US3681929A - Thermoelectric device - Google Patents
Thermoelectric device Download PDFInfo
- Publication number
- US3681929A US3681929A US95728A US3681929DA US3681929A US 3681929 A US3681929 A US 3681929A US 95728 A US95728 A US 95728A US 3681929D A US3681929D A US 3681929DA US 3681929 A US3681929 A US 3681929A
- Authority
- US
- United States
- Prior art keywords
- thermoelectric device
- warm
- peltier block
- cold sides
- crystalline particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 claims abstract description 21
- 239000011810 insulating material Substances 0.000 claims abstract description 15
- 239000004065 semiconductor Substances 0.000 claims abstract description 11
- 239000007787 solid Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 235000003846 Ricinus Nutrition 0.000 claims description 4
- 241000322381 Ricinus <louse> Species 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229920002545 silicone oil Polymers 0.000 claims description 4
- 239000003921 oil Substances 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- 229920003002 synthetic resin Polymers 0.000 claims description 2
- 239000000057 synthetic resin Substances 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims 1
- 239000011236 particulate material Substances 0.000 description 7
- 239000011888 foil Substances 0.000 description 6
- 238000010292 electrical insulation Methods 0.000 description 3
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
- F25B21/02—Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/02—Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
- F25B2321/023—Mounting details thereof
Definitions
- Thermoelectric device includes at least one Peltier block formed of a plurality of n and p-conductive semiconductor legs and metallic bridge members interconnecting the legs at opposite warm and cold sides of the Peltier block, heat exchanger means located respectively at the warm and the cold sides of the Peltier block and having a surface disposed adjacent a surface of the bridge members located at the warm and the cold sides respectively of the Peltier block, and an intermediate layer of solid insulating material and deformable medium for improving heat transfer sandwiched between the surfaces at the warm and the cold sides respectively of the Peltier block, the insulating material being in the form
- thermoelectric device having at least one Peltier block formed of a plurality of n and p-conductive semiconductor legs and metallic bridge members interconnecting the legs at opposite warm and cold sides respectively of the Peltier block, and having a surface disposed adjacent a surface of the bridge members located at the warm and cold sides respectively of the Peltier block, and an intermediate layer of solid insulating material and deformable medium for improving heat transfer, sandwiched between the surfaces at the warm and the cold sides respectively of the Peltier block.
- Peltier blocks are constructed so that the n and p-conductive semiconductor legs are traversed in a meandering manner by electrical current.
- the metallic bridge members between the semiconductor legs of the Peltier block are provided with respective opposite surfaces, on of which is located at the cold and the other at the warm side of the Peltier block.
- Both sides of the Peltier block are usually provided with heat exchanger devices in order to dissipate heat produced at the warm side thereof to the surroundings or to a cooling medium and in order to absorb heat from the surroundings at the cold side of the Peltier block or to cool a warm medium thereat.
- the metallic bridge members at one side of the Peltier block have different potentials from one another, electrical insulation is required to be located between them and the heat exchanger element adjacent thereto, so as to prevent a short circuit through the metallic heat exchanger element.
- electrical insulation causes temperature drop between the respective sides of the Peltier block and the respective surface of the heat exchanger elements located adjacent thereto. This is undesirable from the standpoint of optimum utility of the temperature difference that is available between the Peltier block and the respective heat exchanger elements.
- heat exchanger element foils such as mica foil or foils of plastic material, for example, between the Peltier blocks and the respective heat exchanger elements, the foils being of solid insulating material which electrically insulates the metallic bridge members from the respective surfaces of the heat exchanger element.
- auxiliary pasty or soft masses can be applied between the Peltier block on the one hand and the heat exchanger element on the other hand for filling in unevenesses and roughness depths of the surfaces.
- thermoelectric device Even when great care is taken, it is possible to damage the electrically insulating foil, i.e. to rupture or tear the mica or plastic material foil, during the manufacture of the thennoelectric device, rendering the thermoelectric device unserviceable.
- the aforedescribed heretofore known type of assembly has the advantage that the connecting bridge members, on the one hand, and the heat exchanger elements, on the other hand, can be selected without being concerned with the different coefficients or expansions of the material thereof, but only with the electrical and thermal conductivity thereof. It is especially desired that the surfaces be movable relative to one another so that the metallic bridge members and the'semiconductor legs rigidly connected thereto, are not additionally stressed mechanically.
- thermoelectric device which avoids the disadvantages of the greater number of heretofore known types of thermoelectric devices and which is an improvement over the last mentioned advantageous type of thermoelectric device.
- thermoelectric device comprising at least one Peltier block formed of a plurality of n and p-conductive semiconductorlegs and metallic bridge members interconnecting the legs at opposite warm and cold sides of the Peltier block, heat exchanger means located respectively at the warm and the cold sides of the Peltier block and having a surface disposed adjacent a surface of the bridge members located at the warm and the cold sides respectively of the Peltier block, and an intermediate layer of solid insulating material and deformable medium for improving heat transfer sandwiched between the surfaces at the warm and the cold sides respectively of the Peltier block, the insulating material being in the form of crystalline particles having a grain diameter exceeding the sum of the roughness depths of the surfaces between which the respective intermediate layer is sandwiched.
- the crystalline particles Due to the stated dimensions of the crystalline particles, a minimum spacing between the surfaces to be electrically insulated is established.
- the advantages of good heat transfer and high mechanical stability are provided by the crystalline structure of the insulating material.
- metallic oxides such as berryllium oxide, alurninum oxide and quartz, having desirable coefficients of therrnoconductivity have sufficiently high electrically insulating characteristics are suitably employed as the crystalline particles.
- the properties of thermal conductivity between the surfaces of the device of the invention is increased to the 10th power when the crystalline particles are formed of silicon carbide.
- Silicon carbide in itself is an electrical conductor; however, by suitable pre-treatment or when stored for a very long time, an oxide skin or layer is formed on the silicon carbide crystals and has the necessary electrical insulation properties.
- the crystalline particles consist of a multiplicity of substantially spherically shaped grains.
- the particulate material is mixed with a carrier medium which is liquid at least when it is applied to the surfaces.
- the carrier medium has an effective viscosity of greater than 100 centistoke when applied to the surfaces, and may be formed at least partly of silicone oil.
- the carrier medium for the particulate material is formed of at least one hardenable plastic material which is elastically yieldable and affords equalization of the varying expansion between the heat exchanger and the Peltier block.
- the hardenable plastic material is, for example, artificial resins based on castor oil or ricinus oil-isocyanate(known in the an by the trademark Desmodur).
- thermoelectric device thermoelectric device
- FIG. 1 is an elevational view of there thermoelectric device of my invention, showing schematically a Peltier block located between two heat exchanger elements;
- FIG. 2 is a much enlarged fragmentary sectional view of FIG. 1 enclosed within the circle Z thereof.
- thermoelectric device in accordance with my invention, which is formed with a Peltier block 1 having a cold side 2 and a warm side 3, both sides being connected to heart exchanger elements 4.
- the connections between the heat exchanger elements 4 and the Peltier block 1 are effected by non-illustrated clamping members which press the engagement surfaces 5 of the respective heat exchanger elements 4 against the warm and cold sides 2 and 3 of the Peltier block 1.
- the heat exchanger elements 4 are provided with fins or ribs 6 through which an air current is passed for suitable warming or cooling the ribs or fins, as the case may be.
- the Peltier block 1 is formed of a multiplicity of n and p-conductive semiconductor legs and metallic bridge members coordinated therewith, (only part of the one of the legs 1' and part of one bridge member 1" being shown in FIG. 2).
- the Peltier block is not shown in detail in the drawing, since such devices are wellknown in the art.
- the semiconductor legs are connected electrically in series so that an electric current traverses the semiconductor legs and the connecting metallic bridge members in a meandering or tortuous path.
- the metallic bridge members are formed, for example, of copper, while the metallic heat exchanger elements 4 are formed of aluminum, for example.
- Insulation 7 formed of crystalline particulate material is disposed or sandwiched between the surfaces 5 of heat exchanger elements 4 of the adjacent surfaces of the respective bridge members at the warm or cold side of the Peltier block 1.
- the grain size or diameter a of the particles of the insulating material 7 exceeds the sum of the roughness depths b and b of the surfaces 3 and 5 respectively.
- the particulate material 7 is at least partly pressed into the surfaces 3 and 5 that are being connected together.
- the particulate material is mixed with a carrier medium 8 having good heat conductive properties.
- the particulate material 7 which is formed, for example, of beryllium oxide, aluminum oxide, quartz or silicon carbide, is provided with as spherical a shape as possible in order to improve the flow properties of the intermediate layer sandwiched between the respective heat exchanger elements 4 of the Peltier block 1.
- River sand for example, has this spherical shape.
- the spherical shape can be produced, however, by polishing or grinding in a ball mill, for example.
- the carrier medium 8 is advantageously in liquid state at least when applied to the surfaces 3 and 5 that are to be connected together.
- the liquid carrier medium 8 advantageously has a viscosity of greater than centistoke.
- the carrier medium is advantageous for the carrier medium to be formed of an elastic, yieldable and expandable plastic material which hardens after being applied to the surfaces 3 and 5, such as, for example, an artificial resin having a base of castor oil or ricinus oil isocyanate.
- an artificial resin having a base of castor oil or ricinus oil isocyanate.
- additional relatively smaller electrically insulating particles whose quantity and size is determined so that they fill the voids located between the particles of crystalline insulating material 7.
- Thermoelectric device comprising at least one Peltier block formed of a plurality of n and p-conductive semiconductor legs and metallic bridge members interconnecting said legs at opposite warm and cold sides of said Peltier block, heat exchanger means located respectively at said warm and said cold sides of said Peltier block and having a surface disposed adjacent a surface of the bridge members located at said warm and said cold sides respectively of said Peltier block, and an intermediate layer of solid insulating material and deformable medium for improving heat transfer sandwiched between said surfaces at said warm and said cold sides respectively of said Peltier block, said insulating material being in the form of crystalline particles having a grain diameter exceeding the sum of the roughness depths of the surfaces between which the respective intermediate layer is sandwiched, and a carrier medium mixed with said crystalline particles, said carrier medium being in liquid state at least when initially applied to said surfaces of said bridge members and both of said heat exchanger means.
- said crystalline particles comprise a multiplici- 5 wherein said carrier medium consists at least partly of silicone oil.
- said carrier medium is formed at least partly of a hardening plastic material.
- plastic material is a synthetic resin having a base of ricinus oil.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Lubricants (AREA)
Abstract
Thermoelectric device includes at least one Peltier block formed of a plurality of n and p-conductive semiconductor legs and metallic bridge members interconnecting the legs at opposite warm and cold sides of the Peltier block, heat exchanger means located respectively at the warm and the cold sides of the Peltier block and having a surface disposed adjacent a surface of the bridge members located at the warm and the cold sides respectively of the Peltier block, and an intermediate layer of solid insulating material and deformable medium for improving heat transfer sandwiched between the surfaces at the warm and the cold sides respectively of the Peltier block, the insulating material being in the form of crystalline particles having a grain diameter exceeding the sum of the roughness depths of the surfaces between which the respective intermediate layer is sandwiched.
Description
Schering [4 Aug. 8, 1972 [54] THERMOELECTRIC DEVICE Primary Examiner-William J. Wye
[72] Inventor: Hans Schering Riensber t AttorneyCurt M. Avery Arthur E. wilfond, Herbert 1000 Berlin 20 Germany gs L. Lerner and Daniel J. TlCk [22] Filed: Dec. 7, 1970 [57] ABSTRACT 21 Appl. No.: 95,728
[30] Foreign Application Priority Data [1.8. Cl. ..62/3, 136/203, 136/204 Int. Cl ..F 25b 27/00 Field of Search ..136/203, 204; 62/3 [56] References Cited UNITED STATES PATENTS 7/ 1958 Lindenblad ..62/ 3 H1963 Elfving ..62/3 7/1965 Elfving ..62/ 3 Thermoelectric device includes at least one Peltier block formed of a plurality of n and p-conductive semiconductor legs and metallic bridge members interconnecting the legs at opposite warm and cold sides of the Peltier block, heat exchanger means located respectively at the warm and the cold sides of the Peltier block and having a surface disposed adjacent a surface of the bridge members located at the warm and the cold sides respectively of the Peltier block, and an intermediate layer of solid insulating material and deformable medium for improving heat transfer sandwiched between the surfaces at the warm and the cold sides respectively of the Peltier block, the insulating material being in the form of crystalline particles having a grain diameter exceeding the sum of the roughness depths of the surfaces between which the respective intermediate layer is sandwiched.
9 Claims, 2 Drawing Figures PATENTEflAus 8 I972 Fly. 1
Jill T777100 THERMOELECTRIC DEVICE My invention relates to thermoelectric device having at least one Peltier block formed of a plurality of n and p-conductive semiconductor legs and metallic bridge members interconnecting the legs at opposite warm and cold sides respectively of the Peltier block, and having a surface disposed adjacent a surface of the bridge members located at the warm and cold sides respectively of the Peltier block, and an intermediate layer of solid insulating material and deformable medium for improving heat transfer, sandwiched between the surfaces at the warm and the cold sides respectively of the Peltier block.
As a general rule, Peltier blocks are constructed so that the n and p-conductive semiconductor legs are traversed in a meandering manner by electrical current. The metallic bridge members between the semiconductor legs of the Peltier block are provided with respective opposite surfaces, on of which is located at the cold and the other at the warm side of the Peltier block. Both sides of the Peltier block are usually provided with heat exchanger devices in order to dissipate heat produced at the warm side thereof to the surroundings or to a cooling medium and in order to absorb heat from the surroundings at the cold side of the Peltier block or to cool a warm medium thereat.
Since the metallic bridge members at one side of the Peltier block have different potentials from one another, electrical insulation is required to be located between them and the heat exchanger element adjacent thereto, so as to prevent a short circuit through the metallic heat exchanger element. However, such electrical insulation causes temperature drop between the respective sides of the Peltier block and the respective surface of the heat exchanger elements located adjacent thereto. This is undesirable from the standpoint of optimum utility of the temperature difference that is available between the Peltier block and the respective heat exchanger elements.
It has been known to dispose heat exchanger element foils such as mica foil or foils of plastic material, for example, between the Peltier blocks and the respective heat exchanger elements, the foils being of solid insulating material which electrically insulates the metallic bridge members from the respective surfaces of the heat exchanger element. To improve heat transfer, auxiliary pasty or soft masses can be applied between the Peltier block on the one hand and the heat exchanger element on the other hand for filling in unevenesses and roughness depths of the surfaces.
Even when great care is taken, it is possible to damage the electrically insulating foil, i.e. to rupture or tear the mica or plastic material foil, during the manufacture of the thennoelectric device, rendering the thermoelectric device unserviceable.
With respect to other known embodiments of the thermoelectric device wherein a mechanically stable or reliable connection between the Peltier blocks and the heat exchanger elements is provided, the aforedescribed heretofore known type of assembly has the advantage that the connecting bridge members, on the one hand, and the heat exchanger elements, on the other hand, can be selected without being concerned with the different coefficients or expansions of the material thereof, but only with the electrical and thermal conductivity thereof. It is especially desired that the surfaces be movable relative to one another so that the metallic bridge members and the'semiconductor legs rigidly connected thereto, are not additionally stressed mechanically.
It is accordingly an object of the invention, to provide thermoelectric device which avoids the disadvantages of the greater number of heretofore known types of thermoelectric devices and which is an improvement over the last mentioned advantageous type of thermoelectric device.
VVrth the foregoing and other objects in view, 1 provide in accordance with my invention, thermoelectric device comprising at least one Peltier block formed of a plurality of n and p-conductive semiconductorlegs and metallic bridge members interconnecting the legs at opposite warm and cold sides of the Peltier block, heat exchanger means located respectively at the warm and the cold sides of the Peltier block and having a surface disposed adjacent a surface of the bridge members located at the warm and the cold sides respectively of the Peltier block, and an intermediate layer of solid insulating material and deformable medium for improving heat transfer sandwiched between the surfaces at the warm and the cold sides respectively of the Peltier block, the insulating material being in the form of crystalline particles having a grain diameter exceeding the sum of the roughness depths of the surfaces between which the respective intermediate layer is sandwiched.
Due to the stated dimensions of the crystalline particles, a minimum spacing between the surfaces to be electrically insulated is established. The advantages of good heat transfer and high mechanical stability are provided by the crystalline structure of the insulating material. In accordance with a further feature of the invention, metallic oxides, such as berryllium oxide, alurninum oxide and quartz, having desirable coefficients of therrnoconductivity have sufficiently high electrically insulating characteristics are suitably employed as the crystalline particles.
The properties of thermal conductivity between the surfaces of the device of the invention, is increased to the 10th power when the crystalline particles are formed of silicon carbide. Silicon carbide in itself is an electrical conductor; however, by suitable pre-treatment or when stored for a very long time, an oxide skin or layer is formed on the silicon carbide crystals and has the necessary electrical insulation properties.
In accordance with another feature of the invention, the crystalline particles consist of a multiplicity of substantially spherically shaped grains. The advantage thereof is that the desired flow characteristic between the surfaces which are to be thermally conductively connected, is increased.
In accordance with yet another feature of the invention, in order to increase the coefficient of heat transfer from the Peltier block to the heat exchanger, at least part of the crystalline particles is impressed into the surfaces that are being thermally connected.
In accordance with still another feature of the invention and in order to provide a simplified handling of the particulate material when applied to the surfaces that are to be thermally conductively connected, the particulate material is mixed with a carrier medium which is liquid at least when it is applied to the surfaces. Other added features of the invention are that the carrier medium has an effective viscosity of greater than 100 centistoke when applied to the surfaces, and may be formed at least partly of silicone oil.
In accordance with an additional feature of the invention, the carrier medium for the particulate material is formed of at least one hardenable plastic material which is elastically yieldable and affords equalization of the varying expansion between the heat exchanger and the Peltier block. In accordance with another, more specific feature of the invention, the hardenable plastic material is, for example, artificial resins based on castor oil or ricinus oil-isocyanate(known in the an by the trademark Desmodur).
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in thermoelectric device, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawing, in which:
FIG. 1 is an elevational view of there thermoelectric device of my invention, showing schematically a Peltier block located between two heat exchanger elements; and
FIG. 2 is a much enlarged fragmentary sectional view of FIG. 1 enclosed within the circle Z thereof.
Referring now to the drawing and more particularly to FIG. 1 thereof, there is shown therein a thermoelectric device in accordance with my invention, which is formed with a Peltier block 1 having a cold side 2 and a warm side 3, both sides being connected to heart exchanger elements 4. Ordinarily, the connections between the heat exchanger elements 4 and the Peltier block 1 are effected by non-illustrated clamping members which press the engagement surfaces 5 of the respective heat exchanger elements 4 against the warm and cold sides 2 and 3 of the Peltier block 1. The heat exchanger elements 4 are provided with fins or ribs 6 through which an air current is passed for suitable warming or cooling the ribs or fins, as the case may be.
The Peltier block 1 is formed of a multiplicity of n and p-conductive semiconductor legs and metallic bridge members coordinated therewith, (only part of the one of the legs 1' and part of one bridge member 1" being shown in FIG. 2). The Peltier block is not shown in detail in the drawing, since such devices are wellknown in the art. The semiconductor legs are connected electrically in series so that an electric current traverses the semiconductor legs and the connecting metallic bridge members in a meandering or tortuous path. The metallic bridge members are formed, for example, of copper, while the metallic heat exchanger elements 4 are formed of aluminum, for example. Insulation 7 formed of crystalline particulate material is disposed or sandwiched between the surfaces 5 of heat exchanger elements 4 of the adjacent surfaces of the respective bridge members at the warm or cold side of the Peltier block 1. The grain size or diameter a of the particles of the insulating material 7 exceeds the sum of the roughness depths b and b of the surfaces 3 and 5 respectively. In the embodiment of FIG. 2, the particulate material 7 is at least partly pressed into the surfaces 3 and 5 that are being connected together. To facilitate handling, the particulate material is mixed with a carrier medium 8 having good heat conductive properties. The particulate material 7 which is formed, for example, of beryllium oxide, aluminum oxide, quartz or silicon carbide, is provided with as spherical a shape as possible in order to improve the flow properties of the intermediate layer sandwiched between the respective heat exchanger elements 4 of the Peltier block 1. River sand, for example, has this spherical shape. The spherical shape can be produced, however, by polishing or grinding in a ball mill, for example.
The carrier medium 8 is advantageously in liquid state at least when applied to the surfaces 3 and 5 that are to be connected together. The liquid carrier medium 8 advantageously has a viscosity of greater than centistoke. Naturally, it is possible to produce a grain medium at least partly of silicone oil.
In certain cases, it is advantageous for the carrier medium to be formed of an elastic, yieldable and expandable plastic material which hardens after being applied to the surfaces 3 and 5, such as, for example, an artificial resin having a base of castor oil or ricinus oil isocyanate. In order to improve further the thermal conductivity between the Peltier block and the heat exchanger elements, it may be advantageous to employ additional relatively smaller electrically insulating particles whose quantity and size is determined so that they fill the voids located between the particles of crystalline insulating material 7.
I claim:
1. Thermoelectric device comprising at least one Peltier block formed of a plurality of n and p-conductive semiconductor legs and metallic bridge members interconnecting said legs at opposite warm and cold sides of said Peltier block, heat exchanger means located respectively at said warm and said cold sides of said Peltier block and having a surface disposed adjacent a surface of the bridge members located at said warm and said cold sides respectively of said Peltier block, and an intermediate layer of solid insulating material and deformable medium for improving heat transfer sandwiched between said surfaces at said warm and said cold sides respectively of said Peltier block, said insulating material being in the form of crystalline particles having a grain diameter exceeding the sum of the roughness depths of the surfaces between which the respective intermediate layer is sandwiched, and a carrier medium mixed with said crystalline particles, said carrier medium being in liquid state at least when initially applied to said surfaces of said bridge members and both of said heat exchanger means.
2. Thermoelectric device according to claim 1, wherein said crystalline particles are formed of at least one metal oxide.
3. Thermoelectric device according to claim 2, wherein said metal oxide is selected from the group consisting of berryllium oxide, aluminum oxide and quartz.
4. Thermoelectric device according to claim 1, wherein said crystalline particles are formed of silicon carbide.
S. Thermoelectric device according to claim 1,
wherein said crystalline particles comprise a multiplici- 5 wherein said carrier medium consists at least partly of silicone oil.
8. Thermoelectric device according to claim 1,
wherein said carrier medium is formed at least partly of a hardening plastic material.
9. Thermoelectric device according to claim 8, wherein said plastic material is a synthetic resin having a base of ricinus oil.
Claims (9)
1. Thermoelectric device comprising at least one Peltier block formed of a plurality of n and p-conductive semiconductor legs and metallic bridge members interconnecting said legs at opposite warm and cold sides of said Peltier block, heat exchanger means located respectively at said warm and said cold sides of said Peltier block and having a surface disposed adjacent a surface of the bridge members located at said warm and said cold sides respectively of said Peltier block, and an intermediate layer of solid insulating material and deformable medium for improving heat transfer sandwiched between said surfaces at said warm and said cold sides respectively of said Peltier block, said insulating material being in the form of crystalline particles having a grain diameter exceeding the sum of the roughness depths of the surfaces between which the respective intermediate layer is sandwiched, and a carrier medium mixed with said crystalline particles, said carrier medium being in liquid state at least when initially applied to said surfaces of said bridge members and both of said heat exchanger means.
2. Thermoelectric device according to claim 1, wherein said crystalline particles are formed of at least one metal oxide.
3. Thermoelectric device according to claim 2, wherein said metal oxide is selected from the group consisting of berryllium oxide, aluminum oxide and quartz.
4. Thermoelectric device according to claim 1, wherein said crystalline particles are formed of silicon carbide.
5. Thermoelectric device according to claim 1, wherein said crystalline particles comprise a multiplicity of substantially spherically shaped granules.
6. Thermoelectric device according to claim 1, wherein said carrier medium in said liquid state thereof has a viscosity of greater than 100 centistoke.
7. Thermoelectric device according to claim 1, wherein said carrier medium consists at least partly of silicone oil.
8. Thermoelectric device according to claim 1, wherein said carrier medium is formed at least partly of a hardening plastic material.
9. Thermoelectric device according to claim 8, wherein said plastic material is a synthetic resin having a base of ricinus oil.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19691963023 DE1963023A1 (en) | 1969-12-10 | 1969-12-10 | Thermoelectric device |
Publications (1)
Publication Number | Publication Date |
---|---|
US3681929A true US3681929A (en) | 1972-08-08 |
Family
ID=5754028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US95728A Expired - Lifetime US3681929A (en) | 1969-12-10 | 1970-12-07 | Thermoelectric device |
Country Status (7)
Country | Link |
---|---|
US (1) | US3681929A (en) |
JP (1) | JPS4825839B1 (en) |
AT (1) | AT299348B (en) |
CH (1) | CH526867A (en) |
DE (1) | DE1963023A1 (en) |
FR (1) | FR2072993A5 (en) |
NL (1) | NL7018076A (en) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4472945A (en) * | 1980-07-14 | 1984-09-25 | Pavel Cech | Device for the exchange of cold and heat, procedure for its manufacture and range of application for the same |
US4586342A (en) * | 1985-02-20 | 1986-05-06 | Nissin Electric Co., Ltd. | Dehumidifying and cooling apparatus |
US5409547A (en) * | 1992-10-05 | 1995-04-25 | Thermovonics Co., Ltd. | Thermoelectric cooling device for thermoelectric refrigerator, process for the fabrication of semiconductor suitable for use in the thermoelectric cooling device, and thermoelectric refrigerator using the thermoelectric cooling device |
US5715684A (en) * | 1995-03-02 | 1998-02-10 | Thermovonics Co., Ltd. | Thermoelectric converter |
WO2002065030A1 (en) * | 2001-02-09 | 2002-08-22 | Bsst, Llc | Improved efficiency thermoelectrics utilizing thermal isolation |
US20030005706A1 (en) * | 2001-02-09 | 2003-01-09 | Bell Lon E | Compact, high-efficiency thermoelectric systems |
US20030029173A1 (en) * | 2001-08-07 | 2003-02-13 | Bell Lon E. | Thermoelectric personal environment appliance |
US6598405B2 (en) | 2001-02-09 | 2003-07-29 | Bsst Llc | Thermoelectric power generation utilizing convective heat flow |
US6625990B2 (en) | 2001-02-09 | 2003-09-30 | Bsst Llc | Thermoelectric power generation systems |
US6637210B2 (en) | 2001-02-09 | 2003-10-28 | Bsst Llc | Thermoelectric transient cooling and heating systems |
US6672076B2 (en) | 2001-02-09 | 2004-01-06 | Bsst Llc | Efficiency thermoelectrics utilizing convective heat flow |
US20040031514A1 (en) * | 2001-02-09 | 2004-02-19 | Bell Lon E. | Thermoelectric power generation systems |
US6700052B2 (en) | 2001-11-05 | 2004-03-02 | Amerigon Incorporated | Flexible thermoelectric circuit |
US20040076214A1 (en) * | 2001-02-09 | 2004-04-22 | Bell Lon K | High power density thermoelectric systems |
US6812395B2 (en) | 2001-10-24 | 2004-11-02 | Bsst Llc | Thermoelectric heterostructure assemblies element |
US20060272697A1 (en) * | 2005-06-06 | 2006-12-07 | Board Of Trustees Of Michigan State University | Thermoelectric compositions and process |
US20070214799A1 (en) * | 2006-03-16 | 2007-09-20 | Goenka Lakhi N | Thermoelectric device efficiency enhancement using dynamic feedback |
US20090235969A1 (en) * | 2008-01-25 | 2009-09-24 | The Ohio State University Research Foundation | Ternary thermoelectric materials and methods of fabrication |
US7870892B2 (en) | 2004-05-10 | 2011-01-18 | Bsst Llc | Climate control method for hybrid vehicles using thermoelectric devices |
US20110079023A1 (en) * | 2005-07-19 | 2011-04-07 | Goenka Lakhi N | Energy management system for a hybrid-electric vehicle |
US7942010B2 (en) | 2001-02-09 | 2011-05-17 | Bsst, Llc | Thermoelectric power generating systems utilizing segmented thermoelectric elements |
US7946120B2 (en) | 2001-02-09 | 2011-05-24 | Bsst, Llc | High capacity thermoelectric temperature control system |
US7952015B2 (en) | 2006-03-30 | 2011-05-31 | Board Of Trustees Of Michigan State University | Pb-Te-compounds doped with tin-antimony-tellurides for thermoelectric generators or peltier arrangements |
US20110236731A1 (en) * | 2009-05-18 | 2011-09-29 | Bsst Llc | Battery Thermal Management System |
US8408012B2 (en) | 2005-04-08 | 2013-04-02 | Bsst Llc | Thermoelectric-based heating and cooling system |
US8490412B2 (en) | 2001-08-07 | 2013-07-23 | Bsst, Llc | Thermoelectric personal environment appliance |
US8613200B2 (en) | 2008-10-23 | 2013-12-24 | Bsst Llc | Heater-cooler with bithermal thermoelectric device |
US8631659B2 (en) | 2006-08-02 | 2014-01-21 | Bsst Llc | Hybrid vehicle temperature control systems and methods |
US8640466B2 (en) | 2008-06-03 | 2014-02-04 | Bsst Llc | Thermoelectric heat pump |
US8722222B2 (en) | 2011-07-11 | 2014-05-13 | Gentherm Incorporated | Thermoelectric-based thermal management of electrical devices |
US9006556B2 (en) | 2005-06-28 | 2015-04-14 | Genthem Incorporated | Thermoelectric power generator for variable thermal power source |
US9006557B2 (en) | 2011-06-06 | 2015-04-14 | Gentherm Incorporated | Systems and methods for reducing current and increasing voltage in thermoelectric systems |
US9038400B2 (en) | 2009-05-18 | 2015-05-26 | Gentherm Incorporated | Temperature control system with thermoelectric device |
US9103573B2 (en) | 2006-08-02 | 2015-08-11 | Gentherm Incorporated | HVAC system for a vehicle |
US9293680B2 (en) | 2011-06-06 | 2016-03-22 | Gentherm Incorporated | Cartridge-based thermoelectric systems |
US9306143B2 (en) | 2012-08-01 | 2016-04-05 | Gentherm Incorporated | High efficiency thermoelectric generation |
US9310112B2 (en) | 2007-05-25 | 2016-04-12 | Gentherm Incorporated | System and method for distributed thermoelectric heating and cooling |
US9447994B2 (en) | 2008-10-23 | 2016-09-20 | Gentherm Incorporated | Temperature control systems with thermoelectric devices |
US9555686B2 (en) | 2008-10-23 | 2017-01-31 | Gentherm Incorporated | Temperature control systems with thermoelectric devices |
US10270141B2 (en) | 2013-01-30 | 2019-04-23 | Gentherm Incorporated | Thermoelectric-based thermal management system |
US10991869B2 (en) | 2018-07-30 | 2021-04-27 | Gentherm Incorporated | Thermoelectric device having a plurality of sealing materials |
US11152557B2 (en) | 2019-02-20 | 2021-10-19 | Gentherm Incorporated | Thermoelectric module with integrated printed circuit board |
US11993132B2 (en) | 2018-11-30 | 2024-05-28 | Gentherm Incorporated | Thermoelectric conditioning system and methods |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55528U (en) * | 1978-06-16 | 1980-01-05 | ||
DE9102118U1 (en) * | 1991-02-22 | 1992-06-25 | Laumen, Michael, 4150 Krefeld | Device for heat transfer in the thermoelectric heat transport system |
DE102014002247A1 (en) * | 2014-02-21 | 2015-08-27 | Stiebel Eltron Gmbh & Co. Kg | Construction of a Peltier module for hot water storage |
-
1969
- 1969-12-10 DE DE19691963023 patent/DE1963023A1/en active Pending
-
1970
- 1970-10-30 AT AT977870A patent/AT299348B/en not_active IP Right Cessation
- 1970-12-03 CH CH1786570A patent/CH526867A/en not_active IP Right Cessation
- 1970-12-07 FR FR7043903A patent/FR2072993A5/fr not_active Expired
- 1970-12-07 US US95728A patent/US3681929A/en not_active Expired - Lifetime
- 1970-12-10 NL NL7018076A patent/NL7018076A/xx unknown
- 1970-12-10 JP JP45110070A patent/JPS4825839B1/ja active Pending
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4472945A (en) * | 1980-07-14 | 1984-09-25 | Pavel Cech | Device for the exchange of cold and heat, procedure for its manufacture and range of application for the same |
US4586342A (en) * | 1985-02-20 | 1986-05-06 | Nissin Electric Co., Ltd. | Dehumidifying and cooling apparatus |
US5409547A (en) * | 1992-10-05 | 1995-04-25 | Thermovonics Co., Ltd. | Thermoelectric cooling device for thermoelectric refrigerator, process for the fabrication of semiconductor suitable for use in the thermoelectric cooling device, and thermoelectric refrigerator using the thermoelectric cooling device |
US5715684A (en) * | 1995-03-02 | 1998-02-10 | Thermovonics Co., Ltd. | Thermoelectric converter |
US8079223B2 (en) | 2001-02-09 | 2011-12-20 | Bsst Llc | High power density thermoelectric systems |
US20050072165A1 (en) * | 2001-02-09 | 2005-04-07 | Bell Lon E. | Thermoelectrics utilizing thermal isolation |
US8495884B2 (en) | 2001-02-09 | 2013-07-30 | Bsst, Llc | Thermoelectric power generating systems utilizing segmented thermoelectric elements |
US6539725B2 (en) * | 2001-02-09 | 2003-04-01 | Bsst Llc | Efficiency thermoelectrics utilizing thermal isolation |
US6598405B2 (en) | 2001-02-09 | 2003-07-29 | Bsst Llc | Thermoelectric power generation utilizing convective heat flow |
US6625990B2 (en) | 2001-02-09 | 2003-09-30 | Bsst Llc | Thermoelectric power generation systems |
US6637210B2 (en) | 2001-02-09 | 2003-10-28 | Bsst Llc | Thermoelectric transient cooling and heating systems |
US6672076B2 (en) | 2001-02-09 | 2004-01-06 | Bsst Llc | Efficiency thermoelectrics utilizing convective heat flow |
US20040020217A1 (en) * | 2001-02-09 | 2004-02-05 | Bell Lon E. | Efficiency thermoelectrics utilizing convective heat flow |
US20040031514A1 (en) * | 2001-02-09 | 2004-02-19 | Bell Lon E. | Thermoelectric power generation systems |
US8375728B2 (en) | 2001-02-09 | 2013-02-19 | Bsst, Llc | Thermoelectrics utilizing convective heat flow |
US20040076214A1 (en) * | 2001-02-09 | 2004-04-22 | Bell Lon K | High power density thermoelectric systems |
US7926293B2 (en) | 2001-02-09 | 2011-04-19 | Bsst, Llc | Thermoelectrics utilizing convective heat flow |
US20030005706A1 (en) * | 2001-02-09 | 2003-01-09 | Bell Lon E | Compact, high-efficiency thermoelectric systems |
US6948321B2 (en) | 2001-02-09 | 2005-09-27 | Bsst Llc | Efficiency thermoelectrics utilizing convective heat flow |
US20050210883A1 (en) * | 2001-02-09 | 2005-09-29 | Bell Lon E | Efficiency thermoelectrics utilizing convective heat flow |
US6959555B2 (en) | 2001-02-09 | 2005-11-01 | Bsst Llc | High power density thermoelectric systems |
US20050263177A1 (en) * | 2001-02-09 | 2005-12-01 | Bell Lon E | High power density thermoelectric systems |
US7111465B2 (en) | 2001-02-09 | 2006-09-26 | Bsst Llc | Thermoelectrics utilizing thermal isolation |
WO2002065030A1 (en) * | 2001-02-09 | 2002-08-22 | Bsst, Llc | Improved efficiency thermoelectrics utilizing thermal isolation |
US7231772B2 (en) | 2001-02-09 | 2007-06-19 | Bsst Llc. | Compact, high-efficiency thermoelectric systems |
US20110162389A1 (en) * | 2001-02-09 | 2011-07-07 | Bsst, Llc | Thermoelectrics utilizing convective heat flow |
US7273981B2 (en) | 2001-02-09 | 2007-09-25 | Bsst, Llc. | Thermoelectric power generation systems |
US7421845B2 (en) | 2001-02-09 | 2008-09-09 | Bsst Llc | Thermoelectrics utilizing convective heat flow |
US7946120B2 (en) | 2001-02-09 | 2011-05-24 | Bsst, Llc | High capacity thermoelectric temperature control system |
CN100427849C (en) * | 2001-02-09 | 2008-10-22 | Bsst公司 | Improved efficiency thermoelectrics utilizing thermal isolation |
US7587902B2 (en) | 2001-02-09 | 2009-09-15 | Bsst, Llc | High power density thermoelectric systems |
US7942010B2 (en) | 2001-02-09 | 2011-05-17 | Bsst, Llc | Thermoelectric power generating systems utilizing segmented thermoelectric elements |
US8069674B2 (en) | 2001-08-07 | 2011-12-06 | Bsst Llc | Thermoelectric personal environment appliance |
US20030029173A1 (en) * | 2001-08-07 | 2003-02-13 | Bell Lon E. | Thermoelectric personal environment appliance |
US8490412B2 (en) | 2001-08-07 | 2013-07-23 | Bsst, Llc | Thermoelectric personal environment appliance |
US7426835B2 (en) | 2001-08-07 | 2008-09-23 | Bsst, Llc | Thermoelectric personal environment appliance |
US6812395B2 (en) | 2001-10-24 | 2004-11-02 | Bsst Llc | Thermoelectric heterostructure assemblies element |
US7932460B2 (en) | 2001-10-24 | 2011-04-26 | Zt Plus | Thermoelectric heterostructure assemblies element |
US6700052B2 (en) | 2001-11-05 | 2004-03-02 | Amerigon Incorporated | Flexible thermoelectric circuit |
US9365090B2 (en) | 2004-05-10 | 2016-06-14 | Gentherm Incorporated | Climate control system for vehicles using thermoelectric devices |
US7870892B2 (en) | 2004-05-10 | 2011-01-18 | Bsst Llc | Climate control method for hybrid vehicles using thermoelectric devices |
US9863672B2 (en) | 2005-04-08 | 2018-01-09 | Gentherm Incorporated | Thermoelectric-based air conditioning system |
US8915091B2 (en) | 2005-04-08 | 2014-12-23 | Gentherm Incorporated | Thermoelectric-based thermal management system |
US8408012B2 (en) | 2005-04-08 | 2013-04-02 | Bsst Llc | Thermoelectric-based heating and cooling system |
US7847179B2 (en) | 2005-06-06 | 2010-12-07 | Board Of Trustees Of Michigan State University | Thermoelectric compositions and process |
US20060272697A1 (en) * | 2005-06-06 | 2006-12-07 | Board Of Trustees Of Michigan State University | Thermoelectric compositions and process |
US9006556B2 (en) | 2005-06-28 | 2015-04-14 | Genthem Incorporated | Thermoelectric power generator for variable thermal power source |
US8261868B2 (en) | 2005-07-19 | 2012-09-11 | Bsst Llc | Energy management system for a hybrid-electric vehicle |
US8783397B2 (en) | 2005-07-19 | 2014-07-22 | Bsst Llc | Energy management system for a hybrid-electric vehicle |
US20110079023A1 (en) * | 2005-07-19 | 2011-04-07 | Goenka Lakhi N | Energy management system for a hybrid-electric vehicle |
US7870745B2 (en) | 2006-03-16 | 2011-01-18 | Bsst Llc | Thermoelectric device efficiency enhancement using dynamic feedback |
US8424315B2 (en) | 2006-03-16 | 2013-04-23 | Bsst Llc | Thermoelectric device efficiency enhancement using dynamic feedback |
US20070214799A1 (en) * | 2006-03-16 | 2007-09-20 | Goenka Lakhi N | Thermoelectric device efficiency enhancement using dynamic feedback |
US7952015B2 (en) | 2006-03-30 | 2011-05-31 | Board Of Trustees Of Michigan State University | Pb-Te-compounds doped with tin-antimony-tellurides for thermoelectric generators or peltier arrangements |
US9103573B2 (en) | 2006-08-02 | 2015-08-11 | Gentherm Incorporated | HVAC system for a vehicle |
US8631659B2 (en) | 2006-08-02 | 2014-01-21 | Bsst Llc | Hybrid vehicle temperature control systems and methods |
US10464391B2 (en) | 2007-05-25 | 2019-11-05 | Gentherm Incorporated | System and method for distributed thermoelectric heating and cooling |
US9366461B2 (en) | 2007-05-25 | 2016-06-14 | Gentherm Incorporated | System and method for climate control within a passenger compartment of a vehicle |
US9310112B2 (en) | 2007-05-25 | 2016-04-12 | Gentherm Incorporated | System and method for distributed thermoelectric heating and cooling |
US20090235969A1 (en) * | 2008-01-25 | 2009-09-24 | The Ohio State University Research Foundation | Ternary thermoelectric materials and methods of fabrication |
US9719701B2 (en) | 2008-06-03 | 2017-08-01 | Gentherm Incorporated | Thermoelectric heat pump |
US8701422B2 (en) | 2008-06-03 | 2014-04-22 | Bsst Llc | Thermoelectric heat pump |
US10473365B2 (en) | 2008-06-03 | 2019-11-12 | Gentherm Incorporated | Thermoelectric heat pump |
US8640466B2 (en) | 2008-06-03 | 2014-02-04 | Bsst Llc | Thermoelectric heat pump |
US8613200B2 (en) | 2008-10-23 | 2013-12-24 | Bsst Llc | Heater-cooler with bithermal thermoelectric device |
US9447994B2 (en) | 2008-10-23 | 2016-09-20 | Gentherm Incorporated | Temperature control systems with thermoelectric devices |
US9555686B2 (en) | 2008-10-23 | 2017-01-31 | Gentherm Incorporated | Temperature control systems with thermoelectric devices |
US10106011B2 (en) | 2009-05-18 | 2018-10-23 | Gentherm Incorporated | Temperature control system with thermoelectric device |
US9666914B2 (en) | 2009-05-18 | 2017-05-30 | Gentherm Incorporated | Thermoelectric-based battery thermal management system |
US9038400B2 (en) | 2009-05-18 | 2015-05-26 | Gentherm Incorporated | Temperature control system with thermoelectric device |
US11203249B2 (en) | 2009-05-18 | 2021-12-21 | Gentherm Incorporated | Temperature control system with thermoelectric device |
US8974942B2 (en) | 2009-05-18 | 2015-03-10 | Gentherm Incorporated | Battery thermal management system including thermoelectric assemblies in thermal communication with a battery |
US20110236731A1 (en) * | 2009-05-18 | 2011-09-29 | Bsst Llc | Battery Thermal Management System |
US11264655B2 (en) | 2009-05-18 | 2022-03-01 | Gentherm Incorporated | Thermal management system including flapper valve to control fluid flow for thermoelectric device |
US9293680B2 (en) | 2011-06-06 | 2016-03-22 | Gentherm Incorporated | Cartridge-based thermoelectric systems |
US9006557B2 (en) | 2011-06-06 | 2015-04-14 | Gentherm Incorporated | Systems and methods for reducing current and increasing voltage in thermoelectric systems |
US8722222B2 (en) | 2011-07-11 | 2014-05-13 | Gentherm Incorporated | Thermoelectric-based thermal management of electrical devices |
US9671142B2 (en) | 2011-07-11 | 2017-06-06 | Gentherm Incorporated | Thermoelectric-based thermal management of electrical devices |
US10337770B2 (en) | 2011-07-11 | 2019-07-02 | Gentherm Incorporated | Thermoelectric-based thermal management of electrical devices |
US9306143B2 (en) | 2012-08-01 | 2016-04-05 | Gentherm Incorporated | High efficiency thermoelectric generation |
US10270141B2 (en) | 2013-01-30 | 2019-04-23 | Gentherm Incorporated | Thermoelectric-based thermal management system |
US10784546B2 (en) | 2013-01-30 | 2020-09-22 | Gentherm Incorporated | Thermoelectric-based thermal management system |
US11075331B2 (en) | 2018-07-30 | 2021-07-27 | Gentherm Incorporated | Thermoelectric device having circuitry with structural rigidity |
US10991869B2 (en) | 2018-07-30 | 2021-04-27 | Gentherm Incorporated | Thermoelectric device having a plurality of sealing materials |
US11223004B2 (en) | 2018-07-30 | 2022-01-11 | Gentherm Incorporated | Thermoelectric device having a polymeric coating |
US11993132B2 (en) | 2018-11-30 | 2024-05-28 | Gentherm Incorporated | Thermoelectric conditioning system and methods |
US11152557B2 (en) | 2019-02-20 | 2021-10-19 | Gentherm Incorporated | Thermoelectric module with integrated printed circuit board |
Also Published As
Publication number | Publication date |
---|---|
CH526867A (en) | 1972-08-15 |
JPS4825839B1 (en) | 1973-08-01 |
DE1963023A1 (en) | 1971-06-16 |
FR2072993A5 (en) | 1971-09-24 |
AT299348B (en) | 1972-06-12 |
NL7018076A (en) | 1971-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3681929A (en) | Thermoelectric device | |
US4908695A (en) | Cooling apparatus and semiconductor device employing the same | |
EP1264343B1 (en) | Apparatus and method for passive phase change thermal management | |
US6046498A (en) | Device having a heat sink for cooling an integrated circuit | |
JPH0566025B2 (en) | ||
US3076051A (en) | Thermoelectric devices and methods of making same | |
CN104810466A (en) | Thermoelectric module and heat conversion device including the same | |
KR910013467A (en) | Semiconductor device mounting and cooling system and regulated power supply system | |
US10292307B1 (en) | Thermal heatsink | |
US3248681A (en) | Contacts for semiconductor devices | |
US3183121A (en) | Thermoelectric generator with heat transfer and thermal expansion adaptor | |
JP2019021864A (en) | Power module | |
CN101764109A (en) | Thermoelectric cooler for semiconductor devices with tsv | |
JP4927822B2 (en) | Formable Peltier heat transfer element and method for manufacturing the same | |
US3261721A (en) | Thermoelectric materials | |
US3316474A (en) | Thermoelectric transformer | |
JPH0677347A (en) | Substrate | |
US3181304A (en) | Peltier device employing semi-conductor bodies which are connected to one another bymeans of interposed members of satisfactory electrical and thermal conductivity | |
JPH11159907A (en) | Electronic heating cooling device | |
US3462654A (en) | Electrically insulating-heat conductive mass for semiconductor wafers | |
US2862159A (en) | Conduction cooled rectifiers | |
CA1162978A (en) | Heat sink thermal transfer system for zinc oxide varistors | |
JPH0997988A (en) | Thermally conductive compound | |
JP7328664B2 (en) | thermoelectric converter | |
US3287176A (en) | Thermoelectric apparatus |