US3800806A - Deposition of menthol on tobacco - Google Patents
Deposition of menthol on tobacco Download PDFInfo
- Publication number
- US3800806A US3800806A US00203206A US3800806DA US3800806A US 3800806 A US3800806 A US 3800806A US 00203206 A US00203206 A US 00203206A US 3800806D A US3800806D A US 3800806DA US 3800806 A US3800806 A US 3800806A
- Authority
- US
- United States
- Prior art keywords
- menthol
- tobacco
- vapor
- conduit
- air stream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229940041616 menthol Drugs 0.000 title claims abstract description 123
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 title claims abstract description 121
- 241000208125 Nicotiana Species 0.000 title claims abstract description 115
- 235000002637 Nicotiana tabacum Nutrition 0.000 title claims abstract description 115
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical group CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 title claims abstract 14
- 230000008021 deposition Effects 0.000 title description 6
- 238000002347 injection Methods 0.000 claims abstract description 12
- 239000007924 injection Substances 0.000 claims abstract description 12
- 230000008016 vaporization Effects 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 35
- 239000012530 fluid Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 238000004064 recycling Methods 0.000 claims description 3
- 239000000796 flavoring agent Substances 0.000 abstract description 40
- 235000019634 flavors Nutrition 0.000 abstract description 40
- NOOLISFMXDJSKH-KXUCPTDWSA-N (-)-Menthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1O NOOLISFMXDJSKH-KXUCPTDWSA-N 0.000 description 110
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 12
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 8
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- PHXATPHONSXBIL-UHFFFAOYSA-N xi-gamma-Undecalactone Chemical compound CCCCCCCC1CCC(=O)O1 PHXATPHONSXBIL-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- NFLGAXVYCFJBMK-RKDXNWHRSA-N (+)-isomenthone Natural products CC(C)[C@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-RKDXNWHRSA-N 0.000 description 4
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 4
- 239000001074 1-methoxy-4-[(E)-prop-1-enyl]benzene Substances 0.000 description 4
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 4
- 239000005770 Eugenol Substances 0.000 description 4
- NFLGAXVYCFJBMK-UHFFFAOYSA-N Menthone Chemical compound CC(C)C1CCC(C)CC1=O NFLGAXVYCFJBMK-UHFFFAOYSA-N 0.000 description 4
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 4
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 4
- 229940117916 cinnamic aldehyde Drugs 0.000 description 4
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 4
- 229960002217 eugenol Drugs 0.000 description 4
- 229930007503 menthone Natural products 0.000 description 4
- 229960001047 methyl salicylate Drugs 0.000 description 4
- RUVINXPYWBROJD-UHFFFAOYSA-N para-methoxyphenyl Natural products COC1=CC=C(C=CC)C=C1 RUVINXPYWBROJD-UHFFFAOYSA-N 0.000 description 4
- SATCULPHIDQDRE-UHFFFAOYSA-N piperonal Chemical compound O=CC1=CC=C2OCOC2=C1 SATCULPHIDQDRE-UHFFFAOYSA-N 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- RUVINXPYWBROJD-ONEGZZNKSA-N trans-anethole Chemical compound COC1=CC=C(\C=C\C)C=C1 RUVINXPYWBROJD-ONEGZZNKSA-N 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229960002903 benzyl benzoate Drugs 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- PHXATPHONSXBIL-JTQLQIEISA-N gamma-Undecalactone Natural products CCCCCCC[C@H]1CCC(=O)O1 PHXATPHONSXBIL-JTQLQIEISA-N 0.000 description 3
- 229940020436 gamma-undecalactone Drugs 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000006200 vaporizer Substances 0.000 description 3
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960000956 coumarin Drugs 0.000 description 2
- 235000001671 coumarin Nutrition 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 2
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 2
- 235000012141 vanillin Nutrition 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 238000013022 venting Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007775 late Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940117960 vanillin Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/18—Treatment of tobacco products or tobacco substitutes
- A24B15/28—Treatment of tobacco products or tobacco substitutes by chemical substances
- A24B15/30—Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
Definitions
- menthol has been applied to tobacco by first forming a dilute menthol solution and thereafter spraying the solution onto tobacco. It is well known that during spraying operations, tobacco is contacted only by discrete spray droplets of menthol solution. Such droplets are not uniformly distributed over the surface of the tobacco with the result that conventional spraying operations do not, for the most part, provide uniform deposition of menthol. Only through subsequent blending and menthol transferring operations can uniform deposition be obtained.
- a method for treating tobacco comprising introducing a tobacco flavorant in vapor form into a conduit at a predetermined concentration, wherein said conduit has a pneumatic stream therein; injecting tobacco into said conduit at a point downstream from said vapor injection; permitting said tobacco and vapor to remain in contact to permit uniform adsorption of said flavorant on said tobacco; and maintaining said predetermined concentration of said vapor in at least that portion of said conduit wherein said tobacco and said vapor are in contact.
- the following discussion is primarily directed toward the vapor deposition of menthol on tobacco.
- concentration of menthol vapor in the process concentration of menthol vapor in the process
- contact time of menthol vapor with tobacco temperature of the air stream in the pneumatic conduit
- velocity of air in the conduit velocity of air in the conduit
- tobacco feed rate and temperature of the tobacco with the first three factors being of major importance.
- the level of menthol on tobacco in conventional mentholated cigarettes is from about 0.2 to 0.5 percent by weight of tobacco. This level may be achieved by the present invention during a single pass of tobacco through the pneumatic system disclosed herein.
- menthol vapor concentration in the system from about 5 to 30 milligrams per cubic foot (mg'm/ft) and, more preferably, from 15 to 30 mgm/ft. For best results the concentration of menthol vapor is from 20 to 28 milligrams per cubic foot. When the menthol concentration is maintained significantly below about milligrams per cubic foot, it becomes necessary to employ an unacceptably long contact time with tobacco and/or an unduly elevated pneumatic stream temperature.
- an air temperature from about 100 to 130 F and especially from 100 to 115 F. Above about 100 F there is a marked increase in the amount of menthol vapor adsorbed by the tobacco. By operating at temperatures no greater than about 1 F. the heating requirements for the system can be reduced with a corresponding savings in fuel consumption and insulation requirement.
- a contact time of tobacco and menthol vapor of about 3 to 15 seconds, preferably about 5 to 12 seconds.
- the tobacco-vapor contact time of 3 to 15 seconds is particularly advantageous where the concentration of menthol in the process is from 5 to 30 milligrams per cubic foot and the air temperature is from 75 to 150 F.
- the air velocity within the pneumatic conduit can vary within wide ranges. As the air velocity in creases, the tobacco velocity is increased, thereby decreasing the retantion time of tobacco in the system. However, this factor can be counter balanced by elevating the level of menthol in the pneumatic stream.
- the tobacco mentholation level can be reduced or increased to achieve a particular purpose by varying the aforesaid and other parameters. Under certain circumstances it may be desirable to operate beyond one or more of the preferred ranges.
- the invention may be carried out by introducing a predetermined concentration of vaporized menthol into a pneumatic conduit, injecting tobacco into the conduit downstream from the menthol vapor injection point, permitting the tobacco and menthol vapor to remain in contact and maintaining the concentration of menthol vapor at least in the vapor-tobacco contacting portion of the system.
- Molten menthol is fed into a vaporizing apparatus 10 to provide a supply of menthol vapor.
- the molten menthol is vaporized at temperatures no greater than about 500 F in order to avoid decomposition products.
- the supply of molten menthol (not shown) is supplied to the vaporizer by means of pump 12.
- menthol vapor is introduced into the system in an area of negative or reduced pressure.
- Employing a reduced pressure zone to withdraw menthol vapors from the vaporizing means greatly contributes to the efficiency of the process.
- it is preferred that the menthol vapor is introduced into the system at the negative pressure or intake side 16 of blower 14.
- a volatile or semi-volatile carrier fluid such as water.
- the carrier fluid upon vaporization, serves to increase the total volume of vapors in vaporizing means 10, thus forcing the menthol into the system.
- a volatile or semi-volatile fluid creates additional problems and requires subsequent removal of the fluid carrier.
- Air is delivered to conduit 18 from blower 14. Cut blended tobacco is injected into the conduit downstream from the menthol vapor introduction point 17. Conventional tobacco conveying apparatus (not shown) is employed for this purpose. Tobacco may be drawn from a storage bin, delivered to a metering conveyor and thereafter conveyed into a hopper or loading chute. The tobacco is fed into a standard rotary air lock 20 which injects tobacco into the air stream in conduit 18.
- the tobacco is carried along and dispersed by the air stream through the conduit. As the tobacco is injected into conduit 18, it is contacted with the pneumatically conveyed menthol vapors.
- the concentration of menthol vapor at this point is preferably from 5-30 mgm/ft.
- the tobacco-menthol vapor pneumatic stream 21 is carried into a conventional. tangential separator from which the tobacco is removed by a rotary air lock 24 and collected in a storage bin (not shown).
- the air stream, carrying unadsorbed menthol vapor recycles through conduit 26 to air heaters 28 where it is heated to the control temperature.
- the air stream then passes through conduit 30 to intake port 31 of blower 14.
- a closed loop control system 32 In order to maintain proper control of the menthol concentration in conduit 18 a closed loop control system 32 is provided.
- the level of menthol vapor in conduit 18 is accurately and rapidly determined by a gas chromatograph, a total hydrocarbon analyzer, or other conventional analyzing means.
- the output 34 of the analyzer controls metering pump 12 which delivers molten menthol to the vaporization chamber.
- the accurate monitoring and control of the menthol vapor concentration is a key factor in the present process.
- Suitable flavorants include anethol, benzyl benzoate, cinnamaldehyde, coumarin, eugenol, heliotropin, menthone, methyl salicylate, propylene glycol, gamma-undecalactone and vanillin and the like.
- Example I Tobacco was treated with menthol vapor in an apparatus similar to that illustrated in the drawing and described hereinabove. A heating tape was wrapped around the portion of the recycle line 26 immediately upstream of intake end 31 of the blower 14. The menthol concentration of the system was maintained at 22 milligrams per cubic foot. The temperature of air stream was maintained at 1 F. in a single run through the system the tobacco remained in contact with the menthol vapor for 3.1 seconds. The treated tobacco was analyzed for menthol. The results indicated that a menthol level of 0.35 percent by weight was achieved.
- menthol vapor concentration was monitored employing a gas chromatograph.
- a peristoltic pump was operated in conjunction with the chromatograph to control the supply of molten menthol delivered to the vaporizer.
- Example II In order to determine the effect of varying the concentration of menthol vapor in the process, tobacco was mentholated according to the procedure set forth in Example I. The air temperature was 1 10 F. Cut tobacco was contacted with menthol vapor in the conduit of the system for 2% seconds. Molten menthol was pumped into the vaporizer at the rate of 2.0 cubic centimeters per minute. The following table illustrates the weight percent of menthol deposited on cut tobacco as the concentration of menthol vapor in the apparatus was varied:
- Menthol Analysis Menthol Concentration Menthol on Tobacco Sample milligrams/cult Weight Percent The results obtained illustrate the enhanced deposition effects obtained when the menthol concentration is controlled within a range from about to 30 milligrams per cubic foot and particularly to 28 mgm/ft".
- Example III In order to illustrate the effect of airtemperature on the process, tobacco was mentholated in accordance with the procedure set forth in Example I. The rates at which menthol and tobacco were fed into the process remained constant. The system temperature was controlled at points between and 1 15 F.
- Example IV Tobacco is treated with the following flavorants according to the procedure set forth in Example I: anethol; benzyl benzoate; cinnamaldehyde; coumarin; eugenol; heliotropin; menthone; methyl salicylate; propylene glycol; gamma-undecalactone and vanillin.
- the flavorants are deposited on tobacco in amounts sufficient to yield acceptable flavor.
- the preferred levels of application of flavorant on tobacco is as follows for each of the flavorants employed the levels of application are expressed in weight percent of tobacco:
- a method of treating tobacco comprising:
- the invention in accordance with claim 1 including the steps of separating the menthol-treated tobacco from said air stream, thereafter, recycling said separated air stream to said conduit.
- a method of treating tobacco comprising:
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Tobacco Products (AREA)
Abstract
Tobacco is treated by introducing a tobacco flavorant vapor such as menthol vapor into a conduit an pneumatically conveying the vapor through the conduit. The air in the conduit being maintained at a temperature of from about 75* to 150* F and above the vaporizing temperature of the flavorant. Tobacco is injected into the conduit at a point downstream from the vapor injection. The flavorant vapor is uniformly deposited on the tobacco as it is carried down the conduit. A predetermined level of flavorant is maintained in the conduit through which the tobacco and flavorant vapor are pneumatically conveyed.
Description
United States Patent 1 1 111 1 3,800,806
Banks 1 1 Apr. 2, 1974 DEPOSITION 0F MENTHOL ON TOBACCO FOREIGN PATENTS OR APPLICATIONS Inventor! Banks, Louisville, 1,049,90s 11 1966 Great Britain 131/136 Assigneez Brown & Williamson Tobacco 135,805 3/1961 U.S.S.R 131/138 1' L 11 K corpora oulsvl y Primary Examiner-Melv1n D. Rem 1 Flledi 30, 1971 Attorney, Agent, or Firm-Finnegan, Henderson, Fara- 211 App]. No.: 203,206 & Garret [57] ABSTRACT 52 us. c1. 131/144, 131/136 Tobacco is treated by introducing a tobacco flavorant [51] 111!- CI A241) 03/12 vapor Such as menthol vapor into a conduit an pneu [58] FIG 01 Search 131/136, 138, 144 maticany conveying the vapor through the conduit The air in the conduit being maintained at a tempera- [56] References C'ted ture of from about 75 to 150 F and above the vapor- TED TAT EN izing temperature of the flavorant. Tobacco is injected 1,972,118 9 1934 MCDi 131 4 R UX into h nd i at a p in down tream from the vapor 2,007,632 7/1935 Blank et a1.. injection. The flavorant vapor is uniformly deposited 3,364,936 1/1968 Axelrod 131/144 on the tobacco as it is carried down the conduit. A 3,677,269 7/1972 Hudson 131/144 X predetsrmined level f flavorant i maintained i the '5; S32 E 17 1 conduit through which the tobacco and flavorant ey e a 2,959,176 11/1960 Dock 131 136 x vapor are pneumatcany conveyed 3,357,436 12/1967 Wright 131/136 X 6 Claims, 1 Drawing Figure BACKGROUND OF THE INVENTION The invention relates to a method for treating tobacco with volatilizable flavorants. In particular, it re lates to a method for uniformly depositing menthol vapor on tobacco.
In the past the application of flavorants, including menthol, to tobacco has often been a rather haphazard operation. In general, menthol has been applied to tobacco by first forming a dilute menthol solution and thereafter spraying the solution onto tobacco. It is well known that during spraying operations, tobacco is contacted only by discrete spray droplets of menthol solution. Such droplets are not uniformly distributed over the surface of the tobacco with the result that conventional spraying operations do not, for the most part, provide uniform deposition of menthol. Only through subsequent blending and menthol transferring operations can uniform deposition be obtained.
In an attempt to remedy the aforesaid deficiencies it has been proposed to feed tobacco into a conduit where it is mixed with an air stream. The tobacco-air mixture is combined with an alcohol-menthol mixture which is sprayed onto the tobacco. This method, disclosed in U.S. Pat. No. 3,548,838, has verious defects. The patent teaches that a menthol solution must be 7 formed, preferably employing an alcohol solvent. The
use of alcohol as a solvent for menthol is expensive and hazardous. As illustrated in the patent, it is necessary to vent the tobacco mentholating system to prevent the formation of an explosive concentration of alcohol vapors. The venting procedure permits a substantial loss of menthol from the system. Further, it may be necessary to permit the tobacco to stand after contact with the menthol-alcohol solution for at least 4 hours prior to use.
An additional defect of the above patent and indeed, of the prior art menthol spraying procedures, lies in the failure to control the level of menthol application during a continuous processing operation. In any direct contact spray system it is necessary to maintain matched flows of both tobacco and menthol solution. When any variations occur in either flow, off target levels for menthol application occur. No convenient method has been proposed to immediately monitoring the application of menthol on tobacco and of rapidly compensating for any variation therein. This is basically an inherent defect in the prior art processes, since spray droplets require time to spread over the surface of the tobacco. There is no convenient way of rapidly monitoring and adjusting for variations in levels of menthol application and other flavorants via the spray process.
The tobacco industry has long desired to apply menthol vapor directly to tobacco in a continuous application process. However, the industry has not been able to overcome the problems associated with such a process. In fact, U.S. Pat. No. 3,548,838 warns that it is impractical to mix menthol directly with tobacco since it is too difficult to control the very minor quantities which it is desired to use. The patent further teaches that adsorption of menthol on cut blend tobacco in a closed air recirculation system is not feasible, since, in order to provide an acceptable concentration of menthol vapor in the system, it has allegedly proven necessary to operate at extremely high temperatures, well in excess of 200 F. Such high temperatures are not conducive to tobacco processing.
Accordingly, there exists a long felt need for a process for uniformly applying menthol and other flavorants directly to tobacco without employing sprayed, dilute solutions, free of the side effects and deficiencies of the prior art.
SUMMARY OF THE INVENTION It is, therefore, a primary object of this invention to provide a process for uniformly treating tobacco with flavorant vapors, such as menthol vapor.
It is another object of the invention to provide a process for the vapor mentholation of tobacco in the absence of a carrier fluid for the menthol.
It is an additional object of the invention to employ menthol vapor to treat tobacco at temperatures compatible with tobacco processing.
The above and other objects are attained in a method for treating tobacco comprising introducing a tobacco flavorant in vapor form into a conduit at a predetermined concentration, wherein said conduit has a pneumatic stream therein; injecting tobacco into said conduit at a point downstream from said vapor injection; permitting said tobacco and vapor to remain in contact to permit uniform adsorption of said flavorant on said tobacco; and maintaining said predetermined concentration of said vapor in at least that portion of said conduit wherein said tobacco and said vapor are in contact.
It has been discovered that flavorant and, particularly, menthol, application is unexpectedly enhanced by exposing tobacco to a pneumatic stream containing a controlled, predetermined concentration of flavorant vapor. Flavorant concentration may be maintained in the stream by sampling the pneumatic stream in the conduit in the region of contact between the tobacco and flavorant vapor and simultaneously metering into the system, flavorant vapor in proportions sufficient to replace the flavorant adsorbed by the tobacco.
The invention will be illustrated in greater detail in the accompanying drawing in which a system suitable for the performance of the invention is illustrated.
DESCRIPTION OF PREFERRED EMBODIMENTS Although applicable to other volatilizable flavorants the following discussion is primarily directed toward the vapor deposition of menthol on tobacco. Among the factors to be considered in the vapor deposition of menthol on tobacco are the following: concentration of menthol vapor in the process; contact time of menthol vapor with tobacco; temperature of the air stream in the pneumatic conduit; velocity of air in the conduit; tobacco feed rate and temperature of the tobacco, with the first three factors being of major importance. In general, the level of menthol on tobacco in conventional mentholated cigarettes is from about 0.2 to 0.5 percent by weight of tobacco. This level may be achieved by the present invention during a single pass of tobacco through the pneumatic system disclosed herein.
During mentholation of tobacco it is preferred to maintain menthol vapor concentration in the system from about 5 to 30 milligrams per cubic foot (mg'm/ft) and, more preferably, from 15 to 30 mgm/ft. For best results the concentration of menthol vapor is from 20 to 28 milligrams per cubic foot. When the menthol concentration is maintained significantly below about milligrams per cubic foot, it becomes necessary to employ an unacceptably long contact time with tobacco and/or an unduly elevated pneumatic stream temperature. Where concentrations of over about 30 milligrams per cubic foot are employed, the system becomes unnecessarily wasteful of menthol and, in general, requires unacceptably high temperatures to overcome the tendency of the menthol vapor to condense on the walls of the system.
In order to maintain the desired concentration of menthol vapor in the system it is preferred to employ an air temperature in the system from about 75 to 150 F. Temperatures below the lower value tend to induce condensation of menthol vapor within the system. Operating with air temperature above about 150 F tends to warm the tobacco to an undesirable level and create ultimate processing problems.
For best results it is particularly preferred to employ an air temperature from about 100 to 130 F and especially from 100 to 115 F. Above about 100 F there is a marked increase in the amount of menthol vapor adsorbed by the tobacco. By operating at temperatures no greater than about 1 F. the heating requirements for the system can be reduced with a corresponding savings in fuel consumption and insulation requirement.
In order to achieve a mentholation level of from about 0.2 to 0.5 percent by weight of tobacco during a single pass of tobacco through the system, it is preferable to achieve a contact time of tobacco and menthol vapor of about 3 to 15 seconds, preferably about 5 to 12 seconds. The tobacco-vapor contact time of 3 to 15 seconds is particularly advantageous where the concentration of menthol in the process is from 5 to 30 milligrams per cubic foot and the air temperature is from 75 to 150 F.
It has been found that the tobacco feed rate may be varied within relatively broad limits with little effect on the amount of menthol adsorbed. This feature is desirable in the process since it can be very difficult to control the feed rate of cut tobacco through a pneumatic conduit.
Usually, the air velocity within the pneumatic conduit can vary within wide ranges. As the air velocity in creases, the tobacco velocity is increased, thereby decreasing the retantion time of tobacco in the system. However, this factor can be counter balanced by elevating the level of menthol in the pneumatic stream.
Of course, it will be obvious to those skilled in the art that the tobacco mentholation level can be reduced or increased to achieve a particular purpose by varying the aforesaid and other parameters. Under certain circumstances it may be desirable to operate beyond one or more of the preferred ranges. In any event, the invention may be carried out by introducing a predetermined concentration of vaporized menthol into a pneumatic conduit, injecting tobacco into the conduit downstream from the menthol vapor injection point, permitting the tobacco and menthol vapor to remain in contact and maintaining the concentration of menthol vapor at least in the vapor-tobacco contacting portion of the system.
Turning now to the drawing, the process is carried out in a pneumatic system. Molten menthol is fed into a vaporizing apparatus 10 to provide a supply of menthol vapor. The molten menthol is vaporized at temperatures no greater than about 500 F in order to avoid decomposition products. The supply of molten menthol (not shown) is supplied to the vaporizer by means of pump 12.
For best results menthol vapor is introduced into the system in an area of negative or reduced pressure. Employing a reduced pressure zone to withdraw menthol vapors from the vaporizing means greatly contributes to the efficiency of the process. For the aforementioned reasons, it is preferred that the menthol vapor is introduced into the system at the negative pressure or intake side 16 of blower 14.
In order to introduce menthol vapor at the positive or outlet side 15 of blower 14 it is necessary to augment the menthol vapor with a volatile or semi-volatile carrier fluid, such as water. The carrier fluid, upon vaporization, serves to increase the total volume of vapors in vaporizing means 10, thus forcing the menthol into the system. Of course, the use of a volatile or semi-volatile fluid creates additional problems and requires subsequent removal of the fluid carrier.
Air is delivered to conduit 18 from blower 14. Cut blended tobacco is injected into the conduit downstream from the menthol vapor introduction point 17. Conventional tobacco conveying apparatus (not shown) is employed for this purpose. Tobacco may be drawn from a storage bin, delivered to a metering conveyor and thereafter conveyed into a hopper or loading chute. The tobacco is fed into a standard rotary air lock 20 which injects tobacco into the air stream in conduit 18.
The tobacco is carried along and dispersed by the air stream through the conduit. As the tobacco is injected into conduit 18, it is contacted with the pneumatically conveyed menthol vapors. The concentration of menthol vapor at this point is preferably from 5-30 mgm/ft. The tobacco-menthol vapor pneumatic stream 21 is carried into a conventional. tangential separator from which the tobacco is removed by a rotary air lock 24 and collected in a storage bin (not shown).
The air stream, carrying unadsorbed menthol vapor recycles through conduit 26 to air heaters 28 where it is heated to the control temperature. The air stream then passes through conduit 30 to intake port 31 of blower 14.
In order to maintain proper control of the menthol concentration in conduit 18 a closed loop control system 32 is provided. The level of menthol vapor in conduit 18 is accurately and rapidly determined by a gas chromatograph, a total hydrocarbon analyzer, or other conventional analyzing means. The output 34 of the analyzer controls metering pump 12 which delivers molten menthol to the vaporization chamber. The accurate monitoring and control of the menthol vapor concentration is a key factor in the present process.
The process previously described is applicable to tobacco flavorants which can be vaporized without decomposition. Suitable flavorants include anethol, benzyl benzoate, cinnamaldehyde, coumarin, eugenol, heliotropin, menthone, methyl salicylate, propylene glycol, gamma-undecalactone and vanillin and the like.
Numerous advantages are achieved by the present process. More uniform control of the deposition of menthol on tobacco is achieved by vapor deposition than is achieved by spray deposition. In the present process each tobacco particle is exposed to direct contact with menthol molecules, while in the liquid spray systems conventionally employed, droplets strike tobacco at specific contact points and must migrate through the tobacco to achieve uniformity. in the preferred embodiments of the present invention no menthol carrier is employed. Obviating such a carrier represents a substantial economic benefit. Further, problems in venting dangerous volatile carriers are eliminated.
The following examples illustrate a preferred embodiment of the present invention and are not limitative of scope: Example I Tobacco was treated with menthol vapor in an apparatus similar to that illustrated in the drawing and described hereinabove. A heating tape was wrapped around the portion of the recycle line 26 immediately upstream of intake end 31 of the blower 14. The menthol concentration of the system was maintained at 22 milligrams per cubic foot. The temperature of air stream was maintained at 1 F. in a single run through the system the tobacco remained in contact with the menthol vapor for 3.1 seconds. The treated tobacco was analyzed for menthol. The results indicated that a menthol level of 0.35 percent by weight was achieved.
During treatment the concentration of menthol vapor was monitored employing a gas chromatograph. A peristoltic pump was operated in conjunction with the chromatograph to control the supply of molten menthol delivered to the vaporizer.
The efficiency of the present process is entirely unexpected in light of the prior art, particularly US. Pat. No. 3,548,838 which teaches that it is impractical to mix menthol directly with tobacco owing, in part, to the difficulty in controlling the minor quantities in use and, also, to the alleged need for employing temperatures well in excess of 200 F.
Example II In order to determine the effect of varying the concentration of menthol vapor in the process, tobacco was mentholated according to the procedure set forth in Example I. The air temperature was 1 10 F. Cut tobacco was contacted with menthol vapor in the conduit of the system for 2% seconds. Molten menthol was pumped into the vaporizer at the rate of 2.0 cubic centimeters per minute. The following table illustrates the weight percent of menthol deposited on cut tobacco as the concentration of menthol vapor in the apparatus was varied:
Menthol Analysis Menthol Concentration Menthol on Tobacco Sample milligrams/cult Weight Percent The results obtained illustrate the enhanced deposition effects obtained when the menthol concentration is controlled within a range from about to 30 milligrams per cubic foot and particularly to 28 mgm/ft".
Example III In order to illustrate the effect of airtemperature on the process, tobacco was mentholated in accordance with the procedure set forth in Example I. The rates at which menthol and tobacco were fed into the process remained constant. The system temperature was controlled at points between and 1 15 F.
From about 80 to F the quantity of menthol deposited on tobacco remained substantially constant. However, at temperatures above 100 F there was a marked increase in the amount of menthol adsorbed by tobacco. It was observed that at temperatures above about 100 F there was no significant condensation of menthol on the system walls. It is postulated that maintaining a constant menthol feed while eliminating menthol condensation effectively increases the amount of menthol vapor in the pneumatic stream. The enhanced menthol application obtained is considered to be a combined effect of increasing temperature and, correspondingly, menthol concentration.
Example IV Tobacco is treated with the following flavorants according to the procedure set forth in Example I: anethol; benzyl benzoate; cinnamaldehyde; coumarin; eugenol; heliotropin; menthone; methyl salicylate; propylene glycol; gamma-undecalactone and vanillin. The flavorants are deposited on tobacco in amounts sufficient to yield acceptable flavor.
The preferred levels of application of flavorant on tobacco is as follows for each of the flavorants employed the levels of application are expressed in weight percent of tobacco:
Flavorant Level of Application anethol 0.0005-0.02 benzyl benzoate 0.00050.0l cinnamaldehyde 0.0002-0005 coumarin 00005-0005 eugenol 0.0005-0.0l heliotropin 0.0005-0015 menthone 0.0 l 0.05 methyl salicylate 0.00050.0l propylene glycol 0.0l-2.0 'y-undecalactone 0.0002-0005 vanillan 0.0002-0.005
For reasons of economy there is a practical limit to the amount of additive which is usually applied by vapor deposition. The upper limit is proportional to the vapor pressure of the specific additive.
I claim:
1'. A method of treating tobacco comprising:
a. introducing by vapor injection a tobacco flavorant in heated apor form in the abgnce of a volatile or semi-volatile carrier fluid, into a coiiduit having a heated air stream maintained at a temperature within the range of from about 75 to F, the temperature of said air stream being above the vaporizing temperature of the flavorant, the vaporized flavorant being a material selected from the group consisting of menthol, anethol, benzyl, benzoate, cinnamaldehyde, coumarin, eugenol, heliotropin, menthone, methyl salicylate, propylene glycol, gamma-undecalactone and vanillan, a proportion of from 15 to 30 milligrams per cubic foot of heated air to form a uniform concentration of said vaporized flavorant in said air stream;
12. injecting tobacco into said conduit and into said mixture of said heated air and vaporized flavorant at a point downstream from said vapor injection at the outlet side of a negative pressure producing means;
0. keeping said tobacco and vaporized flavorant in said conduit in contact for a period of time of from between 3 and 15 seconds to permit uniform absorption of said flavorant whereby a flavorant level of at least about 0.2 percent on said tobacco is obtained; and finally separating the flavored tobacco from said conduit.
2. The invention in accordance with claim 1 wherein the vapor is menthol vapor and the concentration of menthol vapor in said conduit at said tobacco injection point is from about 5 to 30 milligrams per cubic foot.
3. The invention in accordance with claim 1 including the steps of separating the menthol-treated tobacco from said air stream, thereafter, recycling said separated air stream to said conduit.
4. A method of treating tobacco comprising:
a. introducing by vapor injection menthol in heated vapor form in the absence of a volatile or semivolatile carrier fluid into a conduit having a heated air stream maintained at a temperature within the range of from about 75 to 150 F, the temperature of said air stream being above the vaporizing temperature of said menthol, a vaporized menthol being in the proportion of from between 15 to 30 milligrams per cubic foot of heated air to form a uniform concentration of said menthol in said air stream;
b. injecting tobacco into said conduit and into said mixture of said heated air and vaporized menthol at a point downstream from said vapor injection at the outlet side of a negative pressure producing means;
c. keeping said tobacco and vaporized menthol in said conduit in contact for a period of time of from between 3 and 15 seconds to permit uniform absorption of said menthol at a menthol level of at least about 0.2 percent on said tobacco; and finally separating the flavored tobacco from said conduit.
5. The invention in accordance with claim 4 includ- 6. The method in accordance with claim 4 in which the temperature of the pneumatic stream is between and F.
UNITED STATES PATENT OFFICE CERTIFICATE OF CURRECTIQN Patent No. 3,800,806 Dated April 2, 1 974 Invent0r(s) Jon 15'. Banks It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
I Col. 3, line ,48, "retantion" should read retention Claim 1', Col. 7, lines 5- and 6, "absorption" should be -adsorption. Claim 4, Col. 8, lines'l3 ahd l4, "absorption" should be -adsorption- Signed and sealed this 19th day of November 1974.
(SEAL) Attest:
. McCOY M. GIBSON ,JR. C. MARSHALL DANN I Attesting Officer I Conunissioner of Patents FORM EI-10 0 (10-69) USCOMM-DC 60376-P69 ",5. GOVERNMENT PRINTING OFFICE t IQB 0'355"334,
Claims (5)
- 2. The invention in accordance with claim 1 wherein the vapor is menthol vapor and the concentration of menthol vapor in said conduit at said tobacco injection point is from about 5 to 30 milligrams per cubic foot.
- 3. The invention in accordance with claim 1 including the steps of separating the menthol-treated tobacco from said air stream, thereafter, recycling said separated air stream to said conduit.
- 4. A method of treating tobacco comprising: a. introducing by vapor injection menthol in heated vapor form in the absence of a volatile or semi-volatile carrier fluid into a conduit having a healed air stream maintained at a temperature within the range of from about 75* to 150* F, the temperature of said air stream being above the vaporizing temperature of said menthol, a vaporized menthol being in the proportion of from between 15 to 30 milligrams per cubic foot of heated air to form a uniform concentration of said menthol in said air stream; b. injecting tobacco into said conduit and into said mixture of said heated air and vaporized menthol at a point downstream from said vapor injection at the outlet side of a negative pressure producing means; c. keeping said tobacco and vaporized menthol in said conduit in contact for a period of time of from between 3 and 15 seconds to permit uniform absorption of said menthol at a menthol level of at least about 0.2 percent on said tobacco; and finally separating the flavored tobacco from said conduit.
- 5. The invention in accordance with claim 4 including the steps of separating the menthol-treated tobacco from said air stream and thereafter recycling said air stream to said conduit.
- 6. The method in accordance with claim 4 in which the temperature of the pneumatic stream is between 100* and 115* F.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20320671A | 1971-11-30 | 1971-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3800806A true US3800806A (en) | 1974-04-02 |
Family
ID=22752952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00203206A Expired - Lifetime US3800806A (en) | 1971-11-30 | 1971-11-30 | Deposition of menthol on tobacco |
Country Status (1)
Country | Link |
---|---|
US (1) | US3800806A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3991771A (en) * | 1975-02-11 | 1976-11-16 | Brown & Williamson Tobacco Corporation | Apparatus for deposition of flavorant vapor on tobacco |
US4449541A (en) * | 1981-06-02 | 1984-05-22 | R. J. Reynolds Tobacco Company | Tobacco treatment process |
JP2014507953A (en) * | 2011-03-15 | 2014-04-03 | ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド | Method and apparatus for saturating tobacco industry products with plant sensory components |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1972118A (en) * | 1932-01-07 | 1934-09-04 | Rex D Mcdill | Medicated stick |
US2007632A (en) * | 1932-06-01 | 1935-07-09 | Blank Morris | Cigarette flavoring device and process of making same |
US2959176A (en) * | 1957-01-05 | 1960-11-08 | Svenska Flaektfabriken Ab | Pre-treating raw tobacco |
SU135805A1 (en) * | 1960-04-04 | 1960-11-30 | Ю.Н. Редька | Device for flavoring tobacco |
GB1049908A (en) * | 1964-11-10 | 1966-11-30 | G H Bowen Ltd | Improvements relating to the conditioning treatment of tobacco or other materials |
US3357436A (en) * | 1964-08-26 | 1967-12-12 | Brown & Williamson Tobacco | Apparatus for drying tobacco |
US3364936A (en) * | 1965-10-21 | 1968-01-23 | Axelrod Solomon | Tobacco processing |
US3548838A (en) * | 1968-11-25 | 1970-12-22 | Liggett & Myers Inc | Applying menthol to tobacco in a pneumatic system |
US3677269A (en) * | 1970-03-23 | 1972-07-18 | American Chemosol Corp | Tobacco additive device |
US3678939A (en) * | 1970-11-13 | 1972-07-25 | Liggett & Myers Inc | Method of treating tobacco with flavorants in a pneumatic system |
-
1971
- 1971-11-30 US US00203206A patent/US3800806A/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1972118A (en) * | 1932-01-07 | 1934-09-04 | Rex D Mcdill | Medicated stick |
US2007632A (en) * | 1932-06-01 | 1935-07-09 | Blank Morris | Cigarette flavoring device and process of making same |
US2959176A (en) * | 1957-01-05 | 1960-11-08 | Svenska Flaektfabriken Ab | Pre-treating raw tobacco |
SU135805A1 (en) * | 1960-04-04 | 1960-11-30 | Ю.Н. Редька | Device for flavoring tobacco |
US3357436A (en) * | 1964-08-26 | 1967-12-12 | Brown & Williamson Tobacco | Apparatus for drying tobacco |
GB1049908A (en) * | 1964-11-10 | 1966-11-30 | G H Bowen Ltd | Improvements relating to the conditioning treatment of tobacco or other materials |
US3364936A (en) * | 1965-10-21 | 1968-01-23 | Axelrod Solomon | Tobacco processing |
US3548838A (en) * | 1968-11-25 | 1970-12-22 | Liggett & Myers Inc | Applying menthol to tobacco in a pneumatic system |
US3677269A (en) * | 1970-03-23 | 1972-07-18 | American Chemosol Corp | Tobacco additive device |
US3678939A (en) * | 1970-11-13 | 1972-07-25 | Liggett & Myers Inc | Method of treating tobacco with flavorants in a pneumatic system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3991771A (en) * | 1975-02-11 | 1976-11-16 | Brown & Williamson Tobacco Corporation | Apparatus for deposition of flavorant vapor on tobacco |
US4449541A (en) * | 1981-06-02 | 1984-05-22 | R. J. Reynolds Tobacco Company | Tobacco treatment process |
JP2014507953A (en) * | 2011-03-15 | 2014-04-03 | ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド | Method and apparatus for saturating tobacco industry products with plant sensory components |
JP2014507954A (en) * | 2011-03-15 | 2014-04-03 | ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド | Method and apparatus for imparting sensory stimulation to a receiving product |
US20160073682A1 (en) * | 2011-03-15 | 2016-03-17 | British American Tobacco (Investments) Limited | Method for Imparting an Organoleptic Quality to a Tobacco Industry Product |
US9723867B2 (en) * | 2011-03-15 | 2017-08-08 | British American Tobacco (Investments) Limited | Method for imparting an organoleptic quality to a tobacco industry product |
US9844231B2 (en) | 2011-03-15 | 2017-12-19 | British American Tobacco (Investments) Limited | Method and apparatus for imparting an organoleptic quality to a recipient product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4449541A (en) | Tobacco treatment process | |
US5711320A (en) | Process for flavoring shredded tobacco and apparatus for implementing the process | |
US5012823A (en) | Tobacco processing | |
USRE29298E (en) | Deposition of vaporized flavorant on tobacco | |
US5445169A (en) | Process for providing a tobacco extract | |
US3612066A (en) | Denicotinizing process | |
DE69024938T2 (en) | METHOD FOR PRESENTING VAPORED REAGENTS FOR CHEMICAL DEPOSITION FROM THE STEAM PHASE | |
US3817258A (en) | Method of producing cigarettes or the like filled with tobacco containing one or more aromatic liquid agents, and a device for carrying out the method | |
AU705244B2 (en) | Method and apparatus for denitrating tobacco stem material | |
US3800806A (en) | Deposition of menthol on tobacco | |
SU1012784A3 (en) | Method for fluffing tobacco | |
CN211323029U (en) | Shaping drying system of special thick liquid method reconstituted tobacco of cigarette is not burnt in heating | |
US3678939A (en) | Method of treating tobacco with flavorants in a pneumatic system | |
DE3326338C2 (en) | ||
US3056728A (en) | Process for manufacturing powdered preparations containing fat-soluble vitamins, essential oils, and mixtures thereof | |
US3096773A (en) | Process for treating tobacco and tobacco obtained by said process | |
KR20190042545A (en) | Cool acetylated wood elements | |
US3875314A (en) | Liquid smoke and method for manufacture | |
US3354013A (en) | Method and apparatus for applying particulate additives to continuous filament tow | |
US4883676A (en) | Method of forming liquid smoke | |
US2122519A (en) | Manufacture of artificial silk | |
US3548838A (en) | Applying menthol to tobacco in a pneumatic system | |
US4966170A (en) | Tobacco processing | |
FI64046B (en) | FOERFARANDE FOER EXPANDERING AV TOBAK | |
GB1246998A (en) | Process and apparatus for treating fibrous materials |