US3206832A - Miniature photocell array and method of making the same - Google Patents
Miniature photocell array and method of making the same Download PDFInfo
- Publication number
- US3206832A US3206832A US111890A US11189061A US3206832A US 3206832 A US3206832 A US 3206832A US 111890 A US111890 A US 111890A US 11189061 A US11189061 A US 11189061A US 3206832 A US3206832 A US 3206832A
- Authority
- US
- United States
- Prior art keywords
- convolutes
- matrix
- wire
- conductive coating
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000011159 matrix material Substances 0.000 claims description 39
- 239000000463 material Substances 0.000 claims description 33
- 239000011248 coating agent Substances 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 25
- 238000004804 winding Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 description 11
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 6
- 238000003491 array Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000010445 mica Substances 0.000 description 4
- 229910052618 mica group Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000012799 electrically-conductive coating Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NVWBARWTDVQPJD-UHFFFAOYSA-N antimony(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[Sb+3].[Sb+3] NVWBARWTDVQPJD-UHFFFAOYSA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- CJOBVZJTOIVNNF-UHFFFAOYSA-N cadmium sulfide Chemical compound [Cd]=S CJOBVZJTOIVNNF-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/10—Screens on or from which an image or pattern is formed, picked up, converted or stored
- H01J29/36—Photoelectric screens; Charge-storage screens
- H01J29/38—Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49099—Coating resistive material on a base
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
- Y10T29/49158—Manufacturing circuit on or in base with molding of insulated base
- Y10T29/4916—Simultaneous circuit manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
- Y10T29/49162—Manufacturing circuit on or in base by using wire as conductive path
Definitions
- This invention relates to photocells, and in particular to groups of miniature photocells arrayed in close order.
- the invention relates also to methods of making miniature photocell arrays.
- the principal object of the invention is the provision of multiple photocells of miniature size, adapted for use in automation, data reduction, process control and the like where operation or control by means of a number of closely spaced and individual photocells is desired.
- Another object of the invention is to provide a compact photocell unit comprising large numbers of closely spaced and individual photocells, which may be arranged in line or in two-dimensional arrangement. In accordance with the present invention, for example, it is possible to provide a photocell array comprising more than 250,- 000 individual photocells per square inch.
- a further object of the invention is the provision of novel miniature photocell arrays wherein electrical connection to each individual photocell may be readily made in simple, quick fashion.
- the photocell arrays further, lend themselves to simplified and inexpensive manufacture, by mass production methods.
- Another object of the invention is to provide novel methods of manufacturing miniature photocell arrays, by simple and economical procedures. Further objects of the invention will be in part evident, and in part pointed out hereinafter.
- FIGURE 1 is an elevational sectional view of an exemplary embodiment of the present invention, on greatly enlarged and exaggerated scale, taken on the line 11 of FIGURE 2;
- FIGURE 2 is a transverse sectional view taken on the line 22 of FIGURE 1;
- FIGURES 3-8 are a series of views illustrating exemplary procedures for manufacturing photocells in accord ance with the invention.
- FIGURE 3 is a diagrammatic view illustrating the initial arrangement of wires for incorporation into a rigid matrix;
- FIGURE 4 is a sectional elevational view illustrating the relationship of the wires embedded in the matrix, after the assembly has been faced off flush in a plane perpendicular to the wire axes;
- FIGURE 5 is a view corresponding to FIGURE 4, but illustrating the assembly after the wire ends have been recessed;
- FIGURE 6 illustrates the assembly of FIGURE 5, after the face end thereof has been coated with photosensitive material
- FIGURE 7 illustrates the condition of the FIGURE 6 assembly, after removal of all photosensitive material except from the recessed wire ends
- FIGURE 8 illustrates the completed array, wherein the face end has been coated with a transparent conductive coating
- FIGURE 9 is a transverse sectional view of a two-di- "ice mensional array, wherein adjacent rows of wires are separated and insulated from each other by mica sheets, which have been incorporated in the matrix, and
- FIGURE 10 is a transverse sectional view of another two-dimensional array, wherein insulated wires are embedded in the matrix.
- FIGURES 1 and 2 illustrate a simple embodiment of the present invention, wherein a plurality of uninsulated wires 20 are arranged in closely spaced parallelism and embedded in an insulating matrix 22.
- the wires 20 may be commercial copper Wire of small diameter, for example .001 inch diameter, and spaced apart from each other about .001 inch, whereby there may be 500 wires to the lineal inch, or 250,000 to the square inch. It will be understood that wires of smaller diameter may be employed, with less spacing therebetween, whereby arrays with 1,000 or more wires to the inch may be constructed.
- the matrix 22 may be inorganic, for example ceramic cement, or organic, such as an aldehyde or an epoxy resin.
- corresponding ends 24 of the wires 20 terminate flush with the surface 26 of the matrix 22, the surface 26 being preferably normal to the wire axes.
- the surface 26 may be planar, curved or otherwise.
- the matrix surface 26 and the wire ends 24 are coated (see FIGURE 1) with a layer 28 of photosensitive material, and a transparent electrically conductive coating 30 overlies the photosensitive layer 28.
- the free wire ends 32 may be of any desired length, and are adapted to be separated from their fellows and individually connected to dilferent circuits.
- the conductive coating 30 serves as a common terminal, and an electrical connection there to may be made in conventional fashion, for example by soldering a wire thereto.
- metal plates 34 laterally confine the matrix 22, and if the conductive coating 30 overlies a portion of the metal plates, they may serve as ready means of connection to the conductive coating, as well as for mounting the array.
- each free wire end 32 constitutes the other terminal of an individual photocell, and may be connected to its own circuit.
- the wires 20 may be arranged in closely spaced parallelism, and then maintained or fixed in such relationship and mutually insulated from each other, by means of an insulating matrix, clamp or the like, in many ways.
- One simple procedure for arranging the wires is illustrated in FIGURE 3, wherein rods 36 are mounted in spaced parallelism, and a continuous wire 38 wound thereabout with desired spacing between adjacent convolutions.
- the spacing may be readily effected by using appropriately grooved or threaded rods, or two wires 38 may be wound simultaneously side by side, and one subsequently removed to leave the other in desired spaced relationship. If insulated wire is used, no spacing is necessary, and the convolutions may be wound and maintained side by side.
- the rods 36 for example, may be an inch or two in diameter, and arranged with axes spaced apart 10 or 12 inches, whereby the wire layers 40 are each disposed with adequate working space thereabout.
- Each wire layer 40 may then be embedded in a matrix.
- 42 indicates the area of application of a matrix cement, resin or the like, which is appropriately set or hardened after application.
- the wire layers may be out along lines such as the lines 44 and 46 in FIGURE 3, each layer thereby yielding a very large number of closely spaced Wires embedded at one end in the matrix.
- the sub-assembly may then be buffed or ground on its surface corresponding to the out line 44, whereby the matrix surface 26 and wire ends 24 are made flush and lie in a common plane, as illustrated in FIGURES 1 and 4.
- the photosensitive layer 28 is next applied to the surface composed of the matrix and wire ends 24. Any material having photosensitive characteristics may be employed, including photo-resistive, photo-voltaic and photo-emissive materials. Suitable materials, for example, include cadmium sulphide, cadmium selenide and antimony trisulphide.
- the coating may be applied in any manner adapted to effect a uniform thin material layer, including by evaporation, settling, spraying and the like.
- the term light is used as inclusive of radiation of any wave length, covering the entire range from ultra-violet to infra-red.
- the preferred method of applying the photosensitive layer 28 is by sputtering or evaporation in a vacuum.
- a layer thickness of the order of .0001 inch is useful, and the application may be controlled by evaporating a predetermined quantity of material, or by utilizing a glass plate as a visual control, the proper thickness of coating being detected by color change of the control plate.
- the photosensitive material is applied otherwise than by evaporation, it may be necessary to consolidate or sinter the photosensitive material layer, and this is accomplished advantageously by heating the coated assembly after application of the coating material to appropriate temperature.
- the photosensitive layer may then be sensitized by any conventional and appropriate method, e.g. by treatment with halogens and copper salts.
- the transparent conductive coating 30 is applied thereover.
- the term transparent connotes capability of passing light therethrough, and accordingly includes a degree of translucency.
- the conductive material may be, for example, titanium dioxide, silver or gold.
- a convenient method of application of the transparent conductive coating is by evaporation in a vacuum.
- gold for example, a layer 3 or 4 microns thick is suitable, and the thickness of the applied coating may be determined as previously described, by evaporating a predetermined quantity of the material under established conditions, or by visual observation of a glass slide control.
- the material after application to ionic bombardment in a vacuum it is advantageous to subject the material after application to ionic bombardment in a vacuum, to improve or modify the final characteristics of the photocells.
- bombardment may be carried out for a period of from about 30 seconds to about 2 minutes under a pressure of the order of 1 mm. of mercury.
- the bombardment may be effected before removal from the vacuum chamber.
- the overlying conductive coating is applied by evaporation, the ionic bombardment may be carried out in the vacuum chamber prior to the application of the conductive material.
- the face contact between the photosensitive material and the wires, and/or between the photosensitive material and the overlying conductive coating be ohmic or non-rectifying in character. This can be effectively accomplished by providing an extremely thin flash coating of indium or gallium therebetween, conveniently in the appropriate vacuum coating step.
- metal plates 34 are provided and the conductive coating 30 extends thereover, the metal plates may be utilized as a common terminal of all cells, each free wire end 32 constituting the other terminal of each individual cell. If
- each wire end 24 and the photosensitive material lying immediately thereover function as an individual photocell, the relative resistance between each cell and adjoining cells being so great that the array functions substantially as if the photosensitive layer were discontinuous between cells.
- FIGURES 5 through 8 A more sensitive and efficient construction is illustrated in FIGURES 5 through 8.
- the initial assembly of FIGURE 4 is treated to recess the wire ends slightly with respect to the matrix surface 26. This may be accomplished by selectively building up the matrix surface, as by coating, by mechanically removing the exposed ends of the wires, or most conveniently by subjecting the assembly to electrolysis or etching, as by application of an acid solution to the matrix surface 26, whereby the wire ends 24 are eroded to terminate slightly below the surface 26, effecting a shallow recess or pocket 50 above each wire end 24, as illustrated in FIGURE 5.
- the photosensitive layer 28 is then applied as previously described, the resultant coating, as illustrated in FIGURE 6, filling the pockets 50 and overlying the matrix surface 26.
- the depth of the pockets 50 may be predetermined to correspond to the desired thickness of photosensitive material, and the applied layer of photosensitive material may then be buffed or similarly mechanically finished down to the matrix surface 26, leaving, as illustrated in FIGURE 7, a thin disc 52 of photosensitive material in each pocket 50.
- the assembly may then be coated with a continuous layer 30 of the transparent conductive material, the final product being illustrated in FIGURE 8.
- the dots or discs 52 of photosensitive material are sensitized and processed as previously described, prior to application of the conductive coating 30.
- the construction illustrated in FIGURE 8 is advantageous in that the matrix walls defining each pocket 50 comprise both a lateral light barrier and an electrical barrier between adjacent photocells. Since the electrically conductive coating 30 is normally employed at ground signal potential, with the circuits normally used with this type of photocell assembly complete isolation between cells is provided.
- the photocell array is in line arrangement. Two-dimensional arrangements may be produced in similar fashion. For example, in winding wire layers 40 as described in connection with FIGURE 3, a plurality of layers may be wound, one on another. If uninsulated wires are used, a thin sheet of mica may be interposed between success1ve layers. As illustrated in FIGURE 9, if the mica sheets 54 approximate in thickness the diameter of the individual wires 20, a uniformly spaced arrangement may be effected as illustrated. As will be understood, the assembly of wire layers and mica sheets may be embedded in aplastic or ceramic medium, clamped, or otherwise rigidified and fixed in the desired arrangement.
- the numeral 56 in FIGURE 9 indicates an organic matrix material, such as epoxy resin.
- FIGURE 10 illustrates a two-dimensional arrangement involving insulated wires 60, each provided with an insulating coating 62. As illustrated, the insulated wires 60 are embedded in. a matrix 64.
- Method of making a miniature photocell array comprising the steps of winding a wire upon a mandrel to form a helix having a plurality of close fitting substantially parallel convolutes, embedding said convolutes in a hardenable insulating matrix material, hardening said material to provide a rigid insulating matrix, cutting through said convolutes in a direction substantially normal to the direction of wind of said convolutes to provide a matrix surface normal to the wire axis, removing the cut bound convolutes from said mandrel, removing the protruding ends of said cut convolutes so that said c011- volutes provide a common surface with said matrix surface, applying a thin, light permeable layer of photosensitive material to said common surface, and then applying a transparent conductive coating over said photosensitive material, said conductive coating constituting a common terminal for the individual photocells of the H array.
- Method of making a miniature photocell array comprising the steps of winding a wire upon a mandrel to form a helix having a plurality of close fitting ubstantially parallel convolutes embedding said convolutes in a hardenable insulating matrix material, hardening said material to provide a rigid insulating matrix, cutting through said convolutes in a direction substantially normal to the direction of wind of said convolutes to provide a matrix surface normal to the wire axis, removing the cut bound convolutes from said mandrel, removing the protruding ends of said cut convolutes so that said convolutes provide a common surface with said matrix surface, recessing the convolute ends in said matrix by etching, applying a thin layer of photosensitive material to said surface and to the recessed convolute ends, mechanically removing the photosensitive material from the matrix surface to leave a small disc of photosensitive material overlying each recessed convolute end, and then applying a transparent conductive coating over said photosensitive material and said matrix surface
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Hybrid Cells (AREA)
Description
P 1965 F. P. STROTHER 3,206,832
MINIATURE PHOTOCELL ARRAY AND METHOD OF MAKING THE SAME Original Filed Jan. 4. 1960 FRED F? STROTHER ATTORNEYS United States Patent 3,206,832 MINIATURE PHOTOCELL ARRAY AND METHOD OF MAKING THE SAME Fred I. Strother, Shawmut, Ala., assignor to West Point Manufacturing Company, West Point, Ga., a corporation of Georgia Original application .Ian. 4, 1960, Ser. No. 404. Divided and this application Apr. 28, 1961, Ser. No. 111,890
3 'Claims. ('Cl. 29155.5)
This application is a division of my copending application, Serial No. 404, filed January 4, 1960, now abandoned, and is entitled to the filing date thereof.
This invention relates to photocells, and in particular to groups of miniature photocells arrayed in close order. The invention relates also to methods of making miniature photocell arrays.
The principal object of the invention is the provision of multiple photocells of miniature size, adapted for use in automation, data reduction, process control and the like where operation or control by means of a number of closely spaced and individual photocells is desired. Another object of the invention is to provide a compact photocell unit comprising large numbers of closely spaced and individual photocells, which may be arranged in line or in two-dimensional arrangement. In accordance with the present invention, for example, it is possible to provide a photocell array comprising more than 250,- 000 individual photocells per square inch.
A further object of the invention is the provision of novel miniature photocell arrays wherein electrical connection to each individual photocell may be readily made in simple, quick fashion. The photocell arrays, further, lend themselves to simplified and inexpensive manufacture, by mass production methods.
Another object of the invention is to provide novel methods of manufacturing miniature photocell arrays, by simple and economical procedures. Further objects of the invention will be in part evident, and in part pointed out hereinafter.
The invention and the novel features thereof may best be made clear from the following description and the accompanying drawings, in which FIGURE 1 is an elevational sectional view of an exemplary embodiment of the present invention, on greatly enlarged and exaggerated scale, taken on the line 11 of FIGURE 2;
FIGURE 2 is a transverse sectional view taken on the line 22 of FIGURE 1;
FIGURES 3-8 are a series of views illustrating exemplary procedures for manufacturing photocells in accord ance with the invention. FIGURE 3 is a diagrammatic view illustrating the initial arrangement of wires for incorporation into a rigid matrix;
FIGURE 4 is a sectional elevational view illustrating the relationship of the wires embedded in the matrix, after the assembly has been faced off flush in a plane perpendicular to the wire axes;
FIGURE 5 is a view corresponding to FIGURE 4, but illustrating the assembly after the wire ends have been recessed;
FIGURE 6 illustrates the assembly of FIGURE 5, after the face end thereof has been coated with photosensitive material;
FIGURE 7 illustrates the condition of the FIGURE 6 assembly, after removal of all photosensitive material except from the recessed wire ends;
FIGURE 8 illustrates the completed array, wherein the face end has been coated with a transparent conductive coating;
FIGURE 9 is a transverse sectional view of a two-di- "ice mensional array, wherein adjacent rows of wires are separated and insulated from each other by mica sheets, which have been incorporated in the matrix, and
FIGURE 10 is a transverse sectional view of another two-dimensional array, wherein insulated wires are embedded in the matrix.
In the drawings, FIGURES 1 and 2 illustrate a simple embodiment of the present invention, wherein a plurality of uninsulated wires 20 are arranged in closely spaced parallelism and embedded in an insulating matrix 22. The wires 20 may be commercial copper Wire of small diameter, for example .001 inch diameter, and spaced apart from each other about .001 inch, whereby there may be 500 wires to the lineal inch, or 250,000 to the square inch. It will be understood that wires of smaller diameter may be employed, with less spacing therebetween, whereby arrays with 1,000 or more wires to the inch may be constructed. The matrix 22 may be inorganic, for example ceramic cement, or organic, such as an aldehyde or an epoxy resin.
In the embodiment illustrated, corresponding ends 24 of the wires 20 terminate flush with the surface 26 of the matrix 22, the surface 26 being preferably normal to the wire axes. As will be understood, the surface 26 may be planar, curved or otherwise.
The matrix surface 26 and the wire ends 24 are coated (see FIGURE 1) with a layer 28 of photosensitive material, and a transparent electrically conductive coating 30 overlies the photosensitive layer 28. The free wire ends 32 may be of any desired length, and are adapted to be separated from their fellows and individually connected to dilferent circuits. The conductive coating 30 serves as a common terminal, and an electrical connection there to may be made in conventional fashion, for example by soldering a wire thereto. In FIGURE 2, metal plates 34 laterally confine the matrix 22, and if the conductive coating 30 overlies a portion of the metal plates, they may serve as ready means of connection to the conductive coating, as well as for mounting the array. As will be understood, each free wire end 32 constitutes the other terminal of an individual photocell, and may be connected to its own circuit.
The wires 20 may be arranged in closely spaced parallelism, and then maintained or fixed in such relationship and mutually insulated from each other, by means of an insulating matrix, clamp or the like, in many ways. One simple procedure for arranging the wires is illustrated in FIGURE 3, wherein rods 36 are mounted in spaced parallelism, and a continuous wire 38 wound thereabout with desired spacing between adjacent convolutions. The spacing may be readily effected by using appropriately grooved or threaded rods, or two wires 38 may be wound simultaneously side by side, and one subsequently removed to leave the other in desired spaced relationship. If insulated wire is used, no spacing is necessary, and the convolutions may be wound and maintained side by side. The rods 36, for example, may be an inch or two in diameter, and arranged with axes spaced apart 10 or 12 inches, whereby the wire layers 40 are each disposed with adequate working space thereabout.
Each wire layer 40, preferably adjacent one of the rods 36, may then be embedded in a matrix. In the figure, 42 indicates the area of application of a matrix cement, resin or the like, which is appropriately set or hardened after application. After hardening of the matrix, the wire layers may be out along lines such as the lines 44 and 46 in FIGURE 3, each layer thereby yielding a very large number of closely spaced Wires embedded at one end in the matrix. The sub-assembly may then be buffed or ground on its surface corresponding to the out line 44, whereby the matrix surface 26 and wire ends 24 are made flush and lie in a common plane, as illustrated in FIGURES 1 and 4.
The photosensitive layer 28 is next applied to the surface composed of the matrix and wire ends 24. Any material having photosensitive characteristics may be employed, including photo-resistive, photo-voltaic and photo-emissive materials. Suitable materials, for example, include cadmium sulphide, cadmium selenide and antimony trisulphide. The coating may be applied in any manner adapted to effect a uniform thin material layer, including by evaporation, settling, spraying and the like. For the purposes of the present invention, it is preferred that the photosensitive layer 28 be so thin as to be light permeable. That is, in use some light must completely penetrate the layer 28 in order to provide requisite electric excitation. The term light is used as inclusive of radiation of any wave length, covering the entire range from ultra-violet to infra-red.
The preferred method of applying the photosensitive layer 28 is by sputtering or evaporation in a vacuum. In the case of cadmium selenide, for example, a layer thickness of the order of .0001 inch is useful, and the application may be controlled by evaporating a predetermined quantity of material, or by utilizing a glass plate as a visual control, the proper thickness of coating being detected by color change of the control plate.
If the photosensitive material is applied otherwise than by evaporation, it may be necessary to consolidate or sinter the photosensitive material layer, and this is accomplished advantageously by heating the coated assembly after application of the coating material to appropriate temperature. The photosensitive layer may then be sensitized by any conventional and appropriate method, e.g. by treatment with halogens and copper salts.
After sensitization of the photosensitive layer 28, the transparent conductive coating 30 is applied thereover. The term transparent connotes capability of passing light therethrough, and accordingly includes a degree of translucency. The conductive material may be, for example, titanium dioxide, silver or gold. A convenient method of application of the transparent conductive coating is by evaporation in a vacuum. In the case of gold, for example, a layer 3 or 4 microns thick is suitable, and the thickness of the applied coating may be determined as previously described, by evaporating a predetermined quantity of the material under established conditions, or by visual observation of a glass slide control.
In the case of some photosensitive materials, it is advantageous to subject the material after application to ionic bombardment in a vacuum, to improve or modify the final characteristics of the photocells. Typically, such bombardment may be carried out for a period of from about 30 seconds to about 2 minutes under a pressure of the order of 1 mm. of mercury. In the present case, if the photosensitive material is applied by evaporation, the bombardment may be effected before removal from the vacuum chamber. Similarly, if the overlying conductive coating is applied by evaporation, the ionic bombardment may be carried out in the vacuum chamber prior to the application of the conductive material.
In some applications, it is desirable that the face contact between the photosensitive material and the wires, and/or between the photosensitive material and the overlying conductive coating, be ohmic or non-rectifying in character. This can be effectively accomplished by providing an extremely thin flash coating of indium or gallium therebetween, conveniently in the appropriate vacuum coating step.
This completes the manufacture of the photocell array. If metal plates 34 are provided and the conductive coating 30 extends thereover, the metal plates may be utilized as a common terminal of all cells, each free wire end 32 constituting the other terminal of each individual cell. If
metal plates are not incorporated in the device, electrical contact with the conductive coating 30 may be made in any other conventional fashion. While in the example the photosensitive layer 28 is continuous, each wire end 24 and the photosensitive material lying immediately thereover function as an individual photocell, the relative resistance between each cell and adjoining cells being so great that the array functions substantially as if the photosensitive layer were discontinuous between cells.
A more sensitive and efficient construction is illustrated in FIGURES 5 through 8. In this embodiment, the initial assembly of FIGURE 4 is treated to recess the wire ends slightly with respect to the matrix surface 26. This may be accomplished by selectively building up the matrix surface, as by coating, by mechanically removing the exposed ends of the wires, or most conveniently by subjecting the assembly to electrolysis or etching, as by application of an acid solution to the matrix surface 26, whereby the wire ends 24 are eroded to terminate slightly below the surface 26, effecting a shallow recess or pocket 50 above each wire end 24, as illustrated in FIGURE 5.
The photosensitive layer 28 is then applied as previously described, the resultant coating, as illustrated in FIGURE 6, filling the pockets 50 and overlying the matrix surface 26. As will be recognized, the depth of the pockets 50 may be predetermined to correspond to the desired thickness of photosensitive material, and the applied layer of photosensitive material may then be buffed or similarly mechanically finished down to the matrix surface 26, leaving, as illustrated in FIGURE 7, a thin disc 52 of photosensitive material in each pocket 50.
The assembly may then be coated with a continuous layer 30 of the transparent conductive material, the final product being illustrated in FIGURE 8. Of course, the dots or discs 52 of photosensitive material are sensitized and processed as previously described, prior to application of the conductive coating 30. The construction illustrated in FIGURE 8 is advantageous in that the matrix walls defining each pocket 50 comprise both a lateral light barrier and an electrical barrier between adjacent photocells. Since the electrically conductive coating 30 is normally employed at ground signal potential, with the circuits normally used with this type of photocell assembly complete isolation between cells is provided.
In the illustrative embodiments described to this point, the photocell array is in line arrangement. Two-dimensional arrangements may be produced in similar fashion. For example, in winding wire layers 40 as described in connection with FIGURE 3, a plurality of layers may be wound, one on another. If uninsulated wires are used, a thin sheet of mica may be interposed between success1ve layers. As illustrated in FIGURE 9, if the mica sheets 54 approximate in thickness the diameter of the individual wires 20, a uniformly spaced arrangement may be effected as illustrated. As will be understood, the assembly of wire layers and mica sheets may be embedded in aplastic or ceramic medium, clamped, or otherwise rigidified and fixed in the desired arrangement. The numeral 56 in FIGURE 9 indicates an organic matrix material, such as epoxy resin.
As will be evident, if insulated wire 38 is utilized in winding wire layers 40 in the manner of FIGURE 3, the convolutions may be wound as closely as possible, without any spacing in between other than that incident to 1rregularities in the wire surface. In accordance with this procedure, successive layers may be wound one upon another without added insulation. FIGURE 10 illustrates a two-dimensional arrangement involving insulated wires 60, each provided with an insulating coating 62. As illustrated, the insulated wires 60 are embedded in. a matrix 64.
It will thus be seen that there has been provided by this invention an article and method in which the various objects hereinbefore set forth, together with many practical advantages, are successfully achieved. AS various possible embodiments may be made of the novel features of the above invention, all without departing from the scope thereof, it is to be understood that all matter hereinbefore set forth or shown in the accompanying drawings is to be interpreted as illustrative, and not in a limiting sense.
I claim:
1. Method of making a miniature photocell array comprising the steps of winding a wire upon a mandrel to form a helix having a plurality of close fitting substantially parallel convolutes, embedding said convolutes in a hardenable insulating matrix material, hardening said material to provide a rigid insulating matrix, cutting through said convolutes in a direction substantially normal to the direction of wind of said convolutes to provide a matrix surface normal to the wire axis, removing the cut bound convolutes from said mandrel, removing the protruding ends of said cut convolutes so that said c011- volutes provide a common surface with said matrix surface, applying a thin, light permeable layer of photosensitive material to said common surface, and then applying a transparent conductive coating over said photosensitive material, said conductive coating constituting a common terminal for the individual photocells of the H array.
2. Method as defined in claim 1, wherein said wire is wound upon spaced mandrels.
3. Method of making a miniature photocell array comprising the steps of winding a wire upon a mandrel to form a helix having a plurality of close fitting ubstantially parallel convolutes embedding said convolutes in a hardenable insulating matrix material, hardening said material to provide a rigid insulating matrix, cutting through said convolutes in a direction substantially normal to the direction of wind of said convolutes to provide a matrix surface normal to the wire axis, removing the cut bound convolutes from said mandrel, removing the protruding ends of said cut convolutes so that said convolutes provide a common surface with said matrix surface, recessing the convolute ends in said matrix by etching, applying a thin layer of photosensitive material to said surface and to the recessed convolute ends, mechanically removing the photosensitive material from the matrix surface to leave a small disc of photosensitive material overlying each recessed convolute end, and then applying a transparent conductive coating over said photosensitive material and said matrix surface, said conductive coating constituting a common terminal for the individual photocells of the array.
References Cited by the Examiner UNITED STATES PATENTS 1,880,289 10/32 Sukumlyn 33817 1,935,649 11/33 McCreary 338-17 2,480,113 8/49 Betzler 13889 X 2,580,293 12/51 Gier et al. 29-155.57 X 2,650,258 8/53 Pantchecknikoif.
2,899,659 8/59 McIlvaine 13889 X 3,019,489 2/62 Burg 29--155.5 3,03 0,852 4/ 62 Courtney-Pratt.
3,033,731 5/62 Cole.
3,079,672 3/63 Bain et a1. 29155.5 3,104,191 9/63 Hicks et al. 88-1 3,109,226 11/63 Harmon et al. 29-155.5
OTHER REFERENCES IBM Technical Disclosure Bulletin, vol. 1, #3, October 1958.
WHITMORE A. WILTZ, Primary Examiner. JOHN F. CAMPBELL, Examiner.
Claims (1)
1. METHOD OF MAKING A MINIATURE PHOTOCELL ARRAY COMPRISING THE STEPS OF WINDING A WIRE UPON A MANDREL TO FORM A HELIX HAVING A PLURALITY OF CLOSE FITTING SUBSTANTIALLY PARALLEL CONVOLUTES, EMBEDDING SAID, CONVOLUTES IN A HARDENABLE INSULATING MATRIX MATERIAL, HARDENING SAID MATERIAL TO PROVIDE A RIGHT INSULATING MATRIX, CUTTING THROUGH SAID CONVOLUTES IN A DIRECTION SUBSTANTIALLY NORMAL TO THE DIRECTION OF WIND OF SAID CONVOLUTES TO PROVIDE A MATRIX SURFACE NORMAL TO THE WIRE AXIS, REMOVING THE CUT BOUND CONVOLUTES FROM SAID MANDREL, REMOVING THE PROTRUDING ENDS OF SAID CUT CONVOLUTES SO THAT SAID CONVOLUTES PROVIDE A COMMON SURFACE WITH SAID MATRIX SURFACE, APPLYING A THIN, LIGHT PERMEABLE LAYER OF PHOTO SENSITIVE MATERIAL TO SAID COMMON SURFACE, AND THEN APPLYING A TRANSPARENT CONDUCTIVE COATING OVER SAID PHOTOSENSTITIVE MATERIAL, SAID CONDUCTIVE COATING CONSTITUTING A COMMON TERMINAL FOR THE INDIVIDUAL PHOTOCELLS OF THE ARRAY.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US111890A US3206832A (en) | 1960-01-04 | 1961-04-28 | Miniature photocell array and method of making the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40460A | 1960-01-04 | 1960-01-04 | |
US111890A US3206832A (en) | 1960-01-04 | 1961-04-28 | Miniature photocell array and method of making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US3206832A true US3206832A (en) | 1965-09-21 |
Family
ID=26667577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US111890A Expired - Lifetime US3206832A (en) | 1960-01-04 | 1961-04-28 | Miniature photocell array and method of making the same |
Country Status (1)
Country | Link |
---|---|
US (1) | US3206832A (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3274368A (en) * | 1964-12-29 | 1966-09-20 | Teletype Corp | Laminated distributor brush |
US3290760A (en) * | 1963-12-16 | 1966-12-13 | Rca Corp | Method of making a composite insulator semiconductor wafer |
US3574927A (en) * | 1969-01-29 | 1971-04-13 | Science Accessories Corp | Construction of low-tension wire arrays |
US3698082A (en) * | 1966-04-25 | 1972-10-17 | Texas Instruments Inc | Complex circuit array method |
US3798756A (en) * | 1971-05-26 | 1974-03-26 | Bosch Gmbh Robert | Method of constructing recording heads |
US3984256A (en) * | 1975-04-25 | 1976-10-05 | Nasa | Photovoltaic cell array |
US4290844A (en) * | 1979-02-26 | 1981-09-22 | Carson Alexiou Corporation | Focal plane photo-detector mosaic array fabrication |
US4325145A (en) * | 1978-04-06 | 1982-04-13 | Corbett Marshall J | Thermal detection system |
US4449044A (en) * | 1979-02-26 | 1984-05-15 | Carson Alexion Corporation | Focal plane photo-detector mosaic array apparatus |
WO1985002283A1 (en) * | 1983-11-07 | 1985-05-23 | Irvine Sensors Corporation | Detector array module-structure and fabrication |
US4551629A (en) * | 1980-09-16 | 1985-11-05 | Irvine Sensors Corporation | Detector array module-structure and fabrication |
US20030188777A1 (en) * | 2002-01-25 | 2003-10-09 | Konarka Technologies, Inc. | Co-sensitizers for dye sensitized solar cells |
US20030189402A1 (en) * | 2002-01-25 | 2003-10-09 | Konarka Technologies, Inc. | Displays with integrated photovoltaic cells |
US20030188776A1 (en) * | 2002-01-25 | 2003-10-09 | Konarka Technologies, Inc. | Photovoltaic powered multimedia greeting cards and smart cards |
US20030192585A1 (en) * | 2002-01-25 | 2003-10-16 | Konarka Technologies, Inc. | Photovoltaic cells incorporating rigid substrates |
US20030192584A1 (en) * | 2002-01-25 | 2003-10-16 | Konarka Technologies, Inc. | Flexible photovoltaic cells and modules formed using foils |
US20030192583A1 (en) * | 2002-01-25 | 2003-10-16 | Konarka Technologies, Inc. | Ultrasonic slitting of photovoltaic cells and modules |
US20040025934A1 (en) * | 2002-01-25 | 2004-02-12 | Konarka Technologies, Inc. | Low temperature interconnection of nanoparticles |
US20040025933A1 (en) * | 2002-01-25 | 2004-02-12 | Konarka Technologies, Inc. | Gel electrolytes for dye sensitized solar cells |
US20040031520A1 (en) * | 2002-01-25 | 2004-02-19 | Konarka Technologies, Inc. | Methods of scoring for fabricating interconnected photovoltaic cells |
US6706963B2 (en) | 2002-01-25 | 2004-03-16 | Konarka Technologies, Inc. | Photovoltaic cell interconnection |
US20050040374A1 (en) * | 2002-01-25 | 2005-02-24 | Konarka Technologies, Inc. | Photovoltaic fibers |
US20050067006A1 (en) * | 2002-01-25 | 2005-03-31 | Konarka Technologies, Inc. | Wire interconnects for fabricating interconnected photovoltaic cells |
US20050284513A1 (en) * | 2002-08-08 | 2005-12-29 | Christoph Brabec | Chip card comprising an integrated energy converter |
US20060057354A1 (en) * | 2000-05-30 | 2006-03-16 | Penn State Research Foundation | Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films |
US20070079867A1 (en) * | 2005-10-12 | 2007-04-12 | Kethinni Chittibabu | Photovoltaic fibers |
US20070115399A1 (en) * | 2005-08-22 | 2007-05-24 | Christoph Brabec | Displays with integrated photovoltaic cells |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1880289A (en) * | 1928-07-21 | 1932-10-04 | Thomas W Sukumlyn | Light sensitive device |
US1935649A (en) * | 1928-01-03 | 1933-11-21 | Associated Electric Lab Inc | Television |
US2480113A (en) * | 1945-07-09 | 1949-08-30 | Standard Telephones Cables Ltd | Photocell structure |
US2580293A (en) * | 1948-03-20 | 1951-12-25 | Univ California | Thermopile radiometer |
US2650258A (en) * | 1951-06-12 | 1953-08-25 | Rca Corp | Semiconductor photosensitive device |
US2899659A (en) * | 1952-03-07 | 1959-08-11 | mcllvaine | |
US3019489A (en) * | 1956-08-09 | 1962-02-06 | Western Electric Co | Method of making wired electrical mounting boards |
US3030852A (en) * | 1960-10-07 | 1962-04-24 | Bell Telephone Labor Inc | Optical device for use in controlling light transmission |
US3033731A (en) * | 1958-03-06 | 1962-05-08 | American Optical Corp | Method for the manufacture of optical image-transfer devices |
US3079672A (en) * | 1956-08-17 | 1963-03-05 | Western Electric Co | Methods of making electrical circuit boards |
US3104191A (en) * | 1957-12-19 | 1963-09-17 | American Optical Corp | Method of manufacturing optical image transfer devices |
US3109226A (en) * | 1958-12-19 | 1963-11-05 | Bell Telephone Labor Inc | Fabrication of printed circuit apparatus |
-
1961
- 1961-04-28 US US111890A patent/US3206832A/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1935649A (en) * | 1928-01-03 | 1933-11-21 | Associated Electric Lab Inc | Television |
US1880289A (en) * | 1928-07-21 | 1932-10-04 | Thomas W Sukumlyn | Light sensitive device |
US2480113A (en) * | 1945-07-09 | 1949-08-30 | Standard Telephones Cables Ltd | Photocell structure |
US2580293A (en) * | 1948-03-20 | 1951-12-25 | Univ California | Thermopile radiometer |
US2650258A (en) * | 1951-06-12 | 1953-08-25 | Rca Corp | Semiconductor photosensitive device |
US2899659A (en) * | 1952-03-07 | 1959-08-11 | mcllvaine | |
US3019489A (en) * | 1956-08-09 | 1962-02-06 | Western Electric Co | Method of making wired electrical mounting boards |
US3079672A (en) * | 1956-08-17 | 1963-03-05 | Western Electric Co | Methods of making electrical circuit boards |
US3104191A (en) * | 1957-12-19 | 1963-09-17 | American Optical Corp | Method of manufacturing optical image transfer devices |
US3033731A (en) * | 1958-03-06 | 1962-05-08 | American Optical Corp | Method for the manufacture of optical image-transfer devices |
US3109226A (en) * | 1958-12-19 | 1963-11-05 | Bell Telephone Labor Inc | Fabrication of printed circuit apparatus |
US3030852A (en) * | 1960-10-07 | 1962-04-24 | Bell Telephone Labor Inc | Optical device for use in controlling light transmission |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3290760A (en) * | 1963-12-16 | 1966-12-13 | Rca Corp | Method of making a composite insulator semiconductor wafer |
US3274368A (en) * | 1964-12-29 | 1966-09-20 | Teletype Corp | Laminated distributor brush |
US3698082A (en) * | 1966-04-25 | 1972-10-17 | Texas Instruments Inc | Complex circuit array method |
US3574927A (en) * | 1969-01-29 | 1971-04-13 | Science Accessories Corp | Construction of low-tension wire arrays |
US3798756A (en) * | 1971-05-26 | 1974-03-26 | Bosch Gmbh Robert | Method of constructing recording heads |
US3984256A (en) * | 1975-04-25 | 1976-10-05 | Nasa | Photovoltaic cell array |
US4325145A (en) * | 1978-04-06 | 1982-04-13 | Corbett Marshall J | Thermal detection system |
US4290844A (en) * | 1979-02-26 | 1981-09-22 | Carson Alexiou Corporation | Focal plane photo-detector mosaic array fabrication |
US4449044A (en) * | 1979-02-26 | 1984-05-15 | Carson Alexion Corporation | Focal plane photo-detector mosaic array apparatus |
US4551629A (en) * | 1980-09-16 | 1985-11-05 | Irvine Sensors Corporation | Detector array module-structure and fabrication |
WO1985002283A1 (en) * | 1983-11-07 | 1985-05-23 | Irvine Sensors Corporation | Detector array module-structure and fabrication |
US7341774B2 (en) | 2000-05-30 | 2008-03-11 | The Penn State Research Foundation | Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films |
US20060057354A1 (en) * | 2000-05-30 | 2006-03-16 | Penn State Research Foundation | Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films |
US20050040374A1 (en) * | 2002-01-25 | 2005-02-24 | Konarka Technologies, Inc. | Photovoltaic fibers |
US6949400B2 (en) | 2002-01-25 | 2005-09-27 | Konarka Technologies, Inc. | Ultrasonic slitting of photovoltaic cells and modules |
US20030192584A1 (en) * | 2002-01-25 | 2003-10-16 | Konarka Technologies, Inc. | Flexible photovoltaic cells and modules formed using foils |
US20030192583A1 (en) * | 2002-01-25 | 2003-10-16 | Konarka Technologies, Inc. | Ultrasonic slitting of photovoltaic cells and modules |
US20040025934A1 (en) * | 2002-01-25 | 2004-02-12 | Konarka Technologies, Inc. | Low temperature interconnection of nanoparticles |
US20040025933A1 (en) * | 2002-01-25 | 2004-02-12 | Konarka Technologies, Inc. | Gel electrolytes for dye sensitized solar cells |
US20040031520A1 (en) * | 2002-01-25 | 2004-02-19 | Konarka Technologies, Inc. | Methods of scoring for fabricating interconnected photovoltaic cells |
US6706963B2 (en) | 2002-01-25 | 2004-03-16 | Konarka Technologies, Inc. | Photovoltaic cell interconnection |
US20050011550A1 (en) * | 2002-01-25 | 2005-01-20 | Chittibabu Kethinni G. | Low temperature interconnection of nanoparticles |
US20050019414A1 (en) * | 2002-01-25 | 2005-01-27 | Kethinni Chittibabu | Low temperature interconnection of nanoparticles |
US6858158B2 (en) | 2002-01-25 | 2005-02-22 | Konarka Technologies, Inc. | Low temperature interconnection of nanoparticles |
US20030188776A1 (en) * | 2002-01-25 | 2003-10-09 | Konarka Technologies, Inc. | Photovoltaic powered multimedia greeting cards and smart cards |
US20050039790A1 (en) * | 2002-01-25 | 2005-02-24 | Konarka Technologies, Inc. | Gel electrolytes for dye sensitized solar cells |
US20050067006A1 (en) * | 2002-01-25 | 2005-03-31 | Konarka Technologies, Inc. | Wire interconnects for fabricating interconnected photovoltaic cells |
US6900382B2 (en) | 2002-01-25 | 2005-05-31 | Konarka Technologies, Inc. | Gel electrolytes for dye sensitized solar cells |
US6913713B2 (en) | 2002-01-25 | 2005-07-05 | Konarka Technologies, Inc. | Photovoltaic fibers |
US6924427B2 (en) | 2002-01-25 | 2005-08-02 | Konarka Technologies, Inc. | Wire interconnects for fabricating interconnected photovoltaic cells |
US20030192585A1 (en) * | 2002-01-25 | 2003-10-16 | Konarka Technologies, Inc. | Photovoltaic cells incorporating rigid substrates |
US8581096B2 (en) | 2002-01-25 | 2013-11-12 | Merck Patent Gmbh | Gel electrolytes for dye sensitized solar cells |
US20030189402A1 (en) * | 2002-01-25 | 2003-10-09 | Konarka Technologies, Inc. | Displays with integrated photovoltaic cells |
US7094441B2 (en) | 2002-01-25 | 2006-08-22 | Konarka Technologies, Inc. | Low temperature interconnection of nanoparticles |
US7186911B2 (en) | 2002-01-25 | 2007-03-06 | Konarka Technologies, Inc. | Methods of scoring for fabricating interconnected photovoltaic cells |
US8071874B2 (en) | 2002-01-25 | 2011-12-06 | Konarka Technologies, Inc. | Photovoltaic cells incorporating rigid substrates |
US7205473B2 (en) | 2002-01-25 | 2007-04-17 | Konarka Technologies, Inc. | Photovoltaic powered multimedia greeting cards and smart cards |
US20070102040A1 (en) * | 2002-01-25 | 2007-05-10 | Konarka Technologies, Inc. A Delaware Corporation | Photovoltaic cells incorporating rigid substrates |
US7932464B2 (en) | 2002-01-25 | 2011-04-26 | Konarka Technologies, Inc. | Methods of scoring for fabricating interconnected photovoltaic cells |
US20030188777A1 (en) * | 2002-01-25 | 2003-10-09 | Konarka Technologies, Inc. | Co-sensitizers for dye sensitized solar cells |
US7351907B2 (en) | 2002-01-25 | 2008-04-01 | Konarka Technologies, Inc. | Displays with integrated photovoltaic cells |
US7414188B2 (en) | 2002-01-25 | 2008-08-19 | Konarka Technologies, Inc. | Co-sensitizers for dye sensitized solar cells |
US7894694B2 (en) | 2002-01-25 | 2011-02-22 | Konarka Technologies, Inc. | Photovoltaic fibers |
US7572974B2 (en) | 2002-01-25 | 2009-08-11 | Konarka Technologies, Inc. | Gel electrolytes for dye sensitized solar cells |
US7622667B2 (en) | 2002-01-25 | 2009-11-24 | Konarka Technologies, Inc. | Photovoltaic fibers |
US20050284513A1 (en) * | 2002-08-08 | 2005-12-29 | Christoph Brabec | Chip card comprising an integrated energy converter |
US7522329B2 (en) | 2005-08-22 | 2009-04-21 | Konarka Technologies, Inc. | Displays with integrated photovoltaic cells |
US20070115399A1 (en) * | 2005-08-22 | 2007-05-24 | Christoph Brabec | Displays with integrated photovoltaic cells |
US20070079867A1 (en) * | 2005-10-12 | 2007-04-12 | Kethinni Chittibabu | Photovoltaic fibers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3206832A (en) | Miniature photocell array and method of making the same | |
US3206831A (en) | Miniature photocells and method op making the same | |
US3069487A (en) | Miniature photocells and method of making the same | |
US4754544A (en) | Extremely lightweight, flexible semiconductor device arrays | |
US3330700A (en) | Solar-cell panels | |
JPS603164A (en) | Manufacture of photovoltaic device | |
US5202271A (en) | Manufacturing method of photovoltaic device | |
US4009516A (en) | Pyroelectric detector fabrication | |
US3210831A (en) | Method of making a non-linear resistance element | |
CN109581570B (en) | Metal wire grid, manufacturing method thereof, display panel and display device | |
US3671819A (en) | Metal-insulator structures and method for forming | |
US3037122A (en) | Multiple photocells | |
US3879110A (en) | Small fly{3 s eye lens array | |
JPS5721163A (en) | Optical sensor array device | |
US2654819A (en) | Photocell | |
JPS55108779A (en) | Thin film solar cell | |
US4477485A (en) | Process for forming an electrode of an organic cell | |
US3457631A (en) | Method of making a high frequency transistor structure | |
US3226272A (en) | Electroluminescent lamp manufacture | |
US3235736A (en) | Electroluminescent device | |
US2879360A (en) | Photoconductive device having a silicon dioxide protective layer and method of making same | |
US3796782A (en) | Method of manufacturing electronic devices,in particular semiconductor devices | |
US3405276A (en) | Image intensifier comprising perforated glass substrate and method of making same | |
US3109226A (en) | Fabrication of printed circuit apparatus | |
US3187414A (en) | Method of producing a photocell assembly |