US3640267A - Clinical sample container - Google Patents
Clinical sample container Download PDFInfo
- Publication number
- US3640267A US3640267A US884924A US3640267DA US3640267A US 3640267 A US3640267 A US 3640267A US 884924 A US884924 A US 884924A US 3640267D A US3640267D A US 3640267DA US 3640267 A US3640267 A US 3640267A
- Authority
- US
- United States
- Prior art keywords
- chamber
- casing
- tube
- passage
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150259—Improved gripping, e.g. with high friction pattern or projections on the housing surface or an ergonometric shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150015—Source of blood
- A61B5/150022—Source of blood for capillary blood or interstitial fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150053—Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
- A61B5/150061—Means for enhancing collection
- A61B5/150099—Means for enhancing collection by negative pressure, other than vacuum extraction into a syringe by pulling on the piston rod or into pre-evacuated tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150251—Collection chamber divided into at least two compartments, e.g. for division of samples
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150274—Manufacture or production processes or steps for blood sampling devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150343—Collection vessels for collecting blood samples from the skin surface, e.g. test tubes, cuvettes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150755—Blood sample preparation for further analysis, e.g. by separating blood components or by mixing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150763—Details with identification means
- A61B5/150786—Optical identification systems, e.g. bar codes, colour codes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150946—Means for varying, regulating, indicating or limiting the speed or time of blood collection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150229—Pumps for assisting the blood sampling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/153—Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
- A61B5/154—Devices using pre-evacuated means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
Definitions
- a container for the collection, storage and processing of a sample of body fluid has a graduated receiving tube for collecting the sample and which feeds a chamber that is resiliently collapsible to aspirate the sample into the tube and thence into the chamber. initially, a frangible seal closes the tube'chamber junction to maintain a sample-treating reagent within the chamber.
- the tube and chamber are in a unitary, self-supporting structure which also has a panel or the like for carrying indicia identifying the sample.
- This invention relates to clinical sample container equipment and in particular provides such equipment for collecting a measured volume of the sample and for storing it under aseptic conditions.
- the equipment hereinafter for ease in reference designated as a container system or simply container, can further be used to feed the sample directly to diagnostic analysis equipment.
- the container includes a panel for carrying indicia identifying the sample and, where desired, designating the analysis to be performed on it.
- a myriad of sample-handling liquid-containing structures are known in the medical arts, and particularly in the field of clinical diagnosis equipment.
- capillary or syringe structures are used in theprior art to collect a sample, for example from a dermal puncture.
- the collected sample is then transferred to a storage vessel, and the collecting device discarded.
- the storage vessel or still another container is then used to carry the sample through whatever diagnostic analysis operations are desired.
- a further object of the invention is toprovide such a container carrying with secure attachment the record identifying the sample, the analysis to be preformed on it, and whatever other information is desired.
- Another object of the invention is to provide a container of the above character that can be manufactured at such a low cost that it can, with practical economy, be discarded after a single use.
- the invention provides a unitary and self-supporting container system having a liquid-collecting collection tube, the volume of which is graduated therealong from the point of liquid entry.
- the tube feeds into a liquid-storing chamber, and a panel for carrying whatever indicia are pertinent to the sample is secured to the container system.
- the chamber is collapsible, and resiliently resumes its normal shape, to enable the operator to aspirate the sample into the collecting tube and then into the chamber from the tube.
- the entry of the tube into the chamber is sealed so that whatever liquid or gas is provided in the chamber during manufacture does not spill or otherwise escape, or conversely become contaminated.
- a still further feature of the container is that the collecting tube portion can be removed from it, and the chamber opened for access to the contained sample, to facilitate delivering the sample for diagnostic analysis.
- FIGS. 2 and 3 are cross-sectional views of the container of FIG. 1, but priorto opening of the frangible seal therein, taken along lines 22 and 33 respectively, of FIG. 1;
- FIG. 4 is a perspective view of the container of FIG. I, with portions thereof cut off, for disposition in sample analyzing equipment.
- FIG. 1 shows a container 10 embodying the invention being used to collect a blood sample from a dermal puncture in a patients finger.
- the drawing shows that approximately 50 microliters of blood have already been collected in a collection tube 12 that feeds into a chamber 14.
- the chamber walls 16 are shown slightly collapsed, as the medical technician or other operator normally would do during the sample collection process simply by squeezing the chamber prior to placing the tube entry end into the fluid being collected.
- the resiliency of the chamber walls restores the chamber to an uncollapsed condition, thereby drawing the sample into the collection tube under positive pressure conditions.
- the operator controls the expansion of the chamber walls until he has collected the desired volume of sample, at which point he simply removes the container from the fluid source and fully releases the chamber walls, allowing them to aspirate the collected sample into the chamber 14.
- the entry end of the collection tube 12 can be sealed shut either by the use of a cap 17 carried on the casing 30 but readily removable therefrom, by means of a metallic clamp, or a heat seal, all of which are conventional.
- a record panel 18 for bearing the identification of the sample being collected, the identification of the patient, his physician, and the designation of the diagnostic tests to be performed on the sample extends from the container along the side of the chamber 14 and serves, together with the coiled collection tube and chamber, as a handle for the secure holding of the container during the sample collecting process.
- the illustrated container 10 has a generally cardlike rectangular outline, from which the collection tube 12 protrudes to its entry end 120.
- the tube 12 has a nozzle section 12b extending from the entry end 120, a feed end 124 that feeds into the chamber 14, and a coiled section 12c between the nozzle section and the feed end.
- the illustrated section 12c of the tube is arranged in a serpentinelike, single layer coil and compactly accommodates the length of tubing necessary to contain the maximum volume of sample that is to be collected and processed with the particular container.
- the tube Adjacent the juncture of the tube with the chamber 14, i.e., at the tube feed end 12d, the tube is initially closed with a frangible seal 22 shown in FIGS. 2 and 3.
- the seal which is fluidtight, illustratively is fomied by compressing the tube closed and sealing the opposed walls together, roughly along a tube diameter. As shown in FIG. 3, the seal is in the plane of the cardlike container shape.
- pull tabs 24 and 26 are secured to the walls of the tube on either side of the seal. With this arrangement, the operator places the container in condition for use simply by pulling the tabs apart, which pulls the opposed tube walls apart and hence opens the seal.
- the chamber volume is tailored to the maximum volume of sample which is to be collected in the tube of the container.
- the illustrated chamber contains this volume of sample, and a corresponding amount of a reagent 28, in roughly one-half to two-thirds of the chamber volume.
- the reagent 28 is selected according to the sample being collected and the analysis to be performed on it. It can for example be an anticoagulant, or a preservative.
- a known volume of the reagent preferably is placed in the chamber 14 prior to effecting the seal 22 at the time the container is initially manufactured. Then the physician, technician or other user of the container is free from concern as to the identity, volume or quality of the reagent. Also, the container with the desired reagent already in it is ready for use simply upon removing it from its sterile wrap (not shown).
- the collection tube 12 is made of a nonwetting material inert to the sample with which the container is to be used and to the reagent 28, and which can be processed to provide the frangible seal 22.
- the material for the chamber 14 has the same inert qualities and has the desired resiliency for the chamber walls 1616. Polyethylene and polyvinyl chloride are considered preferable materials for both the tube and the chamber, with a density that has considerable flexibility.
- the illustrated container 10 has the complete collection tube 12 and chambers 14 structure, with the tube seal 22 and the tabs 24 and 26 thereon, mounted in a casing 30.
- the casing thus forms a manually holdable frame for mounting the tube and chamber.
- the casing is formed of two opposed and mating panels 32 and 34. Each panel is recessed with a channel to receive the collection tube, and has a cutout through which the opposed chamber sidewalls 16--16 protrude and are accessible for the pumping operation that aspirates the sample.
- the seal-opening tabs 24 and 26 also pass through the panels 32 and 34, respectively.
- the tube and chamber structure is placed between the casing panels and the two panels are then bonded or otherwise sealed together with the collection tube sandwiched between them and with the tabs 24 and 26 and chamber sidewalls 16-16 protruding through the panels at the appropriate apertures.
- a relatively inert and stiff, protective and self-supporting synthetic resin is preferred for the casing panels.
- the illustrated chamber 14 has a peripheral flange 14a that is sandwiched between the panels along the periphery of the chamber cutouts therethrough to secure the chamber in the casing 30.
- the scale 20 can be carried on one or both panels of the casing 30.
- the indicia it carries can be machine readable, i.e., readable with optical character recognition techniques, magnetically detectable or optically detectable, where this is desired.
- the container 10 is arranged overall in three side-by-side sections 10a, 10b and 10c.
- the collection tube 12 is in an end section 10a
- the chamber 14 is in the central section 10b
- the record panel 18 is in the other end section 10c.
- the separation can be effected by cutting or otherwise severing the container into two parts along the dashed construction line 36 at the boundary between sections 10a and 10b. This separation may be desired to diminish the size of the container elements that are present during analysis of the collected sample, which may be of particular benefit where the analysis is performed with automated equipment.
- the showing in FIG. 4 in both solid and phantom illustrates the container elements that would remain intact after the container section 10a, bearing the collection tube, is thus removed by cutting along the construction line 36.
- a conventional fluid coupling (not shown) can be inserted into the short length of collection tube 12d leading from the chamber to draw the collection sample out for the analysis.
- the container chamber section 10b is severed along the dashed construction line 38, shown in FIG. 1, to remove the top portion of the chamber, including the collection tube entry therein, and leaving only the analysis container 40 shown in solid lines in FIG. 4.
- the record panel 18 is preferably foreshortened relative to the other sections of the container 10, as shown in FIG. 1, so that when the container is cut along the construction line 38 to provide the analysis container 40 (FIG. 4) the record panel 18 remains intact.
- the analysis container 40 of FIG. 4, with or without the upper section shown in phantom, can be placed in automatic analysis equipment and the sample stored therein analyzed according to instructions recorded on the record panel 18.
- the container system of the invention is of course not limited to collecting a sample from a finger puncture; this particular use is shown only by way of specific illustration.
- a manually holdable frame mounting said tube and chamber, said frame including a planar cardlike casing joined to the walls of said tube along the tube length and joined to the walls of said chamber along a path encircling the chamber,
- said chamber is resiliently collapsible to expel therefrom at least twice said volume of fluid by way of said tube, and resiliently recovers said normal uncollapsed shape when said inlet end of said tube is open to aspirate fluid thereinto, and
- said frame casing carries a volume-measuring scale disposed along at least a portion of the length of said tube for indicating the volume of liquid aspirated into said tube from said inlet end thereof.
- said frame casing has at least two side-by-side coplanar and conjoined sections a first of which carries said chamber and said end of said tube feeding into said chamber, and the second of which carries the rest of said tube.
- said frame casing has a third section disposed side-by-side and coplanar with said first section and joined thereto, and forming an indicia-supporting panel.
- a container for the collection of a sample of a liquid the storage thereof comprising A. a generally rectangular flat casing having a small thickness relative to the length and width thereof and inand eluding at least first and second side-by-side and conjoined sections, B. means forming a serpentine-configured tubular passage on said casing second section with passage walls bulging from said casing along the direction of the casing thickness and having an inlet end, an outlet end, and a storage length therebetween with said inlet end protruding nozzlelike beyond the rectangular configuration of said casing, and
- C. means forming a pouchlike chamber 1. having opposed walls joined together along a chamberencircling path,
- a surgical container for the collection of a sample of animal body liquid and for the storage thereof comprising A. a manually holdable flat cardlike body casing,
- volume-indicating scale carried by said casing having graduations arranged along said passage from said inlet end for indicating the volume of liquid in said passage measuring from said inlet end
- E. means forming a record panel on said casing for bearing a readable message.
- a container as defined in claim 8 in which said casing is arranged with first and second sections, said first section carrying said inlet end and said storage length of said passage and said scale associated therewith, said second section adjoining said first section along a first junction and carrying said chamber and said record panel, said casing sections being so arranged that severing said casing along said first junction separates said sections and severs said passage adjacent said outlet end thereof.
- a container as defined in claim 8 further comprising A. means forming a frangible seal closing said passage along said outlet end thereof, thereby to seal said chamber closed, and
- seal-opening means carried on said casing and manually manipulatable for opening said seal, thereby to provide fluid communication between said chamber and said passage, said seal and said opening means being so arranged that said passage and chamber are fluidtight, except for the opening at said passage inlet end, when said seal is open.
- a container as defined in claim 8 further characterized in that said casing has a peripheral edge that forms the peripheral edge of said container, except at said passage inlet end.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Hematology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manufacturing & Machinery (AREA)
- Dermatology (AREA)
- Pain & Pain Management (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
A container for the collection, storage and processing of a sample of body fluid has a graduated receiving tube for collecting the sample and which feeds a chamber that is resiliently collapsible to aspirate the sample into the tube and thence into the chamber. Initially, a frangible seal closes the tube-chamber junction to maintain a sample-treating reagent within the chamber. The tube and chamber are in a unitary, selfsupporting structure which also has a panel or the like for carrying indicia identifying the sample.
Description
United States Patent Hurtig et al.
[ Feb.8, 11972 [54] CLINICAL SAMPLE CONTAINER [72] Inventors: Carl R. Hurtig, Scituate; Andres Ferrari; Amin J. Khoury, both of Dover, all of Mass.
[73] Assignee: Damon Corporation, Needham Heights,
Mass.
[22] Filed: Dec.l5, 1969 211 Appl. No.: sa4,924
52 U.S.CL ..l28/2,73/425.6,l28/276 s11 ..A61ml/00 [58] FieldofSearch ..l28/2,2l6,231,232,233,
128/276, 278, DIG. 5; 73/4256 [56] References Cited UNITED STATES PATENTS Davidson 128/276 Slaby ..128/276 x 3,045,494 7/1962 Gerarde ..73/425.6 3,430,628 3/1969 Wiggins 1 28/276 3,308,809 3/1967 Cohen v.128/2 2,470,665 5/1949 Stiehl ..128/276 3,322,114 5/1967 Portnoy et al. ..128/2 3,405,706 10/1968 Cinqualbre ..128/2 Primary Examiner-Aldrich F, Medbery Attorney-Kenway, Jenney 8t Hildreth ABSTRACT A container for the collection, storage and processing of a sample of body fluid has a graduated receiving tube for collecting the sample and which feeds a chamber that is resiliently collapsible to aspirate the sample into the tube and thence into the chamber. initially, a frangible seal closes the tube'chamber junction to maintain a sample-treating reagent within the chamber. The tube and chamber are in a unitary, self-supporting structure which also has a panel or the like for carrying indicia identifying the sample.
11 Claims, 4 Drawing Figures P lg. 2.
34 12 22 2s 16 14 K 2 14a 18 12- CARL R JURiP3 5 ANDRES FERRARI AMIN K HOURY CLINICAL SAMPLE CONTAINER BACKGROUND This invention relates to clinical sample container equipment and in particular provides such equipment for collecting a measured volume of the sample and for storing it under aseptic conditions. The equipment, hereinafter for ease in reference designated as a container system or simply container, can further be used to feed the sample directly to diagnostic analysis equipment. The container includes a panel for carrying indicia identifying the sample and, where desired, designating the analysis to be performed on it.
A myriad of sample-handling liquid-containing structures are known in the medical arts, and particularly in the field of clinical diagnosis equipment. In general, capillary or syringe structures are used in theprior art to collect a sample, for example from a dermal puncture. The collected sample is then transferred to a storage vessel, and the collecting device discarded. The storage vessel or still another container is then used to carry the sample through whatever diagnostic analysis operations are desired.
These prior practices require a number of fluid containers, and the transfer from one to the other subjects the sample to spillage as well as contamination. Also, the label identifying the sample is subject to loss and mixup each time the sample is transferred.
In addition, much prior art sample container equipment is too costly to be disposable, and hence requires preparation for each use. The prior container apparatus is also deficient in regard to providing ease in storage, handling and operation.
Accordingly, it is an object of the present invention to provide a single container for the initial collection of a sample of body fluid, the subsequent storage thereof with or without reagents, and for the ultimate containment or delivery of the sample for analysis.
A further object of the invention is toprovide such a container carrying with secure attachment the record identifying the sample, the analysis to be preformed on it, and whatever other information is desired.
It is also an object of the invention to provide a container of the above character that maintains a reagent sealed therein without spillage but which is readily placed in use without the likelihood of introducing contamination.
A further object of the invention is to provide a container of the foregoing character in which a sample can be transported without further packaging.
Another object of the invention is to provide a container of the above character that can be manufactured at such a low cost that it can, with practical economy, be discarded after a single use. I
Other objects of the invention will in part be obvious and will in part appear hereinafter.
The invention accordingly comprises the features of construction, combinations of elements, and arrangement of parts exemplified in the constructions hereinafter set forth, and the scope of the invention is indicated in the claims.
SUMMARY OF INVENTION In brief, the invention provides a unitary and self-supporting container system having a liquid-collecting collection tube, the volume of which is graduated therealong from the point of liquid entry. The tube feeds into a liquid-storing chamber, and a panel for carrying whatever indicia are pertinent to the sample is secured to the container system. The chamber is collapsible, and resiliently resumes its normal shape, to enable the operator to aspirate the sample into the collecting tube and then into the chamber from the tube.
In addition to sealing the complete container in a sterile wrap or otherwise sealing the receiving end of the collecting tube to ensure that it is free of contaminants, the entry of the tube into the chamber is sealed so that whatever liquid or gas is provided in the chamber during manufacture does not spill or otherwise escape, or conversely become contaminated.
This seal is opened immediately prior to using the container, and in such a way that the container system, throughout the collecting tube length and the chamber, remains closed from the environment.
A still further feature of the container is that the collecting tube portion can be removed from it, and the chamber opened for access to the contained sample, to facilitate delivering the sample for diagnostic analysis.
The invention thus provides a clinical container system for collecting a liquid sample in measured volume directly from a patient, for containing the sample during storage and transport, and for direct delivery of the sample to analysis equipment. The sample thus contained is never exposed to the spillage, contamination, or label loss inherent with prior clinical equipment that requires the sample to be transferred from one container to another. Further, the present container is of low cost so as to be economically practical to discard after a single use.
BRIEF DESCRIPTION OF FIGURES For a fuller understanding of the nature and objects of the i invention, reference should be had to the following detailed description taken in connection with the accompanying drawings, in which:
FIG. 1 is a pictorial view of a container embodying the invention disposed for collecting a blood sample from a dermal puncture in a patients finger;
FIGS. 2 and 3 are cross-sectional views of the container of FIG. 1, but priorto opening of the frangible seal therein, taken along lines 22 and 33 respectively, of FIG. 1; and
FIG. 4 is a perspective view of the container of FIG. I, with portions thereof cut off, for disposition in sample analyzing equipment.
DESCRIPTION OF ILLUSTRATED EMBODIMENT FIG. 1 shows a container 10 embodying the invention being used to collect a blood sample from a dermal puncture in a patients finger. The drawing shows that approximately 50 microliters of blood have already been collected in a collection tube 12 that feeds into a chamber 14. The chamber walls 16 are shown slightly collapsed, as the medical technician or other operator normally would do during the sample collection process simply by squeezing the chamber prior to placing the tube entry end into the fluid being collected. Upon being released by the operator, the resiliency of the chamber walls restores the chamber to an uncollapsed condition, thereby drawing the sample into the collection tube under positive pressure conditions. The operator controls the expansion of the chamber walls until he has collected the desired volume of sample, at which point he simply removes the container from the fluid source and fully releases the chamber walls, allowing them to aspirate the collected sample into the chamber 14.
After the desired volume of sample is collected, the entry end of the collection tube 12 can be sealed shut either by the use of a cap 17 carried on the casing 30 but readily removable therefrom, by means of a metallic clamp, or a heat seal, all of which are conventional.
A record panel 18 for bearing the identification of the sample being collected, the identification of the patient, his physician, and the designation of the diagnostic tests to be performed on the sample, extends from the container along the side of the chamber 14 and serves, together with the coiled collection tube and chamber, as a handle for the secure holding of the container during the sample collecting process.
Considering FIGS. 1, 2 and 3 in greater detail, the illustrated container 10 has a generally cardlike rectangular outline, from which the collection tube 12 protrudes to its entry end 120. The tube 12 has a nozzle section 12b extending from the entry end 120, a feed end 124 that feeds into the chamber 14, and a coiled section 12c between the nozzle section and the feed end. The illustrated section 12c of the tube is arranged in a serpentinelike, single layer coil and compactly accommodates the length of tubing necessary to contain the maximum volume of sample that is to be collected and processed with the particular container.
A scale 20 has graduations disposed along the length of the tube 12 calibrated, for example in microliters, to indicate the volume of the tube along the length thereof beginning from the entry end 12a. The scale 20 thus enables the operator to measure the volume of sample being collected directly, as it is being collected.
Adjacent the juncture of the tube with the chamber 14, i.e., at the tube feed end 12d, the tube is initially closed with a frangible seal 22 shown in FIGS. 2 and 3. The seal, which is fluidtight, illustratively is fomied by compressing the tube closed and sealing the opposed walls together, roughly along a tube diameter. As shown in FIG. 3, the seal is in the plane of the cardlike container shape. At the site of the seal, pull tabs 24 and 26 are secured to the walls of the tube on either side of the seal. With this arrangement, the operator places the container in condition for use simply by pulling the tabs apart, which pulls the opposed tube walls apart and hence opens the seal.
With further reference to FIGS. 1, 2 and 3, the chamber 14 is a tubular pouch with resiliently collapsible opposed sidewalls 1616. The chamber is oriented in the container alongside the collection tube coiled section 12c, with the chamber bottom adjacent the tube end near the nozzle 12b. The chamber top is adjacent the entry of the feed end of the tube into the chamber. The chamber is fluidtight except for this connection with the tube.
The chamber volume is tailored to the maximum volume of sample which is to be collected in the tube of the container. The illustrated chamber contains this volume of sample, and a corresponding amount of a reagent 28, in roughly one-half to two-thirds of the chamber volume.
As noted, the opposed chamber walls 1616 can be depressed inward, to reduce the chamber volume by at least twice the volume of the tube 12. Upon being released, the walls restore automatically to their normal concave shape, shown in FIG. 2, with sufficient resilient force to aspirate the sample liquid into the tube 12 and thence into the chamber.
The reagent 28 is selected according to the sample being collected and the analysis to be performed on it. It can for example be an anticoagulant, or a preservative. A known volume of the reagent preferably is placed in the chamber 14 prior to effecting the seal 22 at the time the container is initially manufactured. Then the physician, technician or other user of the container is free from concern as to the identity, volume or quality of the reagent. Also, the container with the desired reagent already in it is ready for use simply upon removing it from its sterile wrap (not shown).
The collection tube 12 is made of a nonwetting material inert to the sample with which the container is to be used and to the reagent 28, and which can be processed to provide the frangible seal 22. The material for the chamber 14 has the same inert qualities and has the desired resiliency for the chamber walls 1616. Polyethylene and polyvinyl chloride are considered preferable materials for both the tube and the chamber, with a density that has considerable flexibility.
The illustrated container 10 has the complete collection tube 12 and chambers 14 structure, with the tube seal 22 and the tabs 24 and 26 thereon, mounted in a casing 30. The casing thus forms a manually holdable frame for mounting the tube and chamber. The casing is formed of two opposed and mating panels 32 and 34. Each panel is recessed with a channel to receive the collection tube, and has a cutout through which the opposed chamber sidewalls 16--16 protrude and are accessible for the pumping operation that aspirates the sample. The seal- opening tabs 24 and 26 also pass through the panels 32 and 34, respectively.
With this construction, the tube and chamber structure is placed between the casing panels and the two panels are then bonded or otherwise sealed together with the collection tube sandwiched between them and with the tabs 24 and 26 and chamber sidewalls 16-16 protruding through the panels at the appropriate apertures. A relatively inert and stiff, protective and self-supporting synthetic resin is preferred for the casing panels. The illustrated chamber 14 has a peripheral flange 14a that is sandwiched between the panels along the periphery of the chamber cutouts therethrough to secure the chamber in the casing 30. Also, the scale 20 can be carried on one or both panels of the casing 30.
The illustrated record panel 18 of the container 10 is formed by the casing panels 32 and 34 along the side of the chamber 14 opposite from the coiled tube section 12c. The panel 18 is illustrated as having a mat surface on which indicia can be written. However, other forms of record panel can be used. One alternative arrangement is to form a record pocket (not shown) between the opposed casing panels 32 and 34 for carrying a document bearing the desired indicia. Another alternative is simply to attach a document onto the outer surface of the record panel 18, using any one of many conventional fastening means including adhesives, mechanical clips, buttons and the like.
Whatever construction is used for the record panel 18, the indicia it carries can be machine readable, i.e., readable with optical character recognition techniques, magnetically detectable or optically detectable, where this is desired.
With further reference to FIG. 1, the container 10 is arranged overall in three side-by- side sections 10a, 10b and 10c. The collection tube 12 is in an end section 10a, the chamber 14 is in the central section 10b, and the record panel 18 is in the other end section 10c.
One reason for this three-section arrangement of the container 10 is that it enables the chamber and record panel to be separated from the collection tube. The separation can be effected by cutting or otherwise severing the container into two parts along the dashed construction line 36 at the boundary between sections 10a and 10b. This separation may be desired to diminish the size of the container elements that are present during analysis of the collected sample, which may be of particular benefit where the analysis is performed with automated equipment. The showing in FIG. 4 in both solid and phantom illustrates the container elements that would remain intact after the container section 10a, bearing the collection tube, is thus removed by cutting along the construction line 36.
With reference to FIG. 4 a conventional fluid coupling (not shown) can be inserted into the short length of collection tube 12d leading from the chamber to draw the collection sample out for the analysis.
Further, where the sample is to be openly available during analysis, the container chamber section 10b is severed along the dashed construction line 38, shown in FIG. 1, to remove the top portion of the chamber, including the collection tube entry therein, and leaving only the analysis container 40 shown in solid lines in FIG. 4. The record panel 18 is preferably foreshortened relative to the other sections of the container 10, as shown in FIG. 1, so that when the container is cut along the construction line 38 to provide the analysis container 40 (FIG. 4) the record panel 18 remains intact.
The analysis container 40 of FIG. 4, with or without the upper section shown in phantom, can be placed in automatic analysis equipment and the sample stored therein analyzed according to instructions recorded on the record panel 18.
Although the illustrated container 10 is described as fabricated with a collection tube and chamber encased between two panels, the invention can be practiced with other types of construction. Perhaps the lowest cost construction, at least for large volume manufacture, is to use panels that are molded to provide by themselves the passage for collecting the sample and the chamber for storing it. Each such panel is molded to form essentially half of the collection tube, or passage, and half of the chamber.
Also, alternative to bonding the tube 12 walls together to form the seal 22, other construction can be employed. One such alternative is to conventional crimp or squeeze the tube closed with a conventional clip or clamp applied from outside the container.
Further, the container system of the invention is of course not limited to collecting a sample from a finger puncture; this particular use is shown only by way of specific illustration.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in the above constructions without departing from the scope of the invention, all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative rather than in a limiting sense.
Having described the invention, what is claimed as new and secured by Letters Patent is:
1. In clinical sample collection and storage apparatus having a chamber resiliently maintaining a normal uncollapsed shaped and being resiliently collapsible to diminish the volume therein, and having a collection tube with a sample inlet end and feeding at the other end into said chamber, the improvement comprising A. a manually holdable frame mounting said tube and chamber, said frame including a planar cardlike casing joined to the walls of said tube along the tube length and joined to the walls of said chamber along a path encircling the chamber,
B. at least one wall of said chamber bulging outwardly from said planar casing when in the normal uncollapsed shape and deflecting inward toward said casing to collapse said chamber, and
' C. said sample inlet end of said collection tube protruding from said casing frame to dispose said inlet end openly accessible relative thereto.
2. In apparatus as defined in claim 1, the further improvement wherein A. said collection tube defines a fluid volume therein between said ends thereof,
B. said chamber is resiliently collapsible to expel therefrom at least twice said volume of fluid by way of said tube, and resiliently recovers said normal uncollapsed shape when said inlet end of said tube is open to aspirate fluid thereinto, and
C. said frame casing carries a volume-measuring scale disposed along at least a portion of the length of said tube for indicating the volume of liquid aspirated into said tube from said inlet end thereof.
3. In apparatus as defined in claim 1 the further improvement comprising g A. frangible fluidtight seal means for closing the fluid path of said tube between said ends thereof, said seal means being disposed adjacent said end of said tube feeding into said chamber, and
B. manually manipulatable means for opening said seal to provide fluid communication between said chamber and said tube.
4. In apparatus as defined in claim 1, the further improvement wherein said frame casing has at least two side-by-side coplanar and conjoined sections a first of which carries said chamber and said end of said tube feeding into said chamber, and the second of which carries the rest of said tube.
5. In apparatus as defined in claim 4, the further improvement wherein said frame casing has a third section disposed side-by-side and coplanar with said first section and joined thereto, and forming an indicia-supporting panel.
6. In apparatus as defined in claim 5, the further improvement wherein said frame casing is severable along the juncture between said first and second sections for removing said second section with the tube length mounted thereon from the rest of said apparatus.
7. A container for the collection of a sample of a liquid the storage thereof, said container comprising A. a generally rectangular flat casing having a small thickness relative to the length and width thereof and inand eluding at least first and second side-by-side and conjoined sections, B. means forming a serpentine-configured tubular passage on said casing second section with passage walls bulging from said casing along the direction of the casing thickness and having an inlet end, an outlet end, and a storage length therebetween with said inlet end protruding nozzlelike beyond the rectangular configuration of said casing, and
C. means forming a pouchlike chamber 1. having opposed walls joined together along a chamberencircling path,
2. mounted on said casing first section along said path to dispose said walls accessible from opposite sides of said casing,
3. connected to said outlet end of said passage to provide fluid communication from the interior of said chamber through said passage to said inlet end thereof, and
4. having said opposed walls resiliently collapsible to diminish the chamber volume and resiliently resuming a normal uncollapsed position where they bulge outwardly from said casing along the direction of the casing thickness.
8. A surgical container for the collection of a sample of animal body liquid and for the storage thereof, said container comprising A. a manually holdable flat cardlike body casing,
B. sample collection means forming a tubular passage carried by said casing with an openly accessible inlet end extending outwardly from said casing, an outlet end, and a storage length therebetween,
C. a volume-indicating scale carried by said casing having graduations arranged along said passage from said inlet end for indicating the volume of liquid in said passage measuring from said inlet end,
D. means forming a pouchlike chamber 1. carried by said casing,
2. connected with said outlet end of said passage to provide fluid communication from the interior of said chamber through said passage to said inlet end thereof, and
3. having opposed resilient walls engageable from opposite sides of said casing, and collapsible to diminish the chamber volume and resiliently resuming a normal uncollapsed position where they bulge outwardly from said casing, and
E. means forming a record panel on said casing for bearing a readable message.
9. A container as defined in claim 8 in which said casing is arranged with first and second sections, said first section carrying said inlet end and said storage length of said passage and said scale associated therewith, said second section adjoining said first section along a first junction and carrying said chamber and said record panel, said casing sections being so arranged that severing said casing along said first junction separates said sections and severs said passage adjacent said outlet end thereof.
10. A container as defined in claim 8 further comprising A. means forming a frangible seal closing said passage along said outlet end thereof, thereby to seal said chamber closed, and
B. seal-opening means carried on said casing and manually manipulatable for opening said seal, thereby to provide fluid communication between said chamber and said passage, said seal and said opening means being so arranged that said passage and chamber are fluidtight, except for the opening at said passage inlet end, when said seal is open.
11. A container as defined in claim 8 further characterized in that said casing has a peripheral edge that forms the peripheral edge of said container, except at said passage inlet end.
Claims (16)
1. In clinical sample collection and storage apparatus having a chamber resiliently maintaining a normal uncollapsed shaped and being resiliently collapsible to diminish the volume therein, and having a collection tube with a sample inlet end and feeding at the other end into said chamber, the improvement comprising A. a manually holdable frame mounting said tube and chamber, said frame including a planar cardlike casing joined to the walls of said tube along the tube length and joined to the walls of said chamber along a path encircling the chamber, B. at least one wall of said chamber bulging outwardly from said planar casing when in the normal uncollapsed shape and deflecting inward toward said casing to collapse said chamber, and C. said sample inlet end of said collection tube protruding from said casing frame to dispose said inlet end openly accessible relative thereto.
2. In apparatus as defined in claim 1, the further improvement wherein A. said collection tube defines a fluid volume therein between said ends thereof, B. said chamber is resiliently collapsible to expel therefrom at least twice said volume of fluid by way of said tube, and resiliently recovers said normal uncollapsed shape when said inlet end of said tube is open to aspirate fluid thereinto, and C. said frame casing carries a volume-measuring scale disposed along at least a portion of the length of said tube for indicating the volume of liquid aspirated into said Tube from said inlet end thereof.
2. mounted on said casing first section along said path to dispose said walls accessible from opposite sides of said casing,
2. connected with said outlet end of said passage to provide fluid communication from the interior of said chamber through said passage to said inlet end thereof, and
3. having opposed resilient walls engageable from opposite sides of said casing, and collapsible to diminish the chamber volume and resiliently resuming a normal uncollapsed position where they bulge outwardly from said casing, and E. means forming a record panel on said casing for bearing a readable message.
3. connected to said outlet end of said passage to provide fluid communication from the interior of said chamber through said passage to said inlet end thereof, and
3. In apparatus as defined in claim 1 the further improvement comprising A. frangible fluidtight seal means for closing the fluid path of said tube between said ends thereof, said seal means being disposed adjacent said end of said tube feeding into said chamber, and B. manually manipulatable means for opening said seal to provide fluid communication between said chamber and said tube.
4. In apparatus as defined in claim 1, the further improvement wherein said frame casing has at least two side-by-side coplanar and conjoined sections a first of which carries said chamber and said end of said tube feeding into said chamber, and the second of which carries the rest of said tube.
4. having said opposed walls resiliently collapsible to diminish the chamber volume and resiliently resuming a normal uncollapsed position where they bulge outwardly from said casing along the direction of the casing thickness.
5. In apparatus as defined in claim 4, the further improvement wherein said frame casing has a third section disposed side-by-side and coplanar with said first section and joined thereto, and forming an indicia-supporting panel.
6. In apparatus as defined in claim 5, the further improvement wherein said frame casing is severable along the juncture between said first and second sections for removing said second section with the tube length mounted thereon from the rest of said apparatus.
7. A container for the collection of a sample of a liquid and the storage thereof, said container comprising A. a generally rectangular flat casing having a small thickness relative to the length and width thereof and including at least first and second side-by-side and conjoined sections, B. means forming a serpentine-configured tubular passage on said casing second section with passage walls bulging from said casing along the direction of the casing thickness and having an inlet end, an outlet end, and a storage length therebetween with said inlet end protruding nozzlelike beyond the rectangular configuration of said casing, and C. means forming a pouchlike chamber
8. A surgical container for the collection of a sample of animal body liquid and for the storage thereof, said container comprising A. a manually holdable flat cardlike body casing, B. sample collection means forming a tubular passage carried by said casing with an openly accessible inlet end extending outwardly from said casing, an outlet end, and a storage length therebetween, C. a volume-indicating scale carried by said casing having graduations arranged along said passage from said inlet end for indicating the volume of liquid in said passage measuring from said inlet end, D. means forming a pouchlike chamber
9. A container as defined in claim 8 in which said casing is arranged with first and second sections, said first section carrying said inlet end and said storage length of said passage and said scale associated therewith, said second section adjoining said first section along a first junction and carrying said chamber and said record panel, said casing sections being so arranged that severing said casing along said first junction separates said sections and severs said passage adjacent said outlet end thereof.
10. A container as defined in claim 8 further comprising A. means forming a frangible seal closing said passage along said outlet end thereof, thereby to seal said chamber closed, and B. seal-opening means carried on said casing and manually manipulatable for opening said seal, thereby to provide fluid communication between said chamber and said passage, said seal and said opening means being so arranged that said passage and chamber are fluidtight, except for the opening at said passage inlet end, when said seal is open.
11. A container as defined in claim 8 further characterized in that said casing has a peripheral edge that forms the peripheral edge of said container, except at said passage inlet end.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88492469A | 1969-12-15 | 1969-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3640267A true US3640267A (en) | 1972-02-08 |
Family
ID=25385729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US884924A Expired - Lifetime US3640267A (en) | 1969-12-15 | 1969-12-15 | Clinical sample container |
Country Status (11)
Country | Link |
---|---|
US (1) | US3640267A (en) |
JP (1) | JPS4929351B1 (en) |
AU (1) | AU2337470A (en) |
BE (1) | BE760297A (en) |
CA (1) | CA933125A (en) |
CH (1) | CH533835A (en) |
DE (1) | DE2061738A1 (en) |
FR (1) | FR2073742A5 (en) |
GB (1) | GB1303544A (en) |
NL (1) | NL7018164A (en) |
ZA (1) | ZA708335B (en) |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3805621A (en) * | 1972-05-01 | 1974-04-23 | R Falk | Immersion sampler with a soluble deoxidant |
US4088448A (en) * | 1975-09-29 | 1978-05-09 | Lilja Jan Evert | Apparatus for sampling, mixing the sample with a reagent and making particularly optical analyses |
US4091802A (en) * | 1976-02-17 | 1978-05-30 | Eastman Kodak Company | Vented liquid collection device |
US4136036A (en) * | 1976-04-07 | 1979-01-23 | Eastman Kodak Company | Collection and dispensing device for non-pressurized liquids |
US4298011A (en) * | 1979-09-07 | 1981-11-03 | Mangurten Henry H | Blood sample collector |
US4361539A (en) * | 1980-05-05 | 1982-11-30 | Instrumentation Laboratory Inc. | Analysis system |
US4361540A (en) * | 1980-05-05 | 1982-11-30 | Instrumentation Laboratory Inc. | Analysis system |
WO1984001278A1 (en) * | 1982-09-30 | 1984-04-12 | Jerry G Powers | Specimen collection apparatus |
US4443407A (en) * | 1981-04-02 | 1984-04-17 | Instrumentation Laboratory Inc. | Analysis system |
US4576185A (en) * | 1983-12-05 | 1986-03-18 | Terumo Medical Corporation | Collection device for capillary blood |
US4653511A (en) * | 1984-10-05 | 1987-03-31 | Goch Thomas A | Microsample blood collecting device |
US4738827A (en) * | 1985-05-07 | 1988-04-19 | S.E.A.C.S.R.L. | Capillary tube holder for test instruments especially blood tests and particularly for platelet counters, with two coaxial chambers |
US4774963A (en) * | 1981-05-20 | 1988-10-04 | Terumo Kabushiki Kaisha | Blood collector |
EP0354895A2 (en) * | 1988-08-09 | 1990-02-14 | AVL Medical Instruments AG | One-way measuring element |
WO1990014163A1 (en) * | 1989-05-24 | 1990-11-29 | Ensys, Inc. | Method and apparatus for detecting environmental contaminants |
US5096669A (en) * | 1988-09-15 | 1992-03-17 | I-Stat Corporation | Disposable sensing device for real time fluid analysis |
US5316952A (en) * | 1991-02-15 | 1994-05-31 | Technical Research Associates, Inc. | Blood sample apparatus and method |
WO1996000395A1 (en) * | 1994-06-23 | 1996-01-04 | Chemtrak, Inc. | Evaluation of blood coagulation activity |
EP0725593A1 (en) * | 1993-10-28 | 1996-08-14 | I-Stat Corporation | Fluid sample collection and introduction device |
US5700695A (en) * | 1994-06-30 | 1997-12-23 | Zia Yassinzadeh | Sample collection and manipulation method |
US5736404A (en) * | 1995-12-27 | 1998-04-07 | Zia Yassinzadeh | Flow detection appartus and method |
EP0924520A2 (en) * | 1997-12-17 | 1999-06-23 | Kyoto Daiichi Kagaku Co., Ltd. | A sensor and a set of sensors |
US6084660A (en) * | 1998-07-20 | 2000-07-04 | Lifescan, Inc. | Initiation of an analytical measurement in blood |
US6261519B1 (en) | 1998-07-20 | 2001-07-17 | Lifescan, Inc. | Medical diagnostic device with enough-sample indicator |
WO2001043796A3 (en) * | 1999-12-16 | 2001-12-13 | Biosafe Lab Inc | Whole blood collection device and method |
US20020064480A1 (en) * | 1998-07-20 | 2002-05-30 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US20020098114A1 (en) * | 1998-07-20 | 2002-07-25 | Harding Ian A. | Microdroplet dispensing for a medical diagnostic device |
EP1240945A2 (en) * | 1996-04-26 | 2002-09-18 | Kyoto Daiichi Kagaku Co., Ltd. | Device and method for analyzing a sample |
US20020137998A1 (en) * | 2001-03-26 | 2002-09-26 | Wilson Smart | Silicon microprobe with integrated biosensor |
EP1245279A2 (en) * | 2001-03-30 | 2002-10-02 | Becton Dickinson and Company | Method and kit of components for delivering blood to a portable clinical analyzer |
US6465202B1 (en) | 2000-02-17 | 2002-10-15 | Biosafe Laboratories, Inc. | Method for stabilizing aminotransferase activity in a biological fluid |
US6482364B2 (en) * | 1996-06-28 | 2002-11-19 | Caliper Technologies Corp. | Microfluidic systems including pipettor elements |
US20020192833A1 (en) * | 2000-07-31 | 2002-12-19 | Victor Pan | Method and apparatus for detecting the presence of a fluid on a test strip |
US20030018282A1 (en) * | 2001-07-20 | 2003-01-23 | Carlo Effenhauser | System for withdrawing small amounts of body fluid |
US20030143752A1 (en) * | 2001-12-06 | 2003-07-31 | Biocontrol Systems, Inc. | Sample collection and testing system |
US20030209653A1 (en) * | 2002-04-24 | 2003-11-13 | Biocontrol Systems, Inc. | Sample collection and testing system |
US6652814B1 (en) | 2000-08-11 | 2003-11-25 | Lifescan, Inc. | Strip holder for use in a test strip meter |
WO2004065930A2 (en) * | 2003-01-14 | 2004-08-05 | Micronics Inc. | Microfluidic devices for fluid manipulation and analysis |
US20040162506A1 (en) * | 1996-05-17 | 2004-08-19 | Duchon Brent G. | Body fluid sampling device and methods of use |
US6866822B1 (en) | 2000-08-11 | 2005-03-15 | Lifescan, Inc. | Gimbaled bladder actuator for use with test strips |
US20050106066A1 (en) * | 2003-01-14 | 2005-05-19 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
US20050254997A1 (en) * | 2004-02-14 | 2005-11-17 | Gregor Ocvirx | Test element, system, and method of controlling the wetting of same |
US20060004303A1 (en) * | 2004-06-30 | 2006-01-05 | Weidenhaupt Klaus P | Fluid handling devices |
US20060001551A1 (en) * | 2004-06-30 | 2006-01-05 | Ulrich Kraft | Analyte monitoring system with wireless alarm |
US20060000709A1 (en) * | 2004-06-30 | 2006-01-05 | Sebastian Bohm | Methods for modulation of flow in a flow pathway |
US20060002817A1 (en) * | 2004-06-30 | 2006-01-05 | Sebastian Bohm | Flow modulation devices |
US20060018790A1 (en) * | 1996-04-26 | 2006-01-26 | Arkray, Inc. | Device and method for analyizing a sample |
US20060200045A1 (en) * | 2005-03-02 | 2006-09-07 | Roe Steven N | Dynamic integrated lancing test strip with sterility cover |
US20070036684A1 (en) * | 2005-08-10 | 2007-02-15 | Roche Diagnostics Operations, Inc. | Sample pick-up and metering device with integrated liquid compartments |
US20070167869A1 (en) * | 2005-03-02 | 2007-07-19 | Roe Steven N | System and method for breaking a sterility seal to engage a lancet |
US7247144B2 (en) | 1996-05-17 | 2007-07-24 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US7828749B2 (en) | 1996-05-17 | 2010-11-09 | Roche Diagnostics Operations, Inc. | Blood and interstitial fluid sampling device |
RU2496104C1 (en) * | 2012-02-17 | 2013-10-20 | Закрытое акционерное общество Научно-производственное предприятие "ТЕХНОМЕДИКА" | Optical cartridge |
US20130340582A1 (en) * | 2010-10-01 | 2013-12-26 | Insa Lo | Device for cutting hair |
US8740813B2 (en) | 1996-05-17 | 2014-06-03 | Roche Diagnostics Operations, Inc. | Methods and apparatus for expressing body fluid from an incision |
US20140271361A1 (en) * | 2012-03-01 | 2014-09-18 | Biomedical Polymers, Inc. | Contoured dispenser |
US9446406B2 (en) | 2012-06-29 | 2016-09-20 | Biocontrol Systems, Inc. | Sample collection and bioluminescent analysis system |
US10107797B2 (en) | 2008-10-03 | 2018-10-23 | Micronics, Inc. | Microfluidic apparatus and methods for performing blood typing and crossmatching |
US10386377B2 (en) | 2013-05-07 | 2019-08-20 | Micronics, Inc. | Microfluidic devices and methods for performing serum separation and blood cross-matching |
US20210186392A1 (en) * | 2012-08-01 | 2021-06-24 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
WO2023030577A1 (en) * | 2021-08-31 | 2023-03-09 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung | Holder for an individual capillary tube, and collecting device for a plurality of holders |
US11819329B2 (en) | 2012-05-30 | 2023-11-21 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US11857321B2 (en) | 2019-03-11 | 2024-01-02 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11890452B2 (en) | 2012-10-11 | 2024-02-06 | Magnolia Medical Technologies, Inc. | Systems and methods for delivering a fluid to a patient with reduced contamination |
US11903709B2 (en) | 2017-09-12 | 2024-02-20 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US12083234B2 (en) | 2015-09-03 | 2024-09-10 | Magnolia Medical Technologies, Inc. | Apparatus and methods for maintaining sterility of a specimen container |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2018000259A (en) | 2015-07-02 | 2018-08-01 | Andrew Koska Marc | Single use delivery device prefilled with a reconstitutable agent. |
WO2017001922A1 (en) * | 2015-07-02 | 2017-01-05 | Marc Andrew Koska | Biological sample collection device |
JP2019514504A (en) | 2016-04-25 | 2019-06-06 | コスカ ファミリー リミテッド | Drug delivery system |
WO2019099954A1 (en) | 2017-11-17 | 2019-05-23 | Koska Family Limited | Systems and methods for fluid delivery manifolds |
USD992110S1 (en) | 2021-08-10 | 2023-07-11 | Koska Family Limited | Sealed fluid container |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2470665A (en) * | 1947-07-08 | 1949-05-17 | Stiehl Charles William | Suction apparatus |
US2595493A (en) * | 1949-09-09 | 1952-05-06 | Ollie F Slaby | Liquid extracting apparatus |
US2832344A (en) * | 1954-12-27 | 1958-04-29 | Davidson Emil | Blood sample collector |
US3045494A (en) * | 1958-03-13 | 1962-07-24 | Gerarde Horace William | Method of providing for blood count and pipette and assembly for use therein |
US3308809A (en) * | 1963-07-15 | 1967-03-14 | Milton J Cohen | Blood withdrawal device and dispenser |
US3322114A (en) * | 1964-07-01 | 1967-05-30 | Hynson Westcott & Dunning Inc | Apparatus for securing a sample of blood plasma for testing |
US3405706A (en) * | 1965-04-22 | 1968-10-15 | Cinqualbre Paul | Arrangement for taking blood |
US3430628A (en) * | 1965-02-23 | 1969-03-04 | Reatha L Wiggins | Plurality of aspirators |
-
1969
- 1969-12-15 US US884924A patent/US3640267A/en not_active Expired - Lifetime
-
1970
- 1970-12-09 ZA ZA708335A patent/ZA708335B/en unknown
- 1970-12-11 CH CH1842670A patent/CH533835A/en not_active IP Right Cessation
- 1970-12-14 NL NL7018164A patent/NL7018164A/xx unknown
- 1970-12-14 BE BE760297A patent/BE760297A/en unknown
- 1970-12-14 GB GB5925870A patent/GB1303544A/en not_active Expired
- 1970-12-14 FR FR7045048A patent/FR2073742A5/fr not_active Expired
- 1970-12-15 JP JP45111380A patent/JPS4929351B1/ja active Pending
- 1970-12-15 AU AU23374/70A patent/AU2337470A/en not_active Expired
- 1970-12-15 DE DE19702061738 patent/DE2061738A1/en active Pending
- 1970-12-15 CA CA100602A patent/CA933125A/en not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2470665A (en) * | 1947-07-08 | 1949-05-17 | Stiehl Charles William | Suction apparatus |
US2595493A (en) * | 1949-09-09 | 1952-05-06 | Ollie F Slaby | Liquid extracting apparatus |
US2832344A (en) * | 1954-12-27 | 1958-04-29 | Davidson Emil | Blood sample collector |
US3045494A (en) * | 1958-03-13 | 1962-07-24 | Gerarde Horace William | Method of providing for blood count and pipette and assembly for use therein |
US3308809A (en) * | 1963-07-15 | 1967-03-14 | Milton J Cohen | Blood withdrawal device and dispenser |
US3322114A (en) * | 1964-07-01 | 1967-05-30 | Hynson Westcott & Dunning Inc | Apparatus for securing a sample of blood plasma for testing |
US3430628A (en) * | 1965-02-23 | 1969-03-04 | Reatha L Wiggins | Plurality of aspirators |
US3405706A (en) * | 1965-04-22 | 1968-10-15 | Cinqualbre Paul | Arrangement for taking blood |
Cited By (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3805621A (en) * | 1972-05-01 | 1974-04-23 | R Falk | Immersion sampler with a soluble deoxidant |
US4088448A (en) * | 1975-09-29 | 1978-05-09 | Lilja Jan Evert | Apparatus for sampling, mixing the sample with a reagent and making particularly optical analyses |
US4091802A (en) * | 1976-02-17 | 1978-05-30 | Eastman Kodak Company | Vented liquid collection device |
US4136036A (en) * | 1976-04-07 | 1979-01-23 | Eastman Kodak Company | Collection and dispensing device for non-pressurized liquids |
US4298011A (en) * | 1979-09-07 | 1981-11-03 | Mangurten Henry H | Blood sample collector |
US4361540A (en) * | 1980-05-05 | 1982-11-30 | Instrumentation Laboratory Inc. | Analysis system |
US4361539A (en) * | 1980-05-05 | 1982-11-30 | Instrumentation Laboratory Inc. | Analysis system |
US4443407A (en) * | 1981-04-02 | 1984-04-17 | Instrumentation Laboratory Inc. | Analysis system |
US4774963A (en) * | 1981-05-20 | 1988-10-04 | Terumo Kabushiki Kaisha | Blood collector |
WO1984001278A1 (en) * | 1982-09-30 | 1984-04-12 | Jerry G Powers | Specimen collection apparatus |
US4503864A (en) * | 1982-09-30 | 1985-03-12 | Powers Jerry G | Urine specimen collection apparatus with a separable compartment |
US4576185A (en) * | 1983-12-05 | 1986-03-18 | Terumo Medical Corporation | Collection device for capillary blood |
US4653511A (en) * | 1984-10-05 | 1987-03-31 | Goch Thomas A | Microsample blood collecting device |
US4738827A (en) * | 1985-05-07 | 1988-04-19 | S.E.A.C.S.R.L. | Capillary tube holder for test instruments especially blood tests and particularly for platelet counters, with two coaxial chambers |
EP0354895A2 (en) * | 1988-08-09 | 1990-02-14 | AVL Medical Instruments AG | One-way measuring element |
EP0354895A3 (en) * | 1988-08-09 | 1991-01-30 | AVL Medical Instruments AG | One-way measuring element |
US5096669A (en) * | 1988-09-15 | 1992-03-17 | I-Stat Corporation | Disposable sensing device for real time fluid analysis |
WO1990014163A1 (en) * | 1989-05-24 | 1990-11-29 | Ensys, Inc. | Method and apparatus for detecting environmental contaminants |
US5316952A (en) * | 1991-02-15 | 1994-05-31 | Technical Research Associates, Inc. | Blood sample apparatus and method |
EP0725593A1 (en) * | 1993-10-28 | 1996-08-14 | I-Stat Corporation | Fluid sample collection and introduction device |
US5638828A (en) * | 1993-10-28 | 1997-06-17 | I-Stat Corporation | Fluid sample collection and introduction device and method |
US5653243A (en) * | 1993-10-28 | 1997-08-05 | I-Stat Corporation | Fluid sample collection and introduction device and method |
US5666967A (en) * | 1993-10-28 | 1997-09-16 | I-Stat Corporation | Fluid sample collection and introduction device |
EP0725593A4 (en) * | 1993-10-28 | 1998-10-21 | I Stat Corp | Fluid sample collection and introduction device |
US6010463A (en) * | 1993-10-28 | 2000-01-04 | I-Stat | Fluid sample collection and introduction device and method |
US5779650A (en) * | 1993-10-28 | 1998-07-14 | I-Stat Corporation | Fluid sample collection and introduction device and method |
WO1996000395A1 (en) * | 1994-06-23 | 1996-01-04 | Chemtrak, Inc. | Evaluation of blood coagulation activity |
US5700695A (en) * | 1994-06-30 | 1997-12-23 | Zia Yassinzadeh | Sample collection and manipulation method |
US5736404A (en) * | 1995-12-27 | 1998-04-07 | Zia Yassinzadeh | Flow detection appartus and method |
US6103196A (en) * | 1995-12-27 | 2000-08-15 | Yassinzadeh; Zia | Flow detection apparatus and method |
EP1240945A3 (en) * | 1996-04-26 | 2004-04-21 | Arkray, Inc. | Device and method for analyzing a sample |
US20060018790A1 (en) * | 1996-04-26 | 2006-01-26 | Arkray, Inc. | Device and method for analyizing a sample |
US6991762B1 (en) | 1996-04-26 | 2006-01-31 | Arkray, Inc. | Device for analyzing a sample |
EP1240945A2 (en) * | 1996-04-26 | 2002-09-18 | Kyoto Daiichi Kagaku Co., Ltd. | Device and method for analyzing a sample |
US7828749B2 (en) | 1996-05-17 | 2010-11-09 | Roche Diagnostics Operations, Inc. | Blood and interstitial fluid sampling device |
US20080015425A1 (en) * | 1996-05-17 | 2008-01-17 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US8740813B2 (en) | 1996-05-17 | 2014-06-03 | Roche Diagnostics Operations, Inc. | Methods and apparatus for expressing body fluid from an incision |
US8690798B2 (en) | 1996-05-17 | 2014-04-08 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US8231549B2 (en) | 1996-05-17 | 2012-07-31 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US20100222656A1 (en) * | 1996-05-17 | 2010-09-02 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US7901363B2 (en) | 1996-05-17 | 2011-03-08 | Roche Diagnostics Operations, Inc. | Body fluid sampling device and methods of use |
US20040162506A1 (en) * | 1996-05-17 | 2004-08-19 | Duchon Brent G. | Body fluid sampling device and methods of use |
US20070293747A1 (en) * | 1996-05-17 | 2007-12-20 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US7247144B2 (en) | 1996-05-17 | 2007-07-24 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US7727168B2 (en) | 1996-05-17 | 2010-06-01 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US8123701B2 (en) | 1996-05-17 | 2012-02-28 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US7731668B2 (en) | 1996-05-17 | 2010-06-08 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US20100222704A1 (en) * | 1996-05-17 | 2010-09-02 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US6482364B2 (en) * | 1996-06-28 | 2002-11-19 | Caliper Technologies Corp. | Microfluidic systems including pipettor elements |
EP0924520A3 (en) * | 1997-12-17 | 2001-04-04 | Kyoto Daiichi Kagaku Co., Ltd. | A sensor and a set of sensors |
EP0924520A2 (en) * | 1997-12-17 | 1999-06-23 | Kyoto Daiichi Kagaku Co., Ltd. | A sensor and a set of sensors |
US20020098114A1 (en) * | 1998-07-20 | 2002-07-25 | Harding Ian A. | Microdroplet dispensing for a medical diagnostic device |
US20020110922A1 (en) * | 1998-07-20 | 2002-08-15 | Shartle Robert Justice | Vacuum loaded test strip and method of use |
US7022286B2 (en) * | 1998-07-20 | 2006-04-04 | Lifescan, Inc. | Fluidic device for medical diagnostics |
US20030210287A1 (en) * | 1998-07-20 | 2003-11-13 | Harding Ian A. | Microdroplet dispensing methods for a medical diagnostic device |
US20040109790A1 (en) * | 1998-07-20 | 2004-06-10 | Shartle Robert Justice | Vacuum loaded test strip with stop junction and bypass channel |
US20030156984A1 (en) * | 1998-07-20 | 2003-08-21 | John Lemke | Fluidic device for medical diagnostics |
US6521182B1 (en) | 1998-07-20 | 2003-02-18 | Lifescan, Inc. | Fluidic device for medical diagnostics |
US20030156983A1 (en) * | 1998-07-20 | 2003-08-21 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US20020110486A1 (en) * | 1998-07-20 | 2002-08-15 | Shartle Robert Justice | Analyte test strip with two controls |
US6084660A (en) * | 1998-07-20 | 2000-07-04 | Lifescan, Inc. | Initiation of an analytical measurement in blood |
US20020064480A1 (en) * | 1998-07-20 | 2002-05-30 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US6261519B1 (en) | 1998-07-20 | 2001-07-17 | Lifescan, Inc. | Medical diagnostic device with enough-sample indicator |
US6830934B1 (en) | 1999-06-15 | 2004-12-14 | Lifescan, Inc. | Microdroplet dispensing for a medical diagnostic device |
WO2001043796A3 (en) * | 1999-12-16 | 2001-12-13 | Biosafe Lab Inc | Whole blood collection device and method |
US6406919B1 (en) | 1999-12-16 | 2002-06-18 | Biosafe Laboratories, Inc. | Whole blood collection device and method |
US6673627B2 (en) | 1999-12-16 | 2004-01-06 | Biosafe Medical Technologies, Inc. | Whole blood collection device |
US6465202B1 (en) | 2000-02-17 | 2002-10-15 | Biosafe Laboratories, Inc. | Method for stabilizing aminotransferase activity in a biological fluid |
US20020192833A1 (en) * | 2000-07-31 | 2002-12-19 | Victor Pan | Method and apparatus for detecting the presence of a fluid on a test strip |
US6866822B1 (en) | 2000-08-11 | 2005-03-15 | Lifescan, Inc. | Gimbaled bladder actuator for use with test strips |
US20040057878A1 (en) * | 2000-08-11 | 2004-03-25 | Allen House | Strip holder for use in a test strip meter |
US6652814B1 (en) | 2000-08-11 | 2003-11-25 | Lifescan, Inc. | Strip holder for use in a test strip meter |
US20080097171A1 (en) * | 2001-03-26 | 2008-04-24 | Wilson Smart | Silicon microprobe with integrated biosensor |
US20020137998A1 (en) * | 2001-03-26 | 2002-09-26 | Wilson Smart | Silicon microprobe with integrated biosensor |
US7310543B2 (en) | 2001-03-26 | 2007-12-18 | Kumetrix, Inc. | Silicon microprobe with integrated biosensor |
EP1245279A2 (en) * | 2001-03-30 | 2002-10-02 | Becton Dickinson and Company | Method and kit of components for delivering blood to a portable clinical analyzer |
EP1245279A3 (en) * | 2001-03-30 | 2003-08-27 | Becton Dickinson and Company | Method and kit of components for delivering blood to a portable clinical analyzer |
US6902534B2 (en) | 2001-03-30 | 2005-06-07 | Becton, Dickinson And Company | Method and kit of components for delivering blood to a portable clinical analyzer |
US20020143272A1 (en) * | 2001-03-30 | 2002-10-03 | Becton, Dickinson And Company | Method and kit of components for delivering blood to a portable clinical analyzer |
US7288073B2 (en) | 2001-07-20 | 2007-10-30 | Roche Diagnostics Operations, Inc. | System for withdrawing small amounts of body fluid |
US20030018282A1 (en) * | 2001-07-20 | 2003-01-23 | Carlo Effenhauser | System for withdrawing small amounts of body fluid |
US8821413B2 (en) | 2001-07-20 | 2014-09-02 | Roche Diagnostics Operations, Inc. | System for withdrawing small amounts of body fluid |
US20080009767A1 (en) * | 2001-07-20 | 2008-01-10 | Roche Diagnostics Operations, Inc. | System for withdrawing small amounts of body fluid |
US8388552B2 (en) | 2001-07-20 | 2013-03-05 | Roche Diagnostics Operations, Inc. | System for withdrawing small amounts of body fluid |
US7993284B2 (en) | 2001-07-20 | 2011-08-09 | Roche Diagnostics Operations, Inc. | System for withdrawing small amounts of body fluid |
US20080272283A1 (en) * | 2001-12-06 | 2008-11-06 | Feldsine Philip T | Sample collection and testing system |
US7544961B2 (en) | 2001-12-06 | 2009-06-09 | Biocontrol Systems, Inc. | Sample collection and testing system including a rotatable shaft with a helical guiding member to translate longitudinal motion of a slidable shaft into rotational motion |
US7030403B2 (en) | 2001-12-06 | 2006-04-18 | Biocontrol Systems, Inc. | Sample collection and bioluminescent sample testing system |
US20030143752A1 (en) * | 2001-12-06 | 2003-07-31 | Biocontrol Systems, Inc. | Sample collection and testing system |
US7399984B2 (en) | 2001-12-06 | 2008-07-15 | Biocontrol Systems Inc. | Sample collection and testing system having a displacement member causing reagent to come into contact with a sample collection surface |
US6924498B2 (en) | 2002-04-24 | 2005-08-02 | Biocontrol Systems, Inc. | Sample collection and testing system |
US20030209653A1 (en) * | 2002-04-24 | 2003-11-13 | Biocontrol Systems, Inc. | Sample collection and testing system |
US20040220748A1 (en) * | 2002-04-24 | 2004-11-04 | Biocontrol Systems, Inc. | Sample collection and testing system |
WO2004065930A2 (en) * | 2003-01-14 | 2004-08-05 | Micronics Inc. | Microfluidic devices for fluid manipulation and analysis |
US8697009B2 (en) | 2003-01-14 | 2014-04-15 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
US20100173395A1 (en) * | 2003-01-14 | 2010-07-08 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
US20090022624A1 (en) * | 2003-01-14 | 2009-01-22 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
US7419638B2 (en) | 2003-01-14 | 2008-09-02 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
US8557198B2 (en) | 2003-01-14 | 2013-10-15 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
WO2004065930A3 (en) * | 2003-01-14 | 2004-12-02 | Micronics Inc | Microfluidic devices for fluid manipulation and analysis |
US8318109B2 (en) | 2003-01-14 | 2012-11-27 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
US20050106066A1 (en) * | 2003-01-14 | 2005-05-19 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
US20050254997A1 (en) * | 2004-02-14 | 2005-11-17 | Gregor Ocvirx | Test element, system, and method of controlling the wetting of same |
US7842235B2 (en) | 2004-02-14 | 2010-11-30 | Roche Diagnostics Operations, Inc. | Test element, system, and method of controlling the wetting of same |
US20060000710A1 (en) * | 2004-06-30 | 2006-01-05 | Klaus Peter Weidenhaupt | Fluid handling methods |
US8343074B2 (en) | 2004-06-30 | 2013-01-01 | Lifescan Scotland Limited | Fluid handling devices |
US20060004303A1 (en) * | 2004-06-30 | 2006-01-05 | Weidenhaupt Klaus P | Fluid handling devices |
US20060002817A1 (en) * | 2004-06-30 | 2006-01-05 | Sebastian Bohm | Flow modulation devices |
US20060001551A1 (en) * | 2004-06-30 | 2006-01-05 | Ulrich Kraft | Analyte monitoring system with wireless alarm |
US20060000709A1 (en) * | 2004-06-30 | 2006-01-05 | Sebastian Bohm | Methods for modulation of flow in a flow pathway |
US20060200045A1 (en) * | 2005-03-02 | 2006-09-07 | Roe Steven N | Dynamic integrated lancing test strip with sterility cover |
US20110000168A1 (en) * | 2005-03-02 | 2011-01-06 | Roe Steven N | Dynamic integrated lancing test strip with sterility cover |
US7815579B2 (en) | 2005-03-02 | 2010-10-19 | Roche Diagnostics Operations, Inc. | Dynamic integrated lancing test strip with sterility cover |
US9034250B2 (en) | 2005-03-02 | 2015-05-19 | Roche Diagnostics Operations, Inc. | Dynamic integrated lancing test strip with sterility cover |
US7935063B2 (en) | 2005-03-02 | 2011-05-03 | Roche Diagnostics Operations, Inc. | System and method for breaking a sterility seal to engage a lancet |
US20110178435A1 (en) * | 2005-03-02 | 2011-07-21 | Roe Steven N | System and method for breaking a sterility seal to engage a lancet |
US20070167869A1 (en) * | 2005-03-02 | 2007-07-19 | Roe Steven N | System and method for breaking a sterility seal to engage a lancet |
US9445756B2 (en) | 2005-03-02 | 2016-09-20 | Roche Diabetes Care, Inc. | Dynamic integrated lancing test strip with sterility cover |
US8303912B2 (en) * | 2005-08-10 | 2012-11-06 | Roche Diagnostics Operations, Inc. | Sample pick-up and metering device with integrated liquid compartments |
US20070036684A1 (en) * | 2005-08-10 | 2007-02-15 | Roche Diagnostics Operations, Inc. | Sample pick-up and metering device with integrated liquid compartments |
US10107797B2 (en) | 2008-10-03 | 2018-10-23 | Micronics, Inc. | Microfluidic apparatus and methods for performing blood typing and crossmatching |
US20130340582A1 (en) * | 2010-10-01 | 2013-12-26 | Insa Lo | Device for cutting hair |
US10569436B2 (en) * | 2010-10-01 | 2020-02-25 | Insa Lo | Device for cutting hair |
RU2496104C1 (en) * | 2012-02-17 | 2013-10-20 | Закрытое акционерное общество Научно-производственное предприятие "ТЕХНОМЕДИКА" | Optical cartridge |
US20140271361A1 (en) * | 2012-03-01 | 2014-09-18 | Biomedical Polymers, Inc. | Contoured dispenser |
US11998332B2 (en) | 2012-05-30 | 2024-06-04 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US11819329B2 (en) | 2012-05-30 | 2023-11-21 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US9446406B2 (en) | 2012-06-29 | 2016-09-20 | Biocontrol Systems, Inc. | Sample collection and bioluminescent analysis system |
US10684232B2 (en) | 2012-06-29 | 2020-06-16 | Biocontrol Systems, Inc. | Sample collection and bioluminescent analysis system |
US20210186392A1 (en) * | 2012-08-01 | 2021-06-24 | Magnolia Medical Technologies, Inc. | Fluid diversion mechanism for bodily-fluid sampling |
US11890452B2 (en) | 2012-10-11 | 2024-02-06 | Magnolia Medical Technologies, Inc. | Systems and methods for delivering a fluid to a patient with reduced contamination |
US12133968B2 (en) | 2012-10-11 | 2024-11-05 | Magnolia Medical Technologies, Inc. | Systems and methods for delivering a fluid to a patient with reduced contamination |
US10386377B2 (en) | 2013-05-07 | 2019-08-20 | Micronics, Inc. | Microfluidic devices and methods for performing serum separation and blood cross-matching |
US11016108B2 (en) | 2013-05-07 | 2021-05-25 | Perkinelmer Health Sciences, Inc. | Microfluidic devices and methods for performing serum separation and blood cross-matching |
US12083234B2 (en) | 2015-09-03 | 2024-09-10 | Magnolia Medical Technologies, Inc. | Apparatus and methods for maintaining sterility of a specimen container |
US11903709B2 (en) | 2017-09-12 | 2024-02-20 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11903710B2 (en) | 2017-09-12 | 2024-02-20 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
US11857321B2 (en) | 2019-03-11 | 2024-01-02 | Magnolia Medical Technologies, Inc. | Fluid control devices and methods of using the same |
WO2023030577A1 (en) * | 2021-08-31 | 2023-03-09 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung | Holder for an individual capillary tube, and collecting device for a plurality of holders |
Also Published As
Publication number | Publication date |
---|---|
CA933125A (en) | 1973-09-04 |
BE760297A (en) | 1971-06-14 |
DE2061738A1 (en) | 1971-06-24 |
FR2073742A5 (en) | 1971-10-01 |
ZA708335B (en) | 1971-09-29 |
JPS4929351B1 (en) | 1974-08-03 |
NL7018164A (en) | 1971-06-17 |
GB1303544A (en) | 1973-01-17 |
AU2337470A (en) | 1972-06-22 |
CH533835A (en) | 1973-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3640267A (en) | Clinical sample container | |
US5269317A (en) | Intravenous blood sampling apparatus | |
US4381776A (en) | Anticoagulant dispensing apparatus and method of use | |
US3640388A (en) | Dialyzing liquid-collecting container | |
US6264619B1 (en) | Kit for drawing a blood sample | |
EP1250415B1 (en) | Saliva sampling device | |
US4917867A (en) | Apparatus for the collection and transportation of dual biological samples | |
US5910122A (en) | Saliva collector with an aspirating pipette | |
US5496301A (en) | Fluid sampling device for closed collection systems | |
US5653243A (en) | Fluid sample collection and introduction device and method | |
US5916202A (en) | Umbilical cord blood collection | |
US3276447A (en) | Flexible tubing clamp | |
EP1284160B1 (en) | Liquid specimen collection system | |
EP0058008A2 (en) | Device for use in the collection and transportation of medical specimens | |
EP0189118A2 (en) | Blood collection assembly | |
EP0391461A2 (en) | Stopper of analysis test tubes | |
US5254312A (en) | Apparatus for collecting a blood sample from a sealed tube | |
EA006641B1 (en) | Sample testing device | |
US5309924A (en) | Spill-proof blood collection device | |
JP2008509392A (en) | Device for collecting, transporting and releasing biological samples | |
WO1979001131A1 (en) | Liquid sample collector device | |
CA1154343A (en) | Separable integral donor connector with manual clamping means | |
US5195534A (en) | Biological fluid collection and dispensing apparatus and method | |
JPH024337A (en) | Single application apparatus for taking and storing blood sample | |
US6054326A (en) | Fluid testing and analysing device and method |