US3901184A - Pneumatic powder flow diverting device - Google Patents

Pneumatic powder flow diverting device Download PDF

Info

Publication number
US3901184A
US3901184A US491031A US49103174A US3901184A US 3901184 A US3901184 A US 3901184A US 491031 A US491031 A US 491031A US 49103174 A US49103174 A US 49103174A US 3901184 A US3901184 A US 3901184A
Authority
US
United States
Prior art keywords
powder
air
switching device
chamber
admixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US491031A
Inventor
Robert D Payne
James G Buck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Can Co Inc
Original Assignee
Continental Can Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Can Co Inc filed Critical Continental Can Co Inc
Priority to US491031A priority Critical patent/US3901184A/en
Priority to CA217,232A priority patent/CA1012588A/en
Priority to DE19752514411 priority patent/DE2514411A1/en
Priority to GB20228/75A priority patent/GB1513464A/en
Priority to JP50065190A priority patent/JPS5114941A/ja
Priority to FR7521017A priority patent/FR2279474A1/en
Application granted granted Critical
Publication of US3901184A publication Critical patent/US3901184A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1468Arrangements for supplying particulate material the means for supplying particulate material comprising a recirculation loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/03Discharge apparatus, e.g. electrostatic spray guns characterised by the use of gas, e.g. electrostatically assisted pneumatic spraying
    • B05B5/032Discharge apparatus, e.g. electrostatic spray guns characterised by the use of gas, e.g. electrostatically assisted pneumatic spraying for spraying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/16Arrangements for supplying liquids or other fluent material
    • B05B5/1683Arrangements for supplying liquids or other fluent material specially adapted for particulate materials

Definitions

  • This invention is directed to a pneumatic flow switching device particularly adapted for the electrostatic coating of tubular workpieces, particularly can bodies, and includes a generally cylindrical chamber, a conduit for peripherally delivering a fluidized admixture of powder and air into the chamber, means for peripherally exhausting the powder-air admixture from the chamber, means adjacent the conduit for directing air tangentially into the chamber whereby the powder-air admixture is directed toward the exhausting means, and means for pneumatically traversing the powder-air admixture generally axially of the chamber for the delivery to an article intended to be treated thereby.
  • Can bodies have the interior surfaces thereof coated with an enamel where the cans are intended to contain beverages or varieties of food products.
  • a thin coating of enamel is usually applied to the interior metal surface of the can by a roller coating process before it is shaped to form the can.
  • the enamel is usually scratched or otherwise subjected to minor damage which exposes small areas of the metal, rendering the interior can surface liable to corrosion by the contents thereof.
  • the damage affected to the interior enamel coating during can shaping is generally repaired by spraying the interior of the can with a coating of lacquer after fabrication and before attachment of an end thereto. This process is extremely wasteful of lacquer because not only is the lacquer sprayed on to the damaged areas but it is also sprayed on those areas which are undamaged and thus consequently do not require further coating.
  • the enamel coating and/or the lacquer is heated and until recent developments organic solvents were driven off by the heat creating undesirable atmospheric emissions which presently are becoming increasingly regulated by States as well as by the Federal Government.
  • the latter factor has increased the use of coatings without organic solvents for protective or decorative applications, and since the appearance on the market of the latter materials powder coatings have held a strong position among competitive technologies. Flame spraying, fluid bed and similar means have been used for at least twenty years to apply powders and other solventfree protective coatings.
  • electrostatic deposition technology was employed to stripe welded can bodies on a commercial basis and the success thereof has served as a basis for the development of electrostatic powder technology for coating the inside of beer and soft drink containers.
  • beer can bodies are entirely electrostatically coated in a single step to give a defect-free coating. Since the deposition occurs after the can body blanks are fabricated into cylindrical bodies subsequent scratching does not occur and again conventional lacquer coating operations are eliminated.
  • a powder gun pneumatically discharges an admixture of the electrically charged coating powder and air through the can body resulting in a very thin over-all coating.
  • the can bodies When operating on a commercial basis the can bodies must be rapidly moved into and out of the spray area and of prime concern is the powder flow to the powder gun which must be accurately controlled in order not to waste powder between cans.
  • a primary object of this invention is to provide a novel device for pneumatically switching the flow of the powder, the device including a cylindrical chamber, means for delivering a fluidized admixture of powder and air into the chamber, means for exhausting the powder-air admixture from the chamber, first means contiguous to the delivering means for pneumatically directing the powder-air admixture from the delivering means toward the exhausting means, and second means for pneumatically traversing the powder-air admixture during its movement between the delivering and exhausting means for directing the powder-air admixture primarily axially from the chamber toward an area at which an article is to be coated or otherwise effected by the powder portion of the powder-air admixture.
  • a further object of this invention is to provide a novel pneumatic flow switching device of the type immediately heretofore set forth wherein the first-mentioned directing means is a port opening generally tangentially into the cylindrical chamber whereby air directed into the chamber therethrough tends to propel the powderair admixture in a circular pattern within the chamber.
  • a further object of this invention is to provide a novel pneumatic flow switching device for activating the second directing means only when an article is at a position to be effected by the powder portion of the powder-air admixture.
  • yet another object of this invention is to provide a novel pneumatic flow switching device including means for supporting an article, preferably a tubular can body, adjacent the axial output of the chamber whereby the article will be coated by the powder of the powder-air admixture.
  • Still another object of this invention is to provide a novel pneumatic flow switching device of the type aforesaid wherein means are provided for charging the powder and/or article whereby the latter is electrostatically coated.
  • FIG. 1 is a perspective view of the pneumatic flow switching device of this invention, and illustrates powder-air delivery and exhaust port spaced peripherally with respect to a generally cylindrical chamber, an air input port disposed tangentially with respect to the delivery port, and an axially disposed air input port for propelling the normally circularly flowing powder-air admixture to and through a powder gun for subsequent deposition upon an associated article.
  • FIG. 2 is a fragmentary front elevational view looking from right-to-left in FIG. 1, and illustrates constructional details of the switching device including an annular discharge orifice for the powder-air admixture.
  • FIG. 3 is a cross-sectional view taken generally along the line 3-3 of FIG. 2, and illustrates details of the chamber construction and a venturi downstream of the axially disposed air inlet port.
  • FIG. 4 is a cross-sectional view taken generally along line 4-4 of FIG. 3, and illustrates details of the powder-air admixture flow when the axially disposed air inlet port is cut off from a pressurized air source during a non-coating cycle of the device.
  • the pneumatic flow switching device of this invention is generally designated by the reference numeral 10, and as is best illustrated in FIG. 1, the over-all construction includes a housing 11 defined by a pair of rectangular preferably transparent plates 12, 13 (FIG. 3) secured together by bolts 15 in a conventional manner.
  • the plates are centrally contoured to define a generally cylindrical or circular chamber 16 having a peripheral wall surface 17.
  • Means 18 in the form of a generally radially disposed port functions to deliver an admixture of powder and air into the chamber 16 at approximately the 12 oclock position thereof, as viewed in FIG. 4.
  • Means, generally designated by the reference numeral 20, in the form of another port is provided for exhausting the powder-air admixture from the chamber in a continuous fashion irrespective of whether or not an article is being coated at a station S (FIG. 3) or being transported to or removed therefrom, in the manner to be described more fully hereinafter.
  • Additional means 21 in the form of another port or conduit is dis posed such that air is directed generally tangentially into the chamber 16 at approximately the 12 oclock position and adjacent the port 18 resulting in the powder-air admixture traveling in a generally circular path augmented by the curvature of the surface 17 from the 12 oclock position of the chamber 16 to approximately the 7-8 oclock position at which it is exhausted through the port 20.
  • FIG. 1 Reference is made once again particularly to FIG. 1 in order to indicate the manner in which the switching device is part of a circulating system, generally designated by the reference numeral 25 which includes a source of pressurized air, such as a pump 26 coupled by a conduit 27 to a conventional switch 28.
  • the switch 28 is, in turn, coupled by a conduit 30 to a source 31 of powder, the particular nature of which will be described more fully hereinafter.
  • the air introduced into the powder source 31 through the conduit 32 maintains the powder-air admixture therein in a fluidized state in order that it might be pneumatically moved through the system 25 with its delivery into the interior of the chamber 16 being under the control of an adjustable valve 32 in a conduit 33 which is in turn coupled to the conduit or delivery port 18.
  • the air input port 21 is a conduit which is likewise coupled to the valve 28 whereas the exhaust port or conduit 20 is fed back to the powder source 31 for subsequent recirculation.
  • Fresh powder may be fed into the powder source or flu idized bed from any other area through a conduit 34.
  • the powder-air admixture from the source 31 follows a closed path defined by the conduit 33, the adjustable valve 32, the conduit 18, the interior of the chamber 16, and the conduit 20 augmented by air introduced into the chamber 16 through the conduit 21 with the bed 31 being maintained in a fluidized condition by air introduced thereinto through the conduit 30.
  • the normal generally circular path of travel of the powder-air admixture within the chamber 16 just described is interrupted in order to disrupt the flow path of the powder-air admixture within the chamber 16 and instead redirect the same axially outwardly therefrom.
  • the change in travel of the powder-air admixture is effected by a generally axially disposed nozzle or air inlet port 35 which projects through a bore 36 of the plate 12 into the chamber 16 and is positioned with a discharge opening 37 thereof closely adjacent an inlet end 38 of a venturi tube 40 having a leftwardly (as viewed in FIG. 3) converging tubular passage 41.
  • the venturi 40 has a reduced end 42 received within a bore 43 of the plate 13 and is held therewithin by a tubular flanged member 44 whose flange 45 is conventionally secured to the plate 13.
  • An end portion 46 of a powder nozzle or gun 47 is sandwiched and held captive between the venturi 40 and the tubular member 44 and terminates at its leftmost end in a circular opening 48.
  • Housed within the powder nozzle 47 is a conductive element 50 having a generally bell-shaped end 51 projecting beyond the circular opening 48 and having a maximum diameter as defined by a circular edge 52 slightly less than the circular opening 47 thereby defining a gener ally annular discharge area 53 between the bell 51, the projecting leftward end of the element 50, and the circular opening 48.
  • This configuration is designed to achieve a generally annular cloud-like flow of the powder-air admixture as it departs the orifice 48 for subsequent application to an article supported to the left as viewed in FIG. 3.
  • the normal flow of the powder-air admixture heretofore described is interrupted by operating the valve 28 such that air from the pump 26 is additionally directed through the nozzle or conduit into the chamber 16 and/or the inlet 38 of the passage 41 of the venturi tube 40. So long as sufficient air is emitted from the nozzle or jet 35 the powder-air admixture continuously delivered into the chamber 16 will be delivered by the powder gun 47 and particularly through the orifice toward and into the can body in the desired configuration as determined by the particular contour of the area generally designated at 53.
  • the particular use to which the device 11 is applicable is that of electrostatically coating in the single mode of operation.
  • the fundamental laws of electrostatics apply, namely, like charged bodies repel each and unlike charged bodies attract.
  • Applied first to the coating of a can body this can be interpreted to mean that if charged coating particles are introduced into the inside of the can body at the support S they will be attracted with an appreciable force to an oppositely charged can body.
  • FIG. 3 diagrammatically by simply illustrating the support S as part of an electrical system.
  • the charging of the powder may be readily effected by a conductor 54 conventionally connected to the element 50 which in turn is preferably insulated by, for example, an insulated spider from the powder nozzle 47.
  • the electrostatic forces are desirably sufficiently strong to hold the powder in place against the bare interior surface of the can body in order that the powder will not be displaced during transportation from the coating station to a final fusing station in an oven, an induction heat unit, or the like.
  • the end of the can body most remote from the powder gun 47 is preferably encircled by a hood connected to a vacuum source which is in turn connected to the powder source 31.
  • the conduit includes a vacuum source the conduit may simply be extended and coupled to the hood such that both the chamber 16 and the hood, as well as any can body thereat, are continuously under the efiect of the vacuum source to return excess powder to the source 31.
  • a pneumatic flow switching device comprising a generally cylindrical chamber, means delivering a fluidized admixture of powder and air into said chamber, means for exhausting the powder-air admixture from said chamber, first means contiguous said delivering means for pneumatically directing said powder-air admixture from said delivering means toward said exhausting means, and second means for pneumatically traversing said powder-air admixture during its move ment between said delivering and exhausting means for directing said powder-air admixture primarily axially from said chamber.
  • the pneumatic flow switching device as defined in claim 1 wherein said delivering means and said exhausting means are separated from each other by at least 5.
  • the pneumatic flow switching device as defined in claim 1 including venturi means into which said axially exhausted powder-air admixture is delivered by said second pneumatic means.
  • the pneumatic flow switching device as defined in claim 1 including means for supporting an article to be coated by the powder of said powder-air admixture adjacent the axial output thereof from said chamber.
  • the pneumatic flow switching device as defined in claim 1 including a source for said powder-air admixture, and means for returning said peripherally exhausted powder-air admixture to said powder-air source.
  • the pneumatic flow switching device as defined in claim 1 including means for supporting an article to be coated by the powder of said powder-air admixture adjacent the axial output thereof from said chamber, and means for charging the powder prior to reaching the article whereby the latter is electrostatically coated.
  • the pneumatic flow switching device as defined in claim 2 including venturi means into which said axially exhausted powder-air admixture is delivered by said second pneumatic means.
  • the pneumatic flow switching device as defined in claim 2 including means for supporting an article to be coated by the powder of said powder-air admixture adjacent the axial output thereof from said chamber, and means for charging the powder prior to reaching the article whereby the latter is electrostatically coated.
  • the pneumatic flow switching device as defined in claim 3 including venturi means into which said axially exhausted powder-air admixture is delivered by said second pneumatic means.
  • the pneumatic flow switching device as defined in claim 3 including means for supporting an article to be coated by the powder of said powder-air admixture adjacent the axial output thereof from said chamber, and means for charging the powder prior to reaching the article whereby the latter is electrostatically coated.
  • the pneumatic flow switching device as defined in claim 12 including a source of said powder-air admixture, and means for returning said peripherally exhausted powder-air admixture to said powder-air source.
  • the pneumatic flow switching device as defined in claim 12 including a source of said powder-air admixture, and means for returning said peripherally exhausted powder-air admixture to said powder-air SOUX'CC.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

This invention is directed to a pneumatic flow switching device particularly adapted for the electrostatic coating of tubular workpieces, particularly can bodies, and includes a generally cylindrical chamber, a conduit for peripherally delivering a fluidized admixture of powder and air into the chamber, means for peripherally exhausting the powder-air admixture from the chamber, means adjacent the conduit for directing air tangentially into the chamber whereby the powder-air admixture is directed toward the exhausting means, and means for pneumatically traversing the powder-air admixture generally axially of the chamber for the delivery to an article intended to be treated thereby.

Description

United States Patent Payne et al.
[451 Aug. 26, 1975 154] PNEUMATIC POWDER FLOW DIVERTING DEVICE [75] lnventors: Robert D. Payne, Countryside;
James G. Buck, Western Springs, both of 111.
[73] Assignee: Continental Can Company, lnc.,
New York, NY.
[22] Filed: July 23, 1974 [21] Appl No.: 491,031
[52] US. Cl. 118/629; 118/308; 118/312; 222/193; 239/15; 239/124 [51] Int. Cl. BOSB 5/02 [58] Field of Search 118/629, 627, 308, 312, 118/309; 222/193; 239/3, 15, 124, 125, 127
[56] References Cited UNITED STATES PATENTS 3,536,514 10/1970 La Favc et a1 118/629 3,570,275 3/1971 Weber ct a1. 239/101 3,696,780 10/1972 Fritzsche 1 18/312 Primary Examiner-Mervin Stein Assistant ExaminerDouglas Salser Attorney, Agent, or Firm-Diller, Brown, Ramik &
Wight 5 7 ABSTRACT This invention is directed to a pneumatic flow switching device particularly adapted for the electrostatic coating of tubular workpieces, particularly can bodies, and includes a generally cylindrical chamber, a conduit for peripherally delivering a fluidized admixture of powder and air into the chamber, means for peripherally exhausting the powder-air admixture from the chamber, means adjacent the conduit for directing air tangentially into the chamber whereby the powder-air admixture is directed toward the exhausting means, and means for pneumatically traversing the powder-air admixture generally axially of the chamber for the delivery to an article intended to be treated thereby.
17 Claims, 4 Drawing Figures PNEUMATIC POWDER FLOW DIVERTING DEVICE This invention relates to coating articles, and in particular, to electrostatically coating tubular articles such as can bodies or the like. I
Can bodies have the interior surfaces thereof coated with an enamel where the cans are intended to contain beverages or varieties of food products. A thin coating of enamel is usually applied to the interior metal surface of the can by a roller coating process before it is shaped to form the can. During the shaping operation the enamel is usually scratched or otherwise subjected to minor damage which exposes small areas of the metal, rendering the interior can surface liable to corrosion by the contents thereof. The damage affected to the interior enamel coating during can shaping is generally repaired by spraying the interior of the can with a coating of lacquer after fabrication and before attachment of an end thereto. This process is extremely wasteful of lacquer because not only is the lacquer sprayed on to the damaged areas but it is also sprayed on those areas which are undamaged and thus consequently do not require further coating.
The enamel coating and/or the lacquer is heated and until recent developments organic solvents were driven off by the heat creating undesirable atmospheric emissions which presently are becoming increasingly regulated by States as well as by the Federal Government. The latter factor has increased the use of coatings without organic solvents for protective or decorative applications, and since the appearance on the market of the latter materials powder coatings have held a strong position among competitive technologies. Flame spraying, fluid bed and similar means have been used for at least twenty years to apply powders and other solventfree protective coatings.
Approximately one-half dozen years ago electrostatic deposition technology was employed to stripe welded can bodies on a commercial basis and the success thereof has served as a basis for the development of electrostatic powder technology for coating the inside of beer and soft drink containers. The favorable economics associated with electrostatic coating, either full coat, full overcoat, and/or repair coat, is mainly due to lower material costs on a per can body basis, the reduction in air pollution control equipment and, in some instances, reduction of steps in earlier conventional processes (i.e., the elimination of the two coat system).
In the practice of what is termed the single mode operation beer can bodies are entirely electrostatically coated in a single step to give a defect-free coating. Since the deposition occurs after the can body blanks are fabricated into cylindrical bodies subsequent scratching does not occur and again conventional lacquer coating operations are eliminated.
In the single mode of operation a powder gun pneumatically discharges an admixture of the electrically charged coating powder and air through the can body resulting in a very thin over-all coating. When operating on a commercial basis the can bodies must be rapidly moved into and out of the spray area and of prime concern is the powder flow to the powder gun which must be accurately controlled in order not to waste powder between cans.
In keeping with the foregoing a primary object of this invention is to provide a novel device for pneumatically switching the flow of the powder, the device including a cylindrical chamber, means for delivering a fluidized admixture of powder and air into the chamber, means for exhausting the powder-air admixture from the chamber, first means contiguous to the delivering means for pneumatically directing the powder-air admixture from the delivering means toward the exhausting means, and second means for pneumatically traversing the powder-air admixture during its movement between the delivering and exhausting means for directing the powder-air admixture primarily axially from the chamber toward an area at which an article is to be coated or otherwise effected by the powder portion of the powder-air admixture.
A further object of this invention is to provide a novel pneumatic flow switching device of the type immediately heretofore set forth wherein the first-mentioned directing means is a port opening generally tangentially into the cylindrical chamber whereby air directed into the chamber therethrough tends to propel the powderair admixture in a circular pattern within the chamber.
A further object of this invention is to provide a novel pneumatic flow switching device for activating the second directing means only when an article is at a position to be effected by the powder portion of the powder-air admixture.
yet another object of this invention is to provide a novel pneumatic flow switching device including means for supporting an article, preferably a tubular can body, adjacent the axial output of the chamber whereby the article will be coated by the powder of the powder-air admixture.
Still another object of this invention is to provide a novel pneumatic flow switching device of the type aforesaid wherein means are provided for charging the powder and/or article whereby the latter is electrostatically coated.
With the above and other objects in view that will hereinafter appear the nature of the invention will be more clearly understood by reference to the following detailed description, the appended claimed subject matter, and the several views illustrated in the accompanying drawings.
IN THE DRAWINGS FIG. 1 is a perspective view of the pneumatic flow switching device of this invention, and illustrates powder-air delivery and exhaust port spaced peripherally with respect to a generally cylindrical chamber, an air input port disposed tangentially with respect to the delivery port, and an axially disposed air input port for propelling the normally circularly flowing powder-air admixture to and through a powder gun for subsequent deposition upon an associated article.
FIG. 2 is a fragmentary front elevational view looking from right-to-left in FIG. 1, and illustrates constructional details of the switching device including an annular discharge orifice for the powder-air admixture.
FIG. 3 is a cross-sectional view taken generally along the line 3-3 of FIG. 2, and illustrates details of the chamber construction and a venturi downstream of the axially disposed air inlet port.
FIG. 4 is a cross-sectional view taken generally along line 4-4 of FIG. 3, and illustrates details of the powder-air admixture flow when the axially disposed air inlet port is cut off from a pressurized air source during a non-coating cycle of the device.
The pneumatic flow switching device of this invention is generally designated by the reference numeral 10, and as is best illustrated in FIG. 1, the over-all construction includes a housing 11 defined by a pair of rectangular preferably transparent plates 12, 13 (FIG. 3) secured together by bolts 15 in a conventional manner. The plates are centrally contoured to define a generally cylindrical or circular chamber 16 having a peripheral wall surface 17. Means 18 in the form of a generally radially disposed port functions to deliver an admixture of powder and air into the chamber 16 at approximately the 12 oclock position thereof, as viewed in FIG. 4. Means, generally designated by the reference numeral 20, in the form of another port is provided for exhausting the powder-air admixture from the chamber in a continuous fashion irrespective of whether or not an article is being coated at a station S (FIG. 3) or being transported to or removed therefrom, in the manner to be described more fully hereinafter. Additional means 21 in the form of another port or conduit is dis posed such that air is directed generally tangentially into the chamber 16 at approximately the 12 oclock position and adjacent the port 18 resulting in the powder-air admixture traveling in a generally circular path augmented by the curvature of the surface 17 from the 12 oclock position of the chamber 16 to approximately the 7-8 oclock position at which it is exhausted through the port 20.
Reference is made once again particularly to FIG. 1 in order to indicate the manner in which the switching device is part of a circulating system, generally designated by the reference numeral 25 which includes a source of pressurized air, such as a pump 26 coupled by a conduit 27 to a conventional switch 28. The switch 28 is, in turn, coupled by a conduit 30 to a source 31 of powder, the particular nature of which will be described more fully hereinafter. The air introduced into the powder source 31 through the conduit 32 maintains the powder-air admixture therein in a fluidized state in order that it might be pneumatically moved through the system 25 with its delivery into the interior of the chamber 16 being under the control of an adjustable valve 32 in a conduit 33 which is in turn coupled to the conduit or delivery port 18.
By the same token the air input port 21 is a conduit which is likewise coupled to the valve 28 whereas the exhaust port or conduit 20 is fed back to the powder source 31 for subsequent recirculation. Fresh powder, as necessary, may be fed into the powder source or flu idized bed from any other area through a conduit 34. Thus, in the non-coating or non-application mode of operation the powder-air admixture from the source 31 follows a closed path defined by the conduit 33, the adjustable valve 32, the conduit 18, the interior of the chamber 16, and the conduit 20 augmented by air introduced into the chamber 16 through the conduit 21 with the bed 31 being maintained in a fluidized condition by air introduced thereinto through the conduit 30.
The normal generally circular path of travel of the powder-air admixture within the chamber 16 just described is interrupted in order to disrupt the flow path of the powder-air admixture within the chamber 16 and instead redirect the same axially outwardly therefrom. The change in travel of the powder-air admixture is effected by a generally axially disposed nozzle or air inlet port 35 which projects through a bore 36 of the plate 12 into the chamber 16 and is positioned with a discharge opening 37 thereof closely adjacent an inlet end 38 of a venturi tube 40 having a leftwardly (as viewed in FIG. 3) converging tubular passage 41. The venturi 40 has a reduced end 42 received within a bore 43 of the plate 13 and is held therewithin by a tubular flanged member 44 whose flange 45 is conventionally secured to the plate 13. An end portion 46 of a powder nozzle or gun 47 is sandwiched and held captive between the venturi 40 and the tubular member 44 and terminates at its leftmost end in a circular opening 48. Housed within the powder nozzle 47 is a conductive element 50 having a generally bell-shaped end 51 projecting beyond the circular opening 48 and having a maximum diameter as defined by a circular edge 52 slightly less than the circular opening 47 thereby defining a gener ally annular discharge area 53 between the bell 51, the projecting leftward end of the element 50, and the circular opening 48. This configuration is designed to achieve a generally annular cloud-like flow of the powder-air admixture as it departs the orifice 48 for subsequent application to an article supported to the left as viewed in FIG. 3.
Assuming that an article, such as an open-ended tubular can body, is supported to the left of the gun 47 as indicated by the reference numeral S, and preferably coaxial therewith, the normal flow of the powder-air admixture heretofore described is interrupted by operating the valve 28 such that air from the pump 26 is additionally directed through the nozzle or conduit into the chamber 16 and/or the inlet 38 of the passage 41 of the venturi tube 40. So long as sufficient air is emitted from the nozzle or jet 35 the powder-air admixture continuously delivered into the chamber 16 will be delivered by the powder gun 47 and particularly through the orifice toward and into the can body in the desired configuration as determined by the particular contour of the area generally designated at 53. It is emphasized that during the redirection of the powder-air admixture from its normal path (generally circular) to a path axial thereto there need be no stoppage of the flow of air to the source 31 through the conduit 30 nor air into the chamber 16 through the conduit 21. The effect of air issuing from the jet 35 simply redirects the powder-air admixture along an axial path to perform the desired coating operation, and upon the termination of air flow to the jet 35 by appropriately operating the switch 28 the normal path is reestablished and the powder-air admixture resumes flow from the chamber through the conduit 20 to the source 31 with the latter being augmented by an exhaust pump (not shown) in the line 20.
As was stated earlier the particular use to which the device 11 is applicable is that of electrostatically coating in the single mode of operation. In this mode of operation and variations thereof the fundamental laws of electrostatics apply, namely, like charged bodies repel each and unlike charged bodies attract. Applied first to the coating of a can body this can be interpreted to mean that if charged coating particles are introduced into the inside of the can body at the support S they will be attracted with an appreciable force to an oppositely charged can body. Inasmuch as no particular can body and/or powder charging system forms part of this invention, that for the can body is indicated in FIG. 3 diagrammatically by simply illustrating the support S as part of an electrical system. Insofar as the charging of the powder is concerned, this may be readily effected by a conductor 54 conventionally connected to the element 50 which in turn is preferably insulated by, for example, an insulated spider from the powder nozzle 47. Irrespective of the particular charging system employed the electrostatic forces are desirably sufficiently strong to hold the powder in place against the bare interior surface of the can body in order that the powder will not be displaced during transportation from the coating station to a final fusing station in an oven, an induction heat unit, or the like.
It is further appreciated that all powder directed into the can body by the powder gun 47 will not be attracted to the can body interior by electrostatic forces and the exodus of excess powder therefrom would be costly if simply wasted. Accordingly, the end of the can body most remote from the powder gun 47 is preferably encircled by a hood connected to a vacuum source which is in turn connected to the powder source 31. If as described earlier the conduit includes a vacuum source the conduit may simply be extended and coupled to the hood such that both the chamber 16 and the hood, as well as any can body thereat, are continuously under the efiect of the vacuum source to return excess powder to the source 31.
The following are merely typical examples of the type of powders which may be utilized in accordance with the present invention:
While preferred forms and arrangement of parts have been shown in illustrating the invention, it is to be clearly understood that various changes in details and arrangement of parts may be made without departing from the scope and spirit of this disclosure.
We claim:
1. A pneumatic flow switching device comprising a generally cylindrical chamber, means delivering a fluidized admixture of powder and air into said chamber, means for exhausting the powder-air admixture from said chamber, first means contiguous said delivering means for pneumatically directing said powder-air admixture from said delivering means toward said exhausting means, and second means for pneumatically traversing said powder-air admixture during its move ment between said delivering and exhausting means for directing said powder-air admixture primarily axially from said chamber.
2. The pneumatic flow switching device as defined in claim 1 wherein said first delivering means introduces air into said chamber in a generally tangential direction relative to said cylindrical chamber.
3. The pneumatic flow switching device as defined in claim 1 wherein said exhausting means exhausts the powder-air admixture in a generally tangential direction relative to said cylindrical chamber.
4. The pneumatic flow switching device as defined in claim 1 wherein said delivering means and said exhausting means are separated from each other by at least 5. The pneumatic flow switching device as defined in claim 1 including venturi means into which said axially exhausted powder-air admixture is delivered by said second pneumatic means.
6. The pneumatic flow switching device as defined in claim 1 including means for supporting an article to be coated by the powder of said powder-air admixture adjacent the axial output thereof from said chamber.
7. The pneumatic flow switching device as defined in claim 1 including a source for said powder-air admixture, and means for returning said peripherally exhausted powder-air admixture to said powder-air source.
8. The pneumatic flow switching device as defined in claim 1 including means for supporting an article to be coated by the powder of said powder-air admixture adjacent the axial output thereof from said chamber, and means for charging the powder prior to reaching the article whereby the latter is electrostatically coated.
9. The pneumatic flow switching device as defined in claim 2 wherein said exhausting means exhausts the powder-air admixture in a generally tangential direction relative to said cylindrical chamber.
10. The pneumatic flow switching device as defined in claim 2 wherein said delivering means and said exhausting means are separated from each other by at least 90.
11. The pneumatic flow switching device as defined in claim 2 including venturi means into which said axially exhausted powder-air admixture is delivered by said second pneumatic means.
12. The pneumatic flow switching device as defined in claim 2 including means for supporting an article to be coated by the powder of said powder-air admixture adjacent the axial output thereof from said chamber, and means for charging the powder prior to reaching the article whereby the latter is electrostatically coated.
13. The pneumatic flow switching device as defined in claim 3 wherein said delivering means and said exhausting means are separated from each other by at least 90.
14. The pneumatic flow switching device as defined in claim 3 including venturi means into which said axially exhausted powder-air admixture is delivered by said second pneumatic means.
15. The pneumatic flow switching device as defined in claim 3 including means for supporting an article to be coated by the powder of said powder-air admixture adjacent the axial output thereof from said chamber, and means for charging the powder prior to reaching the article whereby the latter is electrostatically coated.
16. The pneumatic flow switching device as defined in claim 12 including a source of said powder-air admixture, and means for returning said peripherally exhausted powder-air admixture to said powder-air source.
17. The pneumatic flow switching device as defined in claim 12 including a source of said powder-air admixture, and means for returning said peripherally exhausted powder-air admixture to said powder-air SOUX'CC.

Claims (17)

1. A pneumatic flow switching device comprising a generally cylindrical chamber, means delivering a fluidized admixture of powder and air into said chamber, means for exhausting the powder-air admixture from said chamber, first means contiguous said delivering means for pneumatically directing said powder-air admixture from said delivering means toward said exhausting means, and second means for pneumatically traversing said powderair admixture during its movement between said delivering and exhausting means for directing said powder-air admixture primarily axially from said chamber.
2. The pneumatic flow switching device as defined in claim 1 wherein said first delivering means introduces air into said chamber in a generally tangential direction relative to said cylindrical chamber.
3. The pneumatic flow switching device as defined in claim 1 wherein said exhausting means exhausts the powder-air admixture in a generally tangential direction relative to said cylindrical chamber.
4. The pneumatic flow switching device as defined in claim 1 wherein said delivering means and said exhausting means are separated from each other by at least 90*.
5. The pneumatic flow switching device as defined in claim 1 including venturi means into which said axially exhausted powder-air admixture is delivered by said second pneumatic means.
6. The pneumatic flow switching device as defined in claim 1 including means for supporting an article to be coated by the powder of said powder-air admixture adjacent the axial output thereof from said chamber.
7. The pneumatic flow switching device as defined in claim 1 including a source for said powder-air admixture, and means for returning said peripherally exhausted powder-air admixture to said powder-air source.
8. The pneumatic flow switching device as defined in claim 1 including means for supporting an article to be coated by the powder of said powder-air admixture adjacent the axial output thereof from said chamber, and means for charging the powder prior to reaching the article whereby the latter is electrostatically coated.
9. The pneumatic flow switching device as defined in claim 2 wherein said exhausting means exhausts the powder-air admixture in a generally tangential direction relative to said cylindrical chamber.
10. The pneumatic flow switching device as defined in claim 2 wherein said delivering means and said exhausting means are separated from each other by at least 90*.
11. The pneumatic flow switching device as defined in claim 2 including venturi means into which said axially exhausted powder-air admixture is delivered by said second pneumatic means.
12. The pneumatic flow switching device as defined in claim 2 including means for supporting an article to be coated by the powder Of said powder-air admixture adjacent the axial output thereof from said chamber, and means for charging the powder prior to reaching the article whereby the latter is electrostatically coated.
13. The pneumatic flow switching device as defined in claim 3 wherein said delivering means and said exhausting means are separated from each other by at least 90*.
14. The pneumatic flow switching device as defined in claim 3 including venturi means into which said axially exhausted powder-air admixture is delivered by said second pneumatic means.
15. The pneumatic flow switching device as defined in claim 3 including means for supporting an article to be coated by the powder of said powder-air admixture adjacent the axial output thereof from said chamber, and means for charging the powder prior to reaching the article whereby the latter is electrostatically coated.
16. The pneumatic flow switching device as defined in claim 112 including a source of said powder-air admixture, and means for returning said peripherally exhausted powder-air admixture to said powder-air source.
17. The pneumatic flow switching device as defined in claim 12 including a source of said powder-air admixture, and means for returning said peripherally exhausted powder-air admixture to said powder-air source.
US491031A 1974-07-23 1974-07-23 Pneumatic powder flow diverting device Expired - Lifetime US3901184A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US491031A US3901184A (en) 1974-07-23 1974-07-23 Pneumatic powder flow diverting device
CA217,232A CA1012588A (en) 1974-07-23 1974-12-31 Pneumatic powder flow diverting device
DE19752514411 DE2514411A1 (en) 1974-07-23 1975-04-02 DEVICE FOR SWITCHING A PNEUMATIC FLOW
GB20228/75A GB1513464A (en) 1974-07-23 1975-05-14 Electrostatic powder coating device
JP50065190A JPS5114941A (en) 1974-07-23 1975-05-30
FR7521017A FR2279474A1 (en) 1974-07-23 1975-07-04 PNEUMATIC DEVICE FOR SWITCHING A POWDER CURRENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US491031A US3901184A (en) 1974-07-23 1974-07-23 Pneumatic powder flow diverting device

Publications (1)

Publication Number Publication Date
US3901184A true US3901184A (en) 1975-08-26

Family

ID=23950519

Family Applications (1)

Application Number Title Priority Date Filing Date
US491031A Expired - Lifetime US3901184A (en) 1974-07-23 1974-07-23 Pneumatic powder flow diverting device

Country Status (6)

Country Link
US (1) US3901184A (en)
JP (1) JPS5114941A (en)
CA (1) CA1012588A (en)
DE (1) DE2514411A1 (en)
FR (1) FR2279474A1 (en)
GB (1) GB1513464A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995586A (en) * 1976-01-21 1976-12-07 W. R. Grace & Co. Coating apparatus
US4072129A (en) * 1976-04-27 1978-02-07 National Research Development Corporation Electrostatic powder deposition
US4109824A (en) * 1976-09-01 1978-08-29 General Mills, Inc. Precision seeder and method
US4109861A (en) * 1976-09-16 1978-08-29 Solar Suede Corporation Electrostatic flocking system
FR2399875A1 (en) * 1977-08-09 1979-03-09 Continental Group MECHANICAL DEVICE FOR DIRECTING A POWDER FLOW, IN PARTICULAR FOR OBJECT COATING DEVICES
US4158071A (en) * 1977-09-09 1979-06-12 The Continental Group, Inc. Method and apparatus for power coating of three-piece cans
US4167008A (en) * 1976-09-23 1979-09-04 Calspan Corporation Fluid bed chaff dispenser
US4170074A (en) * 1976-12-06 1979-10-09 Owens-Illinois, Inc. Powder dryer including fluidized bed aspirator
FR2441434A1 (en) * 1978-11-14 1980-06-13 Gema Ag PNEUMATIC PROCESS AND DEVICE FOR SPRAYING DIVIDED PRODUCTS IN PULVERULENT OR EVEN GRANULAR FORM
FR2447230A1 (en) * 1979-01-25 1980-08-22 Europ Equip Menager Electrostatic projection of abrasive powder - requires compressed air to project powder via electrodes around venturi
US4237817A (en) * 1979-03-23 1980-12-09 Commercial Resins Company Apparatus for spraying powder circumferentially around a pipe joint
US4288466A (en) * 1978-07-12 1981-09-08 Owens-Illinois, Inc. Power preconditioning for electrostatic application
US4289807A (en) * 1980-03-03 1981-09-15 The Dow Chemical Company Fusion processing of synthetic thermoplastic resinous materials
FR2484290A2 (en) * 1979-01-25 1981-12-18 Europ Equip Menager Electrostatic spraying hand gun - uses venturi pump to raise powder and coaxial nozzle to accelerate powder through charged exit ring
US4500038A (en) * 1982-11-01 1985-02-19 Avco Corporation Powder feed system with recirculator for plasma spray apparatus
US4548363A (en) * 1983-09-06 1985-10-22 Pcf Group, Inc. Muzzle for electrostatic spray gun
US4770344A (en) * 1986-12-08 1988-09-13 Nordson Corporation Powder spraying system
US4816296A (en) * 1977-12-20 1989-03-28 Gibson Jack Edward Tangential jet air pipe coating apparatus and method
USRE32921E (en) * 1976-07-13 1989-05-09 GCB, Inc. Method of powder coating the inside of pipes with a continuous film of plastic material
US4987001A (en) * 1989-02-09 1991-01-22 Nordson Corporation Method and apparatus for coating the interior surface of hollow, tubular articles
US5000978A (en) * 1989-06-29 1991-03-19 The Procter & Gamble Company Electrostatic coating of detergent granules
US5474609A (en) * 1992-06-30 1995-12-12 Nordson Corporation Methods and apparatus for applying powder to workpieces
US5482214A (en) * 1991-12-17 1996-01-09 Wagner International Ag Electrostatic powder-coating gun
US5505566A (en) * 1992-01-22 1996-04-09 Wagner International Ag Powder injector
US5520735A (en) * 1992-06-30 1996-05-28 Nordson Corporation Nozzle assembly and system for applying powder to a workpiece
EP0791400A1 (en) * 1996-02-21 1997-08-27 Elpatronic Ag Process and apparatus for coating an object
US6578772B2 (en) * 2000-03-27 2003-06-17 Tokyo Electron Limited Treatment solution supply apparatus and treatment solution supply method
US20050118110A1 (en) * 2003-11-29 2005-06-02 Samsung Electronics Co., Ltd. Apparatus and method for stabilizing concentration of aerosol
US9027506B2 (en) 2011-05-02 2015-05-12 Nordson Corporation Dense phase powder coating system for containers
US20170106382A1 (en) * 2014-03-25 2017-04-20 Honda Motor Co., Ltd. Electrostatic coating device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555610U (en) * 1978-06-24 1980-01-14
ES8200571A1 (en) * 1980-01-04 1981-12-01 Icab Ind Coating Ab Arrangement in connection with nozzles of powder sprayers or for disintegration and distribution of solid particles in powder form in a gas stream
JPS63156690U (en) * 1987-03-31 1988-10-14
DE3933745A1 (en) * 1989-10-10 1991-04-11 Hestermann Gerhard Electrostatic powder coating device - uses suction hood combined with spray head, removing excess powder for recycling
GB9203460D0 (en) * 1992-02-19 1992-04-08 Atomic Energy Authority Uk Fluidic powder flow control device
US6053420A (en) * 1996-04-10 2000-04-25 Abb Research Ltd. Dispersion apparatus and process for producing a large cloud of an electrostatically charged powder/air mixture
DE19614192A1 (en) * 1996-04-10 1997-10-16 Abb Research Ltd Dispersing system for a powder spraying device
CN111672648B (en) * 2020-06-23 2021-04-23 萧县华恒静电科技有限公司 Electrostatic powder spraying mechanism for architectural decoration steel plate and working method of electrostatic powder spraying mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536514A (en) * 1963-06-13 1970-10-27 Ransburg Electro Coating Corp Electrostatic coating method
US3570275A (en) * 1965-02-08 1971-03-16 Halbmond Teppiche Veb Apparatus for the continuous dyeing of textile webs and the like
US3696780A (en) * 1969-11-25 1972-10-10 Gen Electric Apparatus for applying powered coating material to an article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536514A (en) * 1963-06-13 1970-10-27 Ransburg Electro Coating Corp Electrostatic coating method
US3570275A (en) * 1965-02-08 1971-03-16 Halbmond Teppiche Veb Apparatus for the continuous dyeing of textile webs and the like
US3696780A (en) * 1969-11-25 1972-10-10 Gen Electric Apparatus for applying powered coating material to an article

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025660A (en) * 1976-01-21 1977-05-24 W. R. Grace & Co. Method of masking, venting and coating the inside of a receptacle
US3995586A (en) * 1976-01-21 1976-12-07 W. R. Grace & Co. Coating apparatus
US4072129A (en) * 1976-04-27 1978-02-07 National Research Development Corporation Electrostatic powder deposition
USRE32921E (en) * 1976-07-13 1989-05-09 GCB, Inc. Method of powder coating the inside of pipes with a continuous film of plastic material
US4109824A (en) * 1976-09-01 1978-08-29 General Mills, Inc. Precision seeder and method
US4109861A (en) * 1976-09-16 1978-08-29 Solar Suede Corporation Electrostatic flocking system
US4167008A (en) * 1976-09-23 1979-09-04 Calspan Corporation Fluid bed chaff dispenser
US4170074A (en) * 1976-12-06 1979-10-09 Owens-Illinois, Inc. Powder dryer including fluidized bed aspirator
FR2399875A1 (en) * 1977-08-09 1979-03-09 Continental Group MECHANICAL DEVICE FOR DIRECTING A POWDER FLOW, IN PARTICULAR FOR OBJECT COATING DEVICES
US4158071A (en) * 1977-09-09 1979-06-12 The Continental Group, Inc. Method and apparatus for power coating of three-piece cans
US4816296A (en) * 1977-12-20 1989-03-28 Gibson Jack Edward Tangential jet air pipe coating apparatus and method
US4288466A (en) * 1978-07-12 1981-09-08 Owens-Illinois, Inc. Power preconditioning for electrostatic application
US4314669A (en) * 1978-11-14 1982-02-09 Gema Ag Method for spraying powdered to granular bulk material
FR2441434A1 (en) * 1978-11-14 1980-06-13 Gema Ag PNEUMATIC PROCESS AND DEVICE FOR SPRAYING DIVIDED PRODUCTS IN PULVERULENT OR EVEN GRANULAR FORM
FR2484290A2 (en) * 1979-01-25 1981-12-18 Europ Equip Menager Electrostatic spraying hand gun - uses venturi pump to raise powder and coaxial nozzle to accelerate powder through charged exit ring
FR2447230A1 (en) * 1979-01-25 1980-08-22 Europ Equip Menager Electrostatic projection of abrasive powder - requires compressed air to project powder via electrodes around venturi
US4237817A (en) * 1979-03-23 1980-12-09 Commercial Resins Company Apparatus for spraying powder circumferentially around a pipe joint
US4289807A (en) * 1980-03-03 1981-09-15 The Dow Chemical Company Fusion processing of synthetic thermoplastic resinous materials
US4500038A (en) * 1982-11-01 1985-02-19 Avco Corporation Powder feed system with recirculator for plasma spray apparatus
US4548363A (en) * 1983-09-06 1985-10-22 Pcf Group, Inc. Muzzle for electrostatic spray gun
US4770344A (en) * 1986-12-08 1988-09-13 Nordson Corporation Powder spraying system
US4987001A (en) * 1989-02-09 1991-01-22 Nordson Corporation Method and apparatus for coating the interior surface of hollow, tubular articles
US5173325A (en) * 1989-02-09 1992-12-22 Nordson Corporation Method and apparatus for coating articles
US5000978A (en) * 1989-06-29 1991-03-19 The Procter & Gamble Company Electrostatic coating of detergent granules
US5482214A (en) * 1991-12-17 1996-01-09 Wagner International Ag Electrostatic powder-coating gun
US5505566A (en) * 1992-01-22 1996-04-09 Wagner International Ag Powder injector
US5474609A (en) * 1992-06-30 1995-12-12 Nordson Corporation Methods and apparatus for applying powder to workpieces
US5520735A (en) * 1992-06-30 1996-05-28 Nordson Corporation Nozzle assembly and system for applying powder to a workpiece
US5612096A (en) * 1992-06-30 1997-03-18 Nordson Corporation Methods and apparatus for applying powder to workpieces
EP0791400A1 (en) * 1996-02-21 1997-08-27 Elpatronic Ag Process and apparatus for coating an object
US5863600A (en) * 1996-02-21 1999-01-26 Elpatronic Ag Method and apparatus for uniformly applying a coating to a can body
US6578772B2 (en) * 2000-03-27 2003-06-17 Tokyo Electron Limited Treatment solution supply apparatus and treatment solution supply method
US20050118110A1 (en) * 2003-11-29 2005-06-02 Samsung Electronics Co., Ltd. Apparatus and method for stabilizing concentration of aerosol
US7814933B2 (en) * 2003-11-29 2010-10-19 Samsung Electronics Co., Ltd. Apparatus and method for stabilizing concentration of aerosol
US9027506B2 (en) 2011-05-02 2015-05-12 Nordson Corporation Dense phase powder coating system for containers
US20170106382A1 (en) * 2014-03-25 2017-04-20 Honda Motor Co., Ltd. Electrostatic coating device
US10441961B2 (en) * 2014-03-25 2019-10-15 Honda Motor Co., Ltd. Electrostatic coating device

Also Published As

Publication number Publication date
CA1012588A (en) 1977-06-21
JPS5114941A (en) 1976-02-05
GB1513464A (en) 1978-06-07
DE2514411A1 (en) 1976-02-05
FR2279474A1 (en) 1976-02-20

Similar Documents

Publication Publication Date Title
US3901184A (en) Pneumatic powder flow diverting device
US3311085A (en) Apparatus for coating objects
EP0059045B1 (en) Electrostatic powder spray gun nozzle
US3873024A (en) Apparatus for spraying a plurality of different powders
US3843054A (en) Powder apparatus
US5711489A (en) Electrostatic powder coating method and apparatus
US2438471A (en) Spraying apparatus
US4761299A (en) Method and apparatus for electrostatic spray coating
US4098226A (en) Powder-coating apparatus
US3521815A (en) Guns for the electrostatic spray coating of objects with a powder
GB1422262A (en) Apparatus for coating articles with plastics material powder
US3913523A (en) Powder coating apparatus
US3900000A (en) Apparatus for spray coating articles
US3635400A (en) Paint spraying method and apparatus
US4069974A (en) Electrostatic powder coating apparatus
US5156880A (en) Space charge electrostatic coating method and apparatus
US5061510A (en) Process for reducing environmental influences on the powder coating of a workpiece, and powder coating facility
US4343436A (en) Method and apparatus for the spray-coating of the inside of tubular bodies having a seam
US3405679A (en) Spray unit for use with arcuate conveyor paths
GB1054921A (en)
US3692241A (en) Spray apparatus with atomization device
US4729513A (en) Lance extension venturi sleeve
US3049092A (en) Apparatus for the electrostatic coating of articles
KR102062794B1 (en) System for painting metal product
US4660772A (en) Electrostatic powder spray gun nozzle