US20230348937A1 - Fusogenic lipid nanoparticles for target cell-specific production of a therapeutic protein fusogenic lipid nanoparticles and methods of manufacture and use thereof for the target cell-specific production of a therapeutic protein and for the treatment of a disease - Google Patents
Fusogenic lipid nanoparticles for target cell-specific production of a therapeutic protein fusogenic lipid nanoparticles and methods of manufacture and use thereof for the target cell-specific production of a therapeutic protein and for the treatment of a disease Download PDFInfo
- Publication number
- US20230348937A1 US20230348937A1 US18/060,292 US202218060292A US2023348937A1 US 20230348937 A1 US20230348937 A1 US 20230348937A1 US 202218060292 A US202218060292 A US 202218060292A US 2023348937 A1 US2023348937 A1 US 2023348937A1
- Authority
- US
- United States
- Prior art keywords
- protein
- cell
- lnp formulation
- therapeutic protein
- target cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 229
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 193
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 124
- 150000002632 lipids Chemical class 0.000 title claims abstract description 96
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 72
- 230000000799 fusogenic effect Effects 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title abstract description 69
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title abstract description 55
- 201000010099 disease Diseases 0.000 title abstract description 54
- 238000011282 treatment Methods 0.000 title abstract description 26
- 230000014509 gene expression Effects 0.000 claims abstract description 214
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 149
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 148
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 148
- 239000000203 mixture Substances 0.000 claims abstract description 140
- 238000009472 formulation Methods 0.000 claims abstract description 111
- 230000004083 survival effect Effects 0.000 claims abstract description 62
- 230000012010 growth Effects 0.000 claims abstract description 58
- 230000002103 transcriptional effect Effects 0.000 claims description 125
- 230000001939 inductive effect Effects 0.000 claims description 77
- 230000001105 regulatory effect Effects 0.000 claims description 49
- 102000011727 Caspases Human genes 0.000 claims description 31
- 108010076667 Caspases Proteins 0.000 claims description 31
- 102100038023 DNA fragmentation factor subunit beta Human genes 0.000 claims description 30
- 101000950965 Homo sapiens DNA fragmentation factor subunit beta Proteins 0.000 claims description 30
- 102100026548 Caspase-8 Human genes 0.000 claims description 29
- 102000000311 Cytosine Deaminase Human genes 0.000 claims description 28
- 108010080611 Cytosine Deaminase Proteins 0.000 claims description 28
- 101150100916 Casp3 gene Proteins 0.000 claims description 26
- 101150056960 Casp8 gene Proteins 0.000 claims description 26
- 239000002539 nanocarrier Substances 0.000 claims description 15
- 230000004044 response Effects 0.000 claims description 14
- NYDLOCKCVISJKK-WRBBJXAJSA-N [3-(dimethylamino)-2-[(z)-octadec-9-enoyl]oxypropyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(CN(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC NYDLOCKCVISJKK-WRBBJXAJSA-N 0.000 claims description 12
- 230000004927 fusion Effects 0.000 claims description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 102100036464 Activated RNA polymerase II transcriptional coactivator p15 Human genes 0.000 claims description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 3
- MWRBNPKJOOWZPW-NYVOMTAGSA-N 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine zwitterion Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-NYVOMTAGSA-N 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 9
- 241000702263 Reovirus sp. Species 0.000 claims 4
- 206010028980 Neoplasm Diseases 0.000 abstract description 84
- 238000001727 in vivo Methods 0.000 abstract description 46
- 230000032683 aging Effects 0.000 abstract description 45
- 201000011510 cancer Diseases 0.000 abstract description 40
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 abstract description 15
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 abstract description 15
- 210000004027 cell Anatomy 0.000 description 501
- 102100033254 Tumor suppressor ARF Human genes 0.000 description 96
- 239000013598 vector Substances 0.000 description 66
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 61
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 61
- -1 antibodies Substances 0.000 description 56
- 108091023040 Transcription factor Proteins 0.000 description 47
- 102000040945 Transcription factor Human genes 0.000 description 46
- 241000699670 Mus sp. Species 0.000 description 45
- 102100026550 Caspase-9 Human genes 0.000 description 39
- 108090000566 Caspase-9 Proteins 0.000 description 38
- 238000001990 intravenous administration Methods 0.000 description 35
- 239000000126 substance Substances 0.000 description 34
- 238000006471 dimerization reaction Methods 0.000 description 31
- 239000013612 plasmid Substances 0.000 description 30
- 108020004414 DNA Proteins 0.000 description 27
- 230000006907 apoptotic process Effects 0.000 description 27
- 230000027455 binding Effects 0.000 description 27
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 26
- 239000000411 inducer Substances 0.000 description 26
- 239000002502 liposome Substances 0.000 description 25
- 206010060862 Prostate cancer Diseases 0.000 description 24
- 241001465754 Metazoa Species 0.000 description 23
- 230000000694 effects Effects 0.000 description 21
- 230000008685 targeting Effects 0.000 description 19
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 18
- 239000005089 Luciferase Substances 0.000 description 17
- 238000013518 transcription Methods 0.000 description 17
- 230000035897 transcription Effects 0.000 description 17
- 210000004962 mammalian cell Anatomy 0.000 description 16
- 108060001084 Luciferase Proteins 0.000 description 15
- 230000030833 cell death Effects 0.000 description 15
- 239000003814 drug Substances 0.000 description 15
- 238000002347 injection Methods 0.000 description 15
- 239000007924 injection Substances 0.000 description 15
- 241000700605 Viruses Species 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 239000013603 viral vector Substances 0.000 description 14
- 241001529936 Murinae Species 0.000 description 13
- 230000004913 activation Effects 0.000 description 13
- 238000001802 infusion Methods 0.000 description 13
- 230000009758 senescence Effects 0.000 description 13
- 210000001519 tissue Anatomy 0.000 description 13
- 101000891649 Homo sapiens Transcription elongation factor A protein-like 1 Proteins 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 208000023958 prostate neoplasm Diseases 0.000 description 12
- 239000000427 antigen Substances 0.000 description 11
- 108091007433 antigens Proteins 0.000 description 11
- 102000036639 antigens Human genes 0.000 description 11
- 108020001507 fusion proteins Proteins 0.000 description 11
- 102000037865 fusion proteins Human genes 0.000 description 11
- 210000003292 kidney cell Anatomy 0.000 description 11
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 11
- 238000007920 subcutaneous administration Methods 0.000 description 11
- KWVJHCQQUFDPLU-YEUCEMRASA-N 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KWVJHCQQUFDPLU-YEUCEMRASA-N 0.000 description 10
- 241000700584 Simplexvirus Species 0.000 description 10
- 230000033077 cellular process Effects 0.000 description 10
- 231100000673 dose–response relationship Toxicity 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 208000035143 Bacterial infection Diseases 0.000 description 9
- 108010029697 CD40 Ligand Proteins 0.000 description 9
- 102100032937 CD40 ligand Human genes 0.000 description 9
- 101100124635 Chondrus crispus HOX gene Proteins 0.000 description 9
- 208000035473 Communicable disease Diseases 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 235000012000 cholesterol Nutrition 0.000 description 9
- 239000012678 infectious agent Substances 0.000 description 9
- 238000010172 mouse model Methods 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 230000001629 suppression Effects 0.000 description 9
- 230000003612 virological effect Effects 0.000 description 9
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 8
- 241000282412 Homo Species 0.000 description 8
- 238000011789 NOD SCID mouse Methods 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 208000022362 bacterial infectious disease Diseases 0.000 description 8
- NCEXYHBECQHGNR-UHFFFAOYSA-N chembl421 Chemical compound C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000412 dendrimer Substances 0.000 description 8
- 229920000736 dendritic polymer Polymers 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 208000015181 infectious disease Diseases 0.000 description 8
- 201000001441 melanoma Diseases 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 102000004196 processed proteins & peptides Human genes 0.000 description 8
- 230000004568 DNA-binding Effects 0.000 description 7
- 108010058846 Ovalbumin Proteins 0.000 description 7
- 241000303280 Reptilian orthoreovirus Species 0.000 description 7
- 102000018679 Tacrolimus Binding Proteins Human genes 0.000 description 7
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 7
- 102000015098 Tumor Suppressor Protein p53 Human genes 0.000 description 7
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 7
- 108010005774 beta-Galactosidase Proteins 0.000 description 7
- 125000002091 cationic group Chemical group 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 210000000805 cytoplasm Anatomy 0.000 description 7
- 210000005260 human cell Anatomy 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 230000017074 necrotic cell death Effects 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 230000002265 prevention Effects 0.000 description 7
- 102000005962 receptors Human genes 0.000 description 7
- 108020003175 receptors Proteins 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 102100038026 DNA fragmentation factor subunit alpha Human genes 0.000 description 6
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 6
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 238000011529 RT qPCR Methods 0.000 description 6
- 108091027981 Response element Proteins 0.000 description 6
- 108010027179 Tacrolimus Binding Proteins Proteins 0.000 description 6
- 239000002671 adjuvant Substances 0.000 description 6
- 230000002457 bidirectional effect Effects 0.000 description 6
- 230000008030 elimination Effects 0.000 description 6
- 238000003379 elimination reaction Methods 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 102000040430 polynucleotide Human genes 0.000 description 6
- 108091033319 polynucleotide Proteins 0.000 description 6
- 239000002157 polynucleotide Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 210000001625 seminal vesicle Anatomy 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- 201000010653 vesiculitis Diseases 0.000 description 6
- 108010016788 Cyclin-Dependent Kinase Inhibitor p21 Proteins 0.000 description 5
- 102100033270 Cyclin-dependent kinase inhibitor 1 Human genes 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 5
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 5
- 101000733249 Homo sapiens Tumor suppressor ARF Proteins 0.000 description 5
- 206010027476 Metastases Diseases 0.000 description 5
- 108010057466 NF-kappa B Proteins 0.000 description 5
- 102000003945 NF-kappa B Human genes 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 102000006601 Thymidine Kinase Human genes 0.000 description 5
- 108020004440 Thymidine kinase Proteins 0.000 description 5
- 108010018242 Transcription Factor AP-1 Proteins 0.000 description 5
- 102100024027 Transcription factor E2F3 Human genes 0.000 description 5
- 238000003782 apoptosis assay Methods 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000009789 autophagic cell death Effects 0.000 description 5
- 230000022131 cell cycle Effects 0.000 description 5
- 231100000135 cytotoxicity Toxicity 0.000 description 5
- 230000003013 cytotoxicity Effects 0.000 description 5
- 238000001415 gene therapy Methods 0.000 description 5
- 239000005090 green fluorescent protein Substances 0.000 description 5
- 108010035817 human DNA fragmentation factor Proteins 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 210000004379 membrane Anatomy 0.000 description 5
- 230000006618 mitotic catastrophe Effects 0.000 description 5
- 230000021597 necroptosis Effects 0.000 description 5
- 229940092253 ovalbumin Drugs 0.000 description 5
- 108700042657 p16 Genes Proteins 0.000 description 5
- 230000006010 pyroptosis Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000003827 upregulation Effects 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 102100035634 B-cell linker protein Human genes 0.000 description 4
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 108010064535 CCAAT-Enhancer-Binding Protein-beta Proteins 0.000 description 4
- 102000015280 CCAAT-Enhancer-Binding Protein-beta Human genes 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 108010078015 Complement C3b Proteins 0.000 description 4
- 102000013701 Cyclin-Dependent Kinase 4 Human genes 0.000 description 4
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 4
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 4
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 4
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 4
- 102100031780 Endonuclease Human genes 0.000 description 4
- 108010042407 Endonucleases Proteins 0.000 description 4
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 4
- 230000010190 G1 phase Effects 0.000 description 4
- 102100032606 Heat shock factor protein 1 Human genes 0.000 description 4
- 108010068250 Herpes Simplex Virus Protein Vmw65 Proteins 0.000 description 4
- 102100022103 Histone-lysine N-methyltransferase 2A Human genes 0.000 description 4
- 101000803266 Homo sapiens B-cell linker protein Proteins 0.000 description 4
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 4
- 101000867525 Homo sapiens Heat shock factor protein 1 Proteins 0.000 description 4
- 101001045846 Homo sapiens Histone-lysine N-methyltransferase 2A Proteins 0.000 description 4
- 101000876829 Homo sapiens Protein C-ets-1 Proteins 0.000 description 4
- 101000898093 Homo sapiens Protein C-ets-2 Proteins 0.000 description 4
- 101000666382 Homo sapiens Transcription factor E2-alpha Proteins 0.000 description 4
- 101000904150 Homo sapiens Transcription factor E2F3 Proteins 0.000 description 4
- 241000725303 Human immunodeficiency virus Species 0.000 description 4
- 101150008942 J gene Proteins 0.000 description 4
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 4
- 101710099430 Microtubule-associated protein RP/EB family member 3 Proteins 0.000 description 4
- 101100351020 Mus musculus Pax5 gene Proteins 0.000 description 4
- 108010018525 NFATC Transcription Factors Proteins 0.000 description 4
- 102000002673 NFATC Transcription Factors Human genes 0.000 description 4
- 102100035251 Protein C-ets-1 Human genes 0.000 description 4
- 102100021890 Protein C-ets-2 Human genes 0.000 description 4
- 102100020847 Protein FosB Human genes 0.000 description 4
- 230000018199 S phase Effects 0.000 description 4
- 101710188689 Small, acid-soluble spore protein 1 Proteins 0.000 description 4
- 101710188693 Small, acid-soluble spore protein 2 Proteins 0.000 description 4
- 101710166422 Small, acid-soluble spore protein A Proteins 0.000 description 4
- 101710166404 Small, acid-soluble spore protein C Proteins 0.000 description 4
- 101710174019 Small, acid-soluble spore protein C1 Proteins 0.000 description 4
- 101710174017 Small, acid-soluble spore protein C2 Proteins 0.000 description 4
- 101710174574 Small, acid-soluble spore protein gamma-type Proteins 0.000 description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 4
- 102100036407 Thioredoxin Human genes 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 102100022972 Transcription factor AP-2-alpha Human genes 0.000 description 4
- 101710189834 Transcription factor AP-2-alpha Proteins 0.000 description 4
- 101710182998 Transcription factor COE1 Proteins 0.000 description 4
- 102100024200 Transcription factor COE3 Human genes 0.000 description 4
- 102100024026 Transcription factor E2F1 Human genes 0.000 description 4
- 101100351021 Xenopus laevis pax5 gene Proteins 0.000 description 4
- 210000001789 adipocyte Anatomy 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 229940115080 doxil Drugs 0.000 description 4
- 238000000684 flow cytometry Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000002147 killing effect Effects 0.000 description 4
- 238000007422 luminescence assay Methods 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 201000005202 lung cancer Diseases 0.000 description 4
- 210000005265 lung cell Anatomy 0.000 description 4
- 208000020816 lung neoplasm Diseases 0.000 description 4
- 230000034217 membrane fusion Effects 0.000 description 4
- 230000009401 metastasis Effects 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000002600 positron emission tomography Methods 0.000 description 4
- 230000005522 programmed cell death Effects 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 210000002307 prostate Anatomy 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 210000004881 tumor cell Anatomy 0.000 description 4
- 230000004614 tumor growth Effects 0.000 description 4
- 241000712461 unidentified influenza virus Species 0.000 description 4
- 241001430294 unidentified retrovirus Species 0.000 description 4
- 206010005949 Bone cancer Diseases 0.000 description 3
- 208000018084 Bone neoplasm Diseases 0.000 description 3
- 208000003174 Brain Neoplasms Diseases 0.000 description 3
- 101150041972 CDKN2A gene Proteins 0.000 description 3
- 108090000397 Caspase 3 Proteins 0.000 description 3
- 102100029855 Caspase-3 Human genes 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 3
- 102100025278 Coxsackievirus and adenovirus receptor Human genes 0.000 description 3
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 3
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 241000709661 Enterovirus Species 0.000 description 3
- 241000991587 Enterovirus C Species 0.000 description 3
- 101000609762 Gallus gallus Ovalbumin Proteins 0.000 description 3
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 3
- 108090000246 Histone acetyltransferases Proteins 0.000 description 3
- 102000003893 Histone acetyltransferases Human genes 0.000 description 3
- 101000904152 Homo sapiens Transcription factor E2F1 Proteins 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 102000013462 Interleukin-12 Human genes 0.000 description 3
- 108010065805 Interleukin-12 Proteins 0.000 description 3
- 108700019961 Neoplasm Genes Proteins 0.000 description 3
- 102000048850 Neoplasm Genes Human genes 0.000 description 3
- 101710163270 Nuclease Proteins 0.000 description 3
- 108700020796 Oncogene Proteins 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 108700026226 TATA Box Proteins 0.000 description 3
- 206010043376 Tetanus Diseases 0.000 description 3
- 108700009124 Transcription Initiation Site Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 230000005875 antibody response Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000010094 cellular senescence Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000024203 complement activation Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000012202 endocytosis Effects 0.000 description 3
- 210000001163 endosome Anatomy 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 3
- 229960004413 flucytosine Drugs 0.000 description 3
- 201000005787 hematologic cancer Diseases 0.000 description 3
- 208000006454 hepatitis Diseases 0.000 description 3
- 231100000283 hepatitis Toxicity 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 230000003308 immunostimulating effect Effects 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 206010022000 influenza Diseases 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 238000007914 intraventricular administration Methods 0.000 description 3
- 201000007270 liver cancer Diseases 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 231100000682 maximum tolerated dose Toxicity 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 210000004789 organ system Anatomy 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 210000004989 spleen cell Anatomy 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 241001529453 unidentified herpesvirus Species 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical class C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 108090000672 Annexin A5 Proteins 0.000 description 2
- 102000004121 Annexin A5 Human genes 0.000 description 2
- 244000105975 Antidesma platyphyllum Species 0.000 description 2
- 101000715943 Caenorhabditis elegans Cyclin-dependent kinase 4 homolog Proteins 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 108090000538 Caspase-8 Proteins 0.000 description 2
- 101710176411 Coxsackievirus and adenovirus receptor Proteins 0.000 description 2
- 102000003910 Cyclin D Human genes 0.000 description 2
- 108090000259 Cyclin D Proteins 0.000 description 2
- 241000702421 Dependoparvovirus Species 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 102100039869 Histone H2B type F-S Human genes 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- 108700005087 Homeobox Genes Proteins 0.000 description 2
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 2
- 101000891031 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP10 Proteins 0.000 description 2
- 101000878221 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP8 Proteins 0.000 description 2
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- 102100034349 Integrase Human genes 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- 206010027458 Metastases to lung Diseases 0.000 description 2
- 108010006519 Molecular Chaperones Proteins 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 102100041030 Pancreas/duodenum homeobox protein 1 Human genes 0.000 description 2
- 102100040349 Peptidyl-prolyl cis-trans isomerase FKBP10 Human genes 0.000 description 2
- 102100027913 Peptidyl-prolyl cis-trans isomerase FKBP1A Human genes 0.000 description 2
- 102100036978 Peptidyl-prolyl cis-trans isomerase FKBP8 Human genes 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 102100032420 Protein S100-A9 Human genes 0.000 description 2
- 102000009572 RNA Polymerase II Human genes 0.000 description 2
- 108010009460 RNA Polymerase II Proteins 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 108050002653 Retinoblastoma protein Proteins 0.000 description 2
- 241001486234 Sciota Species 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 102000006467 TATA-Box Binding Protein Human genes 0.000 description 2
- 108010044281 TATA-Box Binding Protein Proteins 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 2
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 230000001640 apoptogenic effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000037182 bone density Effects 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 108091092356 cellular DNA Proteins 0.000 description 2
- 239000013599 cloning vector Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 229940104302 cytosine Drugs 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 230000008482 dysregulation Effects 0.000 description 2
- 230000002121 endocytic effect Effects 0.000 description 2
- 102000015694 estrogen receptors Human genes 0.000 description 2
- 108010038795 estrogen receptors Proteins 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 230000002431 foraging effect Effects 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000001476 gene delivery Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000011194 good manufacturing practice Methods 0.000 description 2
- 235000009424 haa Nutrition 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000006882 induction of apoptosis Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 238000011580 nude mouse model Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 108700025694 p53 Genes Proteins 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000010415 tropism Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 1
- YKBGVTZYEHREMT-UHFFFAOYSA-N 2'-deoxyguanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1CC(O)C(CO)O1 YKBGVTZYEHREMT-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- JHALWMSZGCVVEM-UHFFFAOYSA-N 2-[4,7-bis(carboxymethyl)-1,4,7-triazonan-1-yl]acetic acid Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CC1 JHALWMSZGCVVEM-UHFFFAOYSA-N 0.000 description 1
- 101710083984 AH receptor-interacting protein Proteins 0.000 description 1
- 102000041228 AP-2 family Human genes 0.000 description 1
- 108091061395 AP-2 family Proteins 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 101710150620 Anionic peptide Proteins 0.000 description 1
- 102100027308 Apoptosis regulator BAX Human genes 0.000 description 1
- 108050006685 Apoptosis regulator BAX Proteins 0.000 description 1
- 108010089941 Apoptosomes Proteins 0.000 description 1
- 206010003062 Apraxia Diseases 0.000 description 1
- 241000702652 Aquareovirus Species 0.000 description 1
- 102100024081 Aryl-hydrocarbon-interacting protein-like 1 Human genes 0.000 description 1
- 102100039723 Aurora kinase A-interacting protein Human genes 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 108010001572 Basic-Leucine Zipper Transcription Factors Proteins 0.000 description 1
- 102000000806 Basic-Leucine Zipper Transcription Factors Human genes 0.000 description 1
- 108091007914 CDKs Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000238097 Callinectes sapidus Species 0.000 description 1
- 102000003846 Carbonic anhydrases Human genes 0.000 description 1
- 108090000209 Carbonic anhydrases Proteins 0.000 description 1
- QRYRORQUOLYVBU-VBKZILBWSA-N Carnosic acid Natural products CC([C@@H]1CC2)(C)CCC[C@]1(C(O)=O)C1=C2C=C(C(C)C)C(O)=C1O QRYRORQUOLYVBU-VBKZILBWSA-N 0.000 description 1
- 108010087806 Carnosine Proteins 0.000 description 1
- 102000004018 Caspase 6 Human genes 0.000 description 1
- 108090000425 Caspase 6 Proteins 0.000 description 1
- 108090000567 Caspase 7 Proteins 0.000 description 1
- 102000021350 Caspase recruitment domains Human genes 0.000 description 1
- 108091011189 Caspase recruitment domains Proteins 0.000 description 1
- 102100038902 Caspase-7 Human genes 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 102000008169 Co-Repressor Proteins Human genes 0.000 description 1
- 108010060434 Co-Repressor Proteins Proteins 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 206010010099 Combined immunodeficiency Diseases 0.000 description 1
- 102000010970 Connexin Human genes 0.000 description 1
- 108050001175 Connexin Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 102000013698 Cyclin-Dependent Kinase 6 Human genes 0.000 description 1
- 108010025468 Cyclin-Dependent Kinase 6 Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 101710182628 DNA fragmentation factor subunit alpha Proteins 0.000 description 1
- 101710147299 DNA fragmentation factor subunit beta Proteins 0.000 description 1
- 230000007018 DNA scission Effects 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 101100239628 Danio rerio myca gene Proteins 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 102100021073 Dynactin subunit 3 Human genes 0.000 description 1
- 108091035710 E-box Proteins 0.000 description 1
- 108010063774 E2F1 Transcription Factor Proteins 0.000 description 1
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 1
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 1
- 102100031702 Endoplasmic reticulum membrane sensor NFE2L1 Human genes 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 108091011114 FK506 binding proteins Proteins 0.000 description 1
- 102100040351 FK506-binding protein 15 Human genes 0.000 description 1
- 101710145505 Fiber protein Proteins 0.000 description 1
- 108010008599 Forkhead Box Protein M1 Proteins 0.000 description 1
- 108090000852 Forkhead Transcription Factors Proteins 0.000 description 1
- 102000004315 Forkhead Transcription Factors Human genes 0.000 description 1
- 102100023374 Forkhead box protein M1 Human genes 0.000 description 1
- 102100035237 GA-binding protein alpha chain Human genes 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 108010049606 Hepatocyte Nuclear Factors Proteins 0.000 description 1
- 102000008088 Hepatocyte Nuclear Factors Human genes 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 241000700586 Herpesviridae Species 0.000 description 1
- 108090000353 Histone deacetylase Proteins 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 101000833576 Homo sapiens Aryl-hydrocarbon-interacting protein-like 1 Proteins 0.000 description 1
- 101000983528 Homo sapiens Caspase-8 Proteins 0.000 description 1
- 101000983523 Homo sapiens Caspase-9 Proteins 0.000 description 1
- 101000891018 Homo sapiens FK506-binding protein 15 Proteins 0.000 description 1
- 101001059881 Homo sapiens Forkhead box protein P2 Proteins 0.000 description 1
- 101000861452 Homo sapiens Forkhead box protein P3 Proteins 0.000 description 1
- 101001022105 Homo sapiens GA-binding protein alpha chain Proteins 0.000 description 1
- 101000878213 Homo sapiens Inactive peptidyl-prolyl cis-trans isomerase FKBP6 Proteins 0.000 description 1
- 101000612089 Homo sapiens Pancreas/duodenum homeobox protein 1 Proteins 0.000 description 1
- 101000891028 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP11 Proteins 0.000 description 1
- 101000891014 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP14 Proteins 0.000 description 1
- 101001060744 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP1A Proteins 0.000 description 1
- 101001060736 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP1B Proteins 0.000 description 1
- 101000914053 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP2 Proteins 0.000 description 1
- 101000827313 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP3 Proteins 0.000 description 1
- 101000878215 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP7 Proteins 0.000 description 1
- 101000686031 Homo sapiens Proto-oncogene tyrosine-protein kinase ROS Proteins 0.000 description 1
- 101001052171 Homo sapiens Putative FK506-binding protein 9-like protein Proteins 0.000 description 1
- 101000940144 Homo sapiens Transcriptional repressor protein YY1 Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 101150083522 MECP2 gene Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102100039124 Methyl-CpG-binding protein 2 Human genes 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- CQOVPNPJLQNMDC-UHFFFAOYSA-N N-beta-alanyl-L-histidine Natural products NCCC(=O)NC(C(O)=O)CC1=CN=CN1 CQOVPNPJLQNMDC-UHFFFAOYSA-N 0.000 description 1
- 108010071380 NF-E2-Related Factor 1 Proteins 0.000 description 1
- 208000029726 Neurodevelopmental disease Diseases 0.000 description 1
- 101000914065 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) FK506-binding protein 2 Proteins 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 108010016592 Nuclear Respiratory Factor 1 Proteins 0.000 description 1
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- 102000013901 Nucleoside diphosphate kinase Human genes 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 206010031112 Oropharyngeal squamous cell carcinoma Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 101710144033 Pancreas/duodenum homeobox protein 1 Proteins 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102100040348 Peptidyl-prolyl cis-trans isomerase FKBP11 Human genes 0.000 description 1
- 102100040350 Peptidyl-prolyl cis-trans isomerase FKBP14 Human genes 0.000 description 1
- 102100027914 Peptidyl-prolyl cis-trans isomerase FKBP1B Human genes 0.000 description 1
- 102100026408 Peptidyl-prolyl cis-trans isomerase FKBP2 Human genes 0.000 description 1
- 102100023846 Peptidyl-prolyl cis-trans isomerase FKBP3 Human genes 0.000 description 1
- 102100020739 Peptidyl-prolyl cis-trans isomerase FKBP4 Human genes 0.000 description 1
- 102100036983 Peptidyl-prolyl cis-trans isomerase FKBP7 Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 229920001212 Poly(beta amino esters) Polymers 0.000 description 1
- 108010000598 Polycomb Repressive Complex 1 Proteins 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 240000009305 Pometia pinnata Species 0.000 description 1
- 235000017284 Pometia pinnata Nutrition 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108700040121 Protein Methyltransferases Proteins 0.000 description 1
- 102000055027 Protein Methyltransferases Human genes 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 102100033947 Protein regulator of cytokinesis 1 Human genes 0.000 description 1
- 102100023347 Proto-oncogene tyrosine-protein kinase ROS Human genes 0.000 description 1
- 102100024277 Putative FK506-binding protein 9-like protein Human genes 0.000 description 1
- 101710183548 Pyridoxal 5'-phosphate synthase subunit PdxS Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000702247 Reoviridae Species 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 241000712907 Retroviridae Species 0.000 description 1
- 101100465401 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SCL1 gene Proteins 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 1
- 102000007451 Steroid Receptors Human genes 0.000 description 1
- 108010085012 Steroid Receptors Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108010006877 Tacrolimus Binding Protein 1A Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 102100037357 Thymidylate kinase Human genes 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 102000002689 Toll-like receptor Human genes 0.000 description 1
- 108020000411 Toll-like receptor Proteins 0.000 description 1
- 101710138752 Transcription factor E2F3 Proteins 0.000 description 1
- 102000000887 Transcription factor STAT Human genes 0.000 description 1
- 108050007918 Transcription factor STAT Proteins 0.000 description 1
- 102100031142 Transcriptional repressor protein YY1 Human genes 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 206010045170 Tumour lysis syndrome Diseases 0.000 description 1
- 101710100179 UMP-CMP kinase Proteins 0.000 description 1
- 101710119674 UMP-CMP kinase 2, mitochondrial Proteins 0.000 description 1
- 206010046306 Upper respiratory tract infection Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000008385 Urogenital Neoplasms Diseases 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- BZDVTEPMYMHZCR-JGVFFNPUSA-N [(2s,5r)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methyl phosphono hydrogen phosphate Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)CC1 BZDVTEPMYMHZCR-JGVFFNPUSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 210000002534 adenoid Anatomy 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 208000034615 apoptosis-related disease Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 206010005084 bladder transitional cell carcinoma Diseases 0.000 description 1
- 201000001528 bladder urothelial carcinoma Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 230000000981 bystander Effects 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229940044199 carnosine Drugs 0.000 description 1
- CQOVPNPJLQNMDC-ZETCQYMHSA-N carnosine Chemical compound [NH3+]CCC(=O)N[C@H](C([O-])=O)CC1=CNC=N1 CQOVPNPJLQNMDC-ZETCQYMHSA-N 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 208000020345 childhood apraxia of speech Diseases 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 230000003081 coactivator Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001360 collision-induced dissociation Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000002875 cyclin dependent kinase inhibitor Substances 0.000 description 1
- 229940043378 cyclin-dependent kinase inhibitor Drugs 0.000 description 1
- GYOZYWVXFNDGLU-XLPZGREQSA-N dTMP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)C1 GYOZYWVXFNDGLU-XLPZGREQSA-N 0.000 description 1
- 108010000742 dTMP kinase Proteins 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- VGONTNSXDCQUGY-UHFFFAOYSA-N desoxyinosine Natural products C1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 VGONTNSXDCQUGY-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000294 dose-dependent toxicity Toxicity 0.000 description 1
- 230000005782 double-strand break Effects 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000009547 dual-energy X-ray absorptiometry Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000004049 epigenetic modification Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000000710 homodimer Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000006607 hypermethylation Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 210000004347 intestinal mucosa Anatomy 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 108020001756 ligand binding domains Proteins 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 230000006674 lysosomal degradation Effects 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 244000309711 non-enveloped viruses Species 0.000 description 1
- 108020004017 nuclear receptors Proteins 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 208000022698 oropharynx squamous cell carcinoma Diseases 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229940046159 pegylated liposomal doxorubicin Drugs 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 1
- 230000002516 postimmunization Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 231100000175 potential carcinogenicity Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 208000020029 respiratory tract infectious disease Diseases 0.000 description 1
- 108091008020 response regulators Proteins 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 102200015453 rs121912293 Human genes 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 231100000161 signs of toxicity Toxicity 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 210000004683 skeletal myoblast Anatomy 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 208000014155 speech-language disorder-1 Diseases 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000013403 standard screening design Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 108010067247 tacrolimus binding protein 4 Proteins 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 231100000048 toxicity data Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012250 transgenic expression Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 210000003956 transport vesicle Anatomy 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 230000005909 tumor killing Effects 0.000 description 1
- 208000010380 tumor lysis syndrome Diseases 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 125000000297 undecanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/88—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/711—Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6905—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
- A61K47/6911—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0008—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
- A61K48/0025—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
- A61K48/0041—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being polymeric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5123—Organic compounds, e.g. fats, sugars
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2207/00—Modified animals
- A01K2207/12—Animals modified by administration of exogenous cells
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/0331—Animal model for proliferative diseases
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/035—Animal model for multifactorial diseases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/32—Special delivery means, e.g. tissue-specific
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2720/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
- C12N2720/00011—Details
- C12N2720/12011—Reoviridae
- C12N2720/12211—Orthoreovirus, e.g. mammalian orthoreovirus
- C12N2720/12222—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/001—Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
- C12N2830/002—Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/22—Cysteine endopeptidases (3.4.22)
- C12Y304/22056—Caspase-3 (3.4.22.56)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/22—Cysteine endopeptidases (3.4.22)
- C12Y304/22061—Caspase-8 (3.4.22.61)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/22—Cysteine endopeptidases (3.4.22)
- C12Y304/22062—Caspase-9 (3.4.22.62)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y305/00—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
- C12Y305/04—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
- C12Y305/04001—Cytosine deaminase (3.5.4.1)
Definitions
- the present disclosure relates, generally, to the field of medicine, including the treatment of disease, promotion of longevity, anti-aging, and health extension. More specifically, this disclosure concerns compositions and methods for reducing the growth and/or survival of cells that are associated with aging, disease, and other conditions.
- expression constructs for target cell specific expression of therapeutic proteins which constructs exploit unique intracellular functionality, including transcription regulatory functionality, that is present within a target cell but is either absent from or substantially reduced in a normal, non-target cell.
- Such expression constructs are used in systems that include a vector for the delivery of a nucleic acid to a target cell, which vectors may comprise, but do not necessarily require, a fusogenic lipid nanoparticle and, optionally, a targeting moiety for enhancing the delivery of an expression construct to a target cell.
- Cancer cells, senescent cells, and other cells having an undesirable phenotype can accumulate over the course of a person's life and, without appropriate treatment, such cells can contribute to or even cause a person's morbidity and, ultimately, mortality.
- a cell such as a cell that is associated with aging, a disease, and/or another condition (collectively, “a target cell”), can be selectively killed, in a target cell-specific manner, without the need for the targeted delivery of a therapeutic agent to the target cell.
- a target cell a cell that is associated with aging, a disease, and/or another condition
- the expression constructs, systems, and methods described herein overcome safety and efficacy concerns that are associated with existing technologies that employ targeted delivery of therapeutic agents, which technologies have yielded limited therapeutic benefit to patients in need thereof.
- the present disclosure provides expression cassettes, systems, and methods for inducing, in a target cell-specific manner, the expression of a nucleic acid that encodes a protein that, when produced in a cell, reduces or eliminates the growth and/or survival of a cell, such as a cell that is associated with aging, disease, and/or other condition.
- the expression cassettes, systems, and methods described herein exploit the unique transcription regulatory machinery that is intrinsic to certain cells that are associated with age (such as senescent cells), disease (such as cancers, infectious diseases, and bacterial diseases), as well as other conditions, which transcription regulatory machinery is not operative, or exhibits substantially reduced activity, in a normal cell (i.e., “a non-target cell”) that is not associated with aging, disease, or other condition.
- the presently-disclosed expression cassettes, systems, and methods achieve a high degree of target cell specificity as a consequence of intracellular functionality that is provided by, and unique to, the target cell, which intracellular functionality is not provided by, or is substantially reduced in, a normal, non-target cell.
- the presently disclosed systems and methods employ nucleic acid delivery vectors that are non-specific with respect to the cell type to which the nucleic acid is delivered and, indeed, the vectors described herein need not be configured for target cell-specific delivery of a nucleic acid (e.g., an expression cassette) to achieve target cell specificity and, consequently, the therapeutically effective reduction, prevention, and/or elimination in the growth and/or survival of a target cell.
- the present disclosure provides expression constructs for the targeted production of therapeutic proteins within a target cell, such as a cell that is associated with aging, disease, and/or another condition.
- the expression constructs disclosed herein comprise: (1) a transcriptional promoter that is activated in response to one or more factors each of which is produced within a target cell and (2) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of a cell, including the target cell.
- the transcriptional promoter is activated in a target cell that is associated with a disease, condition, or age but is not activated in a normal mammalian cell that is not associated with the disease, condition, or aging.
- Target cell-specific transcriptional activation is achieved by the action of one or more factors that are produced in the target cell but not produced in a normal mammalian cell, including a normal human cell, such as normal skeletal myoblasts, normal adipose cells, normal cells of the eye, normal brain cells, normal liver cells, normal colon cells, normal lung cells, normal pancreas cells, and/or normal heart cells, which normal cells are not associated with the disease, condition, or aging.
- the target cell can be a mammalian cell or a bacterial cell.
- Target mammalian cells can include human cells such as senescent cells, cancer cells, precancerous cells, dysplastic cells, and cells that are infected with an infectious agent.
- the transcriptional promoter can include a transcriptional promoter, such as the p16INK4a/CDKN2A transcriptional promoter, which is responsive to activation by transcription factors such as SP1, ETS1, and/or ETS2.
- the transcriptional promoter can include a transcriptional promoter, such as the p21/CDKN1A transcriptional promoter, which is responsive to p53/TP53.
- transcriptional promoters induce the expression of a nucleic acid that encodes a therapeutic protein such as, for example, Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase as well as inducible and self-activating variants of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase which therapeutic protein reduces, prevents, and/or eliminates the growth and/or survival of the senescent cell, such as, for example, by inducing cell death in the senescent cell via a cellular process including apoptosis.
- a therapeutic protein such as, for example, Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase
- the transcriptional promoter can include the p21 cip1/waf1 promoter, the p27 kip1 promoter, the p57 kip2 promoter, the TdT promoter, the Rag-1 promoter, the B29 promoter, the Blk promoter, the CD19 promoter, the BLNK promoter, and/or the ⁇ 5 promoter, which transcriptional promoter is responsive to activation by one or more transcription factors such as an EBF3, O/E-1, Pax-5, E2A, p53, VP16, MLL, HSF1, NF-IL6, NFAT1, AP-1, AP-2, HOX, E2F3, and/or NF- ⁇ B transcription factor, and which
- therapeutic proteins may be employed that reduce, prevent, and/or eliminate the growth and/or survival of a senescent cell by, for example, inducing cell death via a cellular process including necrosis/necroptosis, autophagic cell death, endoplasmic reticulum-stress associated cytotoxicity, mitotic catastrophe, paraptosis, pyroptosis, pyronecrosis, and entosifs.
- the transcriptional promoter can be activated by a factor that is expressed by the infectious agent or bacterial cell, which transcriptional activation induces the expression of a nucleic acid that encodes a therapeutic protein such as, for example, Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase as well as inducible and self-activating variants of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase which therapeutic protein reduces, prevents, and/or eliminates the growth and/or survival of the senescent
- an infectious agent such as a virus, including, for example, a herpes virus, a polio virus, a hepatitis virus, a retrovirus virus, an influenza virus, and a rhino virus
- the target cell is a bacterial cell
- the transcriptional promoter can be activated by a factor that is expressed by the infectious agent or
- formulations and systems include lipid nanoparticle (LNP) formulations and systems wherein an LPN encapsulates a polynucleotide construct (e.g., a plasmid DNA) comprising a coding region for a pro-apoptotic protein, such as a caspase protein, and wherein the coding region is under the regulatory control of a target cell-specific transcriptional promoter, such as a senescent cell-specific transcriptional promoter or a cancer cell-specific transcriptional promoter.
- a target cell-specific transcriptional promoter such as a senescent cell-specific transcriptional promoter or a cancer cell-specific transcriptional promoter.
- Exemplary cell-specific transcriptional promoters include p16, p22, p53.
- Exemplary coding regions for pro-apoptotic proteins include coding regions for Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase proteins.
- Pro-apoptotic proteins include inducible Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase proteins and self-activating Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase proteins, which are exemplified herein by an inducible Caspase 9 (iCasp9) or a self-activating Caspase 9 (saCasp9).
- iCasp9 inducible Caspase 9
- saCasp9 self-activating Caspase 9
- Exemplary human genes encoding FKBP domains include AIP, AIPL1, FKBP1A, FKBP1B, FKBP2, FKBP3, FHBP5, FKBP6, FKBP7, FKBP8, FKBP8, FKBP9L, FKBP10, FKBP11, FKBP14, FKBP15, FKBP52, and L00541473.
- lipid nanoparticles are fusogenic lipid nanoparticles, such as fusogenic lipid nanoparticles comprising a fusogenic protein, such as a fusogenic p14 FAST fusion protein from reptilian reovirus to catalyze lipid mixing between the LNP and target cell plasma membrane.
- a fusogenic protein such as a fusogenic p14 FAST fusion protein from reptilian reovirus to catalyze lipid mixing between the LNP and target cell plasma membrane.
- Suitable fusogenic proteins are described in PCT Patent Publication Nos. WO2012/040825A1 and WO2002/044206A2, Lau, Biophys. J.
- a polynucleotide encoding a self-activating caspase such as a self-activating Caspase 9 (saCasp9)
- a self-activating Caspase 9 saCasp9
- a target cell population such as a senescent cell population or a cancer cell population.
- Self-activating caspases activate in the absence of a chemical inducer of dimerization (CID). Cells expressing self-activating caspases, such as saCasp9, apoptose almost immediately.
- self-activating caspases may be advantageously employed for the induction of apoptosis in a rapidly dividing cell, such as a rapidly dividing tumor cell, where an inducible caspase protein would be diluted out before administration of a CID.
- a self-activating caspase occurs over a longer period of time as compared to an inducible caspase, the risk of tumor lysis syndrome is reduced with a self-activating caspase.
- a further safety element that may be employed in the expression constructs and systems of the present disclosure includes a tamoxifen-inducible Cre construct using Life Technologies Gateway Cloning Vector System employing a pDEST26 plasmid for mammalian expression.
- a fusion protein of Cre and estrogen receptor can be constitutively expressed and induced upon the addition of tamoxifen, which permits activated Cre to re-orient the transcriptional promoter, thereby expressing the therapeutic protein.
- the present disclosure provides methods for reducing, preventing, and/or eliminating the growth of a target cell, which methods comprise contacting a target cell with a system for the targeted production of a therapeutic protein within a target cell, wherein the system comprises a vector that is capable of delivering a nucleic acid to a cell, wherein the vector comprises an expression construct for the targeted production of a therapeutic protein within a target cell (e.g., a cell that is associated with age, disease, or other condition) but not within a non-target cell, wherein the expression construct comprises: (a) a transcriptional promoter that is activated in response to one or more factors each of which factors is produced within a target cell and (b) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a therapeutic protein that is produced upon expression of the nucleic acid and wherein production of the therapeutic protein in the target cell (i.e., the cell that is associated with age, disease, or other condition
- LNP formulations include one or more fusogenic protein(s) at a concentration ranging from 0.5 ⁇ M to 20 or from 1 ⁇ M to 10 ⁇ M, or from 3 ⁇ M to 4 ⁇ M. Exemplified herein are LNP formulations wherein fusogenic protein(s) are present at a concentration of 3.5 ⁇ M.
- suitable fusogenic protein(s) include the p14 fusogenic protein (SEQ ID NO: 16) and a the p14e15 fusogenic protein (SEQ ID NO: 17).
- a suitable exemplary LNP formulation includes the following: for each 1 mL of LNP, the lipid concentration is 20 mM, the DNA content is 250 ⁇ g, and the fusogenic protein (e.g., p14 or p14e15) is at 3.5 ⁇ M wherein the lipid formulation comprises DODAP:DOTAP:DOPE:Cholesterol:DMG-PEG at a mole % ratio of 45:15:30:6:4, respectively.
- LNP formulations wherein said transcriptional promoter is a p21 cip1/waf1 promoter, the p27 kip1 promoter, the p57 kip2 promoter, the TdT promoter, the Rag-1 promoter, the B29 promoter, the Blk promoter, the CD19 promoter, the BLNK promoter, and the ⁇ 5 promoter.
- the methods employ LNP formulations comprising (i) a transcriptional promoter that is activated in response to one or more factors that are preferentially produced within target cells as compared to non-target cells and (ii) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of mammalian cells, including both target cells and non-target cells and wherein said therapeutic protein is produced within the target cells but is not produced in the non-target cells.
- inventions of the present disclosure provide methods for the treatment of a disease or condition in a patient, including a human patient, having a target cell, wherein the method comprises administering to the patient an LNP formulation having (a) a lipid nanoparticle vector for the non-specific delivery of a nucleic acid to mammalian cells, wherein the mammalian cells include both target cells or non-target cells, and wherein the lipid nanoparticle includes one or more lipid(s) and one or more fusogenic protein(s) and (b) an expression construct for the preferential production of a therapeutic protein within a target cell.
- the methods employ LNP formulations comprising (i) a transcriptional promoter that is activated in response to one or more factors that are preferentially produced within target cells as compared to non-target cells and (ii) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of mammalian cells, including both target cells and non-target cells and wherein said therapeutic protein is produced within the target cells but is not produced in the non-target cells.
- FIG. 2 is a diagrammatic representation of the liposomal delivery to the cytoplasm of a target cell, according to certain aspects of the present disclosure.
- Shown are FusogenixTM lipid nanoparticles (LNPs) that are configured for the delivery of nucleic acids, such as those encoding a pro-apoptotic protein, such as Caspase 9, under the regulatory control of a target cell-specific transcriptional promoter, such as a target senescent cell encoding p16 or a target cancer cell encoding p53.
- LNPs FusogenixTM lipid nanoparticles
- Exemplified are FusogenixTM lipid nanoparticles comprising a p14 FAST protein to catalyze the rapid lipid mixing between the lipid nanoparticle (LNP) and the target cell plasma membrane.
- Such FusogenixTM lipid nanoparticles (i) deliver the cargo nucleic acids directly into the cytoplasm thereby bypassing the endocytic pathway, (ii) are non-toxic (i.e., non-immunogenic) in animals at doses of ⁇ 15 mg/kg, (iii) are 80 ⁇ more efficient than neutral lipid formulations, (iv) are 2-5 ⁇ more efficient than cationic lipid formulations, and (iv) are manufacturable at scale.
- FIG. 3 is a table comparing the reported maximum tolerated dose (MTD) for clinical stage lipid-based in vivo delivery technologies.
- MTD maximum tolerated dose
- FIG. 4 A is a diagrammatic representation of the induction of an inducible Caspase 9 homodimer (iCasp9), which iCasp9 is a fusion protein comprising a drug-binding domain for binding to a chemical inducer of dimerization (CID) and an active portion of Caspase 9.
- CID chemical inducer of dimerization
- a CID as exemplified by CIDs designated AP1903 and AP20187, binds to the drug-binding domain of the iCasp9 fusion protein to dimerize and, thereby, activate iCasp9, which results in the intracellular activation of pro-apoptotic molecules and the induction of apoptosis within a target cell.
- FIG. 5 depicts the chemical structure of an exemplary chemical inducer of dimerization (CID), which is a homodimerizer designated herein as AP1903 (APExBIO, Houston, TX) that may be employed in various embodiments of the present disclosure for inducing the activity of an inducible pro-apoptotic protein, such as an inducible caspase protein (e.g., iCasp9).
- CID chemical inducer of dimerization
- FIGS. 7 A- 7 B present data obtained in mice that were administered intravenously Fusogenix lipid nanoparticles labeled with 64 Cu-NOTA [1,4,7-triazacyclononane-1,4,7-triacetic acid]. See, Fournier, EJNMMI Research 2:8 (2012). 64 Cu was detected via positron emission tomography (PET).
- FIG. 7 A presents PET data obtained from a mouse to which 64 Cu-NOTA-liposomes without protein were administered.
- FIG. 7 B presents PET data obtained from a mouse to which 64 Cu-NOTA-liposome-p14 were administered.
- FIG. 8 is a bar graph of data obtained with Fusogenix lipid nanoparticles comparing SUV mean, 24 h for 64 Cu-NOTA-liposomes without protein and 64 Cu-NOTA-liposome-p14.
- the data presented in FIGS. 7 and 8 demonstrate a 50% increase in gene/siRNA delivery to prostate tumors as compared to a competing formulation.
- FIGS. 10 and 11 are graphs of optical density at 405 nm as a function of concentration ( ⁇ g/ml; FIG. 10 ) and of anti-p14 and anti-LNP antibody responses ( FIG. 11 ), which demonstrate the safety and tolerability of exemplary fusogenic lipid nanoparticles utilizing a reptilian reovirus p14 FAST fusion protein (FusogenixTM). As shown, virtually no antibody response was observed in immune competent mice (with and without adjuvant).
- FIGS. 12 and 13 are bar graphs of data from in vitro anti-p14 and anti-LNP antibody neutralization assays showing that lipid nanoparticle formulations according to the present disclosure are non-reactive with C4d ( FIG. 12 ) and less reactive with iC3b ( FIG. 13 ) as compared to Doxil in 8 out of 10 human samples tested for Complement activation-related psuedoallergy (CARPA) using C4d and iC3b complement ELISA assays as described in Szebeni, Mol Immunol 61(2):163-73 (2014).
- CARPA Complement activation-related psuedoallergy
- FIG. 14 is a restriction map of the plasmid vector pVAX1TM which is employed in certain aspects of the expression constructs, systems, formulations, and methods of the present disclosure for the target cell-specific production of a therapeutic protein, such as a pro-apoptotic protein, including a caspase protein, such as Caspase 9, as well as inducible and self-activating variants of a pro-apoptotic protein, including inducible and self-activating variants of caspase proteins, such as inducible Caspase 9 (iCasp9) and self-activating Caspase 9 (saCasp9).
- a therapeutic protein such as a pro-apoptotic protein, including a caspase protein, such as Caspase 9, as well as inducible and self-activating variants of a pro-apoptotic protein, including inducible and self-activating variants of caspase proteins, such as inducible Caspase 9 (iCasp9) and self
- expression constructs and formulations may additionally include a safety element, such as a tamoxifen-inducible Cre construct (e.g., Life Technologies Gateway Cloning Vector System).
- a fusion protein of Cre and estrogen receptor is constitutively expressed and induced upon the addition of tamoxifen, which permits activated Cre to re-orient the p16-promoter, thereby expressing caspase 9 or inducible/self-activating variant thereof pVAX1 is commercially available from ThermoFisher Scientific (Waltham, MA).
- FIG. 15 is a diagrammatic representation of an exemplary p16-targeting construct for the target cell-specific expression of an inducible Caspase 9 (iCasp9) or a self-activating Caspase 9 (saCasp9) protein in target cells expressing p16, such as target cells that are associated with aging and/or senescence, which p16-targeting construct comprises a p16s transcriptional promoter in operable connection to iCasp9 or saCasp9.
- An exemplary p16 transcriptional promoter is described in Baker et al., Nature 479(7372):232-67 (2011)).
- FIG. 18 is a plasmid map of the vector p10-p16-saCasp9 (SEQ ID NO: 13), which comprises an exemplary p16-targeting construct for the target cell-specific expression of an self-activating Caspase 9 (saCasp9) protein in target cells expressing p16, such as target cells that are associated with aging and/or senescence, which p16-targeting construct comprises a p16e transcriptional promoter in operable connection to saCasp9.
- SEQ ID NO: 13 the vector p10-p16-saCasp9
- saCasp9 self-activating Caspase 9
- FIG. 19 is a diagrammatic representation of the in vivo administration of an exemplary p16-targeting construct in an mouse model system for aging, wherein the aging mouse model exhibits a senescent cell burden (as defined by the presence of p16 + cells) and secretion of factors associated with a senescence-associated secretory phenotype (SASP; van Deursen, Nature 509(7501):439-446 (2014)).
- SASP senescence-associated secretory phenotype
- p16+ target cells e.g., senescent cells
- iCasp9 protein undergo apoptosis, resulting in a reduction is SASP levels, while p16 ⁇ cells remain viable.
- FIGS. 20 A- 20 C are photomicrographs of the histiological staining of senescent-associated ⁇ -gal in kidney cells from an in vivo aged mouse model either untreated ( FIG. 20 A ) or treated (low dose— FIG. 20 B and high dose— FIG.
- lipid nanoparticle (LNP) vector e.g., a fusogenic LNP comprising a fusogenic protein such as p14 FAST, encompassing a p16-Casp9 expression construct, e.g., pVAX1-16s-iCasp9, p10-p16e-iCasp9, p10-p16e-saCasp9, or variant thereof, is administered in vivo to an aged mouse and kidney cells stained for ⁇ -gal.
- LNP lipid nanoparticle
- FIGS. 20 E- 20 G are photomicrographs of the histiological staining of senescent-associated ⁇ -gal in seminal vesicle cells from an in vivo aged mouse model either untreated ( FIG. 20 E ) or treated (low dose— FIG. 20 F and high dose— FIG.
- lipid nanoparticle e.g., a fusogenic LNP comprising a fusogenic protein such as p14 FAST, encompassing a p16-iCasp9 expression construct, e.g., pVAX1-16s-iCasp9, p10-p16e-iCasp9, p10-p16e-saCasp9, or variant thereof, is administered in vivo to an aged mouse and seminal vesicle cells stained for ⁇ -gal.
- LNP lipid nanoparticle
- FIG. 23 is a bar graph demonstrating the dose-dependent targeting of p16+ seminal vesicle cells in naturally aged mice following the in vivo administration of a fusogenic lipid nanoparticle (LNP) formulation comprising a pVAX1-p16 expression construct.
- LNP fusogenic lipid nanoparticle
- FIG. 25 is a bar graph demonstrating the dose-dependent targeting of p16+ lung cells in naturally aged mice following the in vivo administration of a fusogenic lipid nanoparticle (LNP) formulation comprising a pVAX1-p16 expression construct.
- LNP fusogenic lipid nanoparticle
- Lung cells were subjected to a qRT-PCR reaction to detect p16 Ink4a transcripts. Relative expression was calculated using 2 ⁇ Ct (Livak, Methods 25:402-408 (2001)).
- FIG. 27 is a diagrammatic representation of an exemplary p53-targeting cassette for use in treatment of cancers (oncology) by the selective killing of tumor cells according certain embodiments of the present disclosure.
- the p53-targeting cassette comprises a p53 transcriptional promoter, which drives the expression an inducible caspase 9 protein (iCasp9) or a self-activating caspase 9 protein (saCasp9).
- FIG. 28 is a restriction map of a plasmid (pVAX1-p53-iCasp9-MX; SEQ ID NO: 7) comprising a p53-targeting cassette as depicted in FIG. 27 .
- Expression of an iCasp9 nucleic acid encoding an inducible Casp9 protein is regulated by the p53 transcriptional promoter.
- FIG. 29 is a restriction map of a plasmid (pVAX1-p53-saCasp9; SEQ ID NO: 8) comprising a p53-targeting cassette. Expression of a nucleic acid encoding a self-activating Caspase 9 (saCasp9) protein is regulated by the p53 transcriptional promoter.
- FIG. 33 is a map of a plasmid (p10-p53e-iCasp9; SEQ ID NO: 14) comprising a p53-targeting cassette as depicted in FIG. 27 .
- Expression of an iCasp9 nucleic acid encoding an inducible Casp9 protein is regulated by the p53 transcriptional promoter.
- Additional targeting cassettes and plasmid constructs have been developed for advanced oncology applications, as disclosed herein, which constructs employ nucleic acids encoding, for example, one or more immunostimulatory cytokines (such as huCD40L, as shown in FIG.
- antigens such as chicken ovalbumin (OVA), as shown in FIG. 30 , as well as Nt1, tetanus antigens, and influenza antigens).
- OVA chicken ovalbumin
- antigens such as chicken ovalbumin (OVA), as shown in FIG. 30 , as well as Nt1, tetanus antigens, and influenza antigens).
- OVA chicken ovalbumin
- FIGS. 37 A- 37 D are microscopic images of human prostate cancer (LNCaP, DU145, PC-3) or normal epithelial (RWPE) cells treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc plasmid and assessed for iCasp9 expression by Western blot (data not shown) and luminescence assays 24 hours after exposure to EtOH (negative control, FIG. 37 A and FIG. 37 B ) or AP1903 ( FIG. 37 C and FIG. 37 D ).
- LNCaP human prostate cancer
- RWPE normal epithelial
- FIGS. 38 - 41 are bar graphs of data obtained with the p53-expressing cells presented in FIG. 37 .
- Human prostate cancer (LNCaP ( FIG. 38 ), DU145 ( FIG. 39 ), PC-3 ( FIG. 40 )) or normal epithelial (RWPE ( FIG. 41 )) cells were treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc plasmid and assessed for iCasp9 expression by Western blot and luminescence assays.
- FIGS. 47 A- 47 C are photographs of tumors from the IT injection oncology study of FIG. 46 in which NSG mouse bearing a subcutaneous human prostate PC-3 tumor was injected intratumorally with 100 ⁇ g Fusogenix pVax-p53 formulation, followed 96 hours by 2 mg/kg AP20187 IV.
- FIG. 47 A shows tumor mass prior to administration of AP20187
- FIG. 47 B shows tumor mass at 24 hours following administration of AP20187
- FIG. 47 C shows tumor mass at 96 hours following administration of AP20187.
- FIG. 48 is a graph from the first of four NSG mice bearing subcutaneous human prostate cancer PC-3 tumors that were injected intravenously (IV) with 4 ⁇ 100 ⁇ g doses of Fusogenix pVax-p53 formulation, followed 24 hours later by 2 mg/kg AP20187 IV.
- FIG. 49 is a graph from the second of four NSG mice bearing subcutaneous human prostate cancer PC-3 tumors that were injected intravenously (IV) with 4 ⁇ 100 ⁇ g doses of Fusogenix pVax-p53 formulation, followed 24 hours later by 2 mg/kg AP20187 IV.
- FIG. 50 is a graph from the third of four NSG mice bearing subcutaneous human prostate cancer PC-3 tumors that were injected intravenously (IV) with 4 ⁇ 100 ⁇ g doses of Fusogenix pVax-p53 formulation, followed 24 hours later by 2 mg/kg AP20187 IV.
- FIG. 51 is a graph from the fourth of four NSG mice bearing subcutaneous human prostate cancer PC-3 tumors that were injected intravenously (IV) with 4 ⁇ 100 ⁇ g doses of Fusogenix pVax-p53 formulation, followed 24 hours later by 2 mg/kg AP20187 IV.
- FIGS. 58 A- 58 D and FIG. 59 are photographs and a bar graph, respectively, of a B15F10 lung metastasis model data in which 100 ⁇ g of a control LNP ( FIGS. 58 A and 58 B ) or a p53-iCasp9 LNP ( FIGS. 58 C and 58 D ) was administered intravenously at days 3, 6, 9, and 12 following the intravenous injection of 75,000 B16F10 cells. At days 5, 8, 11, and 13, a chemical inducer of dimerization (CID) was administered intraperitoneally. Animals were sacrificed at day 14 and lung metastases were quantified.
- CID chemical inducer of dimerization
- the present disclosure provides expression cassettes, systems, and methods for the selective reduction, prevention, and/or elimination in the growth and/or survival of a cell that is associated with aging, disease, or another condition (collectively “a target cell”), which expression cassettes, systems, and methods overcome the safety and efficacy concerns that are associated with existing technologies that rely on targeted delivery of a therapeutic compound and, as a result of, for example, inefficient target cell delivery and/or off-target effects, have limited therapeutic benefit.
- Eucaryotic transcriptional promoters comprise a number of essential elements, which collectively constitute a core promoter (i.e., the minimal portion of a promoter that is required to initiate transcription). Those elements include (1) a transcription start site (TSS), (2) an RNA polymerase binding site (in particular an RNA polymerase II binding site in a promoter for a gene encoding a messenger RNA), (3) a general transcription factor binding site (e.g., a TATA box having a consensus sequence TATAAA, which is a binding site for a TATA-binding protein (TBP)), (4) a B recognition element (BRE), (5) a proximal promoter of approximately 250 bp that contains regulatory elements, (6) transcription factor binding sites (e.g., an E-box having the sequence CACGTF, which is a binding site for basic helix-loop-helix (bHLH) transcription factors including BMAL11-Clock nad cMyc), and (7) a distal promoter containing
- Eucaryotic promoters are often categorized according to the following classes: (1) AT-based class, (2) CG-based class, (3) ATCG-compact class, (4) ATCG-balanced class, (5) ATCG-middle class, (6) ATCG-less class, (7) AT-less class, (8) CG-spike class, (9) CG-less class, and (10) ATspike class. See, Gagniuc and Ionescu-Tirgoviste, BMC Genomics 13:512 (2012). Eucaryotic promoters can be “unidirectional” or “bidirectional.” Unidirectional promoters regulate the transcription of a single gene and are characterized by the presence of a TATA box.
- Bidirectional promoters are short ( ⁇ 1 kbp), intergenic regions of DNA between the 5′ ends of genes in a bidirectional gene pair (i.e., two adjacent genes coded on opposite strands having 5′ ends oriented toward one another. Bidirectional genes are often functionally related and because they share a single promoter, can be co-regulated and co-expressed. Unlike unidirectional promoters, bidirectional promoters do not contain a TATA box but do contain GpC islands and exhibit symmetry around a midpoint of dominant Cs and As on one side and Gs and Ts on the other. CCAAT boxes are common in bidirectional promoters as are NRF-1, GABPA, YY1, and ACTACAnnTCCC motifs.
- Transcriptional promoters often contain two or more transcription factor binding sites.
- the efficient expression of a nucleic acid that is downstream of a promoter having multiple transcription factor binding sites typically requires the cooperative action of multiple transcription factors. Accordingly, the specificity of transcriptional regulation, and hence expression of an associated nucleic acid, can be increased by employing transcriptional promoters having two or more transcription factor binding sites.
- transcription factor refers to sequence-specific DNA-binding factors that bind to specific sequences within a transcriptional promoter thereby regulating the transcription of a nucleic acid that is in operable proximity to and downstream of the promoter. Transcription factors include activators, which promote transcription, and repressors, which block transcription by preventing the recruitment or binding of an RNA polymerase.
- Transcription factors typically contain (1) one or more DNA-binding domains (DBDs), which facilitate sequence specific binding to a cognate transcription factor binding site (a/k/a response element) within a transcriptional promoter; (2) one or more signal-sensing domains (SSDs), which includes ligand binding domains that are responsive to external signals; and (3) one or more transactivation domains (TADs), which contain binding sites for other proteins, including transcription coregulators.
- DBDs DNA-binding domains
- SSDs signal-sensing domains
- TADs transactivation domains
- transcription factor refers exclusively to those factors having one or more DBDs and is not intended to include other regulatory proteins such as coactivators, chromatin remodelers, histone acetylases, deacetylases, kinases, and methylases, which no not contain DBDs.
- Transcription factors are categorized according to structural features of the DNA-binding domain, which include basic helix-loop-helix domains, basic-leucine zipper (bZIP domains), C-terminal effector domains of bipartite response regulators, GCC box domains, helix-turn-helix domains, homeodomains, lambda repressor-like domains, serum response factor-like (srf-like) domains, paired box domains, winged helix domains, zinc finger domains, multi-Cys 2 His 2 zinc finger domains, Zn 2 Cys 6 domains, and Zn 2 Cys 8 nuclear receptor zinc finger domains.
- bZIP domains basic-leucine zipper
- transcription factors are either tumor suppressors or oncogenes, and, thus, mutations within and the aberrant expression of such transcription factors is associated with some cancers and other diseases and conditions.
- transcription factors within (1) the NF-kappaB family, (2) the AP-1 family, (3) the STAT family, and (4) the steroid receptor family have been implicated in the neurodevelopmental disorder Rett sysndrome (the MECP2 transcription factor), diabetes (hepatocyte nuclear factors (HNFs) and insulin promoter factor-1 (IPF1/Pdx1)), developmental verbal dyspraxia (the FOXP2 transcription factor), autoimmune diseases (the FOXP3 transcription factor), Li-Raumeni syndrome (the p53 tumor suppressor), and multiple cancers (the STAT and HOX family of transcription factors).
- the MECP2 transcription factor the neurodevelopmental disorder Rett sysndrome
- diabetes hepatocyte nuclear factors (HNFs) and insulin promoter factor-1 (IPF1/Pdx1)
- developmental verbal dyspraxia the
- Cantile et al., Curr Med Chem 18(32):4872-84 (2011) describe the upregulation of HOX genes in urogenital cancers; Cillo et al., Int J Cancer 129(11):2577-87 (2011) describe the upregulation of HOX genes in hepatocellular carcinoma; Cantile et al., Int J.
- Cancer 125(7):1532-41 (2009) describe HOX D13 expression across 79 tumor tissue types; Cantile et al., J Cell Physiol 205(2):202-10 (2005) describe upregulation of HOX D expression in prostate cancers; Cantile et al., Oncogene 22(41):6462-8 (2003) describe the hyperexpression of locus C genes in the HOX network in human bladder transitional cell carcinomas; Morgan et al., BioMed Central 14:15 (2014), describe HOX transcription factors as targets for prostate cancer; and Alharbi et al., Leukemia 27(5):1000-8 (2013) describe the role of HOXC genes in hematopoiesis and acute leukemia.
- the AP-2 family includes five transcription factors that can act as both repressors and activators.
- AP-2 ⁇ regulates cancer cell survival by blocking p53 activation of the p21CIP gene.
- High levels of AP-2 ⁇ are associated with poor prognosis in breast cancer.
- a further transcription factor that promotes cell survival are the forkhead transcription factors (FOX), which can promote the expression of proteins involved in drug resistance and also block programmed cell death and may therefore protect cancer cells from chemotherapeutic drugs.
- FOX forkhead transcription factors
- Transcription factors can bind to promoters as well as to enhancers.
- transcription factor refers to the subset of transcription factors that bind to transcription factor binding sites within a promoter and excludes those factors that bind to enhancer sequences. Transcription factors can also upregulate or downregulate the expression of an associated nucleic acid.
- the present disclosure employs transcriptional promoters having transcription factor binding sites for transcription factors that promote rather than inhibit expression and therefore cause the upregulation in the expression of an associated nucleic acid.
- transcription factors that upregulate nucleic acid expression include, for example and not limitation, transcription factors that (1) stabilize RNA polymerase binding to its cognate binding site, (2) recruit coactivator or corepressor proteins to a transcription factor DNA complex, and/or (3) catalyze the acetylation of histone proteins (or recruit one or more other proteins that catalyze the acetylation of histone proteins).
- transcription factors that (1) stabilize RNA polymerase binding to its cognate binding site (2) recruit coactivator or corepressor proteins to a transcription factor DNA complex, and/or (3) catalyze the acetylation of histone proteins (or recruit one or more other proteins that catalyze the acetylation of histone proteins).
- HAT histone acetyltransferase activity reduces the affinity of histone binding to DNA thereby making the DNA more accessible for transcription.
- the term “necrosis” refers to a process leading to cell death that occurs when a cell is damaged by an external force, such as poison, a bodily injury, an infection, or loss of blood supply. Cell death from necrosis causes inflammation that can result in further distress or injury within the body.
- the term “apoptosis” refers to a process leading to cell death in which a programmed sequence of events leads to the elimination of cells without releasing harmful substances. Apoptosis plays a crucial role in developing and maintaining the health of the body by eliminating old cells, unnecessary cells, and unhealthy cells. Apoptosis is mediated by proteins produced by suicide genes, including the caspase proteins, which break down cellular components needed for survival and induce the production of DNAses, which destroy nuclear DNA.
- suicide gene refers to a class of genes that produce proteins that induce p53-mediated apoptotic cell killing.
- Suicide genes that can be employed in the expression constructs and systems of the present disclosure include the caspases, Casp3, Casp8, Casp9, BAX, DFF40, Herpes Simplex Virus Thymidine Kinase (HSV-TK), and cytosine deaminase and inducible variants of Casp3, Casp8, Casp9, BAX, DFF40, Herpes HSV-TK, and cytosine deaminase.
- the presently disclosed expression constructs and systems are used in methods for the treatment of aging, cancer infectious disease, bacterial infections, and/or other conditions as well as in methods for the killing of cells that are associated with aging, cancer, infectious disease, bacterial infections, and/or other conditions and employ a therapeutic protein that reduces the growth and/or proliferation of a target cell.
- the therapeutic protein can be expressed by a suicide gene, which encodes Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, or cytosine deaminase as well as a inducible variants of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, or cytosine deaminase.
- the expression cassettes and systems can also be used in conjunction with conventional chemotherapeutics to enhance the effectiveness of therapeutic regimen for the treatment of aging, cancers, infectious diseases, bacterial infections, and other diseases and conditions.
- expression constructs are pVAX1 ( FIG. 14 ) plasmid expression constructs comprising a polynucleotide encoding a pro-apoptotic protein under the regulatory control of a target cell-specific promoter, such as a senescent cell-specific promoter or a cancer cell-specific promoter.
- a target cell-specific promoter such as a senescent cell-specific promoter or a cancer cell-specific promoter.
- Exemplary pVAX1TM plasmid expression constructs include pVAX-16s-iCasp9-MX ( FIG. 16 ; SEQ ID NO: 6) for the target cell-specific expression of an inducible Caspase 9 protein (iCasp9) under the regulatory control of a p16s promoter, pVAX1-53-iCasp9-MX ( FIG. 26 ; SEQ ID NO: 7) for the target cell-specific expression of an inducible Caspase 9 protein (iCasp9) under the regulatory control of a p53 promoter, pVax1-p53-saCasp9-5 ( FIG.
- FIG. 34 SEQ ID NO: 15 for the target cell-specific expression of a self-activating Caspase 9 protein (saCasp9) under the regulatory control of a p53 promoter.
- expression constructs are NTC-based plasmid expression constructs, including NTC8385, NTC8685, and NTC93 85 plasmid expression constructs, comprising a polynucleotide encoding a pro-apoptotic protein under the regulatory control of a target cell-specific promoter, such as a senescent cell-specific promoter or a cancer cell-specific promoter.
- a target cell-specific promoter such as a senescent cell-specific promoter or a cancer cell-specific promoter.
- expression constructs are gWiz-based plasmid expression constructs comprising a polynucleotide encoding a pro-apoptotic protein under the regulatory control of a target cell-specific promoter, such as a senescent cell-specific promoter or a cancer cell-specific promoter.
- the present disclosure provides expression constructs and systems comprising a delivery vector and an expression construct for achieving a target cell specific reduction, prevention, and/or elimination in the growth and/or survival of the target cell.
- Systems of the present disclosure comprise (1) a vector that is capable of non-specific delivery of a nucleic acid to a cell, whether that cell is a target cell or a non-target cell, and (b) an expression construct comprising a target cell specific transcriptional promoter and a nucleic acid that encodes a therapeutic protein, which expression constructs achieve the target cell specific production of a therapeutic protein.
- the systems disclosed herein will find utility in a broad range of therapeutic applications in which it is desirable to effectuate the growth or survival characteristics of a target cell, such as a cell that is associated with aging, disease, or another condition, but, at the same time, to not effectuate the growth or survival characteristics of a normal, a non-target cell that is not associated with aging, disease, or another condition.
- the present disclosure provides systems for effectuating the growth and/or survival of a broad range of cells that are associated with aging, disease, or other conditions that similarly comprises (1) a non-specific nucleic acid delivery vector and (2) an expression construct comprising (a) a target cell specific transcriptional promoter and (b) a nucleic acid that encodes a therapeutic protein.
- a non-specific nucleic acid delivery vector and (2) an expression construct comprising (a) a target cell specific transcriptional promoter and (b) a nucleic acid that encodes a therapeutic protein.
- systems for effectuating the growth and/or survival of target cells comprise: (1) a non-specific nucleic acid delivery vector and (2) an expression construct comprising: (a) a transcriptional promoter, which transcriptional promoter is activated in target cells but not in normal, non-target cells, and (b) a nucleic acid that is under the control of the transcriptional promoter, which nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of a target cell, for example by inducing a mechanism of programmed cell death in a cell in which it is produced.
- these systems achieve the selective killing of target cells by exploiting transcriptional machinery that is produced in, and intrinsic to, target cells; without the use of toxins and in the absence of target cell specific delivery of the expression construct.
- the transcriptional promoter can include at least a transcription factor binding site (i.e., a response element) of p16INK4a/CDKN2A as described in Wang et al., J. Biol. Chem. 276(52):48655-61 (2001), which transcriptional promoter is responsive to activation by a factor such as SP1, ETS1, and ETS2.
- the transcriptional promoter can also include at least a transcription factor binding site (i.e., a response element) of p21/CDKN1A, which transcriptional promoter is responsive to activation by a factor such as p53/TP53.
- Transcriptional activation induces the expression of a nucleic acid that encodes a therapeutic protein such as Casp3, Casp8, Casp9, DFF40, BAX, HSV-TK, or carbonic anhydrase or an inducible variant of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, or cytosine deaminase.
- a therapeutic protein such as Casp3, Casp8, Casp9, DFF40, BAX, HSV-TK, or carbonic anhydrase or an inducible variant of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, or cytosine deaminase.
- the transcriptional promoter can include at least a transcription factor binding site (i.e., a response element) of the p21 cip1/waf1 promoter, the p27 kip1 promoter, the p57 kip2 promoter, the TdT promoter, the Rag-1 promoter, the B29 promoter, the Blk promoter, the CD19 promoter, the BLNK promoter, and/or the ⁇ 5 promoter, which transcriptional promoter is responsive to activation by one or more transcription factors such as an EBF3, O/E-1, Pax-5, E2A, p53, VP16, MLL, HSF1, NF-IL6, NFAT1, AP-1, AP-2,
- transcription factors such as an EBF3, O/E-1, Pax-5, E2A, p53, VP16, MLL, HSF1, NF-IL6, NFAT1, AP-1, AP-2,
- therapeutic proteins may be employed that reduce, prevent, and/or eliminate the growth and/or survival of a senescent cell by, for example, inducing cell death via a cellular process including necrosis/necroptosis, autophagic cell death, endoplasmic reticulum-stress associated cytotoxicity, mitotic catastrophe, paraptosis, pyroptosis, pyronecrosis, and entosifs.
- the systems of the present disclosure achieve target cell specificity by exploiting transcriptional machinery that is unique to a target cell.
- the systems described herein employ nucleic acid delivery vectors that can be readily adapted for the non-specific delivery of expression constructs to a cell, including but not limited to a target cell.
- Non-limiting examples of non-viral and viral nuclic acid delivery vectors are described herein and disclosed in scientific and patent literature. More specifically, the presently disclosed systems may employ one or more liposomal vectors, viral vectors, nanoparticles, polyplexesm dendrimers, each of which has been developed for the non-specific delivery of nucleic acids, can be adapted for the non-specific delivery of the expression constructs described herein, and can be modified to incorporate one or more agents for promoting the targeted delivery of a system to a target cell of interest thereby enhancing the target cell specificity of the presently disclosed systems.
- cationic lipids Due to their positive charge, cationic lipids have been employed for condensing negatively charged DNA molecules and to facilitate the encapsulation of DNA into liposomes. Cationic lipids also provide a high degree of stability to liposomes. Cationic liposomes interact with a cell membrane and are taken up by a cell through the process of endocytosis. Endosomes formed as the results of endocytosis, are broken down in the cytoplasm thereby releasing the cargo nucleic acid. Because of the inherent stability of cationic liposomes, however, transfection efficiencies can be low as a result of lysosomal degradation of the cargo nucleic acid.
- Helper lipids can be employed in combination with cationic lipids to form liposomes having decreased stability and, therefore, that exhibit improved transfection efficiencies.
- electroneutral lipids are referred to as Fusogenix lipids. See, Gruner et al., Biochemistry 27(8):2853-66 (1988) and Farhood et al., Biochim Biophys Acta 1235(2):289-95 (1995).
- DOPE forms an HII phase structure that induces supramolecular arrangements leading to the fusion of a lipid bilayer at a temperature greater than 5° C. to 10° C.
- the incorporation of DOPE into liposomes also helps the formation of HII phases that destabilize endosomal membranes.
- Cholesterol can be employed in combination with DOPE liposomes for applications in which a liposomal vector is administered intravenously.
- Sakurai et al. Eur J Pharm Biopharm 52(2):165-72 (2001).
- the presence of one unsaturation in the acyl chain of DOPE is a crucial factor for membrane fusion activity.
- Talbot et al. Biochemistry 36(19):5827-36 (1997).
- Amphiphilic anionic peptides that are derived from the N-terminal segment of the HA-2 subunit of influenza virus haemagglutinin, such as the IFN7 (GLFEAIEGFIE NGWEGMIDGW YG) and ESCA (GLFEAIAEFI EGGWEGLIEG CA) peptides, can be used to increase the transfection efficiency of liposomes by several orders of magnitude.
- IFN7 GLFEAIEGFIE NGWEGMIDGW YG
- ESCA GLFEAIAEFI EGGWEGLIEG CA
- PCT Patent Publication Nos. WO 1999024582A1 and WO 2002/044206 describe a class of proteins derived from the family Reoviridae that promote membrane fusion. These proteins are exemplified by the p14 protein from reptilian reovirus and the p16 protein from aquareovirus.
- the tropisms of natural or engineered viruses towards specific receptors are the foundations for constructing viral vectors for delivery of nucleic acids.
- the attachment of these vectors to a target cell is contingent upon the recognition of specific receptors on a cell surface by a ligand on the viral vector.
- Viruses presenting very specific ligands on their surfaces anchor onto the specific receptors on a cell.
- Viruses can be engineered to display ligands for receptors presented on the surface of a target cell of interest. The interactions between cell receptors and viral ligands are modulated in vivo by toll like receptors.
- Herpes simplex virus belongs to a family of herpesviridae, which are enveloped DNA viruses. HSV binds to cell receptors through orthologs of their three main ligand glycoproteins: gB, gH, and gL, and sometimes employ accessory proteins. These ligands play decisive roles in the primary routes of virus entry into oral, ocular, and genital forms of the disease. HSV possesses high tropism towards cell receptors of the nervous system, which can be utilized for engineering recombinant viruses for the delivery of expression cassettes to target cells, including senescent cells, cancer cells, and cells infected with an infectious agent. Therapeutic bystander effects are enhanced by inclusion of connexin coding sequences into the constructs.
- Lentivirus belongs to a family of retroviridae, which are enveloped, single stranded RNA retroviruses and include the Human immunodeficiency virus (HIV). HIV envelope protein binds CD4, which is present on the cells of the human immune system such as CD4+ T cells, macrophages, and dendritic cells. Upon entry into a cell, the viral RNA genome is reverse transcribed into double-stranded DNA, which is imported into the cell nucleus and integrated into the cellular DNA. HIV vectors have been used to deliver the therapeutic genes to leukemia cells.
- Recombinant lentiviruses have been described for mucin-mediated delivery of nucleic acids into pancreatic cancer cells, to epithelial ovarian carcinoma cells, and to glioma cells, without substantial non-specific delivery to normal cells.
- Lentiviral vectors for the delivery of nucleic acids to target cells have been reviewed in Primo et al., Exp Dermatol 21(3):162-70 (2012); Staunstrup and Mikkelsen, Curr Gene Ther 11(5):350-62 (2011); and Dreyer, Mol Biotechnol 47(2):169-87 (2011).
- Adenovirus is a non-enveloped virus consisting of a double-stranded, linear DNA genome and a capsid. Naturally, adenovirus resides in adenoids and may be a cause of upper respiratory tract infections. Adenovirus utilizes a cell's coxsackie virus and adenovirus receptor (CAR) for the adenoviral fiber protein for entry into nasal, tracheal, and pulmonary epithelia. CARs are expressed at low levels on senescent and cancer cells. Recombinant adenovirus can be generated that are capable of nucleic acid deliver to target cells. Replication-competent adenovirus-mediated suicide gene therapy (ReCAP) is in the clinical trials for newly-diagnosed prostate cancer.
- ReCAP Replication-competent adenovirus-mediated suicide gene therapy
- Adeno-associated virus is a small virus that infects humans and some other primate species. AAV is not currently known to cause disease and consequently the virus causes a very mild immune response. Vectors using AAV can infect both dividing and quiescent cells and persist in an extrachromosomal state without integrating into the genome of the host cell. These features make AAV a very attractive candidate for creating viral vectors for use in the systems of the present disclosure.
- Adeno-associated virus (AAV) vectors for the delivery of nucleic acids to target cells have been reviewed in Li et al., J.
- Polyplexes are complexes of polymers with DNA. Polyplexes consist of cationic polymers and their fabrication is based on self-assembly by ionic interactions. One important difference between the methods of action of polyplexes and liposomes and lipoplexes is that polyplexes cannot directly release their nucleic acid cargo into the cytoplasm of a target cell. As a result co-transfection with endosome-lytic agents such as inactivated adenovirus is required to facilitate escape from the endocytic vesicle made during particle uptake.
- polycationic nanocarriers Due to their low toxicity, high loading capacity, and ease of fabrication, polycationic nanocarriers exhibit substantial advantages over viral vectors, which show high immunogenicity and potential carcinogenicity and lipid-based vectors which cause dose dependent toxicity.
- Polyethyleneimine, chitosan, poly(beta-amino esters), and polyphosphoramidate have been described for the delivery of nucleic acids. See, e.g., Buschmann et al., Adv Drug Deliv Rev 65(9):1234-70 (2013). The size, shape, and surface chemistry of these polymeric nano-carriers can be easily manipulated.
- targeted delivery of an expression construct is not required by the systems of the present disclosure and that the targeted reduction, prevention, and/or elimination in the growth and/or survival of a target cell may be achieved by exploiting the intracellular transcriptional machinery of a target cell that is unique to the target cell, it may be desireable, depending upon the precise application contemplated, the incorporate into an otherwise non-specific delivery vector one or more components that facilitate the targeted delivery to a subset of cells at least some of which include a target cell that is susceptible to the growth and/or survival inhibition by the expression constructs of the present disclosure.
- targeted delivery of nucleic acids by liposome, nanoparticle, viral and other vectors described herein has been described in the scientific and patent literature and is well known by and readily available to those of skill in the art.
- Such targeted delivery technologies may, therefore, be suitably adapted for targeting the delivery of expression constructs of the present disclosure to enhance the specificity of the growth and/or survival reduction, prevention, and/or elimination that is achieved within a target cell.
- the following examples of targeted delivery technologies are provided herein to exemplify, not to limit, the targeted delivery vectors that may be adapted to achieve the systems of the present disclosure.
- Expression constructs of the present disclosure comprise: (a) a transcriptional promoter that is responsive to a factor or factors that are produced in a target cell, one or more of which factors is not produced, is produced at a substantially reduced level, is inactive, and/or exhibits a substantially reduced activity in a non-target cell; and (b) a nucleic acid that is operably linked to and under the regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a protein that is capable of reducing, preventing, and/or eliminating the growth and/or survival of a cell in which it is produced, including a target cell.
- the present disclosure provides systems comprising a vector for delivering a nucleic acid to a cell wherein the nucleic acid is under the transcriptional control of a promoter that is derepressed or activated in a target cell, but is reprepressed or inactivated in a normal cell, non-target cell.
- the specificity of the presently disclosed systems toward a target cell is achieved, therefore, through the target cell-specific transcriptional activation of a nucleic acid that encodes a protein that reduces, prevents, and/or eliminates the growth and/or survival of a cell without regard to whether that cell is a target cell.
- the target cell specificity of the presently-disclosed systems derives from the transcriptional promoter that regulates the expression of the nucleic acid within the expression cassette in conjunction with transcription-regulatory machinery that is provided by, and unique to, the target cell.
- transcriptional promoters that may be suitably employed in the expression constructs, systems, and methods of the present disclosure include those transcriptional promoters that are capable of promoting the expression of a nucleic acid in a target cell (i.e., a cell that is associated with aging, disease, or other condition), but incapable of, or exhibit a substantially reduced capability of, promoting expression of that nucleic acid in a non-target cell.
- a target cell i.e., a cell that is associated with aging, disease, or other condition
- Exemplified herein are expression constructs and systems comprising expression constructs wherein the transcriptional promoter is activated in a target cell that is associated with aging, disease, or another condition.
- the present disclosure provides expression constructs and systems that may be employed in methods for the treatment of aging reducing, preventing, and/or eliminating the growth and/or survival of a cell, such as a senescent cell, which is associated with aging.
- expression constructs employ a transcriptional promter that is responsive to one or more factors that are produced within a target cell, such as a senescent cell, but are not produced in a non-target cell wherein those one or more factors derepress and/or activate the transcriptional promoter and, as a consequence, promote the expression of a nucleic acid encoding a therapeutic protein that reduces, prevents, and/or eliminates the growth and/or survival of a cell that is associated with aging, including a senescent cell.
- a transcriptional promter that is responsive to one or more factors that are produced within a target cell, such as a senescent cell, but are not produced in a non-target cell wherein those one or more factors derepress and/or activate the transcriptional promoter and, as a consequence, promote the expression of a nucleic acid encoding a therapeutic protein that reduces, prevents, and/or eliminates the growth and/or survival of a cell that is associated with aging, including a senescent
- the transcriptional promoter itself is the primary mechanism by which senescent cells are preferentially targeted by the systems described in this disclosure.
- a prototypic example of a target specific transcriptional promoter for use with the systems in this disclosure is a promoter that is only active or mostly active in senescent cells.
- a number of promoters known by artisans to be active in senescent cells may be used with this system.
- the transcriptional promoter can include the promoter region of p16INK4a/CDKN2A as described in Wang et al., J. Biol. Chem. 276(52):48655-61 (2001), which transcriptional promoter is responsive to activation by a factor such as SP1, ETS1, and ETS2.
- the transcriptional promoter can also include the promoter region of p21/CDKN1A, which transcriptional promoter is responsive to activation by a factor such as p53/TP53.
- the transcriptional promoter can include the p21 cip1/waf1 promoter, the p27 kip1 promoter, the p57 kip2 promoter, the TdT promoter, the Rag-1 promoter, the B29 promoter, the Blk promoter, the CD19 promoter, the BLNK promoter, and/or the ⁇ 5 promoter, which transcriptional promoter is responsive to activation by one or more transcription factors such as an EBF3, O/E-1, Pax-5, E2A, p53, VP16, MLL, HSF1, NF-IL6, NFAT1, AP-1, AP-2, HOX, E2F3, and/or NF- ⁇ B transcription factor, and which
- the target cell is a human cell that is infected with an infectious agent, such as a virus, including, for example, a herpes virus, a polio virus, a hepatitis virus, a retrovirus virus, an influenza virus, and a rhino virus, or the target cell is a bacterial cell
- an infectious agent such as a virus, including, for example, a herpes virus, a polio virus, a hepatitis virus, a retrovirus virus, an influenza virus, and a rhino virus
- the transcriptional promoter can be activated by a factor that is expressed by the infectious agent or bacterial cell, which transcriptional activation induces the expression of a nucleic acid that encodes a therapeutic protein.
- p16 is encoded by CDKN2A gene, located on chromosome 9 (9p21.3). This gene generates several transcript variants that differ in their first exons. At least three alternatively spliced variants encoding distinct proteins have been reported, two of which encode structurally related isoforms known to function as inhibitors of CDK4. The remaining transcript includes an alternate exon 1 located 20 kb upstream of the remainder of the gene; this transcript contains an alternate open reading frame (ARF) that specifies a protein that is structurally unrelated to the products of the other variants.
- the ARF product functions as a stabilizer of the tumor suppressor protein p53, as it can interact with and sequester MDM2, a protein responsible for the degradation of p53.
- p16 acts as a tumor suppressor by binding to CDK4/6 and preventing its interaction with cyclin D. This interaction ultimately inhibits the downstream activities of transcription factors, such as E2F1, and arrests cell proliferation. This pathway connects the processes of tumor oncogenesis and senescence, fixing them on opposite ends of a spectrum.
- the hypermethylation, mutation, or deletion of p16 leads to downregulation of the gene and can lead to cancer through the dysregulation of cell cycle progression. Conversely, activation of p16 through the ROS pathway, DNA damage, or senescence leads to the build up of p16 in tissues and is implicated in aging of cells.
- Regulation of p16 is complex and involves the interaction of several transcription factors, as well as several proteins involved in epigenetic modification through methylation and repression of the promoter region.
- PRC1 and PRC2 are two protein complexes that modify the expression of p16 through the interaction of various transcription factors that execute methylation patterns that can repress transcription of p16. These pathways are activated in cellular response to reduce senescence.
- a nucleic acid encoding a therapeutic protein could be placed under the control of the p21/CDKN1A transcriptional promoter that is often transcriptionally active in senescent, and cancerous or pre-cancerous cells.
- p53/TP53 plays a central role in the regulation of p21 and, therefore, in the growth arrest of cells when damaged.
- p21 protein binds directly to cyclin-CDK complexes that drive the cell cycle and inhibits their kinase activity thereby causing cell cycle arrest to allow repair to take place.
- p21 also mediates growth arrest associated with differentiation and a more permanent growth arrest associated with cellular senescence.
- the p21 gene contains several p53 response elements that mediate direct binding of the p53 protein, resulting in transcriptional activation of the gene encoding the p21 protein.
- the role of p53 gene regulation in cellular senescence is described in Kelley et al., Cancer Research 70(9):3566-75. (2010).
- Nucleic acids that may be suitably employed in the expression constructs, systems, and methods of the present disclosure encode a protein that is capable of reducing, preventing, and/or eliminating the growth and/or survival of a cell in which it is produced, including a target cell.
- the target cell specificity of the presently disclosed expression constructs and systems is achieved by the expression within a target cell, but not within a non-target cell, of a nucleic acid that encodes a therapeutic protein.
- Nucleic acids encoding therapeutic proteins that may be employed in the expression constructs and systems of the present disclosure include nucleic acids encoding one or more protein that induces apoptosis in a cell in which it is produced.
- expression constructs and systems comprising one or more “suicide genes,” such as a nucleic acid encoding Herpes Simplex Virus Thymidine Kinase (HSV-TK), cytosine deaminase, Casp3, Casp8, Casp9, BAX, DFF40, cytosine deaminase, or other nucleic acid that encodes a protein that is capable of inducing apoptosis is a cell.
- HSV-TK Herpes Simplex Virus Thymidine Kinase
- cytosine deaminase Casp3, Casp8, Casp9
- BAX DFF40
- cytosine deaminase or other nucleic acid that encodes a protein that
- Apoptosis or programmed cell death (PCD) is a common and evolutionarily conserved property of all metazoans.
- PCD programmed cell death
- apoptosis is required to eliminate supernumerary or dangerous (such as pre-cancerous) cells and to promote normal development.
- Dysregulation of apoptosis can, therefore, contribute to the development of many major diseases including cancer, autoimmunity and neurodegenerative disorders.
- proteins of the caspase family execute the genetic programme that leads to cell death.
- DNA fragmentation factor is a complex of the DNase DFF40 (CAD) and its chaperone/inhibitor DFF45 (ICAD-L).
- DFF is a heterodimer composed of a 45 kDa chaperone inhibitor subunit (DFF45 or ICAD), and a 40 kDa latent endonuclease subunit (DFF40 or CAD).
- DFF40 forms active endonuclease homo-oligomers. It is activated during apoptosis to induce DNA fragmentation.
- DNA binding by DFF is mediated by the nuclease subunit, which can also form stable DNA complexes after release from DFF.
- the nuclease subunit is inhibited in DNA cleavage but not in DNA binding.
- DFF45 can also be cleaved and inactivated by caspase-7 but not by caspase-6 and caspase-8.
- the cleaved DFF45 fragments dissociate from DFF40, allowing DFF40 to oligomerise, forming a large complex that cleaves DNA by introducing double strand breaks.
- Histone H1 confers DNA binding ability to DFF and stimulates the nuclease activity of DFF40. Activation of the apoptotic endonuclease DFF-40 is described in Liu et al., J Biol Chem 274(20):13836-40 (1999).
- dNTP analogs When incorporated into DNA, certain dNTP analogs, such as synthetic analogues of 2′-deoxy-guanosine (e.g., Ganciclovir), cause the premature termination of DNA synthesis, which triggers cellular apoptosis.
- synthetic analogues of 2′-deoxy-guanosine e.g., Ganciclovir
- the expression cassettes and systems of the present disclosure employ a nucleic acid that encodes HSV-TK.
- an analogue of a 2′-deoxy-nucleotide such as 2′-deoxy-guanosine
- the HSV-TK efficiently converts the 2′-deoxy-nucleotide analogue into a dNTP analogue, which when incorporated into the DNA induces apoptosis in the target cell.
- Cytosine deaminase catalyzes the hydrolytic conversion in DNA of cytosine to uracil and ammonia. If a CD-modified site is recognized by an endonuclease, the phosphodiester bond is cleaved and, in a normal cell, is repaired by incorporating a new cytosine. In the presence of 5-fluorocytosine (5-FC), cytosine deaminase converts 5-FC into 5-fluorouracil (5-FU), which can inhibit target cell growth. Transgenic expression of CD in a target cell, therefore, reduces the growth and/or survival of the target cell.
- the present disclosure provides expression constructs and systems that further comprise one or more safety features to ensure that the expression of a nucleic acid encoding a therapeutic protein is upregulated in appropriate cells, over a desired time period, and/or to a specified level.
- expression constructs and systems of the present disclosure employ nucleic acids that encode inducible variants of therapeutic proteins, including, for example, inducible variants of Casp3, Casp8, Casp9, which require the further contacting of a cell with or administration to a human of a chemical or biological compound that activates the therapeutic protein.
- Inducible suicide gene systems are well known and readily available in the art and have been described, for example, in Miller et al., PCT Patent Publication No. WO 2008/154644 and Brenner, US Patent Publication No. 2011/0286980.
- Shah et al., Genesis 45(4):104-199 (2007) describe a double-inducible system for Caspase 3 and 9 that employs RU486 and chemical inducers of dimerization (CID).
- Full-length inducible caspase 9 comprises a full-length caspase 9, including its caspase recruitment domain (CARD; GenBank NM001 229) linked to two 12 kDa human FK506 binding proteins (FKBP12; GenBank AH002 818) that contain an F36V mutation as described in Clackson et al., Proc. Natl. Acad. Sci. U.S.A. 95:10437-10442 (1998) and are connected by a Ser-Gly-Gly-Gly-Ser linker that connects the FKBPs and caspase 9 to enhance flexibility.
- the inducible suicide gene could be linked to the nucleic acid sequence for a detectable biomarker such as luciferase or green fluorescent protein to permit the detection of the targeted cells prior to administering a compound to activate an inducible therapeutic protein.
- a detectable biomarker such as luciferase or green fluorescent protein
- the present disclosure provides systems comprising a vector and an expression cassette wherein the expression cassette comprises a transcriptional promoter that is responsive to one or more transcription factors that are expressed in a target cell and a nucleic acid encoding a therapeutic protein.
- Systems can be administered to a human patient by themselves or in pharmaceutical compositions where they are mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a disease or condition as described herein. Mixtures of these systems can also be administered to the patient as a simple mixture or in pharmaceutical compositions.
- compositions within the scope of this disclosure include compositions wherein the therapeutic agent is a system comprising a vector and an expression cassette in an amount effective to reduce or eliminate the growth and/or survival of a target cell such as a senescent cell, a cancer cell, a cell infected with an infectious agent, a bacterial cell, or a cell that is associated with another disease or condition. Determination of optimal ranges of effective amounts of each component is within the skill of the art.
- the effective dose is a function of a number of factors, including the specific system, the presence of one or more additional therapeutic agent within the composition or given concurrently with the system, the frequency of treatment, and the patient's clinical status, age, health, and weight.
- compositions comprising a system may be administered parenterally.
- parenteral administration refers to modes of administration other than enteral and topical administration, usually by injection, and include, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articular, subcapsular, subarachnoid, intraspinal, and intrasternal injection and infusion. Alternatively, or concurrently, administration may be orally.
- compositions comprising a system may, for example, be administered intravenously via an intravenous push or bolus. Alternatively, compositions comprising a system may be administered via an intravenous infusion.
- compositions include a therapeutically effective amount of a system, and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- carrier refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered.
- Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously.
- Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
- suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skimmed milk, glycerol, propylene, glycol, water, ethanol and the like.
- the composition if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
- compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.
- the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
- Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like.
- Such compositions will contain a therapeutically effective amount of the inhibitor, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient.
- the formulation should suit the mode of administration.
- compositions can be formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to a human.
- compositions for intravenous administration are solutions in sterile isotonic aqueous buffer.
- the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection.
- the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
- the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline.
- an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- compositions disclosed herein can be formulated as neutral or salt forms.
- Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, and the like, and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.
- the present disclosure provides methods for reducing, inhibiting, and/or preventing the growth and or survival of a cell that is associated with aging, cancer, infectious disease, bacterial infection, and/or other disease or condition, which methods comprise contacting a target cell or a population of cell comprising a target cell with a system as described herein, which system comprises a vector and an expression construct, which expression construct comprises a transcriptional promoter and a nucleic acid.
- the present disclosure also provides methods for the treatment of aging, cancer, infectious disease, bacterial infection, and/or other disease or condition in a patient, which methods comprise the administration of a system as described herein, which system comprises a vector and an expression construct, which expression construct comprises a transcriptional promoter and a nucleic acid.
- the amount of the system that will be effective in the treatment, inhibition, and/or prevention of aging, cancer, infectious disease, bacterial infection, or other disease or condition that is associated with the elevated expression of one or more transcription factors can be determined by standard clinical techniques. In vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- in vitro assays to demonstrate the therapeutic or prophylactic utility of a compound or pharmaceutical composition include the effect of a system on a cell line or a patient tissue sample.
- the effect of the system or pharmaceutical composition thereof on the cell line and/or tissue sample can be determined utilizing techniques known to those of skill in the art including, but not limited to proliferation and apoptosis assays.
- in vitro assays that can be used to determine whether administration of a specific compound is indicated, include in vitro cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered a compound, and the effect of such compound upon the tissue sample is observed.
- the present disclosure provides methods for the treatment and growth and/or survival inhibition by administration to a subject of an effective amount of a system or pharmaceutical composition thereof as described herein.
- the system is substantially purified such that it is substantially free from substances that limit its effect or produce undesired side-effects.
- Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir.
- Pulmonary administration can also be employed, for example, by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
- Continuous intravenous infusion of a composition comprising a system may be for a specified duration, followed by a rest period of another duration.
- a continuous infusion duration may be from about 1 day, to about 7 days, to about 14 days, to about 21 days, to about 28 days, to about 42 days, to about 56 days, to about 84 days, or to about 112 days.
- the continuous infusion may then be followed by a rest period of from about 1 day, to about 2 days to about 3 days, to about 7 days, to about 14 days, or to about 28 days.
- Continuous infusion may then be repeated, as above, and followed by another rest period.
- Fusogenix lipid nanoparticles labeled with 64 Cu 64 Cu NOTA-liposomes either with or without a p14 FAST fusion protein (described in PCT Patent Publication Nos. WO2002044206A2 and WO2012040825A1) were administered intravenously to a M16 mouse model system for prostate cancer (PC3 cells). Seo, Bioconjug Chem 19(12):2577-2585 (2009) and Reeves, Cancer Therapy 136(7):1731-1740 (2014). 24 hours post-immunization, PC3 tumors were visualize using positron emission tomography (PET). FIGS. 7 A and 7 B .
- FIG. 8 The data presented in FIG. 8 demonstrate a 50% increase in PC3 prostate tumor uptake of 64 Cu NOTA-liposomes with p14 FAST fusion protein as compared to 64 Cu NOTA-liposomes without p14 FAST fusion protein.
- the biodistribution of labelled pegylated liposomes in nude mice expressed after 24 hours is presented in FIG. 9 .
- N 20 male rats treated with either (i) no LNPs (PBS), (ii) LNPs without p14, or (iii) p14 containing Fusogenix lipid nanoparticles (LNPs).
- PBS no LNPs
- LNPs Fusogenix lipid nanoparticles
- Treatment of the animals with p14 containing LNPs did not result in any acute changes in animal behavior and animal growth was not affected by treatment with p14 containing LNPs.
- Animals treated with p14 containing LNPs had similar organ weights as compared to all other animal groups studied.
- Treatment with p14 containing LNPs did not affect the microscopic appearance of tissues from major organ systems. Tissues from the lungs, brain, heart, kidney, liver, reproductive organs, gut, endocrine system, lymph nodes, spleen, pancreas, bladder and tail were all independently examined and p14 did not elicit any visible signs of toxicity. Importantly, the liver appeared to be unaffected by exposure to p14. Moreover, no differences were identified between the tissues of p14 treated animals versus control groups.
- mice were injected three (3) times at 10 day intervals with purified p14 mixed with Freund's adjuvant.
- a first dose contained CFA (complete Freund's adjuvant) while second and third doses contained IFA (incomplete Freund's adjuvant).
- Each injection was with 50 ⁇ g of p14.
- Mice were sacrificed after 30 days and sera was analyzed for anti-p14 antibodies.
- p14 lipid nanoparticles were also tested in two (2) mice via intravenous injection of 400 ⁇ g of p53-iCasp9 Fusogenix lipid nanoparticles containing 240 ⁇ g of p14. Mice were sacrificed after 30 days of injection and serum was analyzed for anti-p14 antibodies.
- a positive control included purified antibodies spiked in serum at a high dose of 250 ng/ml and a low dose of 50 ng/ml.
- the data presented in FIGS. 10 and 11 demonstrate the safety and tolerability of Fusogenix lipid nanoparticles utilizing a reptilian reovirus p14 FAST fusion protein.
- Anti-p14 and anti-LNP antibody assays demonstrated that virtually no antibody response was observed in immune competent mice (with and without adjuvant).
- FIGS. 12 and 13 demonstrate that LNP formulations according to the present disclosure were non-reactive with C4d ( FIG. 12 ) and less reactive with iC3b ( FIG. 13 ) as compared to Doxil in 8 out of 10 human samples (approximately 5-10% of humans exhibit a CARPA reaction to nanomedicines such as Doxil).
- This Example demonstrates the target-cell specific suppression in p16-positive senescent cell burden following the in vivo administration of an exemplary p16-targeting construct in an mouse model system for aging.
- the aging mouse model exhibits a senescent cell burden (as defined by the presence of p16 + cells) and secretion of factors associated with a senescence-associated secretory phenotype (SASP; van Deursen, Nature 509(7501):439-446 (2014)).
- SASP senescence-associated secretory phenotype
- a formulation comprising a vector and an expression construct, such as a lipid nanoparticle (LNP) vector, e.g., a fusogenic LNP comprising a fusogenic protein such as p14 FAST, encompassing a p16-iCasp9 expression construct (pVAX1-16s-iCasp9; SEQ ID NO: 06; FIG.
- LNP lipid nanoparticle
- FIG. 16 which comprises an exemplary p16-targeting construct for the target cell-specific expression of an inducible Caspase 9 (iCasp9) protein in target cells expressing p16, such as target cells that are associated with aging and/or senescence, which p16-targeting construct comprises a p16s transcriptional promoter in operable connection to iCasp9. or variant thereof expressing luciferase (for visualization), was administered in vivo to an aged mouse via injection into a tail vein and the LNP+expression construct transfects target and non-target cells without specificity.
- FIG. 19 shows an inducible Caspase 9
- p16+ target cells e.g., senescent cells
- SASP levels while p16 ⁇ cells remained viable.
- FIGS. 20 A-D Histological staining of senescent-associated ⁇ -gal in kidney cells from an in vivo aged mouse model either untreated (upper left panel) or treated (upper right panel) following the in vivo administration (16 animals at 80 weeks of age) of a formulation comprising a vector and an expression construct, such as a lipid nanoparticle (LNP) vector, e.g., a fusogenic LNP comprising a fusogenic protein such as p14 FAST, encompassing a p16-iCasp9 expression construct, e.g., pVAX1-16s-iCasp9 or variant thereof, was administered in vivo to an aged mouse and kidney cells stained for ⁇ -gal.
- FIGS. 20 A-D The lower panel is a photomicrograph of the histiological staining of senescent-associated ⁇ -gal in 4-month old kidney cells from a normal mouse. These data demonstrated a dose-dependent reduction of p16+ senescent kidney
- This Example demonstrates the target-cell specific suppression of p53-expressing prostate cancer cells in NSG mice implanted with a human prostate tumor (i.e., a PC-3 xenograft).
- Human prostate cancer PC-3 cells were treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc (luciferin) plasmid (in the presence and absence of the homodimerizer AP201870) and assessed for iCasp9 expression and subjected to Western blot analysis of iCasp 9 and Casp 9 protein levels obtained with p53-expressing cells (pVax-p53) and control cells (pcDNA3-GFP).
- FIG. 36 Human prostate cancer PC-3 cells were treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc (luciferin) plasmid (in the presence and absence of the homodimerizer AP201870) and assessed for iCasp9 expression and subjected to Western blot analysis of iCasp 9 and Casp 9 protein levels obtained with p53-expressing cells (pVax-p53) and
- Human prostate cancer PC-3 cells were treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc (luciferin) plasmid (in the presence and absence of the homodimerizer AP20187) and assessed for iCasp9 expression.
- the data presented in FIG. 42 demonstrated that the addition of the chemical inducer of dimerization (CID; e.g., AP20187 and AP1903) abolished the expression of iCasp9 and luciferase in p53-expressing cells engineered to express iCasp9 or luciferase.
- CID chemical inducer of dimerization
- FIGS. 43 A and 44 A and 43 B and 44 B Flow cytometry apoptosis data (Annexin V) from human prostate cancer PC-3 cells treated with pVax-p53 Fusogenix lipid nanoparticles (in the absence and presence of AP20187, FIGS. 43 A and 44 A and 43 B and 44 B , respectively) demonstrated that suicide gene therapy selectively killed p53-expressing human prostate cancer cells in culture by inducing apoptosis (Luciferase-Annexin V flow cytometry).
- FIG. 45 NSG mice bearing a subcutaneous human prostate PC-3 tumor were injected intratumorally (IT) with 100 ⁇ g Fusogenix pVax-p53 formulation, followed 96 hours later by intravenous (IV) administration of 2 mg/kg of the homodimerizer AP20187.
- FIG. 46 Tumors from the NSG mice bearing subcutaneous human prostate PC-3 tumors injected intratumorally with 100 ⁇ g Fusogenix pVax-p53 formulation, followed 96 hours by 2 mg/kg AP20187 IV, were photographed ( FIGS. 47 A- 47 C ).
- NOD-SCID mice were injected with 500,000 PC-3M-luciferase cells on Day 0, LNP dosing was started on Day 22 with 150 ⁇ g p53-iCasp9 LNP. Dimerizer doses started Day 24 at 2 mg/kg. Mice were imaged every 24-48 hours to detect whole animal luminescence.
- FIG. 55
- Isogenic C57B6 mice implanted with B16 murine melanoma cells were treated with LNPs containing a construct encoding iCasp9 and murine CD40L under control of the murine p53 promoter followed by the AP20187 dimerizer.
- CID chemical inducer of dimerization
- This Example demonstrates the in vivo p53+ target cell suppression murine p53+B16F10 melanoma target cells implanted in a lung metastasis mouse model system.
- a B16F10 lung metastasis model system was employed in which 100 ⁇ g of a control LNP or a p53-iCasp9 LNP was administered intravenously at days 3, 6, 9, and 12 following the intravenous injection of 75,000 B16F10 cells. At days 5, 8, 11, and 13, a chemical inducer of dimerization (CID) was administered intraperitoneally. Animals were sacrificed at day 14 and lung metastases were quantified.
- FIGS. 58 A- 58 D and 59 were employed.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Dermatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Provided nucleic acid-based expression construct for the target cell-specific production of a therapeutic protein, such as a pro-apoptotic protein, within a target cell, including a target cell that is associated with aging, disease, or other condition, in particular a target cell that is a senescent cell or a cancer cell. Also provided are formulations and systems, including fusogenic lipid nanoparticle (LNP) formulations and systems, for the delivery of nucleic acid-based expression constructs as well as methods for making and using such nucleic acid-based expression constructs, formulations, and systems for reducing, preventing, and/or eliminating the growth and/or survival of a cell, such as a senescent cell and/or a cancer cell, which is associated with aging, disease, or other condition as well as methods for the treatment of aging, disease, or other conditions by the in vivo administration of a formulation, such as a fusogenic LPN formulation, comprising an expression construct for the target cell-specific production of a therapeutic protein, such as a pro-apoptotic protein, in a target cell that is associated with aging, disease, or other condition, in particular a target cell that is a senescent cell or a cancer cell.
Description
- This U.S. non-provisional patent application is a continuation of U.S. patent application Ser. No. 16/388,775, filed Apr. 18, 2019, which claims the benefit of U.S. Provisional Patent Application 62/659,676, filed Apr. 18, 2018, and U.S. Provisional Patent Application 62/821,084, filed Mar. 20, 2019, each of which is incorporated herein by reference in its entirety.
- The instant application includes a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML copy, created on Nov. 29, 2022, is named 54636_707_301_SL.xml and is 65,524 bytes in size.
- The present disclosure relates, generally, to the field of medicine, including the treatment of disease, promotion of longevity, anti-aging, and health extension. More specifically, this disclosure concerns compositions and methods for reducing the growth and/or survival of cells that are associated with aging, disease, and other conditions. Provided are expression constructs for target cell specific expression of therapeutic proteins, which constructs exploit unique intracellular functionality, including transcription regulatory functionality, that is present within a target cell but is either absent from or substantially reduced in a normal, non-target cell. Such expression constructs are used in systems that include a vector for the delivery of a nucleic acid to a target cell, which vectors may comprise, but do not necessarily require, a fusogenic lipid nanoparticle and, optionally, a targeting moiety for enhancing the delivery of an expression construct to a target cell.
- Cancer cells, senescent cells, and other cells having an undesirable phenotype can accumulate over the course of a person's life and, without appropriate treatment, such cells can contribute to or even cause a person's morbidity and, ultimately, mortality.
- The role of senescent cells in disease and the potential benefits of eliminating senescent cells has been discussed in scientific publications such as Baker et al. Nature 479:232-6 (2011). Systems and methods have been described that purport to address the problem of accumulating senescent cells. For example, Grigg, PCT Patent Publication No. WO 1992/009298, describes a system for preventing or reversing cell senescence with chemical compounds similar to carnosine and Gruber, U.S. Patent Publication No. 2012/0183534, describes systems for killing senescent cells with radiation, ultrasound, toxins, antibodies, and antibody-toxin conjugates, which systems include senescent cell-surface proteins for use in targeting of therapeutic molecules.
- The selective killing of senescent cells has proven impractical in mammals other than genetically-modified laboratory research animals. Currently-available systems and methods exhibit substantial systemic toxicity, inadequate targeting of cells of interest, and a lack of adequate safety features. These shortcomings in the art have hampered the development of safe and effective therapies for the treatment of certain cancers and for slowing the effects of aging.
- The present disclosure is based upon the discovery that a cell, such as a cell that is associated with aging, a disease, and/or another condition (collectively, “a target cell”), can be selectively killed, in a target cell-specific manner, without the need for the targeted delivery of a therapeutic agent to the target cell. The expression constructs, systems, and methods described herein overcome safety and efficacy concerns that are associated with existing technologies that employ targeted delivery of therapeutic agents, which technologies have yielded limited therapeutic benefit to patients in need thereof.
- As described herein, the present disclosure provides expression cassettes, systems, and methods for inducing, in a target cell-specific manner, the expression of a nucleic acid that encodes a protein that, when produced in a cell, reduces or eliminates the growth and/or survival of a cell, such as a cell that is associated with aging, disease, and/or other condition.
- The expression cassettes, systems, and methods described herein exploit the unique transcription regulatory machinery that is intrinsic to certain cells that are associated with age (such as senescent cells), disease (such as cancers, infectious diseases, and bacterial diseases), as well as other conditions, which transcription regulatory machinery is not operative, or exhibits substantially reduced activity, in a normal cell (i.e., “a non-target cell”) that is not associated with aging, disease, or other condition.
- The presently-disclosed expression cassettes, systems, and methods achieve a high degree of target cell specificity as a consequence of intracellular functionality that is provided by, and unique to, the target cell, which intracellular functionality is not provided by, or is substantially reduced in, a normal, non-target cell. Thus, the presently disclosed systems and methods employ nucleic acid delivery vectors that are non-specific with respect to the cell type to which the nucleic acid is delivered and, indeed, the vectors described herein need not be configured for target cell-specific delivery of a nucleic acid (e.g., an expression cassette) to achieve target cell specificity and, consequently, the therapeutically effective reduction, prevention, and/or elimination in the growth and/or survival of a target cell.
- Within certain embodiments, the present disclosure provides expression constructs for the targeted production of therapeutic proteins within a target cell, such as a cell that is associated with aging, disease, and/or another condition. The expression constructs disclosed herein comprise: (1) a transcriptional promoter that is activated in response to one or more factors each of which is produced within a target cell and (2) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of a cell, including the target cell.
- Within certain aspects of these embodiments, the transcriptional promoter is activated in a target cell that is associated with a disease, condition, or age but is not activated in a normal mammalian cell that is not associated with the disease, condition, or aging. Target cell-specific transcriptional activation is achieved by the action of one or more factors that are produced in the target cell but not produced in a normal mammalian cell, including a normal human cell, such as normal skeletal myoblasts, normal adipose cells, normal cells of the eye, normal brain cells, normal liver cells, normal colon cells, normal lung cells, normal pancreas cells, and/or normal heart cells, which normal cells are not associated with the disease, condition, or aging.
- Within other aspects of these embodiments, the target cell can be a mammalian cell or a bacterial cell. Target mammalian cells can include human cells such as senescent cells, cancer cells, precancerous cells, dysplastic cells, and cells that are infected with an infectious agent.
- In certain aspects of these embodiments wherein the human target cell is a senescent cell, the transcriptional promoter can include a transcriptional promoter, such as the p16INK4a/CDKN2A transcriptional promoter, which is responsive to activation by transcription factors such as SP1, ETS1, and/or ETS2. In other aspects of these embodiments wherein the human target cell is a senescent cell, the transcriptional promoter can include a transcriptional promoter, such as the p21/CDKN1A transcriptional promoter, which is responsive to p53/TP53.
- In a target cell, such as a senescent cell, transcriptional promoters induce the expression of a nucleic acid that encodes a therapeutic protein such as, for example, Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase as well as inducible and self-activating variants of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase which therapeutic protein reduces, prevents, and/or eliminates the growth and/or survival of the senescent cell, such as, for example, by inducing cell death in the senescent cell via a cellular process including apoptosis. Other therapeutic proteins may be employed that reduce, prevent, and/or eliminate the growth and/or survival of a senescent cell by, for example, inducing cell death via a cellular process including necrosis/necroptosis, autophagic cell death, endoplasmic reticulum-stress associated cytotoxicity, mitotic catastrophe, paraptosis, pyroptosis, pyronecrosis, and entosifs.
- In other aspects of these embodiments wherein the human target cell is a cancer cell, such as a brain cancer cell, a prostate cancer cell, a lung cancer cell, a colorectal cancer cell, a breast cancer cell, a liver cancer cell, a hematologic cancer cell, and a bone cancer cell, the transcriptional promoter can include the p21cip1/waf1 promoter, the p27kip1 promoter, the p57kip2 promoter, the TdT promoter, the Rag-1 promoter, the B29 promoter, the Blk promoter, the CD19 promoter, the BLNK promoter, and/or the λ5 promoter, which transcriptional promoter is responsive to activation by one or more transcription factors such as an EBF3, O/E-1, Pax-5, E2A, p53, VP16, MLL, HSF1, NF-IL6, NFAT1, AP-1, AP-2, HOX, E2F3, and/or NF-κB transcription factor, and which transcriptional activation induces the expression of a nucleic acid that encodes a therapeutic protein such as, for example, Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase as well as inducible and self-activating variants of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase which therapeutic protein reduces, prevents, and/or eliminates the growth and/or survival of the senescent cell, such as, for example, by inducing cell death in the senescent cell via a cellular process including apoptosis. Other therapeutic proteins may be employed that reduce, prevent, and/or eliminate the growth and/or survival of a senescent cell by, for example, inducing cell death via a cellular process including necrosis/necroptosis, autophagic cell death, endoplasmic reticulum-stress associated cytotoxicity, mitotic catastrophe, paraptosis, pyroptosis, pyronecrosis, and entosifs.
- In still further aspects of these embodiments wherein the target cell is a human cell that is infected with an infectious agent, such as a virus, including, for example, a herpes virus, a polio virus, a hepatitis virus, a retrovirus virus, an influenza virus, and a rhino virus, or the target cell is a bacterial cell, the transcriptional promoter can be activated by a factor that is expressed by the infectious agent or bacterial cell, which transcriptional activation induces the expression of a nucleic acid that encodes a therapeutic protein such as, for example, Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase as well as inducible and self-activating variants of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase which therapeutic protein reduces, prevents, and/or eliminates the growth and/or survival of the senescent cell, such as, for example, by inducing cell death in the senescent cell via a cellular process including apoptosis. Other therapeutic proteins may be employed that reduce, prevent, and/or eliminate the growth and/or survival of a senescent cell by, for example, inducing cell death via a cellular process including necrosis/necroptosis, autophagic cell death, endoplasmic reticulum-stress associated cytotoxicity, mitotic catastrophe, paraptosis, pyroptosis, pyronecrosis, and entosifs.
- Within other embodiments, the present disclosure provides systems for the targeted production of a therapeutic protein within a target cell. These systems comprise a vector that is capable of delivering a nucleic acid to a cell, including a target cell as well as a non-target cell, wherein the vector comprises an expression construct for the targeted production of a therapeutic protein within a target cell (e.g., a cell that is associated with age, disease, or other condition) but not within a non-target cell, wherein the expression construct comprises a transcriptional promoter that is activated in response to one or more factors each of which is produced within said target cell; and a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of a cell in which it is produced, including a target cell.
- Within certain aspects of these embodiments, formulations and systems include lipid nanoparticle (LNP) formulations and systems wherein an LPN encapsulates a polynucleotide construct (e.g., a plasmid DNA) comprising a coding region for a pro-apoptotic protein, such as a caspase protein, and wherein the coding region is under the regulatory control of a target cell-specific transcriptional promoter, such as a senescent cell-specific transcriptional promoter or a cancer cell-specific transcriptional promoter. Exemplary cell-specific transcriptional promoters include p16, p22, p53. Exemplary coding regions for pro-apoptotic proteins include coding regions for Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase proteins. Pro-apoptotic proteins include inducible Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase proteins and self-activating Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase proteins, which are exemplified herein by an inducible Caspase 9 (iCasp9) or a self-activating Caspase 9 (saCasp9).
- Inducible pro-apoptotic proteins, including iCasp9 proteins, can include a dimerization domain, such as an FKBP or FK506 binding protein domain, that binds to a chemical inducer of dimerization (CID), such as AP1903 or AP20187. Clackson, Proc Natl Acad Sci USA. 95:10437-10442 (1998). Inducible Caspase 9 (iCasp9; Ariad, Erie, PA) may be activated in the presence of AP1903. U.S. Pat. No. 5,869,337 and Straathof, Blood 105:4247-4254 (2005). Exemplary human genes encoding FKBP domains include AIP, AIPL1, FKBP1A, FKBP1B, FKBP2, FKBP3, FHBP5, FKBP6, FKBP7, FKBP8, FKBP8, FKBP9L, FKBP10, FKBP11, FKBP14, FKBP15, FKBP52, and L00541473.
- Within other aspects of these embodiments, lipid nanoparticles (LNP) are fusogenic lipid nanoparticles, such as fusogenic lipid nanoparticles comprising a fusogenic protein, such as a fusogenic p14 FAST fusion protein from reptilian reovirus to catalyze lipid mixing between the LNP and target cell plasma membrane. Suitable fusogenic proteins are described in PCT Patent Publication Nos. WO2012/040825A1 and WO2002/044206A2, Lau, Biophys. J. 86:272 (2004), Nesbitt, Master of Science Thesis (2012), Zijlstra, AACR (2017), Mrlouah, PAACRAM 77(13Supp1):Abst 5143 (2017), Krabbe, Cancers 10:216 (2018), Sanchez-Garcia, ChemComm 53:4565 (2017), Clancy, J Virology 83(7):2941 (2009), Sudo, J Control Release 255:1 (2017), Wong, Cancer Gene Therapy 23:355 (2016), and Corcoran, JBC 281(42):31778 (2006) and are exemplified by the P14 and P14e15 proteins having the amino acid sequences presented in Table 1.
-
TABLE 1 Fusogenic Protein Sequences P14 MGSGPSNFVNHAPGEAIVTGLEKGADKVAGTISHTIWEVIAG SEQ ID NO: 16 LVALLTFLAFGFWLFKYLQKRRERRRQLTEFQKRYLRNSYR LSEIQRPISQHEYEDPYEPPSRRKPPPPPYSTYVNIDNVSAI* P14e15 MGSGPSNFVNHAPGEAIVTGLEKGADKVAGTISHTIWEVIAG SEQ ID NO: 17 LVALLTFLAFGFWLFKYLQWYNRKSKNKKRKEQIREQIELG LLSYGAGVASLPLLNVIAHNPGSVISATPIYKGPCTGVPNSRL LQITSGTAEENTRILNHDGRNPDGSINV* - Contacting a cell expressing an iCasp9 protein with a CID facilitates the dimerization of the iCasp9 protein, which triggers apoptosis in a target cell. AP1903 has been used in humans multiple times, its intravenous safety has been confirmed, and its pharmacokinetics determined. Iuliucci, J Clin Pharmacol 41(8):870-9 (2001) and Di Stasi, N Engl J Med 365:1673-83 (2011). iCasp9+AP1903 were used successfully in humans to treat GvHD after allogeneic T cell transplant. Di Stasi, N Engl J Med 365:1673-83 (2011).
- Within certain embodiments, a polynucleotide encoding a self-activating caspase, such as a self-activating Caspase 9 (saCasp9), may be employed wherein expression of the caspase polynucleotide is under the regulatory control of a factor that is active in a target cell population, such as a senescent cell population or a cancer cell population. Self-activating caspases activate in the absence of a chemical inducer of dimerization (CID). Cells expressing self-activating caspases, such as saCasp9, apoptose almost immediately. It will be appreciated by those of skill in the art that such self-activating caspases may be advantageously employed for the induction of apoptosis in a rapidly dividing cell, such as a rapidly dividing tumor cell, where an inducible caspase protein would be diluted out before administration of a CID. Moreover, because cell death with a self-activating caspase occurs over a longer period of time as compared to an inducible caspase, the risk of tumor lysis syndrome is reduced with a self-activating caspase.
- Formulations comprising a plasmid DNA encapsulated with a LNP formulation are non-toxic and non-immunogenic in animals at doses of >15 mg/kg and exhibit an efficiency in excess of 80×greater than that achievable with neutral lipid formulations and 2-5×greater than that achievable with cationic lipid formulations. LNP cargo is deposited directly into the cytoplasm thereby bypassing the endocytic pathway.
- Within further aspect of these embodiments, the system further comprises one or more safety features that permit additional control over the expression of the nucleic acid within the expression construct or the functionality of a therapeutic protein encoded by the nucleic acid such as, for example, by requiring the contacting of a target cell with a chemical or biological compound that, in addition to the intracellular factor that promotes transcriptional activation of the promoter within the expression construct or promotes the functionality of the therapeutic protein, such as by promoting the dimerization of as well as inducible variants of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, and cytosine deaminase.
- A further safety element that may be employed in the expression constructs and systems of the present disclosure includes a tamoxifen-inducible Cre construct using Life Technologies Gateway Cloning Vector System employing a pDEST26 plasmid for mammalian expression. For example, a fusion protein of Cre and estrogen receptor can be constitutively expressed and induced upon the addition of tamoxifen, which permits activated Cre to re-orient the transcriptional promoter, thereby expressing the therapeutic protein.
- Within yet other aspects of these embodiments, the system may further comprise a nucleic acid that encodes a detectable marker, such as a bioluminescent marker, thereby allowing the identification of cells that express the therapeutic protein and, in the case of an inducible therapeutic protein such as an inducible Casp3, Casp8, Casp9, will be killed by the administration of a compound that promotes activity of the therapeutic protein, such as by inducing the dimerization of an inducible Casp3, Casp8, Casp9.
- Within further embodiments, the present disclosure provides methods for reducing, preventing, and/or eliminating the growth of a target cell, which methods comprise contacting a target cell with a system for the targeted production of a therapeutic protein within a target cell, wherein the system comprises a vector that is capable of delivering a nucleic acid to a cell, wherein the vector comprises an expression construct for the targeted production of a therapeutic protein within a target cell (e.g., a cell that is associated with age, disease, or other condition) but not within a non-target cell, wherein the expression construct comprises: (a) a transcriptional promoter that is activated in response to one or more factors each of which factors is produced within a target cell and (b) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a therapeutic protein that is produced upon expression of the nucleic acid and wherein production of the therapeutic protein in the target cell (i.e., the cell that is associated with age, disease, or other condition) reduces, prevents, and/or eliminates growth and/or survival of the target cell.
- Within still further embodiments, the present disclosure provides methods for the treatment of an aging human or a human that is afflicted with a disease or another condition, wherein the aging, disease, or other condition is associated with a target cell within the human, the methods comprising administering to the human a system for the targeted production of a therapeutic protein within a target cell, wherein the system comprises a vector that is capable of delivering a nucleic acid to a cell, wherein the vector comprises an expression construct for the targeted production of a therapeutic protein within a target cell (e.g., a cell that is associated with age, disease, or other condition) but not within a non-target cell, wherein the expression construct comprises: (a) a transcriptional promoter that is activated in response to one or more factors each of which factors is produced within a target cell and (b) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a therapeutic protein that is produced upon expression of the nucleic acid and wherein production of the therapeutic protein in the target cell (i.e., the cell that is associated with age, disease, or other condition) reduces, prevents, and/or eliminates growth and/or survival of the target cell thereby slowing aging in the human and/or slowing, reversing, and/or eliminating the disease or condition in the human.
- Within further embodiments, the present disclosure provides lipid nanoparticle (LNP) formulation for the targeted production of a therapeutic protein within a target cell, which LNP formulation comprise: (a) a lipid nanoparticle vector for the non-specific delivery of a nucleic acid to mammalian cells, which mammalian cells include both target cells or non-target cells, wherein said lipid nanoparticle includes one or more lipid(s) and one or more fusogenic protein(s), and (b) an expression construct for the preferential production of a therapeutic protein within a target cell.
- LNP formulations according to certain aspects of these embodiments include one or more lipid(s) at a concentration ranging from 1 mM to 100 mM, or from 5 mM to 50 mM, or from 10 mM to 30 mM, or from 15 mM to 25 mM. LNP formulations exemplified herein include one or more lipid(s) at a concentration of about 20 mM.
- Within certain illustrative LNP formulations, one or more lipid(s) is selected from 1,2-dioleoyl-3-dimethyl ammonium-propane (DODAP), 1,2-di oleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), Cholesterol, and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol (DMG-PEG). LNP formulations may two or more lipids selected from the group consisting of DODAP, DOTAP, DOPE, Cholesterol, and DMG-PEG.
- Exemplified herein are LNP formulations including DODAP, DOTAP, DOPE, Cholesterol, and DMG-PEG at a molar ratio of 35-55 mole % DODAP:10-20 mole % DOTAP:22.5-37.5 mole % DOPE:4-8 mole % Cholesterol:3-5 mole % DMG-PEG; or at a molar ratio of about 45 mole % DODAP:about 15 mole % DOTAP:about 30 mole % DOPE:about 6 mole % Cholesterol:about 4 mole % DMG-PEG. Within certain aspects, the LNP formulations include DODAP, DOTAP, DOPE, Cholesterol, and DMG-PEG at a molar ratio of 45 mole % DODAP:15 mole % DOTAP:30 mole % DOPE:6 mole % Cholesterol:4 mole % DMG-PEG.
- LNP formulations according to other aspects of these embodiments include one or more fusogenic protein(s) at a concentration ranging from 0.5 μM to 20 or from 1 μM to 10 μM, or from 3 μM to 4 μM. Exemplified herein are LNP formulations wherein fusogenic protein(s) are present at a concentration of 3.5 μM. Exemplary, suitable fusogenic protein(s) include the p14 fusogenic protein (SEQ ID NO: 16) and a the p14e15 fusogenic protein (SEQ ID NO: 17).
- Within additional aspects of these embodiments, LNP formulations include expression constructs comprising (i) a transcriptional promoter that is activated in response to one or more factors that are preferentially produced within said target cells as compared to said non-target cells and (ii) a nucleic acid that is operably linked to and under regulatory control of said transcriptional promoter, wherein said nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of mammalian cells, including both target cells and non-target cells and wherein said therapeutic protein is produced within said target cells but is not produced in said non-target cells.
- Exemplified herein are LNP formulations including expression constructs at a concentration ranging from 20 μg/mL to 1.5 mg/mL, of from 100 μg/mL to 500 μg/mL, or at a concentration of 250 μg/mL.
- A suitable exemplary LNP formulation includes the following: for each 1 mL of LNP, the lipid concentration is 20 mM, the DNA content is 250 μg, and the fusogenic protein (e.g., p14 or p14e15) is at 3.5 μM wherein the lipid formulation comprises DODAP:DOTAP:DOPE:Cholesterol:DMG-PEG at a mole % ratio of 45:15:30:6:4, respectively.
- Within still further aspects of these embodiments, LNP formulations include expression constructs having a transcriptional promoter selected from a p16 transcriptional promoter, a p21 transcriptional promoter, and a p53 transcriptional promoter, and include transcriptional promoters that are responsive to a factor selected from SP1, ETS1, ETS2, and p53/TP53. Exemplified herein are LNP formulations wherein said transcriptional promoter is a p16INK4a/CDKN2A transcriptional promoter or a p21/CDKN1A transcriptional promoter.
- Within related aspects of these embodiments, LNP formulations include expression constructs having a transcriptional promoter that is responsive to a factor selected from EBF3, O/E-1, Pax-5, E2A, p53, VP16, MLL, HSF1, NF-IL6, NFAT1, AP-1, AP-2, HOX, E2F3, and/or NF-κB. Exemplified herein are LNP formulations wherein said transcriptional promoter is a p21cip1/waf1 promoter, the p27kip1 promoter, the p57kip2 promoter, the TdT promoter, the Rag-1 promoter, the B29 promoter, the Blk promoter, the CD19 promoter, the BLNK promoter, and the λ5 promoter.
- Within other related aspects of these embodiments, LNP formulations include expression constructs that include a nucleic acid that encodes a therapeutic protein, such as a therapeutic protein selected from a caspase (Casp), an inducible caspase (iCasp), a self-activating caspase (saCasp), BAX, DFF40, HSV-TK, and cytosine deaminase. Exemplified herein are LNP formulations that include expression constructs having a nucleic acid that encodes a Casp9, including, for example, an inducible Casp9 (iCasp9) or a self-activating Casp9 (saCasp9).
- Other embodiments of the present disclosure provide methods for reducing, preventing, and/or eliminating the growth of a target cell, which comprise contacting a target cell with an LNP formulation having (a) a lipid nanoparticle vector for the non-specific delivery of a nucleic acid to mammalian cells, which mammalian cells include both target cells or non-target cells, wherein said lipid nanoparticle includes one or more lipid(s) and one or more fusogenic protein(s), and (b) an expression construct for the preferential production of a therapeutic protein within a target cell.
- Within certain aspects of these embodiments the methods employ LNP formulations comprising (i) a transcriptional promoter that is activated in response to one or more factors that are preferentially produced within target cells as compared to non-target cells and (ii) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of mammalian cells, including both target cells and non-target cells and wherein said therapeutic protein is produced within the target cells but is not produced in the non-target cells.
- Other embodiments of the present disclosure provide methods for the treatment of a disease or condition in a patient, including a human patient, having a target cell, wherein the method comprises administering to the patient an LNP formulation having (a) a lipid nanoparticle vector for the non-specific delivery of a nucleic acid to mammalian cells, wherein the mammalian cells include both target cells or non-target cells, and wherein the lipid nanoparticle includes one or more lipid(s) and one or more fusogenic protein(s) and (b) an expression construct for the preferential production of a therapeutic protein within a target cell.
- Within certain aspects of these embodiments the methods employ LNP formulations comprising (i) a transcriptional promoter that is activated in response to one or more factors that are preferentially produced within target cells as compared to non-target cells and (ii) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of mammalian cells, including both target cells and non-target cells and wherein said therapeutic protein is produced within the target cells but is not produced in the non-target cells.
- These and other related aspects of the present disclosure will be better understood in light of the following drawings and detailed description, which exemplify certain aspects of the various embodiments.
-
FIG. 1 is a diagrammatic representation of conventional and fusogenic liposomes, including stealth fusogenic liposomes, including lipid nanoparticles employing Innovascreen's Fusogenix™ Platform according to certain aspects of the present disclosure. Shown are Fusogenix™ lipid nanoparticles utilizing a p14 FAST fusion protein from reptilian reovirus and including a plasmid vector encoding an inducible Caspase 9 (iCasp9) under a promoter that is active in a target cell population, such as a senescent target cell population or a cancer target cell population. Exemplified in this diagram are Casp9 fusion peptides that are activated via a small molecule dimerizer such as AP1903. -
FIG. 2 is a diagrammatic representation of the liposomal delivery to the cytoplasm of a target cell, according to certain aspects of the present disclosure. Shown are Fusogenix™ lipid nanoparticles (LNPs) that are configured for the delivery of nucleic acids, such as those encoding a pro-apoptotic protein, such asCaspase 9, under the regulatory control of a target cell-specific transcriptional promoter, such as a target senescent cell encoding p16 or a target cancer cell encoding p53. Exemplified are Fusogenix™ lipid nanoparticles comprising a p14 FAST protein to catalyze the rapid lipid mixing between the lipid nanoparticle (LNP) and the target cell plasma membrane. Such Fusogenix™ lipid nanoparticles (i) deliver the cargo nucleic acids directly into the cytoplasm thereby bypassing the endocytic pathway, (ii) are non-toxic (i.e., non-immunogenic) in animals at doses of ≥15 mg/kg, (iii) are 80× more efficient than neutral lipid formulations, (iv) are 2-5× more efficient than cationic lipid formulations, and (iv) are manufacturable at scale. -
FIG. 3 is a table comparing the reported maximum tolerated dose (MTD) for clinical stage lipid-based in vivo delivery technologies. The MTD of >15 mg/kg for fusogenic lipid nanoparticles of the present disclosure was estimated from rat toxicity data. -
FIG. 4A is a diagrammatic representation of the induction of aninducible Caspase 9 homodimer (iCasp9), which iCasp9 is a fusion protein comprising a drug-binding domain for binding to a chemical inducer of dimerization (CID) and an active portion ofCaspase 9. A CID, as exemplified by CIDs designated AP1903 and AP20187, binds to the drug-binding domain of the iCasp9 fusion protein to dimerize and, thereby, activate iCasp9, which results in the intracellular activation of pro-apoptotic molecules and the induction of apoptosis within a target cell. -
FIG. 4B is a diagrammatic representation of an exemplary apoptosome according to certain aspects of the present disclosure. -
FIG. 5 depicts the chemical structure of an exemplary chemical inducer of dimerization (CID), which is a homodimerizer designated herein as AP1903 (APExBIO, Houston, TX) that may be employed in various embodiments of the present disclosure for inducing the activity of an inducible pro-apoptotic protein, such as an inducible caspase protein (e.g., iCasp9). -
FIG. 6 depicts the chemical structure of an exemplary chemical inducer of dimerization (CID), which is a homodimerizer designated herein as AP20187 (APExBIO, Houston, TX) that may be employed in various embodiments of the present disclosure for inducing the activity of an inducible pro-apoptotic protein, such as an inducible caspase protein (e.g., iCasp9). -
FIGS. 7A-7B present data obtained in mice that were administered intravenously Fusogenix lipid nanoparticles labeled with 64Cu-NOTA [1,4,7-triazacyclononane-1,4,7-triacetic acid]. See, Fournier, EJNMMI Research 2:8 (2012). 64Cu was detected via positron emission tomography (PET).FIG. 7A presents PET data obtained from a mouse to which 64Cu-NOTA-liposomes without protein were administered.FIG. 7B presents PET data obtained from a mouse to which 64Cu-NOTA-liposome-p14 were administered. -
FIG. 8 is a bar graph of data obtained with Fusogenix lipid nanoparticles comparing SUVmean, 24 h for 64Cu-NOTA-liposomes without protein and 64Cu-NOTA-liposome-p14. The data presented inFIGS. 7 and 8 demonstrate a 50% increase in gene/siRNA delivery to prostate tumors as compared to a competing formulation. -
FIG. 9 is a bar graph of the biodistribution of labelled pegylated liposomes in nude mice expressed after 24 hours as discussed in Example 1. -
FIGS. 10 and 11 are graphs of optical density at 405 nm as a function of concentration (μg/ml;FIG. 10 ) and of anti-p14 and anti-LNP antibody responses (FIG. 11 ), which demonstrate the safety and tolerability of exemplary fusogenic lipid nanoparticles utilizing a reptilian reovirus p14 FAST fusion protein (Fusogenix™). As shown, virtually no antibody response was observed in immune competent mice (with and without adjuvant). -
FIGS. 12 and 13 are bar graphs of data from in vitro anti-p14 and anti-LNP antibody neutralization assays showing that lipid nanoparticle formulations according to the present disclosure are non-reactive with C4d (FIG. 12 ) and less reactive with iC3b (FIG. 13 ) as compared to Doxil in 8 out of 10 human samples tested for Complement activation-related psuedoallergy (CARPA) using C4d and iC3b complement ELISA assays as described in Szebeni, Mol Immunol 61(2):163-73 (2014). -
FIG. 14 is a restriction map of the plasmid vector pVAX1™ which is employed in certain aspects of the expression constructs, systems, formulations, and methods of the present disclosure for the target cell-specific production of a therapeutic protein, such as a pro-apoptotic protein, including a caspase protein, such asCaspase 9, as well as inducible and self-activating variants of a pro-apoptotic protein, including inducible and self-activating variants of caspase proteins, such as inducible Caspase 9 (iCasp9) and self-activating Caspase 9 (saCasp9). In certain embodiments, expression constructs and formulations may additionally include a safety element, such as a tamoxifen-inducible Cre construct (e.g., Life Technologies Gateway Cloning Vector System). A fusion protein of Cre and estrogen receptor is constitutively expressed and induced upon the addition of tamoxifen, which permits activated Cre to re-orient the p16-promoter, thereby expressingcaspase 9 or inducible/self-activating variant thereof pVAX1 is commercially available from ThermoFisher Scientific (Waltham, MA). -
FIG. 15 is a diagrammatic representation of an exemplary p16-targeting construct for the target cell-specific expression of an inducible Caspase 9 (iCasp9) or a self-activating Caspase 9 (saCasp9) protein in target cells expressing p16, such as target cells that are associated with aging and/or senescence, which p16-targeting construct comprises a p16s transcriptional promoter in operable connection to iCasp9 or saCasp9. An exemplary p16 transcriptional promoter is described in Baker et al., Nature 479(7372):232-67 (2011)). -
FIG. 16 is a restriction map of the plasmid vector pVAX1-16s-iCasp9-MX (SEQ ID NO: 6), which comprises an exemplary p16-targeting construct for the target cell-specific expression of an inducible Caspase 9 (iCasp9) protein in target cells expressing p16, such as target cells that are associated with aging and/or senescence, which p16-targeting construct comprises a p16s transcriptional promoter in operable connection to iCasp9. -
FIG. 17 is a plasmid map of the vector p10-p16-iCasp9 (SEQ ID NO: 12), which comprises an exemplary p16-targeting construct for the target cell-specific expression of an inducible Caspase 9 (iCasp9) protein in target cells expressing p16, such as target cells that are associated with aging and/or senescence, which p16-targeting construct comprises a p16e transcriptional promoter in operable connection to iCasp9. -
FIG. 18 is a plasmid map of the vector p10-p16-saCasp9 (SEQ ID NO: 13), which comprises an exemplary p16-targeting construct for the target cell-specific expression of an self-activating Caspase 9 (saCasp9) protein in target cells expressing p16, such as target cells that are associated with aging and/or senescence, which p16-targeting construct comprises a p16e transcriptional promoter in operable connection to saCasp9. -
FIG. 19 is a diagrammatic representation of the in vivo administration of an exemplary p16-targeting construct in an mouse model system for aging, wherein the aging mouse model exhibits a senescent cell burden (as defined by the presence of p16+ cells) and secretion of factors associated with a senescence-associated secretory phenotype (SASP; van Deursen, Nature 509(7501):439-446 (2014)). A formulation comprising a vector and an expression construct, such as a lipid nanoparticle (LNP) vector, e.g., a fusogenic LNP comprising a fusogenic protein such as p14 FAST, encompassing a p16-Casp9 expression construct, e.g., pVAX1-16s-iCasp9, p10-p16e-iCasp9, p10-p16e-saCasp9, or variant thereof expressing luciferase (for visualization), is administered in vivo to an aged mouse via injection into a tail vein and the LNP+expression construct transfects target and non-target cells without specificity. Upon subsequent in vivo administration of a chemical inducer of dimerization (CID), such as AP20187, p16+ target cells (e.g., senescent cells) expressing an iCasp9 protein undergo apoptosis, resulting in a reduction is SASP levels, while p16− cells remain viable. -
FIGS. 20A-20C are photomicrographs of the histiological staining of senescent-associated β-gal in kidney cells from an in vivo aged mouse model either untreated (FIG. 20A ) or treated (low dose—FIG. 20B and high dose—FIG. 20C ) following the in vivo administration (16 animals at 80 weeks of age) of a formulation comprising a vector and an expression construct, such as a lipid nanoparticle (LNP) vector, e.g., a fusogenic LNP comprising a fusogenic protein such as p14 FAST, encompassing a p16-Casp9 expression construct, e.g., pVAX1-16s-iCasp9, p10-p16e-iCasp9, p10-p16e-saCasp9, or variant thereof, is administered in vivo to an aged mouse and kidney cells stained for β-gal. These data demonstrated a dose-dependent reduction of p16+ senescent kidney cells (FIG. 20D ). -
FIGS. 20E-20G are photomicrographs of the histiological staining of senescent-associated β-gal in seminal vesicle cells from an in vivo aged mouse model either untreated (FIG. 20E ) or treated (low dose—FIG. 20F and high dose—FIG. 20G ) following the in vivo administration (16 animals at 80 weeks of age) of a formulation comprising a vector and an expression construct, such as a lipid nanoparticle (LNP) vector, e.g., a fusogenic LNP comprising a fusogenic protein such as p14 FAST, encompassing a p16-iCasp9 expression construct, e.g., pVAX1-16s-iCasp9, p10-p16e-iCasp9, p10-p16e-saCasp9, or variant thereof, is administered in vivo to an aged mouse and seminal vesicle cells stained for β-gal. These data demonstrated a dose-dependent reduction of p16+ senescent seminal vesicle cells (FIG. 2011 ). -
FIG. 21 is a bar graph demonstrating the dose-dependent targeting of p16+ kidney cells in naturally aged mice following the in vivo administration of a fusogenic lipid nanoparticle (LNP) formulation comprising a pVAX1-p16 expression construct. Kidney cells were subjected to a qRT-PCR reaction to detect p16Ink4a transcripts. Relative expression was calculated using 2ΔΔCt (Livak, Methods 25:402-408 (2001)). -
FIG. 22 is a bar graph demonstrating the dose-dependent targeting of p16+ spleen cells in naturally aged mice following the in vivo administration of a fusogenic lipid nanoparticle (LNP) formulation comprising a pVAX1-p16 expression construct. Spleen cells were subjected to a qRT-PCR reaction to detect p16Ink4a transcripts. Relative expression was calculated using 2ΔΔCt (Livak, Methods 25:402-408 (2001)). -
FIG. 23 is a bar graph demonstrating the dose-dependent targeting of p16+ seminal vesicle cells in naturally aged mice following the in vivo administration of a fusogenic lipid nanoparticle (LNP) formulation comprising a pVAX1-p16 expression construct. Seminal vesicle cells were subjected to a qRT-PCR reaction to detect p16Ink4a transcripts. Relative expression was calculated using 2ΔΔCt (Livak, Methods 25:402-408 (2001)). -
FIG. 24 is a bar graph demonstrating the dose-dependent targeting of p16+ inguinal fat cells in naturally aged mice following the in vivo administration of a fusogenic lipid nanoparticle (LNP) formulation comprising a pVAX1-p16 expression construct. Inguinal fat cells were subjected to a qRT-PCR reaction to detect p16Ink4a transcripts. Relative expression was calculated using 2ΔΔCt (Livak, Methods 25:402-408 (2001)). -
FIG. 25 is a bar graph demonstrating the dose-dependent targeting of p16+ lung cells in naturally aged mice following the in vivo administration of a fusogenic lipid nanoparticle (LNP) formulation comprising a pVAX1-p16 expression construct. Lung cells were subjected to a qRT-PCR reaction to detect p16Ink4a transcripts. Relative expression was calculated using 2ΔΔCt (Livak, Methods 25:402-408 (2001)). -
FIG. 26 is a bar graph of data demonstrating the remediation of chemotherapy-induced damage (as determined by the clearance of damaged cells (i.e., senescent cells) after treatment with doxorubicin). Senescence was induced in B6 mice with doxorubicin. Animals were treated with murine p53-iCasp9 and dimerizer or controls (dimerizer only and LNP only) and sacrificed. Tissues were assayed for p53 expression via rt-PCR. -
FIG. 27 is a diagrammatic representation of an exemplary p53-targeting cassette for use in treatment of cancers (oncology) by the selective killing of tumor cells according certain embodiments of the present disclosure. The p53-targeting cassette comprises a p53 transcriptional promoter, which drives the expression aninducible caspase 9 protein (iCasp9) or a self-activatingcaspase 9 protein (saCasp9). -
FIG. 28 is a restriction map of a plasmid (pVAX1-p53-iCasp9-MX; SEQ ID NO: 7) comprising a p53-targeting cassette as depicted inFIG. 27 . Expression of an iCasp9 nucleic acid encoding an inducible Casp9 protein is regulated by the p53 transcriptional promoter. -
FIG. 29 is a restriction map of a plasmid (pVAX1-p53-saCasp9; SEQ ID NO: 8) comprising a p53-targeting cassette. Expression of a nucleic acid encoding a self-activating Caspase 9 (saCasp9) protein is regulated by the p53 transcriptional promoter. -
FIG. 30 is a restriction map of a plasmid (pVAX1-p53-iCasp9-OVA; SEQ ID NO: 11) comprising a p53-targeting cassette as depicted inFIG. 27 . Expression of a nucleic acid encoding an inducible Casp9 protein is regulated by the p53 transcriptional promoter. -
FIG. 31 is a restriction map of a plasmid (pVAX1-p53-iCasp9-G-O; SEQ ID NO: 9) comprising a p53-targeting cassette as depicted inFIG. 27 . Expression of an iCasp9 nucleic acid encoding an inducible Casp9 protein is regulated by the p53 transcriptional promoter. -
FIG. 32 is a restriction map of a plasmid (pVAX1-p53-iCasp9-huCD40L; SEQ ID NO: 10) comprising a p53-targeting cassette as depicted inFIG. 27 . Expression of an iCasp9 nucleic acid encoding an inducible Casp9 protein is regulated by the p53 transcriptional promoter. Additional targeting cassettes and plasmid constructs have been developed for advanced oncology applications, as disclosed herein, which constructs employ nucleic acids encoding, for example, one or more immunostimulatory cytokines (such as huCD40L, as shown inFIG. 32 , as well as GMCSF and IL12) and/or one or more antigens (such as chicken ovalbumin (OVA), as shown inFIG. 30 , as well as Nt1, tetanus antigens, and influenza antigens). -
FIG. 33 is a map of a plasmid (p10-p53e-iCasp9; SEQ ID NO: 14) comprising a p53-targeting cassette as depicted inFIG. 27 . Expression of an iCasp9 nucleic acid encoding an inducible Casp9 protein is regulated by the p53 transcriptional promoter. Additional targeting cassettes and plasmid constructs have been developed for advanced oncology applications, as disclosed herein, which constructs employ nucleic acids encoding, for example, one or more immunostimulatory cytokines (such as huCD40L, as shown inFIG. 32 , as well as GMCSF and IL12) and/or one or more antigens (such as chicken ovalbumin (OVA), as shown inFIG. 30 , as well as Nt1, tetanus antigens, and influenza antigens). -
FIG. 34 is a map of a plasmid (p10-p53e-saCasp9; SEQ ID NO: 15) comprising a p53-targeting cassette as depicted inFIG. 27 . Expression of an saCasp9 nucleic acid encoding a self-activating Casp9 protein is regulated by the p53 transcriptional promoter. Additional targeting cassettes and plasmid constructs have been developed for advanced oncology applications, as disclosed herein, which constructs employ nucleic acids encoding, for example, one or more immunostimulatory cytokines (such as huCD40L, as shown inFIG. 32 , as well as GMCSF and IL12) and/or one or more antigens (such as chicken ovalbumin (OVA), as shown inFIG. 30 , as well as Nt1, tetanus antigens, and influenza antigens). -
FIG. 35 is a diagram showing the rationale for targeting p53+ tumors with expression constructs comprising a p53 promoter in operable combination with a pro-apoptotic protein, such as a caspase protein, e.g., aCaspase 9 protein. Cancer cells often mutate or delete it so they can grow uncontrollably. However, even when the p53 gene is mutated, the transcription factors that bind to it are almost always still active. -
FIG. 36 is a Western blot ofiCasp 9 andCasp 9 protein levels obtained with p53-expressing cells (pVax-p53) and control cells (pcDNA3-GFP). Human prostate cancer PC-3 cells were treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc (luciferin) plasmid (in the presence and absence of the homodimerizer AP201870) and assessed for iCasp9 expression. These data demonstrate that addition of the chemical inducer of dimerization (CID; e.g., AP20187 and AP1903) abolishes the expression of iCasp9 and luciferase in p53-expressing cells engineered to express iCasp9 or luciferase. -
FIGS. 37A-37D are microscopic images of human prostate cancer (LNCaP, DU145, PC-3) or normal epithelial (RWPE) cells treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc plasmid and assessed for iCasp9 expression by Western blot (data not shown) andluminescence assays 24 hours after exposure to EtOH (negative control,FIG. 37A andFIG. 37B ) or AP1903 (FIG. 37C andFIG. 37D ). -
FIGS. 38-41 are bar graphs of data obtained with the p53-expressing cells presented inFIG. 37 . Human prostate cancer (LNCaP (FIG. 38 ), DU145 (FIG. 39 ), PC-3 (FIG. 40 )) or normal epithelial (RWPE (FIG. 41 )) cells were treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc plasmid and assessed for iCasp9 expression by Western blot and luminescence assays. These data demonstrate that addition of the chemical inducer of dimerization (CID; e.g., AP20187 and AP1903) abolishes the expression of iCasp9 and luciferase in p53-expressing cells engineered to express iCasp9 or luciferase. -
FIG. 42 is a bar graph of data from a luminescence assay ofiCasp 9 andCasp 9 protein levels obtained with the p53-expressing cells presented inFIG. 36 (pVax-p53) and control cells (pcDNA3-GFP). Human prostate cancer PC-3 cells were treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc (luciferin) plasmid (in the presence and absence of the homodimerizer AP20187) and assessed for iCasp9 expression. These data demonstrate that addition of the chemical inducer of dimerization (CID; e.g., AP20187 and AP1903) abolishes the expression of iCasp9 and luciferase in p53-expressing cells engineered to express iCasp9 or luciferase. -
FIGS. 43A, 43B, 44A, and 44B are flow cytometry apoptosis data (Annexin V) from human prostate cancer PC-3 cells treated with pVax-p53 Fusogenix lipid nanoparticles (in the absence and presence of AP20187,FIGS. 43A and 44A and 43B and 44B , respectively). The data presented in these figures demonstrates that suicide gene therapy selectively kills p53-expressing human prostate cancer cells in culture by inducing apoptosis (Luciferase-Annexin V flow cytometry). -
FIG. 45 is a flow diagram depicting a pre-clinical oncology study according to the present disclosure with 30×NSG mice implanted with human prostate tumor cells. -
FIG. 46 is a graph of tumor volume (mm3) from the pre-clinical oncology study depicted inFIG. 33 in which NSG mice bearing a subcutaneous human prostate PC-3 tumor was injected intratumorally (IT) with 100 μg Fusogenix pVax-p53 formulation, followed 96 hours later by intravenous (IV) administration of 2 mg/kg of the homodimerizer AP20187. -
FIGS. 47A-47C are photographs of tumors from the IT injection oncology study ofFIG. 46 in which NSG mouse bearing a subcutaneous human prostate PC-3 tumor was injected intratumorally with 100 μg Fusogenix pVax-p53 formulation, followed 96 hours by 2 mg/kg AP20187 IV.FIG. 47A shows tumor mass prior to administration of AP20187,FIG. 47B shows tumor mass at 24 hours following administration of AP20187, andFIG. 47C shows tumor mass at 96 hours following administration of AP20187. -
FIG. 48 is a graph from the first of four NSG mice bearing subcutaneous human prostate cancer PC-3 tumors that were injected intravenously (IV) with 4×100 μg doses of Fusogenix pVax-p53 formulation, followed 24 hours later by 2 mg/kg AP20187 IV. -
FIG. 49 is a graph from the second of four NSG mice bearing subcutaneous human prostate cancer PC-3 tumors that were injected intravenously (IV) with 4×100 μg doses of Fusogenix pVax-p53 formulation, followed 24 hours later by 2 mg/kg AP20187 IV. -
FIG. 50 is a graph from the third of four NSG mice bearing subcutaneous human prostate cancer PC-3 tumors that were injected intravenously (IV) with 4×100 μg doses of Fusogenix pVax-p53 formulation, followed 24 hours later by 2 mg/kg AP20187 IV. -
FIG. 51 is a graph from the fourth of four NSG mice bearing subcutaneous human prostate cancer PC-3 tumors that were injected intravenously (IV) with 4×100 μg doses of Fusogenix pVax-p53 formulation, followed 24 hours later by 2 mg/kg AP20187 IV. -
FIG. 52 is a graph showing the percentage change in tumor volume as a function of time after in vivo administration of a chemical inducer of dimerization (CID) in NSG mice (N=6 for all groups) bearing a prostate tumor that were treated with intravenous p14 LNP pVAX. -
FIG. 53 is a survival curve showing the percent survival as a function of time after in vivo administration of a chemical inducer of dimerization (CID) in NSG mice (N=6 for all groups) bearing a prostate tumor that were treated with intravenous p14 LNP pVAX. -
FIG. 54 is a graph of dose escalation data showing the percentage change in tumor volume as a function of time after in vivo administration of a chemical inducer of dimerization (CID) in NOD-SCID mice (N=6 for all groups) bearing a prostate tumor that were treated with 100 μg, 400 μg, and 1000 μg of intravenous p14 LNP pVAX. NOD-SCID mice were implanted subcutaneously with 500,000 PC-3 cells and randomized into treatment groups when their tumors reached 200 mm3, (N=2 for all groups). Animals were injected with their assigned dose of p53-iCasp9 LNP IV twice followed by 2 mg/kg dimerizer. Tumors were measured directly every 24 hours. -
FIG. 55 is a graph showing the suppression of metastatic tumor growth with repeat treatment of a p53-iCasp9 LNP with or without a chemical inducer of dimerization (CID). NOD-SCID mice were injected with 500,000 PC-3M-luciferase cells onDay 0, LNP dosing was started onDay 22 with 150 μg p53-iCasp9 LNP. Dimerizer doses startedDay 24 at 2 mg/kg. Mice were imaged every 24-48 hours to detect whole animal luminescence. -
FIGS. 56 and 57 are graphs showing the percentage change in tumor volume (FIG. 56 ) and percent survival (FIG. 57 ) as a function of time after in vivo administration of a chemical inducer of dimerization (CID) in isogenic C57B6 mice implanted with B16 murine melanoma cells treated with LNPs containing a construct encoding iCasp9 and murine CD40L under control of the murine p53 promoter. Even though the rapid (10 hour) doubling time of the B16 cells made them largely refractory to the iCasp9-induced apoptosis, they still secreted enough CD40L to effectively halt the tumor's growth. A construct encoding GMCSF+OVA antigen was also tested and determined to be more effective than iCasp9 alone, but less effective than the CD40L version. N=3 for both groups. -
FIGS. 58A-58D andFIG. 59 are photographs and a bar graph, respectively, of a B15F10 lung metastasis model data in which 100 μg of a control LNP (FIGS. 58A and 58B ) or a p53-iCasp9 LNP (FIGS. 58C and 58D ) was administered intravenously atdays days day 14 and lung metastases were quantified. -
FIG. 60 andFIG. 61 are DEXA scans, which were performed monthly, after in vivo administration of LNP formulations targeting p16, p53, or the combination (p16+p53) (N=10 for all groups). Mice were treated monthly starting at 728 days (104 weeks) of age. -
FIG. 62 andFIG. 63 are graphs showing the change in bone density in male (FIG. 62 ) and female (FIG. 63 ) naturally aged mice after in vivo administration of LNP formulations targeting p16, p53, or the combination (p16+p53) (N=10 for all groups). Mice were treated monthly starting at 728 days (104 weeks) of age (arrows). At 896 days (128 weeks), the increase in bone density benefit for treated mice is apparent in the male mice. -
FIG. 64 is a survival curve showing the percent survival as a function of time after in vivo administration of LNP formulations targeting p16, p53, or the combination (p16+p53) (N=10 for all groups). Mice were treated monthly starting at 728 days (104 weeks) of age (arrows). At 931 days (133 weeks), the survival benefit for treated mice is apparent (>50% survival difference between combination treatment and control). - The present disclosure provides expression cassettes, systems, and methods for the selective reduction, prevention, and/or elimination in the growth and/or survival of a cell that is associated with aging, disease, or another condition (collectively “a target cell”), which expression cassettes, systems, and methods overcome the safety and efficacy concerns that are associated with existing technologies that rely on targeted delivery of a therapeutic compound and, as a result of, for example, inefficient target cell delivery and/or off-target effects, have limited therapeutic benefit.
- More specifically, the expression cassettes, systems, and methods disclosed herein exploit the cell-specific transcription regulatory machinery that is intrinsic to a target cell and, thereby, achieve a target cell-specific therapeutic benefit without the need for targeted-delivery of a therapeutic compound. These expression cassettes, systems, and methods permit the target cell-specific induction of expression of a nucleic acid that encodes a therapeutic protein, which protein can reduce, prevent, and/or eliminate the growth and/or survival of a cell in which it is produced.
- Thus, the various embodiments that are provided by the present disclosure include:
-
- 1. Expression constructs for the targeted production of therapeutic proteins within a target cell, such as a cell that is associated with aging, disease, and/or another condition, the expression construct comprising:
- a. transcriptional promoter that is activated in response to one or more factors each of which is produced within a target cell and
- b. a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of a cell, including the target cell.
- 2. Systems for the targeted production of a therapeutic protein within a target cell, the systems comprising a vector for delivering a nucleic acid to a cell, including a target cell as well as a non-target cell,
- wherein the vector comprises an expression construct for the targeted production of a therapeutic protein within a target cell (e.g., a cell that is associated with aging, cancer, and/or other disease and/or condition) but not within a non-target cell,
- wherein the expression construct comprises (i) a transcriptional promoter that is activated in response to one or more factors each of which is produced within a target cell and (ii) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter,
- wherein the nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of a cell in which it is produced, including a target cell.
- 3. Methods for reducing, preventing, and/or eliminating the growth of a target cell, the methods comprising contacting a target cell with a system for the targeted production of a therapeutic protein within a target cell,
- wherein the system comprises a vector for delivery of a nucleic acid to a cell,
- wherein the vector comprises an expression construct for the targeted production of a therapeutic protein within a target cell (e.g., a cell that is associated with age, disease, or other condition) but not within a non-target cell,
- wherein the expression construct comprises (i) a transcriptional promoter that is activated in response to one or more factors each of which factors is produced within a target cell and (ii) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter,
- wherein the nucleic acid encodes a therapeutic protein that is produced upon expression of the nucleic acid and
- wherein production of the therapeutic protein in the target cell (i.e., the cell that is associated with age, disease, or other condition) reduces, prevents, and/or eliminates growth and/or survival of the target cell.
- 4. Methods for the treatment of aging, disease, or other condition in a human, wherein aging, disease, or other condition is associated with a target cell, the methods comprising administering to the human a system for the targeted production of a therapeutic protein within a target cell,
- wherein the system comprises a vector that is capable of delivering a nucleic acid to a cell,
- wherein the vector comprises an expression construct for the targeted production of a therapeutic protein within a target cell (e.g., a cell that is associated with age, disease, or other condition) but not within a non-target cell,
- wherein the expression construct comprises (i) a transcriptional promoter that is activated in response to one or more factors each of which factors is produced within a target cell and (ii) a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter,
- wherein the nucleic acid encodes a therapeutic protein that is produced upon expression of the nucleic acid and
- wherein production of the therapeutic protein in the target cell (i.e., the cell that is associated with age, disease, or other condition) reduces, prevents, and/or eliminates growth and/or survival of the target cell thereby slowing aging in the human and/or slowing, reversing, and/or eliminating the disease or condition in the human.
- 1. Expression constructs for the targeted production of therapeutic proteins within a target cell, such as a cell that is associated with aging, disease, and/or another condition, the expression construct comprising:
- These and other aspects of the present disclosure can be better understood by reference to the following non-limiting definitions.
- As used herein, the term “transcriptional promoter” refers to a region of DNA that initiates transcription of a particular gene. Promoters are located near transcription start sites of genes, on the same strand and upstream on the DNA (towards the 3′ region of the anti-sense strand, also called template strand and non-coding strand). Promoters can be about 100-1000 base pairs long. For the transcription to take place, the enzyme that synthesizes RNA, known as RNA polymerase, must attach to the DNA near a gene. Promoters contain specific DNA sequences and response elements that provide a secure initial binding site for RNA polymerase and for proteins called transcription factors that recruit RNA polymerase. These transcription factors have specific activator or repressor sequences of corresponding nucleotides that attach to specific promoters and regulate gene expressions. The process is more complicated, and at least seven different factors are necessary for the binding of an RNA polymerase II to the promoter. Promoters represent critical elements that can work in concert with other regulatory regions (enhancers, silencers, boundary elements/insulators) to direct the level of transcription of a given gene.
- Eucaryotic transcriptional promoters comprise a number of essential elements, which collectively constitute a core promoter (i.e., the minimal portion of a promoter that is required to initiate transcription). Those elements include (1) a transcription start site (TSS), (2) an RNA polymerase binding site (in particular an RNA polymerase II binding site in a promoter for a gene encoding a messenger RNA), (3) a general transcription factor binding site (e.g., a TATA box having a consensus sequence TATAAA, which is a binding site for a TATA-binding protein (TBP)), (4) a B recognition element (BRE), (5) a proximal promoter of approximately 250 bp that contains regulatory elements, (6) transcription factor binding sites (e.g., an E-box having the sequence CACGTF, which is a binding site for basic helix-loop-helix (bHLH) transcription factors including BMAL11-Clock nad cMyc), and (7) a distal promoter containing additional regulatory elements. As used herein, the term “transcriptional promoter” is distinct from the term “enhancer,” which refers to a regulatory element that is distant from the transcriptional start site.
- Eucaryotic promoters are often categorized according to the following classes: (1) AT-based class, (2) CG-based class, (3) ATCG-compact class, (4) ATCG-balanced class, (5) ATCG-middle class, (6) ATCG-less class, (7) AT-less class, (8) CG-spike class, (9) CG-less class, and (10) ATspike class. See, Gagniuc and Ionescu-Tirgoviste, BMC Genomics 13:512 (2012). Eucaryotic promoters can be “unidirectional” or “bidirectional.” Unidirectional promoters regulate the transcription of a single gene and are characterized by the presence of a TATA box. Bidirectional promoters are short (<1 kbp), intergenic regions of DNA between the 5′ ends of genes in a bidirectional gene pair (i.e., two adjacent genes coded on opposite strands having 5′ ends oriented toward one another. Bidirectional genes are often functionally related and because they share a single promoter, can be co-regulated and co-expressed. Unlike unidirectional promoters, bidirectional promoters do not contain a TATA box but do contain GpC islands and exhibit symmetry around a midpoint of dominant Cs and As on one side and Gs and Ts on the other. CCAAT boxes are common in bidirectional promoters as are NRF-1, GABPA, YY1, and ACTACAnnTCCC motifs.
- Transcriptional promoters often contain two or more transcription factor binding sites. Thus, the efficient expression of a nucleic acid that is downstream of a promoter having multiple transcription factor binding sites typically requires the cooperative action of multiple transcription factors. Accordingly, the specificity of transcriptional regulation, and hence expression of an associated nucleic acid, can be increased by employing transcriptional promoters having two or more transcription factor binding sites.
- As used herein, the term “transcription factor” refers to sequence-specific DNA-binding factors that bind to specific sequences within a transcriptional promoter thereby regulating the transcription of a nucleic acid that is in operable proximity to and downstream of the promoter. Transcription factors include activators, which promote transcription, and repressors, which block transcription by preventing the recruitment or binding of an RNA polymerase. Transcription factors typically contain (1) one or more DNA-binding domains (DBDs), which facilitate sequence specific binding to a cognate transcription factor binding site (a/k/a response element) within a transcriptional promoter; (2) one or more signal-sensing domains (SSDs), which includes ligand binding domains that are responsive to external signals; and (3) one or more transactivation domains (TADs), which contain binding sites for other proteins, including transcription coregulators.
- As used herein, the term “transcription factor” refers exclusively to those factors having one or more DBDs and is not intended to include other regulatory proteins such as coactivators, chromatin remodelers, histone acetylases, deacetylases, kinases, and methylases, which no not contain DBDs.
- Of the approximately 2,600 human proteins that contain DNA-binding domains, the majority are believed to be transcription factors. Transcription factors are categorized according to structural features of the DNA-binding domain, which include basic helix-loop-helix domains, basic-leucine zipper (bZIP domains), C-terminal effector domains of bipartite response regulators, GCC box domains, helix-turn-helix domains, homeodomains, lambda repressor-like domains, serum response factor-like (srf-like) domains, paired box domains, winged helix domains, zinc finger domains, multi-Cys2His2 zinc finger domains, Zn2Cys6 domains, and Zn2Cys8 nuclear receptor zinc finger domains.
- Many transcription factors are either tumor suppressors or oncogenes, and, thus, mutations within and the aberrant expression of such transcription factors is associated with some cancers and other diseases and conditions. For example, transcription factors within (1) the NF-kappaB family, (2) the AP-1 family, (3) the STAT family, and (4) the steroid receptor family have been implicated in the neurodevelopmental disorder Rett sysndrome (the MECP2 transcription factor), diabetes (hepatocyte nuclear factors (HNFs) and insulin promoter factor-1 (IPF1/Pdx1)), developmental verbal dyspraxia (the FOXP2 transcription factor), autoimmune diseases (the FOXP3 transcription factor), Li-Raumeni syndrome (the p53 tumor suppressor), and multiple cancers (the STAT and HOX family of transcription factors). Clevenger, Am. J. Pathol. 165(5):1449-60 (2004); Carrithers et al., Am J Pathol 166(1):185-196 (2005); Herreros-Villanueve et al., World J Gastroenterology 20(9):2247-2254 (2014); and Campbell et al., Am J Pathol 158(1):25-32 (2001). Olsson et al., Oncogene 26(7):1028-37 (2007) describe the upregulation of the transcription factor E2F3, which is a key regulator of the cell cycle, in human bladder and prostate cancers. Cantile et al., Curr Med Chem 18(32):4872-84 (2011) describe the upregulation of HOX genes in urogenital cancers; Cillo et al., Int J Cancer 129(11):2577-87 (2011) describe the upregulation of HOX genes in hepatocellular carcinoma; Cantile et al., Int J. Cancer 125(7):1532-41 (2009) describe HOX D13 expression across 79 tumor tissue types; Cantile et al., J Cell Physiol 205(2):202-10 (2005) describe upregulation of HOX D expression in prostate cancers; Cantile et al., Oncogene 22(41):6462-8 (2003) describe the hyperexpression of locus C genes in the HOX network in human bladder transitional cell carcinomas; Morgan et al., BioMed Central 14:15 (2014), describe HOX transcription factors as targets for prostate cancer; and Alharbi et al., Leukemia 27(5):1000-8 (2013) describe the role of HOXC genes in hematopoiesis and acute leukemia.
- The AP-2 family includes five transcription factors that can act as both repressors and activators. AP-2γ regulates cancer cell survival by blocking p53 activation of the p21CIP gene. High levels of AP-2γ are associated with poor prognosis in breast cancer. Gee et al., J Pathol 217(1):32-41 (2009) and Williams et al., EMBO J 28(22):3591-601 (2009). A further transcription factor that promotes cell survival are the forkhead transcription factors (FOX), which can promote the expression of proteins involved in drug resistance and also block programmed cell death and may therefore protect cancer cells from chemotherapeutic drugs. Gomes et al., Chin J. Cancer 32(7):365-70 (2013) describe the role of FOXO3a and FOXM1 in carcinogenesis and drug resistance.
- Transcription factors can bind to promoters as well as to enhancers. As used in the present disclosure, the term transcription factor refers to the subset of transcription factors that bind to transcription factor binding sites within a promoter and excludes those factors that bind to enhancer sequences. Transcription factors can also upregulate or downregulate the expression of an associated nucleic acid. The present disclosure employs transcriptional promoters having transcription factor binding sites for transcription factors that promote rather than inhibit expression and therefore cause the upregulation in the expression of an associated nucleic acid. Such transcription factors that upregulate nucleic acid expression include, for example and not limitation, transcription factors that (1) stabilize RNA polymerase binding to its cognate binding site, (2) recruit coactivator or corepressor proteins to a transcription factor DNA complex, and/or (3) catalyze the acetylation of histone proteins (or recruit one or more other proteins that catalyze the acetylation of histone proteins). Such histone acetyltransferase (HAT) activity reduces the affinity of histone binding to DNA thereby making the DNA more accessible for transcription.
- As used herein, the term “necrosis” refers to a process leading to cell death that occurs when a cell is damaged by an external force, such as poison, a bodily injury, an infection, or loss of blood supply. Cell death from necrosis causes inflammation that can result in further distress or injury within the body. As used herein, the term “apoptosis” refers to a process leading to cell death in which a programmed sequence of events leads to the elimination of cells without releasing harmful substances. Apoptosis plays a crucial role in developing and maintaining the health of the body by eliminating old cells, unnecessary cells, and unhealthy cells. Apoptosis is mediated by proteins produced by suicide genes, including the caspase proteins, which break down cellular components needed for survival and induce the production of DNAses, which destroy nuclear DNA.
- As used herein, the term “suicide gene” refers to a class of genes that produce proteins that induce p53-mediated apoptotic cell killing. Suicide genes that can be employed in the expression constructs and systems of the present disclosure include the caspases, Casp3, Casp8, Casp9, BAX, DFF40, Herpes Simplex Virus Thymidine Kinase (HSV-TK), and cytosine deaminase and inducible variants of Casp3, Casp8, Casp9, BAX, DFF40, Herpes HSV-TK, and cytosine deaminase.
- The presently disclosed expression constructs and systems are used in methods for the treatment of aging, cancer infectious disease, bacterial infections, and/or other conditions as well as in methods for the killing of cells that are associated with aging, cancer, infectious disease, bacterial infections, and/or other conditions and employ a therapeutic protein that reduces the growth and/or proliferation of a target cell. In certain embodiments, the therapeutic protein can be expressed by a suicide gene, which encodes Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, or cytosine deaminase as well as a inducible variants of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, or cytosine deaminase. The expression cassettes and systems can also be used in conjunction with conventional chemotherapeutics to enhance the effectiveness of therapeutic regimen for the treatment of aging, cancers, infectious diseases, bacterial infections, and other diseases and conditions.
- Within certain aspects of the present disclosure, expression constructs are pVAX1 (
FIG. 14 ) plasmid expression constructs comprising a polynucleotide encoding a pro-apoptotic protein under the regulatory control of a target cell-specific promoter, such as a senescent cell-specific promoter or a cancer cell-specific promoter. - Exemplary pVAX1™ plasmid expression constructs include pVAX-16s-iCasp9-MX (
FIG. 16 ; SEQ ID NO: 6) for the target cell-specific expression of an inducible Caspase 9 protein (iCasp9) under the regulatory control of a p16s promoter, pVAX1-53-iCasp9-MX (FIG. 26 ; SEQ ID NO: 7) for the target cell-specific expression of an inducible Caspase 9 protein (iCasp9) under the regulatory control of a p53 promoter, pVax1-p53-saCasp9-5 (FIG. 27 ; SEQ ID NO: 8) for the target cell-specific expression of a self-activating Caspase 9 protein (saCASP9) under the regulatory control of a p53 promoter, pVax1-p53-iCasp9-OVA (FIG. 28 ; SEQ ID NO: 11) for the target cell-specific expression of an inducible Caspase 9 protein (iCasp9) and an ovalbumin protein under the regulatory control of a p53 promoter, pVax1-p53-iCasp9-G-O (FIG. 29 ; SEQ ID NO: 9) for the target cell-specific expression of an inducible Caspase 9 protein (iCasp9) and an ovalbumin protein under the regulatory control of a p53 promoter, pVax1-p53-iCasp9-huCD40L (FIG. 30 ; SEQ ID NO: 10) for the target cell-specific expression of an inducible Caspase 9 protein (iCasp9) and a CD40 ligand protein (CD40L) under the regulatory control of a p53 promoter. - Exemplary p10 plasmid expression constructs include p10-p16e-iCasp9 (
FIG. 17 ; SEQ ID NO: 12) for the target cell-specific expression of aninducible Caspase 9 protein (iCasp9) under the regulatory control of a p16e promoter, p10-p16e-saCasp9 (FIG. 18 ; SEQ ID NO: 13) for the target cell-specific expression of a self-activatingCaspase 9 protein (saCasp9) under the regulatory control of a p16e promoter, p10-p53-iCasp9 (FIG. 33 ; SEQ ID NO: 14) for the target cell-specific expression of aninducible Caspase 9 protein (iCasp9) under the regulatory control of a p53 promoter, and p10-p53-saCasp9 (FIG. 34 ; SEQ ID NO: 15) for the target cell-specific expression of a self-activatingCaspase 9 protein (saCasp9) under the regulatory control of a p53 promoter. - Within other aspects of the present disclosure, expression constructs are NTC-based plasmid expression constructs, including NTC8385, NTC8685, and NTC93 85 plasmid expression constructs, comprising a polynucleotide encoding a pro-apoptotic protein under the regulatory control of a target cell-specific promoter, such as a senescent cell-specific promoter or a cancer cell-specific promoter.
- Within further aspects of the present disclosure, expression constructs are gWiz-based plasmid expression constructs comprising a polynucleotide encoding a pro-apoptotic protein under the regulatory control of a target cell-specific promoter, such as a senescent cell-specific promoter or a cancer cell-specific promoter.
- The practice of the present disclosure will employ, unless indicated specifically to the contrary, conventional methodology and techniques that are in common use in the fields of virology, oncology, immunology, microbiology, molecular biology, and recombinant DNA, which methodology and techniques are well known by and readily available to those having skill of the art. Such methodology and techniques are explained fully in laboratory manuals as well as the scientific and patent literature. See, e.g., Sambrook, et al., “Molecular Cloning: A Laboratory Manual” (2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989); Maniatis et al., “Molecular Cloning: A Laboratory Manual” (1982); “DNA Cloning: A Practical Approach, vol. I & II” (Glover, ed.); “Oligonucleotide Synthesis” (Gait, ed., 1984); Ausubel et al. (eds.), “Current Protocols in Molecular Biology” (John Wiley & Sons, 1994); “Nucleic Acid Hybridization” (Hames & Higgins, eds., 1985); “Transcription and Translation” (Hames & Higgins, eds., 1984); “Animal Cell Culture” (Freshney, ed., 1986); and Perbal, “A Practical Guide to Molecular Cloning” (1984). All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.
- Within certain embodiments, the present disclosure provides expression constructs and systems comprising a delivery vector and an expression construct for achieving a target cell specific reduction, prevention, and/or elimination in the growth and/or survival of the target cell.
- Systems
- Systems of the present disclosure comprise (1) a vector that is capable of non-specific delivery of a nucleic acid to a cell, whether that cell is a target cell or a non-target cell, and (b) an expression construct comprising a target cell specific transcriptional promoter and a nucleic acid that encodes a therapeutic protein, which expression constructs achieve the target cell specific production of a therapeutic protein. The systems disclosed herein will find utility in a broad range of therapeutic applications in which it is desirable to effectuate the growth or survival characteristics of a target cell, such as a cell that is associated with aging, disease, or another condition, but, at the same time, to not effectuate the growth or survival characteristics of a normal, a non-target cell that is not associated with aging, disease, or another condition.
- The present disclosure provides systems for effectuating the growth and/or survival of a broad range of cells that are associated with aging, disease, or other conditions that similarly comprises (1) a non-specific nucleic acid delivery vector and (2) an expression construct comprising (a) a target cell specific transcriptional promoter and (b) a nucleic acid that encodes a therapeutic protein. Each of these aspects of the presently disclosed systems are described in further detail herein.
- Within certain embodiments, provided herein are systems for effectuating the growth and/or survival of target cells, which systems comprise: (1) a non-specific nucleic acid delivery vector and (2) an expression construct comprising: (a) a transcriptional promoter, which transcriptional promoter is activated in target cells but not in normal, non-target cells, and (b) a nucleic acid that is under the control of the transcriptional promoter, which nucleic acid encodes a therapeutic protein that can reduce, prevent, and/or eliminate the growth and/or survival of a target cell, for example by inducing a mechanism of programmed cell death in a cell in which it is produced. Thus, these systems achieve the selective killing of target cells by exploiting transcriptional machinery that is produced in, and intrinsic to, target cells; without the use of toxins and in the absence of target cell specific delivery of the expression construct.
- In certain aspects of these embodiments wherein the human target cell is a senescent cell, the transcriptional promoter can include at least a transcription factor binding site (i.e., a response element) of p16INK4a/CDKN2A as described in Wang et al., J. Biol. Chem. 276(52):48655-61 (2001), which transcriptional promoter is responsive to activation by a factor such as SP1, ETS1, and ETS2. The transcriptional promoter can also include at least a transcription factor binding site (i.e., a response element) of p21/CDKN1A, which transcriptional promoter is responsive to activation by a factor such as p53/TP53. Transcriptional activation induces the expression of a nucleic acid that encodes a therapeutic protein such as Casp3, Casp8, Casp9, DFF40, BAX, HSV-TK, or carbonic anhydrase or an inducible variant of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, or cytosine deaminase.
- In other aspects of these embodiments wherein the human target cell is a cancer cell, such as a brain cancer cell, a prostate cancer cell, a lung cancer cell, a colorectal cancer cell, a breast cancer cell, a liver cancer cell, a hematologic cancer cell, and a bone cancer cell, the transcriptional promoter can include at least a transcription factor binding site (i.e., a response element) of the p21cip1/waf1 promoter, the p27kip1 promoter, the p57kip2 promoter, the TdT promoter, the Rag-1 promoter, the B29 promoter, the Blk promoter, the CD19 promoter, the BLNK promoter, and/or the λ5 promoter, which transcriptional promoter is responsive to activation by one or more transcription factors such as an EBF3, O/E-1, Pax-5, E2A, p53, VP16, MLL, HSF1, NF-IL6, NFAT1, AP-1, AP-2, HOX, E2F3, and/or NF-κB transcription factor, and which transcriptional activation induces the expression of a nucleic acid that encodes a therapeutic protein such as, for example, Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, or cytosine deaminase or an inducible variant of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, or cytosine deaminase which therapeutic protein reduces, prevents, and/or eliminates the growth and/or survival of the cancer cell, such as, for example, by inducing cell death in the senescent cell via a cellular process including apoptosis. Other therapeutic proteins may be employed that reduce, prevent, and/or eliminate the growth and/or survival of a cancer cell by, for example, inducing cell death via a cellular process including necrosis/necroptosis, autophagic cell death, endoplasmic reticulum-stress associated cytotoxicity, mitotic catastrophe, paraptosis, pyroptosis, pyronecrosis, and entosifs. In still further aspects of these embodiments wherein the target cell is a human cell that is infected with an infectious agent, such as a virus, including, for example, a herpes virus, a polio virus, a hepatitis virus, a retrovirus, an influenza virus, and a rhino virus, or the target cell is a bacterial cell, the transcriptional promoter can be activated by a factor that is expressed by the infectious agent or bacterial cell, which transcriptional activation induces the expression of a nucleic acid that encodes a therapeutic protein such as, for example, Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, or cytosine deaminase or an inducible variant of Casp3, Casp8, Casp9, BAX, DFF40, HSV-TK, or cytosine deaminase which therapeutic protein reduces, prevents, and/or eliminates the growth and/or survival of the senescent cell, such as, for example, by inducing cell death in the senescent cell via a cellular process including apoptosis. Other therapeutic proteins may be employed that reduce, prevent, and/or eliminate the growth and/or survival of a senescent cell by, for example, inducing cell death via a cellular process including necrosis/necroptosis, autophagic cell death, endoplasmic reticulum-stress associated cytotoxicity, mitotic catastrophe, paraptosis, pyroptosis, pyronecrosis, and entosifs.
- Each of these aspects of the presently disclosed systems are described in further detail herein.
- 1. Non-specific Nucleic Acid Delivery Vectors
- The systems of the present disclosure achieve target cell specificity by exploiting transcriptional machinery that is unique to a target cell. Thus, the systems described herein employ nucleic acid delivery vectors that can be readily adapted for the non-specific delivery of expression constructs to a cell, including but not limited to a target cell.
- A wide variety of both non-viral and viral nucleic acid delivery vectors are well known and readily available in the art and may be adapted for use for the non-specific cellular delivery of the expression constructs disclosed herein. See, for example, Elsabahy et al., Current Drug Delivery 8(3):235-244 (2011) for a general description of viral and non-viral nucleic acid delivery methodologies. The successful delivery of a nucleic acid into mammalian cells relies on the use of efficient delivery vectors. Viral vectors exhibit desirable levels of delivery efficiency, but often also exhibit undesirable immunogenicity, inflammatory reactions, and problems associated with scale-up, all of which can limit their clinical use. The ideal vectors for the delivery of a nucleic acid are safe, yet ensure nucleic acid stability and the efficient transfer of the nucleic acid to the appropriate cellular compartments.
- Non-limiting examples of non-viral and viral nuclic acid delivery vectors are described herein and disclosed in scientific and patent literature. More specifically, the presently disclosed systems may employ one or more liposomal vectors, viral vectors, nanoparticles, polyplexesm dendrimers, each of which has been developed for the non-specific delivery of nucleic acids, can be adapted for the non-specific delivery of the expression constructs described herein, and can be modified to incorporate one or more agents for promoting the targeted delivery of a system to a target cell of interest thereby enhancing the target cell specificity of the presently disclosed systems.
- 2. Liposomal Vectors and Nanoparticles
- An expression cassette may be incorporated within and/or associated with a lipid membrane, a lipid bi-layer, and/or a lipid complex such as, for example, a liposome, a vesicle, a micelle and/or a microsphere. Suitable methodology for preparing lipid-based delivery systems that may be employed with the expression constructs of the present disclosure are described in Metselaar et al., Mini Rev. Med. Chem. 2(4):319-29 (2002); O'Hagen et al., Expert Rev. Vaccines 2(2):269-83 (2003); O'Hagan, Curr. Durg Targets Infect. Disord. 1(3):273-86 (2001); Zho et al., Biosci Rep. 22(2):355-69 (2002); Chikh et al., Biosci Rep. 22(2):339-53 (2002); Bungener et al., Biosci. Rep. 22(2):323-38 (2002); Park, Biosci Rep. 22(2):267-81 (2002); Ulrich, Biosci. Rep. 22(2):129-50; Lofthouse, Adv. Drug Deliv. Rev. 54(6):863-70 (2002); Zhou et al., J. Immunother. 25(4):289-303 (2002); Singh et al., Pharm Res. 19(6):715-28 (2002); Wong et al., Curr. Med. Chem. 8(9):1123-36 (2001); and Zhou et al., Immunomethods 4(3):229-35 (1994). Midoux et al., British J. Pharmacol 157:166-178 (2009) describe chemical vectors for the delivery of nucleic acids including polymers, peptides and lipids. Sioud and Sorensen, Biochem Biophys Res Commun 312(4):1220-5 (2003) describe cationic liposomes for the delivery of nucleic acids.
- Due to their positive charge, cationic lipids have been employed for condensing negatively charged DNA molecules and to facilitate the encapsulation of DNA into liposomes. Cationic lipids also provide a high degree of stability to liposomes. Cationic liposomes interact with a cell membrane and are taken up by a cell through the process of endocytosis. Endosomes formed as the results of endocytosis, are broken down in the cytoplasm thereby releasing the cargo nucleic acid. Because of the inherent stability of cationic liposomes, however, transfection efficiencies can be low as a result of lysosomal degradation of the cargo nucleic acid.
- Helper lipids (such as the electroneutral lipid DOPE and L-a-dioleoyl phosphatidyl choline (DOPC)) can be employed in combination with cationic lipids to form liposomes having decreased stability and, therefore, that exhibit improved transfection efficiencies. These electroneutral lipids are referred to as Fusogenix lipids. See, Gruner et al., Biochemistry 27(8):2853-66 (1988) and Farhood et al., Biochim Biophys Acta 1235(2):289-95 (1995). DOPE forms an HII phase structure that induces supramolecular arrangements leading to the fusion of a lipid bilayer at a temperature greater than 5° C. to 10° C. The incorporation of DOPE into liposomes also helps the formation of HII phases that destabilize endosomal membranes.
- Cholesterol can be employed in combination with DOPE liposomes for applications in which a liposomal vector is administered intravenously. Sakurai et al., Eur J Pharm Biopharm 52(2):165-72 (2001). The presence of one unsaturation in the acyl chain of DOPE is a crucial factor for membrane fusion activity. Talbot et al., Biochemistry 36(19):5827-36 (1997).
- Fluorinated helper lipids having saturated chains, such as DF4C11PE (rac-2,3-Di[11-(F-butyl)undecanoyl) glycero-1-phosphoethanolamine) also enhance the transfection efficiency of lipopolyamine liposomes. Boussif et al., J Gene Med 3(2):109-14 (2001); Gaucheron et al., Bioconj Chem 12(6):949-63 (2001); and Gaucheron et al., J Gene Med 3(4):338-44 (2001).
- The
helper lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) enhances efficient of in vitro cell transfection as compared to DOPE lipoplexes. Prata et al., Chem Commun 13:1566-8 (2008). Replacement of the double bond of the oleic chains of DOPE with a triple bond as in Distear-4-ynoyl L-a-phosphatidylethanolamine [DS(9-yne)PE] has also been shown to produce more stable lipoplexes. Fletcher et al., Org Biomol Chem 4(2):196-9 (2006). - Amphiphilic anionic peptides that are derived from the N-terminal segment of the HA-2 subunit of influenza virus haemagglutinin, such as the IFN7 (GLFEAIEGFIE NGWEGMIDGW YG) and ESCA (GLFEAIAEFI EGGWEGLIEG CA) peptides, can be used to increase the transfection efficiency of liposomes by several orders of magnitude. Wagner et al., Proc Natl Acad Sci U.S.A. 89(17):7934-8 (1992); Midoux et al., Nucl Acids Res. 21(4):871-8 (1993); Kichler et al., Bioconjug Chem 8(2):213-21 (1997); Wagner, Adv Drug Deliv Rev 38(3):279-289 (1999); Zhang et al., J Gene Med 3(6):560-8 (2001). Some artificial peptides such as GALA have been also used as fusogenic peptides. See, for example, Li et al., Adv Drug Deliv Rev 56(7):967-85 (2004) and Sasaki et al., Anal Bioanal Chem 391(8):2717-27 (2008). The fusogenic peptide of the glycoprotein H from herpes simplex virus improves the endosomal release of DNA/Lipofectamine lipoplexes and transgene expression in human cell (Tu and Kim, J Gene Med 10(6):646-54 (2008).
- PCT Patent Publication Nos. WO 1999024582A1 and WO 2002/044206 describe a class of proteins derived from the family Reoviridae that promote membrane fusion. These proteins are exemplified by the p14 protein from reptilian reovirus and the p16 protein from aquareovirus. PCT Patent Publication No. WO 2012/040825 describes recombinant polypeptides for facilitating membrane fusion, which polypepides have at least 80% sequence identity with the ectodomain of p14 fusion-associated small transmembrane (FAST) protein and having a functional myristoylation motif, a transmembrane domain from a FAST protein and a sequence with at least 80% sequence identity with the endodomain of p15 FAST protein. The '825 PCT further describes the addition of a targeting ligand to the recombinant polypeptide for selective fusion. The recombinant polypeptides presented in the '825 PCT can be incorporated within the membrane of a liposome to facilitate the delivery of nucleic acids. Fusogenix liposomes for delivering therapeutic compounds, including nucleic acids, to the cytoplasm of a mammalian cell, which reduce liposome disruption and consequent systemic dispersion of the cargo nucleic acid and/or uptake into endosomes and resulting nucleic acid destruction are available commercially from Innovascreen Inc. (Halifax, Nova Scotia, CA).
- A wide variety of inorganic nanoparticles, including gold, silica, iron oxide, titanium, hydrogels, and calcium phosphates have been described for the delivery of nucleic acids and can be adapted for the delivery of the expression constructs described herein. See, for example Wagner and Bhaduri, Tissue Engineering 18(1):1-14 (2012) (describing inorganic nanoparticles for delivery of nucleic acid sequences); Ding et al., Mol Ther e-pub (2014) (describing gold nanoparticles for nucleic acid delivery); Zhang et al., Langmuir 30(3):839-45 (2014) (describing titanium dioxide nanoparticles for delivery of DNA oligonucleotides); Xie et al., Curr Pharm Biotechnol 14(10):918-25 (2014) (describing biodegradable calcium phosphate nanoparticles fro gene delivery); Sizovs et al., J Am Chem Soc 136(1):234-40 (2014) (describing sub-30 monodisperse oligonucleotide nanoparticles).
- Among the advantages of inorganic vectors are their storage stability, low immunogenicity, and resistance to microbial attack. Nanoparticles of less than 100 nm can efficiently trap nucleic acids and allows its escape from endosomes without degradation. Inorganic nanoparticles exhibit improved in vitro transfection for attached cell lines due to their high density and preferential location on the base of the culture dish. Quantum dots have been described that permit the coupling of nucleic acid delivery with stable fluorescence markers.
- Hydrogel nanoparticles of defined dimensions and compositions, can be prepared via a particle molding process referred to as PRINT (Particle Replication in Non-wetting Templates), and can be used as delivery vectors for the expression constructs disclosed herein. Nucleic acids can be encapsulated in particles through electrostatic association and physical entrapment. To prevent the disassociation of cargo nucleic acids from nanoparticles following systemic administration, a polymerizable conjugate with a degradable, disulfide linkage can be employed.
- The PRINT technique permits the generation of engineered nanoparticles having precisely controlled properties including size, shape, modulus, chemical composition and surface functionality for enhancing the targeting of the expression cassette to a target cell. See, e.g., Wang et al., J Am Chem Soc 132:11306-11313 (2010); Enlow et al., Nano Lett 11:808-813 (2011); Gratton et al., Proc Natl Acad Sci USA 105:11613-11618 (2008); Kelly, J Am Chem Soc 130:5438-5439 (2008); Merkel et al. Proc Natl Acad Sci USA 108:586-591 (2011). PRINT is also amenable to continuous roll-to-roll fabrication techniques that permit the scale-up of particle fabrication under good manufacturing practice (GMP) conditions.
- Nanoparticles can be encapsulated with a lipid coating to improve oral bioavailability, minimize enzymatic degradation and cross blood brain barrier. The nanoparticle surface can also be PEGylated to improve water solubility, circulation in vivo, and stealth properties.
- 3. Viral Vectors
- A wide variety of viral vectors are well known by and readily available to those of skill in the art, including, for example, herpes simplex viral vectors lentiviral vectors, adenoviral vectors, and adeno-associated viral vectors, which viral vectors can be adapted for use in the systems disclosed herein for the delivery of nucleic acids, in particular nucleic acids comprising an expression cassette for the target cell specific expression of a therapeutic protein.
- The tropisms of natural or engineered viruses towards specific receptors are the foundations for constructing viral vectors for delivery of nucleic acids. The attachment of these vectors to a target cell is contingent upon the recognition of specific receptors on a cell surface by a ligand on the viral vector. Viruses presenting very specific ligands on their surfaces anchor onto the specific receptors on a cell. Viruses can be engineered to display ligands for receptors presented on the surface of a target cell of interest. The interactions between cell receptors and viral ligands are modulated in vivo by toll like receptors.
- The entry of a viral vector into a cell, whether via receptor mediated endocytosis or membrane fusion, requires a specific set of domains that permit the escape of the viral vector from endosomal and/or lysosomal pathways. Other domains facilitate entry into nuclei. Replication, assembly, and latency determine the dynamics of interactions between the vector and the cell and are important considerations in the choice of a viral vector, as well as in engineering therapeutic cargo carrying cells, in designing cancer suicide gene therapies.
- Herpes simplex virus (HSV) belongs to a family of herpesviridae, which are enveloped DNA viruses. HSV binds to cell receptors through orthologs of their three main ligand glycoproteins: gB, gH, and gL, and sometimes employ accessory proteins. These ligands play decisive roles in the primary routes of virus entry into oral, ocular, and genital forms of the disease. HSV possesses high tropism towards cell receptors of the nervous system, which can be utilized for engineering recombinant viruses for the delivery of expression cassettes to target cells, including senescent cells, cancer cells, and cells infected with an infectious agent. Therapeutic bystander effects are enhanced by inclusion of connexin coding sequences into the constructs. Herpes Simplex Virus vectors for the delivery of nucleic acids to target cells have been reviewed in Anesti and Coffin, Expert Opin Biol Ther 10(1):89-103 (2010); Marconi et al., Adv Exp Med Biol 655:118-44 (2009); and Kasai and Saeki, Curr Gene Ther 6(3):303-14 (2006).
- Lentivirus belongs to a family of retroviridae, which are enveloped, single stranded RNA retroviruses and include the Human immunodeficiency virus (HIV). HIV envelope protein binds CD4, which is present on the cells of the human immune system such as CD4+ T cells, macrophages, and dendritic cells. Upon entry into a cell, the viral RNA genome is reverse transcribed into double-stranded DNA, which is imported into the cell nucleus and integrated into the cellular DNA. HIV vectors have been used to deliver the therapeutic genes to leukemia cells. Recombinant lentiviruses have been described for mucin-mediated delivery of nucleic acids into pancreatic cancer cells, to epithelial ovarian carcinoma cells, and to glioma cells, without substantial non-specific delivery to normal cells. Lentiviral vectors for the delivery of nucleic acids to target cells have been reviewed in Primo et al., Exp Dermatol 21(3):162-70 (2012); Staunstrup and Mikkelsen, Curr Gene Ther 11(5):350-62 (2011); and Dreyer, Mol Biotechnol 47(2):169-87 (2011).
- Adenovirus is a non-enveloped virus consisting of a double-stranded, linear DNA genome and a capsid. Naturally, adenovirus resides in adenoids and may be a cause of upper respiratory tract infections. Adenovirus utilizes a cell's coxsackie virus and adenovirus receptor (CAR) for the adenoviral fiber protein for entry into nasal, tracheal, and pulmonary epithelia. CARs are expressed at low levels on senescent and cancer cells. Recombinant adenovirus can be generated that are capable of nucleic acid deliver to target cells. Replication-competent adenovirus-mediated suicide gene therapy (ReCAP) is in the clinical trials for newly-diagnosed prostate cancer. Adenoviral vectors for the delivery of nucleic acids to target cells have been reviewed in Huang and Kamihira, Biotechnol Adv. 31(2):208-23 (2013); Alemany, Adv Cancer Res 115:93-114 (2012); Kaufmann and Nettelbeck, Trends Mol Med 18(7):365-76 (2012); and Mowa et al., Expert Opin Drug Deliv 7(12):1373-85 (2010).
- Adeno-associated virus (AAV) is a small virus that infects humans and some other primate species. AAV is not currently known to cause disease and consequently the virus causes a very mild immune response. Vectors using AAV can infect both dividing and quiescent cells and persist in an extrachromosomal state without integrating into the genome of the host cell. These features make AAV a very attractive candidate for creating viral vectors for use in the systems of the present disclosure. Adeno-associated virus (AAV) vectors for the delivery of nucleic acids to target cells have been reviewed in Li et al., J. Control Release 172(2):589-600 (2013); Hajitou, Adv Genet 69:65-82 (2010); McCarty, Mol Ther 16(10):1648-56 (2008); and Grimm et al., Methods Enzymol 392:381-405 (2005).
- 4. Polyplexes
- Polyplexes are complexes of polymers with DNA. Polyplexes consist of cationic polymers and their fabrication is based on self-assembly by ionic interactions. One important difference between the methods of action of polyplexes and liposomes and lipoplexes is that polyplexes cannot directly release their nucleic acid cargo into the cytoplasm of a target cell. As a result co-transfection with endosome-lytic agents such as inactivated adenovirus is required to facilitate escape from the endocytic vesicle made during particle uptake. better understanding of the mechanisms by which DNA can escape from endolysosomal pathway (i.e., the proton sponge effect) has triggered new polymer synthesis strategies such as the incorporation of protonable residues in polymer backbone and has revitalized research on polycation-based systems. See, e.g., Parhamifar et al., Methods e-pub (2014); Rychgak and Kilbanov, Adv Drug Deliv Rev e-pub (2014); Jafari et al., Curr Med Chem 19(2):197-208 (2012).
- Due to their low toxicity, high loading capacity, and ease of fabrication, polycationic nanocarriers exhibit substantial advantages over viral vectors, which show high immunogenicity and potential carcinogenicity and lipid-based vectors which cause dose dependent toxicity. Polyethyleneimine, chitosan, poly(beta-amino esters), and polyphosphoramidate have been described for the delivery of nucleic acids. See, e.g., Buschmann et al., Adv Drug Deliv Rev 65(9):1234-70 (2013). The size, shape, and surface chemistry of these polymeric nano-carriers can be easily manipulated.
- 5. Dendrimers
- Dendrimers are highly branched macromolecules having a spherical shape. The surface of dendrimer particles may be functionalized such as, for example, with positive surface charges (cationic dendrimers), which may be employed for the delivery of nucleic acids. Dendrimer-nucleic acid complexes are taken into a cell via endocytosis. Dendrimers offer robust covalent construction and extreme control over molecule structure and size. Dendrimers are available commercially from Dendritic Nanotechnologies Inc. (Priostar; Mt Pleasant, MI), who produce dendrimers using kinetically driven chemistry, which can be adapted fro the delivery of nucleic acids and can transfect cells at a high efficiency with low toxicity.
- It will be understood that, while targeted delivery of an expression construct is not required by the systems of the present disclosure and that the targeted reduction, prevention, and/or elimination in the growth and/or survival of a target cell may be achieved by exploiting the intracellular transcriptional machinery of a target cell that is unique to the target cell, it may be desireable, depending upon the precise application contemplated, the incorporate into an otherwise non-specific delivery vector one or more components that facilitate the targeted delivery to a subset of cells at least some of which include a target cell that is susceptible to the growth and/or survival inhibition by the expression constructs of the present disclosure.
- The targeted delivery of nucleic acids by liposome, nanoparticle, viral and other vectors described herein has been described in the scientific and patent literature and is well known by and readily available to those of skill in the art. Such targeted delivery technologies may, therefore, be suitably adapted for targeting the delivery of expression constructs of the present disclosure to enhance the specificity of the growth and/or survival reduction, prevention, and/or elimination that is achieved within a target cell. The following examples of targeted delivery technologies are provided herein to exemplify, not to limit, the targeted delivery vectors that may be adapted to achieve the systems of the present disclosure.
- Expression constructs of the present disclosure comprise: (a) a transcriptional promoter that is responsive to a factor or factors that are produced in a target cell, one or more of which factors is not produced, is produced at a substantially reduced level, is inactive, and/or exhibits a substantially reduced activity in a non-target cell; and (b) a nucleic acid that is operably linked to and under the regulatory control of the transcriptional promoter, wherein the nucleic acid encodes a protein that is capable of reducing, preventing, and/or eliminating the growth and/or survival of a cell in which it is produced, including a target cell.
- 1. Target Cell Specific Transcriptional Promoters
- The present disclosure provides systems comprising a vector for delivering a nucleic acid to a cell wherein the nucleic acid is under the transcriptional control of a promoter that is derepressed or activated in a target cell, but is reprepressed or inactivated in a normal cell, non-target cell.
- It will be understood the specificity of the presently disclosed systems toward a target cell is achieved, therefore, through the target cell-specific transcriptional activation of a nucleic acid that encodes a protein that reduces, prevents, and/or eliminates the growth and/or survival of a cell without regard to whether that cell is a target cell. Thus, the target cell specificity of the presently-disclosed systems derives from the transcriptional promoter that regulates the expression of the nucleic acid within the expression cassette in conjunction with transcription-regulatory machinery that is provided by, and unique to, the target cell.
- Thus, transcriptional promoters that may be suitably employed in the expression constructs, systems, and methods of the present disclosure include those transcriptional promoters that are capable of promoting the expression of a nucleic acid in a target cell (i.e., a cell that is associated with aging, disease, or other condition), but incapable of, or exhibit a substantially reduced capability of, promoting expression of that nucleic acid in a non-target cell.
- Exemplified herein are expression constructs and systems comprising expression constructs wherein the transcriptional promoter is activated in a target cell that is associated with aging, disease, or another condition.
- In some embodiments, the present disclosure provides expression constructs and systems that may be employed in methods for the treatment of aging reducing, preventing, and/or eliminating the growth and/or survival of a cell, such as a senescent cell, which is associated with aging. In certain aspects of those embodiments, expression constructs employ a transcriptional promter that is responsive to one or more factors that are produced within a target cell, such as a senescent cell, but are not produced in a non-target cell wherein those one or more factors derepress and/or activate the transcriptional promoter and, as a consequence, promote the expression of a nucleic acid encoding a therapeutic protein that reduces, prevents, and/or eliminates the growth and/or survival of a cell that is associated with aging, including a senescent cell.
- The transcriptional promoter itself is the primary mechanism by which senescent cells are preferentially targeted by the systems described in this disclosure. A prototypic example of a target specific transcriptional promoter for use with the systems in this disclosure is a promoter that is only active or mostly active in senescent cells. A number of promoters known by artisans to be active in senescent cells may be used with this system.
- In certain aspects of these embodiments wherein the human target cell is a senescent cell, the transcriptional promoter can include the promoter region of p16INK4a/CDKN2A as described in Wang et al., J. Biol. Chem. 276(52):48655-61 (2001), which transcriptional promoter is responsive to activation by a factor such as SP1, ETS1, and ETS2. The transcriptional promoter can also include the promoter region of p21/CDKN1A, which transcriptional promoter is responsive to activation by a factor such as p53/TP53.
- In other aspects of these embodiments wherein the human target cell is a cancer cell, such as a brain cancer cell, a prostate cancer cell, a lung cancer cell, a colorectal cancer cell, a breast cancer cell, a liver cancer cell, a hematologic cancer cell, and a bone cancer cell, the transcriptional promoter can include the p21cip1/waf1 promoter, the p27kip1 promoter, the p57kip2 promoter, the TdT promoter, the Rag-1 promoter, the B29 promoter, the Blk promoter, the CD19 promoter, the BLNK promoter, and/or the λ5 promoter, which transcriptional promoter is responsive to activation by one or more transcription factors such as an EBF3, O/E-1, Pax-5, E2A, p53, VP16, MLL, HSF1, NF-IL6, NFAT1, AP-1, AP-2, HOX, E2F3, and/or NF-κB transcription factor, and which transcriptional activation induces the expression of a nucleic acid that encodes a therapeutic protein.
- In still further aspects of these embodiments wherein the target cell is a human cell that is infected with an infectious agent, such as a virus, including, for example, a herpes virus, a polio virus, a hepatitis virus, a retrovirus virus, an influenza virus, and a rhino virus, or the target cell is a bacterial cell, the transcriptional promoter can be activated by a factor that is expressed by the infectious agent or bacterial cell, which transcriptional activation induces the expression of a nucleic acid that encodes a therapeutic protein.
- 2. The p16 Transcriptional Promoter
- In one embodiment, the suicide gene could be placed under control of a p16 promoter, such as a p16Ink4a gene promoter, which is transcriptionally active in senescent, but not in non-senescent cells.
- In humans, p16 is encoded by the CDKN2A gene, which gene is frequently mutated or deleted in a wide variety of tumors. p16 is an inhibitor of cyclin dependent kinases such as CDK4 and CDK6, which phosphorylate retinoblastoma protein (pRB) thereby causing the progression from G1 phase to S phase. p16 plays an important role in cell cycle regulation by decelerating cell progression from G1 phase to S phase, and therefore acts as a tumor suppressor that is implicated in the prevention of cancers, including, for example, melanomas, oropharyngeal squamous cell carcinomas, and esophageal cancers. The designation p16Ink4A refers to the molecular weight (15,845) of the protein encoded by one of the splice variants of the CDKN2A gene and to its role in inhibiting CDK4.
- In humans, p16 is encoded by CDKN2A gene, located on chromosome 9 (9p21.3). This gene generates several transcript variants that differ in their first exons. At least three alternatively spliced variants encoding distinct proteins have been reported, two of which encode structurally related isoforms known to function as inhibitors of CDK4. The remaining transcript includes an
alternate exon 1 located 20 kb upstream of the remainder of the gene; this transcript contains an alternate open reading frame (ARF) that specifies a protein that is structurally unrelated to the products of the other variants. The ARF product functions as a stabilizer of the tumor suppressor protein p53, as it can interact with and sequester MDM2, a protein responsible for the degradation of p53. In spite of their structural and functional differences, the CDK inhibitor isoforms and the ARF product encoded by this gene, through the regulatory roles of CDK4 and p53 in cell cycle G1 progression, share a common functionality in control of the G1 phase of the cell cycle. This gene is frequently mutated or deleted in a wide variety of tumors and is known to be an important tumor suppressor gene. - Concentrations of p16INK4a increase dramatically as tissue ages. Liu et al., Aging Cell 8(4):439-48 (2009) and Krishnamurthy et al., Nature 443(7110):453-7 (2006). The increased expression of the p16 gene with age reduces the proliferation of stem cells thereby increasing the cellular senescence-associated health risks in a human.
- p16 is a cyclin-dependent kinase (CDK) inhibitor that slows down the cell cycle by prohibiting progression from G1 phase to S phase. Normally, CDK4/6 binds cyclin D and forms an active protein complex that phosphorylates retinoblastoma protein (pRB). Once phosphorylated, pRB disassociates from the transcription factor E2F1, liberating E2F1 from its cytoplasm bound state allowing it to enter the nucleus. Once in the nucleus, E2F1 promotes the transcription of target genes that are essential for transition from G1 to S phase.
- p16 acts as a tumor suppressor by binding to CDK4/6 and preventing its interaction with cyclin D. This interaction ultimately inhibits the downstream activities of transcription factors, such as E2F1, and arrests cell proliferation. This pathway connects the processes of tumor oncogenesis and senescence, fixing them on opposite ends of a spectrum.
- On one end, the hypermethylation, mutation, or deletion of p16 leads to downregulation of the gene and can lead to cancer through the dysregulation of cell cycle progression. Conversely, activation of p16 through the ROS pathway, DNA damage, or senescence leads to the build up of p16 in tissues and is implicated in aging of cells.
- Regulation of p16 is complex and involves the interaction of several transcription factors, as well as several proteins involved in epigenetic modification through methylation and repression of the promoter region. PRC1 and PRC2 are two protein complexes that modify the expression of p16 through the interaction of various transcription factors that execute methylation patterns that can repress transcription of p16. These pathways are activated in cellular response to reduce senescence.
- 3. The p21 Transcriptional Promoter
- A nucleic acid encoding a therapeutic protein could be placed under the control of the p21/CDKN1A transcriptional promoter that is often transcriptionally active in senescent, and cancerous or pre-cancerous cells. p53/TP53 plays a central role in the regulation of p21 and, therefore, in the growth arrest of cells when damaged. p21 protein binds directly to cyclin-CDK complexes that drive the cell cycle and inhibits their kinase activity thereby causing cell cycle arrest to allow repair to take place. p21 also mediates growth arrest associated with differentiation and a more permanent growth arrest associated with cellular senescence. The p21 gene contains several p53 response elements that mediate direct binding of the p53 protein, resulting in transcriptional activation of the gene encoding the p21 protein. The role of p53 gene regulation in cellular senescence is described in Kelley et al., Cancer Research 70(9):3566-75. (2010).
- Nucleic acids that may be suitably employed in the expression constructs, systems, and methods of the present disclosure encode a protein that is capable of reducing, preventing, and/or eliminating the growth and/or survival of a cell in which it is produced, including a target cell. Thus, the target cell specificity of the presently disclosed expression constructs and systems is achieved by the expression within a target cell, but not within a non-target cell, of a nucleic acid that encodes a therapeutic protein.
- Nucleic acids encoding therapeutic proteins that may be employed in the expression constructs and systems of the present disclosure include nucleic acids encoding one or more protein that induces apoptosis in a cell in which it is produced. Exemplified herein are expression constructs and systems comprising one or more “suicide genes,” such as a nucleic acid encoding Herpes Simplex Virus Thymidine Kinase (HSV-TK), cytosine deaminase, Casp3, Casp8, Casp9, BAX, DFF40, cytosine deaminase, or other nucleic acid that encodes a protein that is capable of inducing apoptosis is a cell.
- Apoptosis, or programmed cell death (PCD), is a common and evolutionarily conserved property of all metazoans. In many biological processes, apoptosis is required to eliminate supernumerary or dangerous (such as pre-cancerous) cells and to promote normal development. Dysregulation of apoptosis can, therefore, contribute to the development of many major diseases including cancer, autoimmunity and neurodegenerative disorders. In most cases, proteins of the caspase family execute the genetic programme that leads to cell death.
- Apoptosis is triggered in a mammalian cell, in particular in a human cell, through the activation of caspase proteins, in particular the caspase proteins CASP3, CASP8, and CASP9. See, for example, Xie et al., Cancer Res 61(18):186-91 (2001); Carlotti et al., Cancer Gene Ther 12(7):627-39 (2005); Lowe et al., Gene Ther 8(18):1363-71 (2001); and Shariat et al., Cancer Res 61(6):2562-71 (2001).
- DNA fragmentation factor (DFF) is a complex of the DNase DFF40 (CAD) and its chaperone/inhibitor DFF45 (ICAD-L). In its inactive form, DFF is a heterodimer composed of a 45 kDa chaperone inhibitor subunit (DFF45 or ICAD), and a 40 kDa latent endonuclease subunit (DFF40 or CAD). Upon caspase-3 cleavage of DFF45, DFF40 forms active endonuclease homo-oligomers. It is activated during apoptosis to induce DNA fragmentation. DNA binding by DFF is mediated by the nuclease subunit, which can also form stable DNA complexes after release from DFF. The nuclease subunit is inhibited in DNA cleavage but not in DNA binding. DFF45 can also be cleaved and inactivated by caspase-7 but not by caspase-6 and caspase-8. The cleaved DFF45 fragments dissociate from DFF40, allowing DFF40 to oligomerise, forming a large complex that cleaves DNA by introducing double strand breaks. Histone H1 confers DNA binding ability to DFF and stimulates the nuclease activity of DFF40. Activation of the apoptotic endonuclease DFF-40 is described in Liu et al., J Biol Chem 274(20):13836-40 (1999).
- Thymidine kinase (TK) is an ATP-
thymidine 5′-phosphotransferase that is present in all living cells as well as in certain viruses including herpes simplex virus (HSV), varicella zoster virus (VZV), and Epstein-Barr virus (EBV). Thymidine kinase converts deoxythymidine intodeoxythymidine 5′-monophosphate (TMP), which is phosphorylated to deoxythymidine diphosphate and to deoxythymidine triphosphate by thymidylate kinase and nucleoside diphosphate kinase, respectively. Deoxythymidine triphosphase is incorporated into cellular DNA by DNA polymerases and viral reverse transcriptases. - When incorporated into DNA, certain dNTP analogs, such as synthetic analogues of 2′-deoxy-guanosine (e.g., Ganciclovir), cause the premature termination of DNA synthesis, which triggers cellular apoptosis.
- Within certain embodiments, the expression cassettes and systems of the present disclosure employ a nucleic acid that encodes HSV-TK. Following the administration to a human of a system employing a nucleic acid encoding HSV-TK, an analogue of a 2′-deoxy-nucleotide, such as 2′-deoxy-guanosine, is administered to the human. The HSV-TK efficiently converts the 2′-deoxy-nucleotide analogue into a dNTP analogue, which when incorporated into the DNA induces apoptosis in the target cell.
- Cytosine deaminase (CD) catalyzes the hydrolytic conversion in DNA of cytosine to uracil and ammonia. If a CD-modified site is recognized by an endonuclease, the phosphodiester bond is cleaved and, in a normal cell, is repaired by incorporating a new cytosine. In the presence of 5-fluorocytosine (5-FC), cytosine deaminase converts 5-FC into 5-fluorouracil (5-FU), which can inhibit target cell growth. Transgenic expression of CD in a target cell, therefore, reduces the growth and/or survival of the target cell.
- The present disclosure provides expression constructs and systems that further comprise one or more safety features to ensure that the expression of a nucleic acid encoding a therapeutic protein is upregulated in appropriate cells, over a desired time period, and/or to a specified level.
- Within one such embodiments, expression constructs and systems of the present disclosure employ nucleic acids that encode inducible variants of therapeutic proteins, including, for example, inducible variants of Casp3, Casp8, Casp9, which require the further contacting of a cell with or administration to a human of a chemical or biological compound that activates the therapeutic protein.
- Inducible suicide gene systems are well known and readily available in the art and have been described, for example, in Miller et al., PCT Patent Publication No. WO 2008/154644 and Brenner, US Patent Publication No. 2011/0286980. In addition, Shah et al., Genesis 45(4):104-199 (2007) describe a double-inducible system for
Caspase inducible caspase 9 system in whichcaspase 9 is fused to a human FK506 binding protein (FKBP) to allow the conditional dimerization using the small molecule AP20187 (ARIAD Pharmaceuticals, Cambridge, MA), which is a non-toxic synthetic analog of FK506. Carlotti et al., Cancer Gene Ther 12(7):627-39 (2005) describe aninducible caspase 8 system by employing the ARIAD™ homodimerization system (FKC8; ARIAD Pharmaceuticals). - Full-length inducible caspase 9 (F′F-C-Casp9.I.GFP) comprises a full-
length caspase 9, including its caspase recruitment domain (CARD; GenBank NM001 229) linked to two 12 kDa human FK506 binding proteins (FKBP12; GenBank AH002 818) that contain an F36V mutation as described in Clackson et al., Proc. Natl. Acad. Sci. U.S.A. 95:10437-10442 (1998) and are connected by a Ser-Gly-Gly-Gly-Ser linker that connects the FKBPs andcaspase 9 to enhance flexibility. - In a further embodiment, the inducible suicide gene could be linked to the nucleic acid sequence for a detectable biomarker such as luciferase or green fluorescent protein to permit the detection of the targeted cells prior to administering a compound to activate an inducible therapeutic protein.
- The present disclosure provides systems comprising a vector and an expression cassette wherein the expression cassette comprises a transcriptional promoter that is responsive to one or more transcription factors that are expressed in a target cell and a nucleic acid encoding a therapeutic protein. Systems can be administered to a human patient by themselves or in pharmaceutical compositions where they are mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a disease or condition as described herein. Mixtures of these systems can also be administered to the patient as a simple mixture or in pharmaceutical compositions.
- Compositions within the scope of this disclosure include compositions wherein the therapeutic agent is a system comprising a vector and an expression cassette in an amount effective to reduce or eliminate the growth and/or survival of a target cell such as a senescent cell, a cancer cell, a cell infected with an infectious agent, a bacterial cell, or a cell that is associated with another disease or condition. Determination of optimal ranges of effective amounts of each component is within the skill of the art. The effective dose is a function of a number of factors, including the specific system, the presence of one or more additional therapeutic agent within the composition or given concurrently with the system, the frequency of treatment, and the patient's clinical status, age, health, and weight.
- Compositions comprising a system may be administered parenterally. As used herein, the term “parenteral administration” refers to modes of administration other than enteral and topical administration, usually by injection, and include, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articular, subcapsular, subarachnoid, intraspinal, and intrasternal injection and infusion. Alternatively, or concurrently, administration may be orally.
- Compositions comprising a system may, for example, be administered intravenously via an intravenous push or bolus. Alternatively, compositions comprising a system may be administered via an intravenous infusion.
- Compositions include a therapeutically effective amount of a system, and a pharmaceutically acceptable carrier. As used herein, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skimmed milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
- These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like. Such compositions will contain a therapeutically effective amount of the inhibitor, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.
- Compositions can be formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to a human. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- The systems disclosed herein can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, and the like, and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.
- The present disclosure provides methods for reducing, inhibiting, and/or preventing the growth and or survival of a cell that is associated with aging, cancer, infectious disease, bacterial infection, and/or other disease or condition, which methods comprise contacting a target cell or a population of cell comprising a target cell with a system as described herein, which system comprises a vector and an expression construct, which expression construct comprises a transcriptional promoter and a nucleic acid.
- The present disclosure also provides methods for the treatment of aging, cancer, infectious disease, bacterial infection, and/or other disease or condition in a patient, which methods comprise the administration of a system as described herein, which system comprises a vector and an expression construct, which expression construct comprises a transcriptional promoter and a nucleic acid.
- The present therapeutic methods involve contacting a target cell with, or administering to a human patient, a composition comprising one or more system comprising a vector and an expression cassette to a human patient for reducing and/or eliminating the growth and/or survival of a cell that is associated with senescence, cancer, an infectious disease, a bacterial infection or another disease or condition.
- The amount of the system that will be effective in the treatment, inhibition, and/or prevention of aging, cancer, infectious disease, bacterial infection, or other disease or condition that is associated with the elevated expression of one or more transcription factors can be determined by standard clinical techniques. In vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- The systems or pharmaceutical compositions of the present disclosure can be tested in vitro, and then in vivo for the desired therapeutic or prophylactic activity, prior to use in humans. For example, in vitro assays to demonstrate the therapeutic or prophylactic utility of a compound or pharmaceutical composition include the effect of a system on a cell line or a patient tissue sample. The effect of the system or pharmaceutical composition thereof on the cell line and/or tissue sample can be determined utilizing techniques known to those of skill in the art including, but not limited to proliferation and apoptosis assays. In accordance with the present disclosure, in vitro assays that can be used to determine whether administration of a specific compound is indicated, include in vitro cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered a compound, and the effect of such compound upon the tissue sample is observed.
- The present disclosure provides methods for the treatment and growth and/or survival inhibition by administration to a subject of an effective amount of a system or pharmaceutical composition thereof as described herein. In one aspect, the system is substantially purified such that it is substantially free from substances that limit its effect or produce undesired side-effects.
- Methods of administration include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The systems or compositions thereof may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the inhibitors or compositions into the central nervous system by any suitable route, including intraventricular and intrathecal injection. Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, for example, by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
- It may be desirable to administer the systems or compositions thereof locally to the area in need of treatment; this may be achieved by, for example, local infusion during surgery, topical application, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.
- The system can be delivered in a controlled release system placed in proximity of the therapeutic target, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release 2:115-138 (1984)).
- Intravenous infusion of a compositions comprising a system may be continuous for a duration of at least about one day, or at least about three days, or at least about seven days, or at least about 14 days, or at least about 21 days, or at least about 28 days, or at least about 42 days, or at least about 56 days, or at least about 84 days, or at least about 112 days.
- Continuous intravenous infusion of a composition comprising a system may be for a specified duration, followed by a rest period of another duration. For example, a continuous infusion duration may be from about 1 day, to about 7 days, to about 14 days, to about 21 days, to about 28 days, to about 42 days, to about 56 days, to about 84 days, or to about 112 days. The continuous infusion may then be followed by a rest period of from about 1 day, to about 2 days to about 3 days, to about 7 days, to about 14 days, or to about 28 days. Continuous infusion may then be repeated, as above, and followed by another rest period.
- Regardless of the precise infusion protocol adopted, it will be understood that continuous infusion of a composition comprising a system will continue until either desired efficacy is achieved or an unacceptable level of toxicity becomes evident.
- It will be understood that, unless indicated to the contrary, terms intended to be “open” (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). Phrases such as “at least one,” and “one or more,” and terms such as “a” or “an” include both the singular and the plural.
- It will be further understood that where features or aspects of the disclosure are described in terms of Markush groups, the disclosure is also intended to be described in terms of any individual member or subgroup of members of the Markush group. Similarly, all ranges disclosed herein also encompass all possible sub-ranges and combinations of sub-ranges and that language such as “between,” “up to,” “at least,” “greater than,” “less than,” and the like include the number recited in the range and includes each individual member.
- All references cited herein, whether supra or infra, including, but not limited to, patents, patent applications, and patent publications, whether U.S., PCT, or non-U.S. foreign, and all technical and/or scientific publications are hereby incorporated by reference in their entirety.
- While various embodiments have been disclosed herein, other embodiments will be apparent to those skilled in the art. The various embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the claims. The present disclosure is further described with reference to the following examples, which are provided to illustrate certain embodiments and are not intended to limit the scope of the present disclosure or the subject matter claimed.
- This Example demonstrates that Fusogenix™ (Innovascreen, Halifax, Nova Scotia, Canada) lipid nanoparticles utilizing a p14 FAST fusion from reptilian reovirus are effective at delivering a plasmid DNA construct to a target tumor.
- Fusogenix lipid nanoparticles labeled with 64Cu (64Cu NOTA-liposomes) either with or without a p14 FAST fusion protein (described in PCT Patent Publication Nos. WO2002044206A2 and WO2012040825A1) were administered intravenously to a M16 mouse model system for prostate cancer (PC3 cells). Seo, Bioconjug Chem 19(12):2577-2585 (2009) and Reeves, Cancer Therapy 136(7):1731-1740 (2014). 24 hours post-immunization, PC3 tumors were visualize using positron emission tomography (PET).
FIGS. 7A and 7B . - The data presented in
FIG. 8 demonstrate a 50% increase in PC3 prostate tumor uptake of 64Cu NOTA-liposomes with p14 FAST fusion protein as compared to 64Cu NOTA-liposomes without p14 FAST fusion protein. The biodistribution of labelled pegylated liposomes in nude mice expressed after 24 hours is presented inFIG. 9 . - This Example demonstrates that Fusogenix™ (Innovascreen, Halifax, Nova Scotia, Canada) lipid nanoparticles utilizing a p14 FAST fusion from reptilian reovirus do not exhibit adverse side-effects in any of the major mammalian organ systems examined when administered in vivo to Sprague-Dawley rats. are effective at delivering a plasmid DNA construct to a target tumor.
- Presented herein are comparative studies that were performed with N=20 male rats treated with either (i) no LNPs (PBS), (ii) LNPs without p14, or (iii) p14 containing Fusogenix lipid nanoparticles (LNPs). Each animal received a total of three injections of 15 mg/kg in their tail, over a 4 day period. Treatment of the animals with p14 containing LNPs did not result in any acute changes in animal behavior and animal growth was not affected by treatment with p14 containing LNPs. Animals treated with p14 containing LNPs had similar organ weights as compared to all other animal groups studied.
- Treatment with p14 containing LNPs did not affect the microscopic appearance of tissues from major organ systems. Tissues from the lungs, brain, heart, kidney, liver, reproductive organs, gut, endocrine system, lymph nodes, spleen, pancreas, bladder and tail were all independently examined and p14 did not elicit any visible signs of toxicity. Importantly, the liver appeared to be unaffected by exposure to p14. Moreover, no differences were identified between the tissues of p14 treated animals versus control groups.
- A number of blood chemistry values were measured to determine the impact of p14 on physiological function and inflammation. Parameters such as ALT and AST that denote acute liver function were all within normal ranges. Fusogenix LNPs containing p14 do not show any adverse side-effects in any of the major mammalian organ systems examined. Histological appearance of tissues was also normal.
- Mice were injected three (3) times at 10 day intervals with purified p14 mixed with Freund's adjuvant. A first dose contained CFA (complete Freund's adjuvant) while second and third doses contained IFA (incomplete Freund's adjuvant). Each injection was with 50 μg of p14. Mice were sacrificed after 30 days and sera was analyzed for anti-p14 antibodies. p14 lipid nanoparticles were also tested in two (2) mice via intravenous injection of 400 μg of p53-iCasp9 Fusogenix lipid nanoparticles containing 240 μg of p14. Mice were sacrificed after 30 days of injection and serum was analyzed for anti-p14 antibodies. A positive control included purified antibodies spiked in serum at a high dose of 250 ng/ml and a low dose of 50 ng/ml. The data presented in
FIGS. 10 and 11 demonstrate the safety and tolerability of Fusogenix lipid nanoparticles utilizing a reptilian reovirus p14 FAST fusion protein. Anti-p14 and anti-LNP antibody assays demonstrated that virtually no antibody response was observed in immune competent mice (with and without adjuvant). - Ten (10) human serum samples were tested for Complement activation-related psuedoallergy (CARPA) using C4d and iC3b complement ELISA assays as described in Szebeni, Mol Immunol 61(2):163-73 (2014). The data presented in
FIGS. 12 and 13 demonstrate that LNP formulations according to the present disclosure were non-reactive with C4d (FIG. 12 ) and less reactive with iC3b (FIG. 13 ) as compared to Doxil in 8 out of 10 human samples (approximately 5-10% of humans exhibit a CARPA reaction to nanomedicines such as Doxil). - In vitro anti-p14 and anti-LNP antibody neutralization assays revealed that vector neutralization required very high antibody concentrations. Moreover, vaccination or pretreatment with p14-LNPs did not result in a decrease in therapeutic efficacy and repeated in vivo dosing was effective and well tolerated. CARPA assays with Fusogenix™ p14 FAST lipid nanoparticles elicit less complement activity as compared to a control pegylated liposomal doxorubicin (Doxil).
- This Example demonstrates the target-cell specific suppression in p16-positive senescent cell burden following the in vivo administration of an exemplary p16-targeting construct in an mouse model system for aging.
- The aging mouse model exhibits a senescent cell burden (as defined by the presence of p16+ cells) and secretion of factors associated with a senescence-associated secretory phenotype (SASP; van Deursen, Nature 509(7501):439-446 (2014)).
- A formulation comprising a vector and an expression construct, such as a lipid nanoparticle (LNP) vector, e.g., a fusogenic LNP comprising a fusogenic protein such as p14 FAST, encompassing a p16-iCasp9 expression construct (pVAX1-16s-iCasp9; SEQ ID NO: 06;
FIG. 16 ) which comprises an exemplary p16-targeting construct for the target cell-specific expression of an inducible Caspase 9 (iCasp9) protein in target cells expressing p16, such as target cells that are associated with aging and/or senescence, which p16-targeting construct comprises a p16s transcriptional promoter in operable connection to iCasp9. or variant thereof expressing luciferase (for visualization), was administered in vivo to an aged mouse via injection into a tail vein and the LNP+expression construct transfects target and non-target cells without specificity.FIG. 19 . Upon subsequent in vivo administration of the chemical inducer of dimerization (CID), AP20187, p16+ target cells (e.g., senescent cells) underwent apoptosis, resulting in a reduction is SASP levels, while p16− cells remained viable. - Histological staining of senescent-associated β-gal in kidney cells from an in vivo aged mouse model either untreated (upper left panel) or treated (upper right panel) following the in vivo administration (16 animals at 80 weeks of age) of a formulation comprising a vector and an expression construct, such as a lipid nanoparticle (LNP) vector, e.g., a fusogenic LNP comprising a fusogenic protein such as p14 FAST, encompassing a p16-iCasp9 expression construct, e.g., pVAX1-16s-iCasp9 or variant thereof, was administered in vivo to an aged mouse and kidney cells stained for β-gal.
FIGS. 20A-D . The lower panel is a photomicrograph of the histiological staining of senescent-associated β-gal in 4-month old kidney cells from a normal mouse. These data demonstrated a dose-dependent reduction of p16+ senescent kidney cells. - The dose-dependent targeting of p16+ kidney cells (
FIG. 21 ), spleen cells (FIG. 22 ), seminal vesicle cells (FIG. 23 ), inguinal fat cells (FIG. 24 ), and lung cells (FIG. 25 ) was demonstrated in naturally aged mice following the in vivo administration of a fusogenic lipid nanoparticle (LNP) formulation comprising a pVAX1-p16 expression construct. Kidney cells were subjected to a qRT-PCR reaction to detect p16Ink4a transcripts. Relative expression was calculated using 2ΔΔCt (Livak, Methods 25:402-408 (2001)). - This Example demonstrates the target-cell specific suppression of p53-expressing prostate cancer cells in NSG mice implanted with a human prostate tumor (i.e., a PC-3 xenograft).
- Human prostate cancer PC-3 cells were treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc (luciferin) plasmid (in the presence and absence of the homodimerizer AP201870) and assessed for iCasp9 expression and subjected to Western blot analysis of
iCasp 9 andCasp 9 protein levels obtained with p53-expressing cells (pVax-p53) and control cells (pcDNA3-GFP).FIG. 36 . These data demonstrated that the addition of the chemical inducer of dimerization (CID; e.g., AP20187 and AP1903) abolishes the expression of iCasp9 and luciferase in p53-expressing cells engineered to express iCasp9 or luciferase. - Human prostate cancer cells (LNCaP (
FIG. 38 ), DU145 (FIG. 39 ), and PC-3 (FIG. 40 )) and normal epithelial cells (RWPE (FIG. 41 )) were treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc plasmid and assessed for iCasp9 expression by Western blot and luminescence assays. These data demonstrated that addition of the chemical inducer of dimerization (CID; e.g., AP20187 and AP1903) abolished the expression of iCasp9 and luciferase in p53-expressing cells engineered to express iCasp9 or luciferase. - Human prostate cancer PC-3 cells were treated with Fusogenix lipid nanoparticles carrying the pVax-p53-iCasp9-luc (luciferin) plasmid (in the presence and absence of the homodimerizer AP20187) and assessed for iCasp9 expression. The data presented in
FIG. 42 demonstrated that the addition of the chemical inducer of dimerization (CID; e.g., AP20187 and AP1903) abolished the expression of iCasp9 and luciferase in p53-expressing cells engineered to express iCasp9 or luciferase. - Flow cytometry apoptosis data (Annexin V) from human prostate cancer PC-3 cells treated with pVax-p53 Fusogenix lipid nanoparticles (in the absence and presence of AP20187,
FIGS. 43A and 44A and 43B and 44B , respectively) demonstrated that suicide gene therapy selectively killed p53-expressing human prostate cancer cells in culture by inducing apoptosis (Luciferase-Annexin V flow cytometry). - A pre-clinical oncology study according to the present disclosure was conducted with 30×NSG mice implanted with human prostate tumor cells.
FIG. 45 . NSG mice bearing a subcutaneous human prostate PC-3 tumor were injected intratumorally (IT) with 100 μg Fusogenix pVax-p53 formulation, followed 96 hours later by intravenous (IV) administration of 2 mg/kg of the homodimerizer AP20187.FIG. 46 . Tumors from the NSG mice bearing subcutaneous human prostate PC-3 tumors injected intratumorally with 100 μg Fusogenix pVax-p53 formulation, followed 96 hours by 2 mg/kg AP20187 IV, were photographed (FIGS. 47A-47C ). - Four NSG mice bearing subcutaneous human prostate cancer PC-3 tumors that were injected intravenously (IV) with 4×100 μg doses of Fusogenix pVax-p53 formulation, followed 24 hours later by 2 mg/kg AP20187 IV. Tumor volume was measured and plotted as a function of time following IV injection.
FIGS. 48-51 . - The percentage change in tumor volume was determined and plotted as a function of time after in vivo administration of a chemical inducer of dimerization (CID) in NSG mice (N=6 for all groups) bearing a prostate tumor that were treated with intravenous p14 LNP pVAX.
FIG. 52 . The percent survival was determined and plotted as a function of time after in vivo administration of a chemical inducer of dimerization (CID) in NSG mice (N=6 for all groups) bearing a prostate tumor that were treated with intravenous p14 LNP pVAX.FIG. 53 . - A dose escalation study was carried out in which the percentage change in tumor volume as a function of time after in vivo administration of a chemical inducer of dimerization (CID) in NOD-SCID mice (N=6 for all groups) bearing a prostate tumor that were treated with 100 μg, 400 μg, and 1000 μg of intravenous p14 LNP pVAX. NOD-SCID mice were implanted subcutaneously with 500,000 PC-3 cells and randomized into treatment groups when their tumors reached 200 mm3, (N=2 for all groups). Animals were injected with their assigned dose of p53-iCasp9 LNP IV twice followed by 2 mg/kg dimerizer. Tumors were measured directly every 24 hours.
FIG. 54 . - In total, the data presented herein demonstrate that apoptosis can be reliably induced in a p53+ prostate cancer cell-specific manner by the intravenous administration of fusogenic lipid nanoparticle formulations comprising a p53-iCasp9 expression construct.
- The suppression of metastatic tumor growth with repeat treatment of a p53-iCasp9 LNP with or without a chemical inducer of dimerization (CID) was demonstrated in a NOD-SCID mouse model system.
- NOD-SCID mice were injected with 500,000 PC-3M-luciferase cells on
Day 0, LNP dosing was started onDay 22 with 150 μg p53-iCasp9 LNP. Dimerizer doses startedDay 24 at 2 mg/kg. Mice were imaged every 24-48 hours to detect whole animal luminescence.FIG. 55 . - Isogenic C57B6 mice implanted with B16 murine melanoma cells were treated with LNPs containing a construct encoding iCasp9 and murine CD40L under control of the murine p53 promoter followed by the AP20187 dimerizer.
- The percentage change in tumor volume (
FIG. 56 ) and percent survival (FIG. 57 ) mas measured as a function of time after in vivo administration of a chemical inducer of dimerization (CID) in isogenic C57B6 mice implanted by subcutaneous injection with 250,000 B16 murine melanoma cells treated (grown to 400 mm3) with LNPs containing a construct encoding iCasp9 and murine CD40L under control of the murine p53 promoter. - These data demonstrated that, even though the rapid (10 hour) doubling time of the B16 cells made them largely refractory to the iCasp9-induced apoptosis, they still secreted enough CD40L to effectively halt the tumor's growth. A construct encoding GMCSF+OVA antigen was also tested and determined to be more effective than iCasp9 alone, but less effective than the CD40L version. N=3 for both groups.
- This Example demonstrates the in vivo p53+ target cell suppression murine p53+B16F10 melanoma target cells implanted in a lung metastasis mouse model system.
- A B16F10 lung metastasis model system was employed in which 100 μg of a control LNP or a p53-iCasp9 LNP was administered intravenously at
days days day 14 and lung metastases were quantified.FIGS. 58A-58D and 59 .
Claims (36)
1-35. (canceled)
36. A lipid-based nanoparticle (LNP) formulation for targeted production of a therapeutic protein within target cells, the LNP formulation comprises:
a. a lipid nanoparticle vector comprising 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) at a molar ratio of 22.5-37.5 mole %; and
b. an expression construct, wherein the expression construct is configured for preferential production of the therapeutic protein within the target cells, wherein the expression construct comprises:
i. a transcriptional promoter that is activated in response to one or more factors that are preferentially produced within the target cells as compared to non-target cells; and
ii. a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes the therapeutic protein, wherein the therapeutic protein is capable of reducing growth or survival of the target cells, wherein the therapeutic protein is produced within the target cells but is substantially not produced in the non-target cells.
37. The LNP formulation of claim 36 , wherein the lipid nanoparticle vector further comprises 1,2-dioleoyl-3-dimethylammonium-propane (DODAP).
38. The LNP formulation of claim 37 , wherein the lipid nanoparticle vector comprises the DODAP at a molar ratio of at least 35 mole %.
39. The LNP formulation of claim 36 , wherein the lipid nanoparticle vector comprises the DOPE at a molar ratio of about 30 mole %.
40. The LNP formulation of claim 36 , wherein the expression construct is present in the LNP formulation at a concentration ranging from 20 μg/mL to 1.5 mg/mL.
41. The LNP formulation of claim 36 , wherein the transcriptional promoter is a p16 transcriptional promoter or a p53 transcriptional promoter.
42. The LNP formulation of claim 36 , wherein the transcriptional promoter is a p16 transcriptional promoter.
43. The LNP formulation of claim 36 , wherein the therapeutic protein is selected from the group consisting of a caspase (Casp), an inducible caspase (iCasp), a self-activating caspase (saCasp), BAX, DFF40, HSV-TK, and cytosine deaminase.
44. The LNP formulation of claim 36 , wherein the therapeutic protein is a caspase.
45. The LNP formulation of claim 36 , wherein the therapeutic protein is a Casp3, a Casp8, or a Casp9.
46. The LNP formulation of claim 36 , wherein the therapeutic protein is Casp9.
47. The LNP formulation of claim 36 , wherein the therapeutic protein is an inducible Casp9 (iCasp9).
48. The LNP formulation of claim 36 , wherein the therapeutic protein is a self-activating Casp9 (saCasp9).
49. The LNP formulation of claim 36 , wherein the lipid nanoparticle vector further comprises a fusogenic protein.
50. The LNP formulation of claim 49 , wherein the fusogenic protein comprises a fusion-associated small transmembrane (FAST) protein.
51. The LNP formulation of claim 49 , wherein the fusogenic protein comprises an ectodomain amino acid sequence from a first reovirus FAST protein and an endodomain amino acid sequence from a second reovirus FAST protein.
52. The LNP formulation of claim 49 , wherein the fusogenic protein comprises an ectodomain amino acid sequence with at least 80% sequence identity to an endodomain of a p14 FAST protein and an endodomain amino acid sequence with at least 80% sequence identity to a p15 FAST protein.
53. The LNP formulation of claim 49 , wherein the fusogenic protein comprises the amino acid sequence of SEQ ID NO: 17.
54. A lipid-based nanoparticle (LNP) formulation for targeted production of a therapeutic protein within target cells, the LNP formulation comprising:
a. a lipid nanoparticle vector comprising 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol (DMG-PEG) at a molar ratio of 3-5 mole %; and
b. an expression construct, wherein the expression construct is configured for preferential production of the therapeutic protein within the target cells, wherein the expression construct comprises:
i. a transcriptional promoter that is activated in response to one or more factors that are preferentially produced within the target cells as compared to non-target cells; and
ii. a nucleic acid that is operably linked to and under regulatory control of the transcriptional promoter, wherein the nucleic acid encodes the therapeutic protein, wherein the therapeutic protein is capable of reducing growth or survival of the target cells, wherein the therapeutic protein is produced within the target cells but is substantially not produced in the non-target cells.
55. The LNP formulation of claim 54 , wherein the lipid nanoparticle vector further comprises 1,2-dioleoyl-3-dimethylammonium-propane (DODAP).
56. The LNP formulation of claim 55 , wherein the lipid nanoparticle vector comprises the DODAP at a molar ratio of at least 35 mole %.
57. The LNP formulation of claim 54 , wherein the lipid nanoparticle vector comprises the DMG-PEG at a molar concentration of about 4 mole %.
58. The LNP formulation of claim 54 , wherein the expression construct is present in the LNP formulation at a concentration ranging from 20 μg/mL to 1.5 mg/mL.
59. The LNP formulation of claim 54 , wherein the transcriptional promoter is a p16 transcriptional promoter or a p53 transcriptional promoter.
60. The LNP formulation of claim 54 , wherein the transcriptional promoter is a p16 transcriptional promoter.
61. The LNP formulation of claim 54 , wherein the therapeutic protein is selected from the group consisting of a caspase (Casp), an inducible caspase (iCasp), a self-activating caspase (saCasp), BAX, DFF40, HSV-TK, and cytosine deaminase.
62. The LNP formulation of claim 54 , wherein the therapeutic protein is a caspase.
63. The LNP formulation of claim 54 , wherein the therapeutic protein is a Casp3, a Casp8, or a Casp9.
64. The LNP formulation of claim 54 , wherein the therapeutic protein is Casp9.
65. The LNP formulation of claim 54 , wherein the therapeutic protein is an inducible Casp9 (iCasp9).
66. The LNP formulation of claim 54 , wherein the therapeutic protein is a self-activating Casp9 (saCasp9).
67. The LNP formulation of claim 54 , wherein the lipid nanoparticle vector further comprises a fusogenic protein.
68. The LNP formulation of claim 67 , wherein the fusogenic protein comprises a fusion-associated small transmembrane (FAST) protein.
69. The LNP formulation of claim 67 , wherein the fusogenic protein comprises an ectodomain amino acid sequence from a first reovirus FAST protein and an endodomain amino acid sequence from a second reovirus FAST protein.
70. The LNP formulation of claim 67 , wherein the fusogenic protein comprises an ectodomain amino acid sequence with at least 80% sequence identity to an endodomain of a p14 FAST protein and an endodomain amino acid sequence with at least 80% sequence identity to a p15 FAST protein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/060,292 US20230348937A1 (en) | 2018-04-18 | 2022-11-30 | Fusogenic lipid nanoparticles for target cell-specific production of a therapeutic protein fusogenic lipid nanoparticles and methods of manufacture and use thereof for the target cell-specific production of a therapeutic protein and for the treatment of a disease |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862659676P | 2018-04-18 | 2018-04-18 | |
US201962821084P | 2019-03-20 | 2019-03-20 | |
US16/388,775 US11603543B2 (en) | 2018-04-18 | 2019-04-18 | Fusogenic lipid nanoparticles for target cell-specific production of a therapeutic protein |
US18/060,292 US20230348937A1 (en) | 2018-04-18 | 2022-11-30 | Fusogenic lipid nanoparticles for target cell-specific production of a therapeutic protein fusogenic lipid nanoparticles and methods of manufacture and use thereof for the target cell-specific production of a therapeutic protein and for the treatment of a disease |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/388,775 Continuation US11603543B2 (en) | 2018-04-18 | 2019-04-18 | Fusogenic lipid nanoparticles for target cell-specific production of a therapeutic protein |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230348937A1 true US20230348937A1 (en) | 2023-11-02 |
Family
ID=68239921
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/388,775 Active 2041-09-19 US11603543B2 (en) | 2018-04-18 | 2019-04-18 | Fusogenic lipid nanoparticles for target cell-specific production of a therapeutic protein |
US18/060,292 Pending US20230348937A1 (en) | 2018-04-18 | 2022-11-30 | Fusogenic lipid nanoparticles for target cell-specific production of a therapeutic protein fusogenic lipid nanoparticles and methods of manufacture and use thereof for the target cell-specific production of a therapeutic protein and for the treatment of a disease |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/388,775 Active 2041-09-19 US11603543B2 (en) | 2018-04-18 | 2019-04-18 | Fusogenic lipid nanoparticles for target cell-specific production of a therapeutic protein |
Country Status (6)
Country | Link |
---|---|
US (2) | US11603543B2 (en) |
EP (1) | EP3784252A4 (en) |
JP (2) | JP2021526505A (en) |
CN (1) | CN112312918A (en) |
CA (1) | CA3097411A1 (en) |
WO (1) | WO2019204666A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11525146B2 (en) | 2017-01-09 | 2022-12-13 | Oisin Biotechnologies, Inc. | Expression constructs, fusogenic lipid-based nanoparticles and methods of use thereof |
EP3784252A4 (en) | 2018-04-18 | 2022-03-16 | Oisin Biotechnologies, Inc. | Fusogenic lipid nanoparticles and methods for the manufacture and use thereof for the target cell-specific production of a therapeutic protein and for the treatment of a disease, condition, or disorder associated with a target cell |
CN114540416A (en) * | 2022-02-18 | 2022-05-27 | 上海交通大学 | Expression vector, lipid nanoparticle, antitumor drug, preparation method and application thereof |
WO2024036148A1 (en) * | 2022-08-08 | 2024-02-15 | A2 Biotherapeutics, Inc. | Compositions and methods for treating blood cancers |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10130649B2 (en) * | 2013-03-15 | 2018-11-20 | Translate Bio, Inc. | Synergistic enhancement of the delivery of nucleic acids via blended formulations |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0571390B1 (en) | 1990-11-23 | 2000-03-08 | Peptech Limited | The delay, prevention and/or reversal of cell senescence |
US5869337A (en) | 1993-02-12 | 1999-02-09 | President And Fellows Of Harvard College | Regulated transcription of targeted genes and other biological events |
CA2289702C (en) | 1997-05-14 | 2008-02-19 | Inex Pharmaceuticals Corp. | High efficiency encapsulation of charged therapeutic agents in lipid vesicles |
EP1018560A4 (en) | 1997-08-20 | 2002-10-02 | Dnavec Research Inc | Vectors for treating cancer |
WO1999024582A1 (en) | 1997-11-07 | 1999-05-20 | Dalhousie University | Novel reovirus-derived proteins, nucleic acids encoding same, and uses therefor |
US6899870B1 (en) | 1998-03-11 | 2005-05-31 | Board Of Regents, The University Of Texas System | Induction of apoptic or cytotoxic gene expression by adenoviral mediated gene codelivery |
US6403765B1 (en) * | 1998-06-16 | 2002-06-11 | Thomas Jefferson University | Truncated Apaf-1 and methods of use thereof |
IL143328A0 (en) | 1998-11-25 | 2002-04-21 | Genetica Inc | Methods and reagents for increasing proliferative capacity and preventing replicative senescence |
CA2325088A1 (en) | 2000-12-01 | 2002-06-01 | Fusogenix Inc. | Novel membrane fusion proteins derived from poikilothermic reovirus |
EP1461427A4 (en) | 2001-06-13 | 2006-02-15 | Eastern Virginia Med School | Methods for targeted expression of therapeutic nucleic acid |
CN100361710C (en) | 2004-06-07 | 2008-01-16 | 成都康弘生物科技有限公司 | Construction and application of oncolytic adenovirus recombinant of tumor cell specifically expressing immunoregulation factor GM-CSF |
WO2006043354A1 (en) | 2004-10-20 | 2006-04-27 | National Institute Of Radiological Sciences | Insertion type low-dose-radiation induced vector |
CA2690815A1 (en) | 2007-06-12 | 2008-12-18 | Case Western Reserve University | Targeted cell death |
CA2724886C (en) | 2008-05-23 | 2017-11-14 | Siwa Corporation | Methods, compositions and apparatuses for facilitating regeneration |
US20110244026A1 (en) * | 2009-12-01 | 2011-10-06 | Braydon Charles Guild | Delivery of mrna for the augmentation of proteins and enzymes in human genetic diseases |
WO2011146862A1 (en) | 2010-05-21 | 2011-11-24 | Bellicum Pharmaceuticals, Inc. | Methods for inducing selective apoptosis |
US20130150430A1 (en) * | 2010-08-04 | 2013-06-13 | The Ohio State University | Methods for Impairing the P53/HDM2 Auto-Regulatory Loop in Multiple Myeloma Development Using mIR-192, mIR-194 and mIR-215 |
CA2813300A1 (en) | 2010-09-29 | 2012-04-05 | Innovascreen Inc. | Recombinant polypeptides for membrane fusion and uses thereof |
HUE044277T2 (en) * | 2011-06-08 | 2019-10-28 | Translate Bio Inc | Lipid nanoparticle compositions and methods for mrna delivery |
US20140189897A1 (en) | 2011-06-21 | 2014-07-03 | Mayo Foundation For Medical Education And Research | Transgenic animals capable of being induced to delete senescent cells |
MX2014004415A (en) * | 2011-10-14 | 2015-06-05 | Stc Unm | Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery including transdermal delivery of cargo and methods thereof. |
WO2013158664A2 (en) | 2012-04-17 | 2013-10-24 | Kythera Biopharmaceuticals, Inc. | Use of engineered viruses to specifically kill senescent cells |
JP6228191B2 (en) * | 2012-05-23 | 2017-11-08 | ジ・オハイオ・ステート・ユニバーシティ | Lipid-coated albumin nanoparticle composition, method of making the same, and method of using the same |
AU2013355258A1 (en) * | 2012-12-07 | 2015-06-11 | Alnylam Pharmaceuticals, Inc. | Improved nucleic acid lipid particle formulations |
CA2906110C (en) * | 2013-03-14 | 2021-07-27 | Dicerna Pharmaceuticals, Inc. | Process for formulating an anionic agent |
KR20160002848A (en) * | 2013-03-24 | 2016-01-08 | 오이신 바이오테크놀로지스 | Systems and methods for the targeted production of a therapeutic protein within a target cell |
CA2966234A1 (en) | 2014-12-15 | 2016-06-23 | Bellicum Pharmaceuticals, Inc. | Methods for controlled elimination of therapeutic cells |
GB201503133D0 (en) | 2015-02-24 | 2015-04-08 | Ucl Business Plc And Syncona Partners Llp | Chimeric protein |
WO2016185481A2 (en) | 2015-05-20 | 2016-11-24 | Yeda Research And Development Co. Ltd. | Method of targeting senescent cells |
US11525146B2 (en) | 2017-01-09 | 2022-12-13 | Oisin Biotechnologies, Inc. | Expression constructs, fusogenic lipid-based nanoparticles and methods of use thereof |
EP3784252A4 (en) | 2018-04-18 | 2022-03-16 | Oisin Biotechnologies, Inc. | Fusogenic lipid nanoparticles and methods for the manufacture and use thereof for the target cell-specific production of a therapeutic protein and for the treatment of a disease, condition, or disorder associated with a target cell |
EP3920888A4 (en) | 2019-02-04 | 2023-11-01 | Oisin Biotechnologies, Inc. | Fusogenic lipid nanoparticles for the target cell-specific production of rapamycin inducible therapeutic proteins |
-
2019
- 2019-04-18 EP EP19789049.4A patent/EP3784252A4/en active Pending
- 2019-04-18 US US16/388,775 patent/US11603543B2/en active Active
- 2019-04-18 CN CN201980041436.6A patent/CN112312918A/en active Pending
- 2019-04-18 JP JP2020558508A patent/JP2021526505A/en active Pending
- 2019-04-18 WO PCT/US2019/028207 patent/WO2019204666A1/en unknown
- 2019-04-18 CA CA3097411A patent/CA3097411A1/en active Pending
-
2022
- 2022-11-30 US US18/060,292 patent/US20230348937A1/en active Pending
-
2024
- 2024-04-03 JP JP2024060375A patent/JP2024105237A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10130649B2 (en) * | 2013-03-15 | 2018-11-20 | Translate Bio, Inc. | Synergistic enhancement of the delivery of nucleic acids via blended formulations |
Also Published As
Publication number | Publication date |
---|---|
CA3097411A1 (en) | 2019-10-24 |
WO2019204666A1 (en) | 2019-10-24 |
JP2024105237A (en) | 2024-08-06 |
EP3784252A4 (en) | 2022-03-16 |
CN112312918A (en) | 2021-02-02 |
US11603543B2 (en) | 2023-03-14 |
JP2021526505A (en) | 2021-10-07 |
US20200109419A1 (en) | 2020-04-09 |
EP3784252A1 (en) | 2021-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018220160B2 (en) | Systems and methods for the targeted production of a therapeutic protein within a target cell | |
US20230220422A1 (en) | Fusogenic lipid nanoparticles and methods for the manufacture and use thereof for the target cell-specific production of a therapeutic protein and for the treatment of a disease, condition, or disorder associated with a target cell | |
US20230348937A1 (en) | Fusogenic lipid nanoparticles for target cell-specific production of a therapeutic protein fusogenic lipid nanoparticles and methods of manufacture and use thereof for the target cell-specific production of a therapeutic protein and for the treatment of a disease | |
US20220106608A1 (en) | Fusogenic lipid nanoparticles for the target cell-specific production of rapamycin inducible therapeutic proteins | |
EP2673001A2 (en) | Nts-polyplex nanoparticles system for gene therapy of cancer | |
Hyodo et al. | “Programmed packaging” for gene delivery | |
WO2009053937A2 (en) | Nano-lipid-based carriers for targeted delivery of viral vectors and process for its production | |
JPH11503305A (en) | Vector having a therapeutic gene encoding an antimicrobial peptide for gene therapy | |
JP2006117536A (en) | Medicine for inducing hair cell of internal ear | |
Kang et al. | The piggyBac transposon is an integrating non-viral gene transfer vector that enhances the efficiency of GDEPT | |
KR101595152B1 (en) | Gene delivery system comprising TCTP-PTD | |
US20230390320A1 (en) | Cancer-specific trans-splicing ribozyme expressing immune checkpoint inhibitor, and use thereor | |
US10870690B2 (en) | Protein therapeutant and method for treating cancer | |
WO2024159175A2 (en) | Compositions, systems, and methods for reducing adipose tissue | |
Brisson | Development of an improved cytoplasmic expression system for gene therapy | |
Erh-Hsuan | VECTORISATION NON-VIRALE DE MOLECULES THERAPEUTIQUES POUR LA THERAPIE DES CANCERS DU POUMON |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |