US3815794A - Plastic-film containers with self-sealing orifices - Google Patents
Plastic-film containers with self-sealing orifices Download PDFInfo
- Publication number
- US3815794A US3815794A US00231288A US23128872A US3815794A US 3815794 A US3815794 A US 3815794A US 00231288 A US00231288 A US 00231288A US 23128872 A US23128872 A US 23128872A US 3815794 A US3815794 A US 3815794A
- Authority
- US
- United States
- Prior art keywords
- container
- spout
- walls
- seal
- wall sections
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007789 sealing Methods 0.000 title claims description 46
- 239000002985 plastic film Substances 0.000 title abstract description 17
- 229920006255 plastic film Polymers 0.000 title abstract description 16
- 239000012530 fluid Substances 0.000 claims abstract description 72
- 239000007788 liquid Substances 0.000 claims description 68
- 239000000463 material Substances 0.000 claims description 17
- 230000001965 increasing effect Effects 0.000 claims description 6
- 239000012815 thermoplastic material Substances 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 238000011161 development Methods 0.000 claims description 2
- 230000003014 reinforcing effect Effects 0.000 claims description 2
- 238000003825 pressing Methods 0.000 abstract description 10
- 239000007921 spray Substances 0.000 abstract description 8
- 238000007493 shaping process Methods 0.000 abstract description 2
- -1 polyethylene Polymers 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 230000009172 bursting Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 230000035622 drinking Effects 0.000 description 3
- 210000003811 finger Anatomy 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000002421 anti-septic effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 210000005224 forefinger Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000051 modifying effect Effects 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D75/00—Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
- B65D75/52—Details
- B65D75/58—Opening or contents-removing devices added or incorporated during package manufacture
- B65D75/5816—Opening or contents-removing devices added or incorporated during package manufacture for tearing a corner or other small portion next to the edge, e.g. a U-shaped portion
- B65D75/5822—Opening or contents-removing devices added or incorporated during package manufacture for tearing a corner or other small portion next to the edge, e.g. a U-shaped portion and defining, after tearing, a small dispensing spout, a small orifice or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2575/00—Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes or webs of flexible sheet material, e.g. in folded wrappers
- B65D2575/52—Details
- B65D2575/58—Opening or contents-removing devices added or incorporated during package manufacture
- B65D2575/586—Opening or contents-removing devices added or incorporated during package manufacture with means for reclosing
Definitions
- ABSTRACT The disclosed containers are formed of supple plastic films fused together face-to-face along continuous seams that converge in the fluid-discharge direction to Junell, 1974 form a spout.
- a seal forms between the films. Squeezing the container develops internal fluid pressure that causes release of the seal.
- the seal is either self-restoring when pressure is relaxed, or the seal remains open until it is manually restored.
- the form of the spout also determines the character of the discharge, whether a continuing stream, or a limited-quantity discharge, or a fine jet that breaks up into a spray.
- Adding a spout-pressing plate to a container having a self-restoring seal forms a novel dispenser.
- a guard applied to the spout can prevent unintended opening of the seal when the container is squeezed.
- the films that form the container can be shaped to provide a stable gusseted base.
- a container has a spout proportioned to form an especially secure seal across the discharge passage, which does not open in response to practical levels of internal pressure.
- a seal is rendered pressure-releasable, and it can even be released entirely, by lessening the distension of the spout walls.
- internal fluid pressure builds up when the container is squeezed in use or in handling. With both types of seal, the danger of developing wall-bursting stresses due to internal pressure is minimized by shaping all seams so as to be free of corners directed toward the interior of the container.
- the present invention relates to containers having plastic-film walls and a discharge passage for fluids, especially for dispensing liquids.
- Containers having plastic-film walls and a discharge orifice are usually equipped with some form of plug or discrete valve structure such as a pinch clamp for closing the orifice when the contents are to be used a little at a time.
- some forms of plastic-film containers intended for one-time use have a seam that forms a sealed spout. In that case, when the tip of the spout is torn away, the spout is open permanently.
- a container is provided with a spout formed of two supple films of thermoplastic material, the films being joined together face-to-face along straight or curved seams that converge toward a discharge passage.
- the spout is proportioned with regard to the width of the discharge passage and the shape of the spout to form a film-to-film seal across the discharge passage, the seal being releasable in response to internal fluid pressure pursuant to a notable aspect of the invention.
- the walls of the portion of the spout leading to the seal are distended, and they abut at the seal.
- the fluid pressure required to release a pressure-releasable seal can be reduced by pressing the distended walls of the spout closer together, ultimately releasing the seal when the walls of the spout are sufficiently flattened.
- the character of a pressurereleasable seal varies widely with the shape of the spout-forming seams and with the width of the discharge passage across which the seal forms. Particular forms of the spout produce a continuous discharge of liquid after the seal is released and until it is restored deliberately, or brief discharges or gobs are dispensed in response to pressure suddenly applied to the spout, or'flow continues so long as the container is squeezed, or a fine jet is produced that breaks up into a spray.
- the spout can also be proportioned to form a secure wall-to-wall seal that does not open in response to practical levels of internal fluid pressure. Such a seal can be rendered pressure-releasable by pressing the distended walls of the spout closer together.
- the seams that join the walls together should be free of corners directed toward the container interior.
- An object of the invention resides in providing novel containers for many applications, having supple plasticfilm walls joined together face-to-face along fused seams that define a spout having a discharge passage across which a pressure-releasable seal can form directly between the walls of the spout.
- a further object of the invention resides in providing a novel container for liquids, the container having supple plastic-film walls incorporating a spout that squirts liquid only so long as internal fluid pressure is maintained and which seals itself when the fluid pressure is relaxed.
- a further object of the invention resides in providing a container having supple plastic-film walls joined together by seams that converge to form a spout in which a seal forms which is pressure-releasable and which is self-restoring when the internal seal-releasing fluid pressure is relaxed.
- a further object of the invention resides in providing a novel container for liquids, the container having a spout of supple plastic-film walls shaped to form a seal that opens in response to fluid pressure that develops when the container is squeezed. after which the spout remains open so that liquid can continue to pour until the seal is deliberately restored.
- a further object of the invention related to the foregoing resides in providing a novel container having flaccid plastic-film walls and a passage that can be opened for filling and refilling the container. where the passage is closed by a seal involving the films alone.
- container also having a separate discharge spout closed by a wall-to-wall seal that opens to discharge fluid when the container is squeezed, but without opening the seal of the filling passage.
- a further object resides in providing a novel dispenser including a container having a self-sealing pressure-releasable spout and a spout-pressing device that may be operated abruptly for effecting limited-quantity discharges. Abrupt operation of the spout-pressing device momentarily builds up the internal fluid pressure in the spout so that a gob of liquid is discharged whereupon the seal is self-restoring. Locating the pressing device near the seal reduces the pressure needed to release the seal.
- a further object of the invention resides in providing a container having a flaccid-walled spout in which a releasable seal forms between the walls of the spout, where the spout carries a removable guard that inhibits unintentional opening of the sea].
- a further object resides in providing a flaccid-film container having a spout whose margins and discharge passage are proportioned to form an especially secure seal across the discharge passage but which does not open in response to all practical levels of pressure safely below the bursting strength of the container.
- a spout can be released by pressing its distended walls closer together near the seal, thereby rendering the seal pressure-responsive; and the seal can also be released by inserting a seal-parting device or a funnel when the spout is to be used as a filling port for the container.
- a still further object of the invention resides in the provision of a flaccid-walled container having a spout extending from the body of the container, where at least the spout has marginal seams and where all the seams of the container are free of corners directed toward the interior of the container, thereby imparting high strength for resisting internal liquid pressures.
- a still further object of the invention resides in forming a container of edge-seamed plastic films shaped to develop controlled puckers that form a stable base.
- thermoplastic supple or flaccid films are joined together face-to-face along edge seams to form a container body and a spout that provides a discharge passage extending outwardly from the body.
- a first portion of the spout which adjoins the body of the container is readily distended by contained fluid. Segments or elements of the seams along the first spout portion converge in the fluid discharge direction.
- those segments or elements of the seams that extend along the first spout portion can also be regarded as diverging generally toward the body of the container converge toward and define a discharge.
- an arcuate bend forms in one of the films extending across the discharge passage. The bend is prominent at the center and vanishes toward the seams. This bend in one film bears against the other film, to constitute a seal.
- the seams of the first spout portion converge in the fluid-discharge direction or, stated another way, they diverge from an intermediate portion of the spout generally toward the body of the container and the wall sections of the first spout portion form what may be described roughly as parti-conic shapes having narrow ends that abut one another when distended by contained fluid so as to form a seal.
- the seams are ideally formed at the very edges of the films. Such seams are formed when the films are substantially face-to-face and flat. When liquid distends the films, such edge seams contribute flexibility that helps in achieving best sealing action in the spout. Flexibility of the seams elsewhere around the container contributes toward avoidance of unsightly puckers that tend to develop in the container walls.
- edge seam promotes success and consistency in producing dependable releasable seals.
- This form of seam is formed by holding a pair of thermoplastic films together face-to-face or nearly face-toface, concurrently but separately cutting the films with a hot blade advancing along a cutting line to produce overlying melted edges, and holding the films face-toface as the melted edges fuse together.
- the seal opens when the container is squeezed firmly.
- the seal tends to restore itself when squeezing pressure is relaxed.
- Liquid in the container squirts out as a fine jet stream, having many applications.
- An orifice is formed by spread-apart film surfaces, resembling a slit in crosssection. That form of small orifice resists clogging by particles of dirt or solids in the liquid composition, whereas such particles might well cause clogging in the case of a small round-bore discharge passage.
- the jet stream breaks up into a fine spray.
- the seal must form at a location spaced from the actual discharge orifice at the edge of the films.
- the edge-seamed films that form the spout project outwardly beyond the region of the seal to form a distinct extension.
- the seal tends to be self-restoring after internal fluid pressure is relaxed.
- the seal tends to remain open after it has been released.
- the liquid in a container is dispensed when the container is squeezed firmly enough to develop seal-releasing fluid pressure.
- the seal can be rendered easily opened in response to only slight internal pressure by laterally pressing and more-or-less flattening the spout.
- a supple-film container ofliquid with a self-sealing spout can be used as a drinking vessel; and in that use, the container need be squeezed only slightly to build up internal fluid pressure while the spout is held and nearly flattened between the users lips.
- a container having a spout proportioned so that the seal is not pressure-releasable can be used as a drinking vessel in the same manner.
- a supple-film container may have a downward-directed spout between a support panel and a pressure-applying plate. If the plate is pressed abruptly, the inertia of the liquid in the container above the plate tends to develop a large value of fluid pressure at the seal momentarily, to dispense a gob of liquid. Pressing the plate also reduces the distension of the walls of the spout and in that way lessens the internal pressure needed to open the seal. With such a dispenser, it is not necessary to squeeze the body of the container for developing seal-opening pressure.
- the spout in this case should be shaped to develop the selfrestoring type of seal in this dispenser.
- the seal that forms is effective to confine gases as well as liquids.
- liquid is used in a non-technical sense to include not only true liquids but also other fluent material comprising liquid that contains fine solid particles, soft gels, etc.
- the materials to be contained are limited essentially by their compatibility with the material of the films.
- the seals develop partly as a result of flexibility of the films which should be supple or flaccid, in this respect contrasting with tinfoil and unplasticized cellulose acetate, for example.
- thermoplastic films are suitable, such as polyethylene, polypropylene, and polyvinyl chloride.
- a guard can also be provided to protect a spout with a releasable seal, for maintaining a seal closed even though internal seal-releasing fluid pressure is developed.
- Such a guard is useful where a container has both a discharge spout and a filling spout, and where the filling spout should remain closed while pressure is developed to open the seal of the discharge spout.
- Such a guard is useful even where there is only one spout, to avoid unintended discharge when the container is squeezed incidental to handling.
- the seamcan be shaped to develop a stable base for the container.
- Slant seam portions are included between the seam at the bottom of the container and the seams along its sides. Deep puckers tend to develop at these slant seams, forming a gusseted container bottom to serve as a stable base.
- a seal of this type can be rendered pressure-releasable in order to discharge liquid deliberately, by forcing the walls of the spout closer together. Seals of the spouts here involved are rendered non-releasable in response to internal pressure by increased convergence of the seams that shape the spout or by reducing the width of the discharge passage where the seal forms, or both.
- FIG. 1 is the front view of a container filled with liquid, as an embodiment of various aspects of the invention, the container being inverted and sealed, including phantom lines representing the liquid-discharging, unsealed state of the container;
- FIG. 2 is a side view of the container of FIG. 1, including phantom lines representing portions of the container in liquid-discharging state;
- FIG. 3 is a greatly enlarged, fragmentary crosssection of part of the container of FIGS. 1 and 2, as viewedfrom the section line 3-3 in FIG. 1;-
- FIG. 4 is a fragmentary front view of the bottom of the container of FIGS. 1 and 2, when empty and flat;
- FIG. 5 is a fragmentary front view of the bottom of the filled container of FIGS. 1 and 2, resting on the bottom;
- FIG. 6 is a bottom view of the container as shown in FIG. 5;
- FIG. 7 is a greatly enlarged cross-section of the container of FIG. 1 as seen at the line 7--7;
- FIG. 8 is a fragmentary view of the discharge end of the container of FIGS. 1 and 2, when empty and flat;
- FIG. 9 is the front view of a bottom plate that may be used with the container of FIG. 1;
- FIG. 10 is a fragmentary view of the bottom of the container as shown in FIG. 5, equipped with the plate of FIG. 9;
- FIG. 11 illustrates another embodiment of the invention, drawn to reduced scale
- FIG. 12 is a fragmentary view of the embodiment of FIG. 11, drawn nearly to full scale;
- FIGS. 13, 14 and 15 show two cross-sections and an end view, respectively, of a spout of the container in FIG. 12, as viewed from the planes 13-13, 14l4 and l5l5 in FIG. 12;
- FIG. 16 is a fragmentary view of one of the spouts in FIG. 12, as seen when empty and flat;
- FIG. 17 is a fragmentary view of a second spout of the container of FIGS. 11 and 12, as seen when flat;
- FIG. 18 is a fragmentary view of said second spout, as seen from the plane 18-18 in FIG. 12;
- FIG. 19 is a perspective view of a nozzle spreader, useful in refilling the container of FIGS. 11 and 12;
- FIG. 20 is the front elevation of a novel dispenser. as an embodiment of further aspects of the invention drawn to reduced scale;
- FIG. 21 is a cross-section of the dispenser of FIG. 20 as viewed from the plane 21-21 therein.
- container 10 includes a spout including a spout portion I2, and an extension 14 projecting outwardly and ending at discharge opening-l6.
- Container 10 is formed of two films of thermoplastic material, polyethylene for example, united along their edges in a continuous seam 18.
- the films 20 and 22 are face-to-face when the container is flat. This face-to-face relationship is especially important at the seams forming the margins of spout portion 12 and extension 14, as will be seen. When flat, the films of the spout are congruent. V
- Seam 18 can be made by means of a blade having the outline of the flattened container, heated to the fusing temperature of the thermoplastic films and pressed against the films until the seam is formed and the container is cut out along the seam.
- a seam can serve the purposes of the present invention unless it is made with techniques causing the films to diverge from the seam. Some slight divergence adjacent the seam is tolerable, but ideally the films should be in face-to-face contact.
- the seam may be made by means of a heated blade that cuts along two face-toface films, melting the edges of the films as it cuts; and the films are held face-to-face adjacent the cut edges long enough for the fused edges of the films to merge into an edge seam.
- a heated blade that cuts along two face-toface films, melting the edges of the films as it cuts; and the films are held face-to-face adjacent the cut edges long enough for the fused edges of the films to merge into an edge seam.
- the spout portion 12 and the extension 14 are divided at an arcuate or fingernail-shaped seal 24, as viewed in FIG. '1.
- This seal is formed by a bend 20a (FIG. 3) in film 20 which bears against film 22 with enough force to produce a noticeable bulge 22b in film 22. The bulge is most noticeable, and the bend is most pronounced, midway between the seams.
- the forces that develop seal 24 cause the films to be displaced (FIG. 3) from a line extending from seam to seam. Both films 20 and 22 are warped surfaces in the region of seal 24.
- arcuate form of seal 24 as shown in FIG.
- the seal has another curvature relative to an imaginary unwarped surface extending seam-toseam in the region of the seal 24. It is this latter curvature that is responsible for the offset between seam l8 and seal 24 in FIG. 3.
- the bend 20a is prominent midway between the seams, and decreases toward the seams. Immediately adjacent the seams there is no noticeable bend 20a, and it is at those points that the faceto-face relationships between the films is important. The forces producing the seal can overcome only a slight amount of natural divergence that could exist between the films at each seam.
- spout portion 12 have dominant influence on the formation of seal 24 and on the nature of the seal. As seen in FIG. 3, when liquid distends' walls and 22, each of the walls slopes toward the other. Provided that the angle between films 20 and 22 is not too great, a particular kind of seal is produced which opens when the container is squeezed, i.e., an internal pressure-releasable seal. Where seams 18 are symmetrical at opposite sides of medial plane 33 of FIG. 1, the angle between the distended films when measured at the medial plane, is largely determined by the shape and spaced relationship of the seams. (although only one continuous seam forms the entire container of FIGS.
- the medial plane passes through walls 20 and 22 along the centerlines of the spout portion 12 and the extension 14. More generally, the centerlines of a spout extend along the walls midway between the seams and, as represented in FIG. 3, the centerlines of the readily distendable wall sections adjacent the abutment (disregarding bends 20a and 20b) form an angle of less than about 90.
- the sections of the walls below bend 20a coextend, and their centerlines are in general alignment with the centerline of one of the wall sections above bends 20a and 20b and at an angle to the centerline of the other wall section above bands 20a and 20b.
- radius R of both seams 18 is three inches and gap G is inch, measured across the outside dimension of the nozzle.
- Each seam in this example is about 0.030 inch wide where films 20 and 22 are polyethylene films of about 0.004 inch thick, joined by the preferred method described above.
- the width of a seal may be taken to be the width measured across the apex of the seal, from seam to seam. Further, while the width of a seal is not critical except in the one-fourth-inch range, the widths given here and elsewhere in this specification represent outside dimensions unless stated otherwise. Likewise, the seams in all of the described embodiments are made by the preferred method described above and are about 0.030-inch wide.
- Such a seal is pressure-releasable, provided that the wall-to-wall or film-to-film angle above the seal is not too great.
- This wall-to-wall angle is measured at the median plane 3-3 (FIG. 1) between the seams.
- the wall-to-wall angle is in turn determined mainly by the convergence of the portions of the seams above the seal 24 and by the separation between the seams at the seal.
- Films 20 and 22 exhibit a limited degree of elasticity, a quality associated with the supple quality of the film.
- the elasticity of the films is demonstrated by the warping of the films that occurs as shown in FIG. 3, and it is further demonstrated by the fact that spout portion 12 is not puckered when distended by liquid even though seams 18 in the embodiment of FIGS. 1 and 8 are not straight but curved.
- Strips of 0.004 inch thick and 1.0 inch wide polyethylene film used in making spouts with excellent seals,(as in FIG. 3) showed 10 percent elongation when tested with a six-pound weight.
- the same film when subjected to a softening heat treatment exhibited I0 percent elongation for a one-inch wide strip when subjected to a test weight of 0.6 pound.
- the latter film when formed into a container having a self-sealingspout showed a tendency to allow opening of the seal in response to lower pressures than in the case of the less stretchy film.
- each wall forms an approximation of part of a conefSeal 24 is formed where the tips of these particonic wall shapes meet.
- the seal in a spout of the above proportions is releasable ,in response to internal fluid pressure resulting from squeezing the container.
- the seal-releasing pressure must be safely below the bursting strength of the container.
- extension 14 When the seal is in the position represented by the solid line 24 in FIG. 1, extension 14 characteristically slants to one side, as shown in FIGS. 2 and 3. Squeezing the container causes seal 24 to shift toward exit opening 16. The seal reaches a limiting position 24, after which the liquid in the container starts to pour out of extension 14. This continues in the case of a spout having the dimensions given above even if the container is no longer squeezed after pouring starts. The spout is in the condition represented by phantom lines in FIG. 2. Flow stops and seal 24 forms again, when the extension is pushed back to the solid-line position of FIG. 2. This usually requires only a light stroke of a finger.
- Container 10 can be supported by a hanging tab or by a fixture of some form or bythe grasp of a persons fingers, using care in any case to avoid imposing enough squeezing pressure to open seal 24 unintentionally.
- Effective support can be disposed under the shoulders 18b formed where the seals 18 of spout portion 12 approach the bulk of the container The support should not be located so as to flatten the spout, since reducing the film-to-film angle of any given spout reduces the pressure needed to open the seal and then gravity pressure of the liquid could be enough to start the discharge of liquid.
- spout portion 12 is thus of controlling importance to formation of a seal and to the character of the seal that is formed. Where the marginal seams 18 of te spout related to each other by an angle much larger than 140 (this angle being measured with the container empty and flat) then a seal would form but it would not be pressure-releasable except possibly by such a large value of pressure that the container would be in danger of being ruptured.
- the angle A may not always be easy to measure since the seams 18 that form spout 12 need not be straight or nearly straight.
- the seams may be curved prominently as part of a circle or some other curve. In that case it may be hard to determine angle A.
- the relationship between seams 18 of the spout which is necessary to develop a pressure-releasable seal can be expressed in another way, as indicated above.
- the seams that define spout 12 are so related to each other that when the container is full, the angle between the centerlines of the mutually abutting films adjacent to the seal (disregarding bends 20a and 22a) is a maximum of about 90 measured between the centerlines of wall sections 20 and 22 as represented in FIG. 3.
- This wall-to-wall angle of 90 is applicable to a spout having a seal whose width (measured from seam to seam along a line tangent to the apex of the seal) is large, 1%. inch, for example.
- the wall-to-wall angle should be less than 90.
- a pressure-releasable seal forms across a spout having a wall-to-wall angle of about 85 where the seal is 1 /8 inch wide.
- Such a spout can be made with curved seams 18 (FIG. 8) having radii of about one inch.
- a pressure-releasable seal having a wall-to-wall angle of about 75 is formed across a spout whose seal width is inch and whose marginal seams 18 (FIG. 8) have radii of about 1% inch.
- Pressure-releasable seals are formed across spouts whose seal widths are in the range of A inch to inch where the wall-to-wall angle adjacent the seal is in the range of about 45 to 75.
- a pressure-releasable seal is formed across a spout whose width (measured across the wall surfaces to but not into the seams) is 1/16 inch to A inch where the wall-to-wall angle is in the range of about to 45.
- the smaller wall-to-wall angles are related to the narrower seals.
- the seams 18 converge at a small angle A, whether straight or long-radius seams are used.
- spouts having different seal widths behave differently. Seals in the 1/16 to A inch range produce a squirted jet stream. The jet is flat where it emerges from the external opening of the nozzle spout extension, pulls closer together a short distance from the opening and forms a spiral, and then the jet breaks into tiny droplets that are not so fine as to become suspended in air but which form a fine spray that is useful for many purposes.
- Optimal wall-to-wall angles can be developed using seams 18 that have long radii or are straight, and have seam-to-seam angles A in the range to 45.
- seal width is the width of the seal that forms in any given spout when its walls are freely distended, and where the width is measured along a line from seam to seam and tangent to the apex of the seal.
- Seam 18 as described above is formed at the edge of the plastic walls that constitute the container. This factor contributes to the formation of the seal 24 and it contributes to the avoidance of a great many puckers along seam 18.
- the seam could be formed along a line spaced inward from the edge of the plastic. Any extension of the films outside the seams develops physical resistance to bending of the seam. Where the films are joined by seams spaced from the edges of the films, puckering tends to occur where portions of the seams that form extension 14 merge into the portions of the seams that form spout portion 12.
- the walls of extension 14 are essentially flat and the walls of spout portion 12 are distended, so that what was a smoothline seam (FIG. 8) develops an undulation 18a (FIG. 1).
- the fact that the seam is at the edge avoids stiffness, or gives the seam a suppleness that promotes the formation of smooth bends in seams 18.
- container 10 When container 10 is not in use, it can be laid on its side. In so doing, care should be taken not to distort the walls that form the spout. A better way to store container 10 is upright. This is facilitated by enabling the walls of the container to form a flat bottom as shown in FIGS. 5 and 6. Where the body of the container is formed of the same two plastic sheets that form the spout, it can be shaped as shown in FIG. 4, to have more-or-less parallel side portions 26, a transverse end 28 and 45 slant portions 30 between portions 26 and 28, forming corners 32 and 34. Transverse end 28 occupies about 40-80 percent of the bottom. When the container is filled, a deep pucker or gusset 33 tends to form (FIGS. 1 and 2) in the container due to the described shape. A flat bottom is formed in this way, on which the container can rest.
- a wide plate 35 as of sheet-metal or plastic (FIG. 9) can be used to improve the stability of the container when resting on its bottom.
- Plate 35 has turned-in margins 38 extending from a flat base 36. Margins 38 are received in the tucks of gussets 33 (FIG. 10) when the plate is assembled to the container bottom.
- Plate 35 imposes a flat shape on the container bottom that resists any tendency of the upright container to roll over.
- plate 35 can be made amply wide. Preferably, it is appreciably wider than the small dimension of the container bottom, the vertical dimension as seen in FIG. 6.
- Container 10 equipped with base plate 35 can be deposited upright without concern about toppling.
- Container 40 in FIGS. 11 and 12 includes a squirting spout 42 and a filling spout 44. This container is useful for window-cleaning fluid, lubricating oil, etc.
- Spout 42 when flat has the proportions shown in FIG. 16, for example.
- the spout (there being no distinct nozzle here the container being flat) is 3/16 inch wide for example, this being the outside measurement including the orifice 47 and two seams.
- the width of the flattened spout at a distance of one inch from the discharge orifice is about 13/ 16 inch in this example, and seams 46 (formed the same way as seams 18) having such long-radius curvature that they are approximately straight, and they converge at an angle of about 25, measured when flat.
- the width of seal 48 is about /4 inch including the passage and both seams.
- Spout 44 of container 40 is shown flat in FIG. 17, and it is shown filled and distended in FIG. 18. Spout 44 extends to a flaring orifice 50.
- a spreader 52 for the orifice is shown in FIG. 19, having a curved wall 54 and a rib 56, tapered to a thin and narrow blade-like tip 58.
- Spreader 50 can be inserted in spout 44 which then can serve as a funnel to help in filling the container.
- Orifice 50 can be made as wide as may be considered necessary for this purpose.
- the length of spreader 52 should be such that, when inserted into spout 44, it has a part projecting from orifice 50 and, at the same time, the tip 58 should extend deep enough into the spout so that rib 56 opens the passage so that liquid can enter.
- a straw or a separate funnel can also be used to refill containers such as those of FIGS. 1 and 11, even where the spout is not flared as described above.
- the self-contained funnel represented by the flared spout 44 of FIG. 17 is a distinct advantage.
- the radii R of the seams that form the portion of spout 44 that is filled when pressure develops in the container should be small (e.g. A inch), and the minimum separation between the marginal seams should also be small (e.g., 5/ l 6 inch) where a seal is to develop in spout 44 that does not open in response to pressure sufficient to produce a jet spray from spout 42. Notwithstanding this proportion, spout 44 can still be used as a filling passage. Too-sharp radii for the spout should be avoided, in order to guard against tearing stresses when the container is squeezed.
- a security clip or guard 60 is applied to spout 44.
- Two side walls 62 extend at an angle from the middle portion 64 of guard 60, and a tongue 66 is bent and extends integrally from middle part 64, between and spaced from side walls 62. Tongue 66 does not disturb the seal formed in spout 44, but the tongue holds the whole guard in place on spout 44 as shown in FIGS. 12 and 18.
- Walls 62 protect the spout against pressure such as would reduce the angle of its walls. Were the walls of the spout pressed close to each other, the kind of seal represented in FIG.
- guard 60 is to protect the seal that forms inherently when the spout is distended. Guard 60 can be proportioned relative to the spout to develop an angle between the walls (see FIG. 3) that form the seal, thereby enhancing the effectiveness of the seal, but no effort is made here to rely on guard 60 to squeeze the walls of the spout together, to create a totally different kind of seal. It is to be understood that other means may be used to keep spout 44 sealed when container 40 is squeezed for producing a jet-spray. The described self-sealing spout and guard form a distinctive novel sealing means having evident practical merit. Guard 60 (properly proportioned) is valuable for protecting the spout of the container in FIGS. 1 and 2 against unintentional opening of the seal and escape of liquid.
- FIGS. 20 and 21 A distinctive form of dispenser embodying features of the foregoing embodiments and certain additional features is illustrated in FIGS. 20 and 21.
- That dispenser includes container formed of supple films as of 0.004 inch polyethylene edge-seamed together as described above to form a body portion 72, a dispensing spout 74 and a filling spout 76.
- a spring-biased clip 78 clamps the upper part of container 70 against a panel, so that spout 74 aims downward when panel 80 is upright.
- a resilient strip 82 as of metal or plastic has end portions 84 that grip the edges of panel 80, enabling the strip to slide along the parallel lateral edges of panel 80 and to retain any adjusted position on the panel.
- Strip 82 has a portion 86 that is arched over a portion of container 70 above sea] 94.
- Portion 86 carries a knob 88 which, when pushed, causes strip portion 86 to act as a device that applies pressure to the container above the seal 94.
- spout 74 has a discharge orifice 90 that is 3/16 inch wide and edge seams 92 that diverge such that the container is l /3 inch wide measured 1% inch from orifice 90.
- the width of the orifice is measured internally so as not to include the edge seams 92.
- Pressure device 84 is disposed with its lower edge inch from orifice 90 and is '74; inch wide where it spans container 72.
- a seal 94 that is 5/16 inch wide (measured from seam to seam) tends to form above orifice 90.
- container 72 contains liquid up to one-half of its top-to-bottom dimension, thereby causing the spout and the portion of the container underlying pressure device 84 to be distended (see FIG. 21).
- Abrupt pressure applied by hand to knob 88 and pressure device 86 deflates the underlying part of the container. This forces the liquid in the container to rise suddenly.
- the inertia of the liquid above pressure device 86 resists this upward displacement, causing an abrupt rise of pressure in spout 74.
- This pressure momentarily opens the seal in spout 74 and causes a gob of liquid to be discharged. The pressure is momentary, and the seal is self-restoring after the momentary discharge occurs.
- pressure device 86 With pressure device 86 located as stated above, there is a tendency for spout 74 to become resealed after the momentary discharge occurs even if pressure against knob 88 is maintained.
- the pressure member can be shifted upward, to increase the volume of the discharged gob of liquid.
- Pressure member 86 could be shifted downward a bit, but if that were done then seal 94 would probably remain open and discharge of liquid would continue, until the pressure applying device is released and the walls of the spout are allowed to become distended, so that the wall-to-wall seal in spout 74 restores itself.
- the dispenser of FIGS. 20 and 21 is useful as a dispenser for many liquids, such as liquid soap or lotion or antiseptic liquid. Little or no instruction is needed to new users.
- Container 70 maybe refilled at spout 76, as with an inserted funnel.
- the container may be discarded when empty because ofits very low cost; and in that case, a factory-filled container may be substituted.
- the discharge spout and the filling orifice may be sealed by a fused seam like seams 92.
- the seam closing the tip of spout 74 may be removed with a sharp blade when the new container is mounted for use.
- the container of FIG. l' can be used by a person confined to bed, as a drinking vessel.
- the users lips can flatten the walls of the spout just enough to allow the seal to release liquid from the container when the spout is aimed upward and the container is gently squeezed.
- the container can be refilled via the discharge spout.
- liquids may be contained, it being required only that the film used with any particular liquid should be non-porous and neither permeable nor attacked by the liquid. In cases where a particular liquid dissolves a given plastic film, then a different film should be selected. In some instances, liquids merely soften the films to a limited degree. To preserve the form of the container and its spout despite softening effects of a particular liquid, it may be useful to resort to laminated films, for example, an extruded laminate of polyethylene containing a layer of 0.00025 polyvinyl chloride (Saran) bonded between layers of the polyethylene contributes the property of resistance to the solvent effect of certain liquids to be dispensed.
- Saran polyvinyl chloride
- the pressure-releasable type of seal has been discussed above at length in connection with the illustrative embodiments shown in the drawings. However, it is not necessary in all cases to provide a pressurereleasable seal.
- a spout is provided for use as a filling orifice (e.g., spout 44 in FIG. 12 an spout 76 in FIG. 17)
- a dispensing container in the form shown in FIG. 11 and carried in a shirt-pocket is subject to being squeezed unintentionally when the wearers jacket is accidentally bumped and when the seal should remain closed.
- Such a container is useful for squirting lubricating oil, antiseptic liquid such as alcohol, etc., and in such uses, it may be important to provide security against the liquid discharging unintentionally.
- the container has a spout having converging seams proportioned to form a seal across the discharge passage.
- the seal can be rendered non-releasable in response to internal liquid pressure by making the discharge passage narrower where the seal forms, or by making the angle of convergence wider or by using a shorter radius of curvature in forming the seams along the margins of the spout. (The wider angle of convergence and the shorter radius of curvature of the seam are two ways of producing more prominent convergence.) Further, the proportions of any given spout can be modified to render the seal non-releasable in response to practical limits of internal pressures, by both reducing the seal width and increasing the prominence of the seam convergence.
- a dispensing nozzle such as that of FIG. 1 or that of FIG. 11 when proportioned so as to be inherently nonreleasable in response to internal fluid pressure alone can be used for dispensing liquid by applying collapsing force against the distended walls of the spout near the seal.
- the user can grasp the container with one hand and can use his thumb and forefinger or his lips to reduce the distension of the walls. This has the effect of making the seal pressure-releasable. Then the user can squeeze the container to dispense liquid.
- a container for fluids having a body and a spout extending outwardly from the body, said spout having congruent opposing walls of supple, imperforate material and being defined by laterally spaced seams uniting said walls and disposing them in substantially face-toface contact when said spout is empty, said seams including first seam elements extending divergently at least from an intermediate portion of the spout generally toward said body, said container being dimensioned and configured to provide means for forming a releasable seal across said spout at said intermediate portion thereof, opposing first sections of said walls between said first seam elements being free of interconnection and being adapted to become readily distended by contained fluid, such distension causing said first wall sections to converge into sealing abutment with one another with the centerlines of said first wall sections adjacent said abutment forming an angle of less than about 90 and with opposing second sections of said walls conextending from said abutment with the centerlines thereof in general alignment with the centerline of one of said first
- seams include second elements defining said second wall sections, said second seam elements extending generally divergently toward said body, the divergence thereof being less pronounced than that of said first elements to define a generally outwardly tapering flow passage through said spout.
- the container of claim 11 wherein said body has, in a flat disposition, a generally rectilinear edge extending thereacross at a location remote from said spout, said edge being of a length that is substantially less than the width of said walls of said body at a location spaced a short distance therefrom, intermediate portions of said body walls lying between said edge and said spaced location being narrower than said body walls at said location so that, when said container is placed in an upright position with said edge disposed thereunder on a support surface, the outer margins of said intermediate wall portions tend to fold inwardly of said body, in turn permitting distension of said wall portions therebetween under the weight of fluid contents, thereby providing an extended base area for supporting said container in a relatively stable, upright position.
- a container for fluids having a body and a spout extending outwardly from the body, said spout having congruent opposing walls of supple, imperforate material and being defined by laterally spaced seams uniting said walls and disposing them in substantially face-toface contact when said spout is empty, said seams including first seam elements extending divergently at least from an intermediate portion of the spout generally toward said body, said container being dimensioned and configured to provide means for forming a releasable seal across said spout at said intermediate portion thereof, opposing first sections of said walls between said first seam elements being free of interconnection and being adapted to become readily distended by contained fluid, such distension causing said first wall sections to converge into sealing abutment with one another with the centerlines of said first wall sections adjacent said abutment forming an angle of less than about 90 and with opposing second sections of said walls coextending from said abutment with the centerlines thereof in general alignment with the centerline of one of said first
- a container for liquids having a body and a spout extending outwardly from the body, said spout having congruent opposing walls of supple imperforate material defined by laterally spaced seams uniting said walls body providing a discharge region, said container hav- 1 ing congruent supple, imperforate walls, said walls and disposing them in substantially face-to-face contact when said spout is empty, said walls including first opposing wall sections adjoining said body and bounded by first elements of said seams, said first wall sections being adapted to become readily distended by liquid in the container in the absence of applied pressure and specifically being free of interconnection between said seam elements, and said walls including second opposing wall sections projecting from said first opposing wall sections, segments of said first elements of said seams converging toward a point in said spout outward of said first wall sections when the container is flat, said container being dimensioned and configured to provide means for forming a generally arcuate internal-pressure-releasable and self-
- a squeeze-releasable dispensing container including a main body and a spout projecting outwardly therefrom, the spout and the adjoining portion of the being united along seams that tend to dispose the walls substantially face-to-face when the container is empty, said seams including seam portions bounding first wall sections of the spout adjoining the body which seam portions converge toward each other along the spout in the fluid-discharge direction, the walls of the discharge region being adapted to become readily distended by contained fluid and specifically being free of interconnection between said seams, and said container being dimensioned and configured to provide means for forming an internal-pressure-releasable seal across the spout wherein one of the walls when distended by contained fluid bears against the other in a sealing abutment extending generally arcuately between said seams with the centerlines of said first wall sections adjacent said abutment forming an angle of less than about and with opposing second sections of said walls coextending from said abutment with the centerlines thereof
- a container for fluids including a body and a spout projecting outwardly therefrom, the spout and the adjoining portion of the body providing a discharge region, said discharge region being formed of congruent opposing walls of supple imperforate material interconnected by seams disposing the walls substantially face-to-face when the discharge region is empty, a first portion of the spout adjoining the body being defined by elements of said seams, such interconnection between said walls being shaped for causing said first spout portion to become readily distended by contained fluid, said discharge region being dimensioned and configured to provide means for causing said first spout portion to decrease in cross-section progressively in the fluid discharge direction when distended by contained fluid and, when so distended, for forming a sealing abutment extending generally arcuately across said spout wherein one of said walls bears against the other with the centerlines of said first wall sections adjacent said abutment forming an angle of less than about 90 and with opposing second sections of said walls
- the container in accordance with claim 19 and means for suspending said container with said spout directed downward further including a pair of pressure-applying devices disposed at opposite sides of said container above said seal, whereby abrupt actuation of said pressure-applying devices causes said container to dispense a discrete quantity of liquid.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Closures For Containers (AREA)
Abstract
Description
Claims (29)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00231288A US3815794A (en) | 1972-03-02 | 1972-03-02 | Plastic-film containers with self-sealing orifices |
US05/427,433 US3975885A (en) | 1972-03-02 | 1973-12-21 | Methods for producing filled containers |
US477755A US3878977A (en) | 1972-03-02 | 1974-06-10 | Flexible container with arcuate self-sealable spout |
US06/244,065 US4430069A (en) | 1972-03-02 | 1981-03-16 | Method and apparatus for sealing and cutting plastic films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00231288A US3815794A (en) | 1972-03-02 | 1972-03-02 | Plastic-film containers with self-sealing orifices |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/427,433 Continuation-In-Part US3975885A (en) | 1972-03-02 | 1973-12-21 | Methods for producing filled containers |
US05/427,443 Continuation-In-Part US4045909A (en) | 1972-06-08 | 1973-12-26 | Hydroponic nutrient feeding and draining system |
US05/615,816 Continuation-In-Part US4053671A (en) | 1973-01-24 | 1975-09-22 | Article having edge-sealed films |
Publications (1)
Publication Number | Publication Date |
---|---|
US3815794A true US3815794A (en) | 1974-06-11 |
Family
ID=22868574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00231288A Expired - Lifetime US3815794A (en) | 1972-03-02 | 1972-03-02 | Plastic-film containers with self-sealing orifices |
Country Status (1)
Country | Link |
---|---|
US (1) | US3815794A (en) |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3878977A (en) * | 1972-03-02 | 1975-04-22 | American Can Co | Flexible container with arcuate self-sealable spout |
US3923210A (en) * | 1973-02-22 | 1975-12-02 | Lawjack Equipment Ltd | Automatic discharge regulator |
US4163509A (en) * | 1977-02-22 | 1979-08-07 | The Procter & Gamble Company | Squeeze dispenser with self closing valve |
US4171755A (en) * | 1977-07-12 | 1979-10-23 | Carlisle Richard S | Flexible container with pouring spout |
US4252257A (en) * | 1978-10-10 | 1981-02-24 | Herzig Albert M | Automatic closure for containers having a pinch-off fold |
US4312689A (en) * | 1977-02-22 | 1982-01-26 | The Procter & Gamble Company | Dispensing container and method of assembling it |
US4328912A (en) * | 1978-06-26 | 1982-05-11 | Haggar Theodore | Self-contained valved package |
US4564127A (en) * | 1984-03-22 | 1986-01-14 | Dexide, Inc. | Dispenser with pump for dispensing liquid from a collapsible bag |
US4627551A (en) * | 1984-03-05 | 1986-12-09 | Oatey Co. | Dispenser system and method for dispensing putty-like material |
US4798324A (en) * | 1986-08-05 | 1989-01-17 | Fgl Projects Limited | Valve and containers incorporating the same |
US4988016A (en) * | 1989-01-30 | 1991-01-29 | James P. Hawkins | Self-sealing container |
US4997104A (en) * | 1989-08-03 | 1991-03-05 | Bedford Industries, Inc. | Container reclosing apparatus and method |
US5000350A (en) * | 1985-12-10 | 1991-03-19 | Thomsen Peter N | Dispenser with replaceable pouch |
US5005734A (en) * | 1989-03-23 | 1991-04-09 | Colgate-Palmolive Company | Flexible pouch with reinforcement to facillitate pouring |
US5018646A (en) * | 1988-11-23 | 1991-05-28 | S. C. Johnson & Son, Inc. | Squeezable fluid container |
US5067635A (en) * | 1985-12-10 | 1991-11-26 | Peter Thomsen | Dispenser pouch and holder and dispensing unit therefor |
US5207355A (en) * | 1991-12-30 | 1993-05-04 | Thomsen Peter N | High viscosity pump system for dispenser pouch |
US5307955A (en) * | 1992-06-25 | 1994-05-03 | The Procter & Gamble Company | Flaccid bottom delivery package having a self-sealing closure for dispensing liquid materials |
US5411178A (en) * | 1994-03-11 | 1995-05-02 | Beeton Holdings Limited | Fluid dispenser pouch with venturi shaped outlet |
WO1995012531A1 (en) * | 1993-11-01 | 1995-05-11 | The Procter & Gamble Company | Self-closing liquid dispensing package |
US5529224A (en) * | 1993-11-01 | 1996-06-25 | The Procter & Gamble Company | Self-closing liquid dispensing package |
US5941640A (en) * | 1997-08-14 | 1999-08-24 | Ultimate Direction, Inc. | Roll top bladder |
ES2139494A1 (en) * | 1997-02-05 | 2000-02-01 | Herrera Gutierrez Jesus Hernan | Dispensing device for supplying metered amounts of liquid soap |
US6244468B1 (en) * | 1997-07-17 | 2001-06-12 | Harley Farmer | Self-sealing valve and sachet for dispensing liquids |
EP1193187A1 (en) * | 1999-05-10 | 2002-04-03 | Tadashi Hagihara | Nozzle of fluid container and fluid container having the nozzle |
US6446847B1 (en) | 2001-02-16 | 2002-09-10 | Sonoco Development, Inc. | Flexible container having integrally formed resealable spout |
EP1375381A1 (en) * | 2002-06-18 | 2004-01-02 | Sonoco Development, Inc. | Flexible pouch having dispensing nozzle and frangible seal |
US20040052437A1 (en) * | 2002-08-29 | 2004-03-18 | Skymark Packaging Systems Inc. | Pouch |
US20040096127A1 (en) * | 2000-12-13 | 2004-05-20 | Rosen Ake | Container |
WO2004087526A1 (en) * | 2003-04-01 | 2004-10-14 | Pakerman S.A. | Flexible liquid container |
FR2860172A1 (en) * | 2003-02-03 | 2005-04-01 | Francine Negroni | Domestic liquid product e.g. pharmaceutical product, containing capsule, has case with reservoir in longitudinal form and curved with rounded ends, where reservoir integrates on one of sides of protuberance |
US7241066B1 (en) | 2003-04-15 | 2007-07-10 | American Grease Stick Company | Container for flowable products |
US20070228073A1 (en) * | 2006-03-31 | 2007-10-04 | Wyeth | Tear and spill resistant package for dispensing liquids in a controlled manner |
US20080233252A1 (en) * | 2005-10-27 | 2008-09-25 | Manning Paul B | Containers and Methods for the Reconstitution and Dispensation of Concentrated or Powdered Products |
US20090220176A1 (en) * | 2008-02-15 | 2009-09-03 | Fusco Michael T | Self-sealing container |
US20110226813A1 (en) * | 2010-03-17 | 2011-09-22 | Semersky Frank E | Ovoid container |
US8061563B1 (en) | 2007-05-29 | 2011-11-22 | Ags I-Prop, Llc | Flexible pouch with expulsion aid |
US8118198B1 (en) | 2004-03-25 | 2012-02-21 | Edwin George Watson | Pouring spout with controlling means |
US20120125477A1 (en) * | 2010-11-19 | 2012-05-24 | Cryovac, Inc. | Coiled Valve and Methods of Making and Using the Same |
US20120269966A1 (en) * | 2011-04-20 | 2012-10-25 | Hector Ureta-Morales | Cementitious adhesive delivery and application system |
US20130026183A1 (en) * | 2011-07-27 | 2013-01-31 | Diana Foster | Single use dispenser package |
US8376183B1 (en) | 2008-06-10 | 2013-02-19 | Ags I-Prop, Llc | Fluid dispenser having multiple chambers |
US20130228591A1 (en) * | 2011-07-27 | 2013-09-05 | Diana Foster | Product dispenser package for personal use |
US20130341350A1 (en) * | 2012-06-22 | 2013-12-26 | Nestec S.A. | Packaging for consumable products and methods for using same |
US20140370147A1 (en) * | 2012-01-11 | 2014-12-18 | Stephane Hentzel | Package for consumable products and methods for using same |
US20150018789A1 (en) * | 2013-06-22 | 2015-01-15 | Jezekiel Ben-Arie | Washable ostomy pouch ii |
US20150065970A1 (en) * | 2013-06-22 | 2015-03-05 | Jezekiel Ben-Arie | Washable ostomy pouch iii |
US20150144659A1 (en) * | 2011-07-12 | 2015-05-28 | Gojo Industries, Inc. | Shut-off system for a dispenser |
US20150360825A1 (en) * | 2014-06-12 | 2015-12-17 | David Phillip Susca | Container with a Detachable Funnel |
US20160113377A1 (en) * | 2012-11-27 | 2016-04-28 | Socoplan | Device for Containing, Dispensing and Applying to a Substrate Content in Liquid, Gel, Cream or Paste Form |
US20160122103A1 (en) * | 2009-05-20 | 2016-05-05 | Virbac Sa | Non-resealable thermoformed packaging for liquid or pasty substances |
US20180162622A1 (en) * | 2016-12-14 | 2018-06-14 | Folton Gold Inc. | Pour bag with grippable dispensing funnel |
US20190167380A1 (en) * | 2016-06-30 | 2019-06-06 | Gc Corporation | Packaging body for viscous dental material |
US12084248B2 (en) | 2019-07-23 | 2024-09-10 | Cryovac, Llc | Pouches for dispensing products |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2663461A (en) * | 1949-06-30 | 1953-12-22 | Frederick M Turnbull | Container for pharmaceuticals and the like |
US2707581A (en) * | 1954-12-07 | 1955-05-03 | Kaplan Yale | Dispensing containers for liquids |
US2929601A (en) * | 1955-02-03 | 1960-03-22 | Arthur E Anderson | Detachable base for upright containers |
US2990101A (en) * | 1959-05-01 | 1961-06-27 | Dairy Containers Inc | Bag for milk and the like |
US3009498A (en) * | 1954-11-29 | 1961-11-21 | Oerlikon Buehrle Ag | Plastic bag with a self-sealing valve |
US3112047A (en) * | 1960-11-01 | 1963-11-26 | Cherry Burrell Corp | Liquid-tight container |
US3182728A (en) * | 1962-04-25 | 1965-05-11 | Charles L Zabriskie | Container for mixing two fire extinguishing fluids during discharge |
US3278085A (en) * | 1964-06-02 | 1966-10-11 | Brown Royce Edward | Re-sealable sachet container |
US3610477A (en) * | 1969-07-16 | 1971-10-05 | Albert M Herzig | Automatic closure for containers |
-
1972
- 1972-03-02 US US00231288A patent/US3815794A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2663461A (en) * | 1949-06-30 | 1953-12-22 | Frederick M Turnbull | Container for pharmaceuticals and the like |
US3009498A (en) * | 1954-11-29 | 1961-11-21 | Oerlikon Buehrle Ag | Plastic bag with a self-sealing valve |
US2707581A (en) * | 1954-12-07 | 1955-05-03 | Kaplan Yale | Dispensing containers for liquids |
US2929601A (en) * | 1955-02-03 | 1960-03-22 | Arthur E Anderson | Detachable base for upright containers |
US2990101A (en) * | 1959-05-01 | 1961-06-27 | Dairy Containers Inc | Bag for milk and the like |
US3112047A (en) * | 1960-11-01 | 1963-11-26 | Cherry Burrell Corp | Liquid-tight container |
US3182728A (en) * | 1962-04-25 | 1965-05-11 | Charles L Zabriskie | Container for mixing two fire extinguishing fluids during discharge |
US3278085A (en) * | 1964-06-02 | 1966-10-11 | Brown Royce Edward | Re-sealable sachet container |
US3610477A (en) * | 1969-07-16 | 1971-10-05 | Albert M Herzig | Automatic closure for containers |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3878977A (en) * | 1972-03-02 | 1975-04-22 | American Can Co | Flexible container with arcuate self-sealable spout |
US3923210A (en) * | 1973-02-22 | 1975-12-02 | Lawjack Equipment Ltd | Automatic discharge regulator |
US4163509A (en) * | 1977-02-22 | 1979-08-07 | The Procter & Gamble Company | Squeeze dispenser with self closing valve |
US4312689A (en) * | 1977-02-22 | 1982-01-26 | The Procter & Gamble Company | Dispensing container and method of assembling it |
US4171755A (en) * | 1977-07-12 | 1979-10-23 | Carlisle Richard S | Flexible container with pouring spout |
US4328912A (en) * | 1978-06-26 | 1982-05-11 | Haggar Theodore | Self-contained valved package |
US4252257A (en) * | 1978-10-10 | 1981-02-24 | Herzig Albert M | Automatic closure for containers having a pinch-off fold |
US4627551A (en) * | 1984-03-05 | 1986-12-09 | Oatey Co. | Dispenser system and method for dispensing putty-like material |
US4564127A (en) * | 1984-03-22 | 1986-01-14 | Dexide, Inc. | Dispenser with pump for dispensing liquid from a collapsible bag |
US5067635A (en) * | 1985-12-10 | 1991-11-26 | Peter Thomsen | Dispenser pouch and holder and dispensing unit therefor |
US5000350A (en) * | 1985-12-10 | 1991-03-19 | Thomsen Peter N | Dispenser with replaceable pouch |
US4798324A (en) * | 1986-08-05 | 1989-01-17 | Fgl Projects Limited | Valve and containers incorporating the same |
US5018646A (en) * | 1988-11-23 | 1991-05-28 | S. C. Johnson & Son, Inc. | Squeezable fluid container |
US4988016A (en) * | 1989-01-30 | 1991-01-29 | James P. Hawkins | Self-sealing container |
US5005734A (en) * | 1989-03-23 | 1991-04-09 | Colgate-Palmolive Company | Flexible pouch with reinforcement to facillitate pouring |
US4997104A (en) * | 1989-08-03 | 1991-03-05 | Bedford Industries, Inc. | Container reclosing apparatus and method |
US5207355A (en) * | 1991-12-30 | 1993-05-04 | Thomsen Peter N | High viscosity pump system for dispenser pouch |
US5307955A (en) * | 1992-06-25 | 1994-05-03 | The Procter & Gamble Company | Flaccid bottom delivery package having a self-sealing closure for dispensing liquid materials |
AU682215B2 (en) * | 1993-11-01 | 1997-09-25 | Procter & Gamble Company, The | Self-closing liquid dispensing package |
WO1995012531A1 (en) * | 1993-11-01 | 1995-05-11 | The Procter & Gamble Company | Self-closing liquid dispensing package |
CN1066688C (en) * | 1993-11-01 | 2001-06-06 | 普罗格特-甘布尔公司 | Automatically closed package piece for liquid distribution |
US5996845A (en) * | 1993-11-01 | 1999-12-07 | The Procter & Gamble Company | Self-closing liquid dispensing package |
US5529224A (en) * | 1993-11-01 | 1996-06-25 | The Procter & Gamble Company | Self-closing liquid dispensing package |
WO1995024343A2 (en) * | 1994-03-11 | 1995-09-14 | Beeton Holdings Limited | Fluid dispenser pouch with venturi shaped outlet |
AU681497B2 (en) * | 1994-03-11 | 1997-08-28 | Deb Ip Limited | Fluid dispenser pouch with venturi shaped outlet |
WO1995024343A3 (en) * | 1994-03-11 | 1996-02-22 | Beeton Holdings Ltd | Fluid dispenser pouch with venturi shaped outlet |
US5411178A (en) * | 1994-03-11 | 1995-05-02 | Beeton Holdings Limited | Fluid dispenser pouch with venturi shaped outlet |
ES2139494A1 (en) * | 1997-02-05 | 2000-02-01 | Herrera Gutierrez Jesus Hernan | Dispensing device for supplying metered amounts of liquid soap |
US6244468B1 (en) * | 1997-07-17 | 2001-06-12 | Harley Farmer | Self-sealing valve and sachet for dispensing liquids |
US5941640A (en) * | 1997-08-14 | 1999-08-24 | Ultimate Direction, Inc. | Roll top bladder |
US20040159674A1 (en) * | 1999-05-10 | 2004-08-19 | Tadashi Hagihara | Nozzle of fluid container and fluid container having the nozzle |
US6776307B1 (en) * | 1999-05-10 | 2004-08-17 | Tadashi Hagihara | Nozzle of fluid container and fluid container having the nozzle |
EP1193187A1 (en) * | 1999-05-10 | 2002-04-03 | Tadashi Hagihara | Nozzle of fluid container and fluid container having the nozzle |
US20040226646A1 (en) * | 1999-05-10 | 2004-11-18 | Tadashi Hagihara | Method for welding together sheet member and cylindrical member |
EP1193187A4 (en) * | 1999-05-10 | 2007-06-20 | Tadashi Hagihara | Nozzle of fluid container and fluid container having the nozzle |
US6932241B2 (en) | 1999-05-10 | 2005-08-23 | Tadashi Hagihara | Nozzle of fluid container and fluid container having the nozzle |
US20040096127A1 (en) * | 2000-12-13 | 2004-05-20 | Rosen Ake | Container |
US6446847B1 (en) | 2001-02-16 | 2002-09-10 | Sonoco Development, Inc. | Flexible container having integrally formed resealable spout |
EP1375381A1 (en) * | 2002-06-18 | 2004-01-02 | Sonoco Development, Inc. | Flexible pouch having dispensing nozzle and frangible seal |
US20040052437A1 (en) * | 2002-08-29 | 2004-03-18 | Skymark Packaging Systems Inc. | Pouch |
US20100008602A1 (en) * | 2003-01-04 | 2010-01-14 | Pakerman S.A. | Flexible Liquid Container |
FR2860172A1 (en) * | 2003-02-03 | 2005-04-01 | Francine Negroni | Domestic liquid product e.g. pharmaceutical product, containing capsule, has case with reservoir in longitudinal form and curved with rounded ends, where reservoir integrates on one of sides of protuberance |
US7658542B2 (en) * | 2003-04-01 | 2010-02-09 | Pakerman S.A. | Flexible liquid container |
US20060182370A1 (en) * | 2003-04-01 | 2006-08-17 | Eric Risgalla | Flexible liquid container |
CN100398410C (en) * | 2003-04-01 | 2008-07-02 | 帕克曼公司 | Flexible liquid container |
AP1937A (en) * | 2003-04-01 | 2009-01-08 | Pakerman S A | Flexible liquid container |
WO2004087526A1 (en) * | 2003-04-01 | 2004-10-14 | Pakerman S.A. | Flexible liquid container |
JP4754477B2 (en) * | 2003-04-01 | 2011-08-24 | パカーマン・エスエイ | Flexible liquid container |
JP2006521974A (en) * | 2003-04-01 | 2006-09-28 | パカーマン・エスエイ | Flexible liquid container |
US7241066B1 (en) | 2003-04-15 | 2007-07-10 | American Grease Stick Company | Container for flowable products |
US8118198B1 (en) | 2004-03-25 | 2012-02-21 | Edwin George Watson | Pouring spout with controlling means |
US20080233252A1 (en) * | 2005-10-27 | 2008-09-25 | Manning Paul B | Containers and Methods for the Reconstitution and Dispensation of Concentrated or Powdered Products |
US20070228073A1 (en) * | 2006-03-31 | 2007-10-04 | Wyeth | Tear and spill resistant package for dispensing liquids in a controlled manner |
US8061563B1 (en) | 2007-05-29 | 2011-11-22 | Ags I-Prop, Llc | Flexible pouch with expulsion aid |
US20090220176A1 (en) * | 2008-02-15 | 2009-09-03 | Fusco Michael T | Self-sealing container |
US8376183B1 (en) | 2008-06-10 | 2013-02-19 | Ags I-Prop, Llc | Fluid dispenser having multiple chambers |
US20160122103A1 (en) * | 2009-05-20 | 2016-05-05 | Virbac Sa | Non-resealable thermoformed packaging for liquid or pasty substances |
US20110226813A1 (en) * | 2010-03-17 | 2011-09-22 | Semersky Frank E | Ovoid container |
US20120125477A1 (en) * | 2010-11-19 | 2012-05-24 | Cryovac, Inc. | Coiled Valve and Methods of Making and Using the Same |
US20120269966A1 (en) * | 2011-04-20 | 2012-10-25 | Hector Ureta-Morales | Cementitious adhesive delivery and application system |
WO2012143768A1 (en) * | 2011-04-20 | 2012-10-26 | Innovative Mortar Solutions, S.A.P.I. De C.V. | Cementitious adhesive delivery and application system |
US20150144659A1 (en) * | 2011-07-12 | 2015-05-28 | Gojo Industries, Inc. | Shut-off system for a dispenser |
US9950330B2 (en) * | 2011-07-12 | 2018-04-24 | Gojo Industries, Inc. | Shut-off system for a dispenser |
US20130228591A1 (en) * | 2011-07-27 | 2013-09-05 | Diana Foster | Product dispenser package for personal use |
US20130026183A1 (en) * | 2011-07-27 | 2013-01-31 | Diana Foster | Single use dispenser package |
US8931664B2 (en) * | 2011-07-27 | 2015-01-13 | Wave Creative Products Inc. | Single use dispenser package |
US9016521B2 (en) * | 2011-07-27 | 2015-04-28 | Diana Foster | Product dispenser package for personal use |
US20140370147A1 (en) * | 2012-01-11 | 2014-12-18 | Stephane Hentzel | Package for consumable products and methods for using same |
US20130341350A1 (en) * | 2012-06-22 | 2013-12-26 | Nestec S.A. | Packaging for consumable products and methods for using same |
US9415918B2 (en) * | 2012-06-22 | 2016-08-16 | Nestec S.A. | Packaging for consumable products and methods for using same |
US20160113377A1 (en) * | 2012-11-27 | 2016-04-28 | Socoplan | Device for Containing, Dispensing and Applying to a Substrate Content in Liquid, Gel, Cream or Paste Form |
US20150065970A1 (en) * | 2013-06-22 | 2015-03-05 | Jezekiel Ben-Arie | Washable ostomy pouch iii |
US20150018789A1 (en) * | 2013-06-22 | 2015-01-15 | Jezekiel Ben-Arie | Washable ostomy pouch ii |
US9949864B2 (en) * | 2013-06-22 | 2018-04-24 | Jezekiel Ben-Arie | Washable ostomy pouch III |
US9956110B2 (en) * | 2013-06-22 | 2018-05-01 | Jezekiel Ben-Arie | Washable ostomy pouch II |
US20150360825A1 (en) * | 2014-06-12 | 2015-12-17 | David Phillip Susca | Container with a Detachable Funnel |
US20190167380A1 (en) * | 2016-06-30 | 2019-06-06 | Gc Corporation | Packaging body for viscous dental material |
US20180162622A1 (en) * | 2016-12-14 | 2018-06-14 | Folton Gold Inc. | Pour bag with grippable dispensing funnel |
US12084248B2 (en) | 2019-07-23 | 2024-09-10 | Cryovac, Llc | Pouches for dispensing products |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3815794A (en) | Plastic-film containers with self-sealing orifices | |
US20200299034A1 (en) | Squeezable Dispensing Package and Method | |
US4163509A (en) | Squeeze dispenser with self closing valve | |
US4491245A (en) | Liquid dispensing container | |
US5411178A (en) | Fluid dispenser pouch with venturi shaped outlet | |
US2648463A (en) | Plastic container with rupturable sealed end | |
US9802745B2 (en) | Pour channel with cohesive closure valve and locking bubble | |
US3184121A (en) | Package with self sealing closure | |
US20140294324A1 (en) | Storage Apparatus With A Breachable Flow Conduit For Discharging A Fluid Stored Therein | |
JP2008044642A (en) | Branch type standing pouch | |
US4085886A (en) | Reclosable twin-Z-fold dispensing valve construction for a liquid containing film pouch | |
US4171755A (en) | Flexible container with pouring spout | |
US4312689A (en) | Dispensing container and method of assembling it | |
US7922045B2 (en) | Condiment packet | |
US2952394A (en) | Self closing dispensing container | |
US5531358A (en) | Flexible dispensing package | |
JP4826096B2 (en) | Branch type standing pouch | |
US20020063140A1 (en) | Flexible container | |
JP2002160744A (en) | Liquid packaging bag | |
US20020069615A1 (en) | Opening mechanism | |
JPH0681950U (en) | Liquid storage bag | |
JP2001163342A (en) | Self-standing bag | |
JP2001158443A (en) | Self-supporting bag | |
JP6179965B2 (en) | Container for holding liquid-filled packaging | |
JP2014088209A (en) | Double storage structure using fluid filling material package having film-formed non-return valve action |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES) |
|
AS | Assignment |
Owner name: AMERICAN CAN PACKAGING INC., AMERICAN LANE, GREENW Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMERICAN CAN COMPANY, A NJ CORP.;REEL/FRAME:004835/0338 Effective date: 19861107 Owner name: AMERICAN NATIONAL CAN COMPANY Free format text: MERGER;ASSIGNORS:AMERICAN CAN PACKAGING INC.;TRAFALGAR INDUSTRIES, INC. (MERGED INTO);NATIONAL CAN CORPORATION (CHANGED TO);REEL/FRAME:004835/0354 Effective date: 19870430 Owner name: AMERICAN CAN PACKAGING INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMERICAN CAN COMPANY, A NJ CORP.;REEL/FRAME:004835/0338 Effective date: 19861107 Owner name: AMERICAN NATIONAL CAN COMPANY, STATELESS Free format text: MERGER;ASSIGNORS:AMERICAN CAN PACKAGING INC.;TRAFALGAR INDUSTRIES, INC. (MERGED INTO);NATIONAL CAN CORPORATION (CHANGED TO);REEL/FRAME:004835/0354 Effective date: 19870430 |