US3119244A - Refrigerant treating element and method of refrigerant treatment - Google Patents

Refrigerant treating element and method of refrigerant treatment Download PDF

Info

Publication number
US3119244A
US3119244A US111732A US11173261A US3119244A US 3119244 A US3119244 A US 3119244A US 111732 A US111732 A US 111732A US 11173261 A US11173261 A US 11173261A US 3119244 A US3119244 A US 3119244A
Authority
US
United States
Prior art keywords
refrigerant
acids
moisture
capsule
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US111732A
Inventor
Emil L Fabian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US111732A priority Critical patent/US3119244A/en
Application granted granted Critical
Publication of US3119244A publication Critical patent/US3119244A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters

Definitions

  • This invention relates to refrigeration systems and is concerned with an element for use in such a system and for treatment of the refrigerant that circulates therein, it being a general object of this invention to provide a practical and inexpensive element for treating refrigerant in a working system and to provide a method whereby moisture is absorbed and resulting acids eliminated from the refrigerant in a working system.
  • Refrigerators of all sizes and types are employed and which are characterized, generally, by circulation of a refrigerant gas that is compressible into a liquid and which is then expanded for absorption of heat.
  • An important factor in the manufacture and assembly of a refrigerator system is the dehydration process involved when said system is charged with refrigerant.
  • great precautions are practiced in the charging of a refrigeration system with refrigerant, in order to be sure that the least amount of moisture is captured therein and to eliminate any other contaminants.
  • a certain amount of moisture even though small, is invariably trapped within the system and even the refrigerant itself in many cases contains a measurable percentage of moisture. In any case, at least small amounts of moisture are entrapped within refrigeration systems, even when practicing measures to prevent the same.
  • acids are formed when moisture is allowed to be present, and as a practical matter it is impossible to absolutely eliminate moisture.
  • the complexity of said acids is unknown and not important, it being sufficient knowledge that said formation is detrimental, establishing an electrolyte, thereby permitting and stimulating electrolysis, and simply acting chemically in an adverse fashion on all of the parts involved, particularly delicate parts. For example, necessary return springs of the system become eaten away, and more presence of acid at the expansion orifice will clog the same.
  • adverse reactions that take place as a result of moisture being entrapped and resulting in the formation of acids and electrolytes.
  • An object 'of this invention is to provide an element for insertion and installation in a refrigeration system to handle any moisture that may be entrapped therein,
  • Another object of this invention is to provide an element for the purposes above referred to and which treats the refrigerant involved without danger of clogging the system and whereby moisture and acids are absorbed from the refrigerant and virtually eliminated from circulation through the system.
  • An object of this invention is to provide a method whereby moisture and/or acids are absorbed from the refrigerant in a refrigeration system, all to the end that the workings of the system are not adversely affected by the presence of entrapped moisture and/or acids.
  • FIG. 1 is a diagrammatic view of a typical refrigeration system and showing the inclusion of the element provided by the present invention.
  • FIG. 2 is an enlarged sectional view taken through the element of the present invention.
  • FIG. 3 is a side view of the element and taken as indicated by line 3-3 on FIG. 2.
  • FIG. 4 is a cross section taken as indicated by line 4-4 on FIG. 3.
  • This invention relates to all refrigeration systems wherein a refrigerant is circulated through a closed circuit
  • drawings 1 have shown a diagram of a typical refrigeration system comprising, generally, a compressor A, a condenser E, a capillary tube or captube C, and an evaporator D.
  • the compressor A is a hermetically sealed construction with an electrically powered motor operating a pump therein, to receive and compress the refrigerant fluid.
  • the condenser B receives and cools the compressed fluid and is characterized by its radiator type of construction.
  • the fluid now in liquid form, flows through the cap-tube C which is an expansion or orifice device. Finally, the expanding refrigerant passes through the evaporator D where heat is absorbed due to the expansion taking place therein.
  • the closed system is completed by discharge of the evaporator D into the intake of the compressor A.
  • a refrigerant treating element E for the purpose of carrying out the refrigerant treating method of the present invention.
  • the method involves the provision of neutralizing means for acids that are formed as a result of the presence of moisture, and the element E is a structure comprising features to carry out said method.
  • the method of the present invention resides in the provision of means to neutralize any acids in the system.
  • I mean to include the elements A through D as above described and all tubing connections, or the like.
  • the said acid neutralizing means is a body of soda 10 over which the refrigerant is passed in order to come into contact therewith.
  • the body of soda 16 is simply sodium bicarbonate and is well known as an acid neutralizer, and it will be readily combined with and absorb acids to neutralize the same.
  • acids as they develop in the refrigerant are immediately combined with and neutralized by and in the soda it) where said acid is absorbed from the refrigeration system.
  • the refrigerant for example can be Freon-l2, or dichlorodifluoromethane, or the like.
  • the refrigerant treating element E that I provide is a single unitary device that can be installed in a refrigeration system to carry out the method above referred to, it being apparent that various structures can be resorted to in subjecting the refrigerant to treatment with the body of soda 10.
  • the element E is a capsule 14 and preferably formed on an elongate and substantially upright or vertical axis. That is, the capsule 14 has a top portion 15 and a bottom portion 16, it being contemplated that the said capsule 14 be installed in an erect position.
  • the capsule 14 has a tubular shell closed at its top and bottom terminal ends, as by welding or brazing, the shell 20 being round in cross-section and pinched together at said terminal ends.
  • a chamber 18 is established within the capsule 14-.
  • the refrigerant treating element E is a series or through fiow fitting, in that fluid moving through the system enters into and discharges from the chamber 13.
  • the tubes 25 and 25 enter and project into the chamber 13, and in accordance with the invention a strainer 28 is carried by the outlet tube 26 and the inlet tube 25 is disposed so as to play inlet fluid onto the strainer.
  • the strainer 23 is a tube-shaped screen extending from the tube 26 and closed at its innermost end, While the tube 25 plays inlet fluid angularly onto the side of the tube 26 and/or screen of the strainer 23.
  • This simple arrangement maintains the collecting of foreign particles within the chamber 18, and thus particles readily precipitate to the lower end of the capsule 14 with the aid of the washing action alforded by the angular and downward disposition of the tube 25.
  • the body of soda 1% is deposited in the lower portion of the chamber 18 and in sufiicient quantity to chemically react with all acids that may be formed Within the particular system involved. It will be apparent that this quantity can vary widely as circumstances require.
  • the said body 10 is characteristically of powder or granular form and is simply reserved in the lowermost end of the chamber 18 which is in effect a sump or trap. Any acids that may be formed are heavy in nature and thereby precipitate readily to lowermost portion of the capsule 14, thereby commingling with the soda body 10.
  • a screen partition 19 is placed intermediate the top and bottom portions of the capsule 14.
  • the acid neutralizing material is inexpensive and easily maintained in the portion of the capsule where it receives the heavier acids that precipitate.
  • the said capsule 14 that forms the element E With its inlet and outlet tubes 25 and 25, is preferably installed at the discharge end of the condenser B, as clearly illustrated in the drawings. It will be seen that the element E with its body of soda 10 will neutralize any acids that are formed and will prevent continuation of flow of said acids and/or foreign substances or particles to the cap-tube C. As a result, the refrigerant that flows through the cap-tube is cleaned so as to be virtually uncontaminated.
  • a capsule having a closed chamer therein, inlet and outlet tubes passing refrigerant into and out of the upper portion of said chamber, a body of acid neutralizing material deposited in the lower portion of said chamber and over which the refrigerant passes, there being a strainer on the outlet tube, said inlet tube being disposed to play inlet fluid onto the said strainer in order to wash the same, whereby acids formed in the system precipitate into the neutralizing material and particles are worked from the strainer to precipitate and be retained in the chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Jan. 28, 1964 E. FABIAN 3,119,244 REEFRIGERANT TREATING ELEMENT AND METHOD OF REFRIGERANT TREATMENT Filed May 22, 1961 FIG. 1
FIG. 2.
INVENTOR. EM/L Z. FAB/AN BY ll/l dilflldd Patented Jan. 28, 1954 3,119,244 REFREGERANT TREATING ELEMENT AND METH- Gl) 01F REFRHGERANT TREATMENT Emil L. Fabian, 615 N. Farfax, Los Angeles 36, Calif. Filed May 22, 196i, Ser. No. 111,732 1 Claim. (Cl. 62-474) This invention relates to refrigeration systems and is concerned with an element for use in such a system and for treatment of the refrigerant that circulates therein, it being a general object of this invention to provide a practical and inexpensive element for treating refrigerant in a working system and to provide a method whereby moisture is absorbed and resulting acids eliminated from the refrigerant in a working system.
Refrigerators of all sizes and types are employed and which are characterized, generally, by circulation of a refrigerant gas that is compressible into a liquid and which is then expanded for absorption of heat. An important factor in the manufacture and assembly of a refrigerator system is the dehydration process involved when said system is charged with refrigerant. In actual practice, great precautions are practiced in the charging of a refrigeration system with refrigerant, in order to be sure that the least amount of moisture is captured therein and to eliminate any other contaminants. However, in spite of all precautions, a certain amount of moisture, even though small, is invariably trapped within the system and even the refrigerant itself in many cases contains a measurable percentage of moisture. In any case, at least small amounts of moisture are entrapped within refrigeration systems, even when practicing measures to prevent the same.
It is significant that moisture is entrapped in refrigeration systems because some failures of the system can be attributed directly to the presence of moisture therein. As a matter of fact, only elaborately equipped facilities can conduct the assembly and charging of refrigerator systems and properly exclude moisture. As a result of the presence of moisture in a refrigeration system an acid or acids are immediately formed with and in the refrigerant fluid. A major factor contributing to the formation of acids is that the structure of the refrigera tion system comprises various different materials including steel, copper and copper alloys, aluminum, various synthetic seals and terminals and insulators, etc, to say nothing of the various impurities that may be present. Further, the lubricants for the motor drive are exposed and acids develop especially when moisture is present. In other words, chemical processes take place wherein acid or acids are formed, all of which is simulated when temperatures are increased.
As above set forth, acids are formed when moisture is allowed to be present, and as a practical matter it is impossible to absolutely eliminate moisture. Although the presence of moisture and resulting acids is known, the complexity of said acids is unknown and not important, it being sufficient knowledge that said formation is detrimental, establishing an electrolyte, thereby permitting and stimulating electrolysis, and simply acting chemically in an adverse fashion on all of the parts involved, particularly delicate parts. For example, necessary return springs of the system become eaten away, and more presence of acid at the expansion orifice will clog the same. There are, in fact, many adverse reactions that take place as a result of moisture being entrapped and resulting in the formation of acids and electrolytes.
An object 'of this invention is to provide an element for insertion and installation in a refrigeration system to handle any moisture that may be entrapped therein,
and to neutralize and/or absorb any acids formed as a result of the presence of moisture in the system.
Another object of this invention is to provide an element for the purposes above referred to and which treats the refrigerant involved without danger of clogging the system and whereby moisture and acids are absorbed from the refrigerant and virtually eliminated from circulation through the system.
An object of this invention is to provide a method whereby moisture and/or acids are absorbed from the refrigerant in a refrigeration system, all to the end that the workings of the system are not adversely affected by the presence of entrapped moisture and/or acids.
The various objects and features of this invention will be fully understood from the following detailed description of the typical preferred form and application thereof, throughout which description reference is made to the accompanying drawings, in which:
FIG. 1 is a diagrammatic view of a typical refrigeration system and showing the inclusion of the element provided by the present invention.
FIG. 2 is an enlarged sectional view taken through the element of the present invention.
FIG. 3 is a side view of the element and taken as indicated by line 3-3 on FIG. 2.
FIG. 4 is a cross section taken as indicated by line 4-4 on FIG. 3.
This invention relates to all refrigeration systems wherein a refrigerant is circulated through a closed circuit, and in the drawings 1 have shown a diagram of a typical refrigeration system comprising, generally, a compressor A, a condenser E, a capillary tube or captube C, and an evaporator D. The various parts and elements of the refrigerator system can vary widely as circumstances require, and in a typical system, as shown, the compressor A is a hermetically sealed construction with an electrically powered motor operating a pump therein, to receive and compress the refrigerant fluid. The condenser B receives and cools the compressed fluid and is characterized by its radiator type of construction. From the condenser B the fluid, now in liquid form, flows through the cap-tube C which is an expansion or orifice device. Finally, the expanding refrigerant passes through the evaporator D where heat is absorbed due to the expansion taking place therein. The closed system is completed by discharge of the evaporator D into the intake of the compressor A.
In accordance With the present invention I have provideda refrigerant treating element E for the purpose of carrying out the refrigerant treating method of the present invention. The method involves the provision of neutralizing means for acids that are formed as a result of the presence of moisture, and the element E is a structure comprising features to carry out said method.
The method of the present invention resides in the provision of means to neutralize any acids in the system. By system, I mean to include the elements A through D as above described and all tubing connections, or the like. More specifically, the said acid neutralizing means is a body of soda 10 over which the refrigerant is passed in order to come into contact therewith. The body of soda 16 is simply sodium bicarbonate and is well known as an acid neutralizer, and it will be readily combined with and absorb acids to neutralize the same. Thus, acids as they develop in the refrigerant are immediately combined with and neutralized by and in the soda it) where said acid is absorbed from the refrigeration system.
The refrigerant, for example can be Freon-l2, or dichlorodifluoromethane, or the like.
The refrigerant treating element E that I provide is a single unitary device that can be installed in a refrigeration system to carry out the method above referred to, it being apparent that various structures can be resorted to in subjecting the refrigerant to treatment with the body of soda 10. As shown in the preferred form of the invention the element E is a capsule 14 and preferably formed on an elongate and substantially upright or vertical axis. That is, the capsule 14 has a top portion 15 and a bottom portion 16, it being contemplated that the said capsule 14 be installed in an erect position. As clearly shown, the capsule 14 has a tubular shell closed at its top and bottom terminal ends, as by welding or brazing, the shell 20 being round in cross-section and pinched together at said terminal ends. Thus, a chamber 18 is established within the capsule 14-.
The refrigerant treating element E is a series or through fiow fitting, in that fluid moving through the system enters into and discharges from the chamber 13. In carrying out the invention, there is an inlet tube entering the chamber 18 at the top of the capsule 14 and there is an outlet tube 223 entering into the chamber 18 at the top of the capsule. It is significant that the tubes 25 and 25 enter and project into the chamber 13, and in accordance with the invention a strainer 28 is carried by the outlet tube 26 and the inlet tube 25 is disposed so as to play inlet fluid onto the strainer. As a result of the tubes arranged as described, foreign particles are confined to the chamber 18 outside of the strainer 28 and the Washing effect of inlet fluid tends to remove particles from the strainer 28 to keep it clean. In the case illustrated, the strainer 23 is a tube-shaped screen extending from the tube 26 and closed at its innermost end, While the tube 25 plays inlet fluid angularly onto the side of the tube 26 and/or screen of the strainer 23. This simple arrangement maintains the collecting of foreign particles within the chamber 18, and thus particles readily precipitate to the lower end of the capsule 14 with the aid of the washing action alforded by the angular and downward disposition of the tube 25.
The body of soda 1% is deposited in the lower portion of the chamber 18 and in sufiicient quantity to chemically react with all acids that may be formed Within the particular system involved. It will be apparent that this quantity can vary widely as circumstances require. The said body 10 is characteristically of powder or granular form and is simply reserved in the lowermost end of the chamber 18 which is in effect a sump or trap. Any acids that may be formed are heavy in nature and thereby precipitate readily to lowermost portion of the capsule 14, thereby commingling with the soda body 10. In order to prevent floatation or stirring up of the soda body 10, a screen partition 19 is placed intermediate the top and bottom portions of the capsule 14. Thus, displacement of the body of soda 10 is prevented even when abnormal attitudes are encountered, before or during operation.
From the foregoing it will be apparent that I have provided an extremely simple and easily manufactured element for insertion in the circuit of a refrigeration system. Furthermore, the acid neutralizing material is inexpensive and easily maintained in the portion of the capsule where it receives the heavier acids that precipitate. The said capsule 14 that forms the element E, With its inlet and outlet tubes 25 and 25, is preferably installed at the discharge end of the condenser B, as clearly illustrated in the drawings. It will be seen that the element E with its body of soda 10 will neutralize any acids that are formed and will prevent continuation of flow of said acids and/or foreign substances or particles to the cap-tube C. As a result, the refrigerant that flows through the cap-tube is cleaned so as to be virtually uncontaminated.
Having described only a typical preferred form and application of my invention, I do not wish to be limited or restricted to the specific details herein set forth, but wish to reserve to myself any modifications or variations that may a pear to those skilled in the art and fall within the scope of the following claim.
Having described my invention, I claim:
In a closed loop refrigeration system wherein a refrigerant is circulated, a capsule having a closed chamer therein, inlet and outlet tubes passing refrigerant into and out of the upper portion of said chamber, a body of acid neutralizing material deposited in the lower portion of said chamber and over which the refrigerant passes, there being a strainer on the outlet tube, said inlet tube being disposed to play inlet fluid onto the said strainer in order to wash the same, whereby acids formed in the system precipitate into the neutralizing material and particles are worked from the strainer to precipitate and be retained in the chamber.
References ited in the file of this patent UNITED STATES PATENTS 950,491 Nenzel Mar. 1, 1910 1,677,804 Thayer July 17, 1928 1,809,833 Davenport June 16, 1931 1,914,829 Imhoffet et a1. June 20, 1933 1,960,040 Widell May 22, 1934 2,225,990 Henry Dec. 24, 1940 2,435,510 Rabjohn Feb. 3, 1948 2,469,842 Paquin et al. May 10, 1949 2,509,787 Shoemaker May 30, 1950 2,537,720 Wagner Jan. 9, 1951 2,705,405 Uhlman Apr. 5, 1955 2,835,114 Shoemaker et a1. May 20, 1958 FOREIGN PATENTS 409,844 Great Britain May 10, 1934
US111732A 1961-05-22 1961-05-22 Refrigerant treating element and method of refrigerant treatment Expired - Lifetime US3119244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US111732A US3119244A (en) 1961-05-22 1961-05-22 Refrigerant treating element and method of refrigerant treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US111732A US3119244A (en) 1961-05-22 1961-05-22 Refrigerant treating element and method of refrigerant treatment

Publications (1)

Publication Number Publication Date
US3119244A true US3119244A (en) 1964-01-28

Family

ID=22340155

Family Applications (1)

Application Number Title Priority Date Filing Date
US111732A Expired - Lifetime US3119244A (en) 1961-05-22 1961-05-22 Refrigerant treating element and method of refrigerant treatment

Country Status (1)

Country Link
US (1) US3119244A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109487A (en) * 1977-01-18 1978-08-29 General Motors Corporation Moisture extractor
US4313315A (en) * 1980-02-19 1982-02-02 U.S. Philips Corporation Compressor refrigeration circuits
FR2690735A1 (en) * 1992-05-01 1993-11-05 Fayette Tubular Tech Corp Dehydrating tank and its manufacturing process
WO1994010268A1 (en) * 1992-10-20 1994-05-11 The Rectorseal Corporation Refrigerant compressor system acid neutralizer
US5770048A (en) * 1995-08-24 1998-06-23 Mainstream Engineering Corporation Method for removal of acid from compressor oil

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US950491A (en) * 1909-09-25 1910-03-01 Frederick Nenzel Ammonia-purifier for refrigerating plants.
US1677804A (en) * 1923-01-29 1928-07-17 Ubald R Loranger Gas scrubber for refrigerating apparatus
US1809833A (en) * 1926-06-17 1931-06-16 Chicago Pneumatic Tool Co Method of and means for stabilizing refrigerants
US1914829A (en) * 1929-08-17 1933-06-20 Imhoff Karl Household filter
GB409844A (en) * 1932-01-26 1934-05-10 Electrolux Ltd Improvements in or relating to the storage or transport of cold
US1960040A (en) * 1930-07-08 1934-05-22 Electroinz Servel Corp Refrigeration
US2225990A (en) * 1937-12-22 1940-12-24 Guy J Henry Dehydrator
US2435510A (en) * 1946-08-26 1948-02-03 Lloyd E Rabjohn Filter cartridge
US2469842A (en) * 1945-11-23 1949-05-10 Westherhead Company Dehydrator
US2509787A (en) * 1949-01-28 1950-05-30 Philco Corp Dehydration of refrigeration systems
US2537720A (en) * 1949-09-24 1951-01-09 Harry C Wagner Refrigerant gas drying apparatus
US2705405A (en) * 1949-12-16 1955-04-05 Thomas L Uhlman Cleaner for refrigeration apparatus
US2835114A (en) * 1956-03-23 1958-05-20 Philco Corp Refrigeration apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US950491A (en) * 1909-09-25 1910-03-01 Frederick Nenzel Ammonia-purifier for refrigerating plants.
US1677804A (en) * 1923-01-29 1928-07-17 Ubald R Loranger Gas scrubber for refrigerating apparatus
US1809833A (en) * 1926-06-17 1931-06-16 Chicago Pneumatic Tool Co Method of and means for stabilizing refrigerants
US1914829A (en) * 1929-08-17 1933-06-20 Imhoff Karl Household filter
US1960040A (en) * 1930-07-08 1934-05-22 Electroinz Servel Corp Refrigeration
GB409844A (en) * 1932-01-26 1934-05-10 Electrolux Ltd Improvements in or relating to the storage or transport of cold
US2225990A (en) * 1937-12-22 1940-12-24 Guy J Henry Dehydrator
US2469842A (en) * 1945-11-23 1949-05-10 Westherhead Company Dehydrator
US2435510A (en) * 1946-08-26 1948-02-03 Lloyd E Rabjohn Filter cartridge
US2509787A (en) * 1949-01-28 1950-05-30 Philco Corp Dehydration of refrigeration systems
US2537720A (en) * 1949-09-24 1951-01-09 Harry C Wagner Refrigerant gas drying apparatus
US2705405A (en) * 1949-12-16 1955-04-05 Thomas L Uhlman Cleaner for refrigeration apparatus
US2835114A (en) * 1956-03-23 1958-05-20 Philco Corp Refrigeration apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109487A (en) * 1977-01-18 1978-08-29 General Motors Corporation Moisture extractor
US4313315A (en) * 1980-02-19 1982-02-02 U.S. Philips Corporation Compressor refrigeration circuits
FR2690735A1 (en) * 1992-05-01 1993-11-05 Fayette Tubular Tech Corp Dehydrating tank and its manufacturing process
ES2092932A2 (en) * 1992-05-01 1996-12-01 Fayette Tubular Tech Corp Method of manufacturing a receiver dryer
WO1994010268A1 (en) * 1992-10-20 1994-05-11 The Rectorseal Corporation Refrigerant compressor system acid neutralizer
US5503757A (en) * 1992-10-20 1996-04-02 The Rectorseal Corporation Refrigerant compressor system acid neutralizer
US5770048A (en) * 1995-08-24 1998-06-23 Mainstream Engineering Corporation Method for removal of acid from compressor oil

Similar Documents

Publication Publication Date Title
US3212289A (en) Combination accumulator and receiver
DE2201575C3 (en) Defrosting device for a refrigeration system
US4163373A (en) Device for extracting moisture from a space
US3119244A (en) Refrigerant treating element and method of refrigerant treatment
US3949566A (en) Purge arrangement for absorption refrigeration systems
US3822567A (en) Refrigerating apparatus
US2537720A (en) Refrigerant gas drying apparatus
US1112860A (en) Fume-concentrator for smelters.
US3308957A (en) Desiccant and strainer assembly
US3360127A (en) Oil separator for refrigeration systems
US3443367A (en) Suction accumulator
US3152877A (en) Compressed air dehydrator
US3974659A (en) Oil sampling and charging method and apparatus for refrigeration systems
US2409928A (en) Combination receiver and dehydrator
US2279326A (en) Apparatus for dehydrating air
US2622407A (en) Two-temperature refrigerating system
US5116393A (en) Absorber for dehydrating gas with liquid desiccant
US2145380A (en) Condensate disposal means for air conditioning units
DE2451524B1 (en) REFRIGERATION MACHINE WITH A HERMETICALLY LOCKED REFRIGERANT CIRCUIT
GB1265860A (en)
US1781758A (en) Refrigerator
FR2353036A1 (en) HEAT AND HUMIDITY EXCHANGER
US1828538A (en) Refrigerator fan
US2483540A (en) Evaporative condenser arrangement
US1811523A (en) Refrigeration unit