US20220348824A1 - Core shell quantum dot and electronic device including the same - Google Patents
Core shell quantum dot and electronic device including the same Download PDFInfo
- Publication number
- US20220348824A1 US20220348824A1 US17/866,983 US202217866983A US2022348824A1 US 20220348824 A1 US20220348824 A1 US 20220348824A1 US 202217866983 A US202217866983 A US 202217866983A US 2022348824 A1 US2022348824 A1 US 2022348824A1
- Authority
- US
- United States
- Prior art keywords
- equal
- quantum dots
- less
- selenium
- quantum dot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 182
- 239000011258 core-shell material Substances 0.000 title claims description 11
- 239000011669 selenium Substances 0.000 claims abstract description 89
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 58
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000011701 zinc Substances 0.000 claims abstract description 52
- 239000004054 semiconductor nanocrystal Substances 0.000 claims abstract description 46
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 42
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000011593 sulfur Substances 0.000 claims abstract description 39
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 38
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 37
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 37
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 9
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims description 24
- 239000002131 composite material Substances 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 17
- 239000010410 layer Substances 0.000 description 131
- 239000002243 precursor Substances 0.000 description 41
- -1 region Substances 0.000 description 39
- 238000002347 injection Methods 0.000 description 22
- 239000007924 injection Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 22
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 20
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 13
- 238000005424 photoluminescence Methods 0.000 description 12
- 229910044991 metal oxide Inorganic materials 0.000 description 11
- 150000004706 metal oxides Chemical class 0.000 description 11
- 239000013110 organic ligand Substances 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 230000005525 hole transport Effects 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 8
- 239000002159 nanocrystal Substances 0.000 description 8
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000011550 stock solution Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 229920001940 conductive polymer Polymers 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 150000002430 hydrocarbons Chemical group 0.000 description 6
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229920000144 PEDOT:PSS Polymers 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N methyl pentane Natural products CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 239000004246 zinc acetate Substances 0.000 description 5
- PMBXCGGQNSVESQ-UHFFFAOYSA-N 1-Hexanethiol Chemical compound CCCCCCS PMBXCGGQNSVESQ-UHFFFAOYSA-N 0.000 description 4
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 238000005401 electroluminescence Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 4
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- YTVNOVQHSGMMOV-UHFFFAOYSA-N naphthalenetetracarboxylic dianhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=C2C(=O)OC(=O)C1=C32 YTVNOVQHSGMMOV-UHFFFAOYSA-N 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- ZMKRXXDBXFWSQZ-UHFFFAOYSA-N tris(2,4,6-trimethyl-6-pyridin-3-ylcyclohexa-2,4-dien-1-yl)borane Chemical compound CC1=CC(C)=CC(C)(C=2C=NC=CC=2)C1B(C1C(C=C(C)C=C1C)(C)C=1C=NC=CC=1)C1C(C)=CC(C)=CC1(C)C1=CC=CN=C1 ZMKRXXDBXFWSQZ-UHFFFAOYSA-N 0.000 description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001767 cationic compounds Chemical class 0.000 description 3
- 229940035422 diphenylamine Drugs 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 229910001411 inorganic cation Inorganic materials 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 150000002892 organic cations Chemical class 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 2
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 2
- XANIFASCQKHXRC-UHFFFAOYSA-N 2-(1,3-benzothiazol-2-yl)phenol zinc Chemical compound [Zn].Oc1ccccc1-c1nc2ccccc2s1.Oc1ccccc1-c1nc2ccccc2s1 XANIFASCQKHXRC-UHFFFAOYSA-N 0.000 description 2
- WPUSEOSICYGUEW-UHFFFAOYSA-N 4-[4-(4-methoxy-n-(4-methoxyphenyl)anilino)phenyl]-n,n-bis(4-methoxyphenyl)aniline Chemical compound C1=CC(OC)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 WPUSEOSICYGUEW-UHFFFAOYSA-N 0.000 description 2
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- VRVKAVGMBQDZIN-UHFFFAOYSA-N C1=C(C=CC2=CC=CC=C12)C1=NC(=NC(=N1)C1=CC2=CC=CC=C2C=C1)C1=CC=C(C=C1)C=1C=CC=C2C=CC(NC=12)=O Chemical compound C1=C(C=CC2=CC=CC=C12)C1=NC(=NC(=N1)C1=CC2=CC=CC=C2C=C1)C1=CC=C(C=C1)C=1C=CC=C2C=CC(NC=12)=O VRVKAVGMBQDZIN-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- GQVWHWAWLPCBHB-UHFFFAOYSA-L beryllium;benzo[h]quinolin-10-olate Chemical compound [Be+2].C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21.C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21 GQVWHWAWLPCBHB-UHFFFAOYSA-L 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- RMRJXGBAOAMLHD-CTAPUXPBSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-CTAPUXPBSA-N 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 2
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- ORTRWBYBJVGVQC-UHFFFAOYSA-N hexadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCS ORTRWBYBJVGVQC-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 2
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Substances C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- BHHYHSUAOQUXJK-UHFFFAOYSA-L zinc fluoride Chemical compound F[Zn]F BHHYHSUAOQUXJK-UHFFFAOYSA-L 0.000 description 2
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- ZRKMQKLGEQPLNS-UHFFFAOYSA-N 1-Pentanethiol Chemical compound CCCCCS ZRKMQKLGEQPLNS-UHFFFAOYSA-N 0.000 description 1
- NDDIKKNFARRUNI-UHFFFAOYSA-N 1-phosphorosopropane Chemical compound CCCP=O NDDIKKNFARRUNI-UHFFFAOYSA-N 0.000 description 1
- FKEASPXDTWVHGF-UHFFFAOYSA-N 10-hydroxy-1h-benzo[h]quinolin-2-one Chemical compound C1=CC(=O)NC2=C3C(O)=CC=CC3=CC=C21 FKEASPXDTWVHGF-UHFFFAOYSA-N 0.000 description 1
- ATKYPLNPUMJYCQ-UHFFFAOYSA-N 2-(2-hydroxyphenyl)-3H-1,3-benzothiazole-2-carboxylic acid Chemical compound N1C2=CC=CC=C2SC1(C(=O)O)C1=CC=CC=C1O ATKYPLNPUMJYCQ-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- AWQSAIIDOMEEOD-UHFFFAOYSA-N 5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-furanone Chemical compound CC(=O)CCC1CC(=O)OC1(C)C AWQSAIIDOMEEOD-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- MYPDMHWBPRKWAK-UHFFFAOYSA-N C(CCC)P(CCCC)CCCC.[S] Chemical compound C(CCC)P(CCCC)CCCC.[S] MYPDMHWBPRKWAK-UHFFFAOYSA-N 0.000 description 1
- FVDHOWZVGXODEB-UHFFFAOYSA-N C1(=CC=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1.[S] Chemical compound C1(=CC=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1.[S] FVDHOWZVGXODEB-UHFFFAOYSA-N 0.000 description 1
- JYQAOYCGKIWUQF-UHFFFAOYSA-N C=CCCCCCCCCCCCCCCCC.[S] Chemical compound C=CCCCCCCCCCCCCCCCC.[S] JYQAOYCGKIWUQF-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229910006069 SO3H Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- RHKQUGZIMGIIEA-UHFFFAOYSA-N [S].CCCCCCCCP(CCCCCCCC)CCCCCCCC Chemical compound [S].CCCCCCCCP(CCCCCCCC)CCCCCCCC RHKQUGZIMGIIEA-UHFFFAOYSA-N 0.000 description 1
- GIKNWQHOINULKX-UHFFFAOYSA-N [Se].C1(=CC=CC=C1)PC1=CC=CC=C1 Chemical compound [Se].C1(=CC=CC=C1)PC1=CC=CC=C1 GIKNWQHOINULKX-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- UYJXRRSPUVSSMN-UHFFFAOYSA-P ammonium sulfide Chemical compound [NH4+].[NH4+].[S-2] UYJXRRSPUVSSMN-UHFFFAOYSA-P 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- UENWRTRMUIOCKN-UHFFFAOYSA-N benzyl thiol Chemical compound SCC1=CC=CC=C1 UENWRTRMUIOCKN-UHFFFAOYSA-N 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 1
- FEYBQJQBTXMRPU-UHFFFAOYSA-N butyl(oxido)phosphanium Chemical compound CCCC[PH2]=O FEYBQJQBTXMRPU-UHFFFAOYSA-N 0.000 description 1
- DLIJPAHLBJIQHE-UHFFFAOYSA-N butylphosphane Chemical compound CCCCP DLIJPAHLBJIQHE-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- IGARGHRYKHJQSM-UHFFFAOYSA-N cyclohexylbenzene Chemical compound C1CCCCC1C1=CC=CC=C1 IGARGHRYKHJQSM-UHFFFAOYSA-N 0.000 description 1
- VTXVGVNLYGSIAR-UHFFFAOYSA-N decane-1-thiol Chemical compound CCCCCCCCCCS VTXVGVNLYGSIAR-UHFFFAOYSA-N 0.000 description 1
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N dimethylmethane Natural products CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 1
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- GPAYUJZHTULNBE-UHFFFAOYSA-N diphenylphosphine Chemical compound C=1C=CC=CC=1PC1=CC=CC=C1 GPAYUJZHTULNBE-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 229940093495 ethanethiol Drugs 0.000 description 1
- RWZKAROCZDFJEI-UHFFFAOYSA-N ethanol;zinc Chemical compound [Zn].CCO.CCO RWZKAROCZDFJEI-UHFFFAOYSA-N 0.000 description 1
- AZHPCFQBBJISDG-UHFFFAOYSA-N ethyl(oxido)phosphanium Chemical compound CC[PH2]=O AZHPCFQBBJISDG-UHFFFAOYSA-N 0.000 description 1
- JLHMVTORNNQCRM-UHFFFAOYSA-N ethylphosphine Chemical compound CCP JLHMVTORNNQCRM-UHFFFAOYSA-N 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 125000004404 heteroalkyl group Chemical group 0.000 description 1
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 1
- DEQLTFPCJRGSHW-UHFFFAOYSA-N hexadecylbenzene Chemical compound CCCCCCCCCCCCCCCCC1=CC=CC=C1 DEQLTFPCJRGSHW-UHFFFAOYSA-N 0.000 description 1
- 125000000717 hydrazino group Chemical group [H]N([*])N([H])[H] 0.000 description 1
- 125000005638 hydrazono group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- DLINORNFHVEIFE-UHFFFAOYSA-N hydrogen peroxide;zinc Chemical compound [Zn].OO DLINORNFHVEIFE-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- HRHKULZDDYWVBE-UHFFFAOYSA-N indium;oxozinc;tin Chemical compound [In].[Sn].[Zn]=O HRHKULZDDYWVBE-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- HXZSFRJGDPGVNY-UHFFFAOYSA-N methyl(oxido)phosphanium Chemical compound C[PH2]=O HXZSFRJGDPGVNY-UHFFFAOYSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- SAWKFRBJGLMMES-UHFFFAOYSA-N methylphosphine Chemical compound PC SAWKFRBJGLMMES-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- DUWWHGPELOTTOE-UHFFFAOYSA-N n-(5-chloro-2,4-dimethoxyphenyl)-3-oxobutanamide Chemical compound COC1=CC(OC)=C(NC(=O)CC(C)=O)C=C1Cl DUWWHGPELOTTOE-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- QJAOYSPHSNGHNC-UHFFFAOYSA-N octadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCCCS QJAOYSPHSNGHNC-UHFFFAOYSA-N 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- WEYHWRWGAACKIL-UHFFFAOYSA-N pentylphosphane Chemical compound CCCCCP WEYHWRWGAACKIL-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- DWUCCPNOMFYDOL-UHFFFAOYSA-N propyl(sulfanyl)silicon Chemical compound CCC[Si]S DWUCCPNOMFYDOL-UHFFFAOYSA-N 0.000 description 1
- NNOBHPBYUHDMQF-UHFFFAOYSA-N propylphosphine Chemical compound CCCP NNOBHPBYUHDMQF-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- GOBNDSNLXZYUHQ-UHFFFAOYSA-N selenium;tributylphosphane Chemical compound [Se].CCCCP(CCCC)CCCC GOBNDSNLXZYUHQ-UHFFFAOYSA-N 0.000 description 1
- MJNSMKHQBIVKHV-UHFFFAOYSA-N selenium;trioctylphosphane Chemical compound [Se].CCCCCCCCP(CCCCCCCC)CCCCCCCC MJNSMKHQBIVKHV-UHFFFAOYSA-N 0.000 description 1
- SCTHSTKLCPJKPF-UHFFFAOYSA-N selenium;triphenylphosphane Chemical compound [Se].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 SCTHSTKLCPJKPF-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical compound CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229940102001 zinc bromide Drugs 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- GTLDTDOJJJZVBW-UHFFFAOYSA-N zinc cyanide Chemical compound [Zn+2].N#[C-].N#[C-] GTLDTDOJJJZVBW-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229940105296 zinc peroxide Drugs 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- RXBXBWBHKPGHIB-UHFFFAOYSA-L zinc;diperchlorate Chemical compound [Zn+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O RXBXBWBHKPGHIB-UHFFFAOYSA-L 0.000 description 1
- NHXVNEDMKGDNPR-UHFFFAOYSA-N zinc;pentane-2,4-dione Chemical compound [Zn+2].CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O NHXVNEDMKGDNPR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/54—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
- C09K11/562—Chalcogenides
- C09K11/565—Chalcogenides with zinc cadmium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/28—Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
Definitions
- a core shell quantum dot and an electronic device including the same are disclosed.
- Nanoparticles have physical characteristics (e.g., energy bandgaps, melting points, etc.) that are controlled depending on particle sizes unlike bulk materials.
- semiconductor nanocrystal particles also referred to as quantum dots are crystalline materials having sizes of several nanometers.
- the semiconductor nanocrystal particles are of such small size that they have a large surface area per unit volume and exhibit quantum confinement effects, and thus have different properties and characteristics of bulk materials having the same composition.
- Quantum dots may absorb light from an excitation source to attain an excited state and then emit energy corresponding to their energy bandgaps.
- An embodiment provides a cadmium-free semiconductor nanocrystal particle capable of emitting green light with improved efficiency.
- Another embodiment provides a method of producing the semiconductor nanocrystal particle.
- Another embodiment provides an electronic device including the aforementioned semiconductor nanocrystal particle.
- a quantum dot in an embodiment, includes a core including a first semiconductor nanocrystal including zinc, selenium, and tellurium, and a semiconductor nanocrystal shell disposed on the surface of the core, the shell including zinc, selenium, and sulfur, wherein the quantum dot is configured to emit green light, the quantum dot does not include cadmium, and the quantum dot has a mole ratio Te:Se of tellurium relative to selenium of greater than about 0.05:1 and less than or equal to about 0.5:1.
- the green light may have a maximum peak wavelength of greater than or equal to about 500 nanometers (nm).
- the green light may have a maximum peak wavelength of less than or equal to about 550 nm.
- the quantum dot may have a mole ratio Te:Se of tellurium relative to selenium of greater than or equal to about 0.055:1.
- the quantum dot may have a mole ratio Te:Se of tellurium relative to selenium of greater than or equal to about 0.06:1.
- the quantum dot may have a mole ratio S:Se of sulfur relative to selenium of greater than or equal to about 0.5:1, for example, greater than or equal to about 0.6:1, greater than or equal to about 0.7:1, greater than or equal to about 0.8:1, greater than or equal to about 0.9:1, greater than or equal to about 1:1, or greater than or equal to about 1.05:1.
- the quantum dot may have a mole ratio of sulfur relative to selenium of less than or equal to about 2:1, for example, less than or equal to about 1.9:1, less than or equal to about 1.8:1, less than or equal to about 1.7:1, less than or equal to about 1.6:1, less than or equal to about 1.5:1, less than or equal to about 1.4:1, or less than or equal to about 1.3:1.
- the quantum dot may have a mole ratio (Se+S)/Te of a sum of sulfur and selenium relative to tellurium of greater than or equal to about 15:1.
- the quantum dot may have a mole ratio (Se+S)/Te of a sum of sulfur and selenium relative to tellurium of greater than or equal to about 20:1.
- a mole ratio of zinc relative to a sum of sulfur and selenium may be less than or equal to about 1.1:1.
- the core may include ZnTe x Se 1-x , wherein, x is greater than or equal to about 0.1 and less than or equal to about 0.5.
- the semiconductor nanocrystal shell may have a composition that varies in a radial direction.
- a concentration of the sulfur increases toward the surface of the quantum dot.
- the semiconductor nanocrystal shell may include a first layer disposed directly on the core and a second layer disposed on the first layer, wherein the first layer may include a second semiconductor nanocrystal and the second layer may include a third semiconductor nanocrystal having a different composition from the second semiconductor nanocrystal.
- the second semiconductor nanocrystal may include zinc, selenium, and optionally sulfur.
- the third semiconductor nanocrystal may include zinc and sulfur.
- the second layer may be an outermost layer and the third semiconductor nanocrystal may not include selenium.
- the quantum dot may have an average particle size of greater than or equal to about 6 nm.
- the quantum dot may have an average particle size of greater than or equal to about 10 nm.
- the quantum dot may constitute a population having a standard deviation of a particle size distribution of less than or equal to about 10 percent.
- the quantum dot may have quantum efficiency of greater than or equal to about 60 percent.
- a valence band edge and a conduction band edge of the core may be in the bandgap of the semiconductor nanocrystal shell.
- a light emitting device may include a first electrode and a second electrode facing each other; and a quantum dot emission layer disposed between the first electrode and the second electrode and including a plurality of quantum dots, wherein the plurality of quantum dots may include the aforementioned quantum dot.
- a charge auxiliary layer may be included between the first electrode and the quantum dot emission layer, between the second electrode and the quantum dot emission layer, or between the first electrode and the quantum dot emission layer and between the second electrode and the quantum dot emission layer.
- the charge auxiliary layer may include a charge transport layer, a charge injection layer, or a combination thereof.
- the electroluminescent device may have peak external quantum efficiency of greater than or equal to about 4 percent.
- the electroluminescent device may emit light having a maximum luminance of greater than or equal to about 5,000 candela per square meter (cd/m 2 ).
- an electronic device in another embodiment, includes the aforementioned semiconductor nanocrystal particle.
- the electronic device may be a display device, a light emitting diode (LED), a quantum dot light emitting diode (QLED), an organic light emitting diode (OLED), a sensor, an image sensor, or a solar cell.
- LED light emitting diode
- QLED quantum dot light emitting diode
- OLED organic light emitting diode
- sensor an image sensor, or a solar cell.
- the cadmium-free quantum dot may be capable of emitting green light with improved efficiency.
- the quantum dot according to an embodiment may be applied to various display devices, biolabeling (biosensor, bioimaging), a photodetector, a solar cell, a hybrid composite, and the like.
- the quantum dot of an embodiment may exhibit improved external quantum efficiency and maximum luminance when applied to an electroluminescent device.
- the quantum dot of an embodiment may exhibit a reduced full width at half maximum (FWHM) and increased quantum efficiency.
- FIG. 1 is a schematic cross-sectional view of a QD LED device according to non-limiting embodiment.
- FIG. 2 is a schematic cross-sectional view of a QD LED device according to non-limiting embodiment.
- FIG. 3 is a schematic cross-sectional view of a QD LED device according to non-limiting embodiment.
- FIG. 4 shows X-ray diffraction spectra of the synthesized core in Example.
- FIG. 5 shows a PL spectrum of the synthesized core shell quantum dot in Example.
- first,” “second,” “third” etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer, or section. Thus, “a first element,” “component,” “region,” “layer” or “section” discussed below could be termed a second element, component, region, layer, or section without departing from the teachings herein.
- “About” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” can mean within one or more standard deviations, or within ⁇ 10%, or 5% of the stated value
- substituted refers to the case where in a compound or a corresponding moiety hydrogen is replaced by a substituent such as a C1 to C30 alkyl group, a C2 to C30 alkenyl group, a C2 to C30 alkynyl group, a C6 to C30 aryl group, a C7 to C30 alkylaryl group, a C1 to C30 alkoxy group, a C1 to C30 heteroalkyl group, a C3 to C30 heteroalkylaryl group, a C3 to C30 cycloalkyl group, a C3 to C15 cycloalkenyl group, a C6 to C30 cycloalkynyl group, a C2 to C30 heterocycloalkyl group, a halogen (—F, —Cl, —Br, or —I), a hydroxy group (—OH), a nitro group (—NO), a halogen (—F, —Cl, —B
- hydrocarbon group refers to a group including carbon and hydrogen (e.g., an alkyl, alkenyl, alkynyl, or aryl group).
- the hydrocarbon group may be a group having a mono-valence or greater formed by removal of one or more hydrogen atoms from, alkane, alkene, alkyne, or arene.
- at least one methylene may be replaced by an oxide moiety, a carbonyl moiety, an ester moiety, —NH—, or a combination thereof.
- alkyl refers to a linear or branched saturated monovalent hydrocarbon group (methyl, ethyl hexyl, etc.).
- alkenyl refers to a linear or branched monovalent hydrocarbon group having one or more carbon-carbon double bond.
- alkynyl refers to a linear or branched monovalent hydrocarbon group having one or more carbon-carbon triple bond.
- aryl refers to a group formed by removal of at least one hydrogen from an aromatic group (e.g., a phenyl or naphthyl group).
- hetero refers to one including 1 to 3 heteroatoms of N, O, S, Si, P, or a combination thereof.
- Group refers to a group of Periodic Table.
- Semiconductor nanocrystal particles may absorb light from an excitation source and may emit energy corresponding to their energy bandgap.
- Energy bandgaps of quantum dots may be changed according to the particle size and composition of quantum dots. For example, as the particle sizes of quantum dots increase, the quantum dots may have narrow energy bandgaps and increased light emitting wavelengths.
- Semiconductor nanocrystals have drawn attention as light emitting materials in various fields, particularly in a field of a display device, an energy device, or a bioluminescent device.
- cadmium may cause severe environment/health problems and may be a restricted element by Restriction of Hazardous Substances Directive (RoHS) in a plurality of countries. Therefore, it is necessary to develop cadmium-free quantum dots which may emit light of a desired wavelength while having improved light emitting characteristics (for example, as applied to an electroluminescent device) and does not include harmful heavy metals such as cadmium and lead.
- RoHS Hazardous Substances Directive
- a quantum dot according to an embodiment includes a ZnTeSe-based material (e.g., alloy) core, and further include a Zn, Se, and Se shell formed about the core.
- the quantum dot of the embodiment may have a predetermined composition as a whole (as below) and thereby, may emit green light with improved efficiency even though the quantum dot does not include cadmium, and may be recognized by a person of ordinary skill as being cadmium-free.
- the quantum dots according to an embodiment have this structure and composition and accordingly, may exhibit improved properties in an electroluminescent device.
- a quantum dot (or quantum dots) includes (or include) a core including a first semiconductor to nanocrystal including zinc, selenium, and tellurium, and a semiconductor nanocrystal shell disposed on the surface of the core (e.g., at least a portion of the surface of the core), the shell including zinc, selenium, and sulfur.
- the quantum dot(s) does not include cadmium.
- the quantum dot(s) are configured to emit green light if irradiated with excitation light or applied, i.e., present, in an emission layer of an electroluminescent device.
- the quantum dot(s) have a mole ratio Te:Se of tellurium relative to selenium may be greater than about 0.05:1 and less than or equal to about 0.5:1.
- the green light may have a maximum peak wavelength of greater than or equal to about 500 nm, for example, greater than or equal to about 510 nm, or greater than or equal to about 520 nm.
- the green light may have a maximum peak wavelength of less than or equal to about 550 nm, for example, less than or equal to about 540 nm, or less than or equal to about 535 nm.
- the green light may have a maximum peak wavelength of about 515 nm to about 530 nm.
- the quantum dot(s) of an embodiment may emit green light having improved quantum efficiency (e.g., greater than or equal to about 60 percent (%), greater than or equal to about 61%, greater than or equal to about 62%, greater than or equal to about 63%, greater than or equal to about 64%, or greater than or equal to about 65%), by having the aforementioned structure and a composition which will be described later.
- the quantum dot(s) of an embodiment may emit green light having a full width at half maximum (FWHM) of less than or equal to about 60 nm, for example, less than or equal to about 55 nm, less than or equal to about 50 nm, or less than or equal to about 45 nm.
- FWHM full width at half maximum
- the core(s) may include a first semiconductor nanocrystal including zinc, selenium, and tellurium.
- the core may include ZnTe x Se 1-x , wherein, x is greater than or equal to about 0.1 and less than or equal to about 0.5.
- a content of the tellurium may be greater than or equal to about 0.1 moles (mol), for example, greater than or equal to about 0.11 mol, greater than or equal to about 0.12 mol, greater than or equal to about 0.13 mol, greater than or equal to about 0.14 mol, greater than or equal to about 0.15 mol, greater than or equal to about 0.16 mol, greater than or equal to about 0.17 mol, greater than or equal to about 0.18 mol, or greater than or equal to about 0.19 mol with respect to 1 mol of the selenium.
- a content of the tellurium may be less than or equal to about 0.5 mol, for example, less than or equal to about 0.49 mol, less than or equal to about 0.48 mol, less than or equal to about 0.47 mol, less than or equal to about 0.46 mol, less than or equal to about 0.45 mol, less than or equal to about 0.44 mol, less than or equal to about 0.43 mol, less than or equal to about 0.42 mol, less than or equal to about 0.41 mol, less than or equal to about 0.40 mol, less than or equal to about 0.39 mol, less than or equal to about 0.38 mol, or less than or equal to about 0.37 mol with respect to 1 mol of the selenium.
- a peak of the core When examined through an X-ray diffraction analysis, a peak of the core may be shifted from ZnSe peaks toward ZnTe, and this result implies that the core forms a ZnTeSe alloy.
- the shell which is described below, is disposed on the core having the aforementioned composition, final quantum dots may emit green light with little or no decrease in efficiency.
- the adoption of the shell having a composition that will be described below along with an increased amount of tellurium may enable an energy bandgap alignment between the core and the shell layer in final quantum dots to efficiently confine excitons and thereby, maintain improved luminous efficiency as well as obtain a desired light emitting wavelength.
- the semiconductor nanocrystal shell in the quantum dot(s) includes zinc, selenium, and sulfur.
- the shell may be a multi-layered shell including a plurality of layers. Adjacent layers in the plurality of layers of the shell may include a semiconductor material having a different composition.
- the multi-layered shell may include a first layer disposed directly on the core and a second layer disposed on the first layer.
- the first layer may include a second semiconductor nanocrystal.
- the second layer may include a third semiconductor nanocrystal having a different composition from that of the second semiconductor nanocrystal.
- the second layer may be an outermost layer of the quantum dots.
- the second semiconductor nanocrystal may include zinc, selenium, and optionally, sulfur.
- the third semiconductor nanocrystal may include zinc and sulfur.
- the third semiconductor nanocrystal may not include selenium.
- the quantum dot(s) may have a ZnSe layer(s) (e.g., a first layer) directly disposed on the aforementioned core.
- the ZnSe layer(s) may not include S.
- a thickness of the first layer including ZnSe may be greater than or equal to about 4 monolayers, for example, greater than or equal to about 5 monolayers and less than or equal to about 10 monolayers, for example, less than or equal to about 9 monolayers.
- a thickness of each layer may be determined by considering a composition of the entire quantum dots.
- the quantum dots may have a layer composed of ZnS in the outermost.
- a thickness of each layer is adjusted to satisfy a composition of the entire quantum dots described later.
- each layer may be a gradient alloy having a composition that changes or varies in a radial direction.
- a concentration (i.e., a content) of sulfur in the semiconductor nanocrystal shell may be increased toward the surface of the quantum dots.
- the concentration (content) of the sulfur may have a concentration gradient that increases as being apart from the core.
- the quantum dot(s) may have a mole ratio Te:Se of tellurium relative to selenium (e.g., as measured by an inductively coupled plasma-atomic emission spectroscopy (ICP-AES)) of greater than about 0.05:1, for example, greater than or equal to about 0.055:1, greater than or equal to about 0.06:1, greater than or equal to about 0.065:1, or greater than or equal to about 0.07:1.
- ICP-AES inductively coupled plasma-atomic emission spectroscopy
- the mole ratio of tellurium relative to selenium may be less than or equal to about 0.5:1, for example, less than or equal to about 0.49:1, less than or equal to about 0.48:1, less than or equal to about 0.47:1, less than or equal to about 0.46:1, less than or equal to about 0.45:1, less than or equal to about 0.44:1, less than or equal to about 0.43:1, less than or equal to about 0.42:1, less than or equal to about 0.41:1, less than or equal to about 0.40:1, less than or equal to about 0.39:1, less than or equal to about 0.38:1, less than or equal to about 0.37:1, less than or equal to about 0.36:1, less than or equal to about 0.35:1, less than or equal to about 0.34:1, less than or equal to about 0.33:1, less than or equal to about 0.32:1, less than or equal to about 0.31:1, less than or equal to about 0.30:1, less than or equal to about 0.29:1, less than or equal to about 0.28:1, less than or equal to about
- the quantum dot(s) may have a mole ratio Te:S of tellurium relative to sulfur (for example, as measured by an inductively coupled plasma-atomic emission spectroscopy (ICP-AES)) of greater than or equal to about 0.02:1, for example, greater than or equal to about 0.03:1, greater than or equal to about 0.035:1, greater than or equal to about 0.04:1, greater than or equal to about 0.045:1, greater than or equal to about 0.05:1, greater than or equal to about 0.055:1, greater than or equal to about 0.06:1 or greater than or equal to about 0.065:1.
- ICP-AES inductively coupled plasma-atomic emission spectroscopy
- the mole ratio of tellurium relative to sulfur may be less than or equal to about 0.2:1, for example, less than or equal to about 0.15:1, less than or equal to about 0.14:1, less than or equal to about 0.13:1, less than or equal to about 0.12:1, less than or equal to about 0.11:1, less than or equal to about 0.1:1, less than or equal to about 0.09:1, less than or equal to about 0.08:1, or less than or equal to about 0.075:1.
- the zinc content (e.g., the zinc concentration) may vary depending on the Se and S content.
- a mole ratio S:Se of sulfur relative to selenium may be greater than or equal to about 0.6:1, for example, greater than or equal to about 0.7:1, greater than or equal to about 0.8:1, greater than or equal to about 0.9:1, greater than or equal to about 0.95:1, greater than or equal to about 1:1, or greater than or equal to about 1.05:1.
- the mole ratio of sulfur relative to selenium may be less than or equal to about 2:1, less than or equal to about 1.95:1, less than or equal to about 1.9:1, less than or equal to about 1.8:1, less than or equal to about 1.7:1, less than or equal to about 1.6:1, less than or equal to about 1.5:1, less than or equal to about 1.4:1, less than or equal to about 1.3:1, or less than or equal to about 1.2:1.
- the quantum dot(s) may have a mole ratio (Se+S)/Te of a sum of sulfur and selenium relative to tellurium of greater than or equal to about 15:1, greater than or equal to about 16:1, greater than or equal to about 17:1, greater than or equal to about 18:1, greater than or equal to about 19:1, greater than or equal to about 20:1, greater than or equal to about 21:1, greater than or equal to about 22:1, greater than or equal to about 23:1, greater than or equal to about 24:1, or greater than or equal to about 25:1.
- a mole ratio (Se+S)/Te of a sum of sulfur and selenium relative to tellurium of greater than or equal to about 15:1, greater than or equal to about 16:1, greater than or equal to about 17:1, greater than or equal to about 18:1, greater than or equal to about 19:1, greater than or equal to about 20:1, greater than or equal to about 21:1, greater than or equal to about 22:1, greater than or equal to about 23:1, greater than
- the quantum dot(s) may have a mole ratio (Se+S)/Te of a sum of sulfur and selenium relative to tellurium of less than or equal to about 60:1, less than or equal to about 59:1, less than or equal to about 58:1, less than or equal to about 57:1, less than or equal to about 56:1, less than or equal to about 55:1, less than or equal to about 54:1, less than or equal to about 53:1, less than or equal to about 52:1, less than or equal to about 51:1, less than or equal to about 50:1, less than or equal to about 49:1, less than or equal to about 48:1, or less than or equal to about 47:1.
- the quantum dot(s) may have a mole ratio S:Zn of sulfur relative to zinc (for example, as measured by an inductively coupled plasma-atomic emission spectroscopy (ICP-AES)) of greater than or equal to about 0.3:1, greater than or equal to about 0.35:1, greater than or equal to about 0.4:1, or greater than or equal to about 0.45:1.
- the quantum dot(s) may have a mole ratio S:Zn may be less than or equal to about 0.8:1, less than or equal to about 0.7:1, less than or equal to about 0.6:1, or less than or equal to about 0.55:1.
- the quantum dots may have any shape.
- the quantum dot(s) may have spherical shapes, polyhedron shapes, multi-pod shapes, or a combination thereof.
- the core(s) may have an average size of greater than or equal to about 3 nm, or greater than or equal to about 3.5 nm.
- the core(s) may have an average size of less than or equal to about 5 nm, for example, less than or equal to about 4 nm.
- the aforementioned quantum dot(s) may constitute a quantum dot population.
- the quantum dot (or quantum dot population) may have a (average) particle size of greater than or equal to about 6 nm, for example, greater than or equal to about 7 nm, or greater than or equal to about 8 nm.
- the sizes of the quantum dots may refer to diameters (or diameters calculated from electron microscope 2D images of the quantum dots under the assumption that they have spherical shapes, when the quantum dots do not have spherical shapes).
- the (average) particle size of the quantum dots (or population) may be less than or equal to about 50 nm, for example, less than or equal to about 45 nm, less than or equal to about 40 nm, less than or equal to about 35 nm, less than or equal to about 30 nm, less than or equal to about 25 nm, less than or equal to about 24 nm, less than or equal to about 23 nm, less than or equal to about 22 nm, less than or equal to about 21 nm, less than or equal to about 20 nm, less than or equal to about 19 nm, less than or equal to about 18 nm, less than or equal to about 17 nm, less than or equal to about 16 nm, less than or equal to about 15 nm, less than or equal to about 14 nm, less than or equal to about 13 nm, less than or equal to about 12 nm, less than or equal to about 11 nm, or less than or equal to about 10 nm.
- the population of the aforementioned quantum dots may have a standard deviation of less than or equal to about 10%, less than or equal to about 9%, or less than or equal to about 8% of an average size thereof.
- the quantum dots may include organic ligands on the surfaces.
- the organic ligands may include RCOOH, RNH 2 , R 2 NH, R 3 N, RSH, RH 2 PO, R 2 HPO, R 3 PO, RH 2 P, R 2 HP, R 3 P, ROH, RCOOR′, RPO(OH) 2 , RHPOOH, R 2 POOH (wherein, R and R′ are independently a C1 to C40 substituted or unsubstituted aliphatic hydrocarbon, or a C6 to C40 substituted or unsubstituted aromatic hydrocarbon, or a combination thereof), or a combination thereof.
- the ligands may be used alone or in a mixture of two or more compounds.
- organic ligand compound may be methane thiol, ethane thiol, propane thiol, butane thiol, pentane thiol, hexane thiol, octane thiol, dodecane thiol, hexadecane thiol, octadecane thiol, benzyl thiol; methane amine, ethane amine, propane amine, butane amine, pentane amine, hexane amine, octane amine, dodecane amine, hexadecyl amine, oleyl amine, octadecyl amine, dimethyl amine, diethyl amine, dipropyl amine; methanoic acid, ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoinoid
- the organic ligand compound may be used alone or as a mixture of two or more.
- the organic ligand compound may be a combination of RCOOH and amine (e.g., RNH 2 , R 2 NH, and/or R 3 N) wherein R is defined above.
- the use of a core-shell structure has been suggested or proposed, but most of these core-shell quantum dots having desirable properties are cadmium-based materials. Accordingly, development of cadmium-free semiconductor nanocrystal particles having desirable photoluminescence properties is desired. It is desirable to develop a material exhibiting improved electroluminescence properties, when applied to or present in an electroluminescent device as cadmium-free quantum dots. Indium phosphide exhibits relatively low efficiency, when applied to an electroluminescent device, and ZnSe-based quantum dots may not easily provide light of a green wavelength having improved electroluminescence properties.
- the quantum dot(s) of an embodiment may emit green light of a desired wavelength with improved efficiency.
- the quantum dots of an embodiment may exhibit improved peak external quantum efficiency (Max EQE) and maximum luminance in an electroluminescent device described later.
- a method of producing the quantum dot(s) of an embodiment includes
- the forming of the semiconductor nanocrystal shell may include reacting the zinc precursor and the selenium precursor and then, reacting the zinc precursor and the sulfur precursor.
- the core may be obtained by preparing a zinc precursor solution including a zinc precursor and an organic ligand; preparing a selenium precursor and a tellurium precursor; heating the zinc precursor solution at a core-forming reaction temperature, and adding the selenium precursor and the tellurium precursor together with optionally an organic ligand to perform the core-forming reaction.
- a content of the selenium precursor may be less than or equal to about 10 moles (mol), for example, less than or equal to about 9 mol, or less than or equal to about 8 mol, per 1 mol of the tellurium precursor.
- the amount of the selenium precursor may be greater than or equal to about 2 mol, for example, greater than or equal to about 3 mol, greater than or equal to about 4 mol, or greater than or equal to about 5 mol, per 1 mol of the tellurium precursor.
- the zinc precursor may include a Zn metal powder, ZnO, an alkylated Zn compound (e.g., C2 to C30 dialkyl zinc such as diethyl zinc), a Zn alkoxide (e.g., a zinc ethoxide), a Zn carboxylate (e.g., a zinc acetate), a Zn nitrate, a Zn perchlorate, a Zn sulfate, a Zn acetylacetonate, a Zn halide (e.g., a zinc chloride), a Zn cyanide, a Zn hydroxide, or a combination thereof.
- an alkylated Zn compound e.g., C2 to C30 dialkyl zinc such as diethyl zinc
- a Zn alkoxide e.g., a zinc ethoxide
- a Zn carboxylate e.g., a zinc acetate
- Examples of the zinc precursor may be dimethyl zinc, diethyl zinc, a zinc acetate, a zinc acetylacetonate, a zinc iodide, a zinc bromide, a zinc chloride, a zinc fluoride, a zinc carbonate, a zinc cyanide, a zinc nitrate, a zinc oxide, a zinc peroxide, a zinc perchlorate, a zinc sulfate, or a combination thereof.
- the selenium precursor may include selenium-trioctyl phosphine (Se-TOP), selenium-tributyl phosphine (Se-TBP), selenium-triphenyl phosphine (Se-TPP), selenium-diphenyl phosphine (Se-DPP), or a combination thereof, but is not limited thereto.
- the tellurium precursor may include tellurium-tributyl phosphine (Te-TBP), tellurium-triphenyl phosphine (Te-TPP), tellurium-diphenyl phosphine (Te-DPP), or a combination thereof, but is not limited thereto.
- the sulfur precursor may include hexane thiol, octane thiol, decane thiol, dodecane thiol, hexadecane thiol, mercapto propyl silane, sulfur-trioctyl phosphine (S-TOP), sulfur-tributyl phosphine (S-TBP), sulfur-triphenyl phosphine (S-TPP), sulfur-trioctyl amine (S-TOA), sulfur-octadecene (S-ODE), bistrimethylsilyl sulfur, ammonium sulfide, sodium sulfide, or a combination thereof.
- S-TOP sulfur-trioctyl phosphine
- S-TBP sulfur-tributyl phosphine
- S-TPP sulfur-triphenyl phosphine
- S-TOA sulfur-octadecene
- the organic solvent may include a C6 to C22 primary amine such as a hexadecyl amine, a C6 to C22 secondary amine such as dioctyl amine, a C6 to C40 tertiary amine such as a trioctyl amine, a nitrogen-containing heterocyclic compound such as pyridine, a C6 to C40 olefin such as octadecene, a C6 to C40 aliphatic hydrocarbon such as hexadecane, octadecane, squalene, or squalane, an aromatic hydrocarbon substituted with a C6 to C30 alkyl group such as phenyl dodecane, phenyl tetradecane, or phenyl hexadecane, a primary, secondary, or tertiary phosphine (e.g., trioctylphosphine) substituted with at least one (e
- trioctyl phosphine oxide such as (e.g., 1, 2, or 3) substituted with a C6 to C22 alkyl group, a C12 to C22 aromatic ether such as a phenyl ether or a benzyl ether, or a combination thereof.
- the organic ligand may coordinate the surface of the produced nanocrystals and may have an effect on the light emitting and electrical characteristics as well as may well disperse the nanocrystals in the solution phase. Details for the organic ligand are the same as described above.
- a reaction temperature for forming the core may be greater than or equal to about 280° C., greater than or equal to about 290° C., greater than or equal to about 300° C., or greater than or equal to about 310° C. and less than or equal to about 350° C., for example, less than or equal to about 340° C.
- a reaction time for forming the core is not particularly limited and may be appropriately selected.
- Reaction conditions such as a reaction temperature or time for shell formation may be appropriately selected considering a desired shell composition.
- a solvent and optionally the organic ligand are heated (or vacuum-treated) at a predetermined temperature (e.g., greater than or equal to about 100° C.), and may be heated again at predetermined temperature (e.g., greater than or equal to about 100° C.) under an inert gas atmosphere.
- a predetermined temperature e.g., greater than or equal to about 100° C.
- predetermined temperature e.g., greater than or equal to about 100° C.
- predetermined temperature e.g., greater than or equal to about 100° C.
- shell precursors are sequentially or simultaneously added, and then heated at a predetermined reaction temperature to perform a shell-forming reaction.
- a mixture having a different ratio of the shell precursors may be sequentially added for a reaction time to form a shell (e.g., and addition having a gradient or a multi-layer) having a desired composition.
- the zinc precursor and the selenium precursor may be reacted to form a first layer, and then, the zinc precursor and the sulfur precursor may be reacted to form a second layer.
- a reaction temperature for forming the shell may be greater than or equal to about 280° C., for example, greater than or equal to about 290° C., or greater than or equal to about 300° C. and less than or equal to about 330° C., for example, less than or equal to about 325° C.
- amounts and concentrations of each precursor may be selected considering compositions of the core and shell and reactivity between precursors. For example, molar ratios relative to each precursor may be adjusted considering the desired compositions (Zn, S, Se) of the final quantum dots.
- the compositions of the final quantum dots may be confirmed by appropriate analytical means such as an inductively coupled plasma-atomic emission spectroscopy.
- a nonsolvent is added to reaction products and nanocrystal particles coordinated to the ligand compound may be separated.
- the nonsolvent may be a polar solvent that is miscible with the solvent used in the core formation and/or shell formation reactions and is not capable of dispersing the produced nanocrystals therein.
- the nonsolvent may be selected depending the solvent used in the reaction and may be for example acetone, ethanol, butanol, isopropanol, ethanediol, water, tetrahydrofuran (THF), dimethylsulfoxide (DMSO), diethyl ether, formaldehyde, acetaldehyde, ethylene glycol, a solvent having a similar solubility parameter to the foregoing solvents, or a combination thereof.
- the nanocrystals may be separated through centrifugation, sedimentation, chromatography, or distillation. The separated nanocrystals may be added to a washing solvent and washed, if necessary.
- the washing solvent has no particular limit and may have a similar solubility parameter to that of the ligand and may, for example, include hexane, heptane, octane, chloroform, toluene, benzene, and the like.
- an electronic device includes the aforementioned quantum dots.
- the device may include a display device, a light emitting diode (LED), an organic light emitting diode (OLED), a quantum dot LED, a sensor, a solar cell, an imaging sensor, or a liquid crystal display, but is not limited thereto.
- the electronic device may be a photoluminescent device (e.g., a lighting device such as a quantum dot sheet or a quantum dot rail, a liquid crystal display (LCD), etc.) or an electroluminescent device (e.g., QD LED).
- the electronic device may include a quantum dot sheet and the aforementioned semiconductor nanocrystal particles may be included in a quantum dot sheet (e.g., in a form of a semiconductor nanocrystal-polymer composite).
- the electronic device may be a liquid crystal display (LCD), a photoluminescent device (e.g., a quantum dot sheet, a quantum dot rail, or a lighting device), an electroluminescent device (e.g., QD LED), or a backlight unit.
- LCD liquid crystal display
- photoluminescent device e.g., a quantum dot sheet, a quantum dot rail, or a lighting device
- electroluminescent device e.g., QD LED
- a backlight unit e.g., a backlight unit.
- the electronic device may include a quantum dot sheet and the aforementioned quantum dots may be included in a quantum dot sheet (e.g., in a form of a semiconductor nanocrystal-polymer composite).
- the electronic device may be an electroluminescent device.
- the electronic device may include an anode 1 and a cathode 5 facing each other and quantum dot emission layer 3 disposed between the anode and the cathode and including a plurality of quantum dots, wherein the plurality of quantum dots may include the aforementioned blue light emitting semiconductor nanocrystal particle (refer to FIG. 1 ).
- the cathode may include an electron injecting conductor (e.g., having a relatively low work function).
- the anode may include a hole injection conductor (e.g., having a relatively high work function).
- the electron/hole injection conductor may include a metal-based material (e.g., a metal, a metal compound, an alloy, or a combination thereof) (aluminum, magnesium, tungsten, nickel, cobalt, platinum, palladium, calcium, LiF, and the like), a metal oxide such as gallium indium oxide, indium tin oxide, and the like, or a conductive polymer (e.g., having a relatively high work function) such as polyethylene dioxythiophene, but is not limited thereto.
- a metal-based material e.g., a metal, a metal compound, an alloy, or a combination thereof
- a metal oxide such as gallium indium oxide, indium tin oxide, and the like
- a conductive polymer
- At least one of the cathode and the anode may be a light-transmitting electrode or a transparent electrode.
- the anode and the cathode may be all light-transmitting electrodes.
- the electrode may be patterned.
- the light-transmitting electrode may be made of, for example a transparent conductor such as indium tin oxide (ITO) or indium zinc oxide (IZO), gallium indium tin oxide, zinc indium tin oxide, titanium nitride, polyaniline, or LiF/Mg:Ag, or a metal thin film of a thin monolayer or multilayer but is not limited thereto.
- a transparent conductor such as indium tin oxide (ITO) or indium zinc oxide (IZO), gallium indium tin oxide, zinc indium tin oxide, titanium nitride, polyaniline, or LiF/Mg:Ag, or a metal thin film of a thin monolayer or multilayer but is not limited thereto.
- an opaque conductor such as aluminum (Al), a lithium aluminum (Li:Al) alloy, a magnesium-silver alloy (Mg;Ag), or lithium fluoride-aluminum (LiF:Al).
- the light-transmitting electrode may be disposed on a (e.g., insulating) transparent substrate.
- the substrate may be rigid or flexible.
- the substrate may be a plastic, glass, or a metal.
- Thicknesses of the anode and the cathode are not particularly limited and may be appropriately selected considering device efficiency.
- the thickness of the anode (or the cathode) may be greater than or equal to about 5 nm, for example, greater than or equal to about 50 nm, but is not limited thereto.
- the thickness of the anode (or the cathode) may be less than or equal to about 100 micrometers ( ⁇ m), for example, less than or equal to about 10 ⁇ m, less than or equal to about 1 ⁇ m, less than or equal to about 900 nm, less than or equal to about 500 nm, or less than or equal to about 100 nm, but is not limited thereto.
- the quantum dot emission layer includes a plurality of quantum dots.
- the plurality of quantum dots may include a blue light emitting semiconductor nanocrystal particle according to the aforementioned embodiments.
- the quantum dot emission layer may include a monolayer of blue light emitting semiconductor nanocrystal particles.
- the quantum dot emission layer may be formed by applying dispersion in which the quantum dots are dispersed in a solvent by spin coating, inkjet or spray coating, and then drying the resultant.
- the emission layer may be formed to have a thickness of greater than or equal to about 5 nm, greater than or equal to about 10 nm, greater than or equal to about 15 nm, greater than or equal to about 20 nm, or greater than or equal to about 25 nm and less than or equal to about 200 nm, for example less than or equal to about 150 nm, less than or equal to about 100 nm, less than or equal to about 90 nm, less than or equal to about 80 nm, less than or equal to about 70 nm, less than or equal to about 60 nm, less than or equal to about 50 nm, less than or equal to about 40 nm, or less than or equal to about 30 nm.
- the electronic device may include a charge (hole or electron) auxiliary layer between the anode and the cathode.
- the electronic device may include a hole auxiliary layer 2 or an electron auxiliary layer 4 between the anode and the quantum dot emission layer and/or between the cathode and the quantum dot emission layer.
- the hole/electron auxiliary layer may be formed as a monolayer. However, the hole/electron auxiliary layer may be formed of plural layers including two or more stacked layers.
- the hole auxiliary layer may include for example a hole injection layer (HIL) to facilitate hole injection, a hole transport layer (HTL) to facilitate hole transport, an electron blocking layer (EBL) to inhibit electron transport, or a combination thereof.
- HIL hole injection layer
- HTL hole transport layer
- EBL electron blocking layer
- the hole injection layer may be disposed between the hole transport layer and the anode.
- the electron blocking layer may be disposed between the emission layer and the hole transport (injection) layer, but is not limited thereto.
- a thickness of each layer may be appropriately selected.
- each thickness of the layer may be greater than or equal to about 1 nm, greater than or equal to about 5 nm, greater than or equal to about 10 nm, greater than or equal to about 15 nm, greater than or equal to about 20 nm, or greater than or equal to about 25 nm and less than or equal to about 500 nm, less than or equal to about 400 nm, less than or equal to about 300 nm, less than or equal to about 200 nm, less than or equal to about 100 nm, less than or equal to about 90 nm, less than or equal to about 80 nm, less than or equal to about 70 nm, less than or equal to about 60 nm, or less than or equal to about 50 nm, but is not limited thereto.
- the hole injection layer may be an organic layer that is formed by a solution process (e.g., spin coating, etc.) such as PEDOT:PSS.
- the hole transport layer may be an organic layer that is formed by a solution process (e.g., spin coating, etc.).
- the electron auxiliary layer may include for example an electron injection layer (EIL) to facilitate electron injection, an electron transport layer (ETL) to facilitate electron transport, a hole blocking layer (HBL) to inhibit hole transport, or a combination thereof.
- EIL electron injection layer
- ETL electron transport layer
- HBL hole blocking layer
- the electron injection layer may be disposed between the electron transport layer and the cathode.
- the hole blocking layer may be disposed between the emission layer and the electron transport (injection) layer, but is not limited thereto.
- a thickness of each layer may be appropriately selected.
- each thickness of the layer may be greater than or equal to about 1 nm, greater than or equal to about 5 nm, greater than or equal to about 10 nm, greater than or equal to about 15 nm, greater than or equal to about 20 nm, or greater than or equal to about 25 nm and, less than or equal to about 500 nm, less than or equal to about 400 nm, less than or equal to about 300 nm, less than or equal to about 200 nm, less than or equal to about 100 nm, less than or equal to about 90 nm, less than or equal to about 80 nm, less than or equal to about 70 nm, less than or equal to about 60 nm, or less than or equal to about 50 nm, but is not limited thereto.
- the electron injection layer may be an organic layer formed by deposition.
- the electron transport layer may include an inorganic oxide nanoparticle or may be an organic layer formed by deposition.
- the quantum dot emission layer may be disposed in the hole injection (or transport) layer or an electron injection (or transport) layer or on the hole injection (or transport) layer or an electron injection (or transport) layer.
- the quantum dot emission layer may be disposed as a separate layer between the hole auxiliary layer and the electron auxiliary layer.
- the charge auxiliary layer, the electron blocking layer, and the hole blocking layer may include for example an organic material, an inorganic material, or an organic/inorganic material.
- the organic material may be a compound having hole or electron-related properties.
- the inorganic material may be for example a metal oxide such as molybdenum oxide, tungsten oxide, zinc oxide, or nickel oxide, but is not limited thereto.
- the hole transport layer (HTL) and/or the hole injection layer (HIL) may each independently include, for example, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenyl amine) (TFB), polyaryl amine, poly(N-vinylcarbazole) (PVK), polyaniline, polypyrrole, N,N,N′,N′-tetrakis(4-methoxyphenyl)-benzidine (TPD), 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl ( ⁇ -NPD), 4,4′,4′′-tris[phenyl(m-tolyl)amino]triphenyl amine (m-MTDATA), 4,4′,4′′-tris
- the electron blocking layer may include, for example poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenyl amine) (TFB) polyaryl amine, poly(N-vinylcarbazole), polyaniline, polypyrrole, N,N,N′,N′-tetrakis(4-methoxyphenyl)-benzidine (TPD), 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl ( ⁇ -NPD), m-MTDATA, 4,4′,4′′-tris(N-carbazolyl)-triphenyl amine (TCTA), or a combination thereof, but is not limited thereto.
- PEDOT:PSS poly(styrenesulfonate)
- the electron transport layer (ETL) and/or the electron injection layer (EIL) may each independently include, for example, 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA), bathocuproine (BCP), tris[3-(3-pyridyl)-mesityl]borane (3TPYMB), LiF, Alq 3 , Gaq 3 , Inq 3 , Znq 2 , Zn(BTZ) 2 , BeBq 2 , ET204 (8-(4-(4,6-di(naphthalen-2-yl)-1,3,5-triazin-2-yl)phenyl)quinolone), 8-hydroxyquinolinato lithium (Liq), an n-type metal oxide (e.g., ZnO, HfO 2 , etc.), or a combination thereof, but is not limited thereto.
- the n-type metal oxide may be crystalline.
- the n-type metal oxide may be a nanoparticle
- the hole blocking layer may include for example at least one such as 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA), bathocuproine (BCP), tris[3-(3-pyridyl)-mesityl] borane (3TPYMB), LiF, Alq 3 , Gaq3, Inq3, Znq2, Zn(BTZ) 2 , BeBq 2 , or a combination thereof, but is not limited thereto.
- NTCDA 1,4,5,8-naphthalene-tetracarboxylic dianhydride
- BCP bathocuproine
- TPYMB tris[3-(3-pyridyl)-mesityl] borane
- LiF LiF
- Alq 3 Gaq3, Inq3, Znq2, Zn(BTZ) 2 , BeBq 2 , or a combination thereof, but is not limited thereto.
- q indicates 8-hydroxyquinoline
- BTZ indicates 2-(2-hydroxyphenyl)benzothiazolate
- Bq indicates 10-hydroxybenzo[h]quinolone.
- a device may have a normal structure.
- an anode 10 disposed on a transparent substrate 100 may include a metal oxide-based transparent electrode (e.g., ITO electrode) and a cathode 50 facing the anode 10 may include a metal (Mg, Al etc.) having a predetermined (relatively low) work function.
- a hole auxiliary layer 20 may be disposed between the transparent electrode 10 and the emission layer 30 , as a hole transport layer 20 including TFB and/or PVK, and/or as a hole injection layer including PEDOT:PSS and/or p-type metal oxide.
- An electron auxiliary layer (e.g., electron transport layer) 40 may be disposed between the quantum dot emission layer 30 and the cathode 50 .
- a device may have an inverted structure as shown in FIG. 3 .
- a cathode 50 disposed on the transparent substrate 100 may include a metal oxide-based transparent electrode (e.g., ITO) and an anode 10 facing the cathode may include a metal (Au, Ag, etc.) having a predetermined (e.g., relatively high) work function.
- a metal oxide-based transparent electrode e.g., ITO
- an anode 10 facing the cathode may include a metal (Au, Ag, etc.) having a predetermined (e.g., relatively high) work function.
- n-type metal oxide (ZnO) and the like may be disposed between the transparent electrode 50 and the emission layer 30 as an electron auxiliary layer (e.g., electron transport layer) 40 .
- a hole auxiliary layer 20 (e.g., hole transport layer including TFB and/or PVK and/or a hole injection layer including MoO 3 or other p-type metal oxides) may be disposed between the metal anode 10 and the quantum dot emission layer 30 .
- the electroluminescent device may emit green light with an improved level of EQE.
- the electroluminescent device may have peak external quantum efficiency of greater than or equal to about 4%, for example, 5%, greater than or equal to about 6%, or greater than or equal to about 7%.
- the electroluminescent device may emit light having a maximum luminance greater than or equal to about 5,000 cd/m 2 , greater than or equal to about 6,000 cd/m 2 , greater than or equal to about 7,000 cd/m 2 , greater than or equal to about 8,000 cd/m 2 , greater than or equal to about 9,000 cd/m 2 , greater than or equal to about 10,000 cd/m 2 , greater than or equal to about 11,000 cd/m 2 , greater than or equal to about 12,000 cd/m 2 , greater than or equal to about 13,000 cd/m 2 , greater than or equal to about 14,000 cd/m 2 , or greater than or equal to about 15,000 cd/m 2 .
- Photoluminescence (PL) spectra of the produced nanocrystals are obtained using a Hitachi F-7000 spectrometer at an irradiation wavelength of 450 nm.
- a Hitachi U-3310 spectrometer is used to perform a UV spectroscopy and obtain UV-Visible absorption spectra.
- ICP-AES inductively coupled plasma-atomic emission spectroscopy
- a current depending on a voltage is measured using a Keithley 2635B source meter while applying a voltage, and EL light emitting luminance is measured using a CS2000 spectroscopy.
- Syntheses are performed under inert gas atmospheres (nitrogen-flowing conditions), unless particularly mentioned.
- TOP trioctyl phosphine
- the Se/TOP stock solution and the Te/TOP stock solution are rapidly injected into the reaction flask, and then, the temperature is increased to 300° C. (a temperature for forming a core) for 40 minutes.
- the reaction solution is rapidly cooled down to room temperature, and ethanol is added to facilitate formation or separation of a precipitate.
- the precipitate is obtained through centrifugation and dispersed in toluene to obtain a ZnTeSe core.
- the amounts of Se/TOP stock solution and the Te/TOP stock solution injected into the reaction flask such that Se is used in an amount of 2.8 moles (mol) with respect to 1 mol of Te.
- the obtained ZnTeSe core is subjected to a UV spectroscopic analysis.
- the obtained core has a first absorption peak in a relatively high energy region.
- the obtained ZnTeSe core is subjected to an X-ray diffraction analysis, shown in FIG. 4 .
- the obtained core includes a ZnTeSe alloy.
- the obtained ZnTeSe core is subjected to an ICP analysis, and the results are shown in Table 1.
- a core is synthesized according to the same method as Reference Example 1 except that a selenium precursor is used in an amount of 3.7 mol with respect to 1 mol of a tellurium precursor.
- the obtained ZnTeSe core is subjected to an ICP analysis, and the results are shown in Table 1.
- a core is synthesized according to the same method as Reference Example 1 except that a selenium precursor is used in an amount of 4 mol with respect to 1 mol of a tellurium precursor.
- the obtained ZnTeSe core is subjected to an ICP analysis, and the results are shown in Table 1.
- a core is synthesized according to the same method as Reference Example 1 except that a selenium precursor is used in an amount of 5.3 mol with respect to 1 mol of a tellurium precursor.
- the obtained ZnTeSe core is subjected to an ICP analysis, and the results (mole ratio of Te/Se) are shown in Table 1.
- Trioctyl amine (TOA) is put in a 300 mL reaction flask, zinc acetate and oleic acid are added to the flask and then, vacuum-treated at 120° C.
- the flask is internally substituted with nitrogen (N 2 ).
- N 2 nitrogen
- the ZnTeSe core according to Reference Example 4 is rapidly added as a toluene dispersion, and the Se/TOP stock solution is subsequently added to the reaction flask and reacted for 60 minutes to form a ZnSe layer on the core.
- the S/TOP stock solution along with zinc acetate is added to the flask and then, reacted for 100 minutes to form a ZnS layer.
- ICP-AES inductively coupled plasma-atomic emission spectroscopy
- ICP-AES inductively coupled plasma-atomic emission spectroscopy
- a core shell quantum dot is manufactured according to the same method as Example 1 except that the core according to Reference Example 2 is used.
- ICP-AES inductively coupled plasma-atomic emission spectroscopy
- a core shell quantum dot is manufactured according to the same method as Example 1 except that the core according to Reference Example 1 is used.
- ICP-AES inductively coupled plasma-atomic emission spectroscopy
- a core shell quantum dot is manufactured according to the same method as Example 1 except that the core according to Reference Example 4 is used, and S/TOP is not used.
- ICP-AES inductively coupled plasma-atomic emission spectroscopy
- a core shell quantum dot is manufactured according to the same method as Example 1 except that the core according to Reference Example 4 is used, and the mol ratio of the S precursor and the Se precursor is changed.
- ICP-AES inductively coupled plasma-atomic emission spectroscopy
- the quantum dots according to Examples emit green light with an improved quantum efficiency and a reduced full width at half maximum (FWHM) in comparison with the quantum dots according to Comparative Examples.
- the quantum dots of Example 1 are used to manufacture an electroluminescent device in the following method: On a glass substrate deposited with an ITO electrode (an anode), a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer and a poly(N-vinylcarbazole) (PVK) layer or a poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenyl amine) (TFB) layer are respectively formed as a hole injection layer (HIL) and a hole transport layer (HTL) in a spin coating method, respectively.
- HIL hole injection layer
- HTL hole transport layer
- an octane dispersion of the quantum dots is spin-coated to form a quantum dot emission layer.
- 8-(4-(4,6-di(naphthalen-2-yl)-1,3,5-triazin-2-yl)phenyl)quinolone:8-hydroxyquinolinato lithium (ET204:Liq) is formed as the electron auxiliary layer, and then, an Al electrode is deposited thereon.
- Electroluminescence properties of the manufactured device are evaluated. As a result, the device exhibits EQE of about 7 percent and maximum luminance of 15,000 candela per square meter (cd/m 2 ).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
- This application claims priority to Korean Patent Application No. 10-2019-0004231 filed in the Korean Intellectual Property Office on Jan. 11, 2019, and all the benefits accruing therefrom under 35 U.S.C. S 119, the entire content of which is herein incorporated by reference.
- A core shell quantum dot and an electronic device including the same are disclosed.
- Nanoparticles have physical characteristics (e.g., energy bandgaps, melting points, etc.) that are controlled depending on particle sizes unlike bulk materials. For example, semiconductor nanocrystal particles also referred to as quantum dots are crystalline materials having sizes of several nanometers. The semiconductor nanocrystal particles are of such small size that they have a large surface area per unit volume and exhibit quantum confinement effects, and thus have different properties and characteristics of bulk materials having the same composition. Quantum dots may absorb light from an excitation source to attain an excited state and then emit energy corresponding to their energy bandgaps.
- An embodiment provides a cadmium-free semiconductor nanocrystal particle capable of emitting green light with improved efficiency.
- Another embodiment provides a method of producing the semiconductor nanocrystal particle.
- Another embodiment provides an electronic device including the aforementioned semiconductor nanocrystal particle.
- In an embodiment, a quantum dot includes a core including a first semiconductor nanocrystal including zinc, selenium, and tellurium, and a semiconductor nanocrystal shell disposed on the surface of the core, the shell including zinc, selenium, and sulfur, wherein the quantum dot is configured to emit green light, the quantum dot does not include cadmium, and the quantum dot has a mole ratio Te:Se of tellurium relative to selenium of greater than about 0.05:1 and less than or equal to about 0.5:1.
- The green light may have a maximum peak wavelength of greater than or equal to about 500 nanometers (nm).
- The green light may have a maximum peak wavelength of less than or equal to about 550 nm.
- The quantum dot may have a mole ratio Te:Se of tellurium relative to selenium of greater than or equal to about 0.055:1.
- The quantum dot may have a mole ratio Te:Se of tellurium relative to selenium of greater than or equal to about 0.06:1.
- The quantum dot may have a mole ratio S:Se of sulfur relative to selenium of greater than or equal to about 0.5:1, for example, greater than or equal to about 0.6:1, greater than or equal to about 0.7:1, greater than or equal to about 0.8:1, greater than or equal to about 0.9:1, greater than or equal to about 1:1, or greater than or equal to about 1.05:1.
- The quantum dot may have a mole ratio of sulfur relative to selenium of less than or equal to about 2:1, for example, less than or equal to about 1.9:1, less than or equal to about 1.8:1, less than or equal to about 1.7:1, less than or equal to about 1.6:1, less than or equal to about 1.5:1, less than or equal to about 1.4:1, or less than or equal to about 1.3:1.
- The quantum dot may have a mole ratio (Se+S)/Te of a sum of sulfur and selenium relative to tellurium of greater than or equal to about 15:1.
- The quantum dot may have a mole ratio (Se+S)/Te of a sum of sulfur and selenium relative to tellurium of greater than or equal to about 20:1.
- In the quantum dot, a mole ratio of zinc relative to a sum of sulfur and selenium may be less than or equal to about 1.1:1.
- The core may include ZnTexSe1-x, wherein, x is greater than or equal to about 0.1 and less than or equal to about 0.5.
- The semiconductor nanocrystal shell may have a composition that varies in a radial direction.
- In the semiconductor nanocrystal shell, a concentration of the sulfur increases toward the surface of the quantum dot.
- The semiconductor nanocrystal shell may include a first layer disposed directly on the core and a second layer disposed on the first layer, wherein the first layer may include a second semiconductor nanocrystal and the second layer may include a third semiconductor nanocrystal having a different composition from the second semiconductor nanocrystal.
- The second semiconductor nanocrystal may include zinc, selenium, and optionally sulfur.
- The third semiconductor nanocrystal may include zinc and sulfur.
- The second layer may be an outermost layer and the third semiconductor nanocrystal may not include selenium.
- The quantum dot may have an average particle size of greater than or equal to about 6 nm.
- The quantum dot may have an average particle size of greater than or equal to about 10 nm.
- The quantum dot may constitute a population having a standard deviation of a particle size distribution of less than or equal to about 10 percent.
- The quantum dot may have quantum efficiency of greater than or equal to about 60 percent.
- A valence band edge and a conduction band edge of the core may be in the bandgap of the semiconductor nanocrystal shell.
- In another embodiment, a light emitting device may include a first electrode and a second electrode facing each other; and a quantum dot emission layer disposed between the first electrode and the second electrode and including a plurality of quantum dots, wherein the plurality of quantum dots may include the aforementioned quantum dot.
- A charge auxiliary layer may be included between the first electrode and the quantum dot emission layer, between the second electrode and the quantum dot emission layer, or between the first electrode and the quantum dot emission layer and between the second electrode and the quantum dot emission layer.
- The charge auxiliary layer may include a charge transport layer, a charge injection layer, or a combination thereof.
- The electroluminescent device may have peak external quantum efficiency of greater than or equal to about 4 percent.
- The electroluminescent device may emit light having a maximum luminance of greater than or equal to about 5,000 candela per square meter (cd/m2).
- In another embodiment, an electronic device includes the aforementioned semiconductor nanocrystal particle.
- The electronic device may be a display device, a light emitting diode (LED), a quantum dot light emitting diode (QLED), an organic light emitting diode (OLED), a sensor, an image sensor, or a solar cell.
- The cadmium-free quantum dot may be capable of emitting green light with improved efficiency. The quantum dot according to an embodiment may be applied to various display devices, biolabeling (biosensor, bioimaging), a photodetector, a solar cell, a hybrid composite, and the like. The quantum dot of an embodiment may exhibit improved external quantum efficiency and maximum luminance when applied to an electroluminescent device. The quantum dot of an embodiment may exhibit a reduced full width at half maximum (FWHM) and increased quantum efficiency.
-
FIG. 1 is a schematic cross-sectional view of a QD LED device according to non-limiting embodiment. -
FIG. 2 is a schematic cross-sectional view of a QD LED device according to non-limiting embodiment. -
FIG. 3 is a schematic cross-sectional view of a QD LED device according to non-limiting embodiment. -
FIG. 4 shows X-ray diffraction spectra of the synthesized core in Example. -
FIG. 5 shows a PL spectrum of the synthesized core shell quantum dot in Example. - Advantages and characteristics of this disclosure, and a method for achieving the same, will become evident referring to the following example embodiments together with the drawings attached hereto. This invention may, however, be embodied in many different forms, and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
- If not defined otherwise, all terms (including technical and scientific terms) in the specification may be defined as commonly understood by one skilled in the art. The terms defined in a generally-used dictionary may not be interpreted ideally or exaggeratedly unless clearly defined.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms, including “at least one,” unless the content clearly indicates otherwise. “At least one” is not to be construed as limiting “a” or “an.” “Or” means “and/or.” As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. In addition, unless explicitly described to the contrary, the word “comprise” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof. It will be understood to imply the inclusion of stated elements but not the exclusion of any other elements.
- In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. Like reference numerals designate like elements throughout the specification.
- It will be understood that when an element such as a layer, film, region, or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
- It will be understood that, although the terms “first,” “second,” “third” etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer, or section. Thus, “a first element,” “component,” “region,” “layer” or “section” discussed below could be termed a second element, component, region, layer, or section without departing from the teachings herein.
- “About” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” can mean within one or more standard deviations, or within ±10%, or 5% of the stated value
- As used herein, when a definition is not otherwise provided, “substituted” refers to the case where in a compound or a corresponding moiety hydrogen is replaced by a substituent such as a C1 to C30 alkyl group, a C2 to C30 alkenyl group, a C2 to C30 alkynyl group, a C6 to C30 aryl group, a C7 to C30 alkylaryl group, a C1 to C30 alkoxy group, a C1 to C30 heteroalkyl group, a C3 to C30 heteroalkylaryl group, a C3 to C30 cycloalkyl group, a C3 to C15 cycloalkenyl group, a C6 to C30 cycloalkynyl group, a C2 to C30 heterocycloalkyl group, a halogen (—F, —Cl, —Br, or —I), a hydroxy group (—OH), a nitro group (—NO2), a cyano group (—CN), an amino group (—NRR′, wherein R and R′ are independently hydrogen or a C1 to C6 alkyl group), an azido group (—N3), an amidino group (—C(═NH)NH2), a hydrazino group (—NHNH2), a hydrazono group (═N(NH2)), an aldehyde group (—C(═O)H), a carbamoyl group (—C(O)NH2), a thiol group (—SH), an ester group (—C(═O)OR, wherein R is a C1 to C6 alkyl group or a C6 to C12 aryl group), a carboxylic acid group or a salt thereof (—C(═O)OM, wherein M is an organic or inorganic cation), a sulfonic acid group (—SO3H) or a salt thereof (—SO3M, wherein M is an organic or inorganic cation), a phosphoric acid group (—PO3H2) or a salt thereof (—PO3MH or —PO3M2, wherein M is an organic or inorganic cation), or a combination thereof.
- Herein, “hydrocarbon group” refers to a group including carbon and hydrogen (e.g., an alkyl, alkenyl, alkynyl, or aryl group). The hydrocarbon group may be a group having a mono-valence or greater formed by removal of one or more hydrogen atoms from, alkane, alkene, alkyne, or arene. In the hydrocarbon group, at least one methylene may be replaced by an oxide moiety, a carbonyl moiety, an ester moiety, —NH—, or a combination thereof.
- Herein, “alkyl” refers to a linear or branched saturated monovalent hydrocarbon group (methyl, ethyl hexyl, etc.).
- Herein, “alkenyl” refers to a linear or branched monovalent hydrocarbon group having one or more carbon-carbon double bond.
- Herein, “alkynyl” refers to a linear or branched monovalent hydrocarbon group having one or more carbon-carbon triple bond.
- Herein, “aryl” refers to a group formed by removal of at least one hydrogen from an aromatic group (e.g., a phenyl or naphthyl group).
- Herein, “hetero” refers to one including 1 to 3 heteroatoms of N, O, S, Si, P, or a combination thereof.
- Herein, “Group” refers to a group of Periodic Table.
- Semiconductor nanocrystal particles (hereinafter, also referred to as quantum dots) may absorb light from an excitation source and may emit energy corresponding to their energy bandgap. Energy bandgaps of quantum dots may be changed according to the particle size and composition of quantum dots. For example, as the particle sizes of quantum dots increase, the quantum dots may have narrow energy bandgaps and increased light emitting wavelengths. Semiconductor nanocrystals have drawn attention as light emitting materials in various fields, particularly in a field of a display device, an energy device, or a bioluminescent device.
- Many of quantum dots having photoluminescence properties that exhibit commercially viable emission and quantum efficiency may be based on cadmium (Cd). However, cadmium may cause severe environment/health problems and may be a restricted element by Restriction of Hazardous Substances Directive (RoHS) in a plurality of countries. Therefore, it is necessary to develop cadmium-free quantum dots which may emit light of a desired wavelength while having improved light emitting characteristics (for example, as applied to an electroluminescent device) and does not include harmful heavy metals such as cadmium and lead.
- A quantum dot according to an embodiment includes a ZnTeSe-based material (e.g., alloy) core, and further include a Zn, Se, and Se shell formed about the core. The quantum dot of the embodiment may have a predetermined composition as a whole (as below) and thereby, may emit green light with improved efficiency even though the quantum dot does not include cadmium, and may be recognized by a person of ordinary skill as being cadmium-free. The quantum dots according to an embodiment have this structure and composition and accordingly, may exhibit improved properties in an electroluminescent device.
- Accordingly, a quantum dot (or quantum dots) according to an embodiment includes (or include) a core including a first semiconductor to nanocrystal including zinc, selenium, and tellurium, and a semiconductor nanocrystal shell disposed on the surface of the core (e.g., at least a portion of the surface of the core), the shell including zinc, selenium, and sulfur. The quantum dot(s) does not include cadmium. The quantum dot(s) are configured to emit green light if irradiated with excitation light or applied, i.e., present, in an emission layer of an electroluminescent device. The quantum dot(s) have a mole ratio Te:Se of tellurium relative to selenium may be greater than about 0.05:1 and less than or equal to about 0.5:1.
- The green light may have a maximum peak wavelength of greater than or equal to about 500 nm, for example, greater than or equal to about 510 nm, or greater than or equal to about 520 nm. The green light may have a maximum peak wavelength of less than or equal to about 550 nm, for example, less than or equal to about 540 nm, or less than or equal to about 535 nm. The green light may have a maximum peak wavelength of about 515 nm to about 530 nm.
- The quantum dot(s) of an embodiment may emit green light having improved quantum efficiency (e.g., greater than or equal to about 60 percent (%), greater than or equal to about 61%, greater than or equal to about 62%, greater than or equal to about 63%, greater than or equal to about 64%, or greater than or equal to about 65%), by having the aforementioned structure and a composition which will be described later. The quantum dot(s) of an embodiment may emit green light having a full width at half maximum (FWHM) of less than or equal to about 60 nm, for example, less than or equal to about 55 nm, less than or equal to about 50 nm, or less than or equal to about 45 nm.
- The core(s) may include a first semiconductor nanocrystal including zinc, selenium, and tellurium. The core may include ZnTexSe1-x, wherein, x is greater than or equal to about 0.1 and less than or equal to about 0.5. In the core(s), a content of the tellurium (or the x in the above formula) may be greater than or equal to about 0.1 moles (mol), for example, greater than or equal to about 0.11 mol, greater than or equal to about 0.12 mol, greater than or equal to about 0.13 mol, greater than or equal to about 0.14 mol, greater than or equal to about 0.15 mol, greater than or equal to about 0.16 mol, greater than or equal to about 0.17 mol, greater than or equal to about 0.18 mol, or greater than or equal to about 0.19 mol with respect to 1 mol of the selenium. In the core(s), a content of the tellurium may be less than or equal to about 0.5 mol, for example, less than or equal to about 0.49 mol, less than or equal to about 0.48 mol, less than or equal to about 0.47 mol, less than or equal to about 0.46 mol, less than or equal to about 0.45 mol, less than or equal to about 0.44 mol, less than or equal to about 0.43 mol, less than or equal to about 0.42 mol, less than or equal to about 0.41 mol, less than or equal to about 0.40 mol, less than or equal to about 0.39 mol, less than or equal to about 0.38 mol, or less than or equal to about 0.37 mol with respect to 1 mol of the selenium. When examined through an X-ray diffraction analysis, a peak of the core may be shifted from ZnSe peaks toward ZnTe, and this result implies that the core forms a ZnTeSe alloy. When the shell, which is described below, is disposed on the core having the aforementioned composition, final quantum dots may emit green light with little or no decrease in efficiency. Without wishing to be bound by any theory, the adoption of the shell having a composition that will be described below along with an increased amount of tellurium may enable an energy bandgap alignment between the core and the shell layer in final quantum dots to efficiently confine excitons and thereby, maintain improved luminous efficiency as well as obtain a desired light emitting wavelength.
- The semiconductor nanocrystal shell in the quantum dot(s) according to an embodiment includes zinc, selenium, and sulfur. The shell may be a multi-layered shell including a plurality of layers. Adjacent layers in the plurality of layers of the shell may include a semiconductor material having a different composition. The multi-layered shell may include a first layer disposed directly on the core and a second layer disposed on the first layer. The first layer may include a second semiconductor nanocrystal. The second layer may include a third semiconductor nanocrystal having a different composition from that of the second semiconductor nanocrystal. The second layer may be an outermost layer of the quantum dots. The second semiconductor nanocrystal may include zinc, selenium, and optionally, sulfur. The third semiconductor nanocrystal may include zinc and sulfur. The third semiconductor nanocrystal may not include selenium.
- In an embodiment, the quantum dot(s) may have a ZnSe layer(s) (e.g., a first layer) directly disposed on the aforementioned core. The ZnSe layer(s) may not include S. In an embodiment, a thickness of the first layer including ZnSe may be greater than or equal to about 4 monolayers, for example, greater than or equal to about 5 monolayers and less than or equal to about 10 monolayers, for example, less than or equal to about 9 monolayers.
- In the multi-layered shell, a thickness of each layer may be determined by considering a composition of the entire quantum dots. The quantum dots may have a layer composed of ZnS in the outermost. In a multi-layered shell, a thickness of each layer is adjusted to satisfy a composition of the entire quantum dots described later.
- In the shell or the multi-layered shell, each layer may be a gradient alloy having a composition that changes or varies in a radial direction. In an embodiment, a concentration (i.e., a content) of sulfur in the semiconductor nanocrystal shell may be increased toward the surface of the quantum dots. For example, in the shell, the concentration (content) of the sulfur may have a concentration gradient that increases as being apart from the core.
- The quantum dot(s) may have a mole ratio Te:Se of tellurium relative to selenium (e.g., as measured by an inductively coupled plasma-atomic emission spectroscopy (ICP-AES)) of greater than about 0.05:1, for example, greater than or equal to about 0.055:1, greater than or equal to about 0.06:1, greater than or equal to about 0.065:1, or greater than or equal to about 0.07:1. The mole ratio of tellurium relative to selenium may be less than or equal to about 0.5:1, for example, less than or equal to about 0.49:1, less than or equal to about 0.48:1, less than or equal to about 0.47:1, less than or equal to about 0.46:1, less than or equal to about 0.45:1, less than or equal to about 0.44:1, less than or equal to about 0.43:1, less than or equal to about 0.42:1, less than or equal to about 0.41:1, less than or equal to about 0.40:1, less than or equal to about 0.39:1, less than or equal to about 0.38:1, less than or equal to about 0.37:1, less than or equal to about 0.36:1, less than or equal to about 0.35:1, less than or equal to about 0.34:1, less than or equal to about 0.33:1, less than or equal to about 0.32:1, less than or equal to about 0.31:1, less than or equal to about 0.30:1, less than or equal to about 0.29:1, less than or equal to about 0.28:1, less than or equal to about 0.27:1, less than or equal to about 0.26:1, less than or equal to about 0.25:1, less than or equal to about 0.24:1, less than or equal to about 0.23:1, less than or equal to about 0.22:1, less than or equal to about 0.21:1, less than or equal to about 0.20:1, less than or equal to about 0.19:1, less than or equal to about 0.18:1, less than or equal to about 0.17:1, less than or equal to about 0.16:1, less than or equal to about 0.15:1, less than or equal to about 0.14:1, less than or equal to about 0.13:1, less than or equal to about 0.12:1, less than or equal to about 0.1:1, or less than or equal to about 0.09:1. The mole ratio of tellurium relative to selenium may be in the range of about 0.06:1 to about 0.1:1.
- The quantum dot(s) may have a mole ratio Te:S of tellurium relative to sulfur (for example, as measured by an inductively coupled plasma-atomic emission spectroscopy (ICP-AES)) of greater than or equal to about 0.02:1, for example, greater than or equal to about 0.03:1, greater than or equal to about 0.035:1, greater than or equal to about 0.04:1, greater than or equal to about 0.045:1, greater than or equal to about 0.05:1, greater than or equal to about 0.055:1, greater than or equal to about 0.06:1 or greater than or equal to about 0.065:1. The mole ratio of tellurium relative to sulfur may be less than or equal to about 0.2:1, for example, less than or equal to about 0.15:1, less than or equal to about 0.14:1, less than or equal to about 0.13:1, less than or equal to about 0.12:1, less than or equal to about 0.11:1, less than or equal to about 0.1:1, less than or equal to about 0.09:1, less than or equal to about 0.08:1, or less than or equal to about 0.075:1.
- In the quantum dot, the zinc content (e.g., the zinc concentration) may vary depending on the Se and S content.
- In the quantum dot(s), a mole ratio S:Se of sulfur relative to selenium may be greater than or equal to about 0.6:1, for example, greater than or equal to about 0.7:1, greater than or equal to about 0.8:1, greater than or equal to about 0.9:1, greater than or equal to about 0.95:1, greater than or equal to about 1:1, or greater than or equal to about 1.05:1. In the quantum dot(s) of an embodiment, the mole ratio of sulfur relative to selenium may be less than or equal to about 2:1, less than or equal to about 1.95:1, less than or equal to about 1.9:1, less than or equal to about 1.8:1, less than or equal to about 1.7:1, less than or equal to about 1.6:1, less than or equal to about 1.5:1, less than or equal to about 1.4:1, less than or equal to about 1.3:1, or less than or equal to about 1.2:1.
- The quantum dot(s) may have a mole ratio (Se+S)/Te of a sum of sulfur and selenium relative to tellurium of greater than or equal to about 15:1, greater than or equal to about 16:1, greater than or equal to about 17:1, greater than or equal to about 18:1, greater than or equal to about 19:1, greater than or equal to about 20:1, greater than or equal to about 21:1, greater than or equal to about 22:1, greater than or equal to about 23:1, greater than or equal to about 24:1, or greater than or equal to about 25:1. The quantum dot(s) may have a mole ratio (Se+S)/Te of a sum of sulfur and selenium relative to tellurium of less than or equal to about 60:1, less than or equal to about 59:1, less than or equal to about 58:1, less than or equal to about 57:1, less than or equal to about 56:1, less than or equal to about 55:1, less than or equal to about 54:1, less than or equal to about 53:1, less than or equal to about 52:1, less than or equal to about 51:1, less than or equal to about 50:1, less than or equal to about 49:1, less than or equal to about 48:1, or less than or equal to about 47:1.
- The quantum dot(s) may have a mole ratio S:Zn of sulfur relative to zinc (for example, as measured by an inductively coupled plasma-atomic emission spectroscopy (ICP-AES)) of greater than or equal to about 0.3:1, greater than or equal to about 0.35:1, greater than or equal to about 0.4:1, or greater than or equal to about 0.45:1. The quantum dot(s) may have a mole ratio S:Zn may be less than or equal to about 0.8:1, less than or equal to about 0.7:1, less than or equal to about 0.6:1, or less than or equal to about 0.55:1.
- The quantum dots may have any shape. The quantum dot(s) may have spherical shapes, polyhedron shapes, multi-pod shapes, or a combination thereof.
- The core(s) may have an average size of greater than or equal to about 3 nm, or greater than or equal to about 3.5 nm. The core(s) may have an average size of less than or equal to about 5 nm, for example, less than or equal to about 4 nm.
- The aforementioned quantum dot(s) may constitute a quantum dot population. The quantum dot (or quantum dot population) may have a (average) particle size of greater than or equal to about 6 nm, for example, greater than or equal to about 7 nm, or greater than or equal to about 8 nm. Herein the sizes of the quantum dots may refer to diameters (or diameters calculated from electron microscope 2D images of the quantum dots under the assumption that they have spherical shapes, when the quantum dots do not have spherical shapes). The (average) particle size of the quantum dots (or population) may be less than or equal to about 50 nm, for example, less than or equal to about 45 nm, less than or equal to about 40 nm, less than or equal to about 35 nm, less than or equal to about 30 nm, less than or equal to about 25 nm, less than or equal to about 24 nm, less than or equal to about 23 nm, less than or equal to about 22 nm, less than or equal to about 21 nm, less than or equal to about 20 nm, less than or equal to about 19 nm, less than or equal to about 18 nm, less than or equal to about 17 nm, less than or equal to about 16 nm, less than or equal to about 15 nm, less than or equal to about 14 nm, less than or equal to about 13 nm, less than or equal to about 12 nm, less than or equal to about 11 nm, or less than or equal to about 10 nm.
- The population of the aforementioned quantum dots may have a standard deviation of less than or equal to about 10%, less than or equal to about 9%, or less than or equal to about 8% of an average size thereof.
- The quantum dots may include organic ligands on the surfaces. The organic ligands may include RCOOH, RNH2, R2NH, R3N, RSH, RH2PO, R2HPO, R3PO, RH2P, R2HP, R3P, ROH, RCOOR′, RPO(OH)2, RHPOOH, R2POOH (wherein, R and R′ are independently a C1 to C40 substituted or unsubstituted aliphatic hydrocarbon, or a C6 to C40 substituted or unsubstituted aromatic hydrocarbon, or a combination thereof), or a combination thereof. The ligands may be used alone or in a mixture of two or more compounds.
- Specific examples of the organic ligand compound may be methane thiol, ethane thiol, propane thiol, butane thiol, pentane thiol, hexane thiol, octane thiol, dodecane thiol, hexadecane thiol, octadecane thiol, benzyl thiol; methane amine, ethane amine, propane amine, butane amine, pentane amine, hexane amine, octane amine, dodecane amine, hexadecyl amine, oleyl amine, octadecyl amine, dimethyl amine, diethyl amine, dipropyl amine; methanoic acid, ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, dodecanoic acid, hexadecanoic acid, octadecanoic acid, oleic acid, benzoic acid, palmitic acid, stearic acid; a phosphine compound or an oxide compound thereof such as methyl phosphine, ethyl phosphine, propyl phosphine, butyl phosphine, pentyl phosphine, tributyl phosphine, trioctyl phosphine, and the like phosphines; methyl phosphine oxide, ethyl phosphine oxide, propyl phosphine oxide, butyl phosphine oxide, trioctyl phosphine oxide, and the like; diphenyl phosphine, tri phenyl phosphine compound or an oxide compound thereof; phosphonic acid, and the like, but are not limited thereto. The organic ligand compound may be used alone or as a mixture of two or more. In an embodiment, the organic ligand compound may be a combination of RCOOH and amine (e.g., RNH2, R2NH, and/or R3N) wherein R is defined above.
- In order to improve photoluminescence properties of the quantum dot(s), the use of a core-shell structure has been suggested or proposed, but most of these core-shell quantum dots having desirable properties are cadmium-based materials. Accordingly, development of cadmium-free semiconductor nanocrystal particles having desirable photoluminescence properties is desired. It is desirable to develop a material exhibiting improved electroluminescence properties, when applied to or present in an electroluminescent device as cadmium-free quantum dots. Indium phosphide exhibits relatively low efficiency, when applied to an electroluminescent device, and ZnSe-based quantum dots may not easily provide light of a green wavelength having improved electroluminescence properties. The quantum dot(s) of an embodiment may emit green light of a desired wavelength with improved efficiency. In addition, the quantum dots of an embodiment may exhibit improved peak external quantum efficiency (Max EQE) and maximum luminance in an electroluminescent device described later.
- In another embodiment, a method of producing the quantum dot(s) of an embodiment includes
-
- obtaining a core including a first semiconductor nanocrystal including zinc, selenium, and tellurium particles (hereinafter, also referred to as a core); and
- forming a semiconductor nanocrystal shell including zinc, selenium, and sulfur on the surface of the core by reacting at least one non-metal precursor such as a zinc precursor, a selenium precursor, or a sulfur precursor through a plurality of processes at a shell-forming temperature in an organic solvent under presence of the core particle and the organic ligand.
- The forming of the semiconductor nanocrystal shell may include reacting the zinc precursor and the selenium precursor and then, reacting the zinc precursor and the sulfur precursor.
- Details of the core(s) are described as above. In an embodiment, the core may be obtained by preparing a zinc precursor solution including a zinc precursor and an organic ligand; preparing a selenium precursor and a tellurium precursor; heating the zinc precursor solution at a core-forming reaction temperature, and adding the selenium precursor and the tellurium precursor together with optionally an organic ligand to perform the core-forming reaction. A content of the selenium precursor may be less than or equal to about 10 moles (mol), for example, less than or equal to about 9 mol, or less than or equal to about 8 mol, per 1 mol of the tellurium precursor. The amount of the selenium precursor may be greater than or equal to about 2 mol, for example, greater than or equal to about 3 mol, greater than or equal to about 4 mol, or greater than or equal to about 5 mol, per 1 mol of the tellurium precursor.
- The zinc precursor may include a Zn metal powder, ZnO, an alkylated Zn compound (e.g., C2 to C30 dialkyl zinc such as diethyl zinc), a Zn alkoxide (e.g., a zinc ethoxide), a Zn carboxylate (e.g., a zinc acetate), a Zn nitrate, a Zn perchlorate, a Zn sulfate, a Zn acetylacetonate, a Zn halide (e.g., a zinc chloride), a Zn cyanide, a Zn hydroxide, or a combination thereof. Examples of the zinc precursor may be dimethyl zinc, diethyl zinc, a zinc acetate, a zinc acetylacetonate, a zinc iodide, a zinc bromide, a zinc chloride, a zinc fluoride, a zinc carbonate, a zinc cyanide, a zinc nitrate, a zinc oxide, a zinc peroxide, a zinc perchlorate, a zinc sulfate, or a combination thereof.
- The selenium precursor may include selenium-trioctyl phosphine (Se-TOP), selenium-tributyl phosphine (Se-TBP), selenium-triphenyl phosphine (Se-TPP), selenium-diphenyl phosphine (Se-DPP), or a combination thereof, but is not limited thereto.
- The tellurium precursor may include tellurium-tributyl phosphine (Te-TBP), tellurium-triphenyl phosphine (Te-TPP), tellurium-diphenyl phosphine (Te-DPP), or a combination thereof, but is not limited thereto.
- The sulfur precursor may include hexane thiol, octane thiol, decane thiol, dodecane thiol, hexadecane thiol, mercapto propyl silane, sulfur-trioctyl phosphine (S-TOP), sulfur-tributyl phosphine (S-TBP), sulfur-triphenyl phosphine (S-TPP), sulfur-trioctyl amine (S-TOA), sulfur-octadecene (S-ODE), bistrimethylsilyl sulfur, ammonium sulfide, sodium sulfide, or a combination thereof.
- The organic solvent may include a C6 to C22 primary amine such as a hexadecyl amine, a C6 to C22 secondary amine such as dioctyl amine, a C6 to C40 tertiary amine such as a trioctyl amine, a nitrogen-containing heterocyclic compound such as pyridine, a C6 to C40 olefin such as octadecene, a C6 to C40 aliphatic hydrocarbon such as hexadecane, octadecane, squalene, or squalane, an aromatic hydrocarbon substituted with a C6 to C30 alkyl group such as phenyl dodecane, phenyl tetradecane, or phenyl hexadecane, a primary, secondary, or tertiary phosphine (e.g., trioctylphosphine) substituted with at least one (e.g., 1, 2, or 3) C6 to C22 alkyl group, a phosphine oxide (e.g. trioctyl phosphine oxide) such as (e.g., 1, 2, or 3) substituted with a C6 to C22 alkyl group, a C12 to C22 aromatic ether such as a phenyl ether or a benzyl ether, or a combination thereof.
- The organic ligand may coordinate the surface of the produced nanocrystals and may have an effect on the light emitting and electrical characteristics as well as may well disperse the nanocrystals in the solution phase. Details for the organic ligand are the same as described above.
- A reaction temperature for forming the core may be greater than or equal to about 280° C., greater than or equal to about 290° C., greater than or equal to about 300° C., or greater than or equal to about 310° C. and less than or equal to about 350° C., for example, less than or equal to about 340° C. A reaction time for forming the core is not particularly limited and may be appropriately selected.
- Reaction conditions such as a reaction temperature or time for shell formation may be appropriately selected considering a desired shell composition. In a non-limiting example embodiment, under a vacuum, a solvent and optionally the organic ligand are heated (or vacuum-treated) at a predetermined temperature (e.g., greater than or equal to about 100° C.), and may be heated again at predetermined temperature (e.g., greater than or equal to about 100° C.) under an inert gas atmosphere. Subsequently, the core is added, shell precursors are sequentially or simultaneously added, and then heated at a predetermined reaction temperature to perform a shell-forming reaction. A mixture having a different ratio of the shell precursors may be sequentially added for a reaction time to form a shell (e.g., and addition having a gradient or a multi-layer) having a desired composition. In an embodiment, the zinc precursor and the selenium precursor may be reacted to form a first layer, and then, the zinc precursor and the sulfur precursor may be reacted to form a second layer. A reaction temperature for forming the shell may be greater than or equal to about 280° C., for example, greater than or equal to about 290° C., or greater than or equal to about 300° C. and less than or equal to about 330° C., for example, less than or equal to about 325° C.
- In the reaction system, amounts and concentrations of each precursor may be selected considering compositions of the core and shell and reactivity between precursors. For example, molar ratios relative to each precursor may be adjusted considering the desired compositions (Zn, S, Se) of the final quantum dots. The compositions of the final quantum dots may be confirmed by appropriate analytical means such as an inductively coupled plasma-atomic emission spectroscopy.
- After completing the reaction, a nonsolvent is added to reaction products and nanocrystal particles coordinated to the ligand compound may be separated. The nonsolvent may be a polar solvent that is miscible with the solvent used in the core formation and/or shell formation reactions and is not capable of dispersing the produced nanocrystals therein. The nonsolvent may be selected depending the solvent used in the reaction and may be for example acetone, ethanol, butanol, isopropanol, ethanediol, water, tetrahydrofuran (THF), dimethylsulfoxide (DMSO), diethyl ether, formaldehyde, acetaldehyde, ethylene glycol, a solvent having a similar solubility parameter to the foregoing solvents, or a combination thereof. The nanocrystals may be separated through centrifugation, sedimentation, chromatography, or distillation. The separated nanocrystals may be added to a washing solvent and washed, if necessary. The washing solvent has no particular limit and may have a similar solubility parameter to that of the ligand and may, for example, include hexane, heptane, octane, chloroform, toluene, benzene, and the like.
- In another embodiment, an electronic device includes the aforementioned quantum dots. The device may include a display device, a light emitting diode (LED), an organic light emitting diode (OLED), a quantum dot LED, a sensor, a solar cell, an imaging sensor, or a liquid crystal display, but is not limited thereto.
- In an embodiment, the electronic device may be a photoluminescent device (e.g., a lighting device such as a quantum dot sheet or a quantum dot rail, a liquid crystal display (LCD), etc.) or an electroluminescent device (e.g., QD LED). In another non-limiting embodiment, the electronic device may include a quantum dot sheet and the aforementioned semiconductor nanocrystal particles may be included in a quantum dot sheet (e.g., in a form of a semiconductor nanocrystal-polymer composite).
- In an embodiment, the electronic device may be a liquid crystal display (LCD), a photoluminescent device (e.g., a quantum dot sheet, a quantum dot rail, or a lighting device), an electroluminescent device (e.g., QD LED), or a backlight unit.
- In another non-limiting embodiment, the electronic device may include a quantum dot sheet and the aforementioned quantum dots may be included in a quantum dot sheet (e.g., in a form of a semiconductor nanocrystal-polymer composite).
- In a non-limiting embodiment, the electronic device may be an electroluminescent device. The electronic device may include an
anode 1 and acathode 5 facing each other and quantumdot emission layer 3 disposed between the anode and the cathode and including a plurality of quantum dots, wherein the plurality of quantum dots may include the aforementioned blue light emitting semiconductor nanocrystal particle (refer toFIG. 1 ). - The cathode may include an electron injecting conductor (e.g., having a relatively low work function). The anode may include a hole injection conductor (e.g., having a relatively high work function). The electron/hole injection conductor may include a metal-based material (e.g., a metal, a metal compound, an alloy, or a combination thereof) (aluminum, magnesium, tungsten, nickel, cobalt, platinum, palladium, calcium, LiF, and the like), a metal oxide such as gallium indium oxide, indium tin oxide, and the like, or a conductive polymer (e.g., having a relatively high work function) such as polyethylene dioxythiophene, but is not limited thereto.
- At least one of the cathode and the anode may be a light-transmitting electrode or a transparent electrode. In an embodiment, the anode and the cathode may be all light-transmitting electrodes. The electrode may be patterned.
- The light-transmitting electrode may be made of, for example a transparent conductor such as indium tin oxide (ITO) or indium zinc oxide (IZO), gallium indium tin oxide, zinc indium tin oxide, titanium nitride, polyaniline, or LiF/Mg:Ag, or a metal thin film of a thin monolayer or multilayer but is not limited thereto. If one of the cathode and the anode is a non-light transmitting electrode, it may be made of, for example, an opaque conductor such as aluminum (Al), a lithium aluminum (Li:Al) alloy, a magnesium-silver alloy (Mg;Ag), or lithium fluoride-aluminum (LiF:Al).
- The light-transmitting electrode may be disposed on a (e.g., insulating) transparent substrate. The substrate may be rigid or flexible. The substrate may be a plastic, glass, or a metal.
- Thicknesses of the anode and the cathode are not particularly limited and may be appropriately selected considering device efficiency. For example, the thickness of the anode (or the cathode) may be greater than or equal to about 5 nm, for example, greater than or equal to about 50 nm, but is not limited thereto. For example, the thickness of the anode (or the cathode) may be less than or equal to about 100 micrometers (μm), for example, less than or equal to about 10 μm, less than or equal to about 1 μm, less than or equal to about 900 nm, less than or equal to about 500 nm, or less than or equal to about 100 nm, but is not limited thereto.
- The quantum dot emission layer includes a plurality of quantum dots. The plurality of quantum dots may include a blue light emitting semiconductor nanocrystal particle according to the aforementioned embodiments. The quantum dot emission layer may include a monolayer of blue light emitting semiconductor nanocrystal particles.
- The quantum dot emission layer may be formed by applying dispersion in which the quantum dots are dispersed in a solvent by spin coating, inkjet or spray coating, and then drying the resultant. The emission layer may be formed to have a thickness of greater than or equal to about 5 nm, greater than or equal to about 10 nm, greater than or equal to about 15 nm, greater than or equal to about 20 nm, or greater than or equal to about 25 nm and less than or equal to about 200 nm, for example less than or equal to about 150 nm, less than or equal to about 100 nm, less than or equal to about 90 nm, less than or equal to about 80 nm, less than or equal to about 70 nm, less than or equal to about 60 nm, less than or equal to about 50 nm, less than or equal to about 40 nm, or less than or equal to about 30 nm.
- AS shown in
FIG. 1 , the electronic device may include a charge (hole or electron) auxiliary layer between the anode and the cathode. For example, the electronic device may include a holeauxiliary layer 2 or anelectron auxiliary layer 4 between the anode and the quantum dot emission layer and/or between the cathode and the quantum dot emission layer. - In the drawing, the hole/electron auxiliary layer may be formed as a monolayer. However, the hole/electron auxiliary layer may be formed of plural layers including two or more stacked layers.
- The hole auxiliary layer may include for example a hole injection layer (HIL) to facilitate hole injection, a hole transport layer (HTL) to facilitate hole transport, an electron blocking layer (EBL) to inhibit electron transport, or a combination thereof. For example, the hole injection layer may be disposed between the hole transport layer and the anode. For example, the electron blocking layer may be disposed between the emission layer and the hole transport (injection) layer, but is not limited thereto. A thickness of each layer may be appropriately selected. For example, each thickness of the layer may be greater than or equal to about 1 nm, greater than or equal to about 5 nm, greater than or equal to about 10 nm, greater than or equal to about 15 nm, greater than or equal to about 20 nm, or greater than or equal to about 25 nm and less than or equal to about 500 nm, less than or equal to about 400 nm, less than or equal to about 300 nm, less than or equal to about 200 nm, less than or equal to about 100 nm, less than or equal to about 90 nm, less than or equal to about 80 nm, less than or equal to about 70 nm, less than or equal to about 60 nm, or less than or equal to about 50 nm, but is not limited thereto. The hole injection layer may be an organic layer that is formed by a solution process (e.g., spin coating, etc.) such as PEDOT:PSS. The hole transport layer may be an organic layer that is formed by a solution process (e.g., spin coating, etc.).
- The electron auxiliary layer may include for example an electron injection layer (EIL) to facilitate electron injection, an electron transport layer (ETL) to facilitate electron transport, a hole blocking layer (HBL) to inhibit hole transport, or a combination thereof. For example, the electron injection layer may be disposed between the electron transport layer and the cathode. For example, the hole blocking layer may be disposed between the emission layer and the electron transport (injection) layer, but is not limited thereto. A thickness of each layer may be appropriately selected. For example, each thickness of the layer may be greater than or equal to about 1 nm, greater than or equal to about 5 nm, greater than or equal to about 10 nm, greater than or equal to about 15 nm, greater than or equal to about 20 nm, or greater than or equal to about 25 nm and, less than or equal to about 500 nm, less than or equal to about 400 nm, less than or equal to about 300 nm, less than or equal to about 200 nm, less than or equal to about 100 nm, less than or equal to about 90 nm, less than or equal to about 80 nm, less than or equal to about 70 nm, less than or equal to about 60 nm, or less than or equal to about 50 nm, but is not limited thereto. The electron injection layer may be an organic layer formed by deposition. The electron transport layer may include an inorganic oxide nanoparticle or may be an organic layer formed by deposition.
- The quantum dot emission layer may be disposed in the hole injection (or transport) layer or an electron injection (or transport) layer or on the hole injection (or transport) layer or an electron injection (or transport) layer. The quantum dot emission layer may be disposed as a separate layer between the hole auxiliary layer and the electron auxiliary layer.
- The charge auxiliary layer, the electron blocking layer, and the hole blocking layer may include for example an organic material, an inorganic material, or an organic/inorganic material. The organic material may be a compound having hole or electron-related properties. The inorganic material may be for example a metal oxide such as molybdenum oxide, tungsten oxide, zinc oxide, or nickel oxide, but is not limited thereto.
- The hole transport layer (HTL) and/or the hole injection layer (HIL) may each independently include, for example, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenyl amine) (TFB), polyaryl amine, poly(N-vinylcarbazole) (PVK), polyaniline, polypyrrole, N,N,N′,N′-tetrakis(4-methoxyphenyl)-benzidine (TPD), 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (α-NPD), 4,4′,4″-tris[phenyl(m-tolyl)amino]triphenyl amine (m-MTDATA), 4,4′,4″-tris(N-carbazolyl)-triphenyl amine (TCTA), 1,1-bis[(di-4-tolylamino)phenylcyclohexane (TAPC), a p-type metal oxide (e.g., NiO, WO3, MoO3, etc.), a carbon-based material such as graphene oxide, or a combination thereof, but is not limited thereto.
- The electron blocking layer (EBL) may include, for example poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenyl amine) (TFB) polyaryl amine, poly(N-vinylcarbazole), polyaniline, polypyrrole, N,N,N′,N′-tetrakis(4-methoxyphenyl)-benzidine (TPD), 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (α-NPD), m-MTDATA, 4,4′,4″-tris(N-carbazolyl)-triphenyl amine (TCTA), or a combination thereof, but is not limited thereto.
- The electron transport layer (ETL) and/or the electron injection layer (EIL) may each independently include, for example, 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA), bathocuproine (BCP), tris[3-(3-pyridyl)-mesityl]borane (3TPYMB), LiF, Alq3, Gaq3, Inq3, Znq2, Zn(BTZ)2, BeBq2, ET204 (8-(4-(4,6-di(naphthalen-2-yl)-1,3,5-triazin-2-yl)phenyl)quinolone), 8-hydroxyquinolinato lithium (Liq), an n-type metal oxide (e.g., ZnO, HfO2, etc.), or a combination thereof, but is not limited thereto. The n-type metal oxide may be crystalline. The n-type metal oxide may be a nanoparticle. The electron transport layer may include crystalline nanoparticles including zinc oxide (e.g. ZnO).
- The hole blocking layer (HBL) may include for example at least one such as 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA), bathocuproine (BCP), tris[3-(3-pyridyl)-mesityl] borane (3TPYMB), LiF, Alq3, Gaq3, Inq3, Znq2, Zn(BTZ)2, BeBq2, or a combination thereof, but is not limited thereto.
- Herein, q indicates 8-hydroxyquinoline, BTZ indicates 2-(2-hydroxyphenyl)benzothiazolate, and Bq indicates 10-hydroxybenzo[h]quinolone.
- A device according to an embodiment may have a normal structure. As shown in
FIG. 2 , in a device according to an embodiment, ananode 10 disposed on atransparent substrate 100 may include a metal oxide-based transparent electrode (e.g., ITO electrode) and acathode 50 facing theanode 10 may include a metal (Mg, Al etc.) having a predetermined (relatively low) work function. For example, a holeauxiliary layer 20 may be disposed between thetransparent electrode 10 and theemission layer 30, as ahole transport layer 20 including TFB and/or PVK, and/or as a hole injection layer including PEDOT:PSS and/or p-type metal oxide. An electron auxiliary layer (e.g., electron transport layer) 40 may be disposed between the quantumdot emission layer 30 and thecathode 50. - A device according to another embodiment may have an inverted structure as shown in
FIG. 3 . Acathode 50 disposed on thetransparent substrate 100 may include a metal oxide-based transparent electrode (e.g., ITO) and ananode 10 facing the cathode may include a metal (Au, Ag, etc.) having a predetermined (e.g., relatively high) work function. For example, n-type metal oxide (ZnO) and the like may be disposed between thetransparent electrode 50 and theemission layer 30 as an electron auxiliary layer (e.g., electron transport layer) 40. A hole auxiliary layer 20 (e.g., hole transport layer including TFB and/or PVK and/or a hole injection layer including MoO3 or other p-type metal oxides) may be disposed between themetal anode 10 and the quantumdot emission layer 30. - The electroluminescent device according to an embodiment may emit green light with an improved level of EQE. The electroluminescent device may have peak external quantum efficiency of greater than or equal to about 4%, for example, 5%, greater than or equal to about 6%, or greater than or equal to about 7%. The electroluminescent device may emit light having a maximum luminance greater than or equal to about 5,000 cd/m2, greater than or equal to about 6,000 cd/m2, greater than or equal to about 7,000 cd/m2, greater than or equal to about 8,000 cd/m2, greater than or equal to about 9,000 cd/m2, greater than or equal to about 10,000 cd/m2, greater than or equal to about 11,000 cd/m2, greater than or equal to about 12,000 cd/m2, greater than or equal to about 13,000 cd/m2, greater than or equal to about 14,000 cd/m2, or greater than or equal to about 15,000 cd/m2.
- Hereinafter, specific examples are presented. However, these examples are exemplary, and the present disclosure is not limited thereto.
- Photoluminescence (PL) spectra of the produced nanocrystals are obtained using a Hitachi F-7000 spectrometer at an irradiation wavelength of 450 nm.
- A Hitachi U-3310 spectrometer is used to perform a UV spectroscopy and obtain UV-Visible absorption spectra.
- An inductively coupled plasma-atomic emission spectroscopy (ICP-AES) is performed using Shimadzu ICPS-8100.
- An XRD analysis is performed using a Philips XPert PRO equipment with a power of 3 kW.
- A current depending on a voltage is measured using a Keithley 2635B source meter while applying a voltage, and EL light emitting luminance is measured using a CS2000 spectroscopy.
- Syntheses are performed under inert gas atmospheres (nitrogen-flowing conditions), unless particularly mentioned.
- Selenium and sulfur are dispersed in trioctyl phosphine (TOP) to obtain 2 M (moles per liter (molar)) of a Se/TOP stock solution and 2 M of a S/TOP stock solution.
- 0.9 millimoles (mmol) of zinc acetate and oleic acid are dissolved in trioctyl amine in a 300 milliliter (mL) reaction flask and heated at 120° C. under vacuum. After one hour, an inert atmosphere is introduced into the reaction flask and the reaction flask is heated at greater than or equal to 200° C.
- Subsequently, the Se/TOP stock solution and the Te/TOP stock solution are rapidly injected into the reaction flask, and then, the temperature is increased to 300° C. (a temperature for forming a core) for 40 minutes. The reaction solution is rapidly cooled down to room temperature, and ethanol is added to facilitate formation or separation of a precipitate. The precipitate is obtained through centrifugation and dispersed in toluene to obtain a ZnTeSe core. The amounts of Se/TOP stock solution and the Te/TOP stock solution injected into the reaction flask such that Se is used in an amount of 2.8 moles (mol) with respect to 1 mol of Te.
- The obtained ZnTeSe core is subjected to a UV spectroscopic analysis. The obtained core has a first absorption peak in a relatively high energy region.
- The obtained ZnTeSe core is subjected to an X-ray diffraction analysis, shown in
FIG. 4 . Referring to the results ofFIG. 4 , the obtained core includes a ZnTeSe alloy. - The obtained ZnTeSe core is subjected to an ICP analysis, and the results are shown in Table 1.
- A core is synthesized according to the same method as Reference Example 1 except that a selenium precursor is used in an amount of 3.7 mol with respect to 1 mol of a tellurium precursor.
- The obtained ZnTeSe core is subjected to an ICP analysis, and the results are shown in Table 1.
- A core is synthesized according to the same method as Reference Example 1 except that a selenium precursor is used in an amount of 4 mol with respect to 1 mol of a tellurium precursor.
- The obtained ZnTeSe core is subjected to an ICP analysis, and the results are shown in Table 1.
- A core is synthesized according to the same method as Reference Example 1 except that a selenium precursor is used in an amount of 5.3 mol with respect to 1 mol of a tellurium precursor.
- The obtained ZnTeSe core is subjected to an ICP analysis, and the results (mole ratio of Te/Se) are shown in Table 1.
-
TABLE 1 moles Samples Se Te Reference Example 1 1.00 0.36 Reference Example 2 1.00 0.27 Reference Example 3 1.00 0.25 Reference Example 4 1.00 0.19 - Trioctyl amine (TOA) is put in a 300 mL reaction flask, zinc acetate and oleic acid are added to the flask and then, vacuum-treated at 120° C. The flask is internally substituted with nitrogen (N2). As the reaction flask is heated to 300° C., the ZnTeSe core according to Reference Example 4 is rapidly added as a toluene dispersion, and the Se/TOP stock solution is subsequently added to the reaction flask and reacted for 60 minutes to form a ZnSe layer on the core. Subsequently, the S/TOP stock solution along with zinc acetate is added to the flask and then, reacted for 100 minutes to form a ZnS layer.
- An inductively coupled plasma-atomic emission spectroscopy (ICP-AES) for the produced quantum dot is performed, and the results are shown in Table 2. The ratio of Te/Se is 0.0744 and Te/S is 0.069.
- A photoluminescence characteristic analysis for the produced quantum dot is performed, and the results are shown in Table 3.
- A core shell quantum dot is manufactured according to the same method as Example 1 except that the core according to Reference Example 3 is used.
- An inductively coupled plasma-atomic emission spectroscopy (ICP-AES) for the produced quantum dot is performed, and the results are shown in Table 2. The ratio of Te/Se is 0.08 and Te/S is 0.074.
- A photoluminescence characteristic analysis for the produced quantum dot is performed, and the results are shown in Table 3.
- A core shell quantum dot is manufactured according to the same method as Example 1 except that the core according to Reference Example 2 is used.
- An inductively coupled plasma-atomic emission spectroscopy (ICP-AES) for the produced quantum dot is performed, and the results are shown in Table 2. The ratio of Te/Se is 0.0625 and Te/S is 0.054.
- A photoluminescence characteristic analysis for the produced quantum dot is performed, and the results are shown in Table 3.
- A core shell quantum dot is manufactured according to the same method as Example 1 except that the core according to Reference Example 1 is used.
- An inductively coupled plasma-atomic emission spectroscopy (ICP-AES) for the produced quantum dot is performed, and the results are shown in Table 2. The ratio of Te/Se is 0.051 and Te/S is 0.037.
- A photoluminescence characteristic analysis for the produced quantum dot is performed, and the results are shown in Table 3.
- A core shell quantum dot is manufactured according to the same method as Example 1 except that the core according to Reference Example 4 is used, and S/TOP is not used.
- An inductively coupled plasma-atomic emission spectroscopy (ICP-AES) for the produced quantum dot is performed, and the results are shown in Table 2. The ratio of Te/Se is 0.0775 and the ratio of Te/S is not available as the content of S is zero.
- A photoluminescence characteristic analysis for the produced quantum dot is performed, and the results are shown in Table 3.
- A core shell quantum dot is manufactured according to the same method as Example 1 except that the core according to Reference Example 4 is used, and the mol ratio of the S precursor and the Se precursor is changed.
- An inductively coupled plasma-atomic emission spectroscopy (ICP-AES) for the produced quantum dot is performed, and the results are shown in Table 2. The ratio of Te/S is 0.133. The ratio of Te/Se is 0.079
- A photoluminescence characteristic analysis for the produced quantum dot is performed, and the results are shown in Table 3.
-
TABLE 2 ICP results S + Se S:Se Te S:Zn (moles) (mole ratio) (moles) (mole ratio) Example 1 27.94 1.08:1 1.00 0.432:1 Example 2 25.94 1.09:1 1.00 0.3796:1 Example 3 34.54 1.16:1 1.00 0.447:1 Example 4 46.4 1.37:1 1.00 0.509:1 Comparative Example 1 12.90 0 1.00 0 Comparative Example 2 20.14 0.60:1 1.00 0.28:1 -
TABLE 3 Excitation with 458 nm Luminous Peak wavelength FWHM Coating (nm) (nm) QY (%) Example 1 520 44 75 Example 2 520 48 76 Example 3 527 49 65 Example 4 529 44 72 Comparative Example 1 520 49 45 Comparative Example 2 520 48 37 - Referring to the results of Tables 2 and 3, the quantum dots according to Examples emit green light with an improved quantum efficiency and a reduced full width at half maximum (FWHM) in comparison with the quantum dots according to Comparative Examples.
- The quantum dots of Example 1 are used to manufacture an electroluminescent device in the following method: On a glass substrate deposited with an ITO electrode (an anode), a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer and a poly(N-vinylcarbazole) (PVK) layer or a poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenyl amine) (TFB) layer are respectively formed as a hole injection layer (HIL) and a hole transport layer (HTL) in a spin coating method, respectively. On the PVK layer, an octane dispersion of the quantum dots is spin-coated to form a quantum dot emission layer. On the quantum dot emission layer, 8-(4-(4,6-di(naphthalen-2-yl)-1,3,5-triazin-2-yl)phenyl)quinolone:8-hydroxyquinolinato lithium (ET204:Liq) is formed as the electron auxiliary layer, and then, an Al electrode is deposited thereon.
- Electroluminescence properties of the manufactured device are evaluated. As a result, the device exhibits EQE of about 7 percent and maximum luminance of 15,000 candela per square meter (cd/m2).
- While this disclosure has been described in connection with what is presently considered to be practical example embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/866,983 US20220348824A1 (en) | 2019-01-11 | 2022-07-18 | Core shell quantum dot and electronic device including the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0004231 | 2019-01-11 | ||
KR20190004231 | 2019-01-11 | ||
US16/739,595 US11390804B2 (en) | 2019-01-11 | 2020-01-10 | Core shell quantum dot and electronic device including the same |
US17/866,983 US20220348824A1 (en) | 2019-01-11 | 2022-07-18 | Core shell quantum dot and electronic device including the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/739,595 Continuation US11390804B2 (en) | 2019-01-11 | 2020-01-10 | Core shell quantum dot and electronic device including the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220348824A1 true US20220348824A1 (en) | 2022-11-03 |
Family
ID=71517403
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/739,595 Active 2041-01-14 US11390804B2 (en) | 2019-01-11 | 2020-01-10 | Core shell quantum dot and electronic device including the same |
US17/866,983 Pending US20220348824A1 (en) | 2019-01-11 | 2022-07-18 | Core shell quantum dot and electronic device including the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/739,595 Active 2041-01-14 US11390804B2 (en) | 2019-01-11 | 2020-01-10 | Core shell quantum dot and electronic device including the same |
Country Status (2)
Country | Link |
---|---|
US (2) | US11390804B2 (en) |
KR (1) | KR20200087715A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102712563B1 (en) * | 2019-11-18 | 2024-10-02 | 삼성디스플레이 주식회사 | Quantum dots, compositions or composite including the same, patternized layer, and display device including the same |
US12065604B2 (en) | 2020-10-16 | 2024-08-20 | Samsung Electronics Co., Ltd. | Quantum dot composite, quantum dot, device including the same |
US11905447B2 (en) | 2020-10-16 | 2024-02-20 | Samsung Electronics Co., Ltd. | Quantum dot, production method thereof, and electronic device including the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150079720A (en) | 2012-10-25 | 2015-07-08 | 코닌클리케 필립스 엔.브이. | Pdms-based ligands for quantum dots in silicones |
CN104755586B (en) | 2012-10-25 | 2018-02-06 | 皇家飞利浦有限公司 | The part based on PDMS for the quantum dot in silicone |
JP2018115315A (en) | 2017-01-18 | 2018-07-26 | 三菱マテリアル株式会社 | Cd-FREE COLLOIDAL QUANTUM DOT EMITTING VISIBLE FLORESCENCE AND METHOD FOR PRODUCING THE SAME |
KR102405260B1 (en) * | 2017-11-21 | 2022-06-02 | 삼성전자주식회사 | Quantum dot device and electronic device |
-
2020
- 2020-01-10 US US16/739,595 patent/US11390804B2/en active Active
- 2020-01-10 KR KR1020200003677A patent/KR20200087715A/en not_active Application Discontinuation
-
2022
- 2022-07-18 US US17/866,983 patent/US20220348824A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US11390804B2 (en) | 2022-07-19 |
KR20200087715A (en) | 2020-07-21 |
US20200224094A1 (en) | 2020-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11981852B2 (en) | Quantum dots and devices including the same | |
US11982018B2 (en) | Semiconductor nanocrystal particles of core-shell structure having specific bandgap relationship between the core and the shells, production methods thereof, and devices including the same | |
US12060510B2 (en) | Semiconductor nanocrystal particles and devices including the same | |
US11011720B2 (en) | Semiconductor nanocrystal particles, production methods thereof, and devices including the same | |
US10954441B2 (en) | Quantum dots | |
US20220348824A1 (en) | Core shell quantum dot and electronic device including the same | |
KR20200023243A (en) | Quantum dot device and quantum dots | |
US11981850B2 (en) | Quantum dots, and an electronic device including the same | |
US20240247188A1 (en) | Semiconductor nanoparticle, production method thereof, and electroluminescent device including the same | |
US20230096181A1 (en) | Electroluminescent device and semiconductor nanoparticle | |
KR20230031175A (en) | Electroluminescent device and semiconductor nanoparticle | |
KR20220004463A (en) | Quantum dots and devices including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |