US3724747A - Centrifuge apparatus with means for moving material - Google Patents
Centrifuge apparatus with means for moving material Download PDFInfo
- Publication number
- US3724747A US3724747A US00233538A US3724747DA US3724747A US 3724747 A US3724747 A US 3724747A US 00233538 A US00233538 A US 00233538A US 3724747D A US3724747D A US 3724747DA US 3724747 A US3724747 A US 3724747A
- Authority
- US
- United States
- Prior art keywords
- centrifuge
- rotor
- liquid
- containers
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B5/00—Other centrifuges
- B04B5/04—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
- B04B5/0407—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles
- B04B5/0428—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles with flexible receptacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B5/00—Other centrifuges
- B04B5/04—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
- B04B5/0442—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
- B04B2005/045—Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation having annular separation channels
Definitions
- ABSTRACT A centrifuge for batch treatment of a liquid, particularly blood, such as for separating blood into fractions of different densities and/or for washing blood cells suspended in a liquid comprises closed collapsible containers in the centrifuge rotor.
- Resilient tubing interconnects the containers and a peristaltic pump member mounted on and rotating with the centrifuge rotor acts on the resilient tubing to selectively move liquid therethrough from one container to another and prevent liquid flow through the resilient tubing.
- one container may initially hold 'a batch consisting of either a mixture of whole blood and a liquid preservative or a suspension of red blood cells in a liquid preservative and a second container may initially hold a quantity of a wash solution while a third container is initially empty.
- the containers are interconnected through conduits and during the treatment plasma and/or preservative from the first container is passed into the empty third container and temporarily replaced by wash solution from the second container. After agitation of the contents of the first container the used wash solution and the material washed off from the blood cells is passed into the third container leaving the washed red cells in the first container.
- collapsible closed containers for the blood, for separated fractions and for wash solution enables the treatment to be carried out under sterile conditions since the containers can be interconnected in a closed system to communicate with each other without their contents coming into contact with the ambient atmosphere or exterior surfaces.
- the transfer of liquid between the containers has presented problems, however, since the transfer normally has to take place while the centrifuge rotor and the container system rotate at high speed.
- a .general object of the present invention is to provide improved means for effecting and controlling the transfer of liquid between the containers.
- a more specific object in accordance with the foregoing general object is to provide a centrifuge in which the rotor supports a pump for displacing liquid between the containers.
- Another object is to provide a centrifuge which can be loaded with the containers and made ready for operation with a minimum of manual labor.
- a centrifuge having a rotor, an assembly of collapsible closed containers disposed in and rotating with the rotor, a collapsible conduit which provides a path for the flow of liquid between the containers, and a peristaltic pump member which is mounted on he rotor and adapted to rotate with the rotor and the container assembly.
- the peristaltic pump member continuously acts on the collapsible conduit and when liquid is to be transferred from one container to another, the peristaltic pump member is caused to rotate slowly with respect to the rotor and the container assembly to displace liquid through the conduit.
- the peristaltic pump member When the peristaltic pump member is stationary with respect to the rotor and the container assembly, it compresses the conduit to block flow therethrough.
- FIG. 1 is a view in vertical section of the rotor and associated parts of a centrifuge constructed in accordance with the invention
- FIG. 2 is an enlarged view corresponding to the central portion of FIG. 1;
- FIG. 3 is an exploded partly cut away perspective view of the container assembly in the centrifuge shown in FIGS. 1 and 2;
- FIG. 4 is a plan view of the central portion of the two-compartment container shown in the lower portion of FIG. 3.
- the centrifuge diagrammatically illustrated in FIG. 1 has a frame 10 supporting a centrifuge rotor 11 for rotation about a vertical axis at high speed, e.g., 3000 rpm, by means of a motor 12.
- Rotor 11 includes a bowl 13 having a depending hollow journal member 14 mounted in a ball bearing 15 in frame 10.
- the rotor bowl and most other elements of the rotor are circular in plan view.
- Rotor bowl 13 houses a container assembly the details of which are best seen in FIG. 3. It includes a lower two-compartment container 16 supported on the bottom wall of bowl l3 and an upper single-compartment container 17 supported on top of container 16. Both containers are generally disk shaped and concentric with the rotor bowl. They are both closed, disregarding openings for the introduction and removal of liquid, and made of a thin and flexible sheet material so as to be collapsible.
- the sheet material may be, for example, a laminate of polyethylene and polyester having a total thickness of about 0.1 millimeter.
- Lower container 16 is made of three circular sheets 18,19,20 disposed one on the other and sealingly joined along their peripheries by a continuous heat seal 21 and at their central portion by another circular heat seal 22.
- Lower and central sheets 18,19 define between them a compartment 23 which initially holds wash solution and central and upper sheets 19,20 define between them a compartment 24 which is initially empty.
- heat seals 25 (marked by closely spaced dash lines in FIG. 4) joining sheets 18,19 define a collapsible conduit 26'through which wash solution in compartment 23 can flow to a short connecting tube 27 secured to upper sheet 20 around an opening 28 in the latter via an opening 31 in sheet 19 (see also FIG. 2).
- Similar heat seals 29 (marked by closely spaced full lines in FIG. 2) joining sheets 19,20 define another collapsible conduit 30 through which liquid can flow from connecting tube 27 to compartment 24.
- Portions of conduits 26,30 extend along two concentric circles and cooperate with a pump 32 described in more detail hereinafter. This pump is operable to-produce the liquid flow and to block the conduits when flow is not desired.
- Heat seal 22 prevents liquid in the two compartments'from entering the central container portion except through the conduits.
- Upper container 17 initially holds a quantity of blood cells suspended in a liquid preservative. It consists of two sheets 33, 34 which are joined by a heat seal 35 at their peripheries and a heat seal 36 at their central portions so that they define between them an annular compartment. A connecting tube 37 communicates with this compartment through a conduit 38 defined by heat seals. An opening 39 in the central portion permits tube 37 to be connected with tube 27 of container 16.
- Conduits 26 and 30 as well as conduit 38 have a strong natural tendency to close themselves. Thus, in order that they may permit the liquid in the containers to pass through them, the liquid must be subjected to a substantial pressure. Therefore, no special precautions are necessary to prevent unwanted flow through the conduits during manual handling of the containers.
- a filler ring 40 and a backing plate 41 are disposed between containers 16 and 17.
- Connecting tube 27 extends through an opening in the backing plate and is connected to the connecting tube 37.
- Rotor 1 1 includes a cover assembly with a rigid cover plate 42 which has an internally screw-threaded boss 43 and holds an annular body 44 made of soft rubber mixed with lead granules so as to have higher specific gravity than the liquids in the containers.
- a clamping mechanism having an externally screw-threaded sleeve 45 screwed into boss 43 and a number of circumferentially distributed wedges 46 connected to the sleeve through rod 47 cooperates with cover plate 42 and bowl 13 to hold down the cover assembly against the containers.
- a photoelectric detector 48 mounted in 'sleeve 45 signals the presence of red blood cells in connecting tube 37.
- Pump 32 referred to above is of the well-known peristaltic type which has a plurality of rollers moved in a circular path to progressively collapse a resilient conduit so as to displace liquid in the conduit. It has two concentric and independently movable circular groups of rollers, each comprising three rollers spaced apart 120.
- the outer group of rollers 49 are rotatably mounted on an outer rotor member 50 secured to a hollow shaft 51 which is concentric with rotor 11. These rollers cooperate with conduit 26.
- the inner group of rollers 52 are rotatably mounted on an inner rotor member 53 secured to a shaft 54 extending coaxially through shaft 51.These rollers cooperate with conduit 30.
- rollers 49 and 52 engage conduits 26 and 30 through a flexible diaphragm 55 to lo cally compress and close these conduits against backing plate 41.
- Rotor members 50 and 53 normally are stationary with respect to the rotating centrifuge rotor and the containers but when desired they can be slowly rotated with respect to the centrifuge rotor during rotation of the latter.
- Positive rotational movement of rotor member 50 is derived from journal member 14 of rotor bowl 13 by means of a gear 56 engaging a gear on the journal member and another gear 57 engaging a gear on hollow shaft 51.
- Gears 56 and 57 are mounted for rotation about a common axis but normally there is no driving connection between them.
- a magnetic clutch 58 can be actuated to cause these gears to rotate in unison so as to bring about slow rotation of rotor member with respect to container 16 (clockwise as seen from above in FIGS. 1, 2 and in FIG. 4).
- positive rotational movement of rotor member 53 (anti-clockwise) is derived from journal member 14 through gears 59,60 and a clutch 61.
- Rotor 11 is assumed to be stationary but assembled as shown in FIG. 1, although compartment 24 of container 16 is empty so that sheets 19 and 20 engage each other face to face under the influence of pressure from rubber body 44.
- the peripheral portions of the containers are clamped between the bottom of bowl l3 and filler ring 40 and between the latter and rubber body 44.
- the central portions of the containers are clamped between the rollers of pump 32 and the lower end of boss 43 of cover plate 42.
- the rubber body in conjunction with the shape of the parts ensure that unwanted air pockets adjacent the containers are virtually eliminated.
- Rotor 11 is then caused to rotate with clutches 58,61 disengaged so that pump rotor members 50,53 rotate in unison with the centrifuge rotor owing to the friction between these rotor members and diaphragm and other parts of the centrifuge rotor.
- the heavy soft rubber of body 44 is forced outwardly to apply an external pressure to containers 16,17. Owing to the arrangement and shape of the parts, this pressure forces the liquid in the containers inwardly and-causes conduits 26,30 to assume the expanded form shown in FIG. 2.
- the rollers of the rotor members are stationary with respect to the rotor and the containers and compress the conduits, no liquid is permitted to pass through the latter.
- the centrifugal field which may be of the order of 1,000 g, causes the formation of fractions of different densities in container 17, that is, the red blood cells accumulate in the radially outer portion of container 17 while the lighter preservative liquid is collected in the radially inner portion.
- Clutch 61 is then engaged to cause inner rotor member 53 to rotate anticlockwise (FIG. 4) with respect to the centrifuge rotor and the containers so that the preservative liquid is pumped from container 17 into compartment 24 of container 16 through conduit 38, connecting tubes 37,27 and conduit 30. Since outer rotor member 50 is still stationary with respect to the centrifuge rotor and the containers, the preservative liquid is prevented from flowing through conduit 26.
- clutch 61 is again disengaged and clutch 58 engaged so that outer rotor member 50 is caused to rotate to pump wash solution from compartment 23 into container 17 through conduit 26. tubes 27,37 and conduit 38 while inner rotor member 53 is held stationary to prevent flow through conduit 30.
- clutch 58 is disengaged so that both conduits 26,30 are closed whereupon rotor 11 is rapidly braked (by means not shown) to low speed to agitate the contents of container 17 and thoroughly mix the wash solution and blood cells.
- THe wash solution is then separated from the blood cells and transferred to compartment 24 of container 16 in the same manner as has been described for the preservative liquid.
- the washing step described above the described integral conduits offer significant advantages from a manufacturing as well as from a handling point of view.
- a centrifuge for separating liquid into fractions of differentdensities comprising a centrifuge rotor, a plurality of collapsible closed containers disposed in the centrifuge rotor for rotation therewith, a first one of the containers being adapted to initially hold a discrete quantity of liquid to be treated in the rotor and a second one being adapted to receive a fraction of lesser density from said first container, collapsible conduit means defining a flow path for conveying liquid betweensaid first and'second containers, and peristaltic pump means mounted on the centrifuge rotor for rotation therewith and acting on the conduit means to selectively move liquid through the conduit means and prevent liquid flow through the conduit means.
- a centrifuge as set forth in claim 1 in which the containers are generally circular and disk shaped containers which are disposed one on the other and concentric with the axis of rotation of the centrifuge rotor and in which a resilient member is disposed in the centrifuge rotor to apply during rotation of the latter an external pressure to the containers which is proportional to the speed of rotation of the centrifuge rotor.
Landscapes
- Centrifugal Separators (AREA)
- External Artificial Organs (AREA)
Abstract
A centrifuge for batch treatment of a liquid, particularly blood, such as for separating blood into fractions of different densities and/or for washing blood cells suspended in a liquid, comprises closed collapsible containers in the centrifuge rotor. Resilient tubing interconnects the containers and a peristaltic pump member mounted on and rotating with the centrifuge rotor acts on the resilient tubing to selectively move liquid therethrough from one container to another and prevent liquid flow through the resilient tubing.
Description
United States Patent 1 Unger et al.
11] 3,724,747 51 Apr. 3, 1973 l 541 CENTRIFUGE APPARATUS WITI-I MEANS FOR MOVING MATERIAL Inventors: Hans Peter Olof Unger, Lidingo; Eric J. H. Westberg, Stockholm; Stephan L. Schwartz, Lidingo, all of Sweden Assignee: AGA Aktiebolag, Lidingo, Sweden Filed: Mar. 10, 1912 Appl. No.: 233,538
[30] Foreign Application Priority Data Mar. 15, 1971 Sweden ..3309/71 Mar. 15, 1971 Sweden ..3310/71 us. C1. .233/3, 233/14 R, 233/19 R, 233/26 Int. Cl. ..B04b 1/00 Field of Search ..233/3, 20 R, 20 A, 27, 28, 233/19 R, 19 A, 26, 46, 47 R, 14 R [56] References Cited UNITED STATES PATENTS 3,559,880 2/1971 Naito ..233/26 2,718,353 9/1955 Kelsey ..233/3 2,661,150 12/1953 Abbott ..233/14 R 2,136,540 11/1938 Brock ..233/3 Primary Examiner-James R. Boler Assistant Examiner-George H. Krizmanich Attorney-Roberts B. Larson et al.
[57] ABSTRACT A centrifuge for batch treatment of a liquid, particularly blood, such as for separating blood into fractions of different densities and/or for washing blood cells suspended in a liquid, comprises closed collapsible containers in the centrifuge rotor. Resilient tubing interconnects the containers and a peristaltic pump member mounted on and rotating with the centrifuge rotor acts on the resilient tubing to selectively move liquid therethrough from one container to another and prevent liquid flow through the resilient tubing.
5 Claims, 4 Drawing Figures PATENTEI] APR 3 I975 SHEET 2 [1F 2 CENTRIFUGE APPARATUS WITH MEANS FOR MOVING MATERIAL This invention relates to centrifugal treatment of liquid and more particularly to equipment for centrifugally treating discrete quantities of a liquid by separating it into fractions of different densities and, where desired, by washing solid particles suspended in liquid. The invention has particular application to the centrifugal treatment of blood and the present disclosure will be devoted primarily to this application. It should be understood, however, that the invention is applicable to the treatment of other liquids than blood. It should also be noted that the term liquid as used in this specification embraces not only true liquids but also other materials resembling liquids such as the semi-liquid mass of blood cells obtained from whole blood after separation of the plasma.
It is known to treat discrete quantities of blood in a closed system of collapsible containers in a centrifuge rotor. Thus, one container may initially hold 'a batch consisting of either a mixture of whole blood and a liquid preservative or a suspension of red blood cells in a liquid preservative and a second container may initially hold a quantity of a wash solution while a third container is initially empty. The containers are interconnected through conduits and during the treatment plasma and/or preservative from the first container is passed into the empty third container and temporarily replaced by wash solution from the second container. After agitation of the contents of the first container the used wash solution and the material washed off from the blood cells is passed into the third container leaving the washed red cells in the first container.
The use of collapsible closed containers for the blood, for separated fractions and for wash solution enables the treatment to be carried out under sterile conditions since the containers can be interconnected in a closed system to communicate with each other without their contents coming into contact with the ambient atmosphere or exterior surfaces. The transfer of liquid between the containers has presented problems, however, since the transfer normally has to take place while the centrifuge rotor and the container system rotate at high speed.
A .general object of the present invention is to provide improved means for effecting and controlling the transfer of liquid between the containers.
A more specific object in accordance with the foregoing general object is to provide a centrifuge in which the rotor supports a pump for displacing liquid between the containers.
7 Another object is to provide a centrifuge which can be loaded with the containers and made ready for operation with a minimum of manual labor.
In one embodiment of the invention these and other objects are realized in a centrifuge having a rotor, an assembly of collapsible closed containers disposed in and rotating with the rotor, a collapsible conduit which provides a path for the flow of liquid between the containers, and a peristaltic pump member which is mounted on he rotor and adapted to rotate with the rotor and the container assembly. The peristaltic pump member continuously acts on the collapsible conduit and when liquid is to be transferred from one container to another, the peristaltic pump member is caused to rotate slowly with respect to the rotor and the container assembly to displace liquid through the conduit. When the peristaltic pump member is stationary with respect to the rotor and the container assembly, it compresses the conduit to block flow therethrough.
THe above and other objects and features of the invention will. become apparent from the following detailed description taken in conjunction with the accompanying diagrammatic drawings.
FIG. 1 is a view in vertical section of the rotor and associated parts of a centrifuge constructed in accordance with the invention;
FIG. 2 is an enlarged view corresponding to the central portion of FIG. 1;
FIG. 3 is an exploded partly cut away perspective view of the container assembly in the centrifuge shown in FIGS. 1 and 2;
FIG. 4 is a plan view of the central portion of the two-compartment container shown in the lower portion of FIG. 3.
The centrifuge diagrammatically illustrated in FIG. 1 has a frame 10 supporting a centrifuge rotor 11 for rotation about a vertical axis at high speed, e.g., 3000 rpm, by means of a motor 12. Rotor 11 includes a bowl 13 having a depending hollow journal member 14 mounted in a ball bearing 15 in frame 10. The rotor bowl and most other elements of the rotor are circular in plan view.
In the central portion of container 16, heat seals 25 (marked by closely spaced dash lines in FIG. 4) joining sheets 18,19 define a collapsible conduit 26'through which wash solution in compartment 23 can flow to a short connecting tube 27 secured to upper sheet 20 around an opening 28 in the latter via an opening 31 in sheet 19 (see also FIG. 2). Similar heat seals 29 (marked by closely spaced full lines in FIG. 2) joining sheets 19,20 define another collapsible conduit 30 through which liquid can flow from connecting tube 27 to compartment 24. Portions of conduits 26,30 extend along two concentric circles and cooperate with a pump 32 described in more detail hereinafter. This pump is operable to-produce the liquid flow and to block the conduits when flow is not desired. Heat seal 22 prevents liquid in the two compartments'from entering the central container portion except through the conduits.
Referring again to FIG. 1, a filler ring 40 and a backing plate 41 are disposed between containers 16 and 17. Connecting tube 27 extends through an opening in the backing plate and is connected to the connecting tube 37.
Rotor 1 1 includes a cover assembly with a rigid cover plate 42 which has an internally screw-threaded boss 43 and holds an annular body 44 made of soft rubber mixed with lead granules so as to have higher specific gravity than the liquids in the containers. A clamping mechanism having an externally screw-threaded sleeve 45 screwed into boss 43 and a number of circumferentially distributed wedges 46 connected to the sleeve through rod 47 cooperates with cover plate 42 and bowl 13 to hold down the cover assembly against the containers. A photoelectric detector 48 mounted in 'sleeve 45 signals the presence of red blood cells in connecting tube 37.
As best seen in FIG. 2, rollers 49 and 52 engage conduits 26 and 30 through a flexible diaphragm 55 to lo cally compress and close these conduits against backing plate 41.
The procedure for the treatment of the blood cells in container 17 will now be described. Rotor 11 is assumed to be stationary but assembled as shown in FIG. 1, although compartment 24 of container 16 is empty so that sheets 19 and 20 engage each other face to face under the influence of pressure from rubber body 44. Thus, the peripheral portions of the containers are clamped between the bottom of bowl l3 and filler ring 40 and between the latter and rubber body 44. The central portions of the containers are clamped between the rollers of pump 32 and the lower end of boss 43 of cover plate 42. The rubber body in conjunction with the shape of the parts ensure that unwanted air pockets adjacent the containers are virtually eliminated.
The centrifugal field, which may be of the order of 1,000 g, causes the formation of fractions of different densities in container 17, that is, the red blood cells accumulate in the radially outer portion of container 17 while the lighter preservative liquid is collected in the radially inner portion. Clutch 61 is then engaged to cause inner rotor member 53 to rotate anticlockwise (FIG. 4) with respect to the centrifuge rotor and the containers so that the preservative liquid is pumped from container 17 into compartment 24 of container 16 through conduit 38, connecting tubes 37,27 and conduit 30. Since outer rotor member 50 is still stationary with respect to the centrifuge rotor and the containers, the preservative liquid is prevented from flowing through conduit 26.
When detector 48 signals the presence of red blood cells in tube 37, clutch 61 is again disengaged and clutch 58 engaged so that outer rotor member 50 is caused to rotate to pump wash solution from compartment 23 into container 17 through conduit 26. tubes 27,37 and conduit 38 while inner rotor member 53 is held stationary to prevent flow through conduit 30. When a sufficient amount of wash solution has been transferred, clutch 58 is disengaged so that both conduits 26,30 are closed whereupon rotor 11 is rapidly braked (by means not shown) to low speed to agitate the contents of container 17 and thoroughly mix the wash solution and blood cells.
THe wash solution is then separated from the blood cells and transferred to compartment 24 of container 16 in the same manner as has been described for the preservative liquid. The washing step described above the described integral conduits offer significant advantages from a manufacturing as well as from a handling point of view.
What is claimed is:
1. A centrifuge for separating liquid into fractions of differentdensities, comprising a centrifuge rotor, a plurality of collapsible closed containers disposed in the centrifuge rotor for rotation therewith, a first one of the containers being adapted to initially hold a discrete quantity of liquid to be treated in the rotor and a second one being adapted to receive a fraction of lesser density from said first container, collapsible conduit means defining a flow path for conveying liquid betweensaid first and'second containers, and peristaltic pump means mounted on the centrifuge rotor for rotation therewith and acting on the conduit means to selectively move liquid through the conduit means and prevent liquid flow through the conduit means. I
2. A centrifuge as set forth in claim .1 in which the peristaltic pump means includes pump rotor means mounted for rotation with respect to the centrifuge rotor about the axis of rotation of the latter and selectively operable means for causing rotation of the pump rotor means with respect to the centrifuge rotor.
3. A centrifuge as set forth in claim 2 in which the pump rotor means comprises two concentric rotors which are independently rotatable with respect to the centrifuge rotor, one of said rotors acting on a first collapsible conduit for transferring liquid to the first container and the other acting on a second collapsible conduit for transferring liquid from the first container.
4. A centrifuge as set forth in claim 1 in which the containers are generally circular and disk shaped containers which are disposed one on the other and concentric with the axis of rotation of the centrifuge rotor and in which a resilient member is disposed in the centrifuge rotor to apply during rotation of the latter an external pressure to the containers which is proportional to the speed of rotation of the centrifuge rotor.
5. A centrifuge as set forth in claim 4 in which the resilient member is made of a soft material adapted to have a specific gravity higher than that of the liquid to be treated.
Claims (5)
1. A centrifuge for separating liquid into fractions of different densities, comprising a centrifuge rotor, a plurality of collapsible closed containers disposed in the centrifuge rotor for rotation therewith, a first one of the containers being adapted to initially hold a discrete quantity of liquid to be treated in the rotor and a second one being adapted to receive a fraction of lesser density from said first container, collapsible conduit means defining a flow path for conveying liquid between said first and second containers, and peristaltic pump means mounted on the centrifuge rotor for rotation therewith and acting on the conduit means to selectively move lIquid through the conduit means and prevent liquid flow through the conduit means.
2. A centrifuge as set forth in claim 1 in which the peristaltic pump means includes pump rotor means mounted for rotation with respect to the centrifuge rotor about the axis of rotation of the latter and selectively operable means for causing rotation of the pump rotor means with respect to the centrifuge rotor.
3. A centrifuge as set forth in claim 2 in which the pump rotor means comprises two concentric rotors which are independently rotatable with respect to the centrifuge rotor, one of said rotors acting on a first collapsible conduit for transferring liquid to the first container and the other acting on a second collapsible conduit for transferring liquid from the first container.
4. A centrifuge as set forth in claim 1 in which the containers are generally circular and disk shaped containers which are disposed one on the other and concentric with the axis of rotation of the centrifuge rotor and in which a resilient member is disposed in the centrifuge rotor to apply during rotation of the latter an external pressure to the containers which is proportional to the speed of rotation of the centrifuge rotor.
5. A centrifuge as set forth in claim 4 in which the resilient member is made of a soft material adapted to have a specific gravity higher than that of the liquid to be treated.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE03310/71A SE354581B (en) | 1971-03-15 | 1971-03-15 | |
SE03309/71A SE354582B (en) | 1971-03-15 | 1971-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3724747A true US3724747A (en) | 1973-04-03 |
Family
ID=26654433
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00233538A Expired - Lifetime US3724747A (en) | 1971-03-15 | 1972-03-10 | Centrifuge apparatus with means for moving material |
US306218A Expired - Lifetime US3858796A (en) | 1971-03-15 | 1972-11-14 | Container for use in treatment of liquid |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US306218A Expired - Lifetime US3858796A (en) | 1971-03-15 | 1972-11-14 | Container for use in treatment of liquid |
Country Status (1)
Country | Link |
---|---|
US (2) | US3724747A (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3987961A (en) * | 1974-01-29 | 1976-10-26 | Heraeus-Christ Gmbh | Centrifuge bag for treatment of biological liquids |
US4007871A (en) * | 1975-11-13 | 1977-02-15 | International Business Machines Corporation | Centrifuge fluid container |
US4010894A (en) * | 1975-11-21 | 1977-03-08 | International Business Machines Corporation | Centrifuge fluid container |
DE2835307A1 (en) * | 1973-04-09 | 1979-02-22 | Baxter Travenol Lab | METHOD AND DEVICE FOR SEPARATING BLOOD COMPONENTS |
DE3041131A1 (en) * | 1979-11-02 | 1981-05-14 | Asahi Kasei Kogyo K.K., Osaka | METHOD AND CONTAINER FOR CONTINUOUSLY SEPARATING THE PLATE COMPONENT IN THE BLOOD |
US4278202A (en) * | 1978-07-25 | 1981-07-14 | Separek Teknik Ab | Centrifuge rotor and collapsible separation container for use therewith |
US4447220A (en) * | 1979-09-22 | 1984-05-08 | Eberle Guenter | Method and apparatus for separating blood components |
WO1987001307A1 (en) * | 1985-09-10 | 1987-03-12 | Vereniging Het Nederlands Kanker Instituut | Method and device for the separation and isolation of blood or bone marrow components |
WO1988005690A1 (en) * | 1987-01-30 | 1988-08-11 | Baxter Travenol Laboratories, Inc. | Plasma collection set and method |
US4767397A (en) * | 1987-03-09 | 1988-08-30 | Damon Corporation | Apparatus for liquid separation |
US4934995A (en) * | 1977-08-12 | 1990-06-19 | Baxter International Inc. | Blood component centrifuge having collapsible inner liner |
US4940543A (en) * | 1987-01-30 | 1990-07-10 | Baxter International Inc. | Plasma collection set |
US5006103A (en) * | 1977-08-12 | 1991-04-09 | Baxter International Inc. | Disposable container for a centrifuge |
US5160310A (en) * | 1987-07-06 | 1992-11-03 | Centritech Ab | Centrifugal separator |
US5217427A (en) * | 1977-08-12 | 1993-06-08 | Baxter International Inc. | Centrifuge assembly |
US5217426A (en) * | 1977-08-12 | 1993-06-08 | Baxter International Inc. | Combination disposable plastic blood receiving container and blood component centrifuge |
US5571068A (en) * | 1977-08-12 | 1996-11-05 | Baxter International Inc. | Centrifuge assembly |
US5723050A (en) * | 1993-07-08 | 1998-03-03 | Omega Medicinteknik Ab | Bag set for use in centrifugal separation |
US6066497A (en) * | 1994-08-16 | 2000-05-23 | Powell Biological Machines Limited | Cell culture apparatus |
US6261217B1 (en) * | 1997-04-16 | 2001-07-17 | Sanguistech Aktiebolag | Separation set having plate-like separation container with annular pinch valve for blood component preparation |
WO2002081096A1 (en) * | 2001-04-09 | 2002-10-17 | Medtronic, Inc. | Flexible centrifuge bag and methods of use |
US6579219B2 (en) | 2001-04-09 | 2003-06-17 | Medtronic, Inc. | Centrifuge bag and methods of use |
US20030173274A1 (en) * | 2002-02-01 | 2003-09-18 | Frank Corbin | Blood component separation device, system, and method including filtration |
US20030195104A1 (en) * | 2002-04-12 | 2003-10-16 | Gambro, Inc. | Fluid separation devices, systems and/or methods using a centrifuge and roller pump |
US20030211928A1 (en) * | 2001-09-24 | 2003-11-13 | Dolecek Victor D. | Method of separating and collecting components from a fluid |
US6656105B2 (en) | 1999-05-31 | 2003-12-02 | Gambro, Inc. | Centrifuge for processing blood and blood components in ring-type blood processing bags |
US6689042B2 (en) | 1997-02-12 | 2004-02-10 | Gambro, Inc. | Centrifuge and container system for treatment of blood and blood components |
US6740239B2 (en) | 1999-10-26 | 2004-05-25 | Gambro, Inc. | Method and apparatus for processing blood and blood components |
US20040104182A1 (en) * | 2002-04-16 | 2004-06-03 | Gambro, Inc. | Methods and apparatuses for blood component separation |
US20050045567A1 (en) * | 2003-08-25 | 2005-03-03 | Gambro, Inc. | Apparatus and method for separating a volume of composite liquid into at least two components |
US20050082237A1 (en) * | 2001-04-09 | 2005-04-21 | Medtronic, Inc. | Blood centrifuge having clamshell blood reservoir holder with index line |
US20070045201A1 (en) * | 2002-06-14 | 2007-03-01 | Dolecek Victor D | Centrifuge system utilizing disposable components and automated processing of blood to collect platelet rich plasma |
US20070203444A1 (en) * | 2004-12-28 | 2007-08-30 | Gambro Bct, Inc. | Apparatus and Method for Separating a Volume of Whole Blood Into At Least Three Components |
US20070209708A1 (en) * | 2004-06-22 | 2007-09-13 | Gambro, Inc. | Bag Assembly for the Separation of a Composite Liquid and Method for Manufacturing it |
US20070284320A1 (en) * | 2006-06-07 | 2007-12-13 | Gambro Bct, Inc. | Apparatus and Method for Separating a Composite Liquid Into At Least Two Components |
US20080053203A1 (en) * | 2006-09-06 | 2008-03-06 | Gambro Bct, Inc. | Apparatus and Method for Separating A Composite Liquid Into At Least Two Components |
US20080149564A1 (en) * | 2006-12-20 | 2008-06-26 | Gambro Bct, Inc. | Apparatus and Method for Separating a Composite Liquid Into At Least Two Components |
US20080220959A1 (en) * | 2005-08-22 | 2008-09-11 | Gambro Bct, Inc. | Apparatus and Method for Separating A Composite Liquid Into At Least Two Components |
US20080283473A1 (en) * | 2007-05-14 | 2008-11-20 | Gambro Bct, Inc. | Apparatus and Method for Separating a Composite Liquid Into At Least Two Components |
US20100026986A1 (en) * | 2008-07-31 | 2010-02-04 | Caridianbct, Inc. | Method and Apparatus for Separating A Composite Liquid Into At Least Two Components And For Determining The Yield Of At Least One Component |
US9028388B2 (en) | 2010-06-07 | 2015-05-12 | Terumo Bct, Inc. | Multi-unit blood processor with volume prediction |
US9079194B2 (en) | 2010-07-19 | 2015-07-14 | Terumo Bct, Inc. | Centrifuge for processing blood and blood components |
US9248446B2 (en) | 2013-02-18 | 2016-02-02 | Terumo Bct, Inc. | System for blood separation with a separation chamber having an internal gravity valve |
WO2022269108A1 (en) * | 2021-06-22 | 2022-12-29 | CANTERO BURGAZ, Sr. José | System for treating biological material |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4386730A (en) * | 1978-07-21 | 1983-06-07 | International Business Machines Corporation | Centrifuge assembly |
DE2948177A1 (en) * | 1979-11-30 | 1981-06-04 | Dr. Eduard Fresenius Chemisch-Pharmazeutische Industrie Kg Apparatebau Kg, 6380 Bad Homburg | SEPARATOR FOR ULTRA CENTRIFUGE |
US4405079A (en) * | 1980-11-10 | 1983-09-20 | Haemonetics Corporation | Centrifugal displacer pump |
EP0165254A1 (en) * | 1983-12-13 | 1985-12-27 | Baxter Travenol Laboratories, Inc. | Flexible disposable centrifuge system |
US4530691A (en) * | 1983-12-13 | 1985-07-23 | Baxter Travenol Laboratories, Inc. | Centrifuge with movable mandrel |
GB8521867D0 (en) * | 1985-09-03 | 1985-10-09 | Fisons Plc | Centrifuge |
US4692136A (en) * | 1985-10-11 | 1987-09-08 | Cardiovascular Systems Inc. | Centrifuge |
US4795419A (en) * | 1985-10-11 | 1989-01-03 | Kardiothor, Inc. | Centrifuge |
US4718888A (en) * | 1986-03-10 | 1988-01-12 | Cardiovascular Systems, Inc. | Centrifuge bowl mount |
US5656163A (en) | 1987-01-30 | 1997-08-12 | Baxter International Inc. | Chamber for use in a rotating field to separate blood components |
US5792372A (en) * | 1987-01-30 | 1998-08-11 | Baxter International, Inc. | Enhanced yield collection systems and methods for obtaining concentrated platelets from platelet-rich plasma |
US5370802A (en) * | 1987-01-30 | 1994-12-06 | Baxter International Inc. | Enhanced yield platelet collection systems and methods |
US4834890A (en) * | 1987-01-30 | 1989-05-30 | Baxter International Inc. | Centrifugation pheresis system |
US5316667A (en) * | 1989-05-26 | 1994-05-31 | Baxter International Inc. | Time based interface detection systems for blood processing apparatus |
US5804079A (en) * | 1991-12-23 | 1998-09-08 | Baxter International Inc. | Systems and methods for reducing the number of leukocytes in cellular products like platelets harvested for therapeutic purposes |
JP4065927B2 (en) * | 1991-12-23 | 2008-03-26 | バクスター、インターナショナル、インコーポレイテッド | Centrifuge with separable bowl and spool element providing access to separation chamber |
US6007725A (en) * | 1991-12-23 | 1999-12-28 | Baxter International Inc. | Systems and methods for on line collection of cellular blood components that assure donor comfort |
CA2103914A1 (en) * | 1991-12-23 | 1993-06-24 | Warren P. Williamson, Iv | Centrifugal processing system with direct access drawer |
US5549834A (en) * | 1991-12-23 | 1996-08-27 | Baxter International Inc. | Systems and methods for reducing the number of leukocytes in cellular products like platelets harvested for therapeutic purposes |
US5427695A (en) * | 1993-07-26 | 1995-06-27 | Baxter International Inc. | Systems and methods for on line collecting and resuspending cellular-rich blood products like platelet concentrate |
US5704889A (en) * | 1995-04-14 | 1998-01-06 | Cobe Laboratories, Inc. | Spillover collection of sparse components such as mononuclear cells in a centrifuge apparatus |
US5704888A (en) * | 1995-04-14 | 1998-01-06 | Cobe Laboratories, Inc. | Intermittent collection of mononuclear cells in a centrifuge apparatus |
EP1933899A1 (en) * | 2005-10-05 | 2008-06-25 | Gambro BCT, Inc. | Method and apparatus for leukoreduction of red blood cells |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2136540A (en) * | 1935-08-23 | 1938-11-15 | Clarence A Brock | Separating machine |
US2661150A (en) * | 1947-12-17 | 1953-12-01 | Jr William G Abbott | Centrifuge |
US2718353A (en) * | 1952-06-09 | 1955-09-20 | William H Kelsey | Continuous centrifuge |
US3559880A (en) * | 1968-10-03 | 1971-02-02 | Green Cross Corp | Apparatus for blood plasma separation |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3326458A (en) * | 1965-05-28 | 1967-06-20 | Harold T Meryman | Container and process of storing blood |
US3475128A (en) * | 1966-04-08 | 1969-10-28 | Bio Science Labor | Fluid processing apparatus and methods |
BE754683A (en) * | 1969-08-11 | 1971-01-18 | Aga Ab | CONTAINER INTENDED TO CONTAIN BLOOD |
SE332906B (en) * | 1969-08-11 | 1971-02-22 | Aga Ab |
-
1972
- 1972-03-10 US US00233538A patent/US3724747A/en not_active Expired - Lifetime
- 1972-11-14 US US306218A patent/US3858796A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2136540A (en) * | 1935-08-23 | 1938-11-15 | Clarence A Brock | Separating machine |
US2661150A (en) * | 1947-12-17 | 1953-12-01 | Jr William G Abbott | Centrifuge |
US2718353A (en) * | 1952-06-09 | 1955-09-20 | William H Kelsey | Continuous centrifuge |
US3559880A (en) * | 1968-10-03 | 1971-02-02 | Green Cross Corp | Apparatus for blood plasma separation |
Cited By (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2835307A1 (en) * | 1973-04-09 | 1979-02-22 | Baxter Travenol Lab | METHOD AND DEVICE FOR SEPARATING BLOOD COMPONENTS |
US3987961A (en) * | 1974-01-29 | 1976-10-26 | Heraeus-Christ Gmbh | Centrifuge bag for treatment of biological liquids |
US4007871A (en) * | 1975-11-13 | 1977-02-15 | International Business Machines Corporation | Centrifuge fluid container |
US4010894A (en) * | 1975-11-21 | 1977-03-08 | International Business Machines Corporation | Centrifuge fluid container |
US4934995A (en) * | 1977-08-12 | 1990-06-19 | Baxter International Inc. | Blood component centrifuge having collapsible inner liner |
US5759147A (en) * | 1977-08-12 | 1998-06-02 | Baxter International Inc. | Blood separation chamber |
US5571068A (en) * | 1977-08-12 | 1996-11-05 | Baxter International Inc. | Centrifuge assembly |
US5217427A (en) * | 1977-08-12 | 1993-06-08 | Baxter International Inc. | Centrifuge assembly |
DE2858828C2 (en) * | 1977-08-12 | 1993-12-02 | Baxter Int | Blood separation method and centrifuge |
US5006103A (en) * | 1977-08-12 | 1991-04-09 | Baxter International Inc. | Disposable container for a centrifuge |
US5217426A (en) * | 1977-08-12 | 1993-06-08 | Baxter International Inc. | Combination disposable plastic blood receiving container and blood component centrifuge |
US4278202A (en) * | 1978-07-25 | 1981-07-14 | Separek Teknik Ab | Centrifuge rotor and collapsible separation container for use therewith |
US4447220A (en) * | 1979-09-22 | 1984-05-08 | Eberle Guenter | Method and apparatus for separating blood components |
DE3041131A1 (en) * | 1979-11-02 | 1981-05-14 | Asahi Kasei Kogyo K.K., Osaka | METHOD AND CONTAINER FOR CONTINUOUSLY SEPARATING THE PLATE COMPONENT IN THE BLOOD |
WO1987001307A1 (en) * | 1985-09-10 | 1987-03-12 | Vereniging Het Nederlands Kanker Instituut | Method and device for the separation and isolation of blood or bone marrow components |
US4850952A (en) * | 1985-09-10 | 1989-07-25 | Figdor Carl G | Method and device for the separation and isolation of blood or bone marrow components |
WO1988005690A1 (en) * | 1987-01-30 | 1988-08-11 | Baxter Travenol Laboratories, Inc. | Plasma collection set and method |
US4940543A (en) * | 1987-01-30 | 1990-07-10 | Baxter International Inc. | Plasma collection set |
US4806252A (en) * | 1987-01-30 | 1989-02-21 | Baxter International Inc. | Plasma collection set and method |
US4767397A (en) * | 1987-03-09 | 1988-08-30 | Damon Corporation | Apparatus for liquid separation |
US5160310A (en) * | 1987-07-06 | 1992-11-03 | Centritech Ab | Centrifugal separator |
US5723050A (en) * | 1993-07-08 | 1998-03-03 | Omega Medicinteknik Ab | Bag set for use in centrifugal separation |
US6066497A (en) * | 1994-08-16 | 2000-05-23 | Powell Biological Machines Limited | Cell culture apparatus |
US6835171B2 (en) | 1997-02-12 | 2004-12-28 | Gambro Inc | Centrifuge and container system for treatment of blood and blood components |
US6689042B2 (en) | 1997-02-12 | 2004-02-10 | Gambro, Inc. | Centrifuge and container system for treatment of blood and blood components |
US20040147387A1 (en) * | 1997-02-12 | 2004-07-29 | Gambro, Inc. | Centrifuge and container system for treatment of blood and blood components |
US6261217B1 (en) * | 1997-04-16 | 2001-07-17 | Sanguistech Aktiebolag | Separation set having plate-like separation container with annular pinch valve for blood component preparation |
US7097774B2 (en) | 1999-05-31 | 2006-08-29 | Gambro Inc | Method for processing a blood product with a bag set having a multi-way connector |
US20060270542A1 (en) * | 1999-05-31 | 2006-11-30 | Gambro, Inc. | Centrifuge for Processing Blood and Blood Components |
US6656105B2 (en) | 1999-05-31 | 2003-12-02 | Gambro, Inc. | Centrifuge for processing blood and blood components in ring-type blood processing bags |
US7235041B2 (en) | 1999-05-31 | 2007-06-26 | Gambro Bct, Inc. | Centrifuge for processing a blood product with a bag set having a processing bag |
US6740239B2 (en) | 1999-10-26 | 2004-05-25 | Gambro, Inc. | Method and apparatus for processing blood and blood components |
WO2002081096A1 (en) * | 2001-04-09 | 2002-10-17 | Medtronic, Inc. | Flexible centrifuge bag and methods of use |
US20050098507A1 (en) * | 2001-04-09 | 2005-05-12 | Medtronic, Inc. | Flexible centrifuge bag and methods of use |
US20090294383A1 (en) * | 2001-04-09 | 2009-12-03 | Arteriocyte Medical Systems | Flexible centrifuge bag and methods of use |
US7306741B2 (en) | 2001-04-09 | 2007-12-11 | Medtronic, Inc. | Flexible centrifuge bag and methods of use |
US7347948B2 (en) | 2001-04-09 | 2008-03-25 | Ateriocyte Medical Systems, Inc. | Blood centrifuge having clamshell blood reservoir holder with index line |
US6827863B2 (en) | 2001-04-09 | 2004-12-07 | Medtronic, Inc. | Flexible centrifuge bag and methods of use |
US7811463B2 (en) * | 2001-04-09 | 2010-10-12 | Arteriocyte Medical Systems, Inc. | Centrifuge apparatus and methods for on-line harvesting of a predetermined component of a fluid medium |
US20090298665A1 (en) * | 2001-04-09 | 2009-12-03 | Arteriocyte Medical Systems | Flexible centrifuge bag and methods of use |
US20050082237A1 (en) * | 2001-04-09 | 2005-04-21 | Medtronic, Inc. | Blood centrifuge having clamshell blood reservoir holder with index line |
US20040058794A1 (en) * | 2001-04-09 | 2004-03-25 | Dolecek Victor D. | Flexible centrifuge bag and methods of use |
US7897054B2 (en) * | 2001-04-09 | 2011-03-01 | Arteriocyte Medical Systems, Inc. | Centrifuge container and methods of use |
US20090008307A1 (en) * | 2001-04-09 | 2009-01-08 | Medtronic, Inc | Blood centrifuge having clamshell blood reservoir holder with index line |
US20080171646A1 (en) * | 2001-04-09 | 2008-07-17 | Arteriocyte Medical Systems, Inc. | Flexible centrifuge bag and methods of use |
US6579219B2 (en) | 2001-04-09 | 2003-06-17 | Medtronic, Inc. | Centrifuge bag and methods of use |
US6793828B2 (en) * | 2001-09-24 | 2004-09-21 | Medtronic, Inc. | Method of separating and collecting components from a fluid |
US20030211928A1 (en) * | 2001-09-24 | 2003-11-13 | Dolecek Victor D. | Method of separating and collecting components from a fluid |
US20030173274A1 (en) * | 2002-02-01 | 2003-09-18 | Frank Corbin | Blood component separation device, system, and method including filtration |
US7582049B2 (en) * | 2002-04-12 | 2009-09-01 | Caridianbct, Inc. | Fluid separation devices, systems and/or methods using a centrifuge and roller pump |
US20030195104A1 (en) * | 2002-04-12 | 2003-10-16 | Gambro, Inc. | Fluid separation devices, systems and/or methods using a centrifuge and roller pump |
WO2003086640A1 (en) * | 2002-04-12 | 2003-10-23 | Gambro, Inc. | Fluid separation using a centrifuge and roller pump |
US7033512B2 (en) | 2002-04-12 | 2006-04-25 | Gambro, Inc | Fluid separation devices, systems and/or methods using a centrifuge and roller pump |
US20060122048A1 (en) * | 2002-04-12 | 2006-06-08 | Gambro, Inc. | Fluid separation devices, systems and/or methods using a centrifuge and roller pump |
US20090127206A1 (en) * | 2002-04-16 | 2009-05-21 | Caridianbct, Inc. | Blood Component Processing System Method |
US7497944B2 (en) | 2002-04-16 | 2009-03-03 | Caridianbct, Inc. | Blood component processing system, apparatus, and method |
US7648452B2 (en) | 2002-04-16 | 2010-01-19 | CardianBCT, Inc. | Apparatus for blood component separation |
US20040104182A1 (en) * | 2002-04-16 | 2004-06-03 | Gambro, Inc. | Methods and apparatuses for blood component separation |
US20070084806A1 (en) * | 2002-04-16 | 2007-04-19 | Gambro, Inc. | Methods and Apparatus for Blood Component Separation |
US7708889B2 (en) | 2002-04-16 | 2010-05-04 | Caridianbct, Inc. | Blood component processing system method |
US7279107B2 (en) | 2002-04-16 | 2007-10-09 | Gambro, Inc. | Blood component processing system, apparatus, and method |
US20080314822A1 (en) * | 2002-04-16 | 2008-12-25 | Gambro Bct, Inc. | Apparatus for Blood Component Separation |
US20070084807A1 (en) * | 2002-04-16 | 2007-04-19 | Gambro, Inc. | Methods and Apparatus for Blood Component Separation |
US7396451B2 (en) | 2002-04-16 | 2008-07-08 | Gambo Bci, Inc. | Methods and apparatus for blood component separation |
US7166217B2 (en) | 2002-04-16 | 2007-01-23 | Gambro Inc | Methods and apparatuses for blood component separation |
US7413665B2 (en) | 2002-04-16 | 2008-08-19 | Gambro Bct, Inc. | Methods and apparatus for blood component separation |
US7867159B2 (en) | 2002-06-14 | 2011-01-11 | Arteriocyte Medical Systems, Inc. | Centrifuge system utilizing disposable components and automated processing of blood to collect platelet rich plasma |
US7306555B2 (en) * | 2002-06-14 | 2007-12-11 | Medtronic, Inc. | Centrifuge system utilizing disposable components and automated processing of blood to collect platelet rich plasma |
US20070045201A1 (en) * | 2002-06-14 | 2007-03-01 | Dolecek Victor D | Centrifuge system utilizing disposable components and automated processing of blood to collect platelet rich plasma |
US20070293385A1 (en) * | 2002-06-14 | 2007-12-20 | Dolecek Victor D | Centrifuge system utilizing disposable components and automated processing of blood to collect platelet rich plasma |
US20080093312A1 (en) * | 2003-08-25 | 2008-04-24 | Gambro Bct, Inc. | Method for Separating A Volume of Composite Liquid Into At Least Two Components |
US7347932B2 (en) | 2003-08-25 | 2008-03-25 | Gambro Bct, Inc. | Apparatus and method for separating a volume of composite liquid into at least two components |
US20050045567A1 (en) * | 2003-08-25 | 2005-03-03 | Gambro, Inc. | Apparatus and method for separating a volume of composite liquid into at least two components |
US7648639B2 (en) | 2003-08-25 | 2010-01-19 | CaridianBCT, Inc | Method for separating a volume of composite liquid into at least two components |
US20070209708A1 (en) * | 2004-06-22 | 2007-09-13 | Gambro, Inc. | Bag Assembly for the Separation of a Composite Liquid and Method for Manufacturing it |
US7833185B2 (en) | 2004-12-28 | 2010-11-16 | Caridianbct, Inc. | Apparatus for separating a volume of whole blood into at least three components |
US8277406B2 (en) | 2004-12-28 | 2012-10-02 | Terumo Bct, Inc. | Method for separating a volume of whole blood into at least three components |
US20070203444A1 (en) * | 2004-12-28 | 2007-08-30 | Gambro Bct, Inc. | Apparatus and Method for Separating a Volume of Whole Blood Into At Least Three Components |
US7981019B2 (en) | 2005-08-22 | 2011-07-19 | Caridianbct, Inc. | Apparatus and method for separating a composite liquid into at least two components |
US20080220959A1 (en) * | 2005-08-22 | 2008-09-11 | Gambro Bct, Inc. | Apparatus and Method for Separating A Composite Liquid Into At Least Two Components |
US8057377B2 (en) | 2005-08-22 | 2011-11-15 | CaridianBCT, Inc | Apparatus and method for separating a composite liquid into at least two components |
US20110077140A1 (en) * | 2005-08-22 | 2011-03-31 | Gambro Bct, Inc. | Apparatus and Method for Separating A Composite Liquid Into At Least Two Components |
US20110028295A1 (en) * | 2006-06-07 | 2011-02-03 | Caridianbct, Inc. | Apparatus for Separating a Composite Liquid Into At Least Two Components |
US7819793B2 (en) | 2006-06-07 | 2010-10-26 | Caridianbct, Inc. | Apparatus for separating a composite liquid into at least two components |
US20070284320A1 (en) * | 2006-06-07 | 2007-12-13 | Gambro Bct, Inc. | Apparatus and Method for Separating a Composite Liquid Into At Least Two Components |
US8173027B2 (en) | 2006-09-06 | 2012-05-08 | Terumo Bct, Inc. | Method of separating a composite liquid into at least two components |
US20080053203A1 (en) * | 2006-09-06 | 2008-03-06 | Gambro Bct, Inc. | Apparatus and Method for Separating A Composite Liquid Into At Least Two Components |
US20080149564A1 (en) * | 2006-12-20 | 2008-06-26 | Gambro Bct, Inc. | Apparatus and Method for Separating a Composite Liquid Into At Least Two Components |
US8287742B2 (en) | 2006-12-20 | 2012-10-16 | Terumo Bct, Inc. | Method for separating a composite liquid into at least two components |
US20080283473A1 (en) * | 2007-05-14 | 2008-11-20 | Gambro Bct, Inc. | Apparatus and Method for Separating a Composite Liquid Into At Least Two Components |
US8236184B2 (en) | 2007-05-14 | 2012-08-07 | Terumo Bct, Inc. | Method for separating a composite liquid into at least two components |
US8120760B2 (en) | 2008-07-31 | 2012-02-21 | Caridianbct, Inc. | Method and apparatus for separating a composite liquid into at least two components and for determining the yield of at least one component |
US20100026986A1 (en) * | 2008-07-31 | 2010-02-04 | Caridianbct, Inc. | Method and Apparatus for Separating A Composite Liquid Into At Least Two Components And For Determining The Yield Of At Least One Component |
US9028388B2 (en) | 2010-06-07 | 2015-05-12 | Terumo Bct, Inc. | Multi-unit blood processor with volume prediction |
US9849222B2 (en) | 2010-06-07 | 2017-12-26 | Terumo Bct, Inc. | Multi-unit blood processor with volume prediction |
US9079194B2 (en) | 2010-07-19 | 2015-07-14 | Terumo Bct, Inc. | Centrifuge for processing blood and blood components |
US9248446B2 (en) | 2013-02-18 | 2016-02-02 | Terumo Bct, Inc. | System for blood separation with a separation chamber having an internal gravity valve |
WO2022269108A1 (en) * | 2021-06-22 | 2022-12-29 | CANTERO BURGAZ, Sr. José | System for treating biological material |
Also Published As
Publication number | Publication date |
---|---|
US3858796A (en) | 1975-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3724747A (en) | Centrifuge apparatus with means for moving material | |
US3679128A (en) | Centrifuge | |
US4091989A (en) | Continuous flow fractionation and separation device and method | |
US4482342A (en) | Blood processing system for cell washing | |
US4296882A (en) | Centrifugal fluid processing device | |
US3096283A (en) | Container for blood and machine for separating precipitates from liquid blood constituents | |
US3708110A (en) | Container for blood | |
US4734089A (en) | Centrifugal blood processing system | |
CA1055903A (en) | Centrifuge separation and washing device and method | |
US5316540A (en) | Apparatus and method for separating microscopic units in a substantially continuous density gradient solution | |
AU695602B2 (en) | Centrifuge reagent delivery system | |
US4413771A (en) | Method and apparatus for centrifugal separation | |
EP1011871B1 (en) | Separation set for blood component preparation | |
CA1306727C (en) | Plasma collection set and method | |
US4946434A (en) | Disposable manifold and valve | |
JPS6128382B2 (en) | ||
JP3349154B2 (en) | Bag system for use in centrifugation | |
US3674197A (en) | Washing means for flexible bags in split enclosures | |
US4082217A (en) | Centrifuge apparatus | |
US3885735A (en) | Centrifuge apparatus | |
EP0808203A1 (en) | Centrifuge with annular filter | |
GB1185228A (en) | Apparatus and Method for Washing Cells | |
JP4619596B2 (en) | Centrifuge for processing blood and blood components in a ring-type blood processing bag | |
US4445883A (en) | Deformable support for fluid processing centrifuge | |
WO1987006857A1 (en) | Annular centrifuge |