US3298345A - Double hulled ship - Google Patents
Double hulled ship Download PDFInfo
- Publication number
- US3298345A US3298345A US410877A US41087764A US3298345A US 3298345 A US3298345 A US 3298345A US 410877 A US410877 A US 410877A US 41087764 A US41087764 A US 41087764A US 3298345 A US3298345 A US 3298345A
- Authority
- US
- United States
- Prior art keywords
- hull
- ship
- panels
- cargo
- inner hull
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04C—APPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
- B04C5/00—Apparatus in which the axial direction of the vortex is reversed
- B04C5/14—Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
- B04C5/16—Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations with variable-size outlets from the underflow ducting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04C—APPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
- B04C11/00—Accessories, e.g. safety or control devices, not otherwise provided for, e.g. regulators, valves in inlet or overflow ducting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/02—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
- B63B25/08—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
- B63B25/12—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
- B63B25/16—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K7/00—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
- F16K7/02—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm
- F16K7/04—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force
- F16K7/07—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force by means of fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/025—Bulk storage in barges or on ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0147—Shape complex
- F17C2201/0157—Polygonal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/052—Size large (>1000 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/01—Reinforcing or suspension means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0329—Foam
- F17C2203/0333—Polyurethane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0345—Fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0358—Thermal insulations by solid means in form of panels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0626—Multiple walls
- F17C2203/0631—Three or more walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0639—Steels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/221—Welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/227—Assembling processes by adhesive means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/228—Assembling processes by screws, bolts or rivets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/011—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/01—Improving mechanical properties or manufacturing
- F17C2260/011—Improving strength
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S220/00—Receptacles
- Y10S220/901—Liquified gas content, cryogenic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S220/00—Receptacles
- Y10S220/902—Foam
Definitions
- the new ship 10 typically is in the general full form configuration of a tanker, as evi-' denced by its generally rectangular transverse cross section taken through a cargo hold 11.
- the outer hull 12 and many sections of the ship remote from the hold areas may be conventionally constructed from steel plate in accordance with known techniques.
- the encapsulating shell 23 which may be of the same strong, temperature-resistant material as the main, outer panel shell 15, extends from one principal wall to the other of the panel shell and has its side Walls spaced apart far enough to closely receive the head fiange 18a. Inward of the head flange, the encapsulating shell is filled with a structural insulating material 24, such as polyurethane foam.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Fluid Mechanics (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
Jan. 17, 1967 H. R. PRATT DOUBLE HULLED SHIP Filed Nov. 15, 1964 FIG. I
" ll! lllHlh.
FIG. '3
INVENTOR.
R. PRATT HAROLD WHELAN,CHASAN, LITTON, MARX and WRIGHT ATTORNEYS United States Patent Ofifrce 3,298,345 Patented Jan. 17, 1967 3,298,345 DOUBLE I-IULLED SHIP Harold R. Pratt, Ridgewood, N.J., assignor to Esso Research and Engineering Company, a corporation of Delaware Filed Nov. 13, 1964, Ser. No. 410,877 6 Claims. (Cl. 114--74) The present invention relates to cargo ships and, more particularly, to tankers adapted to transport cryogenic cargoes, such as liquefied gases at atmospheric pressures.
It has been established that the transportation of gases, such as natural gas, hydrogen, oxygen, methane, and the like, to remote locations, may best and most efficiently be accomplished by reducing the volume of the gas through its conversion into the liquid state. Such a conversion enables the storage volume requirements to be greatly reduced (approximately six-hun-dredfold for a given quantity of methane gas, for example) and, as should be appreciated, enables the most efiicient transfer of the gas to a remote area.
In order to transfer liquefied gas in a practical and economical manner in relatively large volumes, it is necessary to store the liquefied gas at approximately atmospheric pressure, since large containers built to withstand superatmospheric pressures would be impractical, if not impossible, to construct for use on seagoing tankers or the like. However, liquefied gases maintained at atmospheric pressures have extremely low vaporization points, ranging from about -435 F. for liquefied hydrogen, to -28 F. for liquefied ammonia, and these unusually low temperatures of the liquids present certain problems in the design and production of insulated cargo containers. Specifically, the containers must be capable of preventing heat losses which would lead to subsequent volatilization of the stored liquefied gas andof withstanding the internal stresses that may be induced therein by the large temperature gradient through the walls of the container, In addition, the ship must be safeguarded against uncontrolled flow of the low temperature liquid into contact with parts of the structure which could be damaged thereby. Accordingly, for the purposes of safety and reliability and in accordance with accepted regulatory codes, it has been a well established practice to provide at least two liquid-tight barriers in containers used for the storage of liquefied natural gases at cryogenic temperatures.
One typical arrangement for transporting a liquefied gas involves the use of aluminum or stainless steel storage tanks, constituting primary barrier means, independently supported by a secondary liquid-tight barrier. Another known arrangement involves the use of so-called integral construction where the primary barrier is directly supported by the secondary barrier. In this type of cargo transportation, double hulled ships have been widely employed and found suitable. Specifically, in one system, the inner hull of the cargo hold of such a vessel is clad with suitable thermal insulation and supports an independent cargo tank therein. Alternatively, a metallic liner is superimposed upon an insulation-clad cargo hold to form a so-ca-lled integral container.
The present invention is directed particularly to, and represents a significant improvement in, the so-called integral system, but is also applicable to systems utilizing separate car-go tanks. More specifically, a new ship structure is. provided in which cargo hold bulkhead and the inner hull structure, itself, of a double-hulled ship are constructed of an efiectively dimensionally stable, liquidti'ght, thermal insulating material having sufiicient strength to form the hold structure of the ship and to contribute to the overall structural integrity and sea worthiness of the ship in a manner not unlike that of conventionally employed steel plate inner hull constructions. Thus, as will be more fully explained, the new inner hul-l structure not only functions as an insulating member and secondary liquid tight barrier of a cryogenic cargo container, but it also forms an integral structural member of the ship.
The new ship advantageously is built with a conventional outer hull and includes a new inner hull and bulkhead structure fabricated with new and improved hull and bulkhead panels made in accordance with general precepts set forth in detail in copending United States application Serial No. 394,287, filed September 3, 1964, by Harold R. Pratt et al., for Insulation System. In accordance with the invention of the copending application, insulating panels are formed with fiberglass reinforced polyester resin shells filled with polyurethane foam and constructed to be effectively dimensionally stable under service conditions involving large temperature diiferentials between their inner (cold) and outer (warm) walls. As an important specific aspect of the present invention, the new and improved hull and bulkhead panels include special molded-in mounting plates which are structurally integral with the panels and are united with web frame elements welded to the ships outer hull to space the completed inner hull therefrom.
For a more complete understanding of the present invention, reference should be made to the following detailed description taken in conjunction with the accompanying drawing, in which:
FIG. 1 is a transverse cross-sectional view of a new and improved double hulled ship embodying the principles of the present invention;
FIG. 2 is a fragmentary cross-sectional view taken along line 7-2 of FIG. 1; and
FIG. 3 is an enlarged fragmentary cross-sectional View of the new and improved hull and bulkhead panels showing details of their construction.
Referring to FIG. 1, the new ship 10 typically is in the general full form configuration of a tanker, as evi-' denced by its generally rectangular transverse cross section taken through a cargo hold 11. The outer hull 12 and many sections of the ship remote from the hold areas may be conventionally constructed from steel plate in accordance with known techniques.
As indicated in FIG. 1, the ship 10' includes an inner hull structure, designated generally by the reference numeral 13, which, together with appropriately located transverse bulkheads or cofferdarns (not specifically shown) form the individual cargo holds 11 for the containment of the low temperature liquid cargo. In accordance with the invention, the inner bulkhead structure 13, and advantageously also the transverse bulkheads or cofferda-ms, are constructed from a series of adjoined, individual insulating panels 14. The individual panels are most advantageously constructed according to the 'beforementioned Pratt et a1. application and are provided with fiberglass reinforced, polyester resin outer shells 15 filled with polyurethane foam 16', as shown best in FIG. 3. The individual panels may be partitioned interiorly by divider webs (not shown) extending between the inner and outer walls a, 15b of the panel shell, and the panels are so supported and secured as to be relatively immobilized against gross distortions of shape resulting from substantial temperature differentials from the inner to the outer walls 15a, 15b. It is understood, in this respect that the strength of the fiberglass reinforced shell walls exceeds the stresses induced by temperature differentials under service conditions, as set forth more fully in the copending Pratt et al. application Serial No. 394,287. The inner hull panels 14-, being both dimensionally stable and of high strength are able to contribute significantly to the strength of the overall ship structure, much in the nature of a conventional steel plate inner hull construction. Thus the new inner hull structure serves in the double capacity of a primary structural element and an advantageous insulating and container means.
Importantly and as another aspect of the invention, the individual hull and bulkhead panels 14 are arrayed contiguously and are appropriately sealed or otherwise interconnected to define a continuous, impermeable secondary barrier for liquefied gases at cryogenic temperatures and atmospheric pressures. In this connection, it will be understood that as a structural member of the ship, the inner hull 13 must be unaffected, dimensionally or otherwise, by the cargoes to be carried. Advantageously, the adjacent panels are joined by stepped or other overlapping edge configurations, as indicated generally at 21 and secured by a suitable combination of mechanical and adhesive fastening means.
A cargo-resistant, primary barrier schematically indicated at 17 is located inside the individual cargo holds defined by the inner hull 13 and transverse cargo hold bulkheads, advantageously constructed in the same manner as the inner hull 13, to define in each cargo hold of the ship 10, a closed, insulated cargo container as shown in FIG. 1. Advantageously, the primary barriers 17 may be of types disclosed in more detail in copending applications of Charles D. Forman et al. for Cryogenic Insulation System, Serial No. 411,397, filed Nov. 16, 1964 and for Cryogenic Insulation System, Serial No. 411,- 527, filed Nov. 16, 1.964. It could also be possible to utilize separate tanks of materials such as aluminum or stainless steel, in accordance with more conventional practices.
In accordance with the principles of the invention, the hull panels 14 have embedded therein T-shaped mounting plates 18, made of steel or a like material having substantial strength, which are overlapped with and joined to inwardly extending steel web plates 19 by bolts or rivets 20 adjacent the inner hull structure 13. As shown, the web plates 19 themselves are joined to the ships outer hull 11 by suitable Welds 22.
The mounting plate 18 of the T-shaped cross section may be of elongated form, to impart additional strength to the panel units, or they may be shorter elements, similar to projecting lugs. In either case, the enlarged head flange 18a is molded into the panel structure as close as possible to the outer or warm Wall 15b of the panel shell, so as to be relatively unaffected by the low temperature cargo retained within the hold. In addition, it is advantageous to separately encapsulate the head flanges 18a in an internal, structural shell 23, substantially as shown in FIG. 3. The encapsulating shell 23, which may be of the same strong, temperature-resistant material as the main, outer panel shell 15, extends from one principal wall to the other of the panel shell and has its side Walls spaced apart far enough to closely receive the head fiange 18a. Inward of the head flange, the encapsulating shell is filled with a structural insulating material 24, such as polyurethane foam.
It will be readily appreciated that the new doublehulled ship structure, in accordance with the invention, realizes substantial advantages, by providing an inner hull structure which functions both as a thermal insulator and secondary liquid-tight barrier for a cryogenic container and as an integral structural member of the tanker, itself. The advantages of the invention are most readily realized through the use of special structural and insulating panels having fiberglass reinforced polyester resin outer shells, with an insulating filler such as foamed polyurethane. Such panels, properly constructed in accordance with the considerations set forth in the beforementioned Pratt et a1. application, provide adequate strength and stability for incorporation as structural elements of a ships inner hull and at the same time possess good insulating qualities. In addition, by molding into such panels a plurality of separately encapsulated mounting plates, projecting from the Warm sides of the panels, it is made practical and expedient to utilize the panels in the construction of the ships inner hull.
It should be understood that the specific mode of construction and the specific container structure herein illustrated and described are intended to be representative only, as certain changes may be made therein without departing from the clear teachings of the disclosure. Accordingly, reference should be made to the following appended claims in determining the full scope of the invention.
What is claimed is: a
1. A ship for transporting cargoes at cryogenic temperatures and atmospheric pressure comprising (a) a conventionally formed steel outer hull,
(b) a plurality of contiguously arrayed inner hull plastic insulating panels defining a liquid-tight secondary barrier, and mounting means rigidly fixing said inner hull panels to said outer hull, said mounting means including,
(c) rigid mounting plates embedded in said hull panels and extending perpendicularly outwardly therefrom,
(d) rigid web plates Welded to said outer hull and extending perpendicularly inwardly therefrom, and
(e) means joining said mounting plates and web plates,
whereby said inner hull plastic insulating panels define an integral inner hull spaced inwardly and fixed in spaced relation from said outer hull contributing a substantial rigidifying effect to said outer hull.
2. A ship according to claim 1, in which (a) primary barrier means are integrally supported by said inner hull.
3. A container structure for cryogenic cargoes and the like comprising (a) an outer steel ship hull,
(-b) an inner ship hull structure formed substantially of plastic thermal insulation material, said inner hull structure being secured in fixed spaced relation to said outer hull by rigid mounting means, said mounting means in cooperation with said plastic inner hull structure acting to rigidity the outer steel ship hull,
(c) said thermal insulation being cargo-impermeable and constituting a secondary barrier, said thermal insulation material further including panels formed by a pair of spaced inner and outer substantially parallel shell walls separated by an insulating material, said mounting means including a plurality of mounting plates embedded in said panels projecting perpendicularly through and extending from said outer shell walls and means on the outer hull of the ship for rigidly engaging and supporting said mounting plates and ((1) primary barrier means supported within said inner hull.
4. The container structure of claim 3, in which (a) said mounting plates have enlarged head flanges positioned within the panels and closely adjacent the outer shell walls thereof.
5. The container structure of claim 3, in which '(a) the embedded portions of said mounting plates are separately encapsulated in shell walls extending between the inner and outer shell walls of the panels, and
(b) the encapsulating walls are filled with an insulating material extending from the inner extremities of the mounting plates to the inner shell walls of the panels to protect said mounting plates from low temperature cargo.
6. The container structure of claim 5, in which (a) the embedded portions of said mounting plates comprise enlarged head flanges, and
(b) said head flanges are retained in a position closely adjacent the relatively warmer outer shell walls of said panel.
References Cited by the Examiner UNITED STATES PATENTS 3,083,668 4/1963 Marciano 114-74 3,112,043 11/1963 Tucker 220-15 X 5 3,157,147 11/1964 Ludwig 114--74 FOREIGN PATENTS 1,263,560 5/1961 France.
10 MILTON BUCHLER, Primary Examiner.
T. M. BLIX, Assistant Examiner.
Claims (1)
1. A SHIP FOR TRANSPORTING CARGOES AT CRYOGENIC TEMPERATURES AND ATMOSPHERIC PRESSURE COMPRISING (A) A CONVENTIONALLY FORMED STEEL OUTER HULL, (B) A PLURALITY OF CONTIGUOUSLY ARRAYED INNER HULL PLASTIC INSULATING PANELS DEFINING A LIQUID-TIGHT SECONDARY BARRIER, AND MOUNTING MEANS RIGIDLY FIXING SAID INNER HULL PANELS TO SAID OUTER HULL, SAID MOUNTING MEANS INCLUDING,
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL138865D NL138865C (en) | 1964-11-13 | ||
US410877A US3298345A (en) | 1964-11-13 | 1964-11-13 | Double hulled ship |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US410877A US3298345A (en) | 1964-11-13 | 1964-11-13 | Double hulled ship |
Publications (1)
Publication Number | Publication Date |
---|---|
US3298345A true US3298345A (en) | 1967-01-17 |
Family
ID=23626603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US410877A Expired - Lifetime US3298345A (en) | 1964-11-13 | 1964-11-13 | Double hulled ship |
Country Status (2)
Country | Link |
---|---|
US (1) | US3298345A (en) |
NL (1) | NL138865C (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3367527A (en) * | 1967-05-01 | 1968-02-06 | Harold T. Darlington | Insulating structure |
US3381843A (en) * | 1966-05-06 | 1968-05-07 | Exxon Research Engineering Co | Insulation system |
US3383004A (en) * | 1965-08-17 | 1968-05-14 | Preload Co Inc | Plastic storage tank |
US3401791A (en) * | 1965-11-30 | 1968-09-17 | Avco Corp | Reusable shipping and storage container |
US3515303A (en) * | 1967-05-26 | 1970-06-02 | A I R Air Conditioning & Refri | Light refrigerator container |
US3800970A (en) * | 1970-03-19 | 1974-04-02 | Conch Int Methane Ltd | Integrated tank containers for the bulk storage of liquids |
US3922987A (en) * | 1972-08-02 | 1975-12-02 | Conch Int Methane Ltd | Liquefied gas tanker construction using stiffener members |
US3941272A (en) * | 1974-03-27 | 1976-03-02 | Kaiser Aluminum & Chemical Corporation | Cryogenic transport |
US4116150A (en) * | 1976-03-09 | 1978-09-26 | Mcdonnell Douglas Corporation | Cryogenic insulation system |
US4509657A (en) * | 1981-11-04 | 1985-04-09 | Moss Rosenberg Verft A/S | Insulation embodiment in a wedge-shaped space between two structural members |
US4625892A (en) * | 1983-09-14 | 1986-12-02 | Poly Processing Company, Inc. | Polyolefin tank within a metallic tank |
US5024342A (en) * | 1988-11-07 | 1991-06-18 | Dallum Barry J | Corrosion resistant containers |
US5778813A (en) * | 1996-11-13 | 1998-07-14 | Fern Investments Limited | Composite steel structural plastic sandwich plate systems |
US6009821A (en) * | 1998-07-15 | 2000-01-04 | Saudi Arabian Oil Company | Double bottom hull for tank ship |
US6050208A (en) * | 1996-11-13 | 2000-04-18 | Fern Investments Limited | Composite structural laminate |
US20120012473A1 (en) * | 2009-04-14 | 2012-01-19 | Adnan Ezzarhouni | Termination of the secondary membrane of an lng tank |
US11618536B2 (en) * | 2017-09-12 | 2023-04-04 | Tae Young Chung | Heat-insulating structural material, and low temperature and ultra-low temperature liquefied gas carrier using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1263560A (en) * | 1960-07-15 | 1961-06-09 | Conch Int Methane Ltd | Means of transport for cold liquids |
US3083668A (en) * | 1958-07-18 | 1963-04-02 | Conditioned Power Co S P A | Tanker for shipping liquefied hydrocarbon gas |
US3112043A (en) * | 1962-03-12 | 1963-11-26 | Conch Int Methane Ltd | Container for storing a liquid at a low temperature |
US3157147A (en) * | 1963-05-09 | 1964-11-17 | California Research Corp | Vessel for liquefied gas |
-
0
- NL NL138865D patent/NL138865C/xx active
-
1964
- 1964-11-13 US US410877A patent/US3298345A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3083668A (en) * | 1958-07-18 | 1963-04-02 | Conditioned Power Co S P A | Tanker for shipping liquefied hydrocarbon gas |
FR1263560A (en) * | 1960-07-15 | 1961-06-09 | Conch Int Methane Ltd | Means of transport for cold liquids |
US3112043A (en) * | 1962-03-12 | 1963-11-26 | Conch Int Methane Ltd | Container for storing a liquid at a low temperature |
US3157147A (en) * | 1963-05-09 | 1964-11-17 | California Research Corp | Vessel for liquefied gas |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3383004A (en) * | 1965-08-17 | 1968-05-14 | Preload Co Inc | Plastic storage tank |
US3401791A (en) * | 1965-11-30 | 1968-09-17 | Avco Corp | Reusable shipping and storage container |
US3381843A (en) * | 1966-05-06 | 1968-05-07 | Exxon Research Engineering Co | Insulation system |
US3367527A (en) * | 1967-05-01 | 1968-02-06 | Harold T. Darlington | Insulating structure |
US3515303A (en) * | 1967-05-26 | 1970-06-02 | A I R Air Conditioning & Refri | Light refrigerator container |
US3800970A (en) * | 1970-03-19 | 1974-04-02 | Conch Int Methane Ltd | Integrated tank containers for the bulk storage of liquids |
US3922987A (en) * | 1972-08-02 | 1975-12-02 | Conch Int Methane Ltd | Liquefied gas tanker construction using stiffener members |
US3941272A (en) * | 1974-03-27 | 1976-03-02 | Kaiser Aluminum & Chemical Corporation | Cryogenic transport |
US4116150A (en) * | 1976-03-09 | 1978-09-26 | Mcdonnell Douglas Corporation | Cryogenic insulation system |
US4509657A (en) * | 1981-11-04 | 1985-04-09 | Moss Rosenberg Verft A/S | Insulation embodiment in a wedge-shaped space between two structural members |
US4625892A (en) * | 1983-09-14 | 1986-12-02 | Poly Processing Company, Inc. | Polyolefin tank within a metallic tank |
US5024342A (en) * | 1988-11-07 | 1991-06-18 | Dallum Barry J | Corrosion resistant containers |
US5778813A (en) * | 1996-11-13 | 1998-07-14 | Fern Investments Limited | Composite steel structural plastic sandwich plate systems |
US6050208A (en) * | 1996-11-13 | 2000-04-18 | Fern Investments Limited | Composite structural laminate |
US6009821A (en) * | 1998-07-15 | 2000-01-04 | Saudi Arabian Oil Company | Double bottom hull for tank ship |
US20120012473A1 (en) * | 2009-04-14 | 2012-01-19 | Adnan Ezzarhouni | Termination of the secondary membrane of an lng tank |
US9291308B2 (en) * | 2009-04-14 | 2016-03-22 | Gaztransport & Technigaz | LNG container with a connecting device which connects a secondary impermeable barrier to a load bearing structure |
US11618536B2 (en) * | 2017-09-12 | 2023-04-04 | Tae Young Chung | Heat-insulating structural material, and low temperature and ultra-low temperature liquefied gas carrier using the same |
Also Published As
Publication number | Publication date |
---|---|
NL138865C (en) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3298345A (en) | Double hulled ship | |
US3339783A (en) | Cryogenic container | |
US3537416A (en) | Shipping container and method for transporting hydrocarbon fluids and the like | |
US3399800A (en) | Tank for liquefied gas | |
US3472414A (en) | Containers and the like | |
US3485409A (en) | Tankship container for liquefied gas | |
US4101045A (en) | Cryogenic container | |
US3341050A (en) | Cryogenic insulation system | |
US3875886A (en) | Liquified-gas ship | |
US4066184A (en) | Thermal insulation systems | |
US3498249A (en) | Tanker vessel | |
NO115958B (en) | ||
US3830396A (en) | Containers for liquefied gases | |
US3583351A (en) | Vessel for transporting liquefied hydrocarbon | |
US3145680A (en) | Transport of liquefied gases | |
US3337079A (en) | Stressed membrane liquified gas container | |
US3477606A (en) | Membrane tank structures | |
US3283734A (en) | Externally insulated hull structure | |
KR101419821B1 (en) | Dual structure of storing container for liquefied natural gas | |
US3339780A (en) | Duplex insulating panel | |
US3457890A (en) | Concrete liquefied gas vessel | |
US3490639A (en) | Containers for liquefied gases | |
US3566824A (en) | Marine transportation of liquified gases | |
US3922987A (en) | Liquefied gas tanker construction using stiffener members | |
US3361285A (en) | Fluid-tight insulated wall devices and applications thereof |