US3711815A - Tight angle multi-contact electrical connector - Google Patents

Tight angle multi-contact electrical connector Download PDF

Info

Publication number
US3711815A
US3711815A US00156306A US3711815DA US3711815A US 3711815 A US3711815 A US 3711815A US 00156306 A US00156306 A US 00156306A US 3711815D A US3711815D A US 3711815DA US 3711815 A US3711815 A US 3711815A
Authority
US
United States
Prior art keywords
shell
cable
connector
right angle
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00156306A
Inventor
E Pierce
D Doucet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEN CONNECTOR
GENERAL CONNECTOR US
Original Assignee
GEN CONNECTOR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEN CONNECTOR filed Critical GEN CONNECTOR
Application granted granted Critical
Publication of US3711815A publication Critical patent/US3711815A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/56Means for preventing chafing or fracture of flexible leads at outlet from coupling part
    • H01R13/562Bending-relieving

Definitions

  • TIGHT ANGLE MULTI-CONTACT ELECTRICAL CONNECTOR Inventors: Edward J. Pierce, Melrose, Mass;
  • the present invention relates in general to the field of multi-contact electrical connectors of exceedingly high reliability and more particularly concerns an electrical connector of this general classification which is specially adapted to accept a multi-conductor jacketed electrical cable at right angles to the axis defined by pin motion when engaging a mating element.
  • the term right angle connector is used in this art to designate a connector which receives its cable substantially at right angles to the axis of pin motion during connect and disconnect operations, and is thus distinguished from straight connectors wherein the cable lies parallel to the pins.
  • Right angle connectors are in themselves well known and have broad application wherever an installation requires an abrupt ninety degree change in cable direction.
  • a prior 'art right angle connector may utilize a tubular shell which extends straight from the region of the connector pinsfor some predetermined distance and then abruptly changes direction by ninety degrees.
  • extreme care must be taken in the design, manufacture and assembly of the connector components to achieve a stable waterproof environment within the connector itself to preclude corrosion and other causes of faulty electrical operation.
  • the region of the interior of the connector assembly between the contact pins or pin sockets and the point where the cable enters the connector must remain completely stable and provide dry environment totally resistant to outside moisture. For these reasons the contact pins and pin sockets must be hermetically sealed within the connector assembly and provision must be made to seal the entry of the cable jacket to preclude leakage of moisture.
  • the desired hermetic seal has been achieved by integrally molding the region between pins and cables in solid rubber, in others the hermetic seal has been achieved within an integral outer shell.
  • right angle connectors utilizing two sections which are attached to each other by mating threads, the exact orientation of the cable is uncertain and will depend on the extent to which the threads are tightened. Of course, a complete set of connectors having different fixed angles may be made available, but this is unsatisfactory if changes are to be effected in the field.
  • the present invention contemplates and has as a primary object the provision of a right angle multi-contact electrical connector wherein the outer tubular shell is formed of two sections, separation being in the region between the contacts and the cable entry. More specifically, one of the two sections of the novel connector is formed right angle bend which may be attached to the other with the associated cable disposed at any one of a large plurality of angles by means of confronting flanges having integral means for providing the required hennetic seal.
  • the connector when assembled, is exceedingly rugged and adaptable to the most severe environmental conditions; yet it may with ease be disassembled for change of the cable angle as needed.
  • the novel arrangement features economy of assembly, enhanced flexibility when the assembled connector is employed in the field, and permits cable angle change by personnel with limited technical skill without damage to the hermetic seal.
  • FIG. 1 is a side elevation partly in section illustrating a multi-contact right angle connector made in accordance with the principles of this invention in association with a mating straight panel mounted connector;
  • FIG. 2 is an exploded perspective view of the right angle connector shown in FIG. 1 illustrating the manner in which the connector may be disassembled for cable angle change.
  • the panel mounted connector shown in FIG. 1 has been omitted from FIG. 2;
  • FIG. 3 is a pin-end view (on a slightly reduced scale) of the central portion of the right angle connector shown in FIG. 1, and illustrates the array of contact pins and the keying arrangement used to orient the connector when coupled to its mating half.
  • the assembled right angle connector 10 is shown as basically comprised of two principal sections 11 and 12 which are rigidly secured to each other when in use to form a unitary structure. Also shown in FIG. I is a mating connector or receptacle 13 of conventional design mounted in an appropriate opening in panel 14 and retained in position between integral flange l5 and a tightened jam nut 16. While mating connector I3 does not constitute an element of the present invention, it has been illustrated to permit a better understanding of the function of certain components of novel right angle connector 10.
  • the section 11 includes an array of connector pins 21 which terminate at their innermost ends in solder lugs 22.
  • Right hand section 12 of right angle connector 10 is essentially a hollow tubular element 17 which extends from an integral circular connecting flange 23 and turns downwardly at right angles and terminates in a cable nut 24.
  • a rubber or plastic jacketed cable 25 enters the right angle connector through the cable nut 24.
  • the cable jacket is cut clean internally at 26 and the individual leads 27 extend outward, turn 90, and are soldered at 27 to the array of solder terminals 22.
  • the cable nut 24 has an inside diameter just large enough to smoothly accommodate the passage of jacketed cable 25.
  • Cable nut 24 engages the internal thread 31 of an integral en 'larged diameter portion 32 of shell 17.
  • the shell 17 has been machined to provide a circular sharply defined undercut region 33 which terminates in the sharply defined circular edge 34.
  • a ferrule or washer 35 having an internal opening slightly larger than the cable diameter bears against the inner surface of cable nut 24, which in turn bears upon an annular rubber grommet 36 which in unstressed condition normally will have a generally rectangular cross section.
  • the advancing ferrule 35 compresses and distorts grommet 36 in the manner shown in FIG. 1, and in so doing drives the grommet 36 into hermetically sealing engagement with the sharp circular edge 34 and simultaneously forcesthe grommet radially inward at the region 37 into hermetically sealing, compressive engagement with the cable jacket 37.
  • the cable when fully assembled is hermetically sealed and correspondingly the outer lower end of right angle connector is also hermetically sealed. More specifically, moisture seeping along the cable jacket through the cable nut will be barred from entering the internal region of shell 17 by the engagement of grommet 36 against the cable at 37 and also by the engagement between grommet 36 and ferrule 35. Moisture which may penetrate through the screw threads between the cable nut and shell 17 will be prevented from entering the internal region by virme of the compressive force between grommet 36 and sharp circular edge 34.
  • connection section 12 terminates in an integral circular flange 23 having a flat, smooth annular engaging surface 41.
  • Flange 23 is provided with three openings 42 which are spaced precisely 120 apart. As best shown in FIG. 1, each of the three openings 42 includes a short smooth bore followed by an internally threaded portion 43.
  • Bolts 44 each of which has a smooth shaft portion 45 followed by a threaded portion 46, are threaded through the respective openings 42. It may thus be seen that bolts 44 will normally be captured loosely in the respective openings as shown in FIG. 2, but that they may, however, be removed by drawing them backward and unscrewing them through the threaded portion 43.
  • Lock washers 47 are provided on each of bolts 44 and are retained without chance of loss by virtue of the arrangement described immediately above.
  • an inner hollow cylindrical machined shell 51 encloses the array of contact pins 21 at one end and the corresponding solder lugs 22 at the other end thereof. More specifically, the inner surface of shell 51 is formed with a cylindrical protrusion 52 and a cylindrical recess 53 to more rigidly secure solid rubber contact pin insulator 55, which during the customary integral bonding process forms an adherent hermetic seal with the interior of shell 51. Cylindrical protrusions 56 and 57 on each of the pins provide enhanced hermetic sealing between the pins and the rubber 55 and also more securely seat the respective pins and preclude axial movement thereof during normal connection and disconnection from the mating connector.
  • the forward open face of the rubber insulator 55 has been molded to provide an integral small annular boss 61 around each of pins 21. These bosses are arranged to engage the forward face of rubber insulator 62 at respective areas 63 in the open end of mating connector 13 to achieve an interfacial seal which precludes the flow of moisture radially into the contact area between each pin 21 and its mating pin socket 64 in panel connector 13.
  • the outer surface of shell 51 of connector section 11 is provided with a machined flange 71 and a recessed annular region 72. Cylindrical surface 73 of lesser diameter than flange 71 is knurled (for reasons to be described below).
  • a coaxial outer cylindrical coupling 74 surrounds virtually the entire left hand half of inner shell 51 and is normally urged to the right as viewed in FIG. 1 by means of a circular wave-washer (split spring washer) 81 which is captured within the annular recess 82 of outer shell 74.
  • a pair of knurled raised flanges 84 and 85 provide the means by which coupling 74 may be gripped manually, drawn axially to the right, and rotated as desired. When released, the coupling 74 springs back to the position shown.
  • coupling 74 is slipped over the inner shell 51 with the wave washer 81 in the position shown. Thereafter, a circular adapter flange 91 is press-fitted in the position shown upon the knurled surface 73 for rigid attachment to inner shell 51. After flange 91 is attached, outer shell 74 is captured on the connector since its motion to the right is limited by flange 91 and to the left by flange 71. Coupling 74, however, may be rotated angularly about its axis.
  • flange 91 is formed with a circular array of threaded openings 92 spaced precisely at 30 intervals.
  • the three bolts 44 may thus be engaged in respective openings of flange 91 in any one of 12 discrete angular orientations, each spaced 30 from the preceding one.
  • the number of discrete positions available for attachment may be altered by changing the number of openings 92 appropriately.
  • flange 91 The right hand surface of flange 91 is smooth and flat and thus fits tightly against the confronting surface of flange 23 .as illustrated in FIG. 1; As shown in FIGS. 1 and 2, a small continuous circular bevel 95 is provided at the innermost edge of flange 91 which cooperates with the right hand edge of shell 51 to provide a small annular recess 96 adapted to receive a resilient O-ring gasket 97. As shown in FIG. 1, when flanges 23 and 91 are drawn tightly together by bolts 44, O-ring-97 is compressed to provide a hermetic seal to bar the flow of moisture which may seep between abutting flanges 23 and 91 from the interior of the right angle connector 10.
  • Connector components 17, 51 and 74 are preferably formed ofa durable non-corrosive aluminum alloy.
  • the various parts which were noted as being made of rubber may of course be made of synthetic Neoprene, or the like.
  • cable 25 and its free leads 27 are first inserted through cable nut 24 which is initially loose to permit free passage with the grommet 36 in uncompressed condition.
  • the two connector halves 11 and 12 are separated as shown in FIG. 2, and cable 25 may be pushed through shell 17 to an extent which enables soldering of the leads 27 to solder lugs 22 to be performed with ease; the O-ring 97 having first been placed over leads 27.
  • cable 25 may be withdrawn as required and upon tightening of bolts 44, cable nut 24 is tightened to complete the seal.
  • the three bolts 44 may be withdrawn from flange 91 to slightly separate sections 11 and 12 for rotation one with respect to the other in steps of 30 to position the cable at any desired one of the twelve possible discrete orientations. Separation and reassembly requires nothing more than a screw driver for the bolts shown and, although the seal provided by O-ring 97 is broken when the two sections are separated, the seal is readily re-established since the O- ring may conveniently be dropped back into recess 96 for reassembly. Since O-ring 97 surrounds the cable wires 27, its inadvertent loss is prevented. Thus, with minimum effort, the hermetic seal integrity of the assembled connector is assured.
  • a multi-contact right angle electrical connector for a jacketed multi-conductor electrical cable comprising in combination:
  • a first generally cylindrical tubular shell enclosing an electrical insulator; an array of electrical contacts supported within and extending through said insu lator; said insulator being bonded to said contacts and to the interior surface of said shell to provide hermetic seals with said contacts and shell;
  • a second tubular shell formed with a substantially right angle bend, and adapted to enclose a multiconductor jacketed electrical cable
  • first and second tubular shells are confronting attachment means provided on adjacent ends of said first and second tubular shells and arranged to permit rigid attachment of said first and second tubular shells at any one of a plurality of discrete angular orientations; the attachment means on said first tubular shell and the outer surface of said first shell being formed and arranged together to define an annular recess;
  • first and second confronting flanges rigidly secured to adjacent ends of said first and second tubular shells, respectively; one of said flanges having a plurality of equiangular spaced openings, the other of said flanges having a substantially larger plurality of equiangular spaced openings, selective ones of said larger plurality being adapted for alignment with each of said openings in said first flange in a substantial number of discrete angular orientations;
  • detachable means for rigidly securing together said first and second flanges through said aligned openings; the inner edge of said first flange at the junction with said first shell being formed with a bevel to define said annular recess; said recess having a generally triangular cross-section;
  • said gasket comprising an O-ring adapted to fit within said recess and to be compressed by said first and second flanges when rigidly secured to each other.
  • said gasket being arranged to provide, when said cable nut is tightened, a hermetic seal around a jacket of a cable entering said connector through said cable nut.

Landscapes

  • Connector Housings Or Holding Contact Members (AREA)

Abstract

A multi-contact right angle connector is adapted to permit cable entry at any one of a large plurality of discrete angular orientations with highly reliable hermetic seals to maintain a stable dry environment in the critical internal region.

Description

United States Patent Pierce et al.
[ 1 Jan. 16,1973
TIGHT ANGLE MULTI-CONTACT ELECTRICAL CONNECTOR Inventors: Edward J. Pierce, Melrose, Mass;
Daniel R. Doucet, Newton, Mass.
Assignee: General Connector, Newton, Mass.
Filed: June 24, 1971 Appl. No.: 156,306
US. Cl. ..339/90 R, 174/86, 285/363,
339/94 M, 339/218 M Int. Cl. ..H0lr 13/54 Field of Search ..339/89, 90, 92, 94, 218;
References Cited UNITED STATES PATENTS Schmitt ..339/89 M 3,022,484 2/1962 Thompson, Jr. ..339/94 M FOREIGN PATENTS OR APPLICATIONS 1,241,785 8/1960 France ..339/94 A Primary Examiner-Joseph H. McGlynn Att0rneyWeingarten, Maxham & Schurgin A multi-contact right angle connector is adapted to permit cable entry at any one of a large plurality of discrete angular orientations with highly reliable hermetic seals to maintain a stable dry environment in the critical internal region.
ABSTRACT 4 Claims, 3 Drawing Figures TIGHT ANGLE MULTI-CONTACT ELECTRICAL CONNECTOR FIELD OF THE INVENTION The present invention relates in general to the field of multi-contact electrical connectors of exceedingly high reliability and more particularly concerns an electrical connector of this general classification which is specially adapted to accept a multi-conductor jacketed electrical cable at right angles to the axis defined by pin motion when engaging a mating element. The term right angle connector is used in this art to designate a connector which receives its cable substantially at right angles to the axis of pin motion during connect and disconnect operations, and is thus distinguished from straight connectors wherein the cable lies parallel to the pins. Right angle connectors are in themselves well known and have broad application wherever an installation requires an abrupt ninety degree change in cable direction.
BACKGROUND OF THE INVENTION As noted above, right angle connectors have a well established place in the art and numerous types are presently available to meet most of the needs of product designers. characteristically, a prior 'art right angle connector may utilize a tubular shell which extends straight from the region of the connector pinsfor some predetermined distance and then abruptly changes direction by ninety degrees. In high reliability applications extreme care must be taken in the design, manufacture and assembly of the connector components to achieve a stable waterproof environment within the connector itself to preclude corrosion and other causes of faulty electrical operation. Thus the region of the interior of the connector assembly between the contact pins or pin sockets and the point where the cable enters the connector must remain completely stable and provide dry environment totally resistant to outside moisture. For these reasons the contact pins and pin sockets must be hermetically sealed within the connector assembly and provision must be made to seal the entry of the cable jacket to preclude leakage of moisture.
In some arrangements the desired hermetic seal has been achieved by integrally molding the region between pins and cables in solid rubber, in others the hermetic seal has been achieved within an integral outer shell. In some applications it is desirable to permit changes in the angular orientation of the outwardly extending cable with respect to the disposition of the pins, that is, to provide for adjustment of the angle at which the cable emanates from the connector when the connector is plugged into its mate. In right angle connectors utilizing two sections which are attached to each other by mating threads, the exact orientation of the cable is uncertain and will depend on the extent to which the threads are tightened. Of course, a complete set of connectors having different fixed angles may be made available, but this is unsatisfactory if changes are to be effected in the field. To be serviceable and economical, the angular adjustment capability must be built into the connector itself, but the technique must allow ease of angular adjustment together with means permitting hermetic closure after readjustment without SUMMARY OF THE INVENTION The present invention contemplates and has as a primary object the provision of a right angle multi-contact electrical connector wherein the outer tubular shell is formed of two sections, separation being in the region between the contacts and the cable entry. More specifically, one of the two sections of the novel connector is formed right angle bend which may be attached to the other with the associated cable disposed at any one of a large plurality of angles by means of confronting flanges having integral means for providing the required hennetic seal. The connector, when assembled, is exceedingly rugged and adaptable to the most severe environmental conditions; yet it may with ease be disassembled for change of the cable angle as needed. The novel arrangement features economy of assembly, enhanced flexibility when the assembled connector is employed in the field, and permits cable angle change by personnel with limited technical skill without damage to the hermetic seal.
DESCRIPTION OF THE DRAWINGS Other objects and advantages of the present invention will become apparent from the following specification when read in connection with the accompanying drawings, in which:
FIG. 1 is a side elevation partly in section illustrating a multi-contact right angle connector made in accordance with the principles of this invention in association with a mating straight panel mounted connector;
FIG. 2 is an exploded perspective view of the right angle connector shown in FIG. 1 illustrating the manner in which the connector may be disassembled for cable angle change. The panel mounted connector shown in FIG. 1 has been omitted from FIG. 2; and
FIG. 3 is a pin-end view (on a slightly reduced scale) of the central portion of the right angle connector shown in FIG. 1, and illustrates the array of contact pins and the keying arrangement used to orient the connector when coupled to its mating half.
DESCRIPTION OF THE PREFERRED EMBODIMENT With reference now to the drawings, and more particularly to FIGS. 1 and 2, the assembled right angle connector 10 is shown as basically comprised of two principal sections 11 and 12 which are rigidly secured to each other when in use to form a unitary structure. Also shown in FIG. I is a mating connector or receptacle 13 of conventional design mounted in an appropriate opening in panel 14 and retained in position between integral flange l5 and a tightened jam nut 16. While mating connector I3 does not constitute an element of the present invention, it has been illustrated to permit a better understanding of the function of certain components of novel right angle connector 10.
As illustrated, the section 11 includes an array of connector pins 21 which terminate at their innermost ends in solder lugs 22. Right hand section 12 of right angle connector 10 is essentially a hollow tubular element 17 which extends from an integral circular connecting flange 23 and turns downwardly at right angles and terminates in a cable nut 24.
As best illustrated in FIG. 1, a rubber or plastic jacketed cable 25 enters the right angle connector through the cable nut 24. The cable jacket is cut clean internally at 26 and the individual leads 27 extend outward, turn 90, and are soldered at 27 to the array of solder terminals 22.
Turning to the specific details of the construction of the various components of the connector shown in FIGS. 1, 2 and 3, it will be observed that the cable nut 24 has an inside diameter just large enough to smoothly accommodate the passage of jacketed cable 25. Cable nut 24 engages the internal thread 31 of an integral en 'larged diameter portion 32 of shell 17. Internally the shell 17 has been machined to provide a circular sharply defined undercut region 33 which terminates in the sharply defined circular edge 34. A ferrule or washer 35 having an internal opening slightly larger than the cable diameter bears against the inner surface of cable nut 24, which in turn bears upon an annular rubber grommet 36 which in unstressed condition normally will have a generally rectangular cross section. As the cable nut 24 is tightened within threads 31, the advancing ferrule 35 compresses and distorts grommet 36 in the manner shown in FIG. 1, and in so doing drives the grommet 36 into hermetically sealing engagement with the sharp circular edge 34 and simultaneously forcesthe grommet radially inward at the region 37 into hermetically sealing, compressive engagement with the cable jacket 37.
As shown in FIG. 1, the cable when fully assembled is hermetically sealed and correspondingly the outer lower end of right angle connector is also hermetically sealed. More specifically, moisture seeping along the cable jacket through the cable nut will be barred from entering the internal region of shell 17 by the engagement of grommet 36 against the cable at 37 and also by the engagement between grommet 36 and ferrule 35. Moisture which may penetrate through the screw threads between the cable nut and shell 17 will be prevented from entering the internal region by virme of the compressive force between grommet 36 and sharp circular edge 34.
As noted earlier, the left hand end of connection section 12 terminates in an integral circular flange 23 having a flat, smooth annular engaging surface 41. Flange 23 is provided with three openings 42 which are spaced precisely 120 apart. As best shown in FIG. 1, each of the three openings 42 includes a short smooth bore followed by an internally threaded portion 43. Bolts 44, each of which has a smooth shaft portion 45 followed by a threaded portion 46, are threaded through the respective openings 42. It may thus be seen that bolts 44 will normally be captured loosely in the respective openings as shown in FIG. 2, but that they may, however, be removed by drawing them backward and unscrewing them through the threaded portion 43. Lock washers 47 are provided on each of bolts 44 and are retained without chance of loss by virtue of the arrangement described immediately above.
Turning at this time to left hand section 11 of right angle connector 10, an inner hollow cylindrical machined shell 51 encloses the array of contact pins 21 at one end and the corresponding solder lugs 22 at the other end thereof. More specifically, the inner surface of shell 51 is formed with a cylindrical protrusion 52 and a cylindrical recess 53 to more rigidly secure solid rubber contact pin insulator 55, which during the customary integral bonding process forms an adherent hermetic seal with the interior of shell 51. Cylindrical protrusions 56 and 57 on each of the pins provide enhanced hermetic sealing between the pins and the rubber 55 and also more securely seat the respective pins and preclude axial movement thereof during normal connection and disconnection from the mating connector.
As illustrated best in FIGS. 1 and 3, the forward open face of the rubber insulator 55 has been molded to provide an integral small annular boss 61 around each of pins 21. These bosses are arranged to engage the forward face of rubber insulator 62 at respective areas 63 in the open end of mating connector 13 to achieve an interfacial seal which precludes the flow of moisture radially into the contact area between each pin 21 and its mating pin socket 64 in panel connector 13.
The outer surface of shell 51 of connector section 11 is provided with a machined flange 71 and a recessed annular region 72. Cylindrical surface 73 of lesser diameter than flange 71 is knurled (for reasons to be described below).
A coaxial outer cylindrical coupling 74 surrounds virtually the entire left hand half of inner shell 51 and is normally urged to the right as viewed in FIG. 1 by means of a circular wave-washer (split spring washer) 81 which is captured within the annular recess 82 of outer shell 74. A pair of knurled raised flanges 84 and 85 provide the means by which coupling 74 may be gripped manually, drawn axially to the right, and rotated as desired. When released, the coupling 74 springs back to the position shown.
Three small steel pins 86, spaced at equal angles about coupling shell 74, are retained firmly in position by the metal 87 peened over the respective pin heads. Each pin extends inwardly between coupling 74 and inner shell 51 and provides means for locking the right angle connector 10 to the panel connector 13, as will be described more fully below.
In assembly of connector section 11, coupling 74 is slipped over the inner shell 51 with the wave washer 81 in the position shown. Thereafter, a circular adapter flange 91 is press-fitted in the position shown upon the knurled surface 73 for rigid attachment to inner shell 51. After flange 91 is attached, outer shell 74 is captured on the connector since its motion to the right is limited by flange 91 and to the left by flange 71. Coupling 74, however, may be rotated angularly about its axis.
As best illustrated in FIG. 2, flange 91 is formed with a circular array of threaded openings 92 spaced precisely at 30 intervals. The three bolts 44 may thus be engaged in respective openings of flange 91 in any one of 12 discrete angular orientations, each spaced 30 from the preceding one. As is now apparent, the number of discrete positions available for attachment may be altered by changing the number of openings 92 appropriately.
The right hand surface of flange 91 is smooth and flat and thus fits tightly against the confronting surface of flange 23 .as illustrated in FIG. 1; As shown in FIGS. 1 and 2, a small continuous circular bevel 95 is provided at the innermost edge of flange 91 which cooperates with the right hand edge of shell 51 to provide a small annular recess 96 adapted to receive a resilient O-ring gasket 97. As shown in FIG. 1, when flanges 23 and 91 are drawn tightly together by bolts 44, O-ring-97 is compressed to provide a hermetic seal to bar the flow of moisture which may seep between abutting flanges 23 and 91 from the interior of the right angle connector 10.
When right angle connector is inserted into panel connector 13, slot 101 in inner shell 51 is aligned with key 102 to bring contact pins 21 into appropriate alignment with pin sockets 64. Coupling 74 is positioned so that pins 86 are engaged in three equiangularly spaced curved slots 103; thereafter coupling 74 is rotated to draw the mating halves of the connector together. Continued rotation of coupling shell 74 ultimately results in compression of wave washer 81 and finally the slight relief thereof as the pins 86 snap into slot detents 104. As previously noted, when the connector halves are so engaged the two molded rubber elements 55 and 62 develop an interfacial seal which precludes moisture seepage into the pin and mating socket contact region.
Connector components 17, 51 and 74 are preferably formed ofa durable non-corrosive aluminum alloy. The various parts which were noted as being made of rubber may of course be made of synthetic Neoprene, or the like. During fabrication, cable 25 and its free leads 27 are first inserted through cable nut 24 which is initially loose to permit free passage with the grommet 36 in uncompressed condition. Also at the time of assembly, the two connector halves 11 and 12 are separated as shown in FIG. 2, and cable 25 may be pushed through shell 17 to an extent which enables soldering of the leads 27 to solder lugs 22 to be performed with ease; the O-ring 97 having first been placed over leads 27. As sections 11 and 12 are brought together for final assembly, cable 25 may be withdrawn as required and upon tightening of bolts 44, cable nut 24 is tightened to complete the seal.
Whenever required, the three bolts 44 may be withdrawn from flange 91 to slightly separate sections 11 and 12 for rotation one with respect to the other in steps of 30 to position the cable at any desired one of the twelve possible discrete orientations. Separation and reassembly requires nothing more than a screw driver for the bolts shown and, although the seal provided by O-ring 97 is broken when the two sections are separated, the seal is readily re-established since the O- ring may conveniently be dropped back into recess 96 for reassembly. Since O-ring 97 surrounds the cable wires 27, its inadvertent loss is prevented. Thus, with minimum effort, the hermetic seal integrity of the assembled connector is assured.
It will thus be apparent that the novel right angle connector constitutes the present invention. lt is exceedingly flexible, both from the standpoint of manufacture and final use in the field. Structurally, the arrangement shown ensures moisture-free environment in the critical internal portion of the connector notwithstanding the most adverse external conditions.
Certain modifications of the novel connector will now become apparent to those skilled in the art; for example, the contact pins may be replaced with pin sockets if desired and may also, as required, be adapted for panel mounting. Accordingly, the scope of the present invention should be deemed limited only by the appended claims.
What is claimed is:
l. A multi-contact right angle electrical connector for a jacketed multi-conductor electrical cable comprising in combination:
a first generally cylindrical tubular shell enclosing an electrical insulator; an array of electrical contacts supported within and extending through said insu lator; said insulator being bonded to said contacts and to the interior surface of said shell to provide hermetic seals with said contacts and shell;
a second tubular shell formed with a substantially right angle bend, and adapted to enclose a multiconductor jacketed electrical cable;
confronting attachment means provided on adjacent ends of said first and second tubular shells and arranged to permit rigid attachment of said first and second tubular shells at any one of a plurality of discrete angular orientations; the attachment means on said first tubular shell and the outer surface of said first shell being formed and arranged together to define an annular recess;
a gasket disposed within said annular recess and compressed therein by said confronting attachment means when said first and second shells are rigidly attached to provide a hermetic seal between said shells; and
means on said second tubular shell at the end opposite said attachment means for providing a hermetic seal between said second shell and the jacket of a multi-conductor electrical cable.
2. A multi-contact right angle electrical connector in accordance with claim 1 wherein said confronting attachment means comprises:
first and second confronting flanges rigidly secured to adjacent ends of said first and second tubular shells, respectively; one of said flanges having a plurality of equiangular spaced openings, the other of said flanges having a substantially larger plurality of equiangular spaced openings, selective ones of said larger plurality being adapted for alignment with each of said openings in said first flange in a substantial number of discrete angular orientations;
detachable means for rigidly securing together said first and second flanges through said aligned openings; the inner edge of said first flange at the junction with said first shell being formed with a bevel to define said annular recess; said recess having a generally triangular cross-section;
said gasket comprising an O-ring adapted to fit within said recess and to be compressed by said first and second flanges when rigidly secured to each other.
3. A multi-contact right angle electrical connector as in claim 2 and including:
a hollow cylindrical coupling surrounding said first tubular shell;
an annular ridge formed on the outer surface of said first shell;
said coupling being captured by said first flange and said annular ridge and arranged for limited motion therebetween; and
resilient means within said coupling normally urging said coupling toward said first flange.
second shell and adjacent said cable nut; said gasket being arranged to provide, when said cable nut is tightened, a hermetic seal around a jacket of a cable entering said connector through said cable nut.

Claims (4)

1. A multi-contact right angle electrical connector for a jacketed multi-conductor electrical cable comprising in combination: a first generally cylindrical tubular shell enclosing an electrical insulator; an array of electrical contacts supported within and extending through said insulator; said insulator being bonded to said contacts and to the interior surface of said shell to provide hermetic seals with said contacts and shell; a second tubular shell formed with a substantially right angle bend, and adapted to enclose a multi-conductor jacketed electrical cable; confronting attachment means provided on adjacent ends of said first and second tubular shells and arranged to permit rigid attachment of said first and second tubular shells at any one of a plurality of discrete angular orientations; the attachment means on said first tubular shell and the outer surface of said first shell being formed and arranged together to define an annular recess; a gasket disposed within said annular recess and compressed therein by said confronting attachment means when said first and second shells are rigidly attached to provide a hermetic seal between said shells; and means on said second tubular shell at the end opposite said attachment means for providing a hermetic seal between said second shell and the jacket of a multi-conductor electrical cable.
2. A multi-contact right angle electrical connector in accordance with claim 1 wherein said confronting attachment means comprises: first and second confronting flanges rigidly secured to adjacent ends of said first and second tubular shells, respectively; one of said flanges having a plurality of equiangular spaced openings, the other of said flanges having a substantially larger plurality of equiangular spaced openings, selective ones of said larger plurality being adapted for alignment with each of said openings in said first flange in a substantial number of discrete angular orientations; detachable means for rigidly securing together said first and second flanges through said aligned openings; the inner edge of said first flange at the junction with said first shell being formed with a bevel to define said annular recess; said recess having a generally triangular cross-section; said gasket comprising an O-ring adapted to fit within said recess and to be compressed by said first and second flanges when rigidly secured to each other.
3. A multi-contact right angle electrical connector as in claim 2 and including: a hollow cylindrical coupling surrounding said first tubular shell; an annular ridge formed on the outer surface of said first shell; said coupling being captured by said first flange and said annular ridge and arranged for limited motion therebetween; and resilient means within said coupling normally urging said coupling toward said first flange.
4. A multi-contact right angle electrical connector as in claim 3 wherein said means on said second tubular shell for providing a hermetic seal between said second shell and said cable jacket comprises: a cable nut threaded into said second tubular shell at the end remote from said second flange; a cable nut gasket positioned internally of said second shell and adjacent said cable nut; said gasket being arranged to provide, when said cable nut is tightened, a hermetic seal around a jacket of a cable entering said connector through said cable nut.
US00156306A 1971-06-24 1971-06-24 Tight angle multi-contact electrical connector Expired - Lifetime US3711815A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15630671A 1971-06-24 1971-06-24

Publications (1)

Publication Number Publication Date
US3711815A true US3711815A (en) 1973-01-16

Family

ID=22559021

Family Applications (1)

Application Number Title Priority Date Filing Date
US00156306A Expired - Lifetime US3711815A (en) 1971-06-24 1971-06-24 Tight angle multi-contact electrical connector

Country Status (1)

Country Link
US (1) US3711815A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835443A (en) * 1973-04-25 1974-09-10 Itt Electrical connector shield
US4343526A (en) * 1980-02-06 1982-08-10 Hobson Bros., Inc. Quick disconnect assembly
US4468078A (en) * 1982-07-28 1984-08-28 The Bendix Corporation Forwardly removable coupling ring for an electrical connector
US4536138A (en) * 1982-04-05 1985-08-20 Alsthom-Atlantique Motor-driven pump assembly which can be used under water
US4666228A (en) * 1983-09-28 1987-05-19 Pave Technology Co. Hermetic connector and method
US4676574A (en) * 1984-11-28 1987-06-30 Teleco Oilfield Services Inc. Explosion and flame proof electrical connector protective assembly
US4707046A (en) * 1986-07-10 1987-11-17 Liquidometer Corporation Safety breakaway electrical connector construction
US4726788A (en) * 1986-07-28 1988-02-23 Geppert Erwin F Electrical receptacle
US4732546A (en) * 1986-03-25 1988-03-22 Robert Bosch Gmbh Adjusting device for a fuel injection pump
EP0533496A1 (en) * 1991-09-20 1993-03-24 The Whitaker Corporation Connector with a variable direction strain relief
FR2712740A1 (en) * 1993-11-19 1995-05-24 Sylea Guide device for guiding series of electrical conductors leaving rear of connector
FR2721440A1 (en) * 1994-06-15 1995-12-22 Socapex Amphenol Cylindrical electrical connector for connection to electrical panel
US5490790A (en) * 1993-04-19 1996-02-13 Sumitomo Wiring Systems, Ltd. Electric vehicle charging connector assembly
US6155875A (en) * 1999-04-30 2000-12-05 Mannesmann Vdo Ag Multi-angle electrical connector
US20030060088A1 (en) * 2000-07-31 2003-03-27 Richard Koch Electrical connector assembly
US6645006B1 (en) * 2000-07-05 2003-11-11 Mannesmann Vdo Ag Electrical connector
US6713711B2 (en) 2001-11-09 2004-03-30 Thermal Dynamics Corporation Plasma arc torch quick disconnect
US6857891B1 (en) * 2003-02-06 2005-02-22 Sv Microwave High frequency coaxial connector
US20060034578A1 (en) * 2004-08-11 2006-02-16 Allen William G Telecommunications cable enclosure
US20060032659A1 (en) * 2004-08-11 2006-02-16 3M Innovative Properties Company Telecommunications cable enclosure
CN104283013A (en) * 2014-10-20 2015-01-14 常州隆德电气有限公司 Right-angle cable connector
US20170149186A1 (en) * 2015-11-23 2017-05-25 Te Connectivity India Private Limited Connector Housing Assembly and Electrical Connector Assembly
JP2018018664A (en) * 2016-07-27 2018-02-01 ヒロセ電機株式会社 Electric connector
US20190109408A1 (en) * 2017-10-05 2019-04-11 Fci Usa Llc Ruggedized connector system
US20200154251A1 (en) * 2016-06-07 2020-05-14 Cummins Inc. Plug-in pod for electronic control unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2371551A (en) * 1942-01-23 1945-03-13 Arthur J Schmitt Electrical connector
FR1241785A (en) * 1959-08-07 1960-09-23 Trefileries Laminoirs Havre Sa Removable socket for electrical device feedthrough
US3022484A (en) * 1958-12-05 1962-02-20 Bendix Corp Electrical connection assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2371551A (en) * 1942-01-23 1945-03-13 Arthur J Schmitt Electrical connector
US3022484A (en) * 1958-12-05 1962-02-20 Bendix Corp Electrical connection assembly
FR1241785A (en) * 1959-08-07 1960-09-23 Trefileries Laminoirs Havre Sa Removable socket for electrical device feedthrough

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835443A (en) * 1973-04-25 1974-09-10 Itt Electrical connector shield
US4343526A (en) * 1980-02-06 1982-08-10 Hobson Bros., Inc. Quick disconnect assembly
US4536138A (en) * 1982-04-05 1985-08-20 Alsthom-Atlantique Motor-driven pump assembly which can be used under water
US4468078A (en) * 1982-07-28 1984-08-28 The Bendix Corporation Forwardly removable coupling ring for an electrical connector
US4666228A (en) * 1983-09-28 1987-05-19 Pave Technology Co. Hermetic connector and method
US4676574A (en) * 1984-11-28 1987-06-30 Teleco Oilfield Services Inc. Explosion and flame proof electrical connector protective assembly
US4732546A (en) * 1986-03-25 1988-03-22 Robert Bosch Gmbh Adjusting device for a fuel injection pump
US4707046A (en) * 1986-07-10 1987-11-17 Liquidometer Corporation Safety breakaway electrical connector construction
US4726788A (en) * 1986-07-28 1988-02-23 Geppert Erwin F Electrical receptacle
EP0533496A1 (en) * 1991-09-20 1993-03-24 The Whitaker Corporation Connector with a variable direction strain relief
US5490790A (en) * 1993-04-19 1996-02-13 Sumitomo Wiring Systems, Ltd. Electric vehicle charging connector assembly
FR2712740A1 (en) * 1993-11-19 1995-05-24 Sylea Guide device for guiding series of electrical conductors leaving rear of connector
FR2721440A1 (en) * 1994-06-15 1995-12-22 Socapex Amphenol Cylindrical electrical connector for connection to electrical panel
US6155875A (en) * 1999-04-30 2000-12-05 Mannesmann Vdo Ag Multi-angle electrical connector
US6645006B1 (en) * 2000-07-05 2003-11-11 Mannesmann Vdo Ag Electrical connector
US20030060088A1 (en) * 2000-07-31 2003-03-27 Richard Koch Electrical connector assembly
US6666726B2 (en) * 2000-07-31 2003-12-23 Tru Corporation Electrical connector assembly
US6713711B2 (en) 2001-11-09 2004-03-30 Thermal Dynamics Corporation Plasma arc torch quick disconnect
US6857891B1 (en) * 2003-02-06 2005-02-22 Sv Microwave High frequency coaxial connector
US6953359B1 (en) * 2003-02-06 2005-10-11 Sv Microwave High frequency RF connector
US8071879B2 (en) 2004-08-11 2011-12-06 3M Innovative Properties Company Telecommunications cable enclosure
US20060034578A1 (en) * 2004-08-11 2006-02-16 Allen William G Telecommunications cable enclosure
US7256349B2 (en) 2004-08-11 2007-08-14 3M Innovative Properties Company Telecommunications cable enclosure
US20060032659A1 (en) * 2004-08-11 2006-02-16 3M Innovative Properties Company Telecommunications cable enclosure
US7268299B2 (en) 2004-08-11 2007-09-11 3M Innovative Properties Company Telecommunications cable enclosure
US20070256848A1 (en) * 2004-08-11 2007-11-08 3M Innovative Properties Company Telecommunications cable enclosure
US7598457B2 (en) 2004-08-11 2009-10-06 3M Innovative Properties Company Telecommunications cable enclosure
WO2006025926A1 (en) * 2004-08-26 2006-03-09 3M Innovative Properties Company Telecommunications cable enclosure
CN104283013A (en) * 2014-10-20 2015-01-14 常州隆德电气有限公司 Right-angle cable connector
US20170149186A1 (en) * 2015-11-23 2017-05-25 Te Connectivity India Private Limited Connector Housing Assembly and Electrical Connector Assembly
US9979146B2 (en) * 2015-11-23 2018-05-22 Te Connectivity India Private Limited Connector housing assembly and electrical connector assembly
US20200154251A1 (en) * 2016-06-07 2020-05-14 Cummins Inc. Plug-in pod for electronic control unit
US11689906B2 (en) * 2016-06-07 2023-06-27 Cummins Inc. Plug-in pod for electronic control unit
JP2018018664A (en) * 2016-07-27 2018-02-01 ヒロセ電機株式会社 Electric connector
US11749938B2 (en) 2017-10-05 2023-09-05 Fci Usa Llc Ruggedized connector system
US20190109408A1 (en) * 2017-10-05 2019-04-11 Fci Usa Llc Ruggedized connector system
CN109638528A (en) * 2017-10-05 2019-04-16 富加宜(美国)有限责任公司 Reinforcingization connector system
US10847927B2 (en) * 2017-10-05 2020-11-24 Fci Usa Llc Ruggedized connector system

Similar Documents

Publication Publication Date Title
US3711815A (en) Tight angle multi-contact electrical connector
US5877452A (en) Coaxial cable connector
US5046964A (en) Hybrid connector
US5401175A (en) Magnetic coaxial connector
US4531798A (en) Heavy-duty electrical connector
US4854893A (en) Coaxial cable connector and method of terminating a cable using same
US4923412A (en) Terminal end for coaxial cable
US3994552A (en) Submersible pipe electrical cable assembly
CN100388566C (en) Connector
US4255007A (en) Multi-terminal rotary connector
US6379169B1 (en) Electrical plug housing
US4421371A (en) Electrical self-aligning connector
CA2122119A1 (en) Lightweight Connector for a Coaxial Cable
US9444156B2 (en) Coaxial connector grounding inserts
US6394840B1 (en) Contact securing sleeve for use with a coaxial cable
CN112217042A (en) Bayonet type bundling radio frequency connector assembly
US4802864A (en) Right angle strain relief adapter for electrical connectors
US4857007A (en) Molded environmental seal for electrical connection
US3954321A (en) Miniature electrical connector
US6437245B1 (en) Terminal processing method and structure for shield cable
US6093045A (en) Electrical connector module and kit having tamper proof latch mechanism
US4331374A (en) Coaxial termination for cable in-line electronic applications
US5425654A (en) Electrical connector assembly with cam lever lock mechanism
JPH02270276A (en) Plug-type coaxial connector
US4483579A (en) Electrical connector having improved coupling ring