J H 1 FIG. 39
' comp'y PRIOR ART US. Patent Oct. 21, 1975 Sheet 3 of3 LINE all
IOOOO TIME TO EXPOSE 25% OF 2" SQ. MASK SCMZLMIN.
I =|d A I00 FIG. 6' F l I l l l l l I l l 10 lo I0 lo TRANSFER DATA RATE, BITS PER SECOND RAPID EXPOSURE OF MICROPATTERNS WITH A SCANNING ELECTRON MICROSCOPE GOVERNMENT CONTRACT FIELD OF THE INVENTION The invention relatesto the making of integrated circuits and other micro-miniature electronic components with submicron accuracy.
BACKGROUND OF THE INVENTION The present invention is an improvement on the electron beam fabrication system described in U.S. Pat. No. 3,679,497, granted July 25, 1972.
The scanning electron microscope of such fabrication system involves the use of a finely focused electron beam, e.g. 1 micron in diameter, to generate a planar component having submicron accuracy in an electron sensitive resist layer. The electron beam is automatically moved through the micropattern by discrete overlapping positions, point-by-point, on command from a digital computer. The beam control information is typically stored on a magnetic tape which is fed into the computer where it is used to generate coordinate electrical address signals which are inputted to deflection means and in turn deflect the electron beam to the successive address positions. While such scanning electron microscope system can be used to directly develop a high resolution micropattern in an electron resist in making integrated circuits, the electron beam fabrication system involves the use of the scanning electron microscope to make a patterned photocathode source (called an electromask") for the electron image projection system.
The main difficulty is that the scanning electron microscope takes a very long time period to expose a complete micropattern. The operating speed depends on a combination of a number of factors: beam current and diameter, speed of beam deflection, electron resist sensitivity, and data rate of the system. Under some conditions, data rate is the primary limiting factor. To illustrate, exposure of the pattern field measuring 2000 X 2000 microns with a l micron-diameter scanning beam typically requires that the field be subdivided on 0.5 micron centers into a raster of 4000 X 4000 addresses. Such as raster requires l2 bits of information in the X direction and 12 bits of information in the Y direction or a total of 24 bits of information simply to locate each address in the computer. The machine word, i.e. the number of bits at each address location,
is of course, much longer by virtue of the operation in-- formation bits as well as the parity code bits, word mark bits and machine instruction codes. Thus, in the point-by-pcint exposure of 4000 X 4000 addresses, a typical machine word may contain as many as 48 bits. The exposure time is in turn fixed by the time required for the system to generateor process the total bits, i.e. 48 X 4000 X 4000, together with intervening exposure times.
The point-by-point exposure with the scanning electron beam is also limited in resolution by the geometry of the beam. The beam is typically circular in crosssection and 1 micron in effective diameter. In the exposure in 0.5 micron increments, a slightly scalloped edge is formed along the edge or edges of the exposures. The edge resolution of the system is therefore restricted by the variation of thescallops. The variation can be reduced by placing the address or exposure points closer together. However, this further extends the exposure time and, depending on the storage capacity of the computer, limits the scanning field of each raster.
These difficulties and disadvantages have been substantially reduced by the present invention. It greatly reduces the data rate requirements of the system by a high speed deflection of the electron beam through a subpattern at each address location, thereby reducing the number of machine words required for an entire field scan. And the invention reduces the size of the computer storage needed to expose a micropattern of a given size and, conversely, increases the scan field which can be exposed with a given size computer storage. Further, it minimizes the variations along the edges by causing the beam to sweep through a length at each address, thereby increasing edge resolution of the system.
SUMMARY OF THE INVENTION An apparatus and method are provided for producing, in a relatively short period of time, a precisely located micropattern on a member by exposure with an electron beam of a scanning electron microscope.
The member is first prepared by applying over a major surface of the member and electron resist layer. That is, a layer of material that upon selective exposure to an electron beam becomes more or less soluble and preferably more or less etchant resistant (sometimes called an electroresist). The electron beam of small cross-sectional dimensions of the scanning electron microscope is located at an address position at the major surface of the member by generating address signals by address generator'means, which typically includes a digital computer, and inputting the address signals to low speed deflection means to cause the electron beam to deflect to prescribed coordinates.
The located electron beam of the scanning electron microscope is then moved through a subpattern about the address position on the major surface of the member. The subscan movement is accomplished by generating subscan signals by a subscan generator means, which also typically includes a digital computer, and inputting the subscan signals to high speed deflection means to cause the electron beam to deflect through the prescribed subpattern.
The electron beam is thus repeatedly located at successive address locations and moved through contiguous subscan patterns until a prescribed micropattern is defined by differential solubility in the electron resist layer. Subsequently, the resist layer is developed in appropriate solvents, stabilized by thermal or chemical treatments, and the micropattern transferred to the electronic component by diffusion, etching or deposition.
Preferably, compensating generator means are additionally provided to more rapidly locate the electron beam at each address position. The compensation generator means generates a compensating electrical sig- Other details, objects and advantages of the invention will become apparent as the following description of the presently preferred embodiments of the invention and the presently preferred methods of using the invention proceeds.
v BRIEF DESCRIPTION OF THE DRAWINGS In the accompanying drawings, the present preferred embodiments of the invention and present preferred methods of practicing the same are illustrated in which: 4 FIG. 1 is a block diagram of the electrical circuit for exposing a micropattern on a member with a scanning electronmicroscope in accordance with the present invention; v i
FIG. 2 is a schematic showing the details of the present invention in one ordinate of the deflection means of said blocks of FIG. 1; 7
FIGS. 3A through 3F shows the transient electrical signals at'various points in the circuit of FIG. 2;.
FIG. 4 is a schematic showing exposure of a micropattern .on a member with a scanning electron microscope in accordance with the prior art;
FIG. 5 is a schematic showing exposure of a micropattern on a member with a scanning electron mic roscope in accordance with the present invention; and
, FIG. 6 is a graph illustrating therelative increase in exposure rate with a scanning electron microscope utilizing thepresent invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring particularly to FIGS. 1 and 2, the member 10 is first prepared by applying over a major surface 1 1 thereof an electron resist layer 12. An electron beam 13 of an electron beam microscope is projected through aperture l4 of final lens 15 of the microscope onto resist layer 12 on the major surface of member 10 at 16. Electron beam 13 is deflected to an address position 17 at the major surface of member 10 by deflection means, fully described hereinafter, on inputting address signals to said deflection means from address generator means hereinafter described. Electron beam 13 is then moved througha subscan 18 at major surface 11 of member 10 by deflection means fully described hereinafter on inputting subscan signals to said deflection means from subscan generator means hereinafter described.
Referring to FIG. 1, a schematic is shown which illustrates the deflection and subscan circuitry of the present invention. Both address and subscan commands are preferably formed into a computer program and used to program digital computer 20. The address and subscan at each address location may be provided in one machine word or consecutive machine words. In any case, electrical machine word signals for the address location are inputted by computer 20 through data bus 21 to address position generator 22. Address position generator 22 is actuated by the machine word electrical signals to generate electrical signals corresponding to theorthogonal' coordinates (i.e. -X and Y components of the I address 1 location 17 for electron beam 13 at major surface 11 of member 10. Coordinate X and Y components of'the address signal are then separately inputted via leads 23 and24, respectively, to operational amplifiers 25 and 26, respectively, of the low speed deflection means. The low speed deflection means also includes X-low speed deflection coils 28 and Y-low speed deflection coils 31, which are orthogonally positioned in pairs symmetrically about electron beam 13, to deflect electron beam 13 to the prescribed address position 17. The X and Y components of the address signal are inputted from amplifiers 25 and 26 through leads 27 and 30 to deflection coils 28 and 31, respectively, and fed back through leads 29 and 32, respectively, to amplifiers 25 and 26, respectively.
Locating electron beam 13 at address position 17, the computer 20 inputs electrical machine word signals for subscan through data bus 33 to actuate subscan generator 34. Generator 34 is caused by the machine word electrical signals to generate electrical signals in X and Y components, i.e. which are orthogonally related, corresponding to the movement of the electron beam through subscan or subpattern 18 at the address position 17 on major surface 11 of member 10. The X and Y components of the subscan electrical signals are inputted through leads 35 and. 36, respectively, to operational amplifiers 37 and 38, respectively, of the high speed deflection means. The high speed deflection means also includes X-high speed deflection coils 40 and Y-high speed deflection coils 43, which are orthogonally positioned in pairs symmetrically about the electron beam and typically in the same coordinate system as low speed deflection coils 28 and 31, to deflect the electron beam through the prescribed subscan or subpattern 18. The X and Y components of the subscan electrical signals are inputted from amplifiers 37 and 38 through leads 39 and 42, respectively, to deflection coils 40 and 43, respectively, and are fed back through leads 41 and 44, respectively, to amplifiers 37 and 38, respectively.
Preferably, X and Y compensation generators 45 and 46 are additionally provided to rapidly position the electron beam at the address location 17. The difficulty is that the low speed deflection means have substantial inductances which cause the inputted signals to asymptotically rise to the prescribed generated coordinate address signals. These transient signals cause a time lag in the positioning of the electron beam at each address location. Compensation generators 45 and 46 receive the respective X and Y transient electrical signals via leads 47 and 48, respectively, from the feed back to operational amplifiers 25 and 26, respectively, which signals are caused by the respective inductances of low speed deflection means. The compensating generators process said component transient signals to produce con jugate or compensating X and Y component electrical signals which are inputted through crossover leads 49 and 50 to operational amplifiers 37 and 38, respectively, of the high speed deflection means. By these compensating inputs to high speed deflection means, high speed deflection coils 40 and 42 are caused to deflect electron beam 13 of the scanning electron microscope to the address location 17 on major surface 11 of member 10 much more rapidly and in turn substantially reduce the time required to position the electron beam at each address and, in turn, substantially reduce the time required to expose the described micropattern in the resist layer 12 on the major surface of member 10.
Referring to FIG. 2, details are shown of the operational amplifiers, low and high speed deflection coils, and compensation generators. The details are shown of the X components of each device with their interconnections. It will be understood that a duplicate arrangement is provided for the Y components, with the Y- deflection coils 31 and 43 positioned in pairs perpendicular to the X-deflection coils 28 and 31 symmetrically about the electron beam 13.
The X component of the address signal is inputted through lead 23 to operational amplifier 25 of the low speed deflection means. The signal has a voltage stepfunction wave form as shown in FIG. 3A, where the voltage corresponds to the desired incremental deflection of the electron beam in the X-component axis. In amplifier 25, the voltage step-function wave form is converted to a current step-function wave form by passage through resistor 51, and the current step function is inputed through lead 52 to amplifier device 53. Device 53 has a high current output of the opposite polarity from the input and, as an operational amplifying device, operates to bring the two input terminals to zero. The other input lead 54 to amplifier device 53 is grounded. Thus, the feedback circuit as hereinafter described is such as to bring to input at lead 52 to ground or zero volts.
The output of amplifier device 53 is a high current step-wave signal which is inputted via lead 27 to lower and upper X-low speed deflection coil pairs 55 and 56 of low speed deflection means. Deflection coil pairs 55 and 56 are symmetrically positioned about electron beam 13 opposite each other. The electron beam is thus caused to deflect by upper coil pair 56 through an angle opposite to the direction of desired deflection and then caused to deflect by pair coil 55 through an angle 20 in the opposite direction to provide the described deflection to the address location 17 at major surface 11 of member 10. The difference in deflections by the lower and upper coils S and 56 is caused by providing the lower coils with twice the ampere turns of the upper coils. The purpose of this double deflection is to maintain the electron beam centered in the aperture 14 of final lens 15 of the scanning electron microscope.
Because of the inductance of the low speed deflection coils, the current signal through deflection coils and 56 is not a step-function wave form. Rather, the signal is a transient which asymptotically approaches the current signal desired for the X component of the address location as shown in FIG. 3B. This transient is fed back from low speed deflection coils 55 and 56 through lead 29 to amplifier 25, where the signal is processed through resistor 57 to ground. By this arrangement, the conjugate voltage signal shown in FIG. 3C is formed at 58, which is fed back through lead 59 and resistor 60 (i.e. a matching resistor for resistor 51) to convert the wave form to a current transient signal, and through lead 61 to be added to the inputted stepcurrent waveform in lead 52 to approach zero.
The conjugate voltage signal at 58 is also inputted to X-compensation generator 45 through lead 47, where the signal passes through resistor 62 to convert it to a current wave form. Also inputted to generator 45 through lead 64 from address position generator 22 is the original address signal as shown in FIG. 3A. Said address signal passes through resistor 65 to convert the signal to a current wave form and thereafter add it to the converted conjugate current signal from the feedback of operational amplifier 25 at 63. The sum current signal formed is the compensating signal, as shown in FIG. 3D, which is outputted to operational amplifier 37 of the high speed deflection means through lead 49.
In the operational amplifier 37, the compensating signal is inputted through lead '66 to the amplifier device 67. Device 67 has a high current output of the opposite polarity from the input and, as an operational amplifying device, operates to bring the two input terminals to zero. The other input lead 68 to amplifier device 67 is grounded. Thus, the feedback circuit as hereinafter described is such as to bring the input at lead 66 .to ground or zero volts. The output of amplifier device 67 is a high current pulse signal which is inputted via lead 39 to lower and upper X-high speed deflection coil pairs 69 and 70 of the high speed deflection means. Deflection coil pairs 69 and 70 are low inductance coils positioned symmetrically about electron beam 13 opposite each other, with lower coil pair 69 having twice the ampere turns of upper coil pair 70, The amplified compensation pulse forms a magnetic fieldbetween the coils as shown by curve B of FIG. 3E, which complements the magnetic field formed therebetween by low speed deflection coil pairs 55 and 56 shown by curve A of FIG. SE, to form a net deflection magnetic field as shown in FIG. 3E which causes virtually a step deflection of electron beam 13 through an angle 6 and then an angle 2 0 to the address location 17. It is anticipated that the compensation signal will thus permit deflection times on the order of nanoseconds for typical deflection increments. This feature in turn becomes of considerable importance in reducing the exposure time of the entire micropattem when the accumulated time saved on each deflection is summed.
After deflection to the address location 17, the X component of the subscan signal is inputted through lead 36 to operational amplifier 37 of the high speed deflection means. The signal will be a voltage modulated signal with the modulation corresponding to changes along the X coordinate of the electron beam deflection as the beam moves through the prescribed subscan 18 about the address position 17. The voltage signal inputted is converted to a current modulated signal by resistor 76 and then inputted via lead 66 to amplifier device 67 The output of device 67 is again a modulated high current which is inputted to lower and upper high speed'deflection coil pairs 69 and 70. The electron beam is again provided with a double deflection, first through an angle 0 and then an opposite angle 2 0, by providing the lower coils 69 with twice the ampere turns of upper coils 70. The high speed coils have, however, substantially fewer ampere turns than low speed deflection coils 55 and 56 to enable the high speed deflection means to respond at much faster rates but deflecting the electron beam through much smaller angles than the low speed deflection means because of the smaller inductance and smaller magnetic field. The typical deflection in each coordinate of the subscan 18 is 8 microns; but it is contemplated that a deflection of up to 32 microns may be provided by the high speed deflection means. The restricting factor in this connection is that the greater the deflection, the higher the inductance of the coils, and the slower the response on the subscan. Thus, 32 microns is considered a practical upper limit of subscan deflection in either coordinate with presently available deflection means.
Because of the inductance of the high speed deflection coils, the current signal through deflection coils 55 and 56 is not quite the same as the input signal. Rather, the signal is a transient which asymptotically approaches the current signal desired for the X component of the subscan as shown in FIG. 3F. This transient is fed back from high speed deflection coils 69 and 70 through lead 41 to amplifier 37, where the signal is processed through resistor 71 to ground. By this arrangement, the conjugate transient voltage signal shown in FIG. 3F is formed at 72, which is fed back through lead 73 'andresistor 74 (i.e. a matching resistor for resistor 76) to convert the wave form to a current transient signal, and through lead 75 to be added with the inputted step-current wave form in lead 66 to approach zero.
It should be observed that the double deflection system as shown in FIG. 2 is only one way of carrying out the present invention. The double deflection system may alternatively form electric fields by the high speed deflection means instead of the magnetic fields as shown, or both low and high speed deflection means may be provided with the same coils by using component signals of different frequencies for the address and subscan deflections. Further, the deflection means may operate beyond the final lens 14 witha single set of coils to provide a single deflection directly to the address location and through the subscan. Preferably, however, the double deflection system as shown in FIG. 2 is used to reduce beam shape distortions in final lens 15 caused by off-axis beam transversal, while at the same time eliminating the necessity for interposing space-consuming deflection coils or electrodes between the final lens 14 and the member 10.
Referring to FIGS. 4 and 5, the results of the present invention are shown with reference to the prior art. Referring to FIG. 4, the prior art method is shown of selectively exposing a micropattern with a scanning electron microscope address-by-address. FIG. 5 shows the corresponding exposures with the use of the subscan method herein described.
To illustrate, consider electron beam 1 13 having center 116 and an effective exposure diameter of 1 micron.
The electron beam is deflected to successive address locations 117, micron aprat, to provide a relative smooth exposed edge. However, as can be seen from FIG. 4, the geometry still causes scallop variations to occur along the edge formed by exposure of beam 113 at successive address locations 117. Moreover, to address and expose, for example, a 1 cm member a total of 4 X l addresses must be provided, and to expose a 2 X 4.5 micron area as shown in FIG. 4, 24 addresses are needed. And with a typical address work containing 48 bits for exposure of a 2000 X 2000 micron field, it is observed that the scanning microscope is limited by the storage capacity of the signal generator system, as well as the data rate which extends the exposure time.
Referring to FIG. 5, the contrasting use of the present invention to expose a micropattern with a scanning electron microscope is clearly shown. Electron beam 13 has center 16 which is deflected to address locations 17 and is then deflected at high speeds through sub- 6 scan is needed, which subscan can be provided by either'the same machine word as for the address location or by a successive machine word. The rate of exposure of a micropattern is in turn substantially increased. It can be seen from FIG. that subscans can be made contiguous simply by spacing the address locations. Further, the variations at the edge of the exposure is essentially eliminated, thus increasing the edge resolution of the exposure system.
Referring to FIG. 6, a quantitative comparison is shown between the exposure time of the present invention and the exposure time of the prior art address-byaddress system. A 48-bitmachine word is assumed for the prior art system and a 64-bit machine word is assumed for the present invention.
The ordinate of FIG. 6 has been labeled as the time to expose 25 percent of a 2 inch square resist layer (6 cm expressed in minutes. It will be seen that to accomplish the exposure a data rate exceeding 2 X 10 bits per second is required. This rate will just match the exposure speed permitted by an assumed beam current of 10 amps and an electron resist sensitivity of 10' coulombs per square cm. By the use of a subscan system of controlled size at each principal beam address, an area equivalent to many point-by-point addresses may be exposed with only one address, as shown in FIG. 5. In this way the number of addresses required for a small geometric unit can be reduced to 1 from a number equal to 4 times the area of the unit in square microns. By using a subscan, which can be adjusted in dimension independently in X-Y directions from 1 to 16 microns, FIG. 6 shows (comparing curves A and B) that address economies ranging up to l00O-fold can be obtained. Points C and E, and points D and F show a direct comparison of the reduced exposure time with a typical disc memory (DDC-7302) and typical minidigital computer (PDP-8), respectively.
As can be seen from inspection of FIG. 6, typical exposure times for a 2 inch square resist layer may approach 10 minutes or less assuming a 10" amp beam current, 10' coulombs per centimeter resist sensitivity, a data rate of 4 X 10 bits per second and a high speed dual-deflection system as described hereinbefore. The use of such as system to prepare device patterns for complex integrated circuits and large scale integration will reduce the costs of designing and fabricating such circuits even in small custom lot quantities to an almost insignificant level as compared with similar costs using address-by-address electron scanning technology. The principal component of such costs at present is computer time. However, the net effect of present invention is to reduce by orders of magnitude the costs of operating such computers in micropattern exposures.
While presently preferred embodiments have been shown and described with particularity, it is distinctly understood that the invention may be otherwise variously embodied and performed within the scope of the following claims.
What is claimed is: 1.:Apparatus for rapid exposure of a precision micropattern on a major surface of a prepared member with a scanning electron microscope comprising: A. a prepared member having a major surface; B. a scanning electron. microscope positioned to project a small cross-sectional electron beam onto the major surface of the member;
C. an address generator means for generating electrical signals corresponding to successive coordinate addresses for exposing a precision pattern at the major surface of the member in successive subscans with the electron beam of the scanning electron microscope;
D. low speed deflection means for deflecting the electron beam of the scanning electron microscope to successive coordinate address positions at the major surface of the member responsive to the electrical signals from the address generator means;
E. a subscan generator means for generating electrical signals corresponding to successive subscans for exposing a precision subpattern at the major surface of the member about said coordinate address positions; and
F. high speed deflection means for deflecting the electron beam of the scanning electron microscope through subpatterns about said successive coordinate address positions at the major surface of the member responsive to the electrical signals from the subscan generator means.
2. Apparatus for rapid exposure of a precision micropattern on a major surface of a prepared member with a scanning electron microscope as set forth in claim 1 comprising in addition:
G. compensation generator means for generating compensating electrical signals corresponding to transient errors from inputting electrical signals from the address generator means to the low speed deflection means; and
H. cross-over means for inputting the compensating electrical signals to the high speed deflection means. 3. Apparatus for rapid development of a micropattern with a scanning electron microscope comprising:
to the electrical signals from the address generator means; D. a subscan generator means for generating electrical signals corresponding to successive subscans about said coordinate address positions; and
E. high speed deflection means for deflecting the electron beam of the scanning electron microscope through subpatterns about said successive coordinate address positions responsive to the electrical signals from the subscan generator means.
4. Apparatus for rapid development of a precision micropattern with a scanning electron microscope as set forth in claim 3 comprising in addition:
F. compensation generator means for generating compensating electrical signals corresponding to transient errors from inputting electrical signals from the address generator means to the low speed deflection means; and
G. cross-over means for inputting the compensating electrical signals to the high speed deflection l I I 8 l
Claims (4)
1. Apparatus for rapid exposure of a precision micropattern on a major surface of a prepared member with a scanning electron microscope comprising: A. a prepared member having a major surface; B. a scanning electron microscope positioned to project a small cross-sectional electron beam onto the major surface of the member; C. an address generator means for generating electrical signals corresponding to successive coordinate addresses for exposing a precision pattern at the major surface of the member in successive subscans with the electron beam of the scanning electron microscope; D. low speed deflection means for deflecting the electron beam of the scanning electron microscope to successive coordinate address positions at the major surface of the member responsive to the electrical signals from the address generator means; E. a subscan generator means for generating electrical signals corresponding to successive subscans for exposing a precision subpattern at the major surface of the member about said coordinate address positions; and F. high speed deflection means for deflecting the electron beam of the scanning electron microscope through subpatterns about said successive coordinate address positions at the major surface of the member responsive to the electrical signals from the subscan generator means.
2. Apparatus for rapid exposure of a precision micropattern on a major surface of a prepared member with a scanning electron microscope as set forth in claim 1 comprising in addition: G. compensation generator means for generating compensating electrical signals corresponding to transient errors from inputting electrical signals from the address generator means to the low speed deflection means; and H. cross-over means for inputting the compensating electrical signals to the high speed deflection means.
3. Apparatus for rapid development of a micropattern with a scanning electron microscope comprising: A. a scanning electron microscope positioned to project a small cross-sectional electron beam; B. an address generator means for generating electrical signals corresponding to successive coordinate addresses of successive subscans with the electron beam of the scanning electron microscope; C. low speed deflection means for deflecting the electron beam of the scanning electron microscope to successive coordinate address positions responsive to the electrical signals from the address generator means; D. a subscan generator means for generating electrical signals corresponding to successive subscans about said coordinate address positions; and E. high speed deflection means for deflecting the electron beam of the scanning electron microscope through subpatterns about said successive coordinate address positions responsive to the electrical signals from the subscan generator means.
4. Apparatus for rapid development of a precision micropatteRn with a scanning electron microscope as set forth in claim 3 comprising in addition: F. compensation generator means for generating compensating electrical signals corresponding to transient errors from inputting electrical signals from the address generator means to the low speed deflection means; and G. cross-over means for inputting the compensating electrical signals to the high speed deflection means.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US426393A US3914608A (en) | 1973-12-19 | 1973-12-19 | Rapid exposure of micropatterns with a scanning electron microscope |
JP49145088A JPS5223220B2 (en) | 1973-12-19 | 1974-12-19 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US426393A US3914608A (en) | 1973-12-19 | 1973-12-19 | Rapid exposure of micropatterns with a scanning electron microscope |
Publications (1)
Publication Number | Publication Date |
---|---|
US3914608A true US3914608A (en) | 1975-10-21 |
Family
ID=23690627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US426393A Expired - Lifetime US3914608A (en) | 1973-12-19 | 1973-12-19 | Rapid exposure of micropatterns with a scanning electron microscope |
Country Status (2)
Country | Link |
---|---|
US (1) | US3914608A (en) |
JP (1) | JPS5223220B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4051381A (en) * | 1974-12-13 | 1977-09-27 | Thomson-Csf | Device for the programmed tracing of designs by particle bombardment |
US4095104A (en) * | 1975-09-01 | 1978-06-13 | U.S. Philips Corporation | Electron microscope |
US4136285A (en) * | 1975-10-17 | 1979-01-23 | Siemens Aktiengesellschaft | Method for irradiating a specimen by corpuscular-beam radiation |
US4145615A (en) * | 1976-07-30 | 1979-03-20 | Tokyo Shibaura Electric Co., Ltd. | Electron beam exposure apparatus |
US4153843A (en) * | 1977-03-23 | 1979-05-08 | Bell Telephone Laboratories, Incorporated | Multiple beam exposure system |
US4163155A (en) * | 1978-04-07 | 1979-07-31 | Bell Telephone Laboratories, Incorporated | Defining a low-density pattern in a photoresist with an electron beam exposure system |
WO1980002772A1 (en) * | 1979-06-08 | 1980-12-11 | Fujitsu Ltd | Electron beam projecting system |
DE2936911A1 (en) * | 1979-09-12 | 1981-04-02 | Siemens AG, 1000 Berlin und 8000 München | METHOD AND DEVICE FOR REGULATING A MAGNETIC DEFLECTION SYSTEM |
US4334156A (en) * | 1978-08-29 | 1982-06-08 | International Business Machines Corporation | Method of shadow printing exposure |
DE3825892A1 (en) * | 1987-07-30 | 1989-02-16 | Mitsubishi Electric Corp | ELECTRON BEAM DIRECT SIGNAL DEVICE |
US5530251A (en) * | 1994-12-21 | 1996-06-25 | International Business Machines Corporation | Inductively coupled dual-stage magnetic deflection yoke |
US5721432A (en) * | 1994-01-28 | 1998-02-24 | Fujitsu Limited | Method of and system for charged particle beam exposure |
DE19911372A1 (en) * | 1999-03-15 | 2000-09-28 | Pms Gmbh | Control of electrically charged particle beam with particle source and associated accelerator and downstream electromagnetic beam deflector |
US20070000048A1 (en) * | 2004-12-16 | 2007-01-04 | Davis David T | Pneumatic lift and method for transferring an invalid patient |
EP2320217A3 (en) * | 2009-11-09 | 2015-01-07 | Carl Zeiss NTS GmbH | SACP method and particle optical system for performing the method |
US20160118219A1 (en) * | 2014-10-28 | 2016-04-28 | Fei Company | Composite scan path in a charged particle microscope |
US10534115B1 (en) * | 2017-09-22 | 2020-01-14 | Facebook Technologies, Llc | Gray-tone electron-beam lithography |
US10976483B2 (en) | 2019-02-26 | 2021-04-13 | Facebook Technologies, Llc | Variable-etch-depth gratings |
US11220028B1 (en) | 2018-03-08 | 2022-01-11 | Facebook Technologies, Llc | Method of manufacture for thin, multi-bend optics by compression molding |
US11709422B2 (en) | 2020-09-17 | 2023-07-25 | Meta Platforms Technologies, Llc | Gray-tone lithography for precise control of grating etch depth |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52120686A (en) * | 1977-04-21 | 1977-10-11 | Jeol Ltd | Electronic ray exposure method |
JPS5543821A (en) * | 1978-09-22 | 1980-03-27 | Hitachi Ltd | Electronic drawing device |
JPS55138836A (en) * | 1979-04-16 | 1980-10-30 | Fujitsu Ltd | Electron beam exposure apparatus |
JPS586130A (en) * | 1981-07-03 | 1983-01-13 | Fujitsu Ltd | Correcting method for deflection of electron beam |
JPS5811960U (en) * | 1981-07-15 | 1983-01-25 | 株式会社三協精機製作所 | small motor |
JPS58154230A (en) * | 1982-03-10 | 1983-09-13 | Jeol Ltd | Method of electron beam exposure |
JPS58202529A (en) * | 1982-05-21 | 1983-11-25 | Toshiba Corp | Optical mirror cylinder for charged beam |
JPS59124719A (en) * | 1982-12-29 | 1984-07-18 | Fujitsu Ltd | Electron beam exposing apparatus |
JPS61192444U (en) * | 1986-05-01 | 1986-11-29 | ||
JPH0516355U (en) * | 1991-08-26 | 1993-03-02 | ハリソン電機株式会社 | Stamp pad |
JP2016027604A (en) * | 2014-06-24 | 2016-02-18 | 株式会社荏原製作所 | Surface processing apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3491236A (en) * | 1967-09-28 | 1970-01-20 | Gen Electric | Electron beam fabrication of microelectronic circuit patterns |
US3644700A (en) * | 1969-12-15 | 1972-02-22 | Ibm | Method and apparatus for controlling an electron beam |
US3699304A (en) * | 1969-12-15 | 1972-10-17 | Ibm | Electron beam deflection control method and apparatus |
US3749964A (en) * | 1969-12-25 | 1973-07-31 | Jeol Ltd | Electron beam device |
-
1973
- 1973-12-19 US US426393A patent/US3914608A/en not_active Expired - Lifetime
-
1974
- 1974-12-19 JP JP49145088A patent/JPS5223220B2/ja not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3491236A (en) * | 1967-09-28 | 1970-01-20 | Gen Electric | Electron beam fabrication of microelectronic circuit patterns |
US3644700A (en) * | 1969-12-15 | 1972-02-22 | Ibm | Method and apparatus for controlling an electron beam |
US3699304A (en) * | 1969-12-15 | 1972-10-17 | Ibm | Electron beam deflection control method and apparatus |
US3749964A (en) * | 1969-12-25 | 1973-07-31 | Jeol Ltd | Electron beam device |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4051381A (en) * | 1974-12-13 | 1977-09-27 | Thomson-Csf | Device for the programmed tracing of designs by particle bombardment |
US4095104A (en) * | 1975-09-01 | 1978-06-13 | U.S. Philips Corporation | Electron microscope |
US4136285A (en) * | 1975-10-17 | 1979-01-23 | Siemens Aktiengesellschaft | Method for irradiating a specimen by corpuscular-beam radiation |
US4145615A (en) * | 1976-07-30 | 1979-03-20 | Tokyo Shibaura Electric Co., Ltd. | Electron beam exposure apparatus |
US4153843A (en) * | 1977-03-23 | 1979-05-08 | Bell Telephone Laboratories, Incorporated | Multiple beam exposure system |
US4163155A (en) * | 1978-04-07 | 1979-07-31 | Bell Telephone Laboratories, Incorporated | Defining a low-density pattern in a photoresist with an electron beam exposure system |
US4334156A (en) * | 1978-08-29 | 1982-06-08 | International Business Machines Corporation | Method of shadow printing exposure |
WO1980002772A1 (en) * | 1979-06-08 | 1980-12-11 | Fujitsu Ltd | Electron beam projecting system |
EP0029857A1 (en) * | 1979-06-08 | 1981-06-10 | Fujitsu Limited | Electron beam projecting system |
EP0029857A4 (en) * | 1979-06-08 | 1981-11-11 | Fujitsu Ltd | Electron beam projecting system. |
DE2936911A1 (en) * | 1979-09-12 | 1981-04-02 | Siemens AG, 1000 Berlin und 8000 München | METHOD AND DEVICE FOR REGULATING A MAGNETIC DEFLECTION SYSTEM |
DE3825892A1 (en) * | 1987-07-30 | 1989-02-16 | Mitsubishi Electric Corp | ELECTRON BEAM DIRECT SIGNAL DEVICE |
US5721432A (en) * | 1994-01-28 | 1998-02-24 | Fujitsu Limited | Method of and system for charged particle beam exposure |
US5965895A (en) * | 1994-01-28 | 1999-10-12 | Fujitsu Limited | Method of providing changed particle beam exposure in which representative aligning marks on an object are detected to calculate an actual position to perform exposure |
US5530251A (en) * | 1994-12-21 | 1996-06-25 | International Business Machines Corporation | Inductively coupled dual-stage magnetic deflection yoke |
US5530252A (en) * | 1994-12-21 | 1996-06-25 | International Business Machines Corporation | Inductively coupled dual-stage magnetic deflection yoke |
DE19911372A1 (en) * | 1999-03-15 | 2000-09-28 | Pms Gmbh | Control of electrically charged particle beam with particle source and associated accelerator and downstream electromagnetic beam deflector |
US20070000048A1 (en) * | 2004-12-16 | 2007-01-04 | Davis David T | Pneumatic lift and method for transferring an invalid patient |
EP2320217A3 (en) * | 2009-11-09 | 2015-01-07 | Carl Zeiss NTS GmbH | SACP method and particle optical system for performing the method |
US9093246B2 (en) | 2009-11-09 | 2015-07-28 | Carl Zeiss Microscopy Gmbh | SACP method and particle optical system for performing the method |
US20160118219A1 (en) * | 2014-10-28 | 2016-04-28 | Fei Company | Composite scan path in a charged particle microscope |
EP3016130A1 (en) * | 2014-10-28 | 2016-05-04 | Fei Company | Composite scan path in a charged particle microscope |
US10002742B2 (en) * | 2014-10-28 | 2018-06-19 | Fei Company | Composite scan path in a charged particle microscope |
US10534115B1 (en) * | 2017-09-22 | 2020-01-14 | Facebook Technologies, Llc | Gray-tone electron-beam lithography |
US11220028B1 (en) | 2018-03-08 | 2022-01-11 | Facebook Technologies, Llc | Method of manufacture for thin, multi-bend optics by compression molding |
US10976483B2 (en) | 2019-02-26 | 2021-04-13 | Facebook Technologies, Llc | Variable-etch-depth gratings |
US11709422B2 (en) | 2020-09-17 | 2023-07-25 | Meta Platforms Technologies, Llc | Gray-tone lithography for precise control of grating etch depth |
Also Published As
Publication number | Publication date |
---|---|
JPS5223220B2 (en) | 1977-06-22 |
JPS5093571A (en) | 1975-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3914608A (en) | Rapid exposure of micropatterns with a scanning electron microscope | |
US3644700A (en) | Method and apparatus for controlling an electron beam | |
US3922546A (en) | Electron beam pattern generator | |
US3875416A (en) | Methods and apparatus for the production of semiconductor devices by electron-beam patterning and devices produced thereby | |
US4870286A (en) | Electron beam direct drawing device | |
US4117339A (en) | Double deflection electron beam generator for employment in the fabrication of semiconductor and other devices | |
US4937458A (en) | Electron beam lithography apparatus including a beam blanking device utilizing a reference comparator | |
JP3238487B2 (en) | Electron beam equipment | |
US4585943A (en) | Electron beam exposure apparatus | |
US4084095A (en) | Electron beam column generator for the fabrication of semiconductor devices | |
US3857041A (en) | Electron beam patterning system for use in production of semiconductor devices | |
EP0012765B1 (en) | Method of operating a raster-scan electron beam lithographic system | |
US3855023A (en) | Manufacture of masks | |
KR940008019B1 (en) | Charged-particle beam exposure method and apparatumanufacturing method of cmos s | |
Thomson et al. | The EBES4 electron‐beam column | |
Morosawa et al. | EB-X3: New electron-beam x-ray mask writer | |
JP2755129B2 (en) | Electron beam exposure apparatus and electron beam deflection method | |
US4835392A (en) | Ion-projection apparatus | |
JP2901246B2 (en) | Charged particle beam exposure system | |
US4424450A (en) | Hybrid moving stage and rastered electron beam lithography system employing approximate correction circuit | |
JPH06132205A (en) | Charged particle beam exposure device | |
Eidson | Solid state: Fast electron-beam lithography: High blanking speeds may make this new system a serious challenger in producing submicrometer ICs | |
JPH01295419A (en) | Method and apparatus for electron beam lithography | |
JP3101100B2 (en) | Electron beam exposure system | |
Cahen et al. | Automatic control of an electron beam pattern generator |