US2721312A - Microwave cable - Google Patents
Microwave cable Download PDFInfo
- Publication number
- US2721312A US2721312A US234503A US23450351A US2721312A US 2721312 A US2721312 A US 2721312A US 234503 A US234503 A US 234503A US 23450351 A US23450351 A US 23450351A US 2721312 A US2721312 A US 2721312A
- Authority
- US
- United States
- Prior art keywords
- conductor
- line
- dielectric
- conductors
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/02—Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
- H01P3/08—Microstrips; Strip lines
- H01P3/081—Microstriplines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
- H01B11/20—Cables having a multiplicity of coaxial lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/26—Surface waveguide constituted by a single conductor, e.g. strip conductor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/024—Dielectric details, e.g. changing the dielectric material around a transmission line
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0393—Flexible materials
Definitions
- This invention relates to microwave transmission systems and more particularly to transmission wires and cables for ultra high frequency signals.
- One of the objects of this invention is to provide transmission lines or cables, either single or multiple channel, for transmission of microwave energy in accordance with the principle of wave propagation referred to above.
- Another object of the invention is to provide a low loss transmission line or cable for use at ultra high frequencies
- Fig. 1 is a cross-sectional view of one form of transmission line in accordance with the principles of this invention
- Fig. 2 shows in cross-section another embodiment of the invention
- Fig. 3 is a cross sectional view of a two-channel cable
- Figs. 4 and 5 are cross-sectional views showing two forms of cable construction incorporating air space between the conductors;
- Figs. 6, 7 and 8 show cross-sectional views of multichannel cables incorporating the principles of this invention.
- Fig. 9 shows in side elevation a line in which one of the conductors is in the form of a helix.
- the microwave transmission line illustrated is of the printed circuit type comprising a first or line conductor 1 and a second or lCC ground conductor 2 with a layer 3 of dielectric material therebetween.
- the conductive material may be applied to the layer of dielectric, such as polystyrene, polyethylene, Teflon or other flexible insllation of high dielectric quality, in the form of conductive paint or ink, or the lconductive material may be chemically deposited, sprayed through a stencil or dusted onto selected prepared surfaces of the dielectric according to known printed circuit techniques. For relatively short lengths of lines the conductive strips may be cut and applied by a diestamping operation.
- the dielectric may be extruded and simultaneously or later coated on the two sides thereof with conductive material of the desired thickness and widths. Where the widths of the two coatings are the same and it is desired to reduce the width of one of the coatings, the portions of the two coatings that are to be retained may be coated with -a chemically inert material exposing the parts to be removed, and thereafter passing the cable through an etching bath, whereupon the exposed portions of the coatings are removed.
- the two conductive coatings 1 and 2 are shown in cross-section to be substantially rectangular, they may comprise different shapes so long as the ground conductor 2 presents a wide Vextended surface with respect to the line conductor.
- the ground conductor should be from two to three times the width of the line conductor 1, although wider dimensions give still lower loss.
- the Vbroken lines 4, 5 and 6 indicate substantially the percentage of distribution of the electric field between the two conductors for a conductor relation wherein the ground conductor 2 is lapproximately three times the width of the line conductor, and the line conductor is wider than the spacing between conductors.
- the electric field concentrated within the lines 4 is from about 75 to 80%, within the lines 5 it is from about 90 to 95%, and within the lines 6 it is approximately 99%. From the foregoing it .is clear that a narrow ground conductormay be used without vmuch radiation loss, and where it can be three or more times the width of the line conductor an exceptionally low loss tranmission line is assured.
- the width of the ground conductor is shown in one plane to be about twice the width of the line conductor.
- the conductive coating which comprises the ground conductor is shown to extend up along the side edges of the dielectric layer 3.
- the ground conductor comprises a flat coating 7 and two upright portions 8 and 9 thus forming a trough shaped conductor. This form also insures a low loss even though its width is smaller for a given size line conductor.
- the line conductor may be carried on the surface of the insulation 3 but as shown it may be partially imbedded therein.
- a two-channel transmission line is shown in Fig. 3 which utilizes a common ground conductor 10.
- the ground conductor 10 may be of the form shown at 2 in Fig. l and coated on each side with layers of insulation 11 and 12 which support line conductors 13 and 14, respectively. If desired, the side edges of the dielectric 11 and 12 may be coated with conductive material as indicated at 15, 15a and 16, 16a similarly to the conductive portions 8 and 9 of Fig. 2.
- One of the transmission channels comprises the electromagnetic field which exists in the regions bounded by the line conductor 13 and the ground conductor portions 10, 15 and 16.
- the second channel exists in the region of the electromagnetic field bounded by the opposed surfaces of the line conductor 14 and the ground conductor portions 10, 15a and 16a, It will be clear that the two channels will be independent of each other and that the flow of currents will occur in skin depth only of the opposing surfaces of the conductors.
- the transmission line comprises conductors 1 and 2 as in Fig. 1 but the dielectric is made up of three parts, namely, two side strips 17 and 18 and a cover strip 19.
- the two side strips 17 and 18 are formed on conductor 2 and secured thereto along the outer edge portions thereof.
- the upper layer 19 is preferably formed with conductor 1 embedded therein or coated thereon. The upper strip 19 is then applied to the other assembly either as shown in Fig. 4 with the conductor on the surface thereof opposed to the conductor 2, or if desired, the conductor 1 may be on the outer surface of the layer 19.
- an air space 20 is provided between the conductors 1 and 2 thereby maintaining the dielectric coeicient of the over-all region bounded by the opposed surfaces of the conductors 1 and 2 at a value close to the dielectric coeicient of air.
- a similar transmission line arrangement is provided with a relatively wide air space 21.
- the conductor 1 is provided with an extended layer of dielectric 22 which corresponds to the width of the conductor 2.
- the conductor 2 is likewise provided with a dielectric layer 23.
- Interposed in the assembly at the outer edges thereof are two dielectric beads 24 and 25, which may be rectangular or other shape in cross-section, thereby insuring a wide air space 21.
- the two dielectric layers 22 and 23 are interposed between the conductors 1 and 2.
- the upper layer 22 may be inverted so as to place the conductive coating 1 on the side thereof bounding the air space 21.
- a layer of dielectric 26 is provided with a coating 27 of conductive material.
- a plurality of line conductors 28, 29, 30 and 31 are disposed in spaced parallel relation on the other side of layer 26, each line conductor forming with the ground conductor 27 a separate channel.
- This may be formed by applying conductive wire, strips or lines of finely divided conductive material, in a carrier medium if desired, to the insulating layer 26, either as it is being extruded or by a later application.
- the ilat cable shown in Fig. 6 may be made cylindrical as shown in Fig. 7 by passing it through a suitable die, or it may be made directly into cylindrical form during an extrusion operation.
- Fig. 7 substantially the same cable construction shown in Fig. 6 is employed as indicated by tubular dielectric material 32, conductive coating 33 and the outer springs of conductive material 34. Centrally of the conductive coating 33 is a second tubing of dielectric material 35. On the inner surface or embedded therein are conductive strips 36, 37, 38 and 39. These latter strips coact with the common conductive cylinder 33 to form individual transmission lines or channels. The lateral spacing of the strips 36, 37, 38 and 39, however, must be suiciently wide to minimize coupling.
- the transmission line of Fig. 9 is arranged to provide delay characteristics.
- the line comprises a line conductor 41 in the form of a helix and the ground conductor 42 in the form of a solid or hollow conductive cylinder with a layer of dielectric 43 disposed therebetween.
- the path of propagation follows the helix, the electric field being concentrated beneath and along the conductor 41.
- a transmission line for propagating energy comprising a first elongated conductor, a second elongated conductor having a planar surface disposed in substantially parallel, spaced relation to said lirst conductor and flange portions each extending from one of the sides of the planar surface at substantially right angles to said surface in the general direction of said first condoctor, said second conductor terminating at the top of said tiange portion leaving open the space above substantially the entire surface of the first conductor remote from said planar surface, the spacing between said iirst and second conductors being a small fraction of the wavelength of the mid-frequency of said micro-wave energy and the width of said second conductor being larger than the Width of said rst conductor but insuiiciently wide to prevent substantial radiation losses, said losses being prevented by said ange portions and a layer of solid dielectric disposed therebetween substantially coextensive of said planar surface supporting said rst conductor in parallel spaced relation with respect to said second conductor.
- a transmission line according to claim 1 further including a second layer of dielectric on the opposite side of said second conductor and a third conductor carried thereby in spaced relation to said second conductor, said third conductor being of a width smaller than the width of said second conductor.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Waveguides (AREA)
Description
Oct. 18, 1955 D. D. GRIEG ErAL MICROWAVE CABLE Filed June 30 1951 O L E Non R E E o NLF M QZ om% HB United States Patent O MICROWAVE CABLE Donald D. Grieg, North Caldwell, and Herbert F. Engelmann, Mountain Lakes, N. J., assignors to International Telephone and Telegraph Corporation, a corporation of Maryland Application June 30, 1951, Serial No. 234,503
4 Claims. (Cl. S33-84) This invention relates to microwave transmission systems and more particularly to transmission wires and cables for ultra high frequency signals.
ln our copending application, Serial No. 227,896, filed May 23, 1951, a new principle of microwave transmission is disclosed, comprising in its simplest form two conductors, one as a ground conductor and the other as a line conductor, spaced close together in substantially parallel relation. The so-called ground conductor, which may be at ground potential or some other given potential, is considerably wider than the line conductor so that the surface thereof provides in effect an image reflection of the line conductor, whereby the distribution of the electric and magnetic fields between the conductors is substantially the same as the distribution between one conductor and the neutral plane of a theoretically perfect twoconductor parallel system. Small variations in size and shape of the line conductor may produce variations in the characteristic impedance of the system but the field distribution with respect to the ground conductor is not materially disturbed. Likewise, certain variations in the surface of the ground conductor do not materially disturb the field distribution with respect to the surface thereof since such variations either neutralize each other or do not adversely affect the field distribution between the two conductors. By this system, microwaves can be easily propagated by the TEM mode along the line-ground conductor system since the microwaves ow in the region of the concentrated electromagnetic field between the opposed surfaces of the line and ground conductors.
One of the objects of this invention is to provide transmission lines or cables, either single or multiple channel, for transmission of microwave energy in accordance with the principle of wave propagation referred to above.
Another object of the invention is to provide a low loss transmission line or cable for use at ultra high frequencies,
The above-mentioned and other features and objects of this invention and the manner of attaining them will become more apparent by reference to the following description taken in conjunction with the accompanying drawings, wherein:
Fig. 1 is a cross-sectional view of one form of transmission line in accordance with the principles of this invention;
Fig. 2 shows in cross-section another embodiment of the invention;
Fig. 3 is a cross sectional view of a two-channel cable;
Figs. 4 and 5 are cross-sectional views showing two forms of cable construction incorporating air space between the conductors;
Figs. 6, 7 and 8 show cross-sectional views of multichannel cables incorporating the principles of this invention; and
Fig. 9 shows in side elevation a line in which one of the conductors is in the form of a helix.
Referring to Fig. 1 of the drawings, the microwave transmission line illustrated is of the printed circuit type comprising a first or line conductor 1 and a second or lCC ground conductor 2 with a layer 3 of dielectric material therebetween. The conductive material may be applied to the layer of dielectric, such as polystyrene, polyethylene, Teflon or other flexible insllation of high dielectric quality, in the form of conductive paint or ink, or the lconductive material may be chemically deposited, sprayed through a stencil or dusted onto selected prepared surfaces of the dielectric according to known printed circuit techniques. For relatively short lengths of lines the conductive strips may be cut and applied by a diestamping operation. In some cable manufacturing processes, the dielectric may be extruded and simultaneously or later coated on the two sides thereof with conductive material of the desired thickness and widths. Where the widths of the two coatings are the same and it is desired to reduce the width of one of the coatings, the portions of the two coatings that are to be retained may be coated with -a chemically inert material exposing the parts to be removed, and thereafter passing the cable through an etching bath, whereupon the exposed portions of the coatings are removed.
While the two conductive coatings 1 and 2 are shown in cross-section to be substantially rectangular, they may comprise different shapes so long as the ground conductor 2 presents a wide Vextended surface with respect to the line conductor. Preferably, the ground conductor should be from two to three times the width of the line conductor 1, although wider dimensions give still lower loss. In Fig. 1, the Vbroken lines 4, 5 and 6 indicate substantially the percentage of distribution of the electric field between the two conductors for a conductor relation wherein the ground conductor 2 is lapproximately three times the width of the line conductor, and the line conductor is wider than the spacing between conductors. The electric field concentrated within the lines 4 is from about 75 to 80%, within the lines 5 it is from about 90 to 95%, and within the lines 6 it is approximately 99%. From the foregoing it .is clear that a narrow ground conductormay be used without vmuch radiation loss, and where it can be three or more times the width of the line conductor an exceptionally low loss tranmission line is assured.
In the embodiment of Fig. 2, the width of the ground conductor is shown in one plane to be about twice the width of the line conductor. The conductive coating which comprises the ground conductor, however, is shown to extend up along the side edges of the dielectric layer 3. In other words, the ground conductor comprises a flat coating 7 and two upright portions 8 and 9 thus forming a trough shaped conductor. This form also insures a low loss even though its width is smaller for a given size line conductor. The line conductor may be carried on the surface of the insulation 3 but as shown it may be partially imbedded therein.
A two-channel transmission line is shown in Fig. 3 which utilizes a common ground conductor 10. The ground conductor 10 may be of the form shown at 2 in Fig. l and coated on each side with layers of insulation 11 and 12 which support line conductors 13 and 14, respectively. If desired, the side edges of the dielectric 11 and 12 may be coated with conductive material as indicated at 15, 15a and 16, 16a similarly to the conductive portions 8 and 9 of Fig. 2. One of the transmission channels comprises the electromagnetic field which exists in the regions bounded by the line conductor 13 and the ground conductor portions 10, 15 and 16. The second channel exists in the region of the electromagnetic field bounded by the opposed surfaces of the line conductor 14 and the ground conductor portions 10, 15a and 16a, It will be clear that the two channels will be independent of each other and that the flow of currents will occur in skin depth only of the opposing surfaces of the conductors.
In the embodiment of Fig. 4 the loss is minimized by replacing part of the dielectric between conductors by an air space. As shown, the transmission line comprises conductors 1 and 2 as in Fig. 1 but the dielectric is made up of three parts, namely, two side strips 17 and 18 and a cover strip 19. The two side strips 17 and 18 are formed on conductor 2 and secured thereto along the outer edge portions thereof. The upper layer 19 is preferably formed with conductor 1 embedded therein or coated thereon. The upper strip 19 is then applied to the other assembly either as shown in Fig. 4 with the conductor on the surface thereof opposed to the conductor 2, or if desired, the conductor 1 may be on the outer surface of the layer 19. In either case, an air space 20 is provided between the conductors 1 and 2 thereby maintaining the dielectric coeicient of the over-all region bounded by the opposed surfaces of the conductors 1 and 2 at a value close to the dielectric coeicient of air.
In Fig. a similar transmission line arrangement is provided with a relatively wide air space 21. In this form the conductor 1 is provided with an extended layer of dielectric 22 which corresponds to the width of the conductor 2. The conductor 2 is likewise provided with a dielectric layer 23. Interposed in the assembly at the outer edges thereof are two dielectric beads 24 and 25, which may be rectangular or other shape in cross-section, thereby insuring a wide air space 21. In this form the two dielectric layers 22 and 23 are interposed between the conductors 1 and 2. If desired, the upper layer 22 may be inverted so as to place the conductive coating 1 on the side thereof bounding the air space 21.
In Figs. 6, 7 and 8, three forms of multi-channel cables are illustrated. In Fig. 6, a layer of dielectric 26 is provided with a coating 27 of conductive material. A plurality of line conductors 28, 29, 30 and 31 are disposed in spaced parallel relation on the other side of layer 26, each line conductor forming with the ground conductor 27 a separate channel. This may be formed by applying conductive wire, strips or lines of finely divided conductive material, in a carrier medium if desired, to the insulating layer 26, either as it is being extruded or by a later application. Also, the ilat cable shown in Fig. 6 may be made cylindrical as shown in Fig. 7 by passing it through a suitable die, or it may be made directly into cylindrical form during an extrusion operation. By properly spacing the line conductors 28 to 31, by two or more times their width, coupling therebetween will be practically avoided. Another channel is obtained in the embodiment of Fig. 6 by providing a center conductor 40 coaxially of the conductive coating 27. Also, if desired, the conductors 28-31 may be spiralled on the cylinder 32.
In Fig. 7 substantially the same cable construction shown in Fig. 6 is employed as indicated by tubular dielectric material 32, conductive coating 33 and the outer springs of conductive material 34. Centrally of the conductive coating 33 is a second tubing of dielectric material 35. On the inner surface or embedded therein are conductive strips 36, 37, 38 and 39. These latter strips coact with the common conductive cylinder 33 to form individual transmission lines or channels. The lateral spacing of the strips 36, 37, 38 and 39, however, must be suiciently wide to minimize coupling.
The transmission line of Fig. 9 is arranged to provide delay characteristics. The line comprises a line conductor 41 in the form of a helix and the ground conductor 42 in the form of a solid or hollow conductive cylinder with a layer of dielectric 43 disposed therebetween. The path of propagation follows the helix, the electric field being concentrated beneath and along the conductor 41.
While we have described above the principles of our invention in connection with specific apparatus, it is to be clearly understood that this description is made by way of example only and not as a limitation to the scope of our invention, as set forth in the objects thereof and in the accompanying claims. The species of Figs. 4 through 9 are the subject matter of our copending U. S. applications Serial No. 425,852, liled April 27, 1954, for Radio Frequency Transmission Waveguides, and Serial No. 526,717, filed August 5, 1955, for Microwave Transmission Lines.
We claim:
l. A transmission line for propagating energy comprising a first elongated conductor, a second elongated conductor having a planar surface disposed in substantially parallel, spaced relation to said lirst conductor and flange portions each extending from one of the sides of the planar surface at substantially right angles to said surface in the general direction of said first condoctor, said second conductor terminating at the top of said tiange portion leaving open the space above substantially the entire surface of the first conductor remote from said planar surface, the spacing between said iirst and second conductors being a small fraction of the wavelength of the mid-frequency of said micro-wave energy and the width of said second conductor being larger than the Width of said rst conductor but insuiiciently wide to prevent substantial radiation losses, said losses being prevented by said ange portions and a layer of solid dielectric disposed therebetween substantially coextensive of said planar surface supporting said rst conductor in parallel spaced relation with respect to said second conductor.
2. A transmission line according to claim 1, wherein the ange portions of the second conductor extend in overlapping engagement with respect to the side edges of said layer of dielectric.
3. A transmission line according to claim 1, further including a second layer of dielectric on the opposite side of said second conductor and a third conductor carried thereby in spaced relation to said second conductor, said third conductor being of a width smaller than the width of said second conductor.
4. A transmission line according to claim 3, wherein said second conductor has similar flange portions extending laterally in overlapping relation with respect to the side edges of the two layers of dielectric.
References Cited in the file of this patent UNITED STATES PATENTS 2,149,387 Brown Mar. 7, 1939 2,203,481 Zottu June 4, 1940 2,246,188 Roder June 17, 1941 2,409,449 Sanders et al Oct. 15, 1946 2,602,856 Rumsey July 18, 1952 2,611,822 Bliss Sept. 23, 1952 FOREIGN PATENTS 570,087 Great Britain June 21, 1945 601,514 Great Britain May 7, 1948
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NLAANVRAGE7018785,A NL170695B (en) | 1951-06-30 | ||
BE512499D BE512499A (en) | 1951-06-30 | ||
US234503A US2721312A (en) | 1951-06-30 | 1951-06-30 | Microwave cable |
ES0204001A ES204001A1 (en) | 1951-06-30 | 1952-06-14 | Microwave cable |
CH314176D CH314176A (en) | 1951-06-30 | 1952-06-30 | Ultra-shortwave transmission line |
FR65237D FR65237E (en) | 1951-05-23 | 1952-07-18 | Transmission system for high frequency |
FR65460D FR65460E (en) | 1951-05-23 | 1952-07-29 | Transmission system for high frequency |
FR66165D FR66165E (en) | 1951-05-23 | 1953-10-27 | Transmission system for high frequency |
CH322497D CH322497A (en) | 1951-06-30 | 1953-10-28 | Ultra-shortwave radio receiver |
US425852A US2800634A (en) | 1951-06-30 | 1954-04-27 | Radio frequency transmission waveguides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US234503A US2721312A (en) | 1951-06-30 | 1951-06-30 | Microwave cable |
Publications (1)
Publication Number | Publication Date |
---|---|
US2721312A true US2721312A (en) | 1955-10-18 |
Family
ID=22881641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US234503A Expired - Lifetime US2721312A (en) | 1951-05-23 | 1951-06-30 | Microwave cable |
Country Status (2)
Country | Link |
---|---|
US (1) | US2721312A (en) |
ES (1) | ES204001A1 (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2773242A (en) * | 1952-04-02 | 1956-12-04 | Itt | Microwave switching arrangements |
US2774046A (en) * | 1952-05-08 | 1956-12-11 | Itt | Microwave transmission line |
US2790148A (en) * | 1952-02-04 | 1957-04-23 | Itt | Microwave coupling arrangements |
US2794174A (en) * | 1952-05-08 | 1957-05-28 | Itt | Microwave transmission systems and impedance matching devices therefor |
US2797390A (en) * | 1953-01-09 | 1957-06-25 | Itt | Microwave transmission lines |
US2819452A (en) * | 1952-05-08 | 1958-01-07 | Itt | Microwave filters |
US2820206A (en) * | 1952-05-08 | 1958-01-14 | Itt | Microwave filters |
US2836798A (en) * | 1953-02-13 | 1958-05-27 | Itt | Microwave transmission lines |
US2847499A (en) * | 1954-06-16 | 1958-08-12 | Preformed Line Products Co | Coaxial cable |
US2859417A (en) * | 1952-05-08 | 1958-11-04 | Itt | Microwave filters |
US2867782A (en) * | 1955-05-13 | 1959-01-06 | Itt | Microwave lines and high q filters |
US2897254A (en) * | 1956-06-21 | 1959-07-28 | Ibm | Self guiding arcuate set electric cable |
US2903656A (en) * | 1955-12-22 | 1959-09-08 | Bell Telephone Labor Inc | Nonreciprocal circuit element |
US2919441A (en) * | 1955-04-15 | 1959-12-29 | Chu Lan Jen | Radio-frequency-energy transmission line and antenna |
US2922968A (en) * | 1957-07-23 | 1960-01-26 | Richard A Van Patten | Strip line microwave filters |
US2924793A (en) * | 1956-03-09 | 1960-02-09 | Itt | Adjustable attenuator |
US2926317A (en) * | 1954-03-11 | 1960-02-23 | Sanders Associates Inc | Transmission line |
US3079551A (en) * | 1958-01-23 | 1963-02-26 | Beloit Iron Works | Apparatus and method for measurement of moisture content |
US3093805A (en) * | 1957-07-26 | 1963-06-11 | Osifchin Nicholas | Coaxial transmission line |
US3136946A (en) * | 1960-09-29 | 1964-06-09 | Itt | Microwave resistance measuring system including thermoplastic microstrip coupler |
US3386787A (en) * | 1963-10-25 | 1968-06-04 | Hazeltine Research Inc | Macroscopic optical waveguides |
US3496492A (en) * | 1965-09-30 | 1970-02-17 | Siemens Ag | Microwave strip-in-trough line |
US3519962A (en) * | 1968-03-11 | 1970-07-07 | North American Rockwell | Microwave transmission line |
US3534303A (en) * | 1967-04-20 | 1970-10-13 | Theodore Hafner | Surface wave transmission |
US3750013A (en) * | 1970-10-21 | 1973-07-31 | Us Air Force | Microstrip plasma probe |
US3763445A (en) * | 1971-03-08 | 1973-10-02 | Tektronix Inc | Variable length transmission line |
US3904997A (en) * | 1973-09-13 | 1975-09-09 | Microwave Ass | Trapped-radiation microwave transmission line |
US4371845A (en) * | 1980-05-23 | 1983-02-01 | Hughes Aircraft Company | Modular microwave power divider-amplifier-combiner |
US4641140A (en) * | 1983-09-26 | 1987-02-03 | Harris Corporation | Miniaturized microwave transmission link |
US4707671A (en) * | 1985-05-31 | 1987-11-17 | Junkosha Co., Ltd. | Electrical transmission line |
US4716389A (en) * | 1986-10-20 | 1987-12-29 | Honeywell Inc. | Millimeter wave microstrip surface mounted attenuator |
US4810981A (en) * | 1987-06-04 | 1989-03-07 | General Microwave Corporation | Assembly of microwave components |
US4887054A (en) * | 1988-12-23 | 1989-12-12 | The United States Of America As Represented By The Secretary Of The Army | Compact microstrip latching reciprocal phase shifter |
US5012047A (en) * | 1987-04-06 | 1991-04-30 | Nec Corporation | Multilayer wiring substrate |
US5023573A (en) * | 1989-09-21 | 1991-06-11 | Westinghouse Electric Corp. | Compact frequency selective limiter configuration |
US5158820A (en) * | 1989-06-05 | 1992-10-27 | The Marconi Company Limited | Signal carrier supports with apertured dielectric layer |
US5227749A (en) * | 1989-05-24 | 1993-07-13 | Alcatel Espace | Structure for making microwave circuits and components |
US5408207A (en) * | 1992-09-02 | 1995-04-18 | U.S. Philips Corporation | Electronic device for high frequencies comprising a printed circuit and process for manufacturing such a circuit |
US5426403A (en) * | 1994-01-03 | 1995-06-20 | Motorola, Inc. | Printed circuit board transmission line component |
US5469130A (en) * | 1992-11-27 | 1995-11-21 | Murata Mfg. Co., Ltd. | High frequency parallel strip line cable comprising connector part and connector provided on substrate for connecting with connector part thereof |
US5675299A (en) * | 1996-03-25 | 1997-10-07 | Ast Research, Inc. | Bidirectional non-solid impedance controlled reference plane requiring no conductor to grid alignment |
US5682124A (en) * | 1993-02-02 | 1997-10-28 | Ast Research, Inc. | Technique for increasing the range of impedances for circuit board transmission lines |
EP0862241A2 (en) * | 1997-02-28 | 1998-09-02 | Andrew A.G. | Strip-type radiating cable for a communications system |
FR2885735A1 (en) * | 2005-05-10 | 2006-11-17 | St Microelectronics Sa | Integrated circuit for transmitting electrical signal, has conductor strip disposed on dielectric region so that region forms waveguide, where part of two metallization levels situated under region forms barrier between region and substrate |
US20100052993A1 (en) * | 2008-09-04 | 2010-03-04 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board having micro strip line, printed circuit board having strip line and method of manufacturing thereof |
US20130088304A1 (en) * | 2010-06-30 | 2013-04-11 | Bae Systems Plc | Antenna feed structure |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2149387A (en) * | 1936-05-20 | 1939-03-07 | Edward C Baxley | Electron relay apparatus |
US2203481A (en) * | 1937-01-21 | 1940-06-04 | Rca Corp | Concentric lines and circuits therefor |
US2246188A (en) * | 1938-11-12 | 1941-06-17 | Gen Electric | Tuned circuit |
GB570087A (en) * | 1943-05-26 | 1945-06-21 | Gen Electric Co Ltd | Improvements in electrical transmission lines |
US2409449A (en) * | 1943-12-30 | 1946-10-15 | Rca Corp | Phase modulator |
GB601514A (en) * | 1939-09-01 | 1948-05-07 | Cole E K Ltd | Improvements in resonant electric artificial lines |
US2602856A (en) * | 1948-08-18 | 1952-07-08 | Victor H Rumsey | Power distribution system |
US2611822A (en) * | 1945-02-03 | 1952-09-23 | Bliss William Roderic | Coupling device |
-
1951
- 1951-06-30 US US234503A patent/US2721312A/en not_active Expired - Lifetime
-
1952
- 1952-06-14 ES ES0204001A patent/ES204001A1/en not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2149387A (en) * | 1936-05-20 | 1939-03-07 | Edward C Baxley | Electron relay apparatus |
US2203481A (en) * | 1937-01-21 | 1940-06-04 | Rca Corp | Concentric lines and circuits therefor |
US2246188A (en) * | 1938-11-12 | 1941-06-17 | Gen Electric | Tuned circuit |
GB601514A (en) * | 1939-09-01 | 1948-05-07 | Cole E K Ltd | Improvements in resonant electric artificial lines |
GB570087A (en) * | 1943-05-26 | 1945-06-21 | Gen Electric Co Ltd | Improvements in electrical transmission lines |
US2409449A (en) * | 1943-12-30 | 1946-10-15 | Rca Corp | Phase modulator |
US2611822A (en) * | 1945-02-03 | 1952-09-23 | Bliss William Roderic | Coupling device |
US2602856A (en) * | 1948-08-18 | 1952-07-08 | Victor H Rumsey | Power distribution system |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2790148A (en) * | 1952-02-04 | 1957-04-23 | Itt | Microwave coupling arrangements |
US2773242A (en) * | 1952-04-02 | 1956-12-04 | Itt | Microwave switching arrangements |
US2820206A (en) * | 1952-05-08 | 1958-01-14 | Itt | Microwave filters |
US2794174A (en) * | 1952-05-08 | 1957-05-28 | Itt | Microwave transmission systems and impedance matching devices therefor |
US2819452A (en) * | 1952-05-08 | 1958-01-07 | Itt | Microwave filters |
US2859417A (en) * | 1952-05-08 | 1958-11-04 | Itt | Microwave filters |
US2774046A (en) * | 1952-05-08 | 1956-12-11 | Itt | Microwave transmission line |
US2797390A (en) * | 1953-01-09 | 1957-06-25 | Itt | Microwave transmission lines |
US2836798A (en) * | 1953-02-13 | 1958-05-27 | Itt | Microwave transmission lines |
US2926317A (en) * | 1954-03-11 | 1960-02-23 | Sanders Associates Inc | Transmission line |
US2847499A (en) * | 1954-06-16 | 1958-08-12 | Preformed Line Products Co | Coaxial cable |
US2919441A (en) * | 1955-04-15 | 1959-12-29 | Chu Lan Jen | Radio-frequency-energy transmission line and antenna |
US2867782A (en) * | 1955-05-13 | 1959-01-06 | Itt | Microwave lines and high q filters |
US2903656A (en) * | 1955-12-22 | 1959-09-08 | Bell Telephone Labor Inc | Nonreciprocal circuit element |
US2924793A (en) * | 1956-03-09 | 1960-02-09 | Itt | Adjustable attenuator |
US2897254A (en) * | 1956-06-21 | 1959-07-28 | Ibm | Self guiding arcuate set electric cable |
US2922968A (en) * | 1957-07-23 | 1960-01-26 | Richard A Van Patten | Strip line microwave filters |
US3093805A (en) * | 1957-07-26 | 1963-06-11 | Osifchin Nicholas | Coaxial transmission line |
US3079551A (en) * | 1958-01-23 | 1963-02-26 | Beloit Iron Works | Apparatus and method for measurement of moisture content |
US3136946A (en) * | 1960-09-29 | 1964-06-09 | Itt | Microwave resistance measuring system including thermoplastic microstrip coupler |
US3386787A (en) * | 1963-10-25 | 1968-06-04 | Hazeltine Research Inc | Macroscopic optical waveguides |
US3496492A (en) * | 1965-09-30 | 1970-02-17 | Siemens Ag | Microwave strip-in-trough line |
US3534303A (en) * | 1967-04-20 | 1970-10-13 | Theodore Hafner | Surface wave transmission |
US3519962A (en) * | 1968-03-11 | 1970-07-07 | North American Rockwell | Microwave transmission line |
US3750013A (en) * | 1970-10-21 | 1973-07-31 | Us Air Force | Microstrip plasma probe |
US3763445A (en) * | 1971-03-08 | 1973-10-02 | Tektronix Inc | Variable length transmission line |
US3904997A (en) * | 1973-09-13 | 1975-09-09 | Microwave Ass | Trapped-radiation microwave transmission line |
US4371845A (en) * | 1980-05-23 | 1983-02-01 | Hughes Aircraft Company | Modular microwave power divider-amplifier-combiner |
US4641140A (en) * | 1983-09-26 | 1987-02-03 | Harris Corporation | Miniaturized microwave transmission link |
US4707671A (en) * | 1985-05-31 | 1987-11-17 | Junkosha Co., Ltd. | Electrical transmission line |
US4716389A (en) * | 1986-10-20 | 1987-12-29 | Honeywell Inc. | Millimeter wave microstrip surface mounted attenuator |
US5012047A (en) * | 1987-04-06 | 1991-04-30 | Nec Corporation | Multilayer wiring substrate |
US4810981A (en) * | 1987-06-04 | 1989-03-07 | General Microwave Corporation | Assembly of microwave components |
US4887054A (en) * | 1988-12-23 | 1989-12-12 | The United States Of America As Represented By The Secretary Of The Army | Compact microstrip latching reciprocal phase shifter |
US5227749A (en) * | 1989-05-24 | 1993-07-13 | Alcatel Espace | Structure for making microwave circuits and components |
US5158820A (en) * | 1989-06-05 | 1992-10-27 | The Marconi Company Limited | Signal carrier supports with apertured dielectric layer |
US5023573A (en) * | 1989-09-21 | 1991-06-11 | Westinghouse Electric Corp. | Compact frequency selective limiter configuration |
US5408207A (en) * | 1992-09-02 | 1995-04-18 | U.S. Philips Corporation | Electronic device for high frequencies comprising a printed circuit and process for manufacturing such a circuit |
US5469130A (en) * | 1992-11-27 | 1995-11-21 | Murata Mfg. Co., Ltd. | High frequency parallel strip line cable comprising connector part and connector provided on substrate for connecting with connector part thereof |
US5682124A (en) * | 1993-02-02 | 1997-10-28 | Ast Research, Inc. | Technique for increasing the range of impedances for circuit board transmission lines |
US5426403A (en) * | 1994-01-03 | 1995-06-20 | Motorola, Inc. | Printed circuit board transmission line component |
US5675299A (en) * | 1996-03-25 | 1997-10-07 | Ast Research, Inc. | Bidirectional non-solid impedance controlled reference plane requiring no conductor to grid alignment |
EP0862241A2 (en) * | 1997-02-28 | 1998-09-02 | Andrew A.G. | Strip-type radiating cable for a communications system |
EP0862241A3 (en) * | 1997-02-28 | 2000-07-05 | Andrew A.G. | Strip-type radiating cable for a communications system |
US20060270210A1 (en) * | 2005-05-10 | 2006-11-30 | Stmicroelectronics S.A. | Waveguide integrated circuit |
FR2885735A1 (en) * | 2005-05-10 | 2006-11-17 | St Microelectronics Sa | Integrated circuit for transmitting electrical signal, has conductor strip disposed on dielectric region so that region forms waveguide, where part of two metallization levels situated under region forms barrier between region and substrate |
US7417262B2 (en) | 2005-05-10 | 2008-08-26 | Stmicroelectronics S.A. | Waveguide integrated circuit |
US20100052993A1 (en) * | 2008-09-04 | 2010-03-04 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board having micro strip line, printed circuit board having strip line and method of manufacturing thereof |
US8294529B2 (en) * | 2008-09-04 | 2012-10-23 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board comprised of an insulating layer having buried microstrip lines and conductors with widths that narrow into the insulation layer |
US8607448B2 (en) | 2008-09-04 | 2013-12-17 | Samsung Electro-Mechanics Co., Ltd. | Method of manufacturing a printed circuit board having micro strip line |
US8674781B2 (en) | 2008-09-04 | 2014-03-18 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board comprised of an insulating layer having buried microstrip lines and conductors with widths that narrow into the insulation layer |
US20130088304A1 (en) * | 2010-06-30 | 2013-04-11 | Bae Systems Plc | Antenna feed structure |
US9118096B2 (en) * | 2010-06-30 | 2015-08-25 | Bae Systems Plc | Wearable antenna having a microstrip feed line disposed on a flexible fabric and including periodic apertures in a ground plane |
Also Published As
Publication number | Publication date |
---|---|
ES204001A1 (en) | 1952-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2721312A (en) | Microwave cable | |
US2800634A (en) | Radio frequency transmission waveguides | |
US2751558A (en) | Radio frequency filter | |
US2760169A (en) | Microwave filters | |
US2951218A (en) | Directional couplings | |
EP1321998B1 (en) | Waveguide-microstrip transition for millimeter waves and Microwaves | |
US5164692A (en) | Triplet plated-through double layered transmission line | |
US2913686A (en) | Strip transmission lines | |
GB2058439A (en) | Shielded fiat cable | |
US2915718A (en) | Microwave transmission lines | |
CN109904579B (en) | Gap coupling directional coupler based on integrated substrate gap waveguide | |
CN110350282B (en) | Directional coupler based on double-ridge integrated substrate gap waveguide | |
JPH0653711A (en) | Waveguide line | |
US2774046A (en) | Microwave transmission line | |
US10680305B2 (en) | Signal handling device including a surface integrated waveguide and a resonating cavity formed in multiple substrate layers | |
US2725535A (en) | Attenuators | |
US2994050A (en) | High frequency transmission line | |
US2825875A (en) | Radio frequency transducer | |
US3523260A (en) | Microstrip balun | |
EP0188347A2 (en) | A leaky coaxial cable and method of making such a cable | |
US3094677A (en) | Strip line wave guide coupler | |
US2749521A (en) | Microwave coupling arrangements | |
US2773242A (en) | Microwave switching arrangements | |
US8809683B2 (en) | Leaky coaxial cable | |
US2749519A (en) | Directional couplers for microwave transmission systems |