US3695477A - Plastisols and gaskets - Google Patents
Plastisols and gaskets Download PDFInfo
- Publication number
- US3695477A US3695477A US38491A US3695477DA US3695477A US 3695477 A US3695477 A US 3695477A US 38491 A US38491 A US 38491A US 3695477D A US3695477D A US 3695477DA US 3695477 A US3695477 A US 3695477A
- Authority
- US
- United States
- Prior art keywords
- plastisols
- plastisol
- parts
- weight
- block copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004999 plastisol Substances 0.000 title claims abstract description 48
- 229920001944 Plastisol Polymers 0.000 title claims abstract description 47
- 229920001400 block copolymer Polymers 0.000 claims abstract description 27
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 18
- 229920001577 copolymer Polymers 0.000 claims description 9
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims description 6
- 125000002897 diene group Chemical group 0.000 claims 1
- -1 alkenyl aromatic compound Chemical class 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 9
- 238000002360 preparation method Methods 0.000 abstract description 6
- 229920001169 thermoplastic Polymers 0.000 abstract description 6
- 239000004416 thermosoftening plastic Substances 0.000 abstract description 6
- 229920000642 polymer Polymers 0.000 abstract description 5
- 239000004800 polyvinyl chloride Substances 0.000 abstract description 5
- 229920000915 polyvinyl chloride Polymers 0.000 abstract description 4
- 230000008719 thickening Effects 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 22
- 239000004014 plasticizer Substances 0.000 description 20
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 239000011162 core material Substances 0.000 description 9
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 8
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 8
- 238000007789 sealing Methods 0.000 description 6
- 229920003048 styrene butadiene rubber Polymers 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- CBFCDTFDPHXCNY-UHFFFAOYSA-N icosane Chemical compound CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 239000002174 Styrene-butadiene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001993 dienes Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- LVAGMBHLXLZJKZ-UHFFFAOYSA-N 2-o-decyl 1-o-octyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC LVAGMBHLXLZJKZ-UHFFFAOYSA-N 0.000 description 2
- 239000004156 Azodicarbonamide Substances 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 238000003677 abuse test Methods 0.000 description 2
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 2
- 235000019399 azodicarbonamide Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 125000001557 phthalyl group Chemical group C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 235000014214 soft drink Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- NJMAFLHPUNGKOD-UHFFFAOYSA-N 1-o-butyl 2-o-decyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC NJMAFLHPUNGKOD-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical class CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- RDOFJDLLWVCMRU-UHFFFAOYSA-N Diisobutyl adipate Chemical compound CC(C)COC(=O)CCCCC(=O)OCC(C)C RDOFJDLLWVCMRU-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000004593 Epoxy Chemical class 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000004965 Silica aerogel Substances 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- VFGRALUHHHDIQI-UHFFFAOYSA-N butyl 2-hydroxyacetate Chemical compound CCCCOC(=O)CO VFGRALUHHHDIQI-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 235000014171 carbonated beverage Nutrition 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229940031769 diisobutyl adipate Drugs 0.000 description 1
- XWVQUJDBOICHGH-UHFFFAOYSA-N dioctyl nonanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC XWVQUJDBOICHGH-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229920001198 elastomeric copolymer Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- ZANNOFHADGWOLI-UHFFFAOYSA-N ethyl 2-hydroxyacetate Chemical compound CCOC(=O)CO ZANNOFHADGWOLI-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical group [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 229920006132 styrene block copolymer Polymers 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- JRFBNCLFYLUNCE-UHFFFAOYSA-N zinc;oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Zn+2] JRFBNCLFYLUNCE-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/04—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08L27/06—Homopolymers or copolymers of vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L57/00—Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/06—Macromolecular organic compounds, e.g. prepolymers
- C09K2200/0615—Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09K2200/0635—Halogen-containing polymers, e.g. PVC
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/06—Macromolecular organic compounds, e.g. prepolymers
- C09K2200/0642—Copolymers containing at least three different monomers
Definitions
- ABSTRACT Plastisols preferably of polyvinyl chloride, having a high yield value and low high shear viscosities are obtained by thickening conventional plastisol preparations with about 1 to 40 parts of certain block copolymers of the A-B-A type in which B is an elastomeric polymer core and A stands for a thermoplastic polymerized alkenyl aromatic compound.
- resilient gaskets can be manufactured from these improved materials.
- an air-tight pressure crown seal is applied on the orifice of the container, for instance a bottle, to retain the carbonation of the contents and to protect the beverage against contamination.
- Crowns for such bottles are made of metal having uniform ductility, gage and even temper and are lined with a sealing gasket which may consist of cork, polyethylene, fluxed plastisols or other plastic materials. It is with fluxed plastisol linings or gaskets of this general type that the present invention is concerned.
- plastisols comprise a dispersion of finely divided thermoplastic resin particles in a liquid nonvolatile plasticizer in which the resin is insoluble or only very slightly soluble at room temperature. At elevated temperatures, the resin becomes substantially completely solvated by the plasticizer, yielding a homogeneous solution which transforms itself into a rubbery thermoplastic mass upon cooling.
- other ingredients may enter the plastisol compositions to accomplish conventional purposes.
- the compositions may contain fillers, pigments, stabilizers, wetting agents and thickeners.
- a gas may be dispersed in the plastisol or a gas-evolving agent, Le, a blowing agent, may be incorporated which will decompose at the fluxing temperature of the composition.
- Plastisols are widely used in the manufacture of sealing gaskets for crown closures, where the gasket comprises an over-all liner coextensive with the inside surface of the closure panel.
- a measured quantity of plastisol is deposited in an inverted closure shell and the closure is rotated at high speed to cause the deposit to spread over the inner surface of the closure panel.
- the deposit is then heated at a temperature and for a period of time sufficient to completely flux the composition.
- the lined crown closure thus obtained is placed over the orifice of the bottle and the skirt of the crown is crimped around the locking ring of the bottle to form a seal.
- the operations and manipulations that the plastisols must undergo in the procedures just described and in other similar sealing applications require that the liquid compositions involved possess certain characteristic rheological properties.
- the compositions must be fluid enough at high shear rates to permit easy disposition through a nozzle and rapid distribution over the inner surface of the closure when the spin lining technique is employed. Yet, they must possess a viscosity suffi ciently high so that the gasket material remain in position until it is solidified by heat treatment.
- This type of property is conventionally imparted to plastisols by incorporating into them a small quantity of a finely divided material, generally of siliceous nature.
- the block copolymers that-are added to plastisols according to the present invention are thermoplastic elastomers composed of polymerized alkenyl substituted aromatic segments attached to the ends of an elastomeric polymerized hydrocarbon chain core.
- Usable hydrocarbon monomers for forming the core preferably contain four to eight carbon atoms. This includes butadiene, isoprene, pentadiene-l,3 and 2,3- dimethylbutadiene.
- the elastome'ric core material may also consist of saturated ethylene-propylene copolymers.
- the alkenyl aromatic hydrocarbon monomers used to form the rest of the block copolymer molecule are preferably of the monovinyl substituted type such as styrene, methylstyrene, vinyl toluene, vinyl naphthalene and the like. More than one monomer may be employed for each section of the block copolymer.
- the structure of the block copolymers being described may be represented by the formula A-B-A in which B is the elastomeric core while A stands for the aromatic alkene polymer segments. While, obviously such copolymers may possess a gradation of properties ranging from those of relatively homogeneous polymerized aromatic vinyl compoundsto those of relatively homogeneous elastomers, the polymers of particular interest here possess a thermoplastic seg ment content of about 10 to 50 percent by weight, an average elastomeric core molecular weight of about 10,000 to 200,000, and an average thermoplastic segment molecular weight of 2,000 to 30,000.
- the preferred copolymers within the class just described are styrene-butadiene block copolymers containing from about 25 to 30 percent by weight polymerized styrene and having an average overall molecular weight of between about 60,000 and 160,000.
- the selected copolymer is dissolved in a conventional liquid plasticizer and the solution is incorporated into the plastisol by mixing. Between about 1 and 40 parts by weight of block copolymer per hundred parts of plastisol resin will yield the desired results.
- the plasticizers that may be employed to dissolve the block copolymer as well as to form the plastisol may be dialkyl phthalates, such as dioctyl phthalate, butyl decyl phthalate and octyl decyl phthalate; alkyl phthalyl alkyl glycollates, such as butyl phthalyl butyl glycollate and methyl phthalyl ethyl glycollate; and dialkyl esters of alkane dicarboxylic acids, such as dioctyl and dibutyl sebacates, dioctyl azelate and diisobutyl adipate.
- dialkyl phthalates such as dioctyl phthalate, butyl decyl phthalate and octyl decyl phthalate
- alkyl phthalyl alkyl glycollates such as butyl phthalyl butyl glycollate and methyl phthalyl
- Secondary plasticizers that may be incorporated in the plastisol include trialkyl and triaryl phosphates, acetyl trialkyl citrates, alkyl esters of high fatty acids, epoxy derivatives and polymeric polyester plasticizers, such as glycol sebacate polyesters. If desired, mixtures of plasticizers may be employed including one or more primary plasticizers and blends of primary and secondary plasticizers.
- a block copolymer preflux is formed by heating with agitation at 250 to 280F, one part by weight of a block copolymer of styrene and butadiene containing 25 percent bound styrene and having an average overall molecular weight of about 120,000, with 4 parts dioctylphthalate.
- a conventional polyvinyl chloride (PVC) plastisol is prepared from the following ingredients:
- a wax-plasticizer blend is formed by melting the wax in a few parts of the plasticizer at a temperature of approximately 130F.
- the hot wax blend is mixed with about half the plasticizer, the mixture stirred and allowed to cool to about 1 F.
- the eicosane, the stabilizer, the azo compound and the resin are added with stirring.
- the remaining plasticizer is also added and the resulting composition stirred until a homogeneous mixture results.
- the preflux is then blended in to obtain a product having a 60 rpm viscosity of 14,000 centipoises and a 6 rpm viscosity of 45,000 cps as measured on a Brookfield viscosimeter (model LVF-SX) at 1 10F with a No. 3 spindle.
- EXAMPLE 2 A plastisol is prepared as in Example 1 except that it contains 3 parts of fumed silica, a conventional thickener. The SBR block copolymer preflux is omitted.
- the plastisol thus obtained has a 6 rpm viscosity of 60,000 cps and a 60 rpm viscosity of 20,000 cps.
- Example 1 and 2 The plastisols of Example 1 and 2 were applied to bottle crowns and fluxed in the conventional manner. The crowns were then affixed to bottles filled with simulated soft drink pack and the packages obtained were subjected to an abuse test.
- EXAMPLE 3 Another illustrative composition can be prepared in the conventional manner from the following ingredients:
- a fluxed plastisol with greatly decreased compressive modulus and only moderately increased shear strength, thus particularly suited for sealing and capping without any decrease in blow-off pressure, is prepared by incorporating 25 parts per 100 parts resin by weight of a styrene-butadiene block copolymer such as Kraton*(*Registered trademark, Shell Chemical Co.) 1102 which has a Brookfield viscosity of about 1000 cp at room temperature for a 25 percent concentration by weight in toluene.
- a 50 percent by weight solution of the block copolymer in the plasticizer is prepared by prolonged stirring and heating, for instance at 280F, and this solution is added to a plastisol which has otherwise been prepared in the conventional manner.
- Parts by Weight Solutions or suspensions of the various ingredient in DOP are first prepared at the solids concentration indicated and the resulting mixtures are combined in the proportions indicated in the total column of the above table.
- the block copolymer solution is added last to a thorough mixture of all the other components and it is mixed in until a uniform product is obtained.
- the net amount of plasticizer used is tabulated in the next column and adds up to 425 parts by weight for a final ratio of 85 parts per 100 parts resin.
- a similar preparation can be made without the 125 parts styrene-butadiene block copolymer.
- a silica aerogel, 45 parts by weight is used instead; all other component quantities and ratios are maintained unchanged including the DOP to resin ratio.
- the block copolymer-containing structures have been found to possess an average second blow-off pressure 17 psi higher than their silica-containing analogs over the range of 32 to 212F.
- the closing force required for the block copolymer plastisol is only 50 to percent of that needed with the conventional silica preparations.
- exposure of fluxed gaskets to 50 percent aqueous solution of ethyl alcohol at F results in a loss of only 8 percent of the plasticizer when the block copolymer is present while 18 percent of the plasticizer is extracted with silica present.
- the use of block copolymers results in increased shear and tensile modulus while providing relatively lower durometer values.
- the plastisol compositions that can benefit from the incorporation of block copolymers of the styrene-butadiene type as described in this invention are those of vinyl chloride homopolymers as well as copolymers containing up to 20 percent of vinyl acetate. Although such polymers are preferred, other acid-resistant thermoplastic resins may be used, including polyvinyl acetate, polyvinyl butyrate, polyvinyl alcohol, polyvinylidene chloride, and so on. These materials, as well as the other modifying components of the plastisols such as blowing agents, fillers, stabilizers, pigments and dispersing agents are well known to the art and are listed in numerous publications including, for example, U. S. Pat. No. 3,447,710. No need exists therefore for re-numerating all the possible elements that can be combined by the man skilled in the art to yield compositions that can be improved in the manner disclosed by the present invention.
- a container closure comprising a flowed-in gasket consisting of a fluxed layer of a plastisol of a resin selected from the group consisting of homopolymers and copolymers of vinyl chloride containing up to 20 percent of vinyl acetate, containing, for each 100 parts by weight of the resin, from about 1 to 40 parts of a block copolymer having an A-B-A structure in which B represents an elastomeric core of polymerized diene units selected from the class consisting of conjugated diene hydrocarbon compounds having four to eight carbon atoms and elastomeric copolymers of ethylene with propylene, said core having an average molecular weight within the range of 10,000 to 200,000, and A represents a thermoplastic segment of a polymerized alkenyl aromatic compound of average molecular weight within the range of about 2,000 to 30,000, wherein the total polymerized alkenyl aromatic compound content constitutes from about 10 to 50 percent by weight of the block copolymermolecule.
- the container closure of claim 1 wherein the plastisol contains about 5 to 25 parts by weight of a copolymer of styrene and butadiene having average over-all molecular weight of about 60,000 to 160,000 and a copolymerized styrene content within the range of 25 to 30 percent of the weight of the molecule.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Sealing Material Composition (AREA)
Abstract
Plastisols, preferably of polyvinyl chloride, having a high yield value and low high shear viscosities are obtained by thickening conventional plastisol preparations with about 1 to 40 parts of certain block copolymers of the A-B-A type in which B is an elastomeric polymer core and A stands for a thermoplastic polymerized alkenyl aromatic compound. Tough, resilient gaskets can be manufactured from these improved materials.
Description
United States Patent Edmonston et al.
[ PLASTISOLS AND GASKETS [72] Inventors: Robert P. Edmonston, Billerica,
Mass. 01821; John W. Lell o rge, Lynnfield, Mass. 01940; George C. Keller, East Qerry, NH. 03041 Assignee: W. R. Grace & Co., Cambridge,
Mass.
Filed; May 18, 1970 Appl. No.: 38,491
US. Cl. ..215/40, 260/2.5 P, 260/23.7 H, 260/23.7 M, 260/28.5 B, 260/28.5 D,
260/30.6 R, 260/31.2 M, 260/3l.2 R,
260/318 M, 260/4l.5 R, 260/41.5 A,
, 260/873, 260/876 B Int. Cl. .....C08f 29/24, C08f 29/ 12, B65d 53/00 Field of Search ..260/876 B, 31.8 M; 215/40 References Cited UNITED STATES PATENTS 4/1969 Bauer et a1. ..260/876 B 3,459,831 8/1969 Luftglass et al. ..260/876 B Primary Examiner-Samuel H. Blech Attorney-Theodore C. Browne, Metro Kalimon, C. E. Parker, William L. Baker, Armand McMillan and Lawrence S. Cohen 5 7] ABSTRACT Plastisols, preferably of polyvinyl chloride, having a high yield value and low high shear viscosities are obtained by thickening conventional plastisol preparations with about 1 to 40 parts of certain block copolymers of the A-B-A type in which B is an elastomeric polymer core and A stands for a thermoplastic polymerized alkenyl aromatic compound.
Tough, resilient gaskets can be manufactured from these improved materials.
3 Claiins, No Drawings THE PRIOR ART In the bottling of carbonated beverages, an air-tight pressure crown seal is applied on the orifice of the container, for instance a bottle, to retain the carbonation of the contents and to protect the beverage against contamination. Crowns for such bottles are made of metal having uniform ductility, gage and even temper and are lined with a sealing gasket which may consist of cork, polyethylene, fluxed plastisols or other plastic materials. It is with fluxed plastisol linings or gaskets of this general type that the present invention is concerned.
Basically, plastisols comprise a dispersion of finely divided thermoplastic resin particles in a liquid nonvolatile plasticizer in which the resin is insoluble or only very slightly soluble at room temperature. At elevated temperatures, the resin becomes substantially completely solvated by the plasticizer, yielding a homogeneous solution which transforms itself into a rubbery thermoplastic mass upon cooling. In addition to the basic components, other ingredients may enter the plastisol compositions to accomplish conventional purposes. Thus the compositions may contain fillers, pigments, stabilizers, wetting agents and thickeners. Also, when a fluxed cellular liner is desired, a gas may be dispersed in the plastisol or a gas-evolving agent, Le, a blowing agent, may be incorporated which will decompose at the fluxing temperature of the composition.
Plastisols are widely used in the manufacture of sealing gaskets for crown closures, where the gasket comprises an over-all liner coextensive with the inside surface of the closure panel. According to one method of lining closures, a measured quantity of plastisol is deposited in an inverted closure shell and the closure is rotated at high speed to cause the deposit to spread over the inner surface of the closure panel. The deposit is then heated at a temperature and for a period of time sufficient to completely flux the composition. In bottle' capping operations, the lined crown closure thus obtained is placed over the orifice of the bottle and the skirt of the crown is crimped around the locking ring of the bottle to form a seal.
The operations and manipulations that the plastisols must undergo in the procedures just described and in other similar sealing applications require that the liquid compositions involved possess certain characteristic rheological properties. The compositions must be fluid enough at high shear rates to permit easy disposition through a nozzle and rapid distribution over the inner surface of the closure when the spin lining technique is employed. Yet, they must possess a viscosity suffi ciently high so that the gasket material remain in position until it is solidified by heat treatment. This type of property is conventionally imparted to plastisols by incorporating into them a small quantity of a finely divided material, generally of siliceous nature.
It is an object of this invention to provide improved plastisol preparations which yield tougher closure gaskets that can better survive the abuse to which such closures are conventionally subjected in their ultimate application. It is also an object of this invention to provide plastisols possessing a more easily controlled thixotropy than that of conventional materials. Another object is to prepare plastisols capable of yielding sealing gaskets of increased shear and tensile modulus under high strain and of lesser hardness than normally available. A further object is to provide fluxed plastisols that are more resistant to extraction of their plasticizer by certain organic liquids to which they may be exposed.
SUMMARY OF THE INVENTION It has now been discovered that the yield value of unfluxed plastisols, i.'e., the low shear viscosity, can be successfully increased, without significantly affecting the high shear viscosity, byv incorporating into the plastisols relatively small quantities of certain thermopla'stic elastomeric block copolymers of conjugated dienes with certain alkenyl aromatic comonomers, dissolved in conventional plasticizers. It has also been discovered that sealing gaskets obtained from plastisols of this type will be stronger, more resilient and softer than those obtained from plastisols containing conventional siliceous materials.
While the quantity of block copolymer that will achieve desirable improvement will vary with such factors as the nature and molecular weight of specific block copolymers, the plasticizer contents of the composition and the particular application contemplated, the preferred proportions lie within the range of about 5 to 25 parts by weight of block copolymer per parts of plastisol resin. However, useful compositions may be devised with as little as 1 part and as much as 40 parts of copolymer per 100 parts thermoplastic resin.
DETAILED DESCRIPTION The block copolymers that-are added to plastisols according to the present invention are thermoplastic elastomers composed of polymerized alkenyl substituted aromatic segments attached to the ends of an elastomeric polymerized hydrocarbon chain core. Usable hydrocarbon monomers for forming the core preferably contain four to eight carbon atoms. This includes butadiene, isoprene, pentadiene-l,3 and 2,3- dimethylbutadiene. The elastome'ric core material may also consist of saturated ethylene-propylene copolymers. The alkenyl aromatic hydrocarbon monomers used to form the rest of the block copolymer molecule are preferably of the monovinyl substituted type such as styrene, methylstyrene, vinyl toluene, vinyl naphthalene and the like. More than one monomer may be employed for each section of the block copolymer.
The structure of the block copolymers being described may be represented by the formula A-B-A in which B is the elastomeric core while A stands for the aromatic alkene polymer segments. While, obviously such copolymers may possess a gradation of properties ranging from those of relatively homogeneous polymerized aromatic vinyl compoundsto those of relatively homogeneous elastomers, the polymers of particular interest here possess a thermoplastic seg ment content of about 10 to 50 percent by weight, an average elastomeric core molecular weight of about 10,000 to 200,000, and an average thermoplastic segment molecular weight of 2,000 to 30,000. The preferred copolymers within the class just described are styrene-butadiene block copolymers containing from about 25 to 30 percent by weight polymerized styrene and having an average overall molecular weight of between about 60,000 and 160,000.
To carry out the invention, as mentioned earlier, the selected copolymer is dissolved in a conventional liquid plasticizer and the solution is incorporated into the plastisol by mixing. Between about 1 and 40 parts by weight of block copolymer per hundred parts of plastisol resin will yield the desired results.
The plasticizers that may be employed to dissolve the block copolymer as well as to form the plastisol may be dialkyl phthalates, such as dioctyl phthalate, butyl decyl phthalate and octyl decyl phthalate; alkyl phthalyl alkyl glycollates, such as butyl phthalyl butyl glycollate and methyl phthalyl ethyl glycollate; and dialkyl esters of alkane dicarboxylic acids, such as dioctyl and dibutyl sebacates, dioctyl azelate and diisobutyl adipate. Secondary plasticizers that may be incorporated in the plastisol include trialkyl and triaryl phosphates, acetyl trialkyl citrates, alkyl esters of high fatty acids, epoxy derivatives and polymeric polyester plasticizers, such as glycol sebacate polyesters. If desired, mixtures of plasticizers may be employed including one or more primary plasticizers and blends of primary and secondary plasticizers.
The following examples are given to illustrate the practice of the invention.
EXAMPLE 1 A block copolymer preflux is formed by heating with agitation at 250 to 280F, one part by weight of a block copolymer of styrene and butadiene containing 25 percent bound styrene and having an average overall molecular weight of about 120,000, with 4 parts dioctylphthalate.
A conventional polyvinyl chloride (PVC) plastisol is prepared from the following ingredients:
Parts by weight PVC resin, plastisol grade 100 Dioctylphthalate (DOP) 50 Azodicarbonamide, 33% in DOP 1.08 Zinc/calcium stearates in epoxidized soybean oil (stabilizer) 0.5 Eicosane 4 Paraffin wax, melting range l20-l3 lF 3 Block copolymer preflux,
20% concentration 25 A wax-plasticizer blend is formed by melting the wax in a few parts of the plasticizer at a temperature of approximately 130F. The hot wax blend is mixed with about half the plasticizer, the mixture stirred and allowed to cool to about 1 F. The eicosane, the stabilizer, the azo compound and the resin are added with stirring. The remaining plasticizer is also added and the resulting composition stirred until a homogeneous mixture results. The preflux is then blended in to obtain a product having a 60 rpm viscosity of 14,000 centipoises and a 6 rpm viscosity of 45,000 cps as measured on a Brookfield viscosimeter (model LVF-SX) at 1 10F with a No. 3 spindle.
EXAMPLE 2 A plastisol is prepared as in Example 1 except that it contains 3 parts of fumed silica, a conventional thickener. The SBR block copolymer preflux is omitted.
The plastisol thus obtained has a 6 rpm viscosity of 60,000 cps and a 60 rpm viscosity of 20,000 cps.
The plastisols of Example 1 and 2 were applied to bottle crowns and fluxed in the conventional manner. The crowns were then affixed to bottles filled with simulated soft drink pack and the packages obtained were subjected to an abuse test.
In this test, a static load pressure of lbs is applied to capped bottles and maintained constant for a period of one week. This treatment duplicates conditions found in soft drink bottling plants where cases of packed soda are stacked on top of one another with the weight of the upper cases being applied to the bottle crowns in the lower cases. After one week, the static pressure is released. The carbon dioxide pressure retained in each bottle is measured, 24 hours after release, by means of a head sampler and a pressure gage. The results are recorded in terms of gas volumes, 4.0 gas volumes indicating a perfect performance since that is the amount of gas originally charged into the bottles. A 3.8 gas volume retention is considered acceptable by the industry, while ratings below 3.8 failures. One failure in a sample of six bottles suffices to rule a compound unsatisfactory.
The essential properties of the plastisols of Examples 1 and 2 as well as the performance of crowns sealed with them under static load abuse are summarized in the following table:
lt becomes apparent from these results that SBR block copolymer reinforced plastisols show increased resistance to static load abuse as compared to the conventional silica thickened materials.
EXAMPLE 3 Another illustrative composition can be prepared in the conventional manner from the following ingredients:
Parts by weight PVC resin, plastisol grade Dioctyl phthalate Paraffin wax Diatomaceous earth Azodicarbonamide Zinc oxide Titanium dioxide Hematite Limonite Carbon black To this plastisol is added 20 parts of a 15 percent preflux of an isoprene-styrene block copolymer having an average core molecular weight of 200,000 and an average styrene segment molecular weight of 30,000. The resulting unfluxed plastisol has a 1 10F viscosity of about 10,000 cps at 6 rpm and about 3,400 cps at 60 rpm. When fluxed and subjected to the static load abuse test described earlier, it behaves substantially as the preparation of Example 1 in that the average gas volume retained in 6 sample bottles is at least 3.8 after a 4 volume charge.
EXAMPLE 4 A fluxed plastisol with greatly decreased compressive modulus and only moderately increased shear strength, thus particularly suited for sealing and capping without any decrease in blow-off pressure, is prepared by incorporating 25 parts per 100 parts resin by weight of a styrene-butadiene block copolymer such as Kraton*(*Registered trademark, Shell Chemical Co.) 1102 which has a Brookfield viscosity of about 1000 cp at room temperature for a 25 percent concentration by weight in toluene. A 50 percent by weight solution of the block copolymer in the plasticizer is prepared by prolonged stirring and heating, for instance at 280F, and this solution is added to a plastisol which has otherwise been prepared in the conventional manner.
A representative formulation would thus appear as follows:
Parts by Weight Solutions or suspensions of the various ingredient in DOP are first prepared at the solids concentration indicated and the resulting mixtures are combined in the proportions indicated in the total column of the above table. The block copolymer solution is added last to a thorough mixture of all the other components and it is mixed in until a uniform product is obtained. The net amount of plasticizer used is tabulated in the next column and adds up to 425 parts by weight for a final ratio of 85 parts per 100 parts resin.
For comparison purposes, a similar preparation can be made without the 125 parts styrene-butadiene block copolymer. A silica aerogel, 45 parts by weight is used instead; all other component quantities and ratios are maintained unchanged including the DOP to resin ratio.
Both formulation yield thixotropic mixtures with viscosities too high for measurement by ordinary means. On lining closures with 400 mg of these plastisols and fluxing for 3 minutes at 410F, a number of interesting differences can be observed.
For instance, the block copolymer-containing structures have been found to possess an average second blow-off pressure 17 psi higher than their silica-containing analogs over the range of 32 to 212F. Also, in the closing or capping operation, the closing force required for the block copolymer plastisol is only 50 to percent of that needed with the conventional silica preparations. Furthermore, exposure of fluxed gaskets to 50 percent aqueous solution of ethyl alcohol at F results in a loss of only 8 percent of the plasticizer when the block copolymer is present while 18 percent of the plasticizer is extracted with silica present. In general, the use of block copolymers results in increased shear and tensile modulus while providing relatively lower durometer values.
The plastisol compositions that can benefit from the incorporation of block copolymers of the styrene-butadiene type as described in this invention are those of vinyl chloride homopolymers as well as copolymers containing up to 20 percent of vinyl acetate. Although such polymers are preferred, other acid-resistant thermoplastic resins may be used, including polyvinyl acetate, polyvinyl butyrate, polyvinyl alcohol, polyvinylidene chloride, and so on. These materials, as well as the other modifying components of the plastisols such as blowing agents, fillers, stabilizers, pigments and dispersing agents are well known to the art and are listed in numerous publications including, for example, U. S. Pat. No. 3,447,710. No need exists therefore for re-numerating all the possible elements that can be combined by the man skilled in the art to yield compositions that can be improved in the manner disclosed by the present invention.
What is claimed is:
l. A container closure comprising a flowed-in gasket consisting of a fluxed layer of a plastisol of a resin selected from the group consisting of homopolymers and copolymers of vinyl chloride containing up to 20 percent of vinyl acetate, containing, for each 100 parts by weight of the resin, from about 1 to 40 parts of a block copolymer having an A-B-A structure in which B represents an elastomeric core of polymerized diene units selected from the class consisting of conjugated diene hydrocarbon compounds having four to eight carbon atoms and elastomeric copolymers of ethylene with propylene, said core having an average molecular weight within the range of 10,000 to 200,000, and A represents a thermoplastic segment of a polymerized alkenyl aromatic compound of average molecular weight within the range of about 2,000 to 30,000, wherein the total polymerized alkenyl aromatic compound content constitutes from about 10 to 50 percent by weight of the block copolymermolecule.
2. The container closure of claim 1 wherein the plastisol contains about 5 to 25 parts by weight of a copolymer of styrene and butadiene having average over-all molecular weight of about 60,000 to 160,000 and a copolymerized styrene content within the range of 25 to 30 percent of the weight of the molecule.
3. The container closure of claim 1 wherein in the block copolymer the diene unit of the elastomeric segment is derived from isoprene.
Claims (2)
- 2. The container closure of claim 1 wherein the plastisol contains about 5 to 25 parts by weight of a copolymer of styrene and butadiene having average over-all molecular weight of about 60,000 to 160,000 and a copolymerized styrene content within the range of 25 to 30 percent of the weight of the molecule.
- 3. The container closure of claim 1 wherein in the block copolymer the diene unit of the elastomeric segment is derived from isoprene.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3849170A | 1970-05-18 | 1970-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3695477A true US3695477A (en) | 1972-10-03 |
Family
ID=21900261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US38491A Expired - Lifetime US3695477A (en) | 1970-05-18 | 1970-05-18 | Plastisols and gaskets |
Country Status (7)
Country | Link |
---|---|
US (1) | US3695477A (en) |
AU (1) | AU2897471A (en) |
BE (1) | BE767331A (en) |
BR (1) | BR7103002D0 (en) |
CA (1) | CA953842A (en) |
DE (1) | DE2124375A1 (en) |
FR (1) | FR2091755A5 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3852096A (en) * | 1972-02-25 | 1974-12-03 | Exxon Research Engineering Co | Process for fabricating an article from a multiphase copolymer composition |
US3925280A (en) * | 1972-02-25 | 1975-12-09 | Exxon Research Engineering Co | Fabrication multiphase plastics from liquid suspension |
US4020966A (en) * | 1975-03-28 | 1977-05-03 | W. R. Grace & Co. | Plastisol composition and container closure gasket made therefrom |
US4042556A (en) * | 1974-05-23 | 1977-08-16 | Central Glass Co., Ltd. | Process for the production of hard vinyl chloride foams |
US4085186A (en) * | 1975-12-05 | 1978-04-18 | Cpl Corporation | Process for producing flow-in closure sealing gaskets from hot melt compositions |
US4096204A (en) * | 1976-06-07 | 1978-06-20 | Shell Oil Company | Halogenated thermoplastic/block copolymer blend |
US4143185A (en) * | 1972-02-25 | 1979-03-06 | Exxon Research & Engineering Co. | Fabrication of coatings from thermoplastic ionomers |
US4208315A (en) * | 1979-02-01 | 1980-06-17 | Shell Oil Company | Footwear composition of a blend of ethylene-vinyl acetate copolymer, poly(vinyl chloride) and a block copolymer |
US4226943A (en) * | 1978-11-21 | 1980-10-07 | Otsuka Kagaku Yakuhin Kabushiki Kaisha | Foamable composition of vinyl chloride polymers and method of producing open cell sheet |
US4228245A (en) * | 1979-07-02 | 1980-10-14 | Monsanto Company | Foam rubber polyblend |
US4278718A (en) * | 1980-01-11 | 1981-07-14 | W. R. Grace & Co. | Sealing compositions for minimizing soluble iron migration |
US4485192A (en) * | 1982-10-12 | 1984-11-27 | W. R. Grace & Co. | Plastisol sealing gaskets puffed with hollow discrete spheres |
US4968514A (en) * | 1984-12-11 | 1990-11-06 | Forbes Polytech, Inc. | Beer bottle with fully reacted thermoplastic polyurethane crown capliner |
US5137164A (en) * | 1987-03-05 | 1992-08-11 | Owens-Illinois Closure Inc. | Closure assembly using epoxidized natural oil in a low fusing plastisol |
US5187203A (en) * | 1991-10-23 | 1993-02-16 | Armstrong World Industries, Inc. | Non-corrosive elastomeric foam for insulating copper tubes |
WO1996039338A1 (en) * | 1995-06-06 | 1996-12-12 | Multisorb Technologies, Inc. | An oxygen absorbing container cap liner |
US5776993A (en) * | 1996-03-12 | 1998-07-07 | Korea Institute Of Footwear & Leather Technology | Thermoplastic PVC foam composition |
US5839593A (en) * | 1995-06-06 | 1998-11-24 | Multiform Desiccants, Inc. | Oxygen absorbing container cap liner |
US5900455A (en) * | 1992-06-05 | 1999-05-04 | Shell Oil Company | Elastosols, process for the preparation thereof, process for the use of such elastosols and products derived from them |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58206752A (en) * | 1982-05-28 | 1983-12-02 | テルモ株式会社 | Connector structure of medical instrument |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3005796A (en) * | 1958-05-05 | 1961-10-24 | Dow Chemical Co | Blend of polyvinyl chloride and butadiene-styrene copolymers and method of making same |
US3429951A (en) * | 1965-09-07 | 1969-02-25 | Phillips Petroleum Co | Reaction of peroxides with blends of polystyrene and rubbery block copolymer |
US3441530A (en) * | 1965-01-27 | 1969-04-29 | Shell Oil Co | Block copolymer powders |
US3459831A (en) * | 1965-09-24 | 1969-08-05 | Shell Oil Co | Block copolymer-polyethylene films |
-
1970
- 1970-05-18 US US38491A patent/US3695477A/en not_active Expired - Lifetime
-
1971
- 1971-05-06 CA CA112,373A patent/CA953842A/en not_active Expired
- 1971-05-17 DE DE19712124375 patent/DE2124375A1/en active Pending
- 1971-05-18 FR FR7118017A patent/FR2091755A5/fr not_active Expired
- 1971-05-18 BR BR3002/71A patent/BR7103002D0/en unknown
- 1971-05-18 AU AU28974/71A patent/AU2897471A/en not_active Expired
- 1971-05-18 BE BE767331A patent/BE767331A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3005796A (en) * | 1958-05-05 | 1961-10-24 | Dow Chemical Co | Blend of polyvinyl chloride and butadiene-styrene copolymers and method of making same |
US3441530A (en) * | 1965-01-27 | 1969-04-29 | Shell Oil Co | Block copolymer powders |
US3429951A (en) * | 1965-09-07 | 1969-02-25 | Phillips Petroleum Co | Reaction of peroxides with blends of polystyrene and rubbery block copolymer |
US3459831A (en) * | 1965-09-24 | 1969-08-05 | Shell Oil Co | Block copolymer-polyethylene films |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3852096A (en) * | 1972-02-25 | 1974-12-03 | Exxon Research Engineering Co | Process for fabricating an article from a multiphase copolymer composition |
US3925280A (en) * | 1972-02-25 | 1975-12-09 | Exxon Research Engineering Co | Fabrication multiphase plastics from liquid suspension |
US4143185A (en) * | 1972-02-25 | 1979-03-06 | Exxon Research & Engineering Co. | Fabrication of coatings from thermoplastic ionomers |
US4042556A (en) * | 1974-05-23 | 1977-08-16 | Central Glass Co., Ltd. | Process for the production of hard vinyl chloride foams |
US4020966A (en) * | 1975-03-28 | 1977-05-03 | W. R. Grace & Co. | Plastisol composition and container closure gasket made therefrom |
US4085186A (en) * | 1975-12-05 | 1978-04-18 | Cpl Corporation | Process for producing flow-in closure sealing gaskets from hot melt compositions |
US4096204A (en) * | 1976-06-07 | 1978-06-20 | Shell Oil Company | Halogenated thermoplastic/block copolymer blend |
US4226943A (en) * | 1978-11-21 | 1980-10-07 | Otsuka Kagaku Yakuhin Kabushiki Kaisha | Foamable composition of vinyl chloride polymers and method of producing open cell sheet |
US4208315A (en) * | 1979-02-01 | 1980-06-17 | Shell Oil Company | Footwear composition of a blend of ethylene-vinyl acetate copolymer, poly(vinyl chloride) and a block copolymer |
US4228245A (en) * | 1979-07-02 | 1980-10-14 | Monsanto Company | Foam rubber polyblend |
US4278718A (en) * | 1980-01-11 | 1981-07-14 | W. R. Grace & Co. | Sealing compositions for minimizing soluble iron migration |
US4485192A (en) * | 1982-10-12 | 1984-11-27 | W. R. Grace & Co. | Plastisol sealing gaskets puffed with hollow discrete spheres |
US4968514A (en) * | 1984-12-11 | 1990-11-06 | Forbes Polytech, Inc. | Beer bottle with fully reacted thermoplastic polyurethane crown capliner |
US5137164A (en) * | 1987-03-05 | 1992-08-11 | Owens-Illinois Closure Inc. | Closure assembly using epoxidized natural oil in a low fusing plastisol |
US5187203A (en) * | 1991-10-23 | 1993-02-16 | Armstrong World Industries, Inc. | Non-corrosive elastomeric foam for insulating copper tubes |
US5900455A (en) * | 1992-06-05 | 1999-05-04 | Shell Oil Company | Elastosols, process for the preparation thereof, process for the use of such elastosols and products derived from them |
WO1996039338A1 (en) * | 1995-06-06 | 1996-12-12 | Multisorb Technologies, Inc. | An oxygen absorbing container cap liner |
US5839593A (en) * | 1995-06-06 | 1998-11-24 | Multiform Desiccants, Inc. | Oxygen absorbing container cap liner |
AU718600B2 (en) * | 1995-06-06 | 2000-04-20 | Multisorb Technologies, Inc. | An oxygen absorbing container cap liner |
US5776993A (en) * | 1996-03-12 | 1998-07-07 | Korea Institute Of Footwear & Leather Technology | Thermoplastic PVC foam composition |
Also Published As
Publication number | Publication date |
---|---|
BE767331A (en) | 1971-11-18 |
AU2897471A (en) | 1972-11-23 |
CA953842A (en) | 1974-08-27 |
DE2124375A1 (en) | 1971-12-02 |
BR7103002D0 (en) | 1973-04-05 |
FR2091755A5 (en) | 1972-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3695477A (en) | Plastisols and gaskets | |
US4077935A (en) | Plastisol composition comprising (a) copolymer of olefin and maleic acid, and (b) polyester plasticizer | |
GB2084601A (en) | Sealing compositions | |
US4278718A (en) | Sealing compositions for minimizing soluble iron migration | |
US3686364A (en) | Impermeable polymeric compositions | |
CZ283670B6 (en) | Plastisol composition and use thereof | |
JPH05117473A (en) | Vinyl chloride resin powder composition for rotational molding | |
EP0478109B1 (en) | Container closures and processes of making them | |
JPH04267759A (en) | Container and composite for seal-up thereof | |
US3231529A (en) | Gasket compositions comprising polyvinyl chloride and vinyl ester interpolymers | |
US3676386A (en) | Gasket-forming solvent-based compositions containing styrene-butadiene block copolymers | |
US3696956A (en) | Container closure gasket made from a novel plastisol composition | |
JPH01311183A (en) | Hot melt gasket | |
US4128185A (en) | Container closure | |
IE43534B1 (en) | Thermoelastic polymers including block radial polymers to be used as pharmaceutical sealing and resealing materials | |
US3607362A (en) | Plastisol gasket composition | |
KR890001707B1 (en) | Container closure having a lin | |
US3933724A (en) | Sealing compounds | |
US3409567A (en) | Closures for containers | |
US3563936A (en) | Plastisol composition | |
AU602631B2 (en) | Closure assembly and method of making same using epoxidized natural oil in a low fusing, curable plastisol | |
US5137164A (en) | Closure assembly using epoxidized natural oil in a low fusing plastisol | |
US3444281A (en) | Process of preparing cellular closure gaskets | |
JPH0784534B2 (en) | Block copolymer pellets | |
US5229428A (en) | Closure assembly and method of making same using epoxidized natural oil in a low fusing, curable plastisol |