US3550526A - Continuous juice extractor - Google Patents

Continuous juice extractor Download PDF

Info

Publication number
US3550526A
US3550526A US701173A US3550526DA US3550526A US 3550526 A US3550526 A US 3550526A US 701173 A US701173 A US 701173A US 3550526D A US3550526D A US 3550526DA US 3550526 A US3550526 A US 3550526A
Authority
US
United States
Prior art keywords
extractor
product
tube
liquid
bladder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US701173A
Inventor
Maurice W Hoover
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3550526A publication Critical patent/US3550526A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/02Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material
    • B30B9/12Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using pressing worms or screws co-operating with a permeable casing

Definitions

  • ABSTRACT In abstract, a preferred embodiment of this invention is a continuous operation juice extractor using a perforated screw conveyor to move the pulp through the device.
  • a flexible sleeve or bladder applies selectively either constant or varying pressures to the perforated screw conveyor to press the juice from the pulp.
  • a vacuum may be applied to the hollow center portion of the perforated screw to assist in removing the juices therefrom as well as deaerate the same.
  • This invention relates to foodp'rocessing equipment and more particularly to devices for extracting liquids from the fruit of various types of vegetation.
  • the present invention has been developed after much research and study into the above-mentioned problems and is designed to give extremely high efficiency in the percentage of separation while at the same time allowing continuous operation to be accomplished.
  • applicant has devised a novel conveying and pressing system which allows the compression to be varied according to the pressures necessary to extract the maximum amount of liquid from products of varying density and compositions.
  • a means has also been provided for assisting the flow of liquid from the system and to deaerating such liquid to better preserve its flavor and color.
  • Another object of the present invention is to provide in a continuous operation liquid extractor combination means for assisting in the removal and deaeration of the separated liquid from the extractor unit.
  • a further object of the present invention is to provide an efficient. continuous operation liquid separator which is simple in construction and inexpensive to manufacture and maintain.
  • An additional object of the present invention is to provide a juice extractor having the efficiency of operation of the batchtype press extractor with the speed of the continuous operation-type extractor.
  • Another object of the presentinvention is to provide a continuous operation juice extractor capable of applying controlled pressure on one side of the product and applying a vacuum on the other side of the product thereby increasing the efficiency of juice extraction from the pulp solids.
  • H0. 1 is a longitudinal, sectional view of a preferred embodiment of the continuous juice extractor of the present invention drawn in schematic fonn v
  • FIG. 2 is an end view taken from lines 2-2 of FIG. 1;
  • F IG. 3 is a section taken through lines 3-3 of FIG. 1.
  • the extractor indicated generally at 10 is composed of a feed portion indicated generally at I1 and an extractor portion indicated generally at 12. This last mentioned portion is composed of a rigid, generally cylindrical housing 13.
  • a generally funnel-shaped bladder support 14 is fixedly secured to the interior of wall 13 adjacent the point where the feed portion 11 and extractor portion l2 are joined. This support inwardly projects from its circumventional mounting inwardly at an angle away from feed portion 11.
  • a second bladder support 15 is circumventionally mounted about the interior of wall 13 at the end of the extractor portion opposite such portions connection to the feed portion. This second support inwardly projects at an angle toward said firstmentioned support 14.
  • a generally cylindrical-shaped flexible sleeve or bladder 16 Sealingly secured at one end to the interior portion of support 14 is a generally cylindrical-shaped flexible sleeve or bladder 16. The other end of this sleeve or bladder is sealingly secured to the interiormost portion of support 15. Thus it can be seen that a sealed, tubular-shaped. air space is formed between the outer wall 13 and the bladder 16.
  • a generally circular, supporting end cap 17 is attachingly secured to the end of wall 13 adjacent bladder support 15.
  • a bearing 18 is centrally disposed .within end support 17 and is supported thereby through bearing brackets 19 and 19'.
  • a matching support 21 is secured to support 20 and is adapted to be fixedly secured to the generally cylindrical-shaped wall 22 of feed portion 1 l.
  • a hopper 23 is built into the end portion of wall 22 opposite support 21 so that the product to be processed may be fed into the interior of the extractor 10 as will hereinafter he described.
  • a circular bearing 25 Centrally mounted on the partially closed end 24 of feed portion 11 is a circular bearing 25.
  • An elongated hollow tube indicated generally at 26 is adapted to be centrally disposed and rotatively mounted within the extractor 10. One end of this tube has fixedly secured thereto end block 27. Outwardly projecting from block 27 is pin 28 which is rotatively supported by bearing 18.
  • the wall of the portion of tube 26 which lies juxtaposed to bladder 16 is perforated particularly as seen in FIG. I.
  • Spirally mounted about the exterior of the perforated portion 29 of tube 26 is screw feeder 30.
  • This feeder is generally semicylindrical in cross section so as not to damage the bladder l6 when it comes in contact with the same as will be hereinafter described.
  • the imperforate portion 31 of tube 26 which lies within feed portion 11 has a screw conveyor blade 32 spirally mounted to the exterior thereof as noted particularly in FIG.
  • Tube 26 extends out through the end 24 of the feeder portion 11 and is supported by circular bearing 25.
  • a series of outwardly projecting teeth 33 are circumventionally mounted about tube 26 exterior of extractor 10 and generally adjacent to bearing 24.
  • a chain drive 34 is adapted to operatively engage teeth 33in such a manner that when motor 35 is rotated tube 26 will rotate.
  • the upper portion of chamber 39 has an opening therein to which is communicatively attached vacuum line 40 which leads to a vacuum source (not shown). Also operatively mounted to the upper portion of vacuum chamber 39 is pressure guage 41.
  • variable delivery pump 42 Communicatively and operatively connected to the lower portion of chamber 39 is a variable delivery pump 42 with an inlet line 43 and a discharge line 44.
  • This pump may be selectively regulated by control means (not shown).
  • a pressure fluid line 45 Communicating between the exterior and interior of wall 13 is a pressure fluid line 45 which is operatively secured to a fluid pressure source (not shown) such as a pump. Also operatively connected to wall 13 is pressure gauge 46 for operation as will be hereinafter described.
  • the product from which liquid is to be removed is coarsely ground with a comminutor through a screen of predetermined size. It has been found through experimentation that for apples and similar products, a 0.25 inch screen is preferred. Approximately 2 pounds of filter aid such as rice hulls is mixed with each bushel of product. This filter aid improves the separation of the juice from the pulp solids and for this reason is desirable. Although only the product will hereinafter be referred to, it is understood that if a filter aid is mixed with the product such aid will follow the course of the product through the operation of the extractor.
  • the product is continuously fed into hopper 23 as indicated by thearrow in FIG. 1 and is picked up by conveyor blade 32 which rotates in a clockwise direction with tube 26 to move the product away from end 24 of feed portion 11 toward extractor portion 12. Due to the angular taper of bladder support 14, the product is smoothly fed into conveying contact with the spiral conveyor projections 30 on the perforate por' tion 29 of tube 26. These conveyor projections move the product along between tube and the bladder toward the open end 48 of the extractor.
  • a fluid under a predetermined amount of pressure is introduced through inlet line 45 into the tubular-shaped opening or cavity 49 between bladder 16and wall 13.
  • the pressure under which the fluid is maintained may readily be determined by referring to the reading on pressure gauge 46.
  • the flexible bladder 16 will apply a squeezing pressure on the product passing between such bladder and the perforate portion 29 of tube 26.
  • the correct predetermined pressure is obtaihedin the bladder cavity for maximum liquid removal from theproduct' being processed, the liquid within the product will be squeezed through the perforations in the tube'to the in'te rio'r thereof.
  • the product will be' reduced to a relatively dry pulp before it is extruded through the openingSl ofend 48.
  • a vacuum chamber 39 may be attached through means such as the balljoint 37 to the rotating juice-containing tube.
  • Subatmospheric pressure between and 29 inches of mercury in the case of apples has been found adequate to not only assist in the sucking of the extracted juice from the tube but also to adequately deaerate the juice for better preservation of its taste and color.
  • the air pressure within the bladder cavity may range anywhere from 5 to pounds p.s.i.. it has been found that for products such as apples that a pressure of 10 pounds p.s.i. is adequate. This pressure. of course, would vary as the percentage ofliquid within the product varies as well as any chan es in the size of the comminutor screen.
  • the present invention has the advantage of being simple to construct and maintain and yet is extremely efficient in the removal of liquids from the product being processed in a continuous feed operation.
  • the present inven tion also has the advantage of allowing the extracted liquid to be removed from the extractor and deaerated in a single-step process thus adding even greater economy to the already economical system.
  • the process of removing the liquid from a liquid-bearing product comprising: feeding the productinto a screw-type conveyor; applying fluid pressure to a bladder circumventionally disposed about said conveyor; removing the liquid forced by the squeezing action from the product through openings in the walls of said conveyor to the center thereof; and discharging said squeezed product from said extractor by continuous rotation of said conveyor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)

Description

United States Patent 2,593,292 4/1952 Gaugler Maurice W. Hoover 3620 Merwin Road, Raleigh. N.C. 27606 701,173
Jan. 29, 1968 Dec. 29, 1970 Inventor Appl. No. Filed Patented CONTINUOUS JUICE EXTRACTOR 2 Claims, 3 Drawing Figs.
U.S. Cl 100/37, l00/90,l00/l17, 100/211 Int. Cl B30b 9/22 Field of Search 100/3 7,
References Cited UNlTED STATES PATENTS 2.640.542 6/1953 Rand .1 100/37 2,848,939 8/1958 Warner. 100/211x 3.269.157 8/1966 Ashley 100/211x FOREIGN PATENTS 515,155 2/1955 ltaly 100/211 Primary Examiner-Peter Feldman An0rne \'John G. Mills, [11
ABSTRACT: In abstract, a preferred embodiment of this invention is a continuous operation juice extractor using a perforated screw conveyor to move the pulp through the device. A flexible sleeve or bladder applies selectively either constant or varying pressures to the perforated screw conveyor to press the juice from the pulp. A vacuum may be applied to the hollow center portion of the perforated screw to assist in removing the juices therefrom as well as deaerate the same.
CONTINUOUS JUICE EXTRACTOR DESCRIPTION This invention relates to foodp'rocessing equipment and more particularly to devices for extracting liquids from the fruit of various types of vegetation.
In the past, various types of juice-extracting devices for apples, grapes, celery, tomatoes, oranges, grapefruits and the like have been developed in aneffort to not only obtain a maximum separation of pulp from liquid -but also to process as large quantities as possible with.,a minimum expenditure for equipment and processing plant space.
Up until now, the most efficienttype of liquid separator has been the press-type wherein the product is placed between two coacting surfaces, pressure is applied to force the liquid from the pulp, the pressure is released, and the remaining solid material removed. This four-step cycle of loading, pressing. unloading and reloading, although efficient in separation, is highly inefficient when the labor force required is compared to the amount of product processed.
To overcome the inherent production limitations of presstype extractors, attempts have been made to devise continuous feed extractors. Pairs of coacting screws have been used as well as tapered revolving screws coacting against tapered screens to build up adequate pressure to separate the liquid from the solid product. All of these continuous feed extractors, however, have been highly inefficient at best with relatively larger amounts of liquid'remaining within the solid product when the same is ejected from the system.
Thus it can be seen that until now the juice-extracting industry has been in the dilemma of having to use the time-consuming batch process to obtain any degree of efficiency of separation or use the continuous feed-type extractor with very low efficiency. 1
The present invention has been developed after much research and study into the above-mentioned problems and is designed to give extremely high efficiency in the percentage of separation while at the same time allowing continuous operation to be accomplished. To do this, applicant has devised a novel conveying and pressing system which allows the compression to be varied according to the pressures necessary to extract the maximum amount of liquid from products of varying density and compositions. A means has also been provided for assisting the flow of liquid from the system and to deaerating such liquid to better preserve its flavor and color.
It is an object, therefore, of the present invention to provide a continuous operation juice extractor pressure-adjusting means to assure maximum separation efficiency.
Another object of the present invention is to provide in a continuous operation liquid extractor combination means for assisting in the removal and deaeration of the separated liquid from the extractor unit.
A further object of the present invention is to provide an efficient. continuous operation liquid separator which is simple in construction and inexpensive to manufacture and maintain.
An additional object of the present invention is to provide a juice extractor having the efficiency of operation of the batchtype press extractor with the speed of the continuous operation-type extractor.
Another object of the presentinvention is to provide a continuous operation juice extractor capable of applying controlled pressure on one side of the product and applying a vacuum on the other side of the product thereby increasing the efficiency of juice extraction from the pulp solids.
Other objects and advantages of the present invention will become apparent and obvious from a study of the following description and the accompanying drawings which are merely illustrative of the present invention.
In the drawings:
H0. 1 is a longitudinal, sectional view of a preferred embodiment of the continuous juice extractor of the present invention drawn in schematic fonn v FIG. 2 is an end view taken from lines 2-2 of FIG. 1; and
F IG. 3 is a section taken through lines 3-3 of FIG. 1.
With further reference to the drawings. the extractor indicated generally at 10 is composed of a feed portion indicated generally at I1 and an extractor portion indicated generally at 12. This last mentioned portion is composed of a rigid, generally cylindrical housing 13.
A generally funnel-shaped bladder support 14 is fixedly secured to the interior of wall 13 adjacent the point where the feed portion 11 and extractor portion l2 are joined. This support inwardly projects from its circumventional mounting inwardly at an angle away from feed portion 11.
A second bladder support 15 is circumventionally mounted about the interior of wall 13 at the end of the extractor portion opposite such portions connection to the feed portion. This second support inwardly projects at an angle toward said firstmentioned support 14.
Sealingly secured at one end to the interior portion of support 14 is a generally cylindrical-shaped flexible sleeve or bladder 16. The other end of this sleeve or bladder is sealingly secured to the interiormost portion of support 15. Thus it can be seen that a sealed, tubular-shaped. air space is formed between the outer wall 13 and the bladder 16.
A generally circular, supporting end cap 17 is attachingly secured to the end of wall 13 adjacent bladder support 15. A bearing 18 is centrally disposed .within end support 17 and is supported thereby through bearing brackets 19 and 19'.
To the end of wall 13 oppositesupport 17 is fixedly secured circular support 20. A matching support 21 is secured to support 20 and is adapted to be fixedly secured to the generally cylindrical-shaped wall 22 of feed portion 1 l.
A hopper 23 is built into the end portion of wall 22 opposite support 21 so that the product to be processed may be fed into the interior of the extractor 10 as will hereinafter he described.
Centrally mounted on the partially closed end 24 of feed portion 11 is a circular bearing 25.
An elongated hollow tube indicated generally at 26 is adapted to be centrally disposed and rotatively mounted within the extractor 10. One end of this tube has fixedly secured thereto end block 27. Outwardly projecting from block 27 is pin 28 which is rotatively supported by bearing 18.
The wall of the portion of tube 26 which lies juxtaposed to bladder 16 is perforated particularly as seen in FIG. I. Spirally mounted about the exterior of the perforated portion 29 of tube 26 is screw feeder 30. This feeder is generally semicylindrical in cross section so as not to damage the bladder l6 when it comes in contact with the same as will be hereinafter described.
The imperforate portion 31 of tube 26 which lies within feed portion 11 has a screw conveyor blade 32 spirally mounted to the exterior thereof as noted particularly in FIG.
Tube 26 extends out through the end 24 of the feeder portion 11 and is supported by circular bearing 25. A series of outwardly projecting teeth 33 are circumventionally mounted about tube 26 exterior of extractor 10 and generally adjacent to bearing 24. A chain drive 34 is adapted to operatively engage teeth 33in such a manner that when motor 35 is rotated tube 26 will rotate.
The end of tube 26 opposite end cap 27 and outwardly from teeth 33 tapers to neck portion 36 which terminates in ball joint 37. if;
Due to the construction of this ball joint a liquid impervious seal is formed between tube 26 and inlet pipe 38 of vacuum chamber 39.
The upper portion of chamber 39 has an opening therein to which is communicatively attached vacuum line 40 which leads to a vacuum source (not shown). Also operatively mounted to the upper portion of vacuum chamber 39 is pressure guage 41.
Communicatively and operatively connected to the lower portion of chamber 39 is a variable delivery pump 42 with an inlet line 43 and a discharge line 44. This pump may be selectively regulated by control means (not shown).
Communicating between the exterior and interior of wall 13 is a pressure fluid line 45 which is operatively secured to a fluid pressure source (not shown) such as a pump. Also operatively connected to wall 13 is pressure gauge 46 for operation as will be hereinafter described.
OPERATION In actual operation of the extractor of the present invention, the product from which liquid is to be removed is coarsely ground with a comminutor through a screen of predetermined size. It has been found through experimentation that for apples and similar products, a 0.25 inch screen is preferred. Approximately 2 pounds of filter aid such as rice hulls is mixed with each bushel of product. This filter aid improves the separation of the juice from the pulp solids and for this reason is desirable. Although only the product will hereinafter be referred to, it is understood that if a filter aid is mixed with the product such aid will follow the course of the product through the operation of the extractor.
The product is continuously fed into hopper 23 as indicated by thearrow in FIG. 1 and is picked up by conveyor blade 32 which rotates in a clockwise direction with tube 26 to move the product away from end 24 of feed portion 11 toward extractor portion 12. Due to the angular taper of bladder support 14, the product is smoothly fed into conveying contact with the spiral conveyor projections 30 on the perforate por' tion 29 of tube 26. These conveyor projections move the product along between tube and the bladder toward the open end 48 of the extractor.
A fluid under a predetermined amount of pressure is introduced through inlet line 45 into the tubular-shaped opening or cavity 49 between bladder 16and wall 13. The pressure under which the fluid is maintained may readily be determined by referring to the reading on pressure gauge 46. As'will be obvious from FIG. 1. as the fluid pressure is increased in the cavity 49, the flexible bladder 16 will apply a squeezing pressure on the product passing between such bladder and the perforate portion 29 of tube 26. Once the correct predetermined pressure is obtaihedin the bladder cavity for maximum liquid removal from theproduct' being processed, the liquid within the product will be squeezed through the perforations in the tube'to the in'te rio'r thereof. As the product is squeezed in the area where the tube is juxtaposed to the bladder, such product will be' reduced to a relatively dry pulp before it is extruded through the openingSl ofend 48.
Although the gravity flow of the liquid inside the tube may be adequate in many cases, in other cases it may be preferred to have a secondary means for assisting the flow. To accomplish this, a vacuum chamber 39 may be attached through means such as the balljoint 37 to the rotating juice-containing tube. Subatmospheric pressure between and 29 inches of mercury in the case of apples has been found adequate to not only assist in the sucking of the extracted juice from the tube but also to adequately deaerate the juice for better preservation of its taste and color. Once the speed of the motor 35 has been adjusted to the desired revolutions per minute for tube 26 and the input of product into the hopper 23 has been cor-Hz: rectly adjusted to the capacity of the device. the variable delivery of pump 42 can be regulatedto remove theliquid 50 within chamber 39 at theisame. rateat which-it is. enteringthrough inlet 38 so that the entire extraction process can conprocessed.
Although the air pressure within the bladder cavity may range anywhere from 5 to pounds p.s.i.. it has been found that for products such as apples that a pressure of 10 pounds p.s.i. is adequate. This pressure. of course, would vary as the percentage ofliquid within the product varies as well as any chan es in the size of the comminutor screen.
Alt ough the comminutor has been mentioned for grinding the product prior to its being processed through the extractor, some products such as grapes are preferably crushed. If desired, the extractor obviously could be used without crushing or commutating the product prior to its introduction into hopper 23.
It is obvious that the present invention has the advantage of being simple to construct and maintain and yet is extremely efficient in the removal of liquids from the product being processed in a continuous feed operation. The present inven tion also has the advantage of allowing the extracted liquid to be removed from the extractor and deaerated in a single-step process thus adding even greater economy to the already economical system.
The present invention may. of course, be carried out in other specific ways than those herein set forth without departing from the spirit and essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive and all changes coming within the equivalency range of the appended claims are intended to be embraced therein.
l claim:
1. The process of removing the liquid from a liquid-bearing product comprising: feeding the productinto a screw-type conveyor; applying fluid pressure to a bladder circumventionally disposed about said conveyor; removing the liquid forced by the squeezing action from the product through openings in the walls of said conveyor to the center thereof; and discharging said squeezed product from said extractor by continuous rotation of said conveyor.
2. The process of claim 1 including: applying a vacuum to the center of said conveyor to remove and deaerate the liquid contained therein.
US701173A 1968-01-29 1968-01-29 Continuous juice extractor Expired - Lifetime US3550526A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US70117368A 1968-01-29 1968-01-29

Publications (1)

Publication Number Publication Date
US3550526A true US3550526A (en) 1970-12-29

Family

ID=24816340

Family Applications (1)

Application Number Title Priority Date Filing Date
US701173A Expired - Lifetime US3550526A (en) 1968-01-29 1968-01-29 Continuous juice extractor

Country Status (1)

Country Link
US (1) US3550526A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151795A (en) * 1976-04-21 1979-05-01 Bucher-Guyer Ag Maschinenfabrik Apparatus for separating liquids and solids
US4528098A (en) * 1983-02-02 1985-07-09 Societe Anonyme D'etudes, De Recherches Et De Productions D'agents Chimiques - E.R.P.A.C. Screw driven sludge thickeners
US4644861A (en) * 1985-12-30 1987-02-24 Mansfield Peter W System and method for increased efficiency of screw presses
US5069120A (en) * 1988-12-30 1991-12-03 Klaus Schneider Apparatus for pressing multilayer packs
US5406883A (en) * 1992-04-11 1995-04-18 Sulzer Escher Wyss Gmbh Dewatering press for compressibly dewaterable material
BE1027615A1 (en) 2019-10-01 2021-04-27 Barotec Bvba A METHOD AND DEVICE FOR PRESSING PRODUCT

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151795A (en) * 1976-04-21 1979-05-01 Bucher-Guyer Ag Maschinenfabrik Apparatus for separating liquids and solids
US4528098A (en) * 1983-02-02 1985-07-09 Societe Anonyme D'etudes, De Recherches Et De Productions D'agents Chimiques - E.R.P.A.C. Screw driven sludge thickeners
US4644861A (en) * 1985-12-30 1987-02-24 Mansfield Peter W System and method for increased efficiency of screw presses
WO1987004115A1 (en) * 1985-12-30 1987-07-16 Mansfield Peter W System and method for increased efficiency of screw presses
US5069120A (en) * 1988-12-30 1991-12-03 Klaus Schneider Apparatus for pressing multilayer packs
US5406883A (en) * 1992-04-11 1995-04-18 Sulzer Escher Wyss Gmbh Dewatering press for compressibly dewaterable material
BE1027615A1 (en) 2019-10-01 2021-04-27 Barotec Bvba A METHOD AND DEVICE FOR PRESSING PRODUCT

Similar Documents

Publication Publication Date Title
US3624729A (en) Continuous juice extractor
US4266473A (en) Screw press with continuous slope feed screw
US3966607A (en) Solid-liquid separator
US3550526A (en) Continuous juice extractor
US4397230A (en) Screw press improvements
US3003412A (en) Fluid extracting apparatus
SU1055339A4 (en) Press for separating liquid and solid phases
US3478796A (en) Juice extracting machine
US3548743A (en) Liquid expressing press
US2795184A (en) Internal drum dejuicing press
EP0078259B1 (en) Screw press with continuous slope feed screw
US1527911A (en) Press for crushing fruits
KR102123291B1 (en) By-product compression apparatus
US3093064A (en) Method of recovery of juice from sucrose bearing materials
JP2005161369A (en) Garbage treatment apparatus
US241024A (en) Cider mill and press
JPS6041586B2 (en) Vacuum type continuous crushing and juicing equipment for fruits and vegetables
KR102294342B1 (en) Screw press for the treatment of contaminants
US1876820A (en) Method of obtaining oil and other products from olives
US2088657A (en) Extracting machine
US731736A (en) Method of expressing oil from seeds.
US816446A (en) Press.
HU214434B (en) Process for extraction of in material-in particular in grapes-fluid existing and stuff press for realization
US2154339A (en) Oil extractor
CN205528658U (en) Peanut oil squeezes and filters concise integration machine