US3705838A - Water-proofing barrier - Google Patents

Water-proofing barrier Download PDF

Info

Publication number
US3705838A
US3705838A US130683A US3705838DA US3705838A US 3705838 A US3705838 A US 3705838A US 130683 A US130683 A US 130683A US 3705838D A US3705838D A US 3705838DA US 3705838 A US3705838 A US 3705838A
Authority
US
United States
Prior art keywords
layer
bentonite
water
mixture
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US130683A
Inventor
Robert N Olton
Bernard C Berney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mineral Products Corp
Original Assignee
Mineral Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mineral Products Corp filed Critical Mineral Products Corp
Application granted granted Critical
Publication of US3705838A publication Critical patent/US3705838A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D11/00Roof covering, as far as not restricted to features covered by only one of groups E04D1/00 - E04D9/00; Roof covering in ways not provided for by groups E04D1/00 - E04D9/00, e.g. built-up roofs, elevated load-supporting roof coverings
    • E04D11/02Build-up roofs, i.e. consisting of two or more layers bonded together in situ, at least one of the layers being of watertight composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/02Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against ground humidity or ground water
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D7/00Roof covering exclusively consisting of sealing masses applied in situ; Gravelling of flat roofs

Definitions

  • a water-prooling barrier characterized by its controlled swelling when wet and comprising in admixture a waterswellable colloidal clay, such as bentonite, and a particulate, inorganic metal salt treated with an oleaginous carboxylic acid.
  • the metal salt is calcium carbonate, such as amorphous chalk, treated with an acid like oleic or stearic acids.
  • the mixture is particularly adapted as a protective layer in a below grade concrete roof system, or the like, above which a pavement, earth, walks, etc., are to be laid.
  • the present mixture may be used alone as in layer form or in conjunction with an adjoining ⁇ layer of water-swellable clay to form a multi-layer barrier.
  • the mixture may include a finely divided siliceous mineral such as perlite as an additional ingredient.
  • the present invention relates to a water-proofing barrier which reacts when wet to block leakage through it by swelling a controlled amount and, more particularly, to such a barrier comprising a water-swellable colloidal clay and a particulate, inorganic metal salt that has been treated with an oleaginous carboxylic acid, the latter serving to control the natural swelling of the clay while maintaining the integrity of the barrier.
  • bentonite has an eX- tremely strong adsorptive power and can adsorb almost tive times its weight of water.
  • Commercial bentonite swells, When contacted with water, as much as tento twenty times its dry volume. Such swelling can generate appreciable pressures if confined.
  • a layer consisting only of bentonite can swell sufiiciently to cause heaving and displacement of a substantial overbur- 'ice den.
  • the swelling of bentonite can cause commensurate displacement of earth fill and cracking and heaving of overhead rigid and semi-rigid pavements, etc.
  • the present invention admixes with the clay a particulate inorganic salt treated with an oleaginous carboxylic acid, such as amorphous calcium carbonate treated with steric acid.
  • carboxylic acid such as amorphous calcium carbonate treated with steric acid.
  • carboxylic acid component inhibits the swelling of the colloidal clay particles and thereby acts as a further control in their swelling characteristics.
  • a finely divided siliceous mineral is included, such as perlite or vermiculite.
  • the present water-proofing mixture is particularly useful as part of a roof system.
  • the mixture may be used alone or in conjunction with an adjoining layer of a water-soluble clay like bentonite to provide a multilayer, water-proofing barrier.
  • Both layers cooperate in this embodiment to define a water proofing barrier, the layer comprising the present mixture initially protecting the layer of water-swellable clay from being wetted and effectively reducing the swelling of the multi-layer barrier as a unit upon inadvertent wetting of the al1-clay layer.
  • FIG. l is a fragmentary, vertical section of an underground, water-proofing roof deck system embodying the present water-proofing barrier;
  • FIG. 2 is a fragmentary, vertical section of a groundlevel roof deck system embodying the present Water-proofing barrier in conjunction with a contiguous layer of bentonite to form a multi-layer barrier.
  • a clay found to be best suited for the Water-swellable clay of the present mixture is bentonite, such as southern bentonite, and particularly the bentonites found in the regions of Wyoming and South Dakota.
  • bentonite such as southern bentonite
  • other highly colloidal or bentonite clays which possess the property of swelling and gelatinizing in water to a substantial degree are also useful. The degree of their effectiveness depends upon the closeness with which their swelling properly corresponds to that of bentonite.
  • the strong adsorptive power f bentonite in particular is partially attributable to the preponderance of extremely small grains or particles which provide tremendous surface area for the adsorptive powers and the film retaining capacity of the clay. Another factor is the distinctive nature of the particles themselves which are present in minute platelike structures that possess the peculiar property of allowing water molecules to penetrate their crystal lattice and expand it.
  • the montmorillonite Hake is anionic, that is, it carries a negative electrical charge. These charges are balanced by cations or positively charged atoms which are external to the crystal.
  • these cations are primarily sodium, so that the western grades are sometimes called sodium bentonites or sodium montmorillonites.
  • the cations are primarily calcium, and these clays ⁇ are generally referred to as calcium bentonites. The calcium varieties do not swell as much as the sodium bentonites.
  • the colloidal bentonites may be used in various particle sizes.
  • the sizes of the dry particles may range from about fairly coarse granules of four mesh to an extremely line powder of less than 325 mesh or 44 microns.
  • the grains were finer than 0.2 micron and over 85 percent were ner than two microns.
  • bentonite swells, the particles become smaller and smaller.
  • the specic gravity of dry bentonite is from about 2.3 to 2.9, depending in part on the degree of hydration and the sizing or grind which iniluences the packing of the particles.
  • the metal of the metal salt desirably is one from Group I'I of the Periodic Table of the Elements, especially calcium and barium.
  • the salt radical is preferably one from an inorganic acid such as carbonio, sulfuric, and hydrochloric acids. Accordingly, the desired metal salts are calcium carbonate, calcium sulfate, calcium chloride, barium carbonate, barium sulfate, and barium chloride.
  • Barium sulfate is normally used as the naturally occurring barytes.
  • the preferred one is calcium carbonate, such as limestone, but especially the amorphous calcium carbonate appearing in nature as chalk.
  • a highly useful form of such chalk is presently sold by P1uess-Staufer (North American) Inc. under the trademark Protexulate.
  • the metal salt is aggregated into particle sizes for use in the mixture, the particles preferably ranging from about 0.5 micron to about 10 microns.
  • the metal salt is treated with an oleaginous carboxylic acid.
  • such acids having from about 13 to about 22 carbon atoms are sufliciently oily to treat the salt. Both saturated and unsaturated and monocarboxylic and dicarboxylic acids are contemplated. Mixtures of the acids may be used.
  • the particles are treated with stearic, isostearic, palmitic, oleic, or linoleic acids.
  • the acid treatment provides an outer coat or spherical encapsulation.
  • the metal salt having the described particle sizes is sifted into a chamber in which the acid is sprayed or atomized as a fine mist. When collected in the chamber, the metal salt particles have the desired acid coating. This provides an additional control on the swelling of the bentonite.
  • the acid-treated calcium carbonate becomes wet, as during water leakage through the mixture, it is believed that the transfer of the acid component onto the bentonite has an inhibiting iniluence on the swelling of the clay.
  • the bentonite and inorganic metal salt particles may be merely mechanically mixed together by any convenient means to form the mixture.
  • the clay is present in an amount of about 7.5 percent to about percent by volume, the balance comprising substantially the metal salt.
  • the mineral may be either perlite or vermiculite or compatible mixtures of the two.
  • l Perlite which is preferred, is a volcanic glass which when expanded by heat forms a lightweight aggregate. Its particles measure about j/32 to 1A; inch in diameter.
  • Vermiculite comprises a number of micaceous minerals that are hydrous silicates, derived usually from alteration of mica, and whose granules also expand at elevated temperatures to provide a lightweight, highly waterabsorbent material. Thin flakes of vermiculite measure about 1A inch by 1/2 inch or smaller.
  • both perlite and vermiculite are preferably employed in their expanded forms. In the preferred practice, these components may be treated with liquid silicones to enhance the water-proofness of the mixture.
  • the siliceous mineral ingredient is merely mechanically mixed into the bentonite-metal salt mixture. Usually, substantially equal quantities of each of the three ingredients are used; but the bentonite may be present in an amount of about 7.5 percent to about 60 percent by volume, and each of the inorganic metal salt and the siliceous mineral may be present in amounts ranging from about 20 percent to about 60 percent by volume.
  • Example 1 The test sample consisted of equal parts by volume of bentonite, vermiculite, and amorphous calcium carbonate. The results of the permeability test were:
  • Example 2 Another mixture was prepared comprising equal parts by volume of bentonite, vermiculite, and amorphous calcium carbonate. The test data were:
  • Example 4 The compositions tested in this example consisted of bentonite, perlite, and amorphous calcium carbonate in the volume ratio of 02521.75: 1, respectively.
  • the permeability and swelling percentages were:
  • Example 5 Pressure head Permeability Percent in p.s.i. in emJsee. swelling
  • Example 6 The test composition of this example comprised bentonite, perlite, and amorphous calcium carbonate in a 6 volume ratio of 0.25:1.5:1, respectively. The test data were:
  • FIGS. 1 and 2 illustrate two exemplary installations in which the present invention may be used.
  • FIG. 1 illustrates the water-proofing detail for a plaza deck and ernbodies the use of a layer of the present mixture immediately above a surface to be protected and without an adjoining layer of bentonite.
  • a concrete structure generally shown at 10 has a horizontally extending slab portion 11, the upper surface of which is to be protected against penetration by surface water.
  • the structure 10 and slab 11 may, for example, form wall and roof parts of an underground parking garage.
  • a layer 12 of the present mixture is placed immediately above the slab 11.
  • the mixture of layer 12 is tamped beneath, about, and above batts 13 of conventional thermal insulation, such as bonded glass ber or asbestos batts.
  • a hardboard 14, such as gypsum or the like, lies over the mixture 12, and a sheet 15 of plastic, such as polyethylene, separates the board 14 from an overburden of gravel 16.
  • a plastic sheet 17 separates the gravel 16 from an overlay of concrete 18.
  • the board 14 enables the layer 12 to be smoothed to a substantially uniform thickness as by rolling a compacting roller over the board.
  • the plastic sheets 15 and 17 serve to prevent mixing of the gravel 16 with adjacent components. Earth or other iill may be substituted for concrete 18, as desired.
  • elastomeric compression seals 19 and 20 may also be used along the vertically disposed ends of the layers of the roof deck construction.
  • the thickness of the layer 12 of the present mixture may range from about inch to about 2.5 inches, including the insulating batts 13.
  • FIG. 2 illustrates the water-proofing details of a groundlevel roof deck and embodies a multi-layer barrier in which one layer comprises the present mixture and the other layer comprises essentially bentonite. More particularly, a multi-layer barrier generally indicated at 21 overlies a concrete base slab 22. The barrier 21 comprises a layer 21a of bentonite atop the slab 22, and a layer 2lb of the present mixture contacting layer 21a. As in FIG. 1, layer 2lb can embody thermal insulating batts 13 of glass iibers or asbestos, around which the mixture 2lb is compacted. A polyethylene ilm 23 preferably separates layers 21a and 2lb.
  • An L-shaped concrete curb 27 is positioned within the gravel 26.
  • An earth fill 28 lies to the right of the vertical extent of the curb 27, as viewed in FIG. 2, and a concrete slab 29 lies to the left, separated if desired as by an elastomeric compression seal 30.
  • the layer 2lb may have the same range of thicknesses as in FIG. l.
  • the layer 21a of bentonite may range from about l; of an inch to 1/2 inch.
  • the water-proofing mixture of the present invention is non-flammable and non-deteriorating under the action of salts and other normal constituents of soil.
  • the surface tension of the mixture is such that it has high resistance to infiltration of moisture even under saturated conditions.
  • a layer of the present mixture therefore, serves substantially as a water-impervious panel unless and until a puncture or rupture occurs in the compacted mass that is suticiently large to admit moisture. This may occur in time due to shifting of the elements of the roof deck, erosion, and the like.
  • the bentonite swells and gelatinizes, blocking all leakage paths in the area. Indeed, for many relatively small punctures, the bentonite renders the present mixture self-sealing.
  • wet bentonite causes the weaker of the surfaces to heave and crack under its pressurizing swell.
  • the amount of swelling is controlled due to the mollifying effect of the carboxylic acid-treated metal salt and, if used, to the siliceous mineral.
  • the oleaginous acid on the particles of the metal salt is believed also to inhibit the swelling of the bentonite upon being wetted and does not essentially impair the sealing ability of the bentonite. Even when the bentonite of the mixture swells, the mixture does not sufficiently heave to displace other elements of a roof system.
  • the reaction in use is substantially the same, except that the layer of the mixture further initially prevents any penetration of Water to the underlying bentonite layer.
  • the layer 21a swells and gelatinizes to a greater extent than layer 21b since the former contains more bentonite.
  • layer 21a is similar to a second line of defense.
  • the amount of swell of the multi-layer barrier 21 as a unit is substantially less than if the multi-layer barrier was composed entirely of bentonite. There is, therefore, a controlled swell and one that does not produce heaving or disrupture.
  • the applications of the water-proof barrier comprising this invention and shown and described herein are exemplary only.
  • the multi-layer barrier described in connection with the ground-level roof deck system can be used in below grade applications including the one shown in FIG. 1, and the single layer barrier shown applied to a below grade roof deck system can be used in groundlevel applications including the one shown in FIG. 2.
  • both forms of the invention can be used on above grade roof deck systems.
  • a multi-layer'barrier including a rst water-proofing f layer adapted to face a surface to be protected and comprising compacted colloidal clay particles effective upon wetting to swell and block potential paths of leakage; and a second water-proofing layer overlying andcontacting the first layer comprising a compacted admixture of about 7.5 percent to about 60 percent by volume of a waterswellable colloidal clay, about 20 percent to about'60 percent by volume of each of a finely divided siliceous mineral selected from the group consisting of perlite and vermiculite, and of an inorganic metal salt encapsulated with an oleaginous carboxylic acid, the metal of said metal salt being selected from Group II ofthe Periodic Table, of the Elements, wherein both layers cooperate to provide the barrier and said second layer initially protects said tirst layer from being wetted and effectively reduces swelling of the multi-layer barrier as a unit upon inadvertent wetting of said first layer.
  • said inorganic metal salt is selected from the group consisting of calcium carbonate, calcium sulfate, calcium chloride, barium carbonate, barium sulfate, and barium chloride.
  • vsaid oleaginous carboxylic acid is selected from carboxylic acids having from 13 to 22 carbon atoms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sealing Material Composition (AREA)

Abstract

A WATER-PROOFING BARRIER CHARACTERIZED BY ITS CONTROLLED SWELLING WHEN WET AND COMPRISING IN ADMIXTURE A WATERSWELLABLE COLLOIDAL CLAY, SUCH AS BENTONITE, AND A PARTICULATE, INORGANIC METAL SALT TREATED WITH AN OLEAGINOUS CARBOXYLIC ACID. PREFERABLY, THE METAL SALT IS CALCIUM CARBONATE, SUCH AS AMORPHOUS CHALK, TREATED WITH AN ACID LIKE OLEIC OR STEARIC ACIDS. THE MIXTURE IS PARTICULARLY ADAPTED AS A PROTECTIVE LAYER IN A BELOW GRADE CONCRETE ROOF SYSTEM, OR THE LIKE, ABOVE WHICH A PAVEMENT, EARTH, WALKS, ETC., ARE TO BE LAID. THE PRESENT MIXUTRE MAY BE USED ALONE AS IN LAYER FORM OR IN CONJUNCTION WITH AN ADJOINING LAYER OF WATER-SWELLABLE CLAY TO FORM A MULTI-LAYER BARRIER. OPTIONALLY, THE MIXTURE MAY INCLUDE A FINELY DIVIDED SILICEOUS MINERAL SUCH AS PERLITE AS AN ADDITIONAL INGREDIENT.

Description

Dec. l2, 1972 R. N. oLToN ET AL 3,705,838
wATER-PRooFING BARRIER Original Filed Deo. 29, 1969 BERNARD C. BERNEY #wim ATTORNEYS United States Patent O 3,705,838 WATER-PROOFING BARRIER Robert N. Olton, Cleveland Heights, Ohio, and Bernard C. Berney, Indianapolis, Ind., assignors to Mineral Products Corporation, Cleveland, Ohio Original application Dec. 29, 1969, Ser. No. 888,235, now Patent No. 3,630,762. Divided and this application Apr. 2, 1971, Ser. No. 130,683
Int. Cl. B32b 9/00 U.S. Cl. 161-206 6 Claims ABSTRACT F THE DISCLOSURE A water-prooling barrier characterized by its controlled swelling when wet and comprising in admixture a waterswellable colloidal clay, such as bentonite, and a particulate, inorganic metal salt treated with an oleaginous carboxylic acid. Preferably, the metal salt is calcium carbonate, such as amorphous chalk, treated with an acid like oleic or stearic acids. The mixture is particularly adapted as a protective layer in a below grade concrete roof system, or the like, above which a pavement, earth, walks, etc., are to be laid. The present mixture may be used alone as in layer form or in conjunction with an adjoining `layer of water-swellable clay to form a multi-layer barrier. Optionally, the mixture may include a finely divided siliceous mineral such as perlite as an additional ingredient.
This application is a division of patent application Ser. No. 888,235, tiled Dec. 29, 1969, now U.S. Patent No. 3,630,762.
BACKGROUND OF THE INVENTION The present invention relates to a water-proofing barrier which reacts when wet to block leakage through it by swelling a controlled amount and, more particularly, to such a barrier comprising a water-swellable colloidal clay and a particulate, inorganic metal salt that has been treated with an oleaginous carboxylic acid, the latter serving to control the natural swelling of the clay while maintaining the integrity of the barrier.
The use of a water-swellable clay like bentonite to impede water seepage through a structural panel is known. Such clays have the capacity to swell and gelatinize upon contact with Water and thereby block its flow. For example, U.S. Patent 2,277,286 to Bechtner discloses the use of bentonite for this purpose. Also, U.S. Patent 3,186,896 to Clem discloses a preformed moisture impervious panel comprising a pair of spaced facing sheets inter-connected by a corrugated strip. The voids between the strips and facing sheets are lled with a mass of colloidal clay such as bentonite. The panel form permits bentonite Waterprooling barriers to be installed conveniently on and against vertical walls below grade, for example.
As stated in U.S. Patent 2,277,286, bentonite has an eX- tremely strong adsorptive power and can adsorb almost tive times its weight of water. Commercial bentonite swells, When contacted with water, as much as tento twenty times its dry volume. Such swelling can generate appreciable pressures if confined. As a result, and contrary to the apparent teachings of Patents 2,277,286 and 3,186,896, a layer consisting only of bentonite can swell sufiiciently to cause heaving and displacement of a substantial overbur- 'ice den. Particularly when the Water-proofing layer forms part of a substantially rigid underground roof system, the swelling of bentonite can cause commensurate displacement of earth fill and cracking and heaving of overhead rigid and semi-rigid pavements, etc.
Nevertheless, the practice has been to use water-proong barriers of bentonite alone, even as preformed packages as in the case of the Clem Patent 3,186,896. Although the swelling characteristics of clays like bentonite vary over a wide range, it is not possible to tell beforehand how much swelling can be tolerated in a given installation. The amount and kinds of impurities present also affect the swelling characteristics of bentonite. On the other hand, it would add substantially to the cost to manufacture the same water-proofing product with different, predetermined grades or amounts of swelling.
Accordingly, a water-prooing barrier containing a water-swellable clay like bentonite, but having controlled swelling and therefore adapted for generally universal application, would advance the art.
SUMMARY OF THE INVENTION In order to blunt the expansion of a water-swellable clay like bentonite without losing appreciable water-proofing qualities, the present invention admixes with the clay a particulate inorganic salt treated with an oleaginous carboxylic acid, such as amorphous calcium carbonate treated with steric acid. Upon wetting of the clay and salt, it is believed that the carboxylic acid component inhibits the swelling of the colloidal clay particles and thereby acts as a further control in their swelling characteristics. In the preferred form, a finely divided siliceous mineral is included, such as perlite or vermiculite.
The present water-proofing mixture is particularly useful as part of a roof system. In this and other similar installations, the mixture may be used alone or in conjunction with an adjoining layer of a water-soluble clay like bentonite to provide a multilayer, water-proofing barrier. Both layers cooperate in this embodiment to define a water proofing barrier, the layer comprising the present mixture initially protecting the layer of water-swellable clay from being wetted and effectively reducing the swelling of the multi-layer barrier as a unit upon inadvertent wetting of the al1-clay layer.
BRIEF DESCRIPTION OF THE DRAWING FIG. l is a fragmentary, vertical section of an underground, water-proofing roof deck system embodying the present water-proofing barrier; and
FIG. 2 is a fragmentary, vertical section of a groundlevel roof deck system embodying the present Water-proofing barrier in conjunction with a contiguous layer of bentonite to form a multi-layer barrier.
DESCRIPTION OF THE PREFERRED EMBODIMENTS A clay found to be best suited for the Water-swellable clay of the present mixture is bentonite, such as southern bentonite, and particularly the bentonites found in the regions of Wyoming and South Dakota. However, other highly colloidal or bentonite clays which possess the property of swelling and gelatinizing in water to a substantial degree are also useful. The degree of their effectiveness depends upon the closeness with which their swelling properly corresponds to that of bentonite.
The strong adsorptive power f bentonite in particular is partially attributable to the preponderance of extremely small grains or particles which provide tremendous surface area for the adsorptive powers and the film retaining capacity of the clay. Another factor is the distinctive nature of the particles themselves which are present in minute platelike structures that possess the peculiar property of allowing water molecules to penetrate their crystal lattice and expand it.
Bentonite in particular swells because it is composed primarily of the clay montmorillonite. The montmorillonite Hake is anionic, that is, it carries a negative electrical charge. These charges are balanced by cations or positively charged atoms which are external to the crystal. In western-type bentonite found in Wyoming and the Dakotas, these cations are primarily sodium, so that the western grades are sometimes called sodium bentonites or sodium montmorillonites. In southern-type bentonites, the cations are primarily calcium, and these clays `are generally referred to as calcium bentonites. The calcium varieties do not swell as much as the sodium bentonites.
The colloidal bentonites may be used in various particle sizes. As a rule, the sizes of the dry particles may range from about fairly coarse granules of four mesh to an extremely line powder of less than 325 mesh or 44 microns. In one useful grade of Wyoming bentonite, from 65 to 75 percent of the grains were finer than 0.2 micron and over 85 percent were ner than two microns. As bentonite swells, the particles become smaller and smaller. At complete hydration, the great majority of the particles are sub-micron in size. The specic gravity of dry bentonite is from about 2.3 to 2.9, depending in part on the degree of hydration and the sizing or grind which iniluences the packing of the particles.
The particulate, inorganic metal salt, treated with an oleaginous carboxylic acid, inhibitsv the swelling of the bentonite and yet does not adversely aiect the waterproofing lqualities. Indeed, the treated metal salt inherently possesses a natural water-resistant property as well as thermal insulating characteristics. The metal of the metal salt desirably is one from Group I'I of the Periodic Table of the Elements, especially calcium and barium. The salt radical is preferably one from an inorganic acid such as carbonio, sulfuric, and hydrochloric acids. Accordingly, the desired metal salts are calcium carbonate, calcium sulfate, calcium chloride, barium carbonate, barium sulfate, and barium chloride. Barium sulfate is normally used as the naturally occurring barytes. Of the metal salts, the preferred one is calcium carbonate, such as limestone, but especially the amorphous calcium carbonate appearing in nature as chalk. A highly useful form of such chalk is presently sold by P1uess-Staufer (North American) Inc. under the trademark Protexulate.
The metal salt is aggregated into particle sizes for use in the mixture, the particles preferably ranging from about 0.5 micron to about 10 microns. In this form, the metal salt is treated with an oleaginous carboxylic acid. IIn general, such acids having from about 13 to about 22 carbon atoms are sufliciently oily to treat the salt. Both saturated and unsaturated and monocarboxylic and dicarboxylic acids are contemplated. Mixtures of the acids may be used. In the preferred practice, the particles are treated with stearic, isostearic, palmitic, oleic, or linoleic acids.
The acid treatment provides an outer coat or spherical encapsulation. FIn general, the metal salt having the described particle sizes is sifted into a chamber in which the acid is sprayed or atomized as a fine mist. When collected in the chamber, the metal salt particles have the desired acid coating. This provides an additional control on the swelling of the bentonite. When the acid-treated calcium carbonate becomes wet, as during water leakage through the mixture, it is believed that the transfer of the acid component onto the bentonite has an inhibiting iniluence on the swelling of the clay.
The bentonite and inorganic metal salt particles may be merely mechanically mixed together by any convenient means to form the mixture. The clay is present in an amount of about 7.5 percent to about percent by volume, the balance comprising substantially the metal salt.
In order to decrease the bulk density of the described binary mixture and to improve its thermal insulating properties, it is preferred to include a finely divided siliceous mineral as a third ingredient. The mineral may be either perlite or vermiculite or compatible mixtures of the two.l Perlite, which is preferred, is a volcanic glass which when expanded by heat forms a lightweight aggregate. Its particles measure about j/32 to 1A; inch in diameter. Vermiculite comprises a number of micaceous minerals that are hydrous silicates, derived usually from alteration of mica, and whose granules also expand at elevated temperatures to provide a lightweight, highly waterabsorbent material. Thin flakes of vermiculite measure about 1A inch by 1/2 inch or smaller. As used in the present mixture, both perlite and vermiculite are preferably employed in their expanded forms. In the preferred practice, these components may be treated with liquid silicones to enhance the water-proofness of the mixture.
The siliceous mineral ingredient is merely mechanically mixed into the bentonite-metal salt mixture. Usually, substantially equal quantities of each of the three ingredients are used; but the bentonite may be present in an amount of about 7.5 percent to about 60 percent by volume, and each of the inorganic metal salt and the siliceous mineral may be present in amounts ranging from about 20 percent to about 60 percent by volume.
The following examples are intended to illustrate the invention and should not be construed as limiting the claims. In procuring the following data, the indicated volume proportions of the ingredients were placed in a circular mold having a diameter of four inches and compacted under a static pressure of 10,000 pound per square foot to produce a test sample one-half inch in thickness. In all examples, calcium carbonate treated with stearic acid was used as the metal salt in order to provide a uniform basis of comparison. The calcium carbonate had a bulk density of about 55 pounds to about 65 pounds per cubic foot. The perlite weighed about 7.5 to 8 pounds per cubic foot, and the vermiculite weighed about 6 to 7 pounds per cubic foot. The sample was completely saturated before testing by soaking in water for a minimum of 24 hours. During the permeability testing, an overburden pressure of pounds per square foot was applied to the top of the test sample, and the rate of water ow through the sample was recorded hourly. Various hydrostatic heads of water were applied during testing, each pressure head constituting a test run. The value of the coeicient of permeability was determined from the measured ilow rates. In order to obtain the degree of swelling of a sample, the height of sample was recorded to the nearest 1/20 of an inch under the various heads of water and calculated as a percentage increase in volume.
Example 1 The test sample consisted of equal parts by volume of bentonite, vermiculite, and amorphous calcium carbonate. The results of the permeability test were:
Pressure head Permeability These are extremely low permeability rates. For example, a permeability of 109 centimeters per second is equivalent to a rate of one foot in 20 years. From a practical point of view, this means that any moisture move- Example 2 Another mixture was prepared comprising equal parts by volume of bentonite, vermiculite, and amorphous calcium carbonate. The test data were:
Pressure head Permeability in p.s.i. in cnr/sec.
7 6. GX10-10 10 1. 0)(109 15 9. 0)(10-10 30 7. 0X10'9 Example 3 In these test runs, a relatively low percentage of bentonite was used, that is, about 9.1 percent by volume of the mixture. The volume ratios of bentonite, vermiculite, and amorphous calcium carbonate were, respectively, 0.5 :3:2. The test data showed:
Permeability in cru/see.
Pressure head n p.s.i.
Example 4 The compositions tested in this example consisted of bentonite, perlite, and amorphous calcium carbonate in the volume ratio of 02521.75: 1, respectively. The permeability and swelling percentages were:
Percent Pressure head Permeability i swelling in p.s. in cm./sec.
1 5. 54x10-s o. 5
33 1. axle-i 4. 2
Example 5 Pressure head Permeability Percent in p.s.i. in emJsee. swelling Example 6 The test composition of this example comprised bentonite, perlite, and amorphous calcium carbonate in a 6 volume ratio of 0.25:1.5:1, respectively. The test data were:
Percent Permeability swelling in p.s.i.
Example 7 Percent Permeability swelling Pressure head in cm./sec.
in p.s.i.
FIGS. 1 and 2 illustrate two exemplary installations in which the present invention may be used. FIG. 1 illustrates the water-proofing detail for a plaza deck and ernbodies the use of a layer of the present mixture immediately above a surface to be protected and without an adjoining layer of bentonite. A concrete structure generally shown at 10 has a horizontally extending slab portion 11, the upper surface of which is to be protected against penetration by surface water. The structure 10 and slab 11 may, for example, form wall and roof parts of an underground parking garage.
A layer 12 of the present mixture is placed immediately above the slab 11. In the illustrated embodiment, the mixture of layer 12 is tamped beneath, about, and above batts 13 of conventional thermal insulation, such as bonded glass ber or asbestos batts. A hardboard 14, such as gypsum or the like, lies over the mixture 12, and a sheet 15 of plastic, such as polyethylene, separates the board 14 from an overburden of gravel 16. Similarly, a plastic sheet 17 separates the gravel 16 from an overlay of concrete 18. The board 14 enables the layer 12 to be smoothed to a substantially uniform thickness as by rolling a compacting roller over the board. The plastic sheets 15 and 17 serve to prevent mixing of the gravel 16 with adjacent components. Earth or other iill may be substituted for concrete 18, as desired. Conventional seals, such as elastomeric compression seals 19 and 20, may also be used along the vertically disposed ends of the layers of the roof deck construction. Although sizes are not critical and depend upon a particular installation, the thickness of the layer 12 of the present mixture may range from about inch to about 2.5 inches, including the insulating batts 13.
FIG. 2 illustrates the water-proofing details of a groundlevel roof deck and embodies a multi-layer barrier in which one layer comprises the present mixture and the other layer comprises essentially bentonite. More particularly, a multi-layer barrier generally indicated at 21 overlies a concrete base slab 22. The barrier 21 comprises a layer 21a of bentonite atop the slab 22, and a layer 2lb of the present mixture contacting layer 21a. As in FIG. 1, layer 2lb can embody thermal insulating batts 13 of glass iibers or asbestos, around which the mixture 2lb is compacted. A polyethylene ilm 23 preferably separates layers 21a and 2lb. A hardboard 24, such as gypsum or the like, overlies the multi-layer 21, and another polyethylene sheet 25 separates the hardboard 24 from gravel ll 26. The board 24 and plastic sheets 23 and 1ZSGserve the same purpose as in the embodiment of An L-shaped concrete curb 27 is positioned within the gravel 26. An earth fill 28 lies to the right of the vertical extent of the curb 27, as viewed in FIG. 2, and a concrete slab 29 lies to the left, separated if desired as by an elastomeric compression seal 30. The layer 2lb may have the same range of thicknesses as in FIG. l. The layer 21a of bentonite may range from about l; of an inch to 1/2 inch.
The water-proofing mixture of the present invention is non-flammable and non-deteriorating under the action of salts and other normal constituents of soil. The surface tension of the mixture is such that it has high resistance to infiltration of moisture even under saturated conditions. A layer of the present mixture, therefore, serves substantially as a water-impervious panel unless and until a puncture or rupture occurs in the compacted mass that is suticiently large to admit moisture. This may occur in time due to shifting of the elements of the roof deck, erosion, and the like. As the water contacts the bentonite in the mixture, the bentonite swells and gelatinizes, blocking all leakage paths in the area. Indeed, for many relatively small punctures, the bentonite renders the present mixture self-sealing. This characteristic prevents the normally troublesome lateral or horizontal migration of moisture in the layers and especially along the horizontal interface of adjoining layers. Instead, the present waterproong mixture is self-sealing and swells to localize the area of the invading moisture and prevent its further movement in any direction.
Normally, when encased between two fairly rigid surfaces such as concrete or concrete and asphalt, wet bentonite causes the weaker of the surfaces to heave and crack under its pressurizing swell. However, in the present case the amount of swelling is controlled due to the mollifying effect of the carboxylic acid-treated metal salt and, if used, to the siliceous mineral. The oleaginous acid on the particles of the metal salt is believed also to inhibit the swelling of the bentonite upon being wetted and does not essentially impair the sealing ability of the bentonite. Even when the bentonite of the mixture swells, the mixture does not sufficiently heave to displace other elements of a roof system.
When a layer of bentonite is used with a layer of the present mixture as in FIG. 2, the reaction in use is substantially the same, except that the layer of the mixture further initially prevents any penetration of Water to the underlying bentonite layer. In a severe fracture or shifting of the elements of the roof system such that moisture ultimately reaches the substantially all-bentonite layer 21a* (sometimes caused by leakage along the vertically disposed ends of the roof deck system), the layer 21a swells and gelatinizes to a greater extent than layer 21b since the former contains more bentonite. In this respect, layer 21a is similar to a second line of defense. Yet, the amount of swell of the multi-layer barrier 21 as a unit, that is, layers 21a and 2lb combined, is substantially less than if the multi-layer barrier was composed entirely of bentonite. There is, therefore, a controlled swell and one that does not produce heaving or disrupture.
The applications of the water-proof barrier comprising this invention and shown and described herein are exemplary only. The multi-layer barrier described in connection with the ground-level roof deck system can be used in below grade applications including the one shown in FIG. 1, and the single layer barrier shown applied to a below grade roof deck system can be used in groundlevel applications including the one shown in FIG. 2. In addition, both forms of the invention can be used on above grade roof deck systems.
It is understood that smaller amounts of other relatively inert ingredients may be tolerated in the mixture of the present invention, such as sand, gravel, earth, and the like, without destroying the advantages of the mixture.
Those skilled in the art will appreciate that various other changes and modiiications may be made without departing from the spirit and scope of the invention.
What is claimed is:
1. A multi-layer'barrier including a rst water-proofing f layer adapted to face a surface to be protected and comprising compacted colloidal clay particles effective upon wetting to swell and block potential paths of leakage; and a second water-proofing layer overlying andcontacting the first layer comprising a compacted admixture of about 7.5 percent to about 60 percent by volume of a waterswellable colloidal clay, about 20 percent to about'60 percent by volume of each of a finely divided siliceous mineral selected from the group consisting of perlite and vermiculite, and of an inorganic metal salt encapsulated with an oleaginous carboxylic acid, the metal of said metal salt being selected from Group II ofthe Periodic Table, of the Elements, wherein both layers cooperate to provide the barrier and said second layer initially protects said tirst layer from being wetted and effectively reduces swelling of the multi-layer barrier as a unit upon inadvertent wetting of said first layer.
2. The multi-layer barrier of claim 1 wherein the co1- loidal clay particles of both the tirst and second layers are bentonite.
3. The multi-layer barrier of claim 1 wherein said inorganic metal salt is selected from the group consisting of calcium carbonate, calcium sulfate, calcium chloride, barium carbonate, barium sulfate, and barium chloride.
4. The multi-layer barrier of claim 1 wherein said inorganic metal salt is amorphous calcium carbonate.
5. 'Ihe multi-layer barrier. of claim 4 wherein said amorphous calcium carbonate is chalk.
6. The multi-layer barrier of claim 1 wherein vsaid oleaginous carboxylic acid is selected from carboxylic acids having from 13 to 22 carbon atoms.
References Cited UNITED STATES PATENTS 2,672,442 3/ 1954 Clem 252-85 B 3,469,406 9/ 1969 Braden et al 61-30 FOREIGN PATENTS 578,341 6/1959 Canada 252-85 DANIEL J. FRITSCH, Primary Examiner U.S. Cl. X.R.
US130683A 1969-12-29 1971-04-02 Water-proofing barrier Expired - Lifetime US3705838A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88823569A 1969-12-29 1969-12-29
US13068371A 1971-04-02 1971-04-02

Publications (1)

Publication Number Publication Date
US3705838A true US3705838A (en) 1972-12-12

Family

ID=26828713

Family Applications (1)

Application Number Title Priority Date Filing Date
US130683A Expired - Lifetime US3705838A (en) 1969-12-29 1971-04-02 Water-proofing barrier

Country Status (1)

Country Link
US (1) US3705838A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2397500A1 (en) * 1977-07-11 1979-02-09 Minnesota Mining & Mfg EXPANDABLE FLAME RESISTANT PRODUCTS
US4139588A (en) * 1977-05-25 1979-02-13 American Colloid Company Method of making a water barrier panel
FR2500028A1 (en) * 1981-02-16 1982-08-20 Magnex Ltd TEMPORARY RESISTANCE SUPPORT STRUCTURE AND BUILDING CONSTRUCTION METHOD USING SUCH A STRUCTURE
EP0127547A1 (en) * 1983-05-31 1984-12-05 Bouygues Process for sealing the opposing surfaces of prefabricated concrete elements, especially for bridges an tunnels
US5226279A (en) * 1992-03-09 1993-07-13 Rendon Herrero Oswald Sealing method for the treatment of portland cement concrete
EP0717152A1 (en) * 1994-12-08 1996-06-19 Kunimine Industries Co. Ltd. Water-preventing sealant with plasticity
US5759260A (en) * 1993-07-16 1998-06-02 Rigro Inc. Method for using lightweight concrete for producing a combination therefrom and a combination produced thereby
US20100115875A1 (en) * 2008-09-04 2010-05-13 Frank Santoro Products Made From Recycled Cardboard
US20100151198A1 (en) * 2008-12-12 2010-06-17 Khan Amir G Roofing Material
US20140008068A1 (en) * 2012-07-05 2014-01-09 Craig H. Benson Bentonite collars for wellbore casings
US9511566B2 (en) 2011-05-13 2016-12-06 Polyglass Usa, Inc. Building construction material with high solar reflectivity
US10036513B2 (en) 2013-08-26 2018-07-31 Red Leaf Resources, Inc. Gas transport composite barrier

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139588A (en) * 1977-05-25 1979-02-13 American Colloid Company Method of making a water barrier panel
FR2397500A1 (en) * 1977-07-11 1979-02-09 Minnesota Mining & Mfg EXPANDABLE FLAME RESISTANT PRODUCTS
FR2500028A1 (en) * 1981-02-16 1982-08-20 Magnex Ltd TEMPORARY RESISTANCE SUPPORT STRUCTURE AND BUILDING CONSTRUCTION METHOD USING SUCH A STRUCTURE
EP0127547A1 (en) * 1983-05-31 1984-12-05 Bouygues Process for sealing the opposing surfaces of prefabricated concrete elements, especially for bridges an tunnels
FR2547011A1 (en) * 1983-05-31 1984-12-07 Bouygues Sa METHOD FOR REALIZING SEALING BETWEEN SURFACES WITH REGARD TO TWO PREFABRICATED CONCRETE STRUCTURE ELEMENTS, IN PARTICULAR FOR BRIDGES AND TUNNELS
US5226279A (en) * 1992-03-09 1993-07-13 Rendon Herrero Oswald Sealing method for the treatment of portland cement concrete
US5759260A (en) * 1993-07-16 1998-06-02 Rigro Inc. Method for using lightweight concrete for producing a combination therefrom and a combination produced thereby
EP0717152A1 (en) * 1994-12-08 1996-06-19 Kunimine Industries Co. Ltd. Water-preventing sealant with plasticity
US20100115875A1 (en) * 2008-09-04 2010-05-13 Frank Santoro Products Made From Recycled Cardboard
US8367195B2 (en) * 2008-09-04 2013-02-05 Frank Santoro Products made from recycled cardboard
US20100151198A1 (en) * 2008-12-12 2010-06-17 Khan Amir G Roofing Material
US9511566B2 (en) 2011-05-13 2016-12-06 Polyglass Usa, Inc. Building construction material with high solar reflectivity
US20140008068A1 (en) * 2012-07-05 2014-01-09 Craig H. Benson Bentonite collars for wellbore casings
US9080419B2 (en) * 2012-07-05 2015-07-14 Craig H. Benson Bentonite collars for wellbore casings
US10036513B2 (en) 2013-08-26 2018-07-31 Red Leaf Resources, Inc. Gas transport composite barrier

Similar Documents

Publication Publication Date Title
US3630762A (en) Waterproofing barrier
US3705838A (en) Water-proofing barrier
Mohamed et al. Improvement of expansive soil characteristics stabilized with sawdust ash, high calcium fly ash and cement
Esrig Keynote lecture: Properties of binders and stabilized soils
JP3802777B2 (en) Deformation following type water shielding material
US3131074A (en) Soil stabilization
US3819291A (en) Method of making a pavement
IE51969B1 (en) Soil stabilization process
US5032548A (en) Construction material containing catalytic cracking catalyst particles
WO2021006292A1 (en) Asphalt mixture and paving method using same
Sivapullaiah et al. Geotechnical properties of stabilised Indian red earth
US4544410A (en) Process for the production of an aqueous bituminous preparation
US3252290A (en) Grouting of underwater formations
US3719511A (en) Non-hardenable, high-density fill composition and process for making same
KR100492291B1 (en) Material For Solidifying Soil having breaking resistance, Solid Body and Leeve and Dam using the Same
US3489685A (en) Hydrophobic material and method of making same
RU2340727C1 (en) Protective hydraulic insulating screen
US2402474A (en) Coating
US3192720A (en) Anticorrosive back-fill method
US5096498A (en) Construction material containing catalytic cracking catalyst particles
US2334184A (en) Laminated expansion joint
US2320954A (en) Grouting means and process
CA1138600A (en) Intumescable fire-retardant products
GB1592096A (en) Insulating materials
US1456492A (en) Surfacing composition for highways and the like