US3840413A - Method of manufacturing a cut pile fabric - Google Patents

Method of manufacturing a cut pile fabric Download PDF

Info

Publication number
US3840413A
US3840413A US00221301A US22130172A US3840413A US 3840413 A US3840413 A US 3840413A US 00221301 A US00221301 A US 00221301A US 22130172 A US22130172 A US 22130172A US 3840413 A US3840413 A US 3840413A
Authority
US
United States
Prior art keywords
yarn
color
adhesive
supply
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00221301A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00221301A priority Critical patent/US3840413A/en
Priority to BE145880A priority patent/BE816852A/en
Application granted granted Critical
Publication of US3840413A publication Critical patent/US3840413A/en
Priority to US05/790,254 priority patent/US4087311A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H11/00Non-woven pile fabrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1075Prior to assembly of plural laminae from single stock and assembling to each other or to additional lamina
    • Y10T156/1077Applying plural cut laminae to single face of additional lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
    • Y10T156/109Embedding of laminae within face of additional laminae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/12Surface bonding means and/or assembly means with cutting, punching, piercing, severing or tearing
    • Y10T156/125Plural severing means each acting on a different work piece
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/12Surface bonding means and/or assembly means with cutting, punching, piercing, severing or tearing
    • Y10T156/1317Means feeding plural workpieces to be joined
    • Y10T156/1322Severing before bonding or assembling of parts
    • Y10T156/133Delivering cut part to indefinite or running length web
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1702For plural parts or plural areas of single part
    • Y10T156/1712Indefinite or running length work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1702For plural parts or plural areas of single part
    • Y10T156/1712Indefinite or running length work
    • Y10T156/1734Means bringing articles into association with web

Definitions

  • PATENTEDUCT 81974 sum ans 3 FIG-"l6- METHOD OF MANUFACTURING A CUT PILE FABRIC a bonded, cut pile carpet by a machine and process which has colored yarn patterning capability.
  • FIGS. 1-5 represent schematically the basic concept of the invention
  • FIG. 6 is a partial view of the yarn collector and distributor cylinder
  • FIGS. 7 and 8 are schematic representations of two forms of the individual discs used in the yarn collector and distributor cylinder
  • FIGS. 9-11 are blown-up views of the yarn collector and distributor cylinder to show the yarn ejection cycle
  • FIGS. 12 and 13 show an alternative method of ejecting the yarn into the adhesive surface
  • FIGS. 14-16 show various forms of the adhesive surface and; i
  • FIG. 17 illustrates one type of yarn feed device.
  • the yarn collector and distributor cylinder consists of-a plurality of discs 12 which have a plurality of radial openings therein to accommodate bits of yarn 16 and 18 cut off from the respective yarn supplies 20 and 21.
  • the discs are secured together in any suitable manner to provide an elongated right circular cylinder which is mounted on a horizontal axis to supply bits of yarn l6 and 18 in a substantially perpendicular direction into the adhesive surface 30.
  • the adhesive surface 30 can be applied to a backing material or, depending on the adhesive, can be applied directly to the conveying surface 32.
  • the particular adhesive could be liquid at the point of yarn insertion requiring heat or time to become a permanent bonding vehicle or could be a hot melt requiring only cooling.
  • the adhesive surface 30 can be planar at the point of yarn insertion as shown in FIGS. 14 and 16 or can be curved at the point of insertion as shown in FIGS. 1-6 and 15.
  • FIG. 17 a typical yarn feed is illustrated in that-air is aspirated into the needle 34 to suck the yarn 20 into the radial opening 22 until it bottoms on the bottom 36 of the opening.
  • the passage 38 can-be vented to atmosphere to allow the yarn to be more readily fed into the opening22.
  • the length of the yarn 20 to be cut is determined by the depth of the opening 22 but other devices, such as a solenoid controlled stepping motor, can be used to deliver a desired length of yarn into the opening 22. As shown in FIGS.
  • the yarn bits are cut from the yarn supplies 20 and 21 by a fixed knife blade 40, or other suitable means such as a shear, band knife or sickle bar cutter, located adjacent the yarn supply so that it engages the yarn as the yarn distributor rotates to sever the bits from the yarn supply.
  • a fixed knife blade 40 or other suitable means such as a shear, band knife or sickle bar cutter, located adjacent the yarn supply so that it engages the yarn as the yarn distributor rotates to sever the bits from the yarn supply.
  • FIGS. 9-11 show the preferred yarn release and bit inserter device and FIGS. 12 and 13 show an alternative device.
  • the passage 38 is vented toatmosphere and air is aspirated into the needle 42 through opening 44 to insert the yarn bit 16 into the adhesive layer 30.
  • the conveying surface 32 is moved downward (FIG. 10) so that the yarn bit 16 clears the bottom of the needle 42.
  • the conveying surface is moved downstream from the needle and upward for receipt of another'row of yarn bits if the row of yarn is complete with the proper colors.
  • the cylinder 12 has rotated counterclockwise to place another radial opening, such as 28, into communication withthe hollow needle 42.
  • FIGS. Hand 13 illustrate another type of yarn inserter which may be employed to implant yarn bits 16 into the adhesive layer 30.
  • the yarn inserter of FIGS. 12 and 13 is a mechanical type which uses a plunger 45 and plunger rod 46 to mechanically push the yarn bit 16 into the adhesive surface 30.
  • the plunger 46 can be actuated by any suitable means such as a cam, solenoid, etc.
  • FIGS. l-5 represent schematically the operation of one disc of one cylinder 10.
  • the control of the yarn into and out of the radial opening, as well as the rotation of the cylinder 10, is automatic and preselected to provide the desired effect in the finished product.
  • N represents the number of yarn colors required
  • the discs 12 will have 2N openings thereinas indicated by the openings 22, 24, 26 and 28 since a two color yarn effect is desired.
  • the number of openings in the disc 12 for any N is such that therewill be N openings in a position to be fed yarn, Nl openings empty or idle and one opening in a position to release yarn into the adhesive layer.
  • each indexing rotation of the cylinder 10 is rr/N radians.
  • the maximum numberof indexes necessary for a given yarn color to become available at the release station at a given place in the pattern also will be N.
  • the cylinder 10 will be rotated or indexed N times before the backing 32 is moved to make another row in the carpet.
  • one color yarn is supplied only to openings 22 and 26 while the other color yarn is supplied to openings 24 and 28.
  • one color yarn 20 is being supplied to opening 22 while another color yarn 21 is being supplied to the opening 24.
  • yarn bit 16 which has been cut from the yarn supply 20 is being released into the adhesive layer 30.
  • the conveying surface 32 is moved downward so that'the yarn bit 16 clears the needle 42 and the cylinder 10 starts to rotate to the position shown in FIG. 3.
  • yarnbits l6 and 18 will be severed from their respective yarn supplies 20 and 21 by the knives 40 appropriately located in the path of travel of cuted to one index per row.
  • a method of manufacturing a cut, pile fabric comprising the steps of: providing a supply of yarn having a first color, providing a supply of yarn of a second color at an angle to the supply of yarn having a first color, inserting yarn of said first color and said second color into a rotably mounted member, severing the inserted yarn from said yarn supplies, providing an adhesive adjacent said rotably mounted member, rotating said rotably mounted member and inserting said severed first color yarns into said adhesive at a predetermined time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Carpets (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

A machine and process with colored yarn patterning capability to produce a bonded, cut pile carpet. A series of hollow needle bars are used to supply yarn to a rotary carrier which carries the individual cut fibers into a position where they are selectively ejected into the surface of an adhesive material.

Description

United States Patent 11 1 1111 3,840,413 Bylund 1451 0a. 8,1974
[54] METHOD OF MANUFACTURING A CUT 3,477,889 11/1969 Purtensky 15(1/72 PILE FABRIC 3.531.343 9/1970 Couquct. 156/72 3.565 7l() 2/1971 Garvin 1 1 .1 156/72 [76] In nt n y u 304 Beechwood 3,580,761 5/1971 Boultinghouse 156/72 Dr., Spartanburg, SC. 29302 Primarv ExaminerCharles E. Van Horn 22 F] d. .27, 1972 1 1e Jan Ass/slant brammerTht 1mus E. Bokzm [21] Appl. No 221,301 Attorney Agent, or Firm-Earle R. Marden; H.
William Petry [52] U.S. Cl 156/72, 156/265, 156/298 51 Int. c1..... B32b 31/00, B3211 5/02. D05c 17/02 1571 ABSTRACT [58] Field of Search 156/298, 72, 265, 256, A machine and process with colored yarn patterning 156/303, 63, 242, 246 capability to produce a bonded, cut pile carpet. A series of hollow needle bars are used to supply yum to u [56] References Cit d rotary Currier which carries the individual cut fibers UNITED STATES PATENTS into a position where they are selectively ejected into 2,461,860 2/1949 Victor 156/72 the Surface of F adheswe mater'al' 3,415,209 12/1968 Ellison et ul. 156/72 X 2 Claims, 17 Drawing Figures PATENTEDBCT 8 I974 3.840.413
sntn 10? a v PATENTEDUCT 8 I974 SHEEI 20$ 3 PATENTEDUCT 81974 sum ans 3 FIG-"l6- METHOD OF MANUFACTURING A CUT PILE FABRIC a bonded, cut pile carpet by a machine and process which has colored yarn patterning capability.
Other objects and advantages of the invention will become clearly apparentas the specification proceeds to describe the invention with reference to the accompanying drawings, in which:
FIGS. 1-5 represent schematically the basic concept of the invention; Y
, FIG. 6 is a partial view of the yarn collector and distributor cylinder;
FIGS. 7 and 8 are schematic representations of two forms of the individual discs used in the yarn collector and distributor cylinder;
FIGS. 9-11 are blown-up views of the yarn collector and distributor cylinder to show the yarn ejection cycle;
FIGS. 12 and 13 show an alternative method of ejecting the yarn into the adhesive surface;
FIGS. 14-16 show various forms of the adhesive surface and; i
FIG. 17 illustrates one type of yarn feed device.
Looking now to FIGS. 1-6, the basic concepts of the invention will be explained. The yarn collector and distributor cylinder consists of-a plurality of discs 12 which have a plurality of radial openings therein to accommodate bits of yarn 16 and 18 cut off from the respective yarn supplies 20 and 21. For the sake of illustration four radial holes 22, 24, 26 and 28 are shown in each of the discs 12. The discs are secured together in any suitable manner to provide an elongated right circular cylinder which is mounted on a horizontal axis to supply bits of yarn l6 and 18 in a substantially perpendicular direction into the adhesive surface 30.
The adhesive surface 30 can be applied to a backing material or, depending on the adhesive, can be applied directly to the conveying surface 32. The particular adhesive could be liquid at the point of yarn insertion requiring heat or time to become a permanent bonding vehicle or could be a hot melt requiring only cooling. The adhesive surface 30 can be planar at the point of yarn insertion as shown in FIGS. 14 and 16 or can be curved at the point of insertion as shown in FIGS. 1-6 and 15.
Looking at FIG. 17 a typical yarn feed is illustrated in that-air is aspirated into the needle 34 to suck the yarn 20 into the radial opening 22 until it bottoms on the bottom 36 of the opening. If desired, the passage 38 can-be vented to atmosphere to allow the yarn to be more readily fed into the opening22. In the desired form of the invention the length of the yarn 20 to be cut is determined by the depth of the opening 22 but other devices, such as a solenoid controlled stepping motor, can be used to deliver a desired length of yarn into the opening 22. As shown in FIGS. 1-5 the yarn bits are cut from the yarn supplies 20 and 21 by a fixed knife blade 40, or other suitable means such as a shear, band knife or sickle bar cutter, located adjacent the yarn supply so that it engages the yarn as the yarn distributor rotates to sever the bits from the yarn supply.
FIGS. 9-11 show the preferred yarn release and bit inserter device and FIGS. 12 and 13 show an alternative device. In FIGS. 9-11 when the cylinder 12 rotates to a position where one of the radial holes, such as 22, is lined up with the hollow needle 42 and it is desired to insert the bit of yarn 16 into the adhesive layer 30, the passage 38 is vented toatmosphere and air is aspirated into the needle 42 through opening 44 to insert the yarn bit 16 into the adhesive layer 30. Then the conveying surface 32 is moved downward (FIG. 10) so that the yarn bit 16 clears the bottom of the needle 42. Then the conveying surface is moved downstream from the needle and upward for receipt of another'row of yarn bits if the row of yarn is complete with the proper colors. At the same time the cylinder 12 has rotated counterclockwise to place another radial opening, such as 28, into communication withthe hollow needle 42.
FIGS. Hand 13 illustrate another type of yarn inserter which may be employed to implant yarn bits 16 into the adhesive layer 30. The yarn inserter of FIGS. 12 and 13 is a mechanical type which uses a plunger 45 and plunger rod 46 to mechanically push the yarn bit 16 into the adhesive surface 30. The plunger 46 can be actuated by any suitable means such as a cam, solenoid, etc.
It is understood that there are a series of yarn supply devices and yarn delivery devices lined up in a substantially parallel position to supply a multiplicity of yarn bits into the adhesive surface 30 at one time to produce a row of yarn bits. v
FIGS. l-5 represent schematically the operation of one disc of one cylinder 10. For the sake of discussion, let us assume it is desired to provide a carpet with a two color yarn effect. The control of the yarn into and out of the radial opening, as well as the rotation of the cylinder 10, is automatic and preselected to provide the desired effect in the finished product. If N represents the number of yarn colors required, the discs 12 will have 2N openings thereinas indicated by the openings 22, 24, 26 and 28 since a two color yarn effect is desired. The number of openings in the disc 12 for any N is such that therewill be N openings in a position to be fed yarn, Nl openings empty or idle and one opening in a position to release yarn into the adhesive layer. The control is so selected that only one color yarn is released at any one time so each indexing rotation of the cylinder 10 is rr/N radians. Thus the maximum numberof indexes necessary for a given yarn color to become available at the release station at a given place in the pattern also will be N. To express it another way, if it is desired that all colors are to be placed in a single row in the adhesive the cylinder 10 will be rotated or indexed N times before the backing 32 is moved to make another row in the carpet.
As shown in FIGS. 1-5, one color yarn is supplied only to openings 22 and 26 while the other color yarn is supplied to openings 24 and 28. Looking now toFIG. l and assuming that the controls are programmed to do so, one color yarn 20 is being supplied to opening 22 while another color yarn 21 is being supplied to the opening 24. At the same time, yarn bit 16 which has been cut from the yarn supply 20 is being released into the adhesive layer 30. Then, as shown in FIG. 2, the conveying surface 32 is moved downward so that'the yarn bit 16 clears the needle 42 and the cylinder 10 starts to rotate to the position shown in FIG. 3. As the cylinder rotates, yarnbits l6 and 18 will be severed from their respective yarn supplies 20 and 21 by the knives 40 appropriately located in the path of travel of duced to one index per row.
the cylinder 10. Then the cylinder 10 reaches'the position shown in FIGS. 3 and"4.,When the cylinder reaches the position shown in FIG. 3, the conveying surface 32 is moved upward so that the yarn bit 18 can be released into the adhesive surface 30 as shown in FIG. 4. Since yarn bit 16 is located in opening 22 no yarn is supplied from yarn supply 21 and no yarn is supplied from yarn supply 20 into the opening 28'. Then. as shown in FIG. 5, the conveying surface 32 is moved downward, indexed one space to receive another row of yarn bits and moved back up into yarn receiving position. At the Same time, yarn supply 20 is supplying yarn into opening 26 and yarn supply 21 is supplying yarn into opening 28. Then the procedure is repeated to provide another row of yarn bits.
In the above-described type of system a complicated array of actuating devices is necessary for each disc 12 since each disc has to have actuation at each of N 1 stations since there is selective release of only one color yarn at the release station, thereby requiring a number of actuation devices equal to (N l) X number of discs 12 for the cylinder 10. The schematic representation of FIG. 18 reduces this number to; (N X number of discs 12 1) since all the bottom holes release yarn on each index of the discs, thereby requiring only one release As described, the herein-disclosed invention providesapparatus and methods which can be computer controlled for manufacturingbonded, cut pile carpets with colored yarn patterning capability.
Although I have described in detail the preferred embodiments of my invention, I contemplate that many changes may be made without departing from the scope or spirit of my invention and I desire to be limited only by the claims.
That which is claimed is:
1. A method of manufacturing a cut, pile fabric comprising the steps of: providing a supply of yarn having a first color, providing a supply of yarn of a second color at an angle to the supply of yarn having a first color, inserting yarn of said first color and said second color into a rotably mounted member, severing the inserted yarn from said yarn supplies, providing an adhesive adjacent said rotably mounted member, rotating said rotably mounted member and inserting said severed first color yarns into said adhesive at a predetermined time.
2. The method of claim 1 wherein one of said yarns is inserted in said adhesive and said rotating inember is indexed to insert the second yarn into the adhesive.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3840413 Dated October 1974 Inventor(s) Don M. Bylund It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 3, line 25, after "10", delete The schematic representation of".
Column 3, delete lines 26 through 28.
Colum 4, delete lines 1 through 3.
Signed and Scaled this Thirteenth Day Of December 1977 [SEAL] A ttest:
RUTH C. MASON LUTRELLE F. PARKER Attesting Oflicer Acting Commissioner of Patents and Trademarks

Claims (2)

1. A method of manufacturing a cut, pile fabric comprising the steps of: providing a supply of yarn having a first color, providing a supply of yarn of a second color at an angle to the supply of yarn having a first color, inserting yarn of said first color and said second color into a rotably mounted member, severing the inserted yarn from said yarn supplies, providing an adhesive adjacent said rotably mounted member, rotating said rotably mounted member and inserting said severed first color yarns into said adhesive at a predetermined time.
2. The method of claim 1 wherein one of said yarns is inserted in said adhesive and said rotating member is indexed to insert the second yarn into the adhesive.
US00221301A 1972-01-27 1972-01-27 Method of manufacturing a cut pile fabric Expired - Lifetime US3840413A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US00221301A US3840413A (en) 1972-01-27 1972-01-27 Method of manufacturing a cut pile fabric
BE145880A BE816852A (en) 1972-01-27 1974-06-25 MACHINE AND PROCESS FOR MANUFACTURING FLOAK MATS
US05/790,254 US4087311A (en) 1972-01-27 1977-04-25 Carpet machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00221301A US3840413A (en) 1972-01-27 1972-01-27 Method of manufacturing a cut pile fabric

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US36908173A Division 1972-01-27 1973-06-11

Publications (1)

Publication Number Publication Date
US3840413A true US3840413A (en) 1974-10-08

Family

ID=22827235

Family Applications (2)

Application Number Title Priority Date Filing Date
US00221301A Expired - Lifetime US3840413A (en) 1972-01-27 1972-01-27 Method of manufacturing a cut pile fabric
US05/790,254 Expired - Lifetime US4087311A (en) 1972-01-27 1977-04-25 Carpet machine

Family Applications After (1)

Application Number Title Priority Date Filing Date
US05/790,254 Expired - Lifetime US4087311A (en) 1972-01-27 1977-04-25 Carpet machine

Country Status (2)

Country Link
US (2) US3840413A (en)
BE (1) BE816852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257838A (en) * 1973-03-03 1981-03-24 Boehringer Ingelheim Gmbh Process and apparatus for the manufacture of disposable pharmaceutical single-dose containers
US20140205788A1 (en) * 2011-08-26 2014-07-24 Cttec Bvba Method for manufacturing pile carpet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015035323A1 (en) 2013-09-09 2015-03-12 Ning Yang Digital imaging process for flooring material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US523358A (en) * 1894-07-24 Color attachment for printing-presses
US2292851A (en) * 1940-04-10 1942-08-11 Western Electric Co Strip feeding apparatus
US2461860A (en) * 1944-09-16 1949-02-15 Victor A Victor Apparatus for making pile fabrics
US2544965A (en) * 1948-01-10 1951-03-13 Sacolowell Shops Textile fiber working machine
FR1438468A (en) * 1965-03-25 1966-05-13 Btb Benoit Tapis Brosse Process for the manufacture of pile fabrics and machine for its implementation
GB1112595A (en) * 1966-03-28 1968-05-08 Ellison Tufting Machinery Ltd Improvements in tufting machines for making carpets and like fabrics
US3580761A (en) * 1966-12-02 1971-05-25 Phillips Petroleum Co Method of forming nonwoven articles by fusing strands to a base
GB1230096A (en) * 1967-05-23 1971-04-28
US3565710A (en) * 1968-02-21 1971-02-23 Alfred G Garvin Carpet and method of making same
GB1328098A (en) * 1969-12-09 1973-08-30 Durcam Research Dev Co Ltd Method of and apparatus for producing a pile faric

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257838A (en) * 1973-03-03 1981-03-24 Boehringer Ingelheim Gmbh Process and apparatus for the manufacture of disposable pharmaceutical single-dose containers
US20140205788A1 (en) * 2011-08-26 2014-07-24 Cttec Bvba Method for manufacturing pile carpet
US9556556B2 (en) * 2011-08-26 2017-01-31 Cttec Bvba Method for manufacturing pile carpet

Also Published As

Publication number Publication date
BE816852A (en) 1974-10-16
US4087311A (en) 1978-05-02

Similar Documents

Publication Publication Date Title
EP0972464B9 (en) Method for manufacturing brushes and brush manufacturing machine applying this method
US3714862A (en) Braiding machine for braiding knotless netting
US4389443A (en) Cut pile fabric with fused carrier and method of making same
US2132530A (en) Decorative needled fabric
US3840413A (en) Method of manufacturing a cut pile fabric
US3595185A (en) Needle assembly for a tufting machine
US3670672A (en) Tufting machines for manufacture of tufted fabrics, tufted carpets, rugs, drapes, heavy fabrics, and the like
US6446634B2 (en) Automated wig manufacturing system
IE37084L (en) Multiple needle tufting machine
GB1482296A (en) Method and means for tufting
US3843432A (en) Method to produce a bonded pile fabric
FR2220150A5 (en) Knitting brassiere on circular knitting machine - by feeding extra yarns to a group of needles to form the cups
US3479241A (en) Apparatus for making nonwoven pile carpets
US2593668A (en) Manufacture of composite articles
ES459934A1 (en) Multi-color tufting machine
US3947306A (en) Method for producing bonded carpeting
GB1400268A (en) Methods of producing tufts of filamentary material
US3799616A (en) Brush machinery and instant brush construction
USRE27455E (en) Brush machinery and brush constructions
US3595186A (en) Needle assembly for a tufting machine
US3725984A (en) Process and apparatus for the manufacture of pile fabrics
US3697344A (en) Method of and apparatus for locating a bit of material in a pile fabric
US3701700A (en) Process for producing a continuous non-woven fabric
GB1126549A (en) Improvements in and relating to the controlled delivery of yarn in tufting apparatus
US1563367A (en) Method of manufacturing articles of brushlike nature