US3294167A - Thermal oil recovery - Google Patents
Thermal oil recovery Download PDFInfo
- Publication number
- US3294167A US3294167A US359200A US35920064A US3294167A US 3294167 A US3294167 A US 3294167A US 359200 A US359200 A US 359200A US 35920064 A US35920064 A US 35920064A US 3294167 A US3294167 A US 3294167A
- Authority
- US
- United States
- Prior art keywords
- formation
- heat
- well
- fluid
- hydrocarbons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000011084 recovery Methods 0.000 title claims description 25
- 230000015572 biosynthetic process Effects 0.000 claims description 184
- 229930195733 hydrocarbon Natural products 0.000 claims description 63
- 150000002430 hydrocarbons Chemical class 0.000 claims description 55
- 239000012530 fluid Substances 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 46
- 238000004891 communication Methods 0.000 claims description 27
- 238000005755 formation reaction Methods 0.000 description 177
- 239000003921 oil Substances 0.000 description 39
- 239000004215 Carbon black (E152) Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 8
- 125000001183 hydrocarbyl group Chemical group 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000011435 rock Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000010795 Steam Flooding Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004326 stimulated echo acquisition mode for imaging Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
Definitions
- This invention relates to a method of recovering oil from underground formations and pertains more particularly to a method of driving oil from a first formation by thermal means, said first formation being positioned adjacent a second formation from which oil had been previously recovered by thermal means or methods.
- hydrocarbons can be removed from an underground formation by heating the formation to a temperature sufiicient to reduce the viscosity of the hydrocarbon to a mobile condition whereby, upon reduction of pressure, the heated oil may flow back into the heat injection well, or alternatively may be driven to a second well, commonly known as a production well, by thermal drive means.
- pyrolysis of the hydrocarbons may take place with the resulting products being driven through the formation and collected at the production well. Such action may take place during in situ combustion wherein the air and the fuel are injected in a formation and burned to heat the formation, or where merely air is injected into the formation at a temperature sufficient to promote underground combustion within the formation. Pyrolysis can also be caused to occur without in situ combustion by heating the underground formation with a hot heat-carrying medium such as steam, water, hydrocarbon liquids or vapors, and other liquids, gases or vapors.
- a hot heat-carrying medium such as steam, water, hydrocarbon liquids or vapors, and other liquids, gases or vapors.
- a further object of the present invention is to provide a method of recovering oil from an underground formation wherein a thermal recovery method is employed utilizing a hot fluid which has been heated by previously forcing it through a heat-bearing underground formation from which hydrocarbons, sulfur or other materials have previously been extracted.
- Another object of the present invention is to produce two adjacent oil-bearing underground formations by thermal recovery means wherein first one formation is heated and the oil therein recovered therefrom and subsequently the second formation is heated by heat retained in the first formation so that the oil can subsequently be recovered from the second formation.
- FIGURE 1 is a diagrammatic view showing two adjacent oil fields or oil-bearing formations taken in longitudinal section and provided with a pair of wells each for carrying out the method of the present invention
- FIGURES 2, 3, 4 and 5 are diagrammatic views showing other arrangements of heating equipment for carrying out the method of the present invention in adjacent oil-bearing formations which are shown in longitudinal section.
- hydrocarbons may be recovered from a subsurface formation by providing communication through a Well between the surface of the earth and a first subsurface formation containing hydrocarbons, recovering hydrocarbons from said first subsurface formation by a thermal recovery method, completing the thermal recovery method in the first formation in a manner whereby a substantial amount of heat remains in the first formation, providing communication between the heated first subsurface formation and a second subsurface formation containing hydrocarbons, forcing fluid into and out of the heated first subsurface formation whereby the temperature of the fluid is increased, conveying the fluid from out of the heated first subsurface formation and into a second subsurface formation to heat the hydrocarbons therein, and producing the hydrocarbons from the second subsurface formation.
- a first subsurface formation 11, originally containing hydrocarbons, is in communication with the surface 12 of the earth through a pair of wells 13 and 14 which are preferably lined by well casing closed at the top and open or perforated at the bottom whereby a fluid may be forced down well 13, through the formation 11 and up well 14.
- a second subsurface formation 21 containing hydrocarbons exists in the vicinity of the first subsurface formation 11, a second subsurface formation 21 containing hydrocarbons exists.
- This second subsurface hydrocarbon-containing formation 21 is also in communication with the surface 0 fthe earth through one or more wells 22 and 23 which are open or perforated at the bottom so that fluid may enter the hydrocarbon formation 21.
- the wells 13 and 22 may be considered input wells while the wells 14 and 23 may be considered output wells.
- the output well 14 of the first subsurface formation 11 is in fluid communication with the input well 22 of the second subsurface formation 21 which contains hydrocarbons. If the two subsurface formations are relatively close to each other, the output well 14 may be connected to the input well 22 by a pipeline 24 which may be provided, if desired, with pumps (not shown) in order to convey any fluid in the pipeline a considerable distance.
- FIGURE 1 of the drawing illustrates the method of the present invention wherein hydrocarbons have been recovered to a substantial degree from the first subsurface formation 11 by any suitable thermal recovery method wherein a substantial amount of heat is left in the first formation 11.
- air or a combination of air and fuel may be injected down well 13 to carry out an in situ combustion within the formation 11 so as to drive the hydrocarbon products therein out of the formation through the output well 14.
- a thermal fluid drive may be carried out wherein steam or hot water or a combination of both, or any other heat-carrying fluid, is injected down well 13 to reduce the viscosity of the hydrocarbons in the formation 11 and/ or to pyrolyze them and cause them to be produced from output well 14.
- the output well 14 is connected by means of pipeline 24 or any other suitable means to the input well 22 in communication with the second subsurface hydrocarbon-bearing formation 21 which represents an oil field independent of formation 11 and located some distance therefrom in which thermal recovery of the hydrocarbons is to be carried out.
- a cold heat-absorbing medium is pumped through pipe 15 and down injection well 13 into the hot depleted formation 11.
- the injected medium or fluid may flow either through naturally permeable rock or through artificially induced fractures in the formation 11. It is not necessary that the injected fluid or medium contact all portions of the hot rock of the formation in order to recover heat therefrom.
- Heat will flow by conduction from the hot rock to cooler portions of the formation in immediate contact with the heat-absorbing medium. After absorbing heat from the rock in the first formation 11, the hot medium is led back to the surface through output well 14 and then transported through pipe 24 to input well 22 of the undepleted hydrocarbon-bearing formation 21.
- the depleted hot first formation furnishes all the heat required to heat the fluid sufliciently to carry out the thermal recovery method of the second undepleted formation 21. If more heat is required within the second formation 21, additional heat may be supplied to the fluid in pipeline 24 by any suitable means, as by a heater 26 positioned in the line. Alternatively, heat may be supplied to the underground formation 21 as necessary from other suitable sources well known to the art. If desired, partial combustion of the material in the second subsurface formation 21 may be carried out.
- the depleted first underground formation 11 and the second undepleted underground formation 21 be in different fields, formations or strata, or that they be separated by faults or impermeable structures, such as a salt dome.
- the two fields or formations 11 and 21 may, in fact, simply be portions of one continuous large deposit.
- Various media may include, but are not limited to liquids, gases, and vapors, such as water, steam,
- hydrocarbon liquids hydrocarbon gases or vapors, air
- Input and output wells 32 and 33 are in communication between the earth surface and the hot depleted formation 31 while input and output wells 35 and 36, respectively, are in communication with the oil-bearing formation 34 to be depleted.
- the output well 33 of the first formation 31 is connected by pipeline 37 to a heat-exchange device 38 while a second fluid in the heat exchange device 38 is led therefrom through pipe 39 down the input well 35 into the second formation 34 to be subjected to thermal recovery methods for hydrocarbons.
- water could be injected through input well 32 into the hot depleted deposit 31 where it absorbs heat and is vaporized to steam which is led to the surface through discharge well 33 and thence into the heat exchanger 38.
- the steam gives up its heat to evaporate or heat a second fluid, for example a hydrocarbon liquid, which is then injected through pipeline 39 into the input well 35 and thence into the oil-bearing formation 34.
- a second fluid for example a hydrocarbon liquid
- the method of the present invention may be carried out in either a continuous or intermittent manner. In either case it is not essential to the process that two wells be used for conveying a fluid into and out of a hot depleted formation in order to absorb the heat therefrom.
- FIGURE 5 illustrates an example where only one well is used in the hot depleted formation and another in the formation to be depleted.
- a cold heat-absorbing medium is pumped into well down through insulated pipe 86 past a packer 87 and into a hot depleted formation 88.
- the injected medium or fluid may flow either through naturally permeable rock or through artificially induced fractures up through formation 88 from which it absorbs heat. It is led back to the surface through annulus 89 and brought out outlet 90.
- the hot medium or fluid is then led or pumped through line 91 to well 92 in a second formation 95, which is to be depleted.
- the hot fluid is led down insulated pipe 93 past packer 94 and into formation from which it causes the thermal recovery of products which are carried up to the surface through annulus 96 and through outlet 97.
- FIGURE 4 illustrates an intermittent operation in which a cold fluid could be injected down pipe 41 of well 42 past packers 43, 44 and 45 and into a hot depleted formation 46.
- a valve 47 in a conduit 48 which is in communication between the lower hot depleted formation 46 and an upper oil-bearing undepleted formation 49, is closed.
- valve 50 in line 41 would be closed and valve 47 in conduit 48 would be opened to allow the hot fluid from formation 46 to flow up conduit 48 into the oil-bearing formation 49 to be heated.
- valves 51 and 52 at the wellhead would be closed.
- the hydrocarbons in the upper formation 49 had been heated to a temperature suflicient to reduce their viscosity, they would flow into the well 42 above the packer 44 and be removed therefrom, as by a pump 53 of any type well known to the art. While the oil-bearing formation 49 is illustrated as being above the hot depleted formation 46 in FIGURE 4, it is readily apparent that it could just as well be below the hot depleted formation 46 and a suitable piping arrangement made to heat the oil-bearing formation.
- the method of the present invention may be employed in various arrangements of wells which are in communication with one or more or the formations needed in carrying out the method of the present invention.
- FIGURE 3 an oil-bearing undepleted formation is illustrated as being positioned above a hot depleted formation 62.
- One well 63 is in communication between the surface of the earth with both of the formations 61 and 62 whereby a cold fluid is injected through pipe 64 past a casing packer 65 and into the lower hot formation 62 while at the same time hot oil may be produced up the annulus 66 between the pipe 64 and the casing 63.
- a second well 67 passes through both formations 61 and 62 and is in communication with both so that hot fluid from the lower formation 62 may be led upwardly to the upper oil-bearing formation 61 to heat the formation and drive oil therefrom.
- the second well 67 is either closed at the top or is provided with a packer 68 just above the upper oil-bearing formation 61.
- an intermediate well 69 may be provided in communication between the upper oil-bearing zone 61 and the earth surface.
- a cold fluid would be injected through pipe 64 down into the hot depleted formation 62 and thence along the formation to the output well 67 which would lead the heated fluid into the upper oil-bearing formation 61.
- the oil in the formation 61 would be driven therefrom through the intermediate production well 69, or would be driven into well 63 above the packer 65 and thence upwardly through the annulus 66 to be discharged through pipe 70 at the top of the well.
- the method of the present invention of using the heat in a depleted formation may be used in any other method which requires the injection of a hot heat-carrying medium or fluid into a formation. These methods may be continuous or intermittent. They may be one well or multiwell methods and may include, but are not limited to, steam soak, steam drive, hot water flood, hot solvent drive, underground pyrolysis, etc. The method may also be used to pre-heat a formation before utilizing an in situ combustion recovery method.
- a method of recovering hydrocarbons from a subsurface formation which comprises the steps of providing communication through a well between the surface of the earth and a first subsurface formation containing hydrocarbons,
- the method of claim 1 including the steps of adjusting the temperature of said fluid coming out of said heated first subsurface formation prior to conveying it to said second subsurface formation, and injecting it into said second subsurface formation to recover the hydrocarbons therefrom by thermal drive.
- a method of recovering hydrocarbons from a subsurface formation which comprises the steps of providing communication through a well between the surface of the earth and a first subsurface formation containing hydrocarbons, recovering hydrocarbons from said first subsurface formation by a thermal recovery method, completing said thermal recovery method in said first formation in a manner whereby a substantial amount of heat remains in said first formation, providing communication between said heated first subsurface formation and a second subsurface formation containing hydrocarbons, at least a portion of said communication being provided through a well, forcing fluid into and out of said heated first subsurface formation from which hydrocarbons have been recovered, said fluid having a temperature less than that of said heated formation at the time it is forced into said heated formation,
- a method of recovering hydrocarbons from a subsurface formation which comprises the steps of providing communication through a well between the surface of the earth and a first subsurface formation from which hydrocarbons have been recently recovered by a completed thermal recovery method whereby said formation retains a substantial amount of heat
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
Dec. 27, 1966 J. v. VOGEL 3,
THERMAL OIL RECOVERY Filed April 13, 1964 5 Sheets-Sheet 1 COLD HOT PRODUCED FLUID HYDROCARBON w 7 4 7 E s L Q f s s 3 l4 & II E UNDEPLETED A W H M .1 v FORMATION HOT DEPLETED FORMATION FIG. I
HEAT 1 PRODUCED I WATER STEAM EXCHANGER HYDROCARBON UNDEPLET FORMATiON FORMATION FIG. 2
HOT D PLETED |NVENTORI OHN V VOG EL HIS AGENT Dec. 27, 1966 J. v. VOGEL. 3,294,167
THERMAL OIL RECOVERY Filed April 13, 1964 5 Sheets-Sheet 2 FIG. 3
INVENTORI JOHN v. VOGEL BY. d n Q HIS AGENT Dec. 27, 1966 J. v. VOGEL THERMAL OIL RECOVERY 5 Sheets-Shet 3 Filed April 13, 1964 FIG. 5
INVENTOR'.
JOHN V. VOGEL H HIS AGENT underground hydrocarbon-bearing formations.
United States Patent Ofifice Patented Dec. 27, 1966 3,294,167 THERMAL GIL RECOVERY John V. Vogel, Houston, Tex., assignor to Shell Oil Company, New York, N.Y., a corporation of Delaware Filed Apr. 13, 1964, Ser. No. 359,200 7 Claims. (Cl. 16611) This invention relates to a method of recovering oil from underground formations and pertains more particularly to a method of driving oil from a first formation by thermal means, said first formation being positioned adjacent a second formation from which oil had been previously recovered by thermal means or methods.
It is well known that heat can be employed to recover hydrocarbons from underground formations through wells drilled in the underground petroleum deposits. Various methods have been developed over the years for the primary or secondary recovery of oil from underground formations by thermal means. The manner in which the hydrocarbons are recovered often depends upon the temperature to which they are heated and/or whether or not combustion takes place. Thus, hydrocarbons can be removed from an underground formation by heating the formation to a temperature sufiicient to reduce the viscosity of the hydrocarbon to a mobile condition whereby, upon reduction of pressure, the heated oil may flow back into the heat injection well, or alternatively may be driven to a second well, commonly known as a production well, by thermal drive means. At higher temperatures of heating, pyrolysis of the hydrocarbons may take place with the resulting products being driven through the formation and collected at the production well. Such action may take place during in situ combustion wherein the air and the fuel are injected in a formation and burned to heat the formation, or where merely air is injected into the formation at a temperature sufficient to promote underground combustion within the formation. Pyrolysis can also be caused to occur without in situ combustion by heating the underground formation with a hot heat-carrying medium such as steam, water, hydrocarbon liquids or vapors, and other liquids, gases or vapors.
In any of the well-known thermal production methods of underground formations, a substantial amount of heat is retained in the now depleted or substantially depleted In addition, those formations forming the cap and base rocks, that is, the formations above and below the former oil- 'bearing formation, absorb significant amounts of heat and stay hot for many months.
In some oil fields, especially those containing low grade and low viscosity oils which must be heated before it is possible to recover them from an underground formation, a primary consideration of the economic feasibility of recovering such an oil would be the cost of heating the oil-bearing formation.
It is therefore a primary object of the present invention to provide a method of recovering hydrocarbons from an underground formation by use of the thermal recovery method.
A further object of the present invention is to provide a method of recovering oil from an underground formation wherein a thermal recovery method is employed utilizing a hot fluid which has been heated by previously forcing it through a heat-bearing underground formation from which hydrocarbons, sulfur or other materials have previously been extracted.
Another object of the present invention is to produce two adjacent oil-bearing underground formations by thermal recovery means wherein first one formation is heated and the oil therein recovered therefrom and subsequently the second formation is heated by heat retained in the first formation so that the oil can subsequently be recovered from the second formation.
These and other objects of the invention will be understood from the following description taken with reference to the drawing, wherein FIGURE 1 is a diagrammatic view showing two adjacent oil fields or oil-bearing formations taken in longitudinal section and provided with a pair of wells each for carrying out the method of the present invention; and
FIGURES 2, 3, 4 and 5 are diagrammatic views showing other arrangements of heating equipment for carrying out the method of the present invention in adjacent oil-bearing formations which are shown in longitudinal section.
In accordance with the method of the present invention, hydrocarbons may be recovered from a subsurface formation by providing communication through a Well between the surface of the earth and a first subsurface formation containing hydrocarbons, recovering hydrocarbons from said first subsurface formation by a thermal recovery method, completing the thermal recovery method in the first formation in a manner whereby a substantial amount of heat remains in the first formation, providing communication between the heated first subsurface formation and a second subsurface formation containing hydrocarbons, forcing fluid into and out of the heated first subsurface formation whereby the temperature of the fluid is increased, conveying the fluid from out of the heated first subsurface formation and into a second subsurface formation to heat the hydrocarbons therein, and producing the hydrocarbons from the second subsurface formation.
As shown in FIGURE 1, a first subsurface formation 11, originally containing hydrocarbons, is in communication with the surface 12 of the earth through a pair of wells 13 and 14 which are preferably lined by well casing closed at the top and open or perforated at the bottom whereby a fluid may be forced down well 13, through the formation 11 and up well 14.
In the vicinity of the first subsurface formation 11, a second subsurface formation 21 containing hydrocarbons exists. This second subsurface hydrocarbon-containing formation 21 is also in communication with the surface 0 fthe earth through one or more wells 22 and 23 which are open or perforated at the bottom so that fluid may enter the hydrocarbon formation 21. In FIGURE 1 the wells 13 and 22 may be considered input wells while the wells 14 and 23 may be considered output wells. The output well 14 of the first subsurface formation 11 is in fluid communication with the input well 22 of the second subsurface formation 21 which contains hydrocarbons. If the two subsurface formations are relatively close to each other, the output well 14 may be connected to the input well 22 by a pipeline 24 which may be provided, if desired, with pumps (not shown) in order to convey any fluid in the pipeline a considerable distance.
FIGURE 1 of the drawing illustrates the method of the present invention wherein hydrocarbons have been recovered to a substantial degree from the first subsurface formation 11 by any suitable thermal recovery method wherein a substantial amount of heat is left in the first formation 11. Thus, with the pipeline 24 not being connected to well 22, air or a combination of air and fuel may be injected down well 13 to carry out an in situ combustion within the formation 11 so as to drive the hydrocarbon products therein out of the formation through the output well 14. Instead of carrying out an underground combustion in the first formation 11, a thermal fluid drive may be carried out wherein steam or hot water or a combination of both, or any other heat-carrying fluid, is injected down well 13 to reduce the viscosity of the hydrocarbons in the formation 11 and/ or to pyrolyze them and cause them to be produced from output well 14.
After the thermal recovery method in the subsurface formation 11 has been completed, the output well 14 is connected by means of pipeline 24 or any other suitable means to the input well 22 in communication with the second subsurface hydrocarbon-bearing formation 21 which represents an oil field independent of formation 11 and located some distance therefrom in which thermal recovery of the hydrocarbons is to be carried out. In carrying out the method of the present invention, a cold heat-absorbing medium is pumped through pipe 15 and down injection well 13 into the hot depleted formation 11. The injected medium or fluid may flow either through naturally permeable rock or through artificially induced fractures in the formation 11. It is not necessary that the injected fluid or medium contact all portions of the hot rock of the formation in order to recover heat therefrom. Heat will flow by conduction from the hot rock to cooler portions of the formation in immediate contact with the heat-absorbing medium. After absorbing heat from the rock in the first formation 11, the hot medium is led back to the surface through output well 14 and then transported through pipe 24 to input well 22 of the undepleted hydrocarbon-bearing formation 21. In some oil fields the depleted hot first formation furnishes all the heat required to heat the fluid sufliciently to carry out the thermal recovery method of the second undepleted formation 21. If more heat is required within the second formation 21, additional heat may be supplied to the fluid in pipeline 24 by any suitable means, as by a heater 26 positioned in the line. Alternatively, heat may be supplied to the underground formation 21 as necessary from other suitable sources well known to the art. If desired, partial combustion of the material in the second subsurface formation 21 may be carried out.
It is not necessary that the depleted first underground formation 11 and the second undepleted underground formation 21 be in different fields, formations or strata, or that they be separated by faults or impermeable structures, such as a salt dome. The two fields or formations 11 and 21 may, in fact, simply be portions of one continuous large deposit.
Any of several fluids may be employed as the heatabsorbing medium for use in accordance with the present invention. Various media may include, but are not limited to liquids, gases, and vapors, such as water, steam,
hydrocarbon liquids, hydrocarbon gases or vapors, air,
nitrogen, carbon dioxide, carbon monoxide, and other gases.
It is not essential to the basic invention that the same fluid or medium be injected into the hydrocarbon-bearing or undepleted formation as was used to absorb heat from the hot depleted formation. Thus, one fluid or medium could be used to absorb heat from the hot depleted formation and the heat picked up by the fluid could then be transferred by means of well-known heat-exchan-ged devices to another heat-carrying medium for injection into the undepleted or hydrocarbon-bearing formation. This modification of the method is illustrated in FIGURE 2 of the drawing showing a hot depleted formation 31 in the vicinity of a hydrocarbon-bearing undepleted formation 34. Input and output wells 32 and 33, respectively, are in communication between the earth surface and the hot depleted formation 31 while input and output wells 35 and 36, respectively, are in communication with the oil-bearing formation 34 to be depleted. The output well 33 of the first formation 31 is connected by pipeline 37 to a heat-exchange device 38 while a second fluid in the heat exchange device 38 is led therefrom through pipe 39 down the input well 35 into the second formation 34 to be subjected to thermal recovery methods for hydrocarbons. For example, water could be injected through input well 32 into the hot depleted deposit 31 where it absorbs heat and is vaporized to steam which is led to the surface through discharge well 33 and thence into the heat exchanger 38. In the heatexchanger 38, the steam gives up its heat to evaporate or heat a second fluid, for example a hydrocarbon liquid, which is then injected through pipeline 39 into the input well 35 and thence into the oil-bearing formation 34. The heated oil in the formation 34 is then driven out the discharge well 36.
The method of the present invention may be carried out in either a continuous or intermittent manner. In either case it is not essential to the process that two wells be used for conveying a fluid into and out of a hot depleted formation in order to absorb the heat therefrom.
FIGURE 5 illustrates an example where only one well is used in the hot depleted formation and another in the formation to be depleted. A cold heat-absorbing medium is pumped into well down through insulated pipe 86 past a packer 87 and into a hot depleted formation 88. The injected medium or fluid may flow either through naturally permeable rock or through artificially induced fractures up through formation 88 from which it absorbs heat. It is led back to the surface through annulus 89 and brought out outlet 90. The hot medium or fluid is then led or pumped through line 91 to well 92 in a second formation 95, which is to be depleted. The hot fluid is led down insulated pipe 93 past packer 94 and into formation from which it causes the thermal recovery of products which are carried up to the surface through annulus 96 and through outlet 97.
FIGURE 4 illustrates an intermittent operation in which a cold fluid could be injected down pipe 41 of well 42 past packers 43, 44 and 45 and into a hot depleted formation 46. During this period a valve 47 in a conduit 48, which is in communication between the lower hot depleted formation 46 and an upper oil-bearing undepleted formation 49, is closed. After the fluid injected into the hot formation 46 is at the desired pressure and temperature, valve 50 in line 41 would be closed and valve 47 in conduit 48 would be opened to allow the hot fluid from formation 46 to flow up conduit 48 into the oil-bearing formation 49 to be heated. At this time valves 51 and 52 at the wellhead would be closed. After the hydrocarbons in the upper formation 49 had been heated to a temperature suflicient to reduce their viscosity, they would flow into the well 42 above the packer 44 and be removed therefrom, as by a pump 53 of any type well known to the art. While the oil-bearing formation 49 is illustrated as being above the hot depleted formation 46 in FIGURE 4, it is readily apparent that it could just as well be below the hot depleted formation 46 and a suitable piping arrangement made to heat the oil-bearing formation.
The method of the present invention may be employed in various arrangements of wells which are in communication with one or more or the formations needed in carrying out the method of the present invention. In FIGURE 3 an oil-bearing undepleted formation is illustrated as being positioned above a hot depleted formation 62. One well 63 is in communication between the surface of the earth with both of the formations 61 and 62 whereby a cold fluid is injected through pipe 64 past a casing packer 65 and into the lower hot formation 62 while at the same time hot oil may be produced up the annulus 66 between the pipe 64 and the casing 63. A second well 67 passes through both formations 61 and 62 and is in communication with both so that hot fluid from the lower formation 62 may be led upwardly to the upper oil-bearing formation 61 to heat the formation and drive oil therefrom. The second well 67 is either closed at the top or is provided with a packer 68 just above the upper oil-bearing formation 61.
If desired, an intermediate well 69 may be provided in communication between the upper oil-bearing zone 61 and the earth surface. Thus, a cold fluid would be injected through pipe 64 down into the hot depleted formation 62 and thence along the formation to the output well 67 which would lead the heated fluid into the upper oil-bearing formation 61. The oil in the formation 61 would be driven therefrom through the intermediate production well 69, or would be driven into well 63 above the packer 65 and thence upwardly through the annulus 66 to be discharged through pipe 70 at the top of the well.
The method of the present invention of using the heat in a depleted formation may be used in any other method which requires the injection of a hot heat-carrying medium or fluid into a formation. These methods may be continuous or intermittent. They may be one well or multiwell methods and may include, but are not limited to, steam soak, steam drive, hot water flood, hot solvent drive, underground pyrolysis, etc. The method may also be used to pre-heat a formation before utilizing an in situ combustion recovery method.
By using the method of the present invention a high overall efficiency of heating formations and recovering hydrocarbons therefrom by thermal recovery method is achieved with savings of up to 60% in the cost of heating and depleting an oil-bearing reservoir. Where water is used as theheat absorbing medium, another advantage is enjoyed by eliminating any need for treating the water used in the drive or flood. Thus, impure water can be injected into a hot depleted formation where it is vaporized with the impurities carried by the water being left underground where they do not contaminate the oil-bearing formation to be treated.
I claim as my invention:
1. A method of recovering hydrocarbons from a subsurface formation which comprises the steps of providing communication through a well between the surface of the earth and a first subsurface formation containing hydrocarbons,
recovering hydrocarbons from said first subsurface formation by a thermal recovery method,
completing said thermal recovery method in said first formation in a manner whereby a substantial amount of heat remains in said first formation, providing communication between said heated first subsurface formation and a second subsurface formation containing hydrocarbons, at least a portion of said communication being provided through a well,
forcing fluid into and out of said heated first subsurface formation from which hydrocarbons have been recovered, said fluid having a temperature less than that of said heated formation at the time it is forced into said heated formation, conveying said fluid from out of said heated first subsurface formation and into said second subsurface formation to heat the hydrocarbons therein, and
producing said hydrocarbons from said second subsurface formation.
2. The method of claim 1 including the steps of adjusting the temperature of said fluid coming out of said heated first subsurface formation prior to conveying it to said second subsurface formation, and injecting it into said second subsurface formation to recover the hydrocarbons therefrom by thermal drive.
3. The method of claim 1 wherein the communication provided-between surface of the earth and the heated first subsurface formation and between said heated first subsurface formation and said second hydrocarbon-bearing formation is through a common well.
4. The method of claim 1 wherein said first and second subsurface formations are vertically displaced substantially one above the other.
5. The method of claim 1 wherein said first and second subsurface formations are laterally displaced one from the other and includes the step of conveying to the surface of the earth, said fluid coming out of said heated first subsurface formation is conveyed to the surface of the earth and thence laterally to a point above said second hydrocarbon-bearing formation and thence down to and into said second formation.
6. A method of recovering hydrocarbons from a subsurface formation which comprises the steps of providing communication through a well between the surface of the earth and a first subsurface formation containing hydrocarbons, recovering hydrocarbons from said first subsurface formation by a thermal recovery method, completing said thermal recovery method in said first formation in a manner whereby a substantial amount of heat remains in said first formation, providing communication between said heated first subsurface formation and a second subsurface formation containing hydrocarbons, at least a portion of said communication being provided through a well, forcing fluid into and out of said heated first subsurface formation from which hydrocarbons have been recovered, said fluid having a temperature less than that of said heated formation at the time it is forced into said heated formation,
conveying said fluid from out of said heated first subsurface formation and into heat-transfer communication with a second fluid to heat said second fluid,
injecting said second heated fluid into said second subsurface formation to heat the hydrocarbons therein and form a fluid drive to force said hydrocarbons from said second subsurface formation, and
producing said hydrocarbons from said second subsurface formation to said surface of the earth.
7. A method of recovering hydrocarbons from a subsurface formation which comprises the steps of providing communication through a well between the surface of the earth and a first subsurface formation from which hydrocarbons have been recently recovered by a completed thermal recovery method whereby said formation retains a substantial amount of heat,
providing communication between said heat-containing first subsurface formation and a second subsurface formation containing hydrocarbons at least a portion of said communication being provided through a well,
forcing fluid from the surface of the earth down to, into and out of said heat-containing first subsurface formation, said fluid having a temperature lessv than that of said heat-containing formation at the time it is forced thereinto,
conveying said fluid from out of said heat-containing formation and into said second subsurface formation to heat the hydrocarbons therein, and
producing said hydrocarbons from said second subsurface formation.
References Cited by the Examiner UNITED STATES PATENTS 2,584,605 2/1952 Merriam et a1 16611 3,163,215 12/1964 Stratton 166l1 X 3,167,120 1/1965 Pryor 16610 3,202,219 8/1965 Parker 16611 X CHARLES E. OCONNELL, Primary Examiner.
JACOB L. NACKENOFF, Examiner.
S. J. NOVOSAD, Assistant Examiner.
Claims (1)
- 7. A METHOD OF RECOVERING HYDROCARBONS FROM A SUBSURFACE FORMATION WHICH COMPRISES THE STEPS OF PROVIDING COMMUNICATION THROUGH A WELL BETWEEN THE SURFACE OF THE EARTH AND A FIRST SUBSURFACE FORMATION FROM WHICH HYDROCARBONS HAVE BEEN RECENTLY RECOVERED BY A COMPLETED THERMAL RECOVERY METHOD WHEREBY SAID FORMATION RETAINS A SUBSTANTIAL AMOUNT OF HEAT, PROVIDING COMMUNICATION BETWEEN SAID HEAT-CONTAINING FIRST SUBSURFACE FORMATION AND A SECOND SUBSURFACE FORMATION CONTAINING HYDROCARBONS AT LEAST A PORTION OF SAID COMMUNICATION BEING PROVIDED THROUGH A WELL, FORCING FLUID FROM THE SURFACE OF THE EARTH DOWN TO, INTO AND OUT OF SAID HEAT-CONTAINING FIRST SUBSURFACE FORMATION, SAID FLUID HAVING A TEMPERATURE LESS THAN THAT OF SAID HEAT-CONTAINING FORMATION AT THE TIME IT IS FORCED THEREINTO,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US359200A US3294167A (en) | 1964-04-13 | 1964-04-13 | Thermal oil recovery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US359200A US3294167A (en) | 1964-04-13 | 1964-04-13 | Thermal oil recovery |
Publications (1)
Publication Number | Publication Date |
---|---|
US3294167A true US3294167A (en) | 1966-12-27 |
Family
ID=23412756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US359200A Expired - Lifetime US3294167A (en) | 1964-04-13 | 1964-04-13 | Thermal oil recovery |
Country Status (1)
Country | Link |
---|---|
US (1) | US3294167A (en) |
Cited By (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3361202A (en) * | 1965-08-05 | 1968-01-02 | Phillips Petroleum Co | Process and apparatus for producing crude oil from separate strata |
US3379248A (en) * | 1965-12-10 | 1968-04-23 | Mobil Oil Corp | In situ combustion process utilizing waste heat |
US3421583A (en) * | 1967-08-30 | 1969-01-14 | Mobil Oil Corp | Recovering oil by cyclic steam injection combined with hot water drive |
US3425492A (en) * | 1966-01-10 | 1969-02-04 | Phillips Petroleum Co | Oil production by steam drive |
US3430700A (en) * | 1966-12-16 | 1969-03-04 | Pan American Petroleum Corp | Recovery of petroleum by thermal methods involving transfer of heat from one section of an oil-bearing formation to another |
US3442333A (en) * | 1967-10-11 | 1969-05-06 | Phillips Petroleum Co | Wellbore visbreaking of heavy crude oils |
US3498381A (en) * | 1968-07-25 | 1970-03-03 | Marathon Oil Co | Method for injection of hot fluids into an underground formation |
US3512585A (en) * | 1968-08-08 | 1970-05-19 | Texaco Inc | Method of recovering hydrocarbons by in situ vaporization of connate water |
US3524504A (en) * | 1968-08-08 | 1970-08-18 | Texaco Inc | Well stimulation with vaporization of formation water |
US3679264A (en) * | 1969-10-22 | 1972-07-25 | Allen T Van Huisen | Geothermal in situ mining and retorting system |
US3765477A (en) * | 1970-12-21 | 1973-10-16 | Huisen A Van | Geothermal-nuclear energy release and recovery system |
US3805885A (en) * | 1970-06-18 | 1974-04-23 | Huisen A Van | Earth heat energy displacement and recovery system |
US3809159A (en) * | 1972-10-02 | 1974-05-07 | Continental Oil Co | Process for simultaneously increasing recovery and upgrading oil in a reservoir |
US3827243A (en) * | 1972-09-01 | 1974-08-06 | Texaco Development Corp | Method for recovering geothermal energy |
US3972372A (en) * | 1975-03-10 | 1976-08-03 | Fisher Sidney T | Exraction of hydrocarbons in situ from underground hydrocarbon deposits |
US4008762A (en) * | 1976-02-26 | 1977-02-22 | Fisher Sidney T | Extraction of hydrocarbons in situ from underground hydrocarbon deposits |
US4018279A (en) * | 1975-11-12 | 1977-04-19 | Reynolds Merrill J | In situ coal combustion heat recovery method |
US4018280A (en) * | 1975-12-10 | 1977-04-19 | Mobil Oil Corporation | Process for in situ retorting of oil shale |
US4078608A (en) * | 1975-11-26 | 1978-03-14 | Texaco Inc. | Thermal oil recovery method |
US4099566A (en) * | 1974-06-26 | 1978-07-11 | Texaco Exploration Canada Ltd. | Vicous oil recovery method |
US4148358A (en) * | 1977-12-16 | 1979-04-10 | Occidental Research Corporation | Oxidizing hydrocarbons, hydrogen, and carbon monoxide |
US4161981A (en) * | 1978-02-13 | 1979-07-24 | Texaco Development Corporation | Method for recovering hydrocarbons |
US4174752A (en) * | 1978-01-24 | 1979-11-20 | Dale Fuqua | Secondary recovery method and system for oil wells using solar energy |
US4199028A (en) * | 1978-11-22 | 1980-04-22 | Conoco, Inc. | Enhanced recovery with geopressured water resource |
US4232902A (en) * | 1979-02-09 | 1980-11-11 | Ppg Industries, Inc. | Solution mining water soluble salts at high temperatures |
US4262745A (en) * | 1979-12-14 | 1981-04-21 | Exxon Production Research Company | Steam stimulation process for recovering heavy oil |
US4289204A (en) * | 1979-05-03 | 1981-09-15 | Sun Tech Energy Corporation | Solar heat treating of well fluids |
US4344483A (en) * | 1981-09-08 | 1982-08-17 | Fisher Charles B | Multiple-site underground magnetic heating of hydrocarbons |
US4401163A (en) * | 1980-12-29 | 1983-08-30 | The Standard Oil Company | Modified in situ retorting of oil shale |
US4552216A (en) * | 1984-06-21 | 1985-11-12 | Atlantic Richfield Company | Method of producing a stratified viscous oil reservoir |
US5860475A (en) * | 1994-04-28 | 1999-01-19 | Amoco Corporation | Mixed well steam drive drainage process |
WO2001081239A2 (en) * | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In situ recovery from a hydrocarbon containing formation |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US7032660B2 (en) | 2001-04-24 | 2006-04-25 | Shell Oil Company | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US20080023197A1 (en) * | 2006-07-25 | 2008-01-31 | Shurtleff J K | Apparatus, system, and method for in-situ extraction of hydrocarbons |
US20080257552A1 (en) * | 2007-04-17 | 2008-10-23 | Shurtleff J Kevin | Apparatus, system, and method for in-situ extraction of hydrocarbons |
US20090260823A1 (en) * | 2008-04-18 | 2009-10-22 | Robert George Prince-Wright | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US7631691B2 (en) | 2003-06-24 | 2009-12-15 | Exxonmobil Upstream Research Company | Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons |
US20090321417A1 (en) * | 2007-04-20 | 2009-12-31 | David Burns | Floating insulated conductors for heating subsurface formations |
US7640987B2 (en) | 2005-08-17 | 2010-01-05 | Halliburton Energy Services, Inc. | Communicating fluids with a heated-fluid generation system |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7669657B2 (en) | 2006-10-13 | 2010-03-02 | Exxonmobil Upstream Research Company | Enhanced shale oil production by in situ heating using hydraulically fractured producing wells |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7770643B2 (en) | 2006-10-10 | 2010-08-10 | Halliburton Energy Services, Inc. | Hydrocarbon recovery using fluids |
US7809538B2 (en) | 2006-01-13 | 2010-10-05 | Halliburton Energy Services, Inc. | Real time monitoring and control of thermal recovery operations for heavy oil reservoirs |
US7832482B2 (en) | 2006-10-10 | 2010-11-16 | Halliburton Energy Services, Inc. | Producing resources using steam injection |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US8082995B2 (en) | 2007-12-10 | 2011-12-27 | Exxonmobil Upstream Research Company | Optimization of untreated oil shale geometry to control subsidence |
US8087460B2 (en) | 2007-03-22 | 2012-01-03 | Exxonmobil Upstream Research Company | Granular electrical connections for in situ formation heating |
US8104537B2 (en) | 2006-10-13 | 2012-01-31 | Exxonmobil Upstream Research Company | Method of developing subsurface freeze zone |
US8122955B2 (en) | 2007-05-15 | 2012-02-28 | Exxonmobil Upstream Research Company | Downhole burners for in situ conversion of organic-rich rock formations |
US8146664B2 (en) | 2007-05-25 | 2012-04-03 | Exxonmobil Upstream Research Company | Utilization of low BTU gas generated during in situ heating of organic-rich rock |
US8151877B2 (en) | 2007-05-15 | 2012-04-10 | Exxonmobil Upstream Research Company | Downhole burner wells for in situ conversion of organic-rich rock formations |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US8151884B2 (en) | 2006-10-13 | 2012-04-10 | Exxonmobil Upstream Research Company | Combined development of oil shale by in situ heating with a deeper hydrocarbon resource |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US8230929B2 (en) | 2008-05-23 | 2012-07-31 | Exxonmobil Upstream Research Company | Methods of producing hydrocarbons for substantially constant composition gas generation |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US8540020B2 (en) | 2009-05-05 | 2013-09-24 | Exxonmobil Upstream Research Company | Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources |
US8596355B2 (en) | 2003-06-24 | 2013-12-03 | Exxonmobil Upstream Research Company | Optimized well spacing for in situ shale oil development |
US8616279B2 (en) | 2009-02-23 | 2013-12-31 | Exxonmobil Upstream Research Company | Water treatment following shale oil production by in situ heating |
US8616280B2 (en) | 2010-08-30 | 2013-12-31 | Exxonmobil Upstream Research Company | Wellbore mechanical integrity for in situ pyrolysis |
US8622133B2 (en) | 2007-03-22 | 2014-01-07 | Exxonmobil Upstream Research Company | Resistive heater for in situ formation heating |
US8622127B2 (en) | 2010-08-30 | 2014-01-07 | Exxonmobil Upstream Research Company | Olefin reduction for in situ pyrolysis oil generation |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8641150B2 (en) | 2006-04-21 | 2014-02-04 | Exxonmobil Upstream Research Company | In situ co-development of oil shale with mineral recovery |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8770284B2 (en) | 2012-05-04 | 2014-07-08 | Exxonmobil Upstream Research Company | Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8863839B2 (en) | 2009-12-17 | 2014-10-21 | Exxonmobil Upstream Research Company | Enhanced convection for in situ pyrolysis of organic-rich rock formations |
US8875789B2 (en) | 2007-05-25 | 2014-11-04 | Exxonmobil Upstream Research Company | Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US20150144345A1 (en) * | 2013-11-22 | 2015-05-28 | Cenovus Energy Inc. | Waste heat recovery from depleted reservoir |
US20150144337A1 (en) * | 2013-11-22 | 2015-05-28 | Cenovus Energy Inc. | Waste heat recovery from depleted reservoir |
US9080441B2 (en) | 2011-11-04 | 2015-07-14 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US9394772B2 (en) | 2013-11-07 | 2016-07-19 | Exxonmobil Upstream Research Company | Systems and methods for in situ resistive heating of organic matter in a subterranean formation |
US9512699B2 (en) | 2013-10-22 | 2016-12-06 | Exxonmobil Upstream Research Company | Systems and methods for regulating an in situ pyrolysis process |
US9644466B2 (en) | 2014-11-21 | 2017-05-09 | Exxonmobil Upstream Research Company | Method of recovering hydrocarbons within a subsurface formation using electric current |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US10487636B2 (en) | 2017-07-27 | 2019-11-26 | Exxonmobil Upstream Research Company | Enhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes |
US11002123B2 (en) | 2017-08-31 | 2021-05-11 | Exxonmobil Upstream Research Company | Thermal recovery methods for recovering viscous hydrocarbons from a subterranean formation |
US11142681B2 (en) | 2017-06-29 | 2021-10-12 | Exxonmobil Upstream Research Company | Chasing solvent for enhanced recovery processes |
US11261725B2 (en) | 2017-10-24 | 2022-03-01 | Exxonmobil Upstream Research Company | Systems and methods for estimating and controlling liquid level using periodic shut-ins |
US20240093578A1 (en) * | 2022-09-20 | 2024-03-21 | Ergo Exergy Technologies Inc. | Quenching and/or sequestering process fluids within underground carbonaceous formations, and associated systems and methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2584605A (en) * | 1948-04-14 | 1952-02-05 | Edmund S Merriam | Thermal drive method for recovery of oil |
US3163215A (en) * | 1961-12-04 | 1964-12-29 | Phillips Petroleum Co | Producing plural subterranean strata by in situ combustion and fluid drive |
US3167120A (en) * | 1961-06-15 | 1965-01-26 | Phillips Petroleum Co | Recovery of crude petroleum from plural strata by hot fluid drive |
US3202219A (en) * | 1962-02-09 | 1965-08-24 | Phillips Petroleum Co | Apparatus for protection of in situ combustion wells |
-
1964
- 1964-04-13 US US359200A patent/US3294167A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2584605A (en) * | 1948-04-14 | 1952-02-05 | Edmund S Merriam | Thermal drive method for recovery of oil |
US3167120A (en) * | 1961-06-15 | 1965-01-26 | Phillips Petroleum Co | Recovery of crude petroleum from plural strata by hot fluid drive |
US3163215A (en) * | 1961-12-04 | 1964-12-29 | Phillips Petroleum Co | Producing plural subterranean strata by in situ combustion and fluid drive |
US3202219A (en) * | 1962-02-09 | 1965-08-24 | Phillips Petroleum Co | Apparatus for protection of in situ combustion wells |
Cited By (247)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3361202A (en) * | 1965-08-05 | 1968-01-02 | Phillips Petroleum Co | Process and apparatus for producing crude oil from separate strata |
US3379248A (en) * | 1965-12-10 | 1968-04-23 | Mobil Oil Corp | In situ combustion process utilizing waste heat |
US3425492A (en) * | 1966-01-10 | 1969-02-04 | Phillips Petroleum Co | Oil production by steam drive |
US3430700A (en) * | 1966-12-16 | 1969-03-04 | Pan American Petroleum Corp | Recovery of petroleum by thermal methods involving transfer of heat from one section of an oil-bearing formation to another |
US3421583A (en) * | 1967-08-30 | 1969-01-14 | Mobil Oil Corp | Recovering oil by cyclic steam injection combined with hot water drive |
US3442333A (en) * | 1967-10-11 | 1969-05-06 | Phillips Petroleum Co | Wellbore visbreaking of heavy crude oils |
US3498381A (en) * | 1968-07-25 | 1970-03-03 | Marathon Oil Co | Method for injection of hot fluids into an underground formation |
US3524504A (en) * | 1968-08-08 | 1970-08-18 | Texaco Inc | Well stimulation with vaporization of formation water |
US3512585A (en) * | 1968-08-08 | 1970-05-19 | Texaco Inc | Method of recovering hydrocarbons by in situ vaporization of connate water |
US3679264A (en) * | 1969-10-22 | 1972-07-25 | Allen T Van Huisen | Geothermal in situ mining and retorting system |
US3805885A (en) * | 1970-06-18 | 1974-04-23 | Huisen A Van | Earth heat energy displacement and recovery system |
US3765477A (en) * | 1970-12-21 | 1973-10-16 | Huisen A Van | Geothermal-nuclear energy release and recovery system |
US3827243A (en) * | 1972-09-01 | 1974-08-06 | Texaco Development Corp | Method for recovering geothermal energy |
US3809159A (en) * | 1972-10-02 | 1974-05-07 | Continental Oil Co | Process for simultaneously increasing recovery and upgrading oil in a reservoir |
US4099566A (en) * | 1974-06-26 | 1978-07-11 | Texaco Exploration Canada Ltd. | Vicous oil recovery method |
US3972372A (en) * | 1975-03-10 | 1976-08-03 | Fisher Sidney T | Exraction of hydrocarbons in situ from underground hydrocarbon deposits |
US4018279A (en) * | 1975-11-12 | 1977-04-19 | Reynolds Merrill J | In situ coal combustion heat recovery method |
US4089373A (en) * | 1975-11-12 | 1978-05-16 | Reynolds Merrill J | Situ coal combustion heat recovery method |
US4078608A (en) * | 1975-11-26 | 1978-03-14 | Texaco Inc. | Thermal oil recovery method |
US4018280A (en) * | 1975-12-10 | 1977-04-19 | Mobil Oil Corporation | Process for in situ retorting of oil shale |
US4008762A (en) * | 1976-02-26 | 1977-02-22 | Fisher Sidney T | Extraction of hydrocarbons in situ from underground hydrocarbon deposits |
US4148358A (en) * | 1977-12-16 | 1979-04-10 | Occidental Research Corporation | Oxidizing hydrocarbons, hydrogen, and carbon monoxide |
US4174752A (en) * | 1978-01-24 | 1979-11-20 | Dale Fuqua | Secondary recovery method and system for oil wells using solar energy |
US4161981A (en) * | 1978-02-13 | 1979-07-24 | Texaco Development Corporation | Method for recovering hydrocarbons |
US4199028A (en) * | 1978-11-22 | 1980-04-22 | Conoco, Inc. | Enhanced recovery with geopressured water resource |
US4232902A (en) * | 1979-02-09 | 1980-11-11 | Ppg Industries, Inc. | Solution mining water soluble salts at high temperatures |
US4289204A (en) * | 1979-05-03 | 1981-09-15 | Sun Tech Energy Corporation | Solar heat treating of well fluids |
US4262745A (en) * | 1979-12-14 | 1981-04-21 | Exxon Production Research Company | Steam stimulation process for recovering heavy oil |
US4401163A (en) * | 1980-12-29 | 1983-08-30 | The Standard Oil Company | Modified in situ retorting of oil shale |
US4344483A (en) * | 1981-09-08 | 1982-08-17 | Fisher Charles B | Multiple-site underground magnetic heating of hydrocarbons |
US4552216A (en) * | 1984-06-21 | 1985-11-12 | Atlantic Richfield Company | Method of producing a stratified viscous oil reservoir |
US5860475A (en) * | 1994-04-28 | 1999-01-19 | Amoco Corporation | Mixed well steam drive drainage process |
US6739394B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | Production of synthesis gas from a hydrocarbon containing formation |
GB2379469B (en) * | 2000-04-24 | 2004-09-29 | Shell Int Research | In situ recovery from a hydrocarbon containing formation |
GB2379469A (en) * | 2000-04-24 | 2003-03-12 | Shell Int Research | In situ recovery from a hydrocarbon containing formation |
US6581684B2 (en) | 2000-04-24 | 2003-06-24 | Shell Oil Company | In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6588503B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In Situ thermal processing of a coal formation to control product composition |
US6591907B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a coal formation with a selected vitrinite reflectance |
US6591906B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content |
US6607033B2 (en) | 2000-04-24 | 2003-08-19 | Shell Oil Company | In Situ thermal processing of a coal formation to produce a condensate |
US6609570B2 (en) | 2000-04-24 | 2003-08-26 | Shell Oil Company | In situ thermal processing of a coal formation and ammonia production |
US6688387B1 (en) | 2000-04-24 | 2004-02-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6702016B2 (en) | 2000-04-24 | 2004-03-09 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer |
US6708758B2 (en) | 2000-04-24 | 2004-03-23 | Shell Oil Company | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US6712136B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US6712135B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation in reducing environment |
US6712137B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6715549B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US6715547B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation |
US6719047B2 (en) | 2000-04-24 | 2004-04-13 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment |
US6722431B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US6722430B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US6722429B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US6725921B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation by controlling a pressure of the formation |
US6725920B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US6725928B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation using a distributed combustor |
US6729395B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells |
US6729401B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US6729397B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US6729396B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range |
US6732795B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material |
US6732796B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US6732794B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US6736215B2 (en) | 2000-04-24 | 2004-05-18 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration |
WO2001081239A2 (en) * | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In situ recovery from a hydrocarbon containing formation |
US6739393B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | In situ thermal processing of a coal formation and tuning production |
US6742587B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US6742589B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US6742588B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US6745831B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US6745837B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US6745832B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | Situ thermal processing of a hydrocarbon containing formation to control product composition |
US6749021B2 (en) | 2000-04-24 | 2004-06-15 | Shell Oil Company | In situ thermal processing of a coal formation using a controlled heating rate |
US6752210B2 (en) | 2000-04-24 | 2004-06-22 | Shell Oil Company | In situ thermal processing of a coal formation using heat sources positioned within open wellbores |
US6758268B2 (en) | 2000-04-24 | 2004-07-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate |
US6761216B2 (en) | 2000-04-24 | 2004-07-13 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas |
US6763886B2 (en) | 2000-04-24 | 2004-07-20 | Shell Oil Company | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US6769485B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ production of synthesis gas from a coal formation through a heat source wellbore |
US6769483B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US6789625B2 (en) | 2000-04-24 | 2004-09-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
WO2001081239A3 (en) * | 2000-04-24 | 2002-05-23 | Shell Oil Co | In situ recovery from a hydrocarbon containing formation |
US6805195B2 (en) | 2000-04-24 | 2004-10-19 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
US6820688B2 (en) | 2000-04-24 | 2004-11-23 | Shell Oil Company | In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio |
US6994168B2 (en) | 2000-04-24 | 2006-02-07 | Scott Lee Wellington | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US7032660B2 (en) | 2001-04-24 | 2006-04-25 | Shell Oil Company | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US8596355B2 (en) | 2003-06-24 | 2013-12-03 | Exxonmobil Upstream Research Company | Optimized well spacing for in situ shale oil development |
US20100078169A1 (en) * | 2003-06-24 | 2010-04-01 | Symington William A | Methods of Treating Suberranean Formation To Convert Organic Matter Into Producible Hydrocarbons |
US7631691B2 (en) | 2003-06-24 | 2009-12-15 | Exxonmobil Upstream Research Company | Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US7640987B2 (en) | 2005-08-17 | 2010-01-05 | Halliburton Energy Services, Inc. | Communicating fluids with a heated-fluid generation system |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US7809538B2 (en) | 2006-01-13 | 2010-10-05 | Halliburton Energy Services, Inc. | Real time monitoring and control of thermal recovery operations for heavy oil reservoirs |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US8641150B2 (en) | 2006-04-21 | 2014-02-04 | Exxonmobil Upstream Research Company | In situ co-development of oil shale with mineral recovery |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US20080023197A1 (en) * | 2006-07-25 | 2008-01-31 | Shurtleff J K | Apparatus, system, and method for in-situ extraction of hydrocarbons |
US8205674B2 (en) | 2006-07-25 | 2012-06-26 | Mountain West Energy Inc. | Apparatus, system, and method for in-situ extraction of hydrocarbons |
US7832482B2 (en) | 2006-10-10 | 2010-11-16 | Halliburton Energy Services, Inc. | Producing resources using steam injection |
US7770643B2 (en) | 2006-10-10 | 2010-08-10 | Halliburton Energy Services, Inc. | Hydrocarbon recovery using fluids |
US8104537B2 (en) | 2006-10-13 | 2012-01-31 | Exxonmobil Upstream Research Company | Method of developing subsurface freeze zone |
US8151884B2 (en) | 2006-10-13 | 2012-04-10 | Exxonmobil Upstream Research Company | Combined development of oil shale by in situ heating with a deeper hydrocarbon resource |
US7669657B2 (en) | 2006-10-13 | 2010-03-02 | Exxonmobil Upstream Research Company | Enhanced shale oil production by in situ heating using hydraulically fractured producing wells |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US8087460B2 (en) | 2007-03-22 | 2012-01-03 | Exxonmobil Upstream Research Company | Granular electrical connections for in situ formation heating |
US8622133B2 (en) | 2007-03-22 | 2014-01-07 | Exxonmobil Upstream Research Company | Resistive heater for in situ formation heating |
US9347302B2 (en) | 2007-03-22 | 2016-05-24 | Exxonmobil Upstream Research Company | Resistive heater for in situ formation heating |
US20080257552A1 (en) * | 2007-04-17 | 2008-10-23 | Shurtleff J Kevin | Apparatus, system, and method for in-situ extraction of hydrocarbons |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US8791396B2 (en) * | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US20090321417A1 (en) * | 2007-04-20 | 2009-12-31 | David Burns | Floating insulated conductors for heating subsurface formations |
US8151877B2 (en) | 2007-05-15 | 2012-04-10 | Exxonmobil Upstream Research Company | Downhole burner wells for in situ conversion of organic-rich rock formations |
US8122955B2 (en) | 2007-05-15 | 2012-02-28 | Exxonmobil Upstream Research Company | Downhole burners for in situ conversion of organic-rich rock formations |
US8146664B2 (en) | 2007-05-25 | 2012-04-03 | Exxonmobil Upstream Research Company | Utilization of low BTU gas generated during in situ heating of organic-rich rock |
US8875789B2 (en) | 2007-05-25 | 2014-11-04 | Exxonmobil Upstream Research Company | Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US8082995B2 (en) | 2007-12-10 | 2011-12-27 | Exxonmobil Upstream Research Company | Optimization of untreated oil shale geometry to control subsidence |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20090260823A1 (en) * | 2008-04-18 | 2009-10-22 | Robert George Prince-Wright | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US20090260824A1 (en) * | 2008-04-18 | 2009-10-22 | David Booth Burns | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8230929B2 (en) | 2008-05-23 | 2012-07-31 | Exxonmobil Upstream Research Company | Methods of producing hydrocarbons for substantially constant composition gas generation |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US8616279B2 (en) | 2009-02-23 | 2013-12-31 | Exxonmobil Upstream Research Company | Water treatment following shale oil production by in situ heating |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US8540020B2 (en) | 2009-05-05 | 2013-09-24 | Exxonmobil Upstream Research Company | Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources |
US8863839B2 (en) | 2009-12-17 | 2014-10-21 | Exxonmobil Upstream Research Company | Enhanced convection for in situ pyrolysis of organic-rich rock formations |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US8616280B2 (en) | 2010-08-30 | 2013-12-31 | Exxonmobil Upstream Research Company | Wellbore mechanical integrity for in situ pyrolysis |
US8622127B2 (en) | 2010-08-30 | 2014-01-07 | Exxonmobil Upstream Research Company | Olefin reduction for in situ pyrolysis oil generation |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US9080441B2 (en) | 2011-11-04 | 2015-07-14 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US8770284B2 (en) | 2012-05-04 | 2014-07-08 | Exxonmobil Upstream Research Company | Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material |
US9512699B2 (en) | 2013-10-22 | 2016-12-06 | Exxonmobil Upstream Research Company | Systems and methods for regulating an in situ pyrolysis process |
US9394772B2 (en) | 2013-11-07 | 2016-07-19 | Exxonmobil Upstream Research Company | Systems and methods for in situ resistive heating of organic matter in a subterranean formation |
US20150144337A1 (en) * | 2013-11-22 | 2015-05-28 | Cenovus Energy Inc. | Waste heat recovery from depleted reservoir |
US9562424B2 (en) * | 2013-11-22 | 2017-02-07 | Cenovus Energy Inc. | Waste heat recovery from depleted reservoir |
US20150144345A1 (en) * | 2013-11-22 | 2015-05-28 | Cenovus Energy Inc. | Waste heat recovery from depleted reservoir |
US9644466B2 (en) | 2014-11-21 | 2017-05-09 | Exxonmobil Upstream Research Company | Method of recovering hydrocarbons within a subsurface formation using electric current |
US9739122B2 (en) | 2014-11-21 | 2017-08-22 | Exxonmobil Upstream Research Company | Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation |
US11142681B2 (en) | 2017-06-29 | 2021-10-12 | Exxonmobil Upstream Research Company | Chasing solvent for enhanced recovery processes |
US10487636B2 (en) | 2017-07-27 | 2019-11-26 | Exxonmobil Upstream Research Company | Enhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes |
US11002123B2 (en) | 2017-08-31 | 2021-05-11 | Exxonmobil Upstream Research Company | Thermal recovery methods for recovering viscous hydrocarbons from a subterranean formation |
US11261725B2 (en) | 2017-10-24 | 2022-03-01 | Exxonmobil Upstream Research Company | Systems and methods for estimating and controlling liquid level using periodic shut-ins |
US20240093578A1 (en) * | 2022-09-20 | 2024-03-21 | Ergo Exergy Technologies Inc. | Quenching and/or sequestering process fluids within underground carbonaceous formations, and associated systems and methods |
US12098621B2 (en) * | 2022-09-20 | 2024-09-24 | Ergo Exergy Technologies Inc. | Quenching and/or sequestering process fluids within underground carbonaceous formations, and associated systems and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3294167A (en) | Thermal oil recovery | |
US3358756A (en) | Method for in situ recovery of solid or semi-solid petroleum deposits | |
US3149670A (en) | In-situ heating process | |
US3513914A (en) | Method for producing shale oil from an oil shale formation | |
US2813583A (en) | Process for recovery of petroleum from sands and shale | |
US3259186A (en) | Secondary recovery process | |
US4640352A (en) | In-situ steam drive oil recovery process | |
US5860475A (en) | Mixed well steam drive drainage process | |
US3954140A (en) | Recovery of hydrocarbons by in situ thermal extraction | |
US3139928A (en) | Thermal process for in situ decomposition of oil shale | |
US3351132A (en) | Post-primary thermal method of recovering oil from oil wells and the like | |
US5273111A (en) | Laterally and vertically staggered horizontal well hydrocarbon recovery method | |
US2969226A (en) | Pendant parting petro pyrolysis process | |
US3741306A (en) | Method of producing hydrocarbons from oil shale formations | |
US3280909A (en) | Method of producing an oil bearing formation | |
US3333637A (en) | Petroleum recovery by gas-cock thermal backflow | |
US3441083A (en) | Method of recovering hydrocarbon fluids from a subterranean formation | |
EA010677B1 (en) | Hydrocarbon recovery from impermeable oil shales | |
US3055423A (en) | Controlling selective plugging of carbonaceous strata for controlled production of thermal drive | |
US20150041128A1 (en) | Methods and systems for downhole thermal energy for vertical wellbores | |
US3163215A (en) | Producing plural subterranean strata by in situ combustion and fluid drive | |
US3040809A (en) | Process for recovering viscous crude oil from unconsolidated formations | |
US3375870A (en) | Recovery of petroleum by thermal methods | |
US3993135A (en) | Thermal process for recovering viscous petroleum | |
US4120357A (en) | Method and apparatus for recovering viscous petroleum from thick tar sand |