US20220315971A1 - Methods for seamless nucleic acid assembly - Google Patents

Methods for seamless nucleic acid assembly Download PDF

Info

Publication number
US20220315971A1
US20220315971A1 US17/825,863 US202217825863A US2022315971A1 US 20220315971 A1 US20220315971 A1 US 20220315971A1 US 202217825863 A US202217825863 A US 202217825863A US 2022315971 A1 US2022315971 A1 US 2022315971A1
Authority
US
United States
Prior art keywords
sequence
instances
homology
homology sequence
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/825,863
Inventor
Cheng-Hsien WU
Sebastian Treusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Twist Bioscience Corp
Original Assignee
Twist Bioscience Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Twist Bioscience Corp filed Critical Twist Bioscience Corp
Priority to US17/825,863 priority Critical patent/US20220315971A1/en
Publication of US20220315971A1 publication Critical patent/US20220315971A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)

Definitions

  • nucleic acid assembly comprising: (a) providing at least one double stranded nucleic acid comprising in 5′ to 3′ order: a 5′ flanking adapter sequence, a first homology sequence, an insert sequence, a second homology sequence, and a 3′ flanking adapter sequence, wherein the first homology sequence and the second homology sequence comprises about 20 to about 100 base pairs in length; (b) providing a vector comprising the first homology sequence and the second homology sequence; and (c) mixing the at least one double stranded nucleic acid and the vector with a bacterial lysate.
  • the bacterial lysate comprises a nuclease or a recombinase. Further provided herein is a method, wherein the bacterial lysate comprises a nuclease and a recombinase. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises about 20 base pairs. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises about 41 base pairs. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises 30 to 50 base pairs. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises 35 to 45 base pairs.
  • first homology sequence and the second homology sequence each comprises about 100 base pairs. Further provided herein is a method, wherein the first homology sequence or the second homology sequence is flanked by the 5′ flanking adapter sequence and the 3′ flanking adapter sequence. Further provided herein is a method, wherein the first homology sequence or the second homology sequence is at a terminal end. Further provided herein is a method, wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
  • a method for nucleic acid assembly comprising: (a) de novo synthesizing a plurality of polynucleotides, wherein each polynucleotide comprises a first homology region that comprises in 5′ to 3′ order: a 5′ flanking adapter sequence, a first homology sequence, an insert sequence, a second homology sequence, and a 3′ flanking adapter sequence, wherein the first homology sequence and the second homology sequence each comprises about 20 to about 100 base pairs in length, and wherein each polynucleotide comprises a homology sequence identical to that of another polynucleotide of the plurality of polynucleotides; and (b) mixing of the plurality of polynucleotides with a bacterial lysate to processively form nucleic acids each having a predetermined sequence.
  • the bacterial lysate comprises a nuclease.
  • the first homology sequence and the second homology sequence each comprises about 20 base pairs.
  • the first homology sequence and the second homology sequence each comprises about 41 base pairs.
  • the first homology sequence and the second homology sequence each comprises about 100 base pairs.
  • the first homology sequence or the second homology sequence is flanked by the 5′ flanking adapter sequence and the 3′ flanking adapter sequence.
  • the first homology sequence or the second homology sequence is at a terminal end.
  • a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
  • a method for nucleic acid assembly comprising: (a) providing a first double stranded nucleic acid and a second double stranded nucleic acid, wherein the first double stranded nucleic acid comprises in 5′ to 3′ order: a 5′ flanking adapter sequence, an insert sequence, a homology sequence, and a 3′ flanking adapter sequence, and wherein the second double stranded nucleic acid comprises in 5′ to 3′ order: a 5′ flanking adapter sequence, an insert sequence, a homology sequence, and a 3′ flanking adapter sequence; (b) annealing a uracil separately to each of (i) a 5′ end and a 3′ end of the first double stranded nucleic acid and (ii) a 5′ end and a 3′ end of the second double stranded nucleic acid; (c) amplifying the first double stranded nucleic acid and the second double stranded nucleic acid
  • the uracil incompatible polymerase is a DNA polymerase. Further provided herein is a method, wherein a plurality of double stranded nucleic acids is provided. Further provided herein is a method, wherein the homology sequence comprises about 20 to about 100 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 20 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 41 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 100 base pairs. Further provided herein is a method, wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
  • nucleic acid assembly comprising: (a) providing predetermined sequences for a first double stranded nucleic acid and a second double stranded nucleic acid, wherein the first double stranded nucleic acid comprises in 5′ to 3′ order: a 5′ flanking adapter sequence, an insert sequence, a homology sequence, and a 3′ flanking adapter sequence, and wherein the second double stranded nucleic acid comprises in 5′ to 3′ order: a 5′ flanking adapter sequence, an insert sequence, a homology sequence, and a 3′ flanking adapter sequence; (b) synthesizing a plurality of polynucleotides encoding for the predetermined sequences; (c) annealing a universal primer comprising uracil at a terminal end of the first double stranded nucleic acid and the second double stranded nucleic acid; (d) amplifying the first double stranded nucleic acid and the second
  • the uracil incompatible polymerase is a DNA polymerase. Further provided herein is a method, wherein a plurality of double stranded nucleic acids is provided. Further provided herein is a method, wherein the homology sequence comprises about 20 to about 100 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 20 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 41 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 100 base pairs. Further provided herein is a method, wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
  • nucleic acid assembly comprising: (a) providing a plurality of double stranded nucleic acids; (b) annealing a uracil at a 5′ end and a 3′ end of at least two of the double stranded nucleic acids; (c) amplifying the double stranded nucleic acids using a uracil compatible polymerase to form amplification products; (d) mixing the amplification products from step (c) to form a mixture; and (e) amplifying the mixture from step (d) using a uracil incompatible polymerase to generate a single-stranded nucleic acid.
  • the uracil incompatible polymerase is a DNA polymerase. Further provided herein is a method, wherein a plurality of double stranded nucleic acids is provided. Further provided herein is a method, wherein the homology sequence comprises about 20 to about 100 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 20 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 41 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 100 base pairs. Further provided herein is a method, wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
  • FIG. 1 depicts a schematic of single-stranded DNA mediated hierarchal assembly with two fragments.
  • FIG. 2 depicts a schematic of single-stranded DNA mediated hierarchal assembly with three fragments.
  • FIG. 3 depicts a schematic for in vitro recombination cloning with a single gene fragment.
  • FIG. 4 depicts a schematic for in vitro recombination cloning with two gene fragments.
  • FIG. 5 depicts gene fragment designs with varying lengths of non-homologous sequences.
  • FIGS. 6A-6B depict gene fragment designs of internal homology sequences.
  • FIG. 7 depicts a workflow for in vitro recombination cloning.
  • FIG. 8 depicts a schematic of overlap extension polymerase chain reaction without primer removal.
  • FIG. 9 depicts systems for polynucleotide synthesis and seamless nucleic acid assembly.
  • FIG. 10 illustrates a computer system
  • FIG. 11 is a block diagram illustrating architecture of a computer system.
  • FIG. 12 is a block diagram of a multiprocessor computer system using a shared virtual address memory space.
  • FIG. 13 is a diagram demonstrating a network configured to incorporate a plurality of computer systems, a plurality of cell phones and personal data assistants, and Network Attached Storage (NAS).
  • NAS Network Attached Storage
  • FIG. 14 is a plot of correct assembly (black bars) and incorrect assembly (white bars) following overlap extension polymerase chain reaction without primer removal for two genes (Gene 1 and Gene 2).
  • Homology sequence length includes 20, 41, and 100 base pairs.
  • FIG. 15 is a plot of correct assembly (black bars) and incorrect assembly (white bars) following single-stranded DNA mediated hierarchal assembly using Q5 DNA polymerase and KapaHiFi polymerase enzymes. Homology sequence length includes 20, 41, and 100 base pairs.
  • FIG. 16 is a plot of colony forming units (CFU, Y-axis) versus insert: vector ratio (X-axis).
  • An amount of insert includes 13 fmol (white bars), 26 fmol (hashed bars), and 40 fmol (black bars).
  • FIG. 17 is an image capture of a capillary gel electrophoresis following in vitro recombination cloning.
  • FIG. 18 is a plot of colony forming units (CFU) of homology sequences comprising 20, 41, or 100 base pairs. Homology sequences are flanked by universal primers (internal) or at a 5′ or 3′ end of an insert (terminal).
  • CFU colony forming units
  • FIG. 19 is a plot of correct assembly (black bars) and incorrect assembly (white bars) following in vitro recombination cloning.
  • Homology sequences comprise 20, 41, or 100 base pairs and are flanked by universal primers (internal) or at a 5′ or 3′ end of an insert (terminal).
  • FIG. 20A is a plot of percentage of hierarchal assembly (HA) for non-homologous sequences comprising 0, 24, 124, or 324 base pair lengths.
  • FIG. 20B is a plot of colony forming units (CFU) for non-homologous sequences comprising 0, 24, 124, or 324 base pair lengths.
  • CFU colony forming units
  • FIG. 21A is a plot of percentage of hierarchal assembly (HA) for internal sequences comprising 24, 124, or 324 base pair lengths.
  • FIG. 21B is a plot of colony forming units (CFU) for internal sequences comprising 24, 124, or 324 base pair lengths.
  • CFU colony forming units
  • nucleic acid encompass double- or triple-stranded nucleic acids, as well as single-stranded molecules.
  • the nucleic acid strands need not be coextensive (i.e., a double-stranded nucleic acid need not be double-stranded along the entire length of both strands).
  • Nucleic acid sequences, when provided, are listed in the 5′ to 3′ direction, unless stated otherwise. Methods described herein provide for the generation of isolated nucleic acids. Methods described herein additionally provide for the generation of isolated and purified nucleic acids.
  • a “nucleic acid” as referred to herein can comprise at least 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, or more bases in length.
  • polypeptide-segments encoding nucleotide sequences, including sequences encoding non-ribosomal peptides (NRPs), sequences encoding non-ribosomal peptide-synthetase (NRPS) modules and synthetic variants, polypeptide segments of other modular proteins, such as antibodies, polypeptide segments from other protein families, including non-coding DNA or RNA, such as regulatory sequences e.g. promoters, transcription factors, enhancers, siRNA, shRNA, RNAi, miRNA, small nucleolar RNA derived from microRNA, or any functional or structural DNA or RNA unit of interest.
  • NRPs non-ribosomal peptides
  • NRPS non-ribosomal peptide-synthetase
  • synthetic variants polypeptide segments of other modular proteins, such as antibodies, polypeptide segments from other protein families, including non-coding DNA or RNA, such as regulatory sequences e.g. promoters, transcription factors,
  • polynucleotides coding or non-coding regions of a gene or gene fragment, intergenic DNA, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), small nucleolar RNA, ribozymes, complementary DNA (cDNA), which is a DNA representation of mRNA, usually obtained by reverse transcription of messenger RNA (mRNA) or by amplification; DNA molecules produced synthetically or by amplification, genomic DNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers.
  • cDNA encoding for a gene or gene fragment referred herein may comprise at least one region encoding for exon sequences
  • nucleic acids with increased efficiency and accuracy. Further provided herein are methods of assembly of nucleic acids into long genes. De novo synthesized polynucleotides as described herein are assembled into nucleic acids by in vitro recombination cloning, single-stranded DNA mediated hierarchal assembly, or overlap extension. Generally, methods for nucleic acid assembly as described herein do not require primer removal.
  • FIG. 1 A first exemplary process for seamless assembly of nucleic acids is depicted in FIG. 1 .
  • Single-stranded DNA mediated hierarchal assembly is performed with a first gene fragment 102 and second gene fragment 104 comprising a homology sequence 105 .
  • the first gene fragment 102 and the second gene fragment 104 are double-stranded and comprise a 5′ flanking adapter sequence 107 a and a 3′ flanking adapter sequence 107 b comprising uracil 103 .
  • the first gene fragment 102 and the second gene fragment 104 are amplified with primers and a uracil compatible polymerase.
  • the uracil compatible polymerase is Phusion U or Kapa Uracil.
  • the resultant PCR product comprises a uracil at the end of the 3′ flanking adapter sequence 107 b .
  • the first gene fragment 102 and the second gene fragment 104 are diluted, mixed, and amplified 109 with a primer and a uracil incompatible polymerase that stalls at a uracil.
  • the uracil incompatible polymerase is Q5 DNA polymerase.
  • the resultant fragments 106 , 108 that do not comprise uracil, serve as primers for each other and are combined 113 and amplified 115 to generate a single-stranded DNA molecule.
  • Single-stranded DNA mediated hierarchal assembly can be performed with multiple gene fragments as seen in FIG. 2 .
  • Single-stranded DNA mediated hierarchal assembly is performed with a first gene fragment 202 , a second gene fragment 204 , and a third gene fragment 206 comprising a homology sequence 205 .
  • the first gene fragment 202 , the second gene fragment 204 , and the third gene fragment 206 are double-stranded and comprise a 5′ flanking adapter sequence 207 a and a 3′ flanking adapter sequence 207 b .
  • the 3′ flanking adapter sequence 207 b of the first gene fragment 202 comprises uracil.
  • the 5′ flanking adapter sequence 207 a and the 3′ flanking adapter sequence 207 b of the second gene fragment 204 comprise a uracil.
  • the 3′ flanking adapter sequence 207 b of the third gene fragment 206 comprises uracil.
  • the first gene fragment 202 , the second gene fragment 204 , and the third gene fragment 206 are amplified with universal primers (primers that are complementary to a region of each of the gene fragments) and a uracil compatible polymerase.
  • the uracil compatible polymerase is Phusion U or Kapa Uracil.
  • the resultant PCR product comprises a uracil at the end of the at least one of the 5′ flanking adapter sequence 207 a and the 3′ flanking adapter sequence 207 b .
  • the first gene fragment 202 , the second gene fragment 204 , and the third gene fragment 206 are diluted, mixed, and amplified 209 with universal primers and a uracil incompatible polymerase that stalls at a uracil or is inefficient when interacting with a uracil.
  • the uracil incompatible polymerase is Q5 DNA polymerase.
  • the resultant fragment without 208 uracil and fragment comprising uracil 210 serve as primers for each other.
  • the resultant fragment without 208 uracil and fragment comprising uracil 210 are then combined 213 and diluted, mixed, and then amplified 215 with universal primers and DNA polymerase that stalls at uracil (such as Q5 DNA polymerase) to generate an intermediate fragment 212 .
  • Intermediate fragment 212 and an additional fragment 214 serve as primers for each other and are combined and amplified 219 to generate a single-stranded DNA molecule.
  • FIG. 3 A second exemplary process for seamless assembly of nucleic acids is depicted in FIG. 3 .
  • In vitro recombination cloning is performed with a first gene fragment 302 comprising from 5′ to 3′: a 5′ flanking adapter sequence 307 a , a first homology sequence 303 , an insert sequence 305 , a second homology sequence 309 , and a 3′ flanking adapter sequence 307 b .
  • the first homology sequence 303 is homologous to sequence 311 of vector 304 .
  • the second homology sequence is homologous to sequence 313 of vector 304 .
  • the first gene fragment 302 and vector 304 are incubated 317 with bacterial cell lysate to generate assembled construct 306 .
  • a first gene fragment 402 comprises from 5′ to 3′: a 5′ flanking adapter sequence 407 a , a first homology sequence 403 , an insert sequence 405 , a second homology sequence 409 , and a 3′ flanking adapter sequence 407 b .
  • a second gene fragment 404 comprises from 5′ to 3′: a 5′ flanking adapter sequence 407 a , a first homology sequence 411 , an insert sequence 413 , a second homology sequence 415 , and a 3′ flanking adapter sequence 407 b .
  • the first homology sequence 403 of the first gene fragment 402 is homologous to sequence 417 on vector 406 .
  • the second homology sequence 409 of the first gene fragment 402 is homologous to the first homology sequence 411 of the second gene fragment 404 .
  • the second homology sequence 415 of the second gene fragment 404 is homologous to the sequence 419 of vector 406 .
  • the first gene fragment 402 , the second gene fragment 404 , and vector 406 are incubated 419 with bacterial cell lysate to generate assembled construct 408 .
  • FIG. 8 A third exemplary process for seamless assembly of nucleic acids is depicted in FIG. 8 .
  • Overlap extension PCR is performed using a nucleic acid 802 comprising a universal primer binding site 803 and a region complementary to nucleic acid 804 .
  • Nucleic acid 804 comprises a universal primer binding site 803 .
  • An enzyme 805 cleaves a terminal end of nucleic acid 802 and nucleic acid 804 .
  • Nucleic acid 802 and nucleic acid 804 are then amplified and serve as a template for each other.
  • Primers referred to in the exemplary workflows mentioned herein as “universal primers” are short polynucleotides that recognize a primer binding site common to multiple DNA fragments. However, these workflows are not limited to only use of universal primers, and fragment-specific primers may be incorporated in addition or alternatively. In addition, while exemplary workflows described herein refer to assembly of gene fragments, they are not limited as such and are applicable to the assembly of longer nucleic acids in general.
  • in vitro recombination cloning comprises a gene or fragment thereof for insertion into a vector using a bacterial lysate.
  • the gene fragment comprises at least one universal primer.
  • the gene fragment comprises a vector homology sequence.
  • the bacterial lysate may be derived from Escherichia coli . In some instances, the bacterial lysate is derived from RecA ⁇ bacteria. In some instances, the bacterial strain is from JM109 cells. In some instances, the bacterial lysate comprises a nuclease or a recombinase. In some instances, the bacterial lysate comprises a nuclease and a recombinase.
  • a gene fragment is de novo synthesized and comprise a flanking adapter sequence and a homology sequence.
  • the homology sequence may be at a 5′ or 3′ end of the gene fragment.
  • the homology sequence is flanked by a pair of flanking adapter sequences.
  • the gene fragment comprises a least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 homology sequences.
  • Homology sequences described herein for in vitro recombination cloning may vary in length.
  • Exemplary lengths for homology sequences include, but are not limited to, at least or about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, or more than 200 base pairs.
  • the length of the homology sequence is 20 base pairs.
  • the length of the homology sequence is 41 base pairs.
  • the length of the homology sequence is 100 base pairs.
  • the length of the homology sequence has a range of about 10 to 20, 10 to 30, 10 to 40, 10 to 50, 10 to 60, 10 to 70, 10 to 80, 10 to 100, 10 to 125, 10 to 150, 10 to 200, 20 to 30, 20 to 40, 20 to 50, 20 to 60, 20 to 70, 20 to 80, 20 to 100, 20 to 125, 20 to 150, 20 to 200, 30 to 40, 30 to 50, 30 to 60, 30 to 70, 30 to 80, 30 to 100, 30 to 125, 30 to 150, 30 to 200, 40 to 50, 40 to 60, 40 to 70, 40 to 80, 40 to 100, 40 to 125, 40 to 150, 40 to 200, 50 to 60, 50 to 70, 50 to 80, 50 to 100, 50 to 125, 50 to 150, 50 to 200, 60 to 70, 60 to 80, 60 to 100, 60 to 125, 60 to 150, 60 to 200, 70 to 80, 70 to 100, 70 to 125, 70 to 150, 70 to 200, 80 to 100, 80 to 125, 80, 80 to
  • a number of gene fragments are inserted into a vector.
  • the number of gene fragments that are inserted is at least or about 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 gene fragments.
  • the number of gene fragments that are inserted has a range of about 1 to 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, 1 to 10, 2 to 3, 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, 2 to 10, 3 to 4, 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, 3 to 10, 4 to 5, 4 to 6, 4 to 7, 4 to 8, 4 to 9, 4 to 10, 5 to 6, 5 to 7, 5 to 8, 5 to 9, 5 to 10, 6 to 7, 6 to 8, 6 to 9, 6 to 10, 7 to 8, 7 to 9, 7 to 10, 8 to 9, 8 to 10, or 9 to 10.
  • a gene fragment comprises a non-homologous sequence.
  • the non-homologous sequence comprises at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300 or more than 300 base pairs in length.
  • the number of base pairs is 24 base pairs.
  • the number of base pairs is 124 base pairs.
  • the number of base pairs is 324 base pairs.
  • the gene fragment does not comprise a non-homologous sequence.
  • the amount of gene fragment or the amount of vector varies.
  • the amount of gene fragment is at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, or more than 100 femtomoles.
  • the amount of vector is at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, or more than 100 femtomoles.
  • a ratio of gene fragment to vector varies.
  • the molar ratio of gene fragment to vector is at least or about 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, or more.
  • a reaction for in vitro recombination cloning occurs at an optimal temperature.
  • the reaction occurs at a temperature optimal for enzymatic activity, for example, a temperature in a range of about 25-80° C. 25-70° C. 25-60° C. 25-50° C. or 25-40° C.
  • the temperature is at least or about 15° C. 20° C. 25° C. 30° C. 35° C. 40° C. 45° C. 50° C. 55° C. 60° C. 65° C. 70° C. 75° C. 80° C. or more than 80° C.
  • the temperature is about 65° C.
  • the enzymatic activity is a nuclease activity.
  • the enzymatic activity is a recombinase activity.
  • Methods described herein for in vitro recombination cloning result in a high percentage of correct assembly.
  • the percentage of correct assembly is at least or about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99%, or more than 99%.
  • the percentage of correct assembly is 100%.
  • the percentage of incorrect assembly is at most 5%, 10%, 15%, 20%, 25%, or 30%, or more than 30%.
  • Methods described herein comprising in vitro recombination cloning result in increased efficiency. In some instances, efficiency is measured by number of colony forming units. In some instances, methods described herein result in at least or about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 30000, 35000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 200000, 300000, 400000, 500000, 600000, 700000, 800000, 900000, or more than 900000 colony forming units.
  • the single-stranded DNA mediated hierarchal assembly comprises assembly of a nucleic acid de novo synthesized by methods described herein.
  • the assembly comprises amplification of the nucleic acid with a primer, wherein the primer is not removed after amplification. In some instances, assembly results in increased percentage of correctly assembly nucleic acids and improved efficiency.
  • the amplification reaction comprises a polymerase.
  • the polymerase is a high fidelity polymerase.
  • the polymerase is a DNA polymerase.
  • the DNA polymerase may be from any family of DNA polymerases including, but not limited to, Family A polymerase, Family B polymerase, Family C polymerase, Family D polymerase, Family X polymerase, and Family Y polymerase.
  • the DNA polymerase may be a Family B polymerase.
  • Exemplary Family B polymerase is from a species of, but not limited to, Pyrococcus furiosus, Thermococcus gorgonarius, Desulfurococcus strain Tok, Thermococcus sp. 9°N-7, Pyrococcus kodakaraensis, Thermococcus litoralis, Methanococcus voltae, Pyrobaculum islandicum, Archaeoglobus fulgidus, Cenarchaeaum symbiosum, Sulfolobus acidocaldarius, Sulfurisphaera ohwakuensis, Sulfolobus solfataricus, Pyrodictium occultum , and Aeropyrum pernix .
  • the Family B polymerase is a polymerases or derivative thereof (e.g., mutants, chimeras) from Pyrococcus furiosus.
  • Polymerases described herein for use in an amplification reaction may comprise various enzymatic activities. Polymerases are used in the methods of the invention, for example, to extend primers to produce extension products.
  • the DNA polymerase has 5′ to 3′ polymerase activity.
  • the DNA polymerase comprises 3′ to 5′ exonuclease activity.
  • the DNA polymerase comprises proofreading activity.
  • Exemplary polymerases include, but are not limited to, DNA polymerase (I, II, or III), T4 DNA polymerase, T7 DNA polymerase, Bst DNA polymerase, Bca polymerase, Vent DNA polymerase, Pfu DNA polymerase, and Taq DNA polymerase.
  • Polymerases described herein for use in an amplification reaction may recognize a modified base.
  • the modified base is a variation in nucleic acid composition or a chemical modification.
  • a modified base comprises a base other than adenine, guanine, cytosine or thymine in DNA or a base other than adenine, guanine, cytosine or uracil in RNA.
  • Modified bases described herein include, without limitation, oxidized bases, alkylated bases, deaminated bases, pyrimidine derivatives, purine derivatives, ring-fragmented bases, and methylated bases.
  • Exemplary modified bases include, but are not limited to, uracil, 3-meA (3-methyladenine), hypoxanthine, 8-oxoG (7,8-dihydro-8-oxoguanine), FapyG, FapyA, Tg (thymine glycol), hoU (hydroxyuracil), hmU (hydroxymethyluracil), fU (formyluracil), hoC (hydroxycytosine), fC (formylcytosine), 5-meC (5-methylcytosine), 6-meG (06-methylguanine), 7-meG (N7-methylguanine), ⁇ C (ethenocytosine), 5-caC (5-carboxylcytosine), 2-hA, EA (ethenoadenine), 5-fU (5-fluorouracil), 3-meG (3-methylguanine), and isodialuric acid.
  • a modified base in DNA is a uracil.
  • uracil compatible DNA polymerases include Pfu polymerase, Pfu Turbo Cx and KAPA HiFi Uracil+.
  • the polymerase selected for the amplification reaction is not capable of recognizing a modified base.
  • the polymerase is incompatible with uracil.
  • Exemplary polymerases that are incompatible with uracil include, but are not limited to, KAPA HiFi polymerase, KAPA HiFi, Phusion®, and Q5® High Fidelity DNA polymerase.
  • a single DNA polymerase or a plurality of DNA polymerases are used.
  • the same DNA polymerase or set of DNA polymerases are used at different stages of the present methods. For example, in a first amplification reaction a DNA polymerase that is compatible with uracil is used, and in a second amplification reaction a DNA polymerase that is incompatible with uracil is used.
  • the DNA polymerases are varied.
  • the DNA polymerases are varied based on enzymatic activities. In some instances, additional polymerases are added during various steps.
  • Described herein are methods for nucleic acid assembly comprising an amplification reaction, wherein the amplification reaction comprises a universal primer binding sequence.
  • the universal primer binding sequence is capable of binding the same 5′ or 3′ primer.
  • the universal primer binding sequence is shared among a plurality of target nucleic acids in the amplification reaction.
  • a reaction for single-stranded DNA mediated hierarchal assembly occurs at an optimal temperature.
  • the reaction occurs at a temperature optimal for polymerase activity.
  • the reaction occurs at a temperature optimal for enzymatic activity.
  • the reaction occurs at a temperature in a range of about 25-80° C. 25-70° C. 25-60° C. 25-50° C. or 25-40° C.
  • the temperature is at least or about 15° C. 20° C. 25° C. 30° C. 35° C. 40° C. 45° C. 50° C. 55° C. 60° C. 65° C. 70° C. 75° C. 80° C. or more than 80° C.
  • a gene fragment to be assembled comprises a homology sequence.
  • the homology sequence is complementary to a homology sequence in another gene fragment to be assembled.
  • the homology sequence may comprise a number of base pairs. In some instances, the number of base pairs is at least or about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, or more than 200 base pairs. In some instances, the number of base pairs is 20 base pairs. In some instances, the number of base pairs is 41 base pairs. In some instances the number of base pairs is 100 base pairs.
  • the number of base pairs is 10 to 20, 10 to 30, 10 to 40, 10 to 50, 10 to 60, 10 to 70, 10 to 80, 10 to 100, 10 to 125, 10 to 150, 10 to 200, 20 to 30, 20 to 40, 20 to 50, 20 to 60, 20 to 70, 20 to 80, 20 to 100, 20 to 125, 20 to 150, 20 to 200, 30 to 40, 30 to 50, 30 to 60, 30 to 70, 30 to 80, 30 to 100, 30 to 125, 30 to 150, 30 to 200, 40 to 50, 40 to 60, 40 to 70, 40 to 80, 40 to 100, 40 to 125, 40 to 150, 40 to 200, 50 to 60, 50 to 70, 50 to 80, 50 to 100, 50 to 125, 50 to 150, 50 to 200, 60 to 70, 60 to 80, 60 to 100, 60 to 125, 60 to 150, 60 to 200, 70 to 80, 70 to 100, 70 to 125, 70 to 150, 70 to 200, 80 to 100, 80 to 125, 80 to 150, 80 to 200,
  • the number of gene fragments that are assembled is at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 gene fragments.
  • the number of gene fragments is 1 to 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, 1 to 10, 2 to 3, 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, 2 to 10, 3 to 4, 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, 3 to 10, 4 to 5, 4 to 6, 4 to 7, 4 to 8, 4 to 9, 4 to 10, 5 to 6, 5 to 7, 5 to 8, 5 to 9, 5 to 10, 6 to 7, 6 to 8, 6 to 9, 6 to 10, 7 to 8, 7 to 9, 7 to 10, 8 to 9, 8 to 10, or 9 to 10.
  • Methods described herein for single-stranded DNA mediated hierarchal assembly result in a high percentage of correct assembly.
  • the percentage of correct assembly is at least or about 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99%, or more than 99%.
  • the percentage of correct assembly is 100%.
  • the percentage of incorrect assembly is at most 5%, 10%, 15%, 20%, 25%, or 30%, or more than 30%.
  • FIG. 9 An exemplary workflow is seen in FIG. 9 .
  • a computer readable input file comprising a nucleic acid sequence is received.
  • a computer processes the nucleic acid sequence to generate instructions for synthesis of the polynucleotide sequence or a plurality of polynucleotide sequences collectively encoding the nucleic acid sequence.
  • Instructions are transmitted to a material deposition device 903 for synthesis of the plurality of polynucleotides based on the plurality of nucleic acid sequences.
  • the material deposition device 903 such as a polynucleotide acid synthesizer, is designed to release reagents in a step wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence.
  • the material deposition device 903 generates oligomers on an array 905 that includes multiple clusters 907 of loci for polynucleotide acid synthesis and extension.
  • the array need not have loci organized in clusters. For example, the loci can be uniformly spread across the array.
  • De novo polynucleotides are synthesized and removed from the plate and an assembly reaction commenced in a collection chamber 909 followed by formation population of longer polynucleotides 911 .
  • the collection chamber may comprise a sandwich of multiple surfaces (e.g., a top and bottom surface) or well or channel in containing transferred material from the synthesis surface.
  • De novo polynucleotides can also be synthesized and removed from the plate to form a population of longer polynucleotides 911 .
  • the population of longer polynucleotides 911 can then be partitioned into droplets or subject to PCR.
  • the population of longer polynucleotides 911 is then subject to nucleic acid assembly by either in vitro recombination cloning 915 , or single-stranded DNA hierarchal assembly 917 .
  • the system comprises a computer, a material deposition device, a surface, and a nucleic acid assembly surface.
  • the computer comprises a readable input file with a nucleic acid sequence.
  • the computer processes the nucleic acid sequence to generate instructions for synthesis of the polynucleotide sequence or a plurality of polynucleotide sequences collectively encoding for the nucleic acid sequence.
  • the computer provides instructions to the material deposition device for the synthesis of the plurality of polynucleotide acid sequences.
  • the material deposition device deposits nucleosides on the surface for an extension reaction.
  • the surface comprises a locus for the extension reaction.
  • the locus is a spot, well, microwell, channel, or post.
  • the plurality of polynucleotide acid sequences is synthesized following the extension reaction.
  • the plurality of polynucleotide acid sequences are removed from the surface and prepared for nucleic acid assembly.
  • nucleic acid assembly comprises in vitro recombination cloning.
  • nucleic acid assembly comprises single-stranded hierarchal DNA assembly.
  • nucleic acid assembly comprises overlap extension PCR without primer removal.
  • polynucleotide synthesis comprises coupling a base with phosphoramidite.
  • polynucleotide synthesis comprises coupling a base by deposition of phosphoramidite under coupling conditions, wherein the same base is optionally deposited with phosphoramidite more than once, i.e., double coupling.
  • polynucleotide synthesis comprises capping of unreacted sites. In some cases, capping is optional.
  • polynucleotide synthesis comprises oxidation. In some instances, polynucleotide synthesis comprises deblocking or detritylation.
  • polynucleotide synthesis comprises sulfurization. In some cases, polynucleotide synthesis comprises either oxidation or sulfurization. In some instances, between one or each step during a polynucleotide synthesis reaction, the substrate is washed, for example, using tetrazole or acetonitrile. Time frames for any one step in a phosphoramidite synthesis method include less than about 2 min, 1 min, 50 sec, 40 sec, 30 sec, 20 sec and 10 sec.
  • Polynucleotide synthesis using a phosphoramidite method comprises the subsequent addition of a phosphoramidite building block (e.g., nucleoside phosphoramidite) to a growing polynucleotide chain for the formation of a phosphite triester linkage.
  • a phosphoramidite building block e.g., nucleoside phosphoramidite
  • Phosphoramidite polynucleotide synthesis proceeds in the 3′ to 5′ direction.
  • Phosphoramidite polynucleotide synthesis allows for the controlled addition of one nucleotide to a growing nucleic acid chain per synthesis cycle. In some instances, each synthesis cycle comprises a coupling step.
  • Phosphoramidite coupling involves the formation of a phosphite triester linkage between an activated nucleoside phosphoramidite and a nucleoside bound to the substrate, for example, via a linker.
  • the nucleoside phosphoramidite is provided to the substrate activated.
  • the nucleoside phosphoramidite is provided to the substrate with an activator.
  • nucleoside phosphoramidites are provided to the substrate in a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound nucleosides.
  • nucleoside phosphoramidite is performed in an anhydrous environment, for example, in anhydrous acetonitrile.
  • the substrate is optionally washed.
  • the coupling step is repeated one or more additional times, optionally with a wash step between nucleoside phosphoramidite additions to the substrate.
  • a polynucleotide synthesis method used herein comprises 1, 2, 3 or more sequential coupling steps.
  • the nucleoside bound to the substrate is de-protected by removal of a protecting group, where the protecting group functions to prevent polymerization.
  • a common protecting group is 4,4′-dimethoxytrityl (DMT).
  • phosphoramidite polynucleotide synthesis methods optionally comprise a capping step.
  • a capping step the growing polynucleotide is treated with a capping agent.
  • a capping step is useful to block unreacted substrate-bound 5′—OH groups after coupling from further chain elongation, preventing the formation of polynucleotides with internal base deletions.
  • phosphoramidites activated with 1H-tetrazole may react, to a small extent, with the O6 position of guanosine. Without being bound by theory, upon oxidation with I 2 /water, this side product, possibly via O6-N7 migration, may undergo depurination.
  • the apurinic sites may end up being cleaved in the course of the final deprotection of the polynucleotide thus reducing the yield of the full-length product.
  • the O6 modifications may be removed by treatment with the capping reagent prior to oxidation with I 2 /water.
  • inclusion of a capping step during polynucleotide synthesis decreases the error rate as compared to synthesis without capping.
  • the capping step comprises treating the substrate-bound polynucleotide with a mixture of acetic anhydride and 1-methylimidazole. Following a capping step, the substrate is optionally washed.
  • the substrate bound growing nucleic acid is oxidized.
  • the oxidation step comprises the phosphite triester is oxidized into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester internucleoside linkage.
  • oxidation of the growing polynucleotide is achieved by treatment with iodine and water, optionally in the presence of a weak base (e.g., pyridine, lutidine, collidine). Oxidation may be carried out under anhydrous conditions using, e.g.
  • a capping step is performed following oxidation.
  • a second capping step allows for substrate drying, as residual water from oxidation that may persist can inhibit subsequent coupling.
  • the substrate and growing polynucleotide is optionally washed.
  • the step of oxidation is substituted with a sulfurization step to obtain polynucleotide phosphorothioates, wherein any capping steps can be performed after the sulfurization.
  • reagents are capable of the efficient sulfur transfer, including but not limited to 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).
  • DDTT 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione
  • DDTT 3H-1,2-benzodithiol-3-one 1,1-dioxide
  • Beaucage reagent also known as Beaucage reagent
  • TETD N,N,N′N′-Tetraethylthiuram disulfide
  • the protected 5′ end of the substrate bound growing polynucleotide is removed so that the primary hydroxyl group is reactive with a next nucleoside phosphoramidite.
  • the protecting group is DMT and deblocking occurs with trichloroacetic acid in dichloromethane. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound polynucleotide and thus reduces the yield of the desired full-length product.
  • Methods and compositions of the invention described herein provide for controlled deblocking conditions limiting undesired depurination reactions.
  • the substrate bound polynucleotide is washed after deblocking. In some cases, efficient washing after deblocking contributes to synthesized polynucleotides having a low error rate.
  • Methods for the synthesis of polynucleotides typically involve an iterating sequence of the following steps: application of a protected monomer to an actively functionalized surface (e.g., locus) to link with either the activated surface, a linker or with a previously deprotected monomer; deprotection of the applied monomer so that it is reactive with a subsequently applied protected monomer; and application of another protected monomer for linking.
  • One or more intermediate steps include oxidation or sulfurization.
  • one or more wash steps precede or follow one or all of the steps.
  • Methods for phosphoramidite based polynucleotide synthesis comprise a series of chemical steps.
  • one or more steps of a synthesis method involve reagent cycling, where one or more steps of the method comprise application to the substrate of a reagent useful for the step.
  • reagents are cycled by a series of liquid deposition and vacuum drying steps.
  • substrates comprising three-dimensional features such as wells, microwells, channels and the like, reagents are optionally passed through one or more regions of the substrate via the wells and/or channels.
  • Polynucleotides synthesized using the methods and/or substrates described herein comprise at least about 20, 30, 40, 50, 60, 70, 75, 80, 90, 100, 120, 150, 200, 500 or more bases in length. In some instances, at least about 1 ⁇ mol, 10 pmol, 20 pmol, 30 pmol, 40 pmol, 50 pmol, 60 pmol, 70 pmol, 80 pmol, 90 pmol, 100 pmol, 150 pmol, 200 pmol, 300 pmol, 400 pmol, 500 pmol, 600 pmol, 700 pmol, 800 pmol, 900 pmol, 1 nmol, 5 nmol, 10 nmol, 100 nmol or more of a polynucleotide is synthesized within a locus.
  • Methods for polynucleotide synthesis on a surface allow for synthesis at a fast rate.
  • at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 125, 150, 175, 200 nucleotides per hour, or more are synthesized.
  • Nucleotides include adenine, guanine, thymine, cytosine, uridine building blocks, or analogs/modified versions thereof.
  • libraries of polynucleotides are synthesized in parallel on a substrate.
  • a substrate comprising about or at least about 100; 1,000; 10,000; 100,000; 1,000,000; 2,000,000; 3,000,000; 4,000,000; or 5,000,000 resolved loci is able to support the synthesis of at least the same number of distinct polynucleotides, wherein polynucleotide encoding a distinct sequence is synthesized on a resolved locus.
  • a substrate surface layer is provided.
  • chemistry of the surface is altered in order to improve the polynucleotide synthesis process. Areas of low surface energy are generated to repel liquid while areas of high surface energy are generated to attract liquids.
  • the surface itself may be in the form of a planar surface or contain variations in shape, such as protrusions or microwells which increase surface area.
  • high surface energy molecules selected serve a dual function of supporting DNA chemistry, as disclosed in International Patent Application Publication WO/2015/021080, which is herein incorporated by reference in its entirety.
  • a deposition device such as a polynucleotide synthesizer, is designed to release reagents in a step wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence.
  • polynucleotides are cleaved from the surface at this stage.
  • Cleavage includes gas cleavage, e.g., with ammonia or methylamine.
  • Devices used as a surface for polynucleotide synthesis may be in the form of substrates which include, without limitation, homogenous array surfaces, patterned array surfaces, channels, beads, gels, and the like.
  • substrates comprising a plurality of clusters, wherein each cluster comprises a plurality of loci that support the attachment and synthesis of polynucleotides.
  • locus refers to a discrete region on a structure which provides support for polynucleotides encoding for a single predetermined sequence to extend from the surface. In some instances, a locus is on a two dimensional surface, e.g., a substantially planar surface.
  • a locus is on a three-dimensional surface, e.g., a well, microwell, channel, or post.
  • a surface of a locus comprises a material that is actively functionalized to attach to at least one nucleotide for polynucleotide synthesis, or preferably, a population of identical nucleotides for synthesis of a population of polynucleotides.
  • polynucleotide refers to a population of polynucleotides encoding for the same nucleic acid sequence.
  • a surface of a substrate is inclusive of one or a plurality of surfaces of a substrate. The average error rates for polynucleotides synthesized within a library described herein using the systems and methods provided are often less than 1 in 1000, less than about 1 in 2000, less than about 1 in 3000 or less often without error correction.
  • a substrate provides support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more non-identical polynucleotides.
  • the surfaces provides support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more polynucleotides encoding for distinct sequences.
  • at least a portion of the polynucleotides have an identical sequence or are configured to be synthesized with an identical sequence.
  • the substrate provides a surface environment for the growth of polynucleotides having at least 80, 90, 100, 120, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500 bases or more.
  • each locus supports the synthesis of a population of polynucleotides.
  • each locus supports the synthesis of a population of polynucleotides having a different sequence than a population of polynucleotides grown on another locus.
  • each polynucleotide sequence is synthesized with 1, 2, 3, 4, 5, 6, 7, 8, 9 or more redundancy across different loci within the same cluster of loci on a surface for polynucleotide synthesis.
  • the loci of a substrate are located within a plurality of clusters.
  • a substrate comprises at least 10, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 20000, 30000, 40000, 50000 or more clusters.
  • a substrate comprises more than 2,000; 5,000; 10,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,100,000; 1,200,000; 1,300,000; 1,400,000; 1,500,000; 1,600,000; 1,700,000; 1,800,000; 1,900,000; 2,000,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; or 10,000,000 or more distinct loci.
  • a substrate comprises about 10,000 distinct loci.
  • each cluster includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 150, 200, 300, 400, 500 or more loci. In some instances, each cluster includes about 50-500 loci. In some instances, each cluster includes about 100-200 loci. In some instances, each cluster includes about 100-150 loci. In some instances, each cluster includes about 109, 121, 130 or 137 loci. In some instances, each cluster includes about 19, 20, 61, 64 or more loci.
  • the number of distinct polynucleotides synthesized on a substrate is dependent on the number of distinct loci available in the substrate.
  • the density of loci within a cluster of a substrate is at least or about 1, 10, 25, 50, 65, 75, 100, 130, 150, 175, 200, 300, 400, 500, 1,000 or more loci per mm 2 .
  • a substrate comprises 10-500, 25-400, 50-500, 100-500, 150-500, 10-250, 50-250, 10-200, or 50-200 mm 2 .
  • the distance between the centers of two adjacent loci within a cluster is from about 10-500, from about 10-200, or from about 10-100 um.
  • the distance between two centers of adjacent loci is greater than about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some instances, the distance between the centers of two adjacent loci is less than about 200, 150, 100, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, each locus has a width of about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some cases, the each locus is has a width of about 0.5-100, 0.5-50, 10-75, or 0.5-50 um.
  • the density of clusters within a substrate is at least or about 1 cluster per 100 mm 2 , 1 cluster per 10 mm 2 , 1 cluster per 5 mm 2 , 1 cluster per 4 mm 2 , 1 cluster per 3 mm 2 , 1 cluster per 2 mm 2 , 1 cluster per 1 mm 2 , 2 clusters per 1 mm 2 , 3 clusters per 1 mm 2 , 4 clusters per 1 mm 2 , 5 clusters per 1 mm 2 , 10 clusters per 1 mm 2 , 50 clusters per 1 mm 2 or more.
  • a substrate comprises from about 1 cluster per 10 mm 2 to about 10 clusters per 1 mm 2 .
  • the distance between the centers of two adjacent clusters is at least or about 50, 100, 200, 500, 1000, 2000, or 5000 um. In some cases, the distance between the centers of two adjacent clusters is between about 50-100, 50-200, 50-300, 50-500, and 100-2000 um. In some cases, the distance between the centers of two adjacent clusters is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm. In some cases, each cluster has a cross section of about 0.5 to about 2, about 0.5 to about 1, or about 1 to about 2 mm.
  • each cluster has a cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm. In some cases, each cluster has an interior cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm.
  • a substrate is about the size of a standard 96 well plate, for example between about 100 and about 200 mm by between about 50 and about 150 mm. In some instances, a substrate has a diameter less than or equal to about 1000, 500, 450, 400, 300, 250, 200, 150, 100 or 50 mm. In some instances, the diameter of a substrate is between about 25-1000, 25-800, 25-600, 25-500, 25-400, 25-300, or 25-200 mm. In some instances, a substrate has a planar surface area of at least about 100; 200; 500; 1,000; 2,000; 5,000; 10,000; 12,000; 15,000; 20,000; 30,000; 40,000; 50,000 mm 2 or more. In some instances, the thickness of a substrate is between about 50-2000, 50-1000, 100-1000, 200-1000, or 250-1000 mm.
  • substrate materials are fabricated to exhibit a low level of nucleotide binding.
  • substrate materials are modified to generate distinct surfaces that exhibit a high level of nucleotide binding.
  • substrate materials are transparent to visible and/or UV light.
  • substrate materials are sufficiently conductive, e.g., are able to form uniform electric fields across all or a portion of a substrate.
  • conductive materials are connected to an electric ground.
  • the substrate is heat conductive or insulated.
  • a substrate comprises flexible materials.
  • materials can include, without limitation: nylon, both modified and unmodified, nitrocellulose, polypropylene, and the like.
  • a substrate comprises rigid materials.
  • materials can include, without limitation: glass, fuse silica, silicon, plastics (for example polytetraflouroethylene, polypropylene, polystyrene, polycarbonate, and blends thereof, and the like), and metals (for example, gold, platinum, and the like).
  • the substrate, solid support or reactors can be fabricated from a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), and glass.
  • the substrates/solid supports or the microstructures, reactors therein may be manufactured with a combination of materials listed herein or any other suitable material known in the art.
  • a substrate for the methods, compositions, and systems described herein, wherein the substrates have a surface architecture suitable for the methods, compositions, and systems described herein.
  • a substrate comprises raised and/or lowered features.
  • One benefit of having such features is an increase in surface area to support polynucleotide synthesis.
  • a substrate having raised and/or lowered features is referred to as a three-dimensional substrate.
  • a three-dimensional substrate comprises one or more channels.
  • one or more loci comprise a channel.
  • the channels are accessible to reagent deposition via a deposition device such as a polynucleotide synthesizer.
  • reagents and/or fluids collect in a larger well in fluid communication one or more channels.
  • a substrate comprises a plurality of channels corresponding to a plurality of loci with a cluster, and the plurality of channels are in fluid communication with one well of the cluster.
  • a library of polynucleotides is synthesized in a plurality of loci of a cluster.
  • substrates for the methods, compositions, and systems described herein wherein the substrates are configured for polynucleotide synthesis.
  • the structure is configured to allow for controlled flow and mass transfer paths for polynucleotide synthesis on a surface.
  • the configuration of a substrate allows for the controlled and even distribution of mass transfer paths, chemical exposure times, and/or wash efficacy during polynucleotide synthesis.
  • the configuration of a substrate allows for increased sweep efficiency, for example by providing sufficient volume for a growing a polynucleotide such that the excluded volume by the growing polynucleotide does not take up more than 50, 45, 40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1%, or less of the initially available volume that is available or suitable for growing the polynucleotide.
  • a three-dimensional structure allows for managed flow of fluid to allow for the rapid exchange of chemical exposure.
  • substrates for the methods, compositions, and systems described herein wherein the substrates comprise structures suitable for the methods, compositions, and systems described herein.
  • segregation is achieved by physical structure.
  • segregation is achieved by differential functionalization of the surface generating active and passive regions for polynucleotide synthesis.
  • differential functionalization is achieved by alternating the hydrophobicity across the substrate surface, thereby creating water contact angle effects that cause beading or wetting of the deposited reagents.
  • Employing larger structures can decrease splashing and cross-contamination of distinct polynucleotide synthesis locations with reagents of the neighboring spots.
  • a device such as a material deposition device, is used to deposit reagents to distinct polynucleotide synthesis locations.
  • Substrates having three-dimensional features are configured in a manner that allows for the synthesis of a large number of polynucleotides (e.g., more than about 10,000) with a low error rate (e.g., less than about 1:500, 1:1000, 1:1500, 1:2,000; 1:3,000; 1:5,000; or 1:10,000).
  • a substrate comprises features with a density of about or greater than about 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400 or 500 features per mm 2 .
  • a well of a substrate may have the same or different width, height, and/or volume as another well of the substrate.
  • a channel of a substrate may have the same or different width, height, and/or volume as another channel of the substrate.
  • the diameter of a cluster or the diameter of a well comprising a cluster, or both is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.05-1, 0.05-0.5, 0.05-0.1, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm.
  • the diameter of a cluster or well or both is less than or about 5, 4, 3, 2, 1, 0.5, 0.1, 0.09, 0.08, 0.07, 0.06, or 0.05 mm. In some instances, the diameter of a cluster or well or both is between about 1.0 and about 1.3 mm. In some instances, the diameter of a cluster or well, or both is about 1.150 mm. In some instances, the diameter of a cluster or well, or both is about 0.08 mm.
  • the diameter of a cluster refers to clusters within a two-dimensional or three-dimensional substrate.
  • the height of a well is from about 20-1000, 50-1000, 100-1000, 200-1000, 300-1000, 400-1000, or 500-1000 um. In some cases, the height of a well is less than about 1000, 900, 800, 700, or 600 um.
  • a substrate comprises a plurality of channels corresponding to a plurality of loci within a cluster, wherein the height or depth of a channel is 5-500, 5-400, 5-300, 5-200, 5-100, 5-50, or 10-50 um. In some cases, the height of a channel is less than 100, 80, 60, 40, or 20 um.
  • the diameter of a channel, locus (e.g., in a substantially planar substrate) or both channel and locus (e.g., in a three-dimensional substrate wherein a locus corresponds to a channel) is from about 1-1000, 1-500, 1-200, 1-100, 5-100, or 10-100 um, for example, about 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the diameter of a channel, locus, or both channel and locus is less than about 100, 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the distance between the center of two adjacent channels, loci, or channels and loci is from about 1-500, 1-200, 1-100, 5-200, 5-100, 5-50, or 5-30, for example, about 20 um.
  • the surface comprises various surface modifications.
  • the surface modifications are employed for the chemical and/or physical alteration of a surface by an additive or subtractive process to change one or more chemical and/or physical properties of a substrate surface or a selected site or region of a substrate surface.
  • surface modifications include, without limitation, (1) changing the wetting properties of a surface, (2) functionalizing a surface, i.e., providing, modifying or substituting surface functional groups, (3) defunctionalizing a surface, i.e., removing surface functional groups, (4) otherwise altering the chemical composition of a surface, e.g., through etching, (5) increasing or decreasing surface roughness, (6) providing a coating on a surface, e.g., a coating that exhibits wetting properties that are different from the wetting properties of the surface, and/or (7) depositing particulates on a surface.
  • adhesion promoter facilitates structured patterning of loci on a surface of a substrate.
  • exemplary surfaces for application of adhesion promotion include, without limitation, glass, silicon, silicon dioxide, and silicon nitride.
  • the adhesion promoter is a chemical with a high surface energy.
  • a second chemical layer is deposited on a surface of a substrate.
  • the second chemical layer has a low surface energy.
  • surface energy of a chemical layer coated on a surface supports localization of droplets on the surface. Depending on the patterning arrangement selected, the proximity of loci and/or area of fluid contact at the loci are alterable.
  • a substrate surface, or resolved loci, onto which nucleic acids or other moieties are deposited, e.g., for polynucleotide synthesis are smooth or substantially planar (e.g., two-dimensional) or have irregularities, such as raised or lowered features (e.g., three-dimensional features).
  • a substrate surface is modified with one or more different layers of compounds.
  • modification layers of interest include, without limitation, inorganic and organic layers such as metals, metal oxides, polymers, small organic molecules and the like.
  • resolved loci of a substrate are functionalized with one or more moieties that increase and/or decrease surface energy.
  • a moiety is chemically inert.
  • a moiety is configured to support a desired chemical reaction, for example, one or more processes in a polynucleotide acid synthesis reaction.
  • the surface energy, or hydrophobicity, of a surface is a factor for determining the affinity of a nucleotide to attach onto the surface.
  • a method for substrate functionalization comprises: (a) providing a substrate having a surface that comprises silicon dioxide; and (b) silanizing the surface using, a suitable silanizing agent described herein or otherwise known in the art, for example, an organofunctional alkoxysilane molecule.
  • a suitable silanizing agent described herein or otherwise known in the art, for example, an organofunctional alkoxysilane molecule.
  • a substrate surface is functionalized by contact with a derivatizing composition that contains a mixture of silanes, under reaction conditions effective to couple the silanes to the substrate surface, typically via reactive hydrophilic moieties present on the substrate surface.
  • Silanization generally covers a surface through self-assembly with organofunctional alkoxysilane molecules.
  • a variety of siloxane functionalizing reagents can further be used as currently known in the art, e.g., for lowering or increasing surface energy.
  • the organofunctional alkoxysilanes are classified according to their organic functions.
  • any of the systems described herein may be operably linked to a computer and may be automated through a computer either locally or remotely.
  • the methods and systems of the invention further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the material deposition device movement, dispense action and vacuum actuation are within the bounds of the invention.
  • the computer systems may be programmed to interface between the user specified base sequence and the position of a material deposition device to deliver the correct reagents to specified regions of the substrate.
  • the computer system 1000 illustrated in FIG. 10 may be understood as a logical apparatus that can read instructions from media 1011 and/or a network port 1005 , which can optionally be connected to server 1009 having fixed media 1012 .
  • the system such as shown in FIG. 10 can include a CPU 1001 , disk drives 1003 , optional input devices such as keyboard 1015 and/or mouse 1016 and optional monitor 1007 .
  • Data communication can be achieved through the indicated communication medium to a server at a local or a remote location.
  • the communication medium can include any means of transmitting and/or receiving data.
  • the communication medium can be a network connection, a wireless connection or an internet connection. Such a connection can provide for communication over the World Wide Web. It is envisioned that data relating to the present disclosure can be transmitted over such networks or connections for reception and/or review by a party 1022 as illustrated in FIG. 10 .
  • FIG. 11 is a block diagram illustrating architecture of a computer system 1100 that can be used in connection with example embodiments of the present invention.
  • the example computer system can include a processor 1102 for processing instructions.
  • processors include: Intel® Xeon® processor, AMD OpteronTM processor, Samsung 32-bit RISC ARM 1176JZ(F)-S v1.0 processor, ARM Cortex-A8 Samsung S5PC100 processor, ARM Cortex-A8 Apple A4 processor, Marvell PXA 930 processor, or a functionally-equivalent processor. Multiple threads of execution can be used for parallel processing. In some instances, multiple processors or processors with multiple cores can also be used, whether in a single computer system, in a cluster, or distributed across systems over a network comprising a plurality of computers, cell phones, and/or personal data assistant devices.
  • a high speed cache 1104 can be connected to, or incorporated in, the processor 1102 to provide a high speed memory for instructions or data that have been recently, or are frequently, used by processor 1102 .
  • the processor 1102 is connected to a north bridge 1106 by a processor bus 1108 .
  • the north bridge 1106 is connected to random access memory (RAM) 1110 by a memory bus 1112 and manages access to the RAM 1110 by the processor 1102 .
  • the north bridge 1106 is also connected to a south bridge 1114 by a chipset bus 1116 .
  • the south bridge 1114 is, in turn, connected to a peripheral bus 1118 .
  • the peripheral bus can be, for example, PCI, PCI-X, PCI Express, or other peripheral bus.
  • the north bridge and south bridge are often referred to as a processor chipset and manage data transfer between the processor, RAM, and peripheral components on the peripheral bus 1118 .
  • the functionality of the north bridge can be incorporated into the processor instead of using a separate north bridge chip.
  • system 1100 can include an accelerator card 1122 attached to the peripheral bus 1118 .
  • the accelerator can include field programmable gate arrays (FPGAs) or other hardware for accelerating certain processing.
  • FPGAs field programmable gate arrays
  • an accelerator can be used for adaptive data restructuring or to evaluate algebraic expressions used in extended set processing.
  • the system 1100 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, WindowsTM, MACOSTM, BlackBerry OSTM, iOSTM, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example embodiments of the present invention.
  • system 1100 also includes network interface cards (NICs) 1120 and 1121 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing.
  • NICs network interface cards
  • NAS Network Attached Storage
  • FIG. 12 is a block diagram of a multiprocessor computer system using a shared virtual address memory space in accordance with an example embodiment.
  • the system includes a plurality of processors 1202 a - f that can access a shared memory subsystem 1204 .
  • the system incorporates a plurality of programmable hardware memory algorithm processors (MAPs) 1206 a - f in the memory subsystem 1204 .
  • MAPs programmable hardware memory algorithm processors
  • Each MAP 1206 a - f can comprise a memory 1208 a - f and one or more field programmable gate arrays (FPGAs) 1210 a - f
  • the MAP provides a configurable functional unit and particular algorithms or portions of algorithms can be provided to the FPGAs 1210 a - f for processing in close coordination with a respective processor.
  • the MAPs can be used to evaluate algebraic expressions regarding the data model and to perform adaptive data restructuring in example embodiments.
  • each MAP is globally accessible by all of the processors for these purposes.
  • each MAP can use Direct Memory Access (DMA) to access an associated memory 1208 a - f , allowing it to execute tasks independently of, and asynchronously from, the respective microprocessor 1202 a - f
  • DMA Direct Memory Access
  • a MAP can feed results directly to another MAP for pipelining and parallel execution of algorithms.
  • FIG. 13 is a diagram showing a network with a plurality of computer systems 1302 a and 1302 b , a plurality of cell phones and personal data assistants 1302 c , and Network Attached Storage (NAS) 1304 a and 1304 b .
  • systems 1302 a , 1302 b , and 1302 c can manage data storage and optimize data access for data stored in Network Attached Storage (NAS) 1304 a and 1304 b .
  • NAS Network Attached Storage
  • a mathematical model can be used for the data and be evaluated using distributed parallel processing across computer systems 1302 a , and 1302 b , and cell phone and personal data assistant systems 1302 c .
  • Computer systems 1302 a , and 1302 b , and cell phone and personal data assistant systems 1302 c can also provide parallel processing for adaptive data restructuring of the data stored in Network Attached Storage (NAS) 1304 a and 1304 b .
  • FIG. 13 illustrates an example only, and a wide variety of other computer architectures and systems can be used in conjunction with the various embodiments of the present invention.
  • a blade server can be used to provide parallel processing.
  • Processor blades can be connected through a back plane to provide parallel processing.
  • Storage can also be connected to the back plane or as Network Attached Storage (NAS) through a separate network interface.
  • processors can maintain separate memory spaces and transmit data through network interfaces, back plane or other connectors for parallel processing by other processors.
  • some or all of the processors can use a shared virtual address memory space.
  • any of the systems described herein may comprise sequence information stored on non-transitory computer readable storage media.
  • any of the systems described herein comprise a computer input file.
  • the computer input file comprises sequence information.
  • the computer input file comprises instructions for synthesis of a plurality of polynucleotide sequence.
  • the instructions are received by a computer.
  • the instructions are processed by the computer.
  • the instructions are transmitted to a material deposition device.
  • the non-transitory computer readable storage media is encoded with a program including instructions executable by the operating system of an optionally networked digital processing device.
  • a computer readable storage medium is a tangible component of a digital processing device.
  • a computer readable storage medium is optionally removable from a digital processing device.
  • a computer readable storage medium includes, by way of non-limiting examples, CD-ROMs, DVDs, flash memory devices, solid state memory, magnetic disk drives, magnetic tape drives, optical disk drives, cloud computing systems and services, and the like.
  • the program and instructions are permanently, substantially permanently, semi-permanently, or non-transitorily encoded on the media.
  • Example 1 Functionalization of a Substrate Surface
  • a substrate was functionalized to support the attachment and synthesis of a library of polynucleotides.
  • the substrate surface was first wet cleaned using a piranha solution comprising 90% H 2 SO 4 and 10% H 2 O 2 for 20 minutes.
  • the substrate was rinsed in several beakers with deionized water, held under a deionized water gooseneck faucet for 5 min, and dried with N 2 .
  • the substrate was subsequently soaked in NH 4 OH (1:100; 3 mL:300 mL) for 5 min, rinsed with DI water using a handgun, soaked in three successive beakers with deionized water for 1 min each, and then rinsed again with deionized water using the handgun.
  • the substrate was then plasma cleaned by exposing the substrate surface to O 2 .
  • a SAMCO PC-300 instrument was used to plasma etch O 2 at 250 watts for 1 min in downstream mode.
  • the cleaned substrate surface was actively functionalized with a solution comprising N-(3-triethoxysilylpropyl)-4-hydroxybutyramide using a YES-1224P vapor deposition oven system with the following parameters: 0.5 to 1 torr, 60 min, 70° C. 135° C. vaporizer.
  • the substrate surface was resist coated using a Brewer Science 200X spin coater. SPRTM 3612 photoresist was spin coated on the substrate at 2500 rpm for 40 sec. The substrate was pre-baked for 30 min at 90° C. on a Brewer hot plate.
  • the substrate was subjected to photolithography using a Karl Suss MA6 mask aligner instrument. The substrate was exposed for 2.2 sec and developed for 1 min in MSF 26A.
  • Remaining developer was rinsed with the handgun and the substrate soaked in water for 5 min.
  • the substrate was baked for 30 min at 100° C. in the oven, followed by visual inspection for lithography defects using a Nikon L200.
  • a cleaning process was used to remove residual resist using the SAMCO PC-300 instrument to O 2 plasma etch at 250 watts for 1 min.
  • the substrate surface was passively functionalized with a 100 ⁇ L solution of perfluorooctyltrichlorosilane mixed with 10 ⁇ L light mineral oil.
  • the substrate was placed in a chamber, pumped for 10 min, and then the valve was closed to the pump and left to stand for 10 min. The chamber was vented to air.
  • the substrate was resist stripped by performing two soaks for 5 min in 500 mL NMP at 70° C. with ultrasonication at maximum power (9 on Crest system). The substrate was then soaked for 5 min in 500 mL isopropanol at room temperature with ultrasonication at maximum power.
  • the substrate was dipped in 300 mL of 200 proof ethanol and blown dry with N 2 .
  • the functionalized surface was activated to serve as a support for polynucleotide synthesis.
  • a two dimensional oligonucleotide synthesis device was assembled into a flowcell, which was connected to a flowcell (Applied Biosystems (“ABI394 DNA Synthesizer”)).
  • the two-dimensional oligonucleotide synthesis device was uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE (Gelest) was used to synthesize an exemplary polynucleotide of 50 bp (“50-mer polynucleotide”) using polynucleotide synthesis methods described herein.
  • the sequence of the 50-mer was as described in SEQ ID NO.: 1. 5′AGACAATCAACCATTTGGGGTGGACAGCCTTGACCTCTAGACTTCGGCAT##TTTTTTT TTT3′ (SEQ ID NO.: 1), where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes), which is a cleavable linker enabling the release of polynucleotides from the surface during deprotection.
  • CLP-2244 Thymidine-succinyl hexamide CED phosphoramidite
  • the synthesis was done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 1 and ABI394 DNA Synthesizer.
  • the phosphoramidite/activator combination was delivered similar to the delivery of bulk reagents through the flowcell. No drying steps were performed as the environment stays “wet” with reagent the entire time.
  • the flow restrictor was removed from the ABI394 DNA Synthesizer to enable faster flow. Without flow restrictor, flow rates for amidites (0.1M in ACN), Activator, (0.25M Benzoylthiotetrazole (“BTT”; 30-3070-xx from GlenResearch) in ACN), and Ox (0.02M 12 in 20% pyridine, 10% water, and 70% THF) were roughly ⁇ 100 uL/sec, for acetonitrile (“ACN”) and capping reagents (1:1 mix of CapA and CapB, wherein CapA is acetic anhydride in THF/Pyridine and CapB is 16% 1-methylimidizole in THF), roughly ⁇ 200 uL/sec, and for Deblock (3% dichloroacetic acid in toluene), roughly ⁇ 300 uL/sec (compared to ⁇ 50 uL/sec for all reagents with flow restrictor).
  • ACN acetonitrile
  • Deblock 3% dichloroace
  • Example 2 The same process as described in Example 2 for the synthesis of the 50-mer sequence was used for the synthesis of a 100-mer polynucleotide (“100-mer polynucleotide”; 5′ CGGGATCCTTATCGTCATCGTCGTACAGATCCCGACCCATTTGCTGTCCACCAGTCATG CTAGCCATACCATGATGATGATGATGATGAGAACCCCGCAT##TTTTTTTT3′, where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes); SEQ ID NO.: 2) on two different silicon chips, the first one uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE and the second one functionalized with 5/95 mix of 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane, and the polynucleotides extracted
  • Table 3 summarizes key error characteristics for the sequences obtained from the polynucleotides samples from spots 1-10.
  • Gene 1 and Gene 2 Two genes (Gene 1 and Gene 2) were selected to perform overlap extension PCR without primer removal. Varying lengths of base pair overlap were tested for Gene 1 and Gene 2, including 20, 41, and 100 base pairs. PCR amplification was performed using universal primers. Referring to FIG. 14 , incorrect assembly (white) and correct assembly (black) were determined for Gene 1 and Gene 2 amplified with universal primers and having a base pair overlap of 20, 41, and 100 base pairs. Assembly of Gene 1 and Gene 2 without amplification by universal primers with a 20 base pair overlap was also determined. As seen in FIG. 14 , universal primers having a base pair overlap of 41 base pairs resulted in improved assembly for Gene 1 and Gene 2. For Gene 1, assembly was about 91%.
  • a gene was assembled into a 3 kb gene from two gene fragments.
  • the 5′ and 3′ of each fragment end was appended with uracils and amplified using a uracil compatible polymerase such as KapaU polymerase or PhusionU polymerase.
  • Each of the two fragments further comprised a homology sequence. See FIG. 1 .
  • the two fragments were then mixed and amplified with universal primers and Q5 DNA polymerase.
  • Q5 DNA polymerase is incompatible with uracil and resulted in stalling at a uracil base. Single stranded fragments that do not comprise uracil were thus generated.
  • the two fragments were then combined and amplified to generate the 3 kb gene.
  • a gene was assembled into a 3 kb gene from three gene fragments.
  • the 5′ and 3′ of each fragment end was appended with flanking adapter sequences comprising uracils and amplified using a uracil compatible polymerase such as KapaU polymerase or PhusionU polymerase.
  • Each of the three fragments comprised a homology sequence. See FIG. 2 .
  • the three fragments were mixed and amplified with Q5 DNA polymerase.
  • Q5 DNA polymerase is incompatible with uracil and resulted in stalling at a uracil base. Single stranded fragments that do not comprise uracil were thus generated.
  • Two of the three fragments were then combined and amplified to generate a single fragment.
  • the third fragment was combined with the synthesized fragment and amplified to generate the 3 kb gene.
  • Two genes were assembled similar to Examples 5-6.
  • the 5′ and 3′ of each fragment end was appended with flanking adapter sequences comprising uracils and amplified using a uracil compatible polymerase such as KapaU polymerase or PhusionU polymerase.
  • Each of the two fragments comprised a homology sequence.
  • the length of the homology sequence was 20, 41, or 100 base pairs.
  • the two fragments were mixed and amplified with universal primers and Q5 DNA polymerase or KapaHiFi polymerase.
  • Q5 DNA polymerase and KapaHiFi polymerase are incompatible with uracil and resulted in stalling at a uracil base. Single stranded fragments that do not comprise uracil were thus generated.
  • the two fragments are combined and amplified to generate Gene 1 and Gene 2.
  • JM109 cell lysate was prepared. JM109 was streaked on a M9 agar plate and incubated at 37° C. for about 24 hours. Colonies were picked and incubated in 15 mL tubes comprising 3 mL of M9 broth for a seed culture. The tubes were shaken at 250 rpm at 37° C. for about 19 hours. When OD600 was between about 2-3, 0.016 mL of the seed culture was removed and added to flasks comprising 100 mL of TB broth. The flasks were shaken at 300 rpm at 37° C. for about 4.5 hours. The cells were spun down at 4,816 ⁇ g for 10 minutes and washed with 100 mL of ice-cold water.
  • the cells were lysed with 2.4 mL CelLytic B Cell Lysis Reagent (Sigma-Aldrich) for 10 minutes at room-temperature and centrifuged at 18,615 ⁇ g for 5 minutes to collect the supernatant (about 2 mL).
  • the supernatant was mixed with 2 mL of ice cold 80% glycerol and snap frozen in a dry ice-ethanol bath followed by storage at ⁇ 80° C.
  • the gene fragment and a vector comprising homologous sequences to the first homology sequence and the second homology sequence were incubated with JM109 cell lysate. See FIG. 4 .
  • a reaction was set up similar to Table 4. Varying amounts of insert were tested: 13 fmol (white bars), 26 fmol (hashed bars), and 40 fmol (black bars) ( FIG. 16 ).
  • the ratio of insert:vector (X-axis) was also varied including ratios of 1:1, 2:1, and 4:1.
  • Colony forming unit (CFU, Y-axis) was then determined as a measure of efficiency. More than 99% correct assembly of any selected condition (1 misassembly out of 437 valid clones) was observed ( FIG. 16 ). Referring to FIG. 17 , colony PCR results of 48 colonies showed only 4 samples failed, which were background plasmids.
  • a first gene fragment comprised from 5′ to 3′: a 5′ flanking adapter sequence, a first homology sequence, an insert sequence, a second homology sequence, and a 3′ flanking adapter sequence.
  • a second gene fragment comprised from 5′ to 3′: a 5′ flanking adapter sequence, a first homology sequence, an insert sequence, a second homology sequence, and a 3′ flanking adapter sequence.
  • the first homology sequence of the first gene fragment was homologous to a sequence on the vector. See FIG. 4 .
  • the first gene fragment, second gene fragment, and vector were incubated with JM109 cell lysate.
  • the effects of the length of the homology sequence (20, 41, or 100 base pairs) and location of the homology sequence on colony forming unit (CFU, Y-axis) were determined (FIG. 18 ). Data is summarized in Table 5.
  • the homology sequence was either flanked by the universal primers (internal) or at the 5′ or 3′ end of the gene fragment (terminal).
  • CFUs There was increased CFUs with a homology sequence of 41 base pairs.
  • a terminal location of the homology sequence of 41 base pairs resulted in a greater number of CFUs as compared to an internal location.
  • a terminal location of the homology sequence of 100 base pairs also resulted in a greater number of CFUs as compared to an internal location.
  • the percentage of misassembly (white bars) and assembly (black bars) was determined.
  • a terminal location and homology sequence length of 20, 41, and 100 base pairs resulted in 100% assembly.
  • An internal location and homology sequence length of 20 and 41 base pairs also resulted in 100% assembly.
  • V1 comprised an overlapping sequence at the terminal end.
  • V2 comprised an internal overlapping sequence followed by at a 24 base pair sequence at the 3′ end.
  • V3 comprised an overlapping sequence followed by a 124 base pair sequence at the end 3′ end.
  • V4 comprised an overlapping sequence followed by a 324 base pair at the 3′ end.
  • Percentage of assembly ( FIG. 20A ) and total CFU ( FIG. 20B ) were determined for sequences comprising 0 (V1), 24 (V2), 124 (V3), and 324 (V4) base pairs at the 3′ end. Referring to FIG. 20A , 100% correct assembly was observed for sequences comprising 0, 24, 124, and 324 base pairs at the 3′ end. Referring to FIG. 20B , sequences comprising 0 and 24 base pairs at the 3′ end resulted in increased CFUs.
  • V5 comprised a 24 base pair sequence between two overlapping sequences.
  • V6 comprised a 124 base pair sequence between two overlapping sequences.
  • V7 comprised a 324 base pair sequence between two overlapping sequences.
  • FIG. 21A Percentage of assembly ( FIG. 21A ) and Total CFU ( FIG. 21B ) were determined for internal sequences comprising 24 (V5), 124 (V6), and 324 (V7) base pairs. Referring to FIG. 21A , more than 80% correct assembly was observed for internal sequences comprising 124 and 324 base pairs. Referring to FIG. 21B , internal sequences comprising 124 and 324 base pairs also resulted in increased CFUs.
  • a gene is assembled into a 3 kb gene from five gene fragments.
  • the 5′ and 3′ of each fragment end is appended with flanking adapter sequences comprising uracils.
  • Each of the five fragments comprises a homology sequence.
  • the five fragments are mixed and amplified with universal primers and Q5 DNA polymerase. Following amplification using DNA polymerase, single stranded fragments that do not comprise uracil are generated. Two of the five fragments are combined and amplified with DNA polymerase to generate a single fragment.
  • a third fragment is combined with the synthesized fragment and amplified to generate a single fragment.
  • a fourth fragment is combined with the synthesized fragment and amplified to generate a single fragment.
  • a fifth fragment is combined with the synthesized fragment and amplified to generate the assembled 3 kb gene.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Provided herein are methods, systems, and compositions for seamless nucleic acid assembly. Such methods, systems, and compositions for seamless nucleic acid assembly include those for in vitro recombination cloning, single-stranded hierarchal DNA assembly, or overlap extension PCR without primer removal.

Description

    CROSS-REFERENCE
  • This application is a divisional of U.S. patent application Ser. No. 16/712,678, filed Dec. 12, 2019, which is a continuation of PCT/US2018/37152 filed Jun. 12, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/518,489 filed on Jun. 12, 2017, which are incorporated herein by reference in their entirety.
  • SEQUENCE LISTING
  • The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 6, 2018, is named 44854-743_401_SL.txt and is 1,591 bytes in size.
  • BACKGROUND
  • De novo nucleic acid synthesis is a powerful tool for basic biological research and biotechnology applications. While various methods are known for the synthesis of relatively short fragments of nucleic acids in a small scale, these techniques suffer from scalability, automation, speed, accuracy, and cost. Thus, a need remains for efficient methods of seamless nucleic acid assembly.
  • BRIEF SUMMARY
  • Provided herein is a method for nucleic acid assembly, comprising: (a) providing at least one double stranded nucleic acid comprising in 5′ to 3′ order: a 5′ flanking adapter sequence, a first homology sequence, an insert sequence, a second homology sequence, and a 3′ flanking adapter sequence, wherein the first homology sequence and the second homology sequence comprises about 20 to about 100 base pairs in length; (b) providing a vector comprising the first homology sequence and the second homology sequence; and (c) mixing the at least one double stranded nucleic acid and the vector with a bacterial lysate. Further provided herein is a method, wherein the bacterial lysate comprises a nuclease or a recombinase. Further provided herein is a method, wherein the bacterial lysate comprises a nuclease and a recombinase. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises about 20 base pairs. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises about 41 base pairs. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises 30 to 50 base pairs. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises 35 to 45 base pairs. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises about 100 base pairs. Further provided herein is a method, wherein the first homology sequence or the second homology sequence is flanked by the 5′ flanking adapter sequence and the 3′ flanking adapter sequence. Further provided herein is a method, wherein the first homology sequence or the second homology sequence is at a terminal end. Further provided herein is a method, wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
  • Provided herein is a method for nucleic acid assembly comprising: (a) de novo synthesizing a plurality of polynucleotides, wherein each polynucleotide comprises a first homology region that comprises in 5′ to 3′ order: a 5′ flanking adapter sequence, a first homology sequence, an insert sequence, a second homology sequence, and a 3′ flanking adapter sequence, wherein the first homology sequence and the second homology sequence each comprises about 20 to about 100 base pairs in length, and wherein each polynucleotide comprises a homology sequence identical to that of another polynucleotide of the plurality of polynucleotides; and (b) mixing of the plurality of polynucleotides with a bacterial lysate to processively form nucleic acids each having a predetermined sequence. Further provided herein is a method, wherein the bacterial lysate comprises a nuclease. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises about 20 base pairs. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises about 41 base pairs. Further provided herein is a method, wherein the first homology sequence and the second homology sequence each comprises about 100 base pairs. Further provided herein is a method, wherein the first homology sequence or the second homology sequence is flanked by the 5′ flanking adapter sequence and the 3′ flanking adapter sequence. Further provided herein is a method, wherein the first homology sequence or the second homology sequence is at a terminal end. Further provided herein is a method wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
  • Provided herein is a method for nucleic acid assembly comprising: (a) providing a first double stranded nucleic acid and a second double stranded nucleic acid, wherein the first double stranded nucleic acid comprises in 5′ to 3′ order: a 5′ flanking adapter sequence, an insert sequence, a homology sequence, and a 3′ flanking adapter sequence, and wherein the second double stranded nucleic acid comprises in 5′ to 3′ order: a 5′ flanking adapter sequence, an insert sequence, a homology sequence, and a 3′ flanking adapter sequence; (b) annealing a uracil separately to each of (i) a 5′ end and a 3′ end of the first double stranded nucleic acid and (ii) a 5′ end and a 3′ end of the second double stranded nucleic acid; (c) amplifying the first double stranded nucleic acid and the second double stranded nucleic acid using a uracil compatible polymerase to form amplification products; (d) mixing the amplification products to form a mixture; and (e) amplifying the mixture using a uracil incompatible polymerase to generate the nucleic acid. Further provided herein is a method, wherein the uracil incompatible polymerase is a DNA polymerase. Further provided herein is a method, wherein a plurality of double stranded nucleic acids is provided. Further provided herein is a method, wherein the homology sequence comprises about 20 to about 100 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 20 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 41 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 100 base pairs. Further provided herein is a method, wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
  • Provided herein is a method for nucleic acid assembly comprising: (a) providing predetermined sequences for a first double stranded nucleic acid and a second double stranded nucleic acid, wherein the first double stranded nucleic acid comprises in 5′ to 3′ order: a 5′ flanking adapter sequence, an insert sequence, a homology sequence, and a 3′ flanking adapter sequence, and wherein the second double stranded nucleic acid comprises in 5′ to 3′ order: a 5′ flanking adapter sequence, an insert sequence, a homology sequence, and a 3′ flanking adapter sequence; (b) synthesizing a plurality of polynucleotides encoding for the predetermined sequences; (c) annealing a universal primer comprising uracil at a terminal end of the first double stranded nucleic acid and the second double stranded nucleic acid; (d) amplifying the first double stranded nucleic acid and the second double stranded nucleic acid using a uracil incompatible polymerase to form amplification products; (e) mixing the amplification products to form a mixture; and (f) amplifying the mixture to generate the nucleic acid. Further provided herein is a method, wherein the uracil incompatible polymerase is a DNA polymerase. Further provided herein is a method, wherein a plurality of double stranded nucleic acids is provided. Further provided herein is a method, wherein the homology sequence comprises about 20 to about 100 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 20 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 41 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 100 base pairs. Further provided herein is a method, wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
  • Provided herein is a method for nucleic acid assembly comprising: (a) providing a plurality of double stranded nucleic acids; (b) annealing a uracil at a 5′ end and a 3′ end of at least two of the double stranded nucleic acids; (c) amplifying the double stranded nucleic acids using a uracil compatible polymerase to form amplification products; (d) mixing the amplification products from step (c) to form a mixture; and (e) amplifying the mixture from step (d) using a uracil incompatible polymerase to generate a single-stranded nucleic acid. Further provided herein is a method, wherein the uracil incompatible polymerase is a DNA polymerase. Further provided herein is a method, wherein a plurality of double stranded nucleic acids is provided. Further provided herein is a method, wherein the homology sequence comprises about 20 to about 100 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 20 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 41 base pairs. Further provided herein is a method, wherein the homology sequence comprises about 100 base pairs. Further provided herein is a method, wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
  • INCORPORATION BY REFERENCE
  • All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts a schematic of single-stranded DNA mediated hierarchal assembly with two fragments.
  • FIG. 2 depicts a schematic of single-stranded DNA mediated hierarchal assembly with three fragments.
  • FIG. 3 depicts a schematic for in vitro recombination cloning with a single gene fragment.
  • FIG. 4 depicts a schematic for in vitro recombination cloning with two gene fragments.
  • FIG. 5 depicts gene fragment designs with varying lengths of non-homologous sequences.
  • FIGS. 6A-6B depict gene fragment designs of internal homology sequences.
  • FIG. 7 depicts a workflow for in vitro recombination cloning.
  • FIG. 8 depicts a schematic of overlap extension polymerase chain reaction without primer removal.
  • FIG. 9 depicts systems for polynucleotide synthesis and seamless nucleic acid assembly.
  • FIG. 10 illustrates a computer system.
  • FIG. 11 is a block diagram illustrating architecture of a computer system.
  • FIG. 12 is a block diagram of a multiprocessor computer system using a shared virtual address memory space.
  • FIG. 13 is a diagram demonstrating a network configured to incorporate a plurality of computer systems, a plurality of cell phones and personal data assistants, and Network Attached Storage (NAS).
  • FIG. 14 is a plot of correct assembly (black bars) and incorrect assembly (white bars) following overlap extension polymerase chain reaction without primer removal for two genes (Gene 1 and Gene 2). Homology sequence length includes 20, 41, and 100 base pairs.
  • FIG. 15 is a plot of correct assembly (black bars) and incorrect assembly (white bars) following single-stranded DNA mediated hierarchal assembly using Q5 DNA polymerase and KapaHiFi polymerase enzymes. Homology sequence length includes 20, 41, and 100 base pairs.
  • FIG. 16 is a plot of colony forming units (CFU, Y-axis) versus insert: vector ratio (X-axis). An amount of insert includes 13 fmol (white bars), 26 fmol (hashed bars), and 40 fmol (black bars).
  • FIG. 17 is an image capture of a capillary gel electrophoresis following in vitro recombination cloning.
  • FIG. 18 is a plot of colony forming units (CFU) of homology sequences comprising 20, 41, or 100 base pairs. Homology sequences are flanked by universal primers (internal) or at a 5′ or 3′ end of an insert (terminal).
  • FIG. 19 is a plot of correct assembly (black bars) and incorrect assembly (white bars) following in vitro recombination cloning. Homology sequences comprise 20, 41, or 100 base pairs and are flanked by universal primers (internal) or at a 5′ or 3′ end of an insert (terminal).
  • FIG. 20A is a plot of percentage of hierarchal assembly (HA) for non-homologous sequences comprising 0, 24, 124, or 324 base pair lengths.
  • FIG. 20B is a plot of colony forming units (CFU) for non-homologous sequences comprising 0, 24, 124, or 324 base pair lengths.
  • FIG. 21A is a plot of percentage of hierarchal assembly (HA) for internal sequences comprising 24, 124, or 324 base pair lengths.
  • FIG. 21B is a plot of colony forming units (CFU) for internal sequences comprising 24, 124, or 324 base pair lengths.
  • DETAILED DESCRIPTION Definitions
  • Throughout this disclosure, various embodiments are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of any embodiments. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range to the tenth of the unit of the lower limit unless the context clearly dictates otherwise. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual values within that range, for example, 1.1, 2, 2.3, 5, and 5.9. This applies regardless of the breadth of the range. The upper and lower limits of these intervening ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention, unless the context clearly dictates otherwise.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of any embodiment. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • Unless specifically stated or obvious from context, as used herein, the term “nucleic acid” as used herein encompass double- or triple-stranded nucleic acids, as well as single-stranded molecules. In double- or triple-stranded nucleic acids, the nucleic acid strands need not be coextensive (i.e., a double-stranded nucleic acid need not be double-stranded along the entire length of both strands). Nucleic acid sequences, when provided, are listed in the 5′ to 3′ direction, unless stated otherwise. Methods described herein provide for the generation of isolated nucleic acids. Methods described herein additionally provide for the generation of isolated and purified nucleic acids. A “nucleic acid” as referred to herein can comprise at least 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, or more bases in length. Moreover, provided herein are methods for the synthesis of any number of polypeptide-segments encoding nucleotide sequences, including sequences encoding non-ribosomal peptides (NRPs), sequences encoding non-ribosomal peptide-synthetase (NRPS) modules and synthetic variants, polypeptide segments of other modular proteins, such as antibodies, polypeptide segments from other protein families, including non-coding DNA or RNA, such as regulatory sequences e.g. promoters, transcription factors, enhancers, siRNA, shRNA, RNAi, miRNA, small nucleolar RNA derived from microRNA, or any functional or structural DNA or RNA unit of interest. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, intergenic DNA, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), small nucleolar RNA, ribozymes, complementary DNA (cDNA), which is a DNA representation of mRNA, usually obtained by reverse transcription of messenger RNA (mRNA) or by amplification; DNA molecules produced synthetically or by amplification, genomic DNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. cDNA encoding for a gene or gene fragment referred herein may comprise at least one region encoding for exon sequences without an intervening intron sequence in the genomic equivalent sequence.
  • Unless specifically stated or obvious from context, as used herein, the term “about” in reference to a number or range of numbers is understood to mean the stated number and numbers+/−10% thereof, or 10% below the lower listed limit and 10% above the higher listed limit for the values listed for a range.
  • Seamless Assembly of Nucleic Acids
  • Provided herein are methods for assembly of nucleic acids with increased efficiency and accuracy. Further provided herein are methods of assembly of nucleic acids into long genes. De novo synthesized polynucleotides as described herein are assembled into nucleic acids by in vitro recombination cloning, single-stranded DNA mediated hierarchal assembly, or overlap extension. Generally, methods for nucleic acid assembly as described herein do not require primer removal.
  • A first exemplary process for seamless assembly of nucleic acids is depicted in FIG. 1. Single-stranded DNA mediated hierarchal assembly is performed with a first gene fragment 102 and second gene fragment 104 comprising a homology sequence 105. In this workflow, the first gene fragment 102 and the second gene fragment 104 are double-stranded and comprise a 5′ flanking adapter sequence 107 a and a 3′ flanking adapter sequence 107 b comprising uracil 103. The first gene fragment 102 and the second gene fragment 104 are amplified with primers and a uracil compatible polymerase. In some instances, the uracil compatible polymerase is Phusion U or Kapa Uracil. The resultant PCR product comprises a uracil at the end of the 3′ flanking adapter sequence 107 b. The first gene fragment 102 and the second gene fragment 104 are diluted, mixed, and amplified 109 with a primer and a uracil incompatible polymerase that stalls at a uracil. In some instances, the uracil incompatible polymerase is Q5 DNA polymerase. The resultant fragments 106, 108 that do not comprise uracil, serve as primers for each other and are combined 113 and amplified 115 to generate a single-stranded DNA molecule. Single-stranded DNA mediated hierarchal assembly can be performed with multiple gene fragments as seen in FIG. 2. Single-stranded DNA mediated hierarchal assembly is performed with a first gene fragment 202, a second gene fragment 204, and a third gene fragment 206 comprising a homology sequence 205. The first gene fragment 202, the second gene fragment 204, and the third gene fragment 206 are double-stranded and comprise a 5′ flanking adapter sequence 207 a and a 3′ flanking adapter sequence 207 b. The 3′ flanking adapter sequence 207 b of the first gene fragment 202 comprises uracil. The 5′ flanking adapter sequence 207 a and the 3′ flanking adapter sequence 207 b of the second gene fragment 204 comprise a uracil. The 3′ flanking adapter sequence 207 b of the third gene fragment 206 comprises uracil. The first gene fragment 202, the second gene fragment 204, and the third gene fragment 206 are amplified with universal primers (primers that are complementary to a region of each of the gene fragments) and a uracil compatible polymerase. In some instances, the uracil compatible polymerase is Phusion U or Kapa Uracil. The resultant PCR product comprises a uracil at the end of the at least one of the 5′ flanking adapter sequence 207 a and the 3′ flanking adapter sequence 207 b. The first gene fragment 202, the second gene fragment 204, and the third gene fragment 206 are diluted, mixed, and amplified 209 with universal primers and a uracil incompatible polymerase that stalls at a uracil or is inefficient when interacting with a uracil. In some instances, the uracil incompatible polymerase is Q5 DNA polymerase. The resultant fragment without 208 uracil and fragment comprising uracil 210 serve as primers for each other. The resultant fragment without 208 uracil and fragment comprising uracil 210 are then combined 213 and diluted, mixed, and then amplified 215 with universal primers and DNA polymerase that stalls at uracil (such as Q5 DNA polymerase) to generate an intermediate fragment 212. Intermediate fragment 212 and an additional fragment 214 serve as primers for each other and are combined and amplified 219 to generate a single-stranded DNA molecule.
  • A second exemplary process for seamless assembly of nucleic acids is depicted in FIG. 3. In vitro recombination cloning is performed with a first gene fragment 302 comprising from 5′ to 3′: a 5′ flanking adapter sequence 307 a, a first homology sequence 303, an insert sequence 305, a second homology sequence 309, and a 3′ flanking adapter sequence 307 b. The first homology sequence 303 is homologous to sequence 311 of vector 304. The second homology sequence is homologous to sequence 313 of vector 304. The first gene fragment 302 and vector 304 are incubated 317 with bacterial cell lysate to generate assembled construct 306.
  • In vitro recombination cloning can be performed with multiple gene fragments as seen in FIG. 4. In vitro recombination cloning is performed using two gene fragments. A first gene fragment 402 comprises from 5′ to 3′: a 5′ flanking adapter sequence 407 a, a first homology sequence 403, an insert sequence 405, a second homology sequence 409, and a 3′ flanking adapter sequence 407 b. A second gene fragment 404 comprises from 5′ to 3′: a 5′ flanking adapter sequence 407 a, a first homology sequence 411, an insert sequence 413, a second homology sequence 415, and a 3′ flanking adapter sequence 407 b. The first homology sequence 403 of the first gene fragment 402 is homologous to sequence 417 on vector 406. The second homology sequence 409 of the first gene fragment 402 is homologous to the first homology sequence 411 of the second gene fragment 404. The second homology sequence 415 of the second gene fragment 404 is homologous to the sequence 419 of vector 406. The first gene fragment 402, the second gene fragment 404, and vector 406 are incubated 419 with bacterial cell lysate to generate assembled construct 408.
  • A third exemplary process for seamless assembly of nucleic acids is depicted in FIG. 8. Overlap extension PCR is performed using a nucleic acid 802 comprising a universal primer binding site 803 and a region complementary to nucleic acid 804. Nucleic acid 804 comprises a universal primer binding site 803. An enzyme 805 cleaves a terminal end of nucleic acid 802 and nucleic acid 804. Nucleic acid 802 and nucleic acid 804 are then amplified and serve as a template for each other.
  • Primers referred to in the exemplary workflows mentioned herein as “universal primers” are short polynucleotides that recognize a primer binding site common to multiple DNA fragments. However, these workflows are not limited to only use of universal primers, and fragment-specific primers may be incorporated in addition or alternatively. In addition, while exemplary workflows described herein refer to assembly of gene fragments, they are not limited as such and are applicable to the assembly of longer nucleic acids in general.
  • In Vitro Recombination Cloning
  • Provided herein are methods for seamless assembly of nucleic acids, comprising in vitro recombination cloning. In some instances, in vitro recombination cloning comprises a gene or fragment thereof for insertion into a vector using a bacterial lysate. In some instances, the gene fragment comprises at least one universal primer. In some instances, the gene fragment comprises a vector homology sequence.
  • Provided herein are methods for in vitro recombination cloning, wherein a bacterial lysate is used. The bacterial lysate may be derived from Escherichia coli. In some instances, the bacterial lysate is derived from RecA bacteria. In some instances, the bacterial strain is from JM109 cells. In some instances, the bacterial lysate comprises a nuclease or a recombinase. In some instances, the bacterial lysate comprises a nuclease and a recombinase.
  • Provided herein are methods for in vitro recombination cloning, wherein a gene fragment is de novo synthesized and comprise a flanking adapter sequence and a homology sequence. The homology sequence may be at a 5′ or 3′ end of the gene fragment. In some instances, the homology sequence is flanked by a pair of flanking adapter sequences. In some instances, the gene fragment comprises a least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 homology sequences.
  • Homology sequences described herein for in vitro recombination cloning may vary in length. Exemplary lengths for homology sequences include, but are not limited to, at least or about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, or more than 200 base pairs. In some instances, the length of the homology sequence is 20 base pairs. In some instances, the length of the homology sequence is 41 base pairs. In some instances the length of the homology sequence is 100 base pairs. In some instances, the length of the homology sequence has a range of about 10 to 20, 10 to 30, 10 to 40, 10 to 50, 10 to 60, 10 to 70, 10 to 80, 10 to 100, 10 to 125, 10 to 150, 10 to 200, 20 to 30, 20 to 40, 20 to 50, 20 to 60, 20 to 70, 20 to 80, 20 to 100, 20 to 125, 20 to 150, 20 to 200, 30 to 40, 30 to 50, 30 to 60, 30 to 70, 30 to 80, 30 to 100, 30 to 125, 30 to 150, 30 to 200, 40 to 50, 40 to 60, 40 to 70, 40 to 80, 40 to 100, 40 to 125, 40 to 150, 40 to 200, 50 to 60, 50 to 70, 50 to 80, 50 to 100, 50 to 125, 50 to 150, 50 to 200, 60 to 70, 60 to 80, 60 to 100, 60 to 125, 60 to 150, 60 to 200, 70 to 80, 70 to 100, 70 to 125, 70 to 150, 70 to 200, 80 to 100, 80 to 125, 80 to 150, 80 to 200, 100 to 125, 100 to 150, 100 to 200, 125 to 150, 125 to 200, or 150 to 200 base pairs.
  • Provided herein are methods for in vitro recombination cloning, wherein a number of gene fragments are inserted into a vector. In some instances, the number of gene fragments that are inserted is at least or about 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 gene fragments. In some instances, the number of gene fragments that are inserted has a range of about 1 to 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, 1 to 10, 2 to 3, 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, 2 to 10, 3 to 4, 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, 3 to 10, 4 to 5, 4 to 6, 4 to 7, 4 to 8, 4 to 9, 4 to 10, 5 to 6, 5 to 7, 5 to 8, 5 to 9, 5 to 10, 6 to 7, 6 to 8, 6 to 9, 6 to 10, 7 to 8, 7 to 9, 7 to 10, 8 to 9, 8 to 10, or 9 to 10.
  • Provided herein are methods for in vitro recombination cloning, wherein a gene fragment comprises a non-homologous sequence. In some instances, the non-homologous sequence comprises at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300 or more than 300 base pairs in length. In some instances, the number of base pairs is 24 base pairs. In some instances, the number of base pairs is 124 base pairs. In some instances the number of base pairs is 324 base pairs. In some instances, the gene fragment does not comprise a non-homologous sequence.
  • Provided herein are methods for in vitro recombination cloning, wherein the amount of gene fragment or the amount of vector varies. In some instances, the amount of gene fragment is at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, or more than 100 femtomoles. In some instances, the amount of vector is at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, or more than 100 femtomoles. In some instances, a ratio of gene fragment to vector varies. In some instances, the molar ratio of gene fragment to vector is at least or about 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, or more.
  • Provided herein are methods for in vitro recombination cloning, wherein a reaction for in vitro recombination cloning occurs at an optimal temperature. In some instances, the reaction occurs at a temperature optimal for enzymatic activity, for example, a temperature in a range of about 25-80° C. 25-70° C. 25-60° C. 25-50° C. or 25-40° C. In some instances, the temperature is at least or about 15° C. 20° C. 25° C. 30° C. 35° C. 40° C. 45° C. 50° C. 55° C. 60° C. 65° C. 70° C. 75° C. 80° C. or more than 80° C. In some instances, the temperature is about 65° C. In some instances, the enzymatic activity is a nuclease activity. In some instances, the enzymatic activity is a recombinase activity.
  • Methods described herein for in vitro recombination cloning result in a high percentage of correct assembly. In some instances, the percentage of correct assembly is at least or about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99%, or more than 99%. In some instances, the percentage of correct assembly is 100%. In some instances, the percentage of incorrect assembly is at most 5%, 10%, 15%, 20%, 25%, or 30%, or more than 30%.
  • Methods described herein comprising in vitro recombination cloning result in increased efficiency. In some instances, efficiency is measured by number of colony forming units. In some instances, methods described herein result in at least or about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 30000, 35000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 200000, 300000, 400000, 500000, 600000, 700000, 800000, 900000, or more than 900000 colony forming units.
  • Single-stranded DNA Mediated Hierarchal Assembly
  • Provided herein are methods for seamless assembly of nucleic acids, wherein methods comprise single-stranded DNA mediated hierarchal assembly. In some instances, the single-stranded DNA mediated hierarchal assembly comprises assembly of a nucleic acid de novo synthesized by methods described herein. In some instances, the assembly comprises amplification of the nucleic acid with a primer, wherein the primer is not removed after amplification. In some instances, assembly results in increased percentage of correctly assembly nucleic acids and improved efficiency.
  • Provided herein are methods for single-stranded DNA mediated hierarchal assembly, wherein methods comprise an amplification reaction. In some instances, the amplification reaction comprises a polymerase. In some instances, the polymerase is a high fidelity polymerase. In some instances, the polymerase is a DNA polymerase. The DNA polymerase may be from any family of DNA polymerases including, but not limited to, Family A polymerase, Family B polymerase, Family C polymerase, Family D polymerase, Family X polymerase, and Family Y polymerase. In some instances, the DNA polymerase may be a Family B polymerase. Exemplary Family B polymerase is from a species of, but not limited to, Pyrococcus furiosus, Thermococcus gorgonarius, Desulfurococcus strain Tok, Thermococcus sp. 9°N-7, Pyrococcus kodakaraensis, Thermococcus litoralis, Methanococcus voltae, Pyrobaculum islandicum, Archaeoglobus fulgidus, Cenarchaeaum symbiosum, Sulfolobus acidocaldarius, Sulfurisphaera ohwakuensis, Sulfolobus solfataricus, Pyrodictium occultum, and Aeropyrum pernix. In some instances, the Family B polymerase is a polymerases or derivative thereof (e.g., mutants, chimeras) from Pyrococcus furiosus.
  • Polymerases described herein for use in an amplification reaction may comprise various enzymatic activities. Polymerases are used in the methods of the invention, for example, to extend primers to produce extension products. In some instances, the DNA polymerase has 5′ to 3′ polymerase activity. In some instances, the DNA polymerase comprises 3′ to 5′ exonuclease activity. In some instances, the DNA polymerase comprises proofreading activity. Exemplary polymerases include, but are not limited to, DNA polymerase (I, II, or III), T4 DNA polymerase, T7 DNA polymerase, Bst DNA polymerase, Bca polymerase, Vent DNA polymerase, Pfu DNA polymerase, and Taq DNA polymerase.
  • Polymerases described herein for use in an amplification reaction may recognize a modified base. In some instances, the modified base is a variation in nucleic acid composition or a chemical modification. In some instances, a modified base comprises a base other than adenine, guanine, cytosine or thymine in DNA or a base other than adenine, guanine, cytosine or uracil in RNA. Modified bases described herein include, without limitation, oxidized bases, alkylated bases, deaminated bases, pyrimidine derivatives, purine derivatives, ring-fragmented bases, and methylated bases. Exemplary modified bases include, but are not limited to, uracil, 3-meA (3-methyladenine), hypoxanthine, 8-oxoG (7,8-dihydro-8-oxoguanine), FapyG, FapyA, Tg (thymine glycol), hoU (hydroxyuracil), hmU (hydroxymethyluracil), fU (formyluracil), hoC (hydroxycytosine), fC (formylcytosine), 5-meC (5-methylcytosine), 6-meG (06-methylguanine), 7-meG (N7-methylguanine), εC (ethenocytosine), 5-caC (5-carboxylcytosine), 2-hA, EA (ethenoadenine), 5-fU (5-fluorouracil), 3-meG (3-methylguanine), and isodialuric acid. In some instances, a modified base in DNA is a uracil. Non-limiting examples of uracil compatible DNA polymerases include Pfu polymerase, Pfu Turbo Cx and KAPA HiFi Uracil+. In some instances, the polymerase selected for the amplification reaction is not capable of recognizing a modified base. For example, the polymerase is incompatible with uracil. Exemplary polymerases that are incompatible with uracil include, but are not limited to, KAPA HiFi polymerase, KAPA HiFi, Phusion®, and Q5® High Fidelity DNA polymerase.
  • In some instances, a single DNA polymerase or a plurality of DNA polymerases are used. In some instances, the same DNA polymerase or set of DNA polymerases are used at different stages of the present methods. For example, in a first amplification reaction a DNA polymerase that is compatible with uracil is used, and in a second amplification reaction a DNA polymerase that is incompatible with uracil is used. In some instances, the DNA polymerases are varied. For example, the DNA polymerases are varied based on enzymatic activities. In some instances, additional polymerases are added during various steps.
  • Described herein are methods for nucleic acid assembly comprising an amplification reaction, wherein the amplification reaction comprises a universal primer binding sequence. In some instances, the universal primer binding sequence is capable of binding the same 5′ or 3′ primer. In some instances, the universal primer binding sequence is shared among a plurality of target nucleic acids in the amplification reaction.
  • Provided herein are methods for single-stranded DNA mediated hierarchal assembly, wherein a reaction for single-stranded DNA mediated hierarchal assembly occurs at an optimal temperature. In some instances, the reaction occurs at a temperature optimal for polymerase activity. In some instances, the reaction occurs at a temperature optimal for enzymatic activity. In some instances, the reaction occurs at a temperature in a range of about 25-80° C. 25-70° C. 25-60° C. 25-50° C. or 25-40° C. In some instances, the temperature is at least or about 15° C. 20° C. 25° C. 30° C. 35° C. 40° C. 45° C. 50° C. 55° C. 60° C. 65° C. 70° C. 75° C. 80° C. or more than 80° C.
  • Provided herein are methods for single-stranded DNA mediated hierarchal assembly, wherein a gene fragment to be assembled comprises a homology sequence. In some instances, the homology sequence is complementary to a homology sequence in another gene fragment to be assembled. The homology sequence may comprise a number of base pairs. In some instances, the number of base pairs is at least or about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, or more than 200 base pairs. In some instances, the number of base pairs is 20 base pairs. In some instances, the number of base pairs is 41 base pairs. In some instances the number of base pairs is 100 base pairs. In some instances, the number of base pairs is 10 to 20, 10 to 30, 10 to 40, 10 to 50, 10 to 60, 10 to 70, 10 to 80, 10 to 100, 10 to 125, 10 to 150, 10 to 200, 20 to 30, 20 to 40, 20 to 50, 20 to 60, 20 to 70, 20 to 80, 20 to 100, 20 to 125, 20 to 150, 20 to 200, 30 to 40, 30 to 50, 30 to 60, 30 to 70, 30 to 80, 30 to 100, 30 to 125, 30 to 150, 30 to 200, 40 to 50, 40 to 60, 40 to 70, 40 to 80, 40 to 100, 40 to 125, 40 to 150, 40 to 200, 50 to 60, 50 to 70, 50 to 80, 50 to 100, 50 to 125, 50 to 150, 50 to 200, 60 to 70, 60 to 80, 60 to 100, 60 to 125, 60 to 150, 60 to 200, 70 to 80, 70 to 100, 70 to 125, 70 to 150, 70 to 200, 80 to 100, 80 to 125, 80 to 150, 80 to 200, 100 to 125, 100 to 150, 100 to 200, 125 to 150, 125 to 200, or 150 to 200 base pairs.
  • Provided herein are methods for single-stranded DNA mediated hierarchal assembly, wherein a plurality of gene fragments are assembled. In some instances, the number of gene fragments that are assembled is at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 gene fragments. In some instances, the number of gene fragments is 1 to 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, 1 to 10, 2 to 3, 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, 2 to 10, 3 to 4, 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, 3 to 10, 4 to 5, 4 to 6, 4 to 7, 4 to 8, 4 to 9, 4 to 10, 5 to 6, 5 to 7, 5 to 8, 5 to 9, 5 to 10, 6 to 7, 6 to 8, 6 to 9, 6 to 10, 7 to 8, 7 to 9, 7 to 10, 8 to 9, 8 to 10, or 9 to 10.
  • Methods described herein for single-stranded DNA mediated hierarchal assembly result in a high percentage of correct assembly. In some instances, the percentage of correct assembly is at least or about 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99%, or more than 99%. In some instances, the percentage of correct assembly is 100%. In some instances, the percentage of incorrect assembly is at most 5%, 10%, 15%, 20%, 25%, or 30%, or more than 30%.
  • Systems for Synthesis of Nucleic Acids and Seamless Assembly
  • Polynucleotide Synthesis
  • Provided herein are methods for seamless assembly of nucleic acids following generation of polynucleotides by de novo synthesis by methods described herein. An exemplary workflow is seen in FIG. 9. A computer readable input file comprising a nucleic acid sequence is received. A computer processes the nucleic acid sequence to generate instructions for synthesis of the polynucleotide sequence or a plurality of polynucleotide sequences collectively encoding the nucleic acid sequence. Instructions are transmitted to a material deposition device 903 for synthesis of the plurality of polynucleotides based on the plurality of nucleic acid sequences. The material deposition device 903, such as a polynucleotide acid synthesizer, is designed to release reagents in a step wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence. The material deposition device 903 generates oligomers on an array 905 that includes multiple clusters 907 of loci for polynucleotide acid synthesis and extension. However, the array need not have loci organized in clusters. For example, the loci can be uniformly spread across the array. De novo polynucleotides are synthesized and removed from the plate and an assembly reaction commenced in a collection chamber 909 followed by formation population of longer polynucleotides 911. The collection chamber may comprise a sandwich of multiple surfaces (e.g., a top and bottom surface) or well or channel in containing transferred material from the synthesis surface. De novo polynucleotides can also be synthesized and removed from the plate to form a population of longer polynucleotides 911. The population of longer polynucleotides 911 can then be partitioned into droplets or subject to PCR. The population of longer polynucleotides 911 is then subject to nucleic acid assembly by either in vitro recombination cloning 915, or single-stranded DNA hierarchal assembly 917.
  • Provided herein are systems for seamless assembly of nucleic acids following generation of polynucleotides by de novo synthesis by methods described herein. In some instances, the system comprises a computer, a material deposition device, a surface, and a nucleic acid assembly surface. In some instances, the computer comprises a readable input file with a nucleic acid sequence. In some instances, the computer processes the nucleic acid sequence to generate instructions for synthesis of the polynucleotide sequence or a plurality of polynucleotide sequences collectively encoding for the nucleic acid sequence. In some instances, the computer provides instructions to the material deposition device for the synthesis of the plurality of polynucleotide acid sequences. In some instances, the material deposition device deposits nucleosides on the surface for an extension reaction. In some instances, the surface comprises a locus for the extension reaction. In some instances, the locus is a spot, well, microwell, channel, or post. In some instances, the plurality of polynucleotide acid sequences is synthesized following the extension reaction. In some instances, the plurality of polynucleotide acid sequences are removed from the surface and prepared for nucleic acid assembly. In some instances, nucleic acid assembly comprises in vitro recombination cloning. In some instances, nucleic acid assembly comprises single-stranded hierarchal DNA assembly. In some instances, nucleic acid assembly comprises overlap extension PCR without primer removal.
  • Provided herein are methods for polynucleotide synthesis involving phosphoramidite chemistry. In some instances, polynucleotide synthesis comprises coupling a base with phosphoramidite. In some instances, polynucleotide synthesis comprises coupling a base by deposition of phosphoramidite under coupling conditions, wherein the same base is optionally deposited with phosphoramidite more than once, i.e., double coupling. In some instances, polynucleotide synthesis comprises capping of unreacted sites. In some cases, capping is optional. In some instances, polynucleotide synthesis comprises oxidation. In some instances, polynucleotide synthesis comprises deblocking or detritylation. In some instances, polynucleotide synthesis comprises sulfurization. In some cases, polynucleotide synthesis comprises either oxidation or sulfurization. In some instances, between one or each step during a polynucleotide synthesis reaction, the substrate is washed, for example, using tetrazole or acetonitrile. Time frames for any one step in a phosphoramidite synthesis method include less than about 2 min, 1 min, 50 sec, 40 sec, 30 sec, 20 sec and 10 sec.
  • Polynucleotide synthesis using a phosphoramidite method comprises the subsequent addition of a phosphoramidite building block (e.g., nucleoside phosphoramidite) to a growing polynucleotide chain for the formation of a phosphite triester linkage. Phosphoramidite polynucleotide synthesis proceeds in the 3′ to 5′ direction. Phosphoramidite polynucleotide synthesis allows for the controlled addition of one nucleotide to a growing nucleic acid chain per synthesis cycle. In some instances, each synthesis cycle comprises a coupling step. Phosphoramidite coupling involves the formation of a phosphite triester linkage between an activated nucleoside phosphoramidite and a nucleoside bound to the substrate, for example, via a linker. In some instances, the nucleoside phosphoramidite is provided to the substrate activated. In some instances, the nucleoside phosphoramidite is provided to the substrate with an activator. In some instances, nucleoside phosphoramidites are provided to the substrate in a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound nucleosides. In some instances, the addition of nucleoside phosphoramidite is performed in an anhydrous environment, for example, in anhydrous acetonitrile. Following addition of a nucleoside phosphoramidite, the substrate is optionally washed. In some instances, the coupling step is repeated one or more additional times, optionally with a wash step between nucleoside phosphoramidite additions to the substrate. In some instances, a polynucleotide synthesis method used herein comprises 1, 2, 3 or more sequential coupling steps. Prior to coupling, in many cases, the nucleoside bound to the substrate is de-protected by removal of a protecting group, where the protecting group functions to prevent polymerization. A common protecting group is 4,4′-dimethoxytrityl (DMT).
  • Following coupling, phosphoramidite polynucleotide synthesis methods optionally comprise a capping step. In a capping step, the growing polynucleotide is treated with a capping agent. A capping step is useful to block unreacted substrate-bound 5′—OH groups after coupling from further chain elongation, preventing the formation of polynucleotides with internal base deletions. Further, phosphoramidites activated with 1H-tetrazole may react, to a small extent, with the O6 position of guanosine. Without being bound by theory, upon oxidation with I2/water, this side product, possibly via O6-N7 migration, may undergo depurination. The apurinic sites may end up being cleaved in the course of the final deprotection of the polynucleotide thus reducing the yield of the full-length product. The O6 modifications may be removed by treatment with the capping reagent prior to oxidation with I2/water. In some instances, inclusion of a capping step during polynucleotide synthesis decreases the error rate as compared to synthesis without capping. As an example, the capping step comprises treating the substrate-bound polynucleotide with a mixture of acetic anhydride and 1-methylimidazole. Following a capping step, the substrate is optionally washed.
  • In some instances, following addition of a nucleoside phosphoramidite, and optionally after capping and one or more wash steps, the substrate bound growing nucleic acid is oxidized. The oxidation step comprises the phosphite triester is oxidized into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester internucleoside linkage. In some cases, oxidation of the growing polynucleotide is achieved by treatment with iodine and water, optionally in the presence of a weak base (e.g., pyridine, lutidine, collidine). Oxidation may be carried out under anhydrous conditions using, e.g. tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO). In some methods, a capping step is performed following oxidation. A second capping step allows for substrate drying, as residual water from oxidation that may persist can inhibit subsequent coupling. Following oxidation, the substrate and growing polynucleotide is optionally washed. In some instances, the step of oxidation is substituted with a sulfurization step to obtain polynucleotide phosphorothioates, wherein any capping steps can be performed after the sulfurization. Many reagents are capable of the efficient sulfur transfer, including but not limited to 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).
  • In order for a subsequent cycle of nucleoside incorporation to occur through coupling, the protected 5′ end of the substrate bound growing polynucleotide is removed so that the primary hydroxyl group is reactive with a next nucleoside phosphoramidite. In some instances, the protecting group is DMT and deblocking occurs with trichloroacetic acid in dichloromethane. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound polynucleotide and thus reduces the yield of the desired full-length product. Methods and compositions of the invention described herein provide for controlled deblocking conditions limiting undesired depurination reactions. In some cases, the substrate bound polynucleotide is washed after deblocking. In some cases, efficient washing after deblocking contributes to synthesized polynucleotides having a low error rate.
  • Methods for the synthesis of polynucleotides typically involve an iterating sequence of the following steps: application of a protected monomer to an actively functionalized surface (e.g., locus) to link with either the activated surface, a linker or with a previously deprotected monomer; deprotection of the applied monomer so that it is reactive with a subsequently applied protected monomer; and application of another protected monomer for linking. One or more intermediate steps include oxidation or sulfurization. In some cases, one or more wash steps precede or follow one or all of the steps.
  • Methods for phosphoramidite based polynucleotide synthesis comprise a series of chemical steps. In some instances, one or more steps of a synthesis method involve reagent cycling, where one or more steps of the method comprise application to the substrate of a reagent useful for the step. For example, reagents are cycled by a series of liquid deposition and vacuum drying steps. For substrates comprising three-dimensional features such as wells, microwells, channels and the like, reagents are optionally passed through one or more regions of the substrate via the wells and/or channels.
  • Polynucleotides synthesized using the methods and/or substrates described herein comprise at least about 20, 30, 40, 50, 60, 70, 75, 80, 90, 100, 120, 150, 200, 500 or more bases in length. In some instances, at least about 1 μmol, 10 pmol, 20 pmol, 30 pmol, 40 pmol, 50 pmol, 60 pmol, 70 pmol, 80 pmol, 90 pmol, 100 pmol, 150 pmol, 200 pmol, 300 pmol, 400 pmol, 500 pmol, 600 pmol, 700 pmol, 800 pmol, 900 pmol, 1 nmol, 5 nmol, 10 nmol, 100 nmol or more of a polynucleotide is synthesized within a locus. Methods for polynucleotide synthesis on a surface provided herein allow for synthesis at a fast rate. As an example, at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 125, 150, 175, 200 nucleotides per hour, or more are synthesized. Nucleotides include adenine, guanine, thymine, cytosine, uridine building blocks, or analogs/modified versions thereof. In some instances, libraries of polynucleotides are synthesized in parallel on a substrate. For example, a substrate comprising about or at least about 100; 1,000; 10,000; 100,000; 1,000,000; 2,000,000; 3,000,000; 4,000,000; or 5,000,000 resolved loci is able to support the synthesis of at least the same number of distinct polynucleotides, wherein polynucleotide encoding a distinct sequence is synthesized on a resolved locus.
  • Various suitable methods are known for generating high density polynucleotide arrays. In an exemplary workflow, a substrate surface layer is provided. In the example, chemistry of the surface is altered in order to improve the polynucleotide synthesis process. Areas of low surface energy are generated to repel liquid while areas of high surface energy are generated to attract liquids. The surface itself may be in the form of a planar surface or contain variations in shape, such as protrusions or microwells which increase surface area. In the workflow example, high surface energy molecules selected serve a dual function of supporting DNA chemistry, as disclosed in International Patent Application Publication WO/2015/021080, which is herein incorporated by reference in its entirety.
  • In situ preparation of polynucleotide arrays is generated on a solid support and utilizes single nucleotide extension process to extend multiple oligomers in parallel. A deposition device, such as a polynucleotide synthesizer, is designed to release reagents in a step wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence. In some cases, polynucleotides are cleaved from the surface at this stage. Cleavage includes gas cleavage, e.g., with ammonia or methylamine.
  • Substrates
  • Devices used as a surface for polynucleotide synthesis may be in the form of substrates which include, without limitation, homogenous array surfaces, patterned array surfaces, channels, beads, gels, and the like. Provided herein are substrates comprising a plurality of clusters, wherein each cluster comprises a plurality of loci that support the attachment and synthesis of polynucleotides. The term “locus” as used herein refers to a discrete region on a structure which provides support for polynucleotides encoding for a single predetermined sequence to extend from the surface. In some instances, a locus is on a two dimensional surface, e.g., a substantially planar surface. In some instances, a locus is on a three-dimensional surface, e.g., a well, microwell, channel, or post. In some instances, a surface of a locus comprises a material that is actively functionalized to attach to at least one nucleotide for polynucleotide synthesis, or preferably, a population of identical nucleotides for synthesis of a population of polynucleotides. In some instances, polynucleotide refers to a population of polynucleotides encoding for the same nucleic acid sequence. In some cases, a surface of a substrate is inclusive of one or a plurality of surfaces of a substrate. The average error rates for polynucleotides synthesized within a library described herein using the systems and methods provided are often less than 1 in 1000, less than about 1 in 2000, less than about 1 in 3000 or less often without error correction.
  • Provided herein are surfaces that support the parallel synthesis of a plurality of polynucleotides having different predetermined sequences at addressable locations on a common support. In some instances, a substrate provides support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more non-identical polynucleotides. In some cases, the surfaces provides support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more polynucleotides encoding for distinct sequences. In some instances, at least a portion of the polynucleotides have an identical sequence or are configured to be synthesized with an identical sequence. In some instances, the substrate provides a surface environment for the growth of polynucleotides having at least 80, 90, 100, 120, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500 bases or more.
  • Provided herein are methods for polynucleotide synthesis on distinct loci of a substrate, wherein each locus supports the synthesis of a population of polynucleotides. In some cases, each locus supports the synthesis of a population of polynucleotides having a different sequence than a population of polynucleotides grown on another locus. In some instances, each polynucleotide sequence is synthesized with 1, 2, 3, 4, 5, 6, 7, 8, 9 or more redundancy across different loci within the same cluster of loci on a surface for polynucleotide synthesis. In some instances, the loci of a substrate are located within a plurality of clusters. In some instances, a substrate comprises at least 10, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 20000, 30000, 40000, 50000 or more clusters. In some instances, a substrate comprises more than 2,000; 5,000; 10,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,100,000; 1,200,000; 1,300,000; 1,400,000; 1,500,000; 1,600,000; 1,700,000; 1,800,000; 1,900,000; 2,000,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; or 10,000,000 or more distinct loci. In some instances, a substrate comprises about 10,000 distinct loci. The amount of loci within a single cluster is varied in different instances. In some cases, each cluster includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 150, 200, 300, 400, 500 or more loci. In some instances, each cluster includes about 50-500 loci. In some instances, each cluster includes about 100-200 loci. In some instances, each cluster includes about 100-150 loci. In some instances, each cluster includes about 109, 121, 130 or 137 loci. In some instances, each cluster includes about 19, 20, 61, 64 or more loci.
  • In some instances, the number of distinct polynucleotides synthesized on a substrate is dependent on the number of distinct loci available in the substrate. In some instances, the density of loci within a cluster of a substrate is at least or about 1, 10, 25, 50, 65, 75, 100, 130, 150, 175, 200, 300, 400, 500, 1,000 or more loci per mm2. In some cases, a substrate comprises 10-500, 25-400, 50-500, 100-500, 150-500, 10-250, 50-250, 10-200, or 50-200 mm2. In some instances, the distance between the centers of two adjacent loci within a cluster is from about 10-500, from about 10-200, or from about 10-100 um. In some instances, the distance between two centers of adjacent loci is greater than about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some instances, the distance between the centers of two adjacent loci is less than about 200, 150, 100, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, each locus has a width of about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some cases, the each locus is has a width of about 0.5-100, 0.5-50, 10-75, or 0.5-50 um.
  • In some instances, the density of clusters within a substrate is at least or about 1 cluster per 100 mm2, 1 cluster per 10 mm2, 1 cluster per 5 mm2, 1 cluster per 4 mm2, 1 cluster per 3 mm2, 1 cluster per 2 mm2, 1 cluster per 1 mm2, 2 clusters per 1 mm2, 3 clusters per 1 mm2, 4 clusters per 1 mm2, 5 clusters per 1 mm2, 10 clusters per 1 mm2, 50 clusters per 1 mm2 or more. In some instances, a substrate comprises from about 1 cluster per 10 mm2 to about 10 clusters per 1 mm2. In some instances, the distance between the centers of two adjacent clusters is at least or about 50, 100, 200, 500, 1000, 2000, or 5000 um. In some cases, the distance between the centers of two adjacent clusters is between about 50-100, 50-200, 50-300, 50-500, and 100-2000 um. In some cases, the distance between the centers of two adjacent clusters is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm. In some cases, each cluster has a cross section of about 0.5 to about 2, about 0.5 to about 1, or about 1 to about 2 mm. In some cases, each cluster has a cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm. In some cases, each cluster has an interior cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm.
  • In some instances, a substrate is about the size of a standard 96 well plate, for example between about 100 and about 200 mm by between about 50 and about 150 mm. In some instances, a substrate has a diameter less than or equal to about 1000, 500, 450, 400, 300, 250, 200, 150, 100 or 50 mm. In some instances, the diameter of a substrate is between about 25-1000, 25-800, 25-600, 25-500, 25-400, 25-300, or 25-200 mm. In some instances, a substrate has a planar surface area of at least about 100; 200; 500; 1,000; 2,000; 5,000; 10,000; 12,000; 15,000; 20,000; 30,000; 40,000; 50,000 mm2 or more. In some instances, the thickness of a substrate is between about 50-2000, 50-1000, 100-1000, 200-1000, or 250-1000 mm.
  • Surface Materials
  • Substrates, devices, and reactors provided herein are fabricated from any variety of materials suitable for the methods, compositions, and systems described herein. In certain instances, substrate materials are fabricated to exhibit a low level of nucleotide binding. In some instances, substrate materials are modified to generate distinct surfaces that exhibit a high level of nucleotide binding. In some instances, substrate materials are transparent to visible and/or UV light. In some instances, substrate materials are sufficiently conductive, e.g., are able to form uniform electric fields across all or a portion of a substrate. In some instances, conductive materials are connected to an electric ground. In some instances, the substrate is heat conductive or insulated. In some instances, the materials are chemical resistant and heat resistant to support chemical or biochemical reactions, for example polynucleotide synthesis reaction processes. In some instances, a substrate comprises flexible materials. For flexible materials, materials can include, without limitation: nylon, both modified and unmodified, nitrocellulose, polypropylene, and the like. In some instances, a substrate comprises rigid materials. For rigid materials, materials can include, without limitation: glass, fuse silica, silicon, plastics (for example polytetraflouroethylene, polypropylene, polystyrene, polycarbonate, and blends thereof, and the like), and metals (for example, gold, platinum, and the like). The substrate, solid support or reactors can be fabricated from a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), and glass. The substrates/solid supports or the microstructures, reactors therein may be manufactured with a combination of materials listed herein or any other suitable material known in the art.
  • Surface Architecture
  • Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates have a surface architecture suitable for the methods, compositions, and systems described herein. In some instances, a substrate comprises raised and/or lowered features. One benefit of having such features is an increase in surface area to support polynucleotide synthesis. In some instances, a substrate having raised and/or lowered features is referred to as a three-dimensional substrate. In some cases, a three-dimensional substrate comprises one or more channels. In some cases, one or more loci comprise a channel. In some cases, the channels are accessible to reagent deposition via a deposition device such as a polynucleotide synthesizer. In some cases, reagents and/or fluids collect in a larger well in fluid communication one or more channels. For example, a substrate comprises a plurality of channels corresponding to a plurality of loci with a cluster, and the plurality of channels are in fluid communication with one well of the cluster. In some methods, a library of polynucleotides is synthesized in a plurality of loci of a cluster.
  • Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates are configured for polynucleotide synthesis. In some instances, the structure is configured to allow for controlled flow and mass transfer paths for polynucleotide synthesis on a surface. In some instances, the configuration of a substrate allows for the controlled and even distribution of mass transfer paths, chemical exposure times, and/or wash efficacy during polynucleotide synthesis. In some instances, the configuration of a substrate allows for increased sweep efficiency, for example by providing sufficient volume for a growing a polynucleotide such that the excluded volume by the growing polynucleotide does not take up more than 50, 45, 40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1%, or less of the initially available volume that is available or suitable for growing the polynucleotide. In some instances, a three-dimensional structure allows for managed flow of fluid to allow for the rapid exchange of chemical exposure.
  • Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates comprise structures suitable for the methods, compositions, and systems described herein. In some instances, segregation is achieved by physical structure. In some instances, segregation is achieved by differential functionalization of the surface generating active and passive regions for polynucleotide synthesis. In some instances, differential functionalization is achieved by alternating the hydrophobicity across the substrate surface, thereby creating water contact angle effects that cause beading or wetting of the deposited reagents. Employing larger structures can decrease splashing and cross-contamination of distinct polynucleotide synthesis locations with reagents of the neighboring spots. In some cases, a device, such as a material deposition device, is used to deposit reagents to distinct polynucleotide synthesis locations. Substrates having three-dimensional features are configured in a manner that allows for the synthesis of a large number of polynucleotides (e.g., more than about 10,000) with a low error rate (e.g., less than about 1:500, 1:1000, 1:1500, 1:2,000; 1:3,000; 1:5,000; or 1:10,000). In some cases, a substrate comprises features with a density of about or greater than about 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400 or 500 features per mm2.
  • A well of a substrate may have the same or different width, height, and/or volume as another well of the substrate. A channel of a substrate may have the same or different width, height, and/or volume as another channel of the substrate. In some instances, the diameter of a cluster or the diameter of a well comprising a cluster, or both, is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.05-1, 0.05-0.5, 0.05-0.1, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm. In some instances, the diameter of a cluster or well or both is less than or about 5, 4, 3, 2, 1, 0.5, 0.1, 0.09, 0.08, 0.07, 0.06, or 0.05 mm. In some instances, the diameter of a cluster or well or both is between about 1.0 and about 1.3 mm. In some instances, the diameter of a cluster or well, or both is about 1.150 mm. In some instances, the diameter of a cluster or well, or both is about 0.08 mm. The diameter of a cluster refers to clusters within a two-dimensional or three-dimensional substrate.
  • In some instances, the height of a well is from about 20-1000, 50-1000, 100-1000, 200-1000, 300-1000, 400-1000, or 500-1000 um. In some cases, the height of a well is less than about 1000, 900, 800, 700, or 600 um.
  • In some instances, a substrate comprises a plurality of channels corresponding to a plurality of loci within a cluster, wherein the height or depth of a channel is 5-500, 5-400, 5-300, 5-200, 5-100, 5-50, or 10-50 um. In some cases, the height of a channel is less than 100, 80, 60, 40, or 20 um.
  • In some instances, the diameter of a channel, locus (e.g., in a substantially planar substrate) or both channel and locus (e.g., in a three-dimensional substrate wherein a locus corresponds to a channel) is from about 1-1000, 1-500, 1-200, 1-100, 5-100, or 10-100 um, for example, about 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the diameter of a channel, locus, or both channel and locus is less than about 100, 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the distance between the center of two adjacent channels, loci, or channels and loci is from about 1-500, 1-200, 1-100, 5-200, 5-100, 5-50, or 5-30, for example, about 20 um.
  • Surface Modifications
  • Provided herein are methods for polynucleotide synthesis on a surface, wherein the surface comprises various surface modifications. In some instances, the surface modifications are employed for the chemical and/or physical alteration of a surface by an additive or subtractive process to change one or more chemical and/or physical properties of a substrate surface or a selected site or region of a substrate surface. For example, surface modifications include, without limitation, (1) changing the wetting properties of a surface, (2) functionalizing a surface, i.e., providing, modifying or substituting surface functional groups, (3) defunctionalizing a surface, i.e., removing surface functional groups, (4) otherwise altering the chemical composition of a surface, e.g., through etching, (5) increasing or decreasing surface roughness, (6) providing a coating on a surface, e.g., a coating that exhibits wetting properties that are different from the wetting properties of the surface, and/or (7) depositing particulates on a surface.
  • In some cases, the addition of a chemical layer on top of a surface (referred to as adhesion promoter) facilitates structured patterning of loci on a surface of a substrate. Exemplary surfaces for application of adhesion promotion include, without limitation, glass, silicon, silicon dioxide, and silicon nitride. In some cases, the adhesion promoter is a chemical with a high surface energy. In some instances, a second chemical layer is deposited on a surface of a substrate. In some cases, the second chemical layer has a low surface energy. In some cases, surface energy of a chemical layer coated on a surface supports localization of droplets on the surface. Depending on the patterning arrangement selected, the proximity of loci and/or area of fluid contact at the loci are alterable.
  • In some instances, a substrate surface, or resolved loci, onto which nucleic acids or other moieties are deposited, e.g., for polynucleotide synthesis, are smooth or substantially planar (e.g., two-dimensional) or have irregularities, such as raised or lowered features (e.g., three-dimensional features). In some instances, a substrate surface is modified with one or more different layers of compounds. Such modification layers of interest include, without limitation, inorganic and organic layers such as metals, metal oxides, polymers, small organic molecules and the like.
  • In some instances, resolved loci of a substrate are functionalized with one or more moieties that increase and/or decrease surface energy. In some cases, a moiety is chemically inert. In some cases, a moiety is configured to support a desired chemical reaction, for example, one or more processes in a polynucleotide acid synthesis reaction. The surface energy, or hydrophobicity, of a surface is a factor for determining the affinity of a nucleotide to attach onto the surface. In some instances, a method for substrate functionalization comprises: (a) providing a substrate having a surface that comprises silicon dioxide; and (b) silanizing the surface using, a suitable silanizing agent described herein or otherwise known in the art, for example, an organofunctional alkoxysilane molecule. Methods and functionalizing agents are described in U.S. Pat. No. 5,474,796, which is herein incorporated by reference in its entirety.
  • In some instances, a substrate surface is functionalized by contact with a derivatizing composition that contains a mixture of silanes, under reaction conditions effective to couple the silanes to the substrate surface, typically via reactive hydrophilic moieties present on the substrate surface. Silanization generally covers a surface through self-assembly with organofunctional alkoxysilane molecules. A variety of siloxane functionalizing reagents can further be used as currently known in the art, e.g., for lowering or increasing surface energy. The organofunctional alkoxysilanes are classified according to their organic functions.
  • Computer Systems
  • Any of the systems described herein, may be operably linked to a computer and may be automated through a computer either locally or remotely. In some instances, the methods and systems of the invention further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the material deposition device movement, dispense action and vacuum actuation are within the bounds of the invention. The computer systems may be programmed to interface between the user specified base sequence and the position of a material deposition device to deliver the correct reagents to specified regions of the substrate.
  • The computer system 1000 illustrated in FIG. 10 may be understood as a logical apparatus that can read instructions from media 1011 and/or a network port 1005, which can optionally be connected to server 1009 having fixed media 1012. The system, such as shown in FIG. 10 can include a CPU 1001, disk drives 1003, optional input devices such as keyboard 1015 and/or mouse 1016 and optional monitor 1007. Data communication can be achieved through the indicated communication medium to a server at a local or a remote location. The communication medium can include any means of transmitting and/or receiving data. For example, the communication medium can be a network connection, a wireless connection or an internet connection. Such a connection can provide for communication over the World Wide Web. It is envisioned that data relating to the present disclosure can be transmitted over such networks or connections for reception and/or review by a party 1022 as illustrated in FIG. 10.
  • FIG. 11 is a block diagram illustrating architecture of a computer system 1100 that can be used in connection with example embodiments of the present invention. As depicted in FIG. 11, the example computer system can include a processor 1102 for processing instructions. Non-limiting examples of processors include: Intel® Xeon® processor, AMD Opteron™ processor, Samsung 32-bit RISC ARM 1176JZ(F)-S v1.0 processor, ARM Cortex-A8 Samsung S5PC100 processor, ARM Cortex-A8 Apple A4 processor, Marvell PXA 930 processor, or a functionally-equivalent processor. Multiple threads of execution can be used for parallel processing. In some instances, multiple processors or processors with multiple cores can also be used, whether in a single computer system, in a cluster, or distributed across systems over a network comprising a plurality of computers, cell phones, and/or personal data assistant devices.
  • As illustrated in FIG. 11, a high speed cache 1104 can be connected to, or incorporated in, the processor 1102 to provide a high speed memory for instructions or data that have been recently, or are frequently, used by processor 1102. The processor 1102 is connected to a north bridge 1106 by a processor bus 1108. The north bridge 1106 is connected to random access memory (RAM) 1110 by a memory bus 1112 and manages access to the RAM 1110 by the processor 1102. The north bridge 1106 is also connected to a south bridge 1114 by a chipset bus 1116. The south bridge 1114 is, in turn, connected to a peripheral bus 1118. The peripheral bus can be, for example, PCI, PCI-X, PCI Express, or other peripheral bus. The north bridge and south bridge are often referred to as a processor chipset and manage data transfer between the processor, RAM, and peripheral components on the peripheral bus 1118. In some alternative architectures, the functionality of the north bridge can be incorporated into the processor instead of using a separate north bridge chip. In some instances, system 1100 can include an accelerator card 1122 attached to the peripheral bus 1118. The accelerator can include field programmable gate arrays (FPGAs) or other hardware for accelerating certain processing. For example, an accelerator can be used for adaptive data restructuring or to evaluate algebraic expressions used in extended set processing.
  • Software and data are stored in external storage 1124 and can be loaded into RAM 1110 and/or cache 1104 for use by the processor. The system 1100 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, Windows™, MACOS™, BlackBerry OS™, iOS™, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example embodiments of the present invention. In this example, system 1100 also includes network interface cards (NICs) 1120 and 1121 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing.
  • FIG. 12 is a block diagram of a multiprocessor computer system using a shared virtual address memory space in accordance with an example embodiment. The system includes a plurality of processors 1202 a-f that can access a shared memory subsystem 1204. The system incorporates a plurality of programmable hardware memory algorithm processors (MAPs) 1206 a-f in the memory subsystem 1204. Each MAP 1206 a-f can comprise a memory 1208 a-f and one or more field programmable gate arrays (FPGAs) 1210 a-f The MAP provides a configurable functional unit and particular algorithms or portions of algorithms can be provided to the FPGAs 1210 a-f for processing in close coordination with a respective processor. For example, the MAPs can be used to evaluate algebraic expressions regarding the data model and to perform adaptive data restructuring in example embodiments. In this example, each MAP is globally accessible by all of the processors for these purposes. In one configuration, each MAP can use Direct Memory Access (DMA) to access an associated memory 1208 a-f, allowing it to execute tasks independently of, and asynchronously from, the respective microprocessor 1202 a-f In this configuration, a MAP can feed results directly to another MAP for pipelining and parallel execution of algorithms.
  • FIG. 13 is a diagram showing a network with a plurality of computer systems 1302 a and 1302 b, a plurality of cell phones and personal data assistants 1302 c, and Network Attached Storage (NAS) 1304 a and 1304 b. In example embodiments, systems 1302 a, 1302 b, and 1302 c can manage data storage and optimize data access for data stored in Network Attached Storage (NAS) 1304 a and 1304 b. A mathematical model can be used for the data and be evaluated using distributed parallel processing across computer systems 1302 a, and 1302 b, and cell phone and personal data assistant systems 1302 c. Computer systems 1302 a, and 1302 b, and cell phone and personal data assistant systems 1302 c can also provide parallel processing for adaptive data restructuring of the data stored in Network Attached Storage (NAS) 1304 a and 1304 b. FIG. 13 illustrates an example only, and a wide variety of other computer architectures and systems can be used in conjunction with the various embodiments of the present invention. For example, a blade server can be used to provide parallel processing. Processor blades can be connected through a back plane to provide parallel processing. Storage can also be connected to the back plane or as Network Attached Storage (NAS) through a separate network interface. In some instances, processors can maintain separate memory spaces and transmit data through network interfaces, back plane or other connectors for parallel processing by other processors. In some instances, some or all of the processors can use a shared virtual address memory space.
  • Any of the systems described herein may comprise sequence information stored on non-transitory computer readable storage media. In some instances, any of the systems described herein comprise a computer input file. In some instances, the computer input file comprises sequence information. In some instances, the computer input file comprises instructions for synthesis of a plurality of polynucleotide sequence. In some instances, the instructions are received by a computer. In some instances, the instructions are processed by the computer. In some instances, the instructions are transmitted to a material deposition device. In some instances, the non-transitory computer readable storage media is encoded with a program including instructions executable by the operating system of an optionally networked digital processing device. In some instances, a computer readable storage medium is a tangible component of a digital processing device. In some instances, a computer readable storage medium is optionally removable from a digital processing device. In some instances, a computer readable storage medium includes, by way of non-limiting examples, CD-ROMs, DVDs, flash memory devices, solid state memory, magnetic disk drives, magnetic tape drives, optical disk drives, cloud computing systems and services, and the like. In some instances, the program and instructions are permanently, substantially permanently, semi-permanently, or non-transitorily encoded on the media.
  • EXAMPLES
  • The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion. The present examples, along with the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses which are encompassed within the spirit of the invention as defined by the scope of the claims will occur to those skilled in the art.
  • Example 1: Functionalization of a Substrate Surface
  • A substrate was functionalized to support the attachment and synthesis of a library of polynucleotides. The substrate surface was first wet cleaned using a piranha solution comprising 90% H2SO4 and 10% H2O2 for 20 minutes. The substrate was rinsed in several beakers with deionized water, held under a deionized water gooseneck faucet for 5 min, and dried with N2. The substrate was subsequently soaked in NH4OH (1:100; 3 mL:300 mL) for 5 min, rinsed with DI water using a handgun, soaked in three successive beakers with deionized water for 1 min each, and then rinsed again with deionized water using the handgun. The substrate was then plasma cleaned by exposing the substrate surface to O2. A SAMCO PC-300 instrument was used to plasma etch O2 at 250 watts for 1 min in downstream mode.
  • The cleaned substrate surface was actively functionalized with a solution comprising N-(3-triethoxysilylpropyl)-4-hydroxybutyramide using a YES-1224P vapor deposition oven system with the following parameters: 0.5 to 1 torr, 60 min, 70° C. 135° C. vaporizer. The substrate surface was resist coated using a Brewer Science 200X spin coater. SPR™ 3612 photoresist was spin coated on the substrate at 2500 rpm for 40 sec. The substrate was pre-baked for 30 min at 90° C. on a Brewer hot plate. The substrate was subjected to photolithography using a Karl Suss MA6 mask aligner instrument. The substrate was exposed for 2.2 sec and developed for 1 min in MSF 26A. Remaining developer was rinsed with the handgun and the substrate soaked in water for 5 min. The substrate was baked for 30 min at 100° C. in the oven, followed by visual inspection for lithography defects using a Nikon L200. A cleaning process was used to remove residual resist using the SAMCO PC-300 instrument to O2 plasma etch at 250 watts for 1 min.
  • The substrate surface was passively functionalized with a 100 μL solution of perfluorooctyltrichlorosilane mixed with 10 μL light mineral oil. The substrate was placed in a chamber, pumped for 10 min, and then the valve was closed to the pump and left to stand for 10 min. The chamber was vented to air. The substrate was resist stripped by performing two soaks for 5 min in 500 mL NMP at 70° C. with ultrasonication at maximum power (9 on Crest system). The substrate was then soaked for 5 min in 500 mL isopropanol at room temperature with ultrasonication at maximum power. The substrate was dipped in 300 mL of 200 proof ethanol and blown dry with N2. The functionalized surface was activated to serve as a support for polynucleotide synthesis.
  • Example 2: Synthesis of a 50-Mer Sequence on an Oligonucleotide Synthesis Device
  • A two dimensional oligonucleotide synthesis device was assembled into a flowcell, which was connected to a flowcell (Applied Biosystems (“ABI394 DNA Synthesizer”)). The two-dimensional oligonucleotide synthesis device was uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE (Gelest) was used to synthesize an exemplary polynucleotide of 50 bp (“50-mer polynucleotide”) using polynucleotide synthesis methods described herein.
  • The sequence of the 50-mer was as described in SEQ ID NO.: 1. 5′AGACAATCAACCATTTGGGGTGGACAGCCTTGACCTCTAGACTTCGGCAT##TTTTTTT TTT3′ (SEQ ID NO.: 1), where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes), which is a cleavable linker enabling the release of polynucleotides from the surface during deprotection.
  • The synthesis was done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 1 and ABI394 DNA Synthesizer.
  • TABLE 1
    Synthesis Protocol
    General DNA Synthesis Table 1
    Process Name Process Step Time (sec)
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) Acetonitrile to Flowcell 23
    N2 System Flush 4
    Acetonitrile System Flush 4
    DNA BASE ADDITION Activator Manifold Flush 2
    (Phosphoramidite + Activator to Flowcell 6
    Activator Flow) Activator + 6
    Phosphoramidite to
    Flowcell
    Activator to Flowcell 0.5
    Activator + 5
    Phosphoramidite to
    Flowcell
    Activator to Flowcell 0.5
    Activator + 5
    Phosphoramidite to
    Flowcell
    Activator to Flowcell 0.5
    Activator + 5
    Phosphoramidite to
    Flowcell
    Incubate for 25 sec 25
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) Acetonitrile to Flowcell 15
    N2 System Flush 4
    Acetonitrile System Flush 4
    DNA BASE ADDITION Activator Manifold Flush 2
    (Phosphoramidite + Activator to Flowcell 5
    Activator Flow) Activator + 18
    Phosphoramidite to
    Flowcell
    Incubate for 25 sec 25
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) Acetonitrile to Flowcell 15
    N2 System Flush 4
    Acetonitrile System Flush 4
    CAPPING (CapA + B, 1:1, CapA + B to Flowcell 15
    Flow)
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) Acetonitrile to Flowcell 15
    Acetonitrile System Flush 4
    OXIDATION (Oxidizer Oxidizer to Flowcell 18
    Flow)
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) N2 System Flush 4
    Acetonitrile System Flush 4
    Acetonitrile to Flowcell 15
    Acetonitrile System Flush 4
    Acetonitrile to Flowcell 15
    N2 System Flush 4
    Acetonitrile System Flush 4
    Acetonitrile to Flowcell 23
    N2 System Flush 4
    Acetonitrile System Flush 4
    DEBLOCKING (Deblock Deblock to Flowcell 36
    Flow)
    WASH (Acetonitrile Wash Acetonitrile System Flush 4
    Flow) N2 System Flush 4
    Acetonitrile System Flush 4
    Acetonitrile to Flowcell 18
    N2 System Flush 4.13
    Acetonitrile System Flush 4.13
    Acetonitrile to Flowcell 15
  • The phosphoramidite/activator combination was delivered similar to the delivery of bulk reagents through the flowcell. No drying steps were performed as the environment stays “wet” with reagent the entire time.
  • The flow restrictor was removed from the ABI394 DNA Synthesizer to enable faster flow. Without flow restrictor, flow rates for amidites (0.1M in ACN), Activator, (0.25M Benzoylthiotetrazole (“BTT”; 30-3070-xx from GlenResearch) in ACN), and Ox (0.02M 12 in 20% pyridine, 10% water, and 70% THF) were roughly ˜100 uL/sec, for acetonitrile (“ACN”) and capping reagents (1:1 mix of CapA and CapB, wherein CapA is acetic anhydride in THF/Pyridine and CapB is 16% 1-methylimidizole in THF), roughly ˜200 uL/sec, and for Deblock (3% dichloroacetic acid in toluene), roughly ˜300 uL/sec (compared to ˜50 uL/sec for all reagents with flow restrictor). The time to completely push out Oxidizer was observed, the timing for chemical flow times was adjusted accordingly and an extra ACN wash was introduced between different chemicals. After polynucleotide synthesis, the chip was deprotected in gaseous ammonia overnight at 75 psi. Five drops of water were applied to the surface to recover polynucleotides. The recovered polynucleotides were then analyzed on a BioAnalyzer small RNA chip (data not shown).
  • Example 3: Synthesis of a 100-Mer Sequence on an Oligonucleotide Synthesis Device
  • The same process as described in Example 2 for the synthesis of the 50-mer sequence was used for the synthesis of a 100-mer polynucleotide (“100-mer polynucleotide”; 5′ CGGGATCCTTATCGTCATCGTCGTACAGATCCCGACCCATTTGCTGTCCACCAGTCATG CTAGCCATACCATGATGATGATGATGATGAGAACCCCGCAT##TTTTTTTTTT3′, where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes); SEQ ID NO.: 2) on two different silicon chips, the first one uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE and the second one functionalized with 5/95 mix of 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane, and the polynucleotides extracted from the surface were analyzed on a BioAnalyzer instrument (data not shown).
  • All ten samples from the two chips were further PCR amplified using a forward (5′ATGCGGGGTTCTCATCATC3′; SEQ ID NO.: 3) and a reverse (5′CGGGATCCTTATCGTCATCG3′; SEQ ID NO.: 4) primer in a 50 uL PCR mix (25 uL NEB Q5 mastermix, 2.5 uL 10 uM Forward primer, 2.5 uL 10 uM Reverse primer, 1 uL polynucleotide extracted from the surface, and water up to 50 uL) using the following thermalcycling program:
  • 98° C. 30 sec
  • 98° C. 10 sec; 63° C. 10 sec; 72° C. 10 sec; repeat 12 cycles
  • 72° C. 2 min
  • The PCR products were also run on a BioAnalyzer (data not shown), demonstrating sharp peaks at the 100-mer position. Next, the PCR amplified samples were cloned, and Sanger sequenced. Table 2 summarizes the results from the Sanger sequencing for samples taken from spots 1-5 from chip 1 and for samples taken from spots 6-10 from chip 2.
  • TABLE 2
    Sequencing Results
    Spot Error rate Cycle efficiency
    1 1/763 bp 99.87%
    2 1/824 bp 99.88%
    3 1/780 bp 99.87%
    4 1/429 bp 99.77%
    5 1/1525 bp 99.93%
    6 1/1615 bp 99.94%
    7 1/531 bp 99.81%
    8 1/1769 bp 99.94%
    9 1/854 bp 99.88%
    10 1/1451 bp 99.93%
  • Thus, the high quality and uniformity of the synthesized polynucleotides were repeated on two chips with different surface chemistries. Overall, 89%, corresponding to 233 out of 262 of the 100-mers that were sequenced were perfect sequences with no errors.
  • Finally, Table 3 summarizes key error characteristics for the sequences obtained from the polynucleotides samples from spots 1-10.
  • TABLE 3
    Error Characteristics
    Sample ID/ OSA_ OSA_ OSA_ OSA_ OSA_ OSA_ OSA_ OSA_ OSA_ OSA_
    Spot no. 0046/1 0047/2 0048/3 0049/4 0050/5 0051/6 0052/7 0053/8 0054/9 0055/10
    Total Sequences  32  32  32  32  32  32  32  32  32  32
    Sequencing 25 of 28 27 of 27 26 of 30 21 of 23 25 of 26 29 of 30 27 of 31 29 of 31 28 of 29 25 of 28
    Quality
    Oligo Quality 23 of 25 25 of 27 22 of 26 18 of 21 24 of 25 25 of 29 22 of 27 28 of 29 26 of 28 20 of 25
    ROI Match 2500 2698 2561 2122 2499 2666 2625 2899 2798 2348
    Count
    ROI Mutation   2   2   1   3   1   0   2   1   2   1
    ROI Multi   0   0   0   0   0   0   0   0   0   0
    Base Deletion
    ROI Small   1   0   0   0   0   0   0   0   0   0
    Insertion
    ROI Single   0   0   0   0   0   0   0   0   0   0
    Base Deletion
    Large Deletion   0   0   1   0   0   1   1   0   0   0
    Count
    Mutation: G > A   2   2   1   2   1   0   2   1   2   1
    Mutation: T > C   0   0   0   1   0   0   0   0   0   0
    ROI Error Count   3   2   2   3   1   1   3   1   2   1
    ROI Error Rate Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1
    in 834 in 1350 in 1282 in 708 in 2500 in 2667 in 876 in 2900 in 1400 in 2349
    ROI Minus MP MP MP MP MP MP MP MP MP MP
    Primer Error Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1
    Rate in 763 in 824 in 780 in 429 in 1525 in 1615 in 531 in 1769 in 854 in 1451
  • Example 4. Overlap Extension PCR without Primer Removal
  • Two genes (Gene 1 and Gene 2) were selected to perform overlap extension PCR without primer removal. Varying lengths of base pair overlap were tested for Gene 1 and Gene 2, including 20, 41, and 100 base pairs. PCR amplification was performed using universal primers. Referring to FIG. 14, incorrect assembly (white) and correct assembly (black) were determined for Gene 1 and Gene 2 amplified with universal primers and having a base pair overlap of 20, 41, and 100 base pairs. Assembly of Gene 1 and Gene 2 without amplification by universal primers with a 20 base pair overlap was also determined. As seen in FIG. 14, universal primers having a base pair overlap of 41 base pairs resulted in improved assembly for Gene 1 and Gene 2. For Gene 1, assembly was about 91%.
  • Example 5. Single-Stranded DNA Mediated Hierarchal Assembly of Two Gene Fragments
  • A gene was assembled into a 3 kb gene from two gene fragments. The 5′ and 3′ of each fragment end was appended with uracils and amplified using a uracil compatible polymerase such as KapaU polymerase or PhusionU polymerase. Each of the two fragments further comprised a homology sequence. See FIG. 1. The two fragments were then mixed and amplified with universal primers and Q5 DNA polymerase. Q5 DNA polymerase is incompatible with uracil and resulted in stalling at a uracil base. Single stranded fragments that do not comprise uracil were thus generated. The two fragments were then combined and amplified to generate the 3 kb gene.
  • Example 6. Single-Stranded DNA Mediated Hierarchal Assembly of Three Gene Fragments
  • A gene was assembled into a 3 kb gene from three gene fragments. The 5′ and 3′ of each fragment end was appended with flanking adapter sequences comprising uracils and amplified using a uracil compatible polymerase such as KapaU polymerase or PhusionU polymerase. Each of the three fragments comprised a homology sequence. See FIG. 2. The three fragments were mixed and amplified with Q5 DNA polymerase. Q5 DNA polymerase is incompatible with uracil and resulted in stalling at a uracil base. Single stranded fragments that do not comprise uracil were thus generated. Two of the three fragments were then combined and amplified to generate a single fragment. The third fragment was combined with the synthesized fragment and amplified to generate the 3 kb gene.
  • Example 7. Single-Stranded DNA Mediated Hierarchal Assembly with Varying Base Pair Overlap Sequence Length
  • Two genes (Gene 1 and Gene 2) were assembled similar to Examples 5-6. The 5′ and 3′ of each fragment end was appended with flanking adapter sequences comprising uracils and amplified using a uracil compatible polymerase such as KapaU polymerase or PhusionU polymerase. Each of the two fragments comprised a homology sequence. The length of the homology sequence was 20, 41, or 100 base pairs. The two fragments were mixed and amplified with universal primers and Q5 DNA polymerase or KapaHiFi polymerase. Q5 DNA polymerase and KapaHiFi polymerase are incompatible with uracil and resulted in stalling at a uracil base. Single stranded fragments that do not comprise uracil were thus generated. The two fragments are combined and amplified to generate Gene 1 and Gene 2.
  • Incorrect assembly (white) and correct assembly (black) were determined for Gene 1 and Gene 2 amplified with Q5 DNA polymerase and KapaHiFi polymerase and having a base pair overlap of 20, 41, and 100 base pair (FIG. 15). The 20, 41, and 100 base pair overlap resulted in over 70% correct assembly with both Q5 DNA polymerase and KapaHiFi polymerase (FIG. 15). The 41 base pair overlap resulted in further improved assembly at 100% of correct assembly with both Q5 DNA polymerase and KapaHiFi polymerase (FIG. 15).
  • Example 8. In Vitro Recombination Cloning
  • In Vitro Recombination (IVTR) Lysate Preparation
  • JM109 cell lysate was prepared. JM109 was streaked on a M9 agar plate and incubated at 37° C. for about 24 hours. Colonies were picked and incubated in 15 mL tubes comprising 3 mL of M9 broth for a seed culture. The tubes were shaken at 250 rpm at 37° C. for about 19 hours. When OD600 was between about 2-3, 0.016 mL of the seed culture was removed and added to flasks comprising 100 mL of TB broth. The flasks were shaken at 300 rpm at 37° C. for about 4.5 hours. The cells were spun down at 4,816×g for 10 minutes and washed with 100 mL of ice-cold water. The cells were lysed with 2.4 mL CelLytic B Cell Lysis Reagent (Sigma-Aldrich) for 10 minutes at room-temperature and centrifuged at 18,615×g for 5 minutes to collect the supernatant (about 2 mL). The supernatant was mixed with 2 mL of ice cold 80% glycerol and snap frozen in a dry ice-ethanol bath followed by storage at −80° C.
  • IVTR Cloning
  • A gene fragment comprised from 5′ to 3′: a 5′ flanking adapter sequence, a first homology sequence, an insert sequence, a second homology sequence, and a 3′ flanking adapter sequence. The gene fragment and a vector comprising homologous sequences to the first homology sequence and the second homology sequence were incubated with JM109 cell lysate. See FIG. 4. A reaction was set up similar to Table 4. Varying amounts of insert were tested: 13 fmol (white bars), 26 fmol (hashed bars), and 40 fmol (black bars) (FIG. 16). The ratio of insert:vector (X-axis) was also varied including ratios of 1:1, 2:1, and 4:1.
  • Tens of thousands colonies were retrieved. Colony forming unit (CFU, Y-axis) was then determined as a measure of efficiency. More than 99% correct assembly of any selected condition (1 misassembly out of 437 valid clones) was observed (FIG. 16). Referring to FIG. 17, colony PCR results of 48 colonies showed only 4 samples failed, which were background plasmids.
  • TABLE 4
    Reaction Conditions
    Final
    Concentration
    10X IVTR buffer 1X
    JM109
    VS208 ASP
    4 nM
    Fragment
    1 4 nM
    Fragment
    2 4 nM
  • Example 9. In Vitro Recombination Cloning with Two Fragments
  • A first gene fragment comprised from 5′ to 3′: a 5′ flanking adapter sequence, a first homology sequence, an insert sequence, a second homology sequence, and a 3′ flanking adapter sequence. A second gene fragment comprised from 5′ to 3′: a 5′ flanking adapter sequence, a first homology sequence, an insert sequence, a second homology sequence, and a 3′ flanking adapter sequence. The first homology sequence of the first gene fragment was homologous to a sequence on the vector. See FIG. 4. The first gene fragment, second gene fragment, and vector were incubated with JM109 cell lysate.
  • The effects of the length of the homology sequence (20, 41, or 100 base pairs) and location of the homology sequence on colony forming unit (CFU, Y-axis) were determined (FIG. 18). Data is summarized in Table 5. The homology sequence was either flanked by the universal primers (internal) or at the 5′ or 3′ end of the gene fragment (terminal). There was increased CFUs with a homology sequence of 41 base pairs. A terminal location of the homology sequence of 41 base pairs resulted in a greater number of CFUs as compared to an internal location. A terminal location of the homology sequence of 100 base pairs also resulted in a greater number of CFUs as compared to an internal location.
  • Referring to FIG. 19, the percentage of misassembly (white bars) and assembly (black bars) was determined. A terminal location and homology sequence length of 20, 41, and 100 base pairs resulted in 100% assembly. An internal location and homology sequence length of 20 and 41 base pairs also resulted in 100% assembly.
  • TABLE 5
    Colony Forming Unit Results
    Homology Sequence Length
    (number of base pairs) Terminal or Internal CFU
    20 Terminal 190
    20 Internal 200
    41 Terminal 1280
    41 Internal 720
    100 Terminal 1030
    100 Internal 190
  • Example 10. In Vitro Recombination Cloning with Varying Lengths of Non-Homologous Sequences
  • The effect of varying lengths of the non-homologous sequence was determined. Four fragments were designed: V1, V2, V3, and V4 (FIG. 5). V1 comprised an overlapping sequence at the terminal end. V2 comprised an internal overlapping sequence followed by at a 24 base pair sequence at the 3′ end. V3 comprised an overlapping sequence followed by a 124 base pair sequence at the end 3′ end. V4 comprised an overlapping sequence followed by a 324 base pair at the 3′ end.
  • Percentage of assembly (FIG. 20A) and total CFU (FIG. 20B) were determined for sequences comprising 0 (V1), 24 (V2), 124 (V3), and 324 (V4) base pairs at the 3′ end. Referring to FIG. 20A, 100% correct assembly was observed for sequences comprising 0, 24, 124, and 324 base pairs at the 3′ end. Referring to FIG. 20B, sequences comprising 0 and 24 base pairs at the 3′ end resulted in increased CFUs.
  • Example 11. In Vitro Recombination Cloning with Varying Internal Homology
  • The effect of internal homology was determined. Three fragments were designed: V5, V6, and V7 (FIG. 6A). V5 comprised a 24 base pair sequence between two overlapping sequences. V6 comprised a 124 base pair sequence between two overlapping sequences. V7 comprised a 324 base pair sequence between two overlapping sequences.
  • Percentage of assembly (FIG. 21A) and Total CFU (FIG. 21B) were determined for internal sequences comprising 24 (V5), 124 (V6), and 324 (V7) base pairs. Referring to FIG. 21A, more than 80% correct assembly was observed for internal sequences comprising 124 and 324 base pairs. Referring to FIG. 21B, internal sequences comprising 124 and 324 base pairs also resulted in increased CFUs.
  • Example 12. Single-Stranded DNA Mediated Hierarchal Assembly of Multiple Gene Fragments
  • A gene is assembled into a 3 kb gene from five gene fragments. The 5′ and 3′ of each fragment end is appended with flanking adapter sequences comprising uracils. Each of the five fragments comprises a homology sequence. The five fragments are mixed and amplified with universal primers and Q5 DNA polymerase. Following amplification using DNA polymerase, single stranded fragments that do not comprise uracil are generated. Two of the five fragments are combined and amplified with DNA polymerase to generate a single fragment. A third fragment is combined with the synthesized fragment and amplified to generate a single fragment. A fourth fragment is combined with the synthesized fragment and amplified to generate a single fragment. A fifth fragment is combined with the synthesized fragment and amplified to generate the assembled 3 kb gene.
  • While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims (20)

What we claim is:
1. A method for nucleic acid assembly, comprising:
(a) providing at least one double stranded nucleic acid comprising in 5′ to 3′ order: a 5′ flanking adapter sequence, a first homology sequence, an insert sequence, a second homology sequence, and a 3′ flanking adapter sequence,
wherein the first homology sequence and the second homology sequence each comprises about 20 to about 100 base pairs in length;
(b) providing a vector comprising the first homology sequence and the second homology sequence; and
(c) mixing the at least one double stranded nucleic acid and the vector with a bacterial lysate.
2. The method of claim 1, wherein the bacterial lysate comprises a nuclease or a recombinase.
3. The method of claim 1, wherein the bacterial lysate comprises a nuclease and a recombinase.
4. The method of claim 1, wherein the first homology sequence and the second homology sequence each comprises about 20 base pairs.
5. The method of claim 1, wherein the first homology sequence and the second homology sequence each comprises about 41 base pairs.
6. The method of claim 1, wherein the first homology sequence and the second homology sequence each comprises about 100 base pairs.
7. The method of claim 1, wherein the first homology sequence or the second homology sequence is flanked by the 5′ flanking adapter sequence and the 3′ flanking adapter sequence.
8. The method of claim 1, wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
9. A method for nucleic acid synthesis and assembly, comprising:
(a) de novo synthesizing a plurality of polynucleotides, wherein each polynucleotide comprises a first homology region that comprises in 5′ to 3′ order: a 5′ flanking adapter sequence, a first homology sequence, an insert sequence, a second homology sequence, and a 3′ flanking adapter sequence, wherein the first homology sequence and the second homology sequence each comprises about 20 to about 100 base pairs in length, and wherein each polynucleotide comprises a homology sequence identical to that of another polynucleotide of the plurality of polynucleotides; and
(b) mixing of the plurality of polynucleotides with a bacterial lysate to processively form nucleic acids each having a predetermined sequence.
10. The method of claim 9, wherein the bacterial lysate comprises a nuclease or a recombinase.
11. The method of claim 9, wherein the bacterial lysate comprises a nuclease and a recombinase.
12. The method of claim 9, wherein the first homology sequence and the second homology sequence each comprises about 20 base pairs.
13. The method of claim 9, wherein the first homology sequence and the second homology sequence each comprises about 41 base pairs.
14. The method of claim 9, wherein the first homology sequence and the second homology sequence each comprises about 100 base pairs.
15. The method of claim 9, wherein the first homology sequence or the second homology sequence is flanked by the 5′ flanking adapter sequence and the 3′ flanking adapter sequence.
16. The method of claim 9, wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
17. A method for nucleic acid assembly, comprising:
(a) providing a plurality of double stranded nucleic acids;
(b) annealing a uracil at a 5′ end and a 3′ end of at least two of the double stranded nucleic acids;
(c) amplifying the double stranded nucleic acids using a uracil compatible polymerase to form amplification products;
(d) mixing the amplification products from step (c) to form a mixture; and
(e) amplifying the mixture from step (d) using a uracil incompatible polymerase to generate a single-stranded nucleic acid.
18. The method of claim 17, wherein the uracil incompatible polymerase is a DNA polymerase.
19. The method of claim 17, wherein the homology sequence comprises about 20 to about 100 base pairs.
20. The method of claim 17, wherein a percentage of correct assembly is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%.
US17/825,863 2017-06-12 2022-05-26 Methods for seamless nucleic acid assembly Pending US20220315971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/825,863 US20220315971A1 (en) 2017-06-12 2022-05-26 Methods for seamless nucleic acid assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762518489P 2017-06-12 2017-06-12
PCT/US2018/037152 WO2018231864A1 (en) 2017-06-12 2018-06-12 Methods for seamless nucleic acid assembly
US16/712,678 US11377676B2 (en) 2017-06-12 2019-12-12 Methods for seamless nucleic acid assembly
US17/825,863 US20220315971A1 (en) 2017-06-12 2022-05-26 Methods for seamless nucleic acid assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/712,678 Division US11377676B2 (en) 2017-06-12 2019-12-12 Methods for seamless nucleic acid assembly

Publications (1)

Publication Number Publication Date
US20220315971A1 true US20220315971A1 (en) 2022-10-06

Family

ID=64660495

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/712,678 Active 2038-11-04 US11377676B2 (en) 2017-06-12 2019-12-12 Methods for seamless nucleic acid assembly
US17/825,863 Pending US20220315971A1 (en) 2017-06-12 2022-05-26 Methods for seamless nucleic acid assembly

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/712,678 Active 2038-11-04 US11377676B2 (en) 2017-06-12 2019-12-12 Methods for seamless nucleic acid assembly

Country Status (2)

Country Link
US (2) US11377676B2 (en)
WO (1) WO2018231864A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11550939B2 (en) 2017-02-22 2023-01-10 Twist Bioscience Corporation Nucleic acid based data storage using enzymatic bioencryption
US11691118B2 (en) 2015-04-21 2023-07-04 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
US11697668B2 (en) 2015-02-04 2023-07-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
US11732294B2 (en) 2018-05-18 2023-08-22 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
US11745159B2 (en) 2017-10-20 2023-09-05 Twist Bioscience Corporation Heated nanowells for polynucleotide synthesis
US11807956B2 (en) 2015-09-18 2023-11-07 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
US11970697B2 (en) 2020-10-19 2024-04-30 Twist Bioscience Corporation Methods of synthesizing oligonucleotides using tethered nucleotides
US12018065B2 (en) 2020-04-27 2024-06-25 Twist Bioscience Corporation Variant nucleic acid libraries for coronavirus
US12056264B2 (en) 2016-09-21 2024-08-06 Twist Bioscience Corporation Nucleic acid based data storage
US12091777B2 (en) 2019-09-23 2024-09-17 Twist Bioscience Corporation Variant nucleic acid libraries for CRTH2

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722442B1 (en) 2013-08-05 2023-04-05 Twist Bioscience Corporation De novo synthesized gene libraries
WO2017053450A1 (en) 2015-09-22 2017-03-30 Twist Bioscience Corporation Flexible substrates for nucleic acid synthesis
CA3006867A1 (en) 2015-12-01 2017-06-08 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
GB2568444A (en) 2016-08-22 2019-05-15 Twist Bioscience Corp De novo synthesized nucleic acid libraries
AU2017378492B2 (en) 2016-12-16 2022-06-16 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
EP3595674A4 (en) 2017-03-15 2020-12-16 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
KR102628876B1 (en) 2017-06-12 2024-01-23 트위스트 바이오사이언스 코포레이션 Methods for seamless nucleic acid assembly
CA3075505A1 (en) 2017-09-11 2019-03-14 Twist Bioscience Corporation Gpcr binding proteins and synthesis thereof
GB2585506A (en) 2018-01-04 2021-01-13 Twist Bioscience Corp DNA-based digital information storage
US11492727B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for GLP1 receptor
SG11202109283UA (en) 2019-02-26 2021-09-29 Twist Bioscience Corp Variant nucleic acid libraries for antibody optimization
AU2020298294A1 (en) 2019-06-21 2022-02-17 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
US12134656B2 (en) 2021-11-18 2024-11-05 Twist Bioscience Corporation Dickkopf-1 variant antibodies and methods of use

Family Cites Families (879)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549368A (en) 1968-07-02 1970-12-22 Ibm Process for improving photoresist adhesion
US3920714A (en) 1972-11-16 1975-11-18 Weber Heinrich Process for the production of polymeric hydrocarbons with reactive silyl side groups
GB1550867A (en) 1975-08-04 1979-08-22 Hughes Aircraft Co Positioning method and apparatus for fabricating microcircuit devices
US4415732A (en) 1981-03-27 1983-11-15 University Patents, Inc. Phosphoramidite compounds and processes
EP0090789A1 (en) 1982-03-26 1983-10-05 Monsanto Company Chemical DNA synthesis
US4994373A (en) 1983-01-27 1991-02-19 Enzo Biochem, Inc. Method and structures employing chemically-labelled polynucleotide probes
JPS59224123A (en) 1983-05-20 1984-12-17 Oki Electric Ind Co Ltd Alignment mark for wafer
US5118605A (en) 1984-10-16 1992-06-02 Chiron Corporation Polynucleotide determination with selectable cleavage sites
JPS61141761A (en) 1984-12-12 1986-06-28 Kanegafuchi Chem Ind Co Ltd Curable composition
US5242794A (en) 1984-12-13 1993-09-07 Applied Biosystems, Inc. Detection of specific sequences in nucleic acids
US4613398A (en) 1985-06-06 1986-09-23 International Business Machines Corporation Formation of etch-resistant resists through preferential permeation
US4981797A (en) 1985-08-08 1991-01-01 Life Technologies, Inc. Process of producing highly transformable cells and cells produced thereby
US4726877A (en) 1986-01-22 1988-02-23 E. I. Du Pont De Nemours And Company Methods of using photosensitive compositions containing microgels
US5763192A (en) 1986-11-20 1998-06-09 Ixsys, Incorporated Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique
US4808511A (en) 1987-05-19 1989-02-28 International Business Machines Corporation Vapor phase photoresist silylation process
JPH07113774B2 (en) 1987-05-29 1995-12-06 株式会社日立製作所 Pattern formation method
US4988617A (en) 1988-03-25 1991-01-29 California Institute Of Technology Method of detecting a nucleotide change in nucleic acids
US5700637A (en) 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
ATE143696T1 (en) 1989-02-28 1996-10-15 Canon Kk PARTIALLY DOUBLE STRANDED OLIGONUCLEOTIDE AND METHOD FOR FORMING IT
US6008031A (en) 1989-05-12 1999-12-28 Duke University Method of analysis and manipulation of DNA utilizing mismatch repair systems
US5556750A (en) 1989-05-12 1996-09-17 Duke University Methods and kits for fractionating a population of DNA molecules based on the presence or absence of a base-pair mismatch utilizing mismatch repair systems
US5459039A (en) 1989-05-12 1995-10-17 Duke University Methods for mapping genetic mutations
US5102797A (en) 1989-05-26 1992-04-07 Dna Plant Technology Corporation Introduction of heterologous genes into bacteria using transposon flanked expression cassette and a binary vector system
US5242974A (en) 1991-11-22 1993-09-07 Affymax Technologies N.V. Polymer reversal on solid surfaces
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US6040138A (en) 1995-09-15 2000-03-21 Affymetrix, Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US5527681A (en) 1989-06-07 1996-06-18 Affymax Technologies N.V. Immobilized molecular synthesis of systematically substituted compounds
US6309822B1 (en) 1989-06-07 2001-10-30 Affymetrix, Inc. Method for comparing copy number of nucleic acid sequences
CA2036946C (en) 1990-04-06 2001-10-16 Kenneth V. Deugau Indexing linkers
US5494810A (en) 1990-05-03 1996-02-27 Cornell Research Foundation, Inc. Thermostable ligase-mediated DNA amplifications system for the detection of genetic disease
US6087482A (en) 1990-07-27 2000-07-11 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
EP1396540B1 (en) 1990-09-27 2007-02-07 Invitrogen Corporation Direct cloning of PCR amplified nucleic acids
GB9025236D0 (en) 1990-11-20 1991-01-02 Secr Defence Silicon-on porous-silicon;method of production
US6582908B2 (en) 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
DE69133293T2 (en) 1990-12-06 2004-05-27 Affymetrix, Inc., Santa Clara Processes and reagents for immobilized polymer synthesis on a very large scale
DK0834575T3 (en) 1990-12-06 2002-04-02 Affymetrix Inc A Delaware Corp Identification of nucleic acids in samples
US5455166A (en) 1991-01-31 1995-10-03 Becton, Dickinson And Company Strand displacement amplification
US5137814A (en) 1991-06-14 1992-08-11 Life Technologies, Inc. Use of exo-sample nucleotides in gene cloning
US5449754A (en) 1991-08-07 1995-09-12 H & N Instruments, Inc. Generation of combinatorial libraries
US5474796A (en) 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US7150982B2 (en) 1991-09-09 2006-12-19 Third Wave Technologies, Inc. RNA detection assays
US6759226B1 (en) 2000-05-24 2004-07-06 Third Wave Technologies, Inc. Enzymes for the detection of specific nucleic acid sequences
US5994069A (en) 1996-01-24 1999-11-30 Third Wave Technologies, Inc. Detection of nucleic acids by multiple sequential invasive cleavages
US5846717A (en) 1996-01-24 1998-12-08 Third Wave Technologies, Inc. Detection of nucleic acid sequences by invader-directed cleavage
US7045289B2 (en) 1991-09-09 2006-05-16 Third Wave Technologies, Inc. Detection of RNA Sequences
JP3939338B2 (en) 1991-11-22 2007-07-04 アフィメトリックス, インコーポレイテッド Combinatorial strategies for polymer synthesis.
US5384261A (en) 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
WO1993020236A1 (en) 1992-04-03 1993-10-14 Applied Biosystems, Inc. Probe composition and method
JP2553322Y2 (en) 1992-05-11 1997-11-05 サンデン株式会社 Filter feed mechanism of beverage brewing device
ES2104160T3 (en) 1992-07-31 1997-10-01 Behringwerke Ag METHOD FOR INTRODUCING DEFINED SEQUENCES AT THE 3 'END OF POLYNUCLEOTIDES.
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
JP3176444B2 (en) 1992-10-01 2001-06-18 株式会社リコー Aqueous ink and recording method using the same
DE4241045C1 (en) 1992-12-05 1994-05-26 Bosch Gmbh Robert Process for anisotropic etching of silicon
US5368823A (en) 1993-02-11 1994-11-29 University Of Georgia Research Foundation, Inc. Automated synthesis of oligonucleotides
US5395753A (en) 1993-02-19 1995-03-07 Theratech, Inc. Method for diagnosing rheumatoid arthritis
AU684279B2 (en) 1993-04-12 1997-12-11 Northwestern University Method of forming oligonucleotides
US7135312B2 (en) 1993-04-15 2006-11-14 University Of Rochester Circular DNA vectors for synthesis of RNA and DNA
US5482845A (en) 1993-09-24 1996-01-09 The Trustees Of Columbia University In The City Of New York Method for construction of normalized cDNA libraries
CN1039623C (en) 1993-10-22 1998-09-02 中国人民解放军军事医学科学院毒物药物研究所 Pharmaceutical composition for preventing and treating motion sickness syndrome and preparation method thereof
US6893816B1 (en) 1993-10-28 2005-05-17 Houston Advanced Research Center Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
DE69435196D1 (en) 1993-10-28 2009-04-23 Houston Advanced Res Ct Microfabricated porous flow device for the discrete determination of binding reactions
US6027877A (en) 1993-11-04 2000-02-22 Gene Check, Inc. Use of immobilized mismatch binding protein for detection of mutations and polymorphisms, purification of amplified DNA samples and allele identification
US5834252A (en) 1995-04-18 1998-11-10 Glaxo Group Limited End-complementary polymerase reaction
US6015880A (en) 1994-03-16 2000-01-18 California Institute Of Technology Method and substrate for performing multiple sequential reactions on a matrix
MX196038B (en) 1994-03-29 2000-04-14 Novo Nordisk As Alkaline bacillus amylase.
US5514789A (en) 1994-04-21 1996-05-07 Barrskogen, Inc. Recovery of oligonucleotides by gas phase cleavage
SE512382C2 (en) 1994-04-26 2000-03-06 Ericsson Telefon Ab L M Device and method for placing elongate elements against or adjacent to a surface
CA2159830C (en) 1994-04-29 2001-07-03 Timothy M Woudenberg System for real time detection of nucleic acid amplification products
US6287850B1 (en) 1995-06-07 2001-09-11 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
EP0776330B1 (en) 1994-06-23 2003-08-20 Affymax Technologies N.V. Photolabile compounds and methods for their use
US5641658A (en) 1994-08-03 1997-06-24 Mosaic Technologies, Inc. Method for performing amplification of nucleic acid with two primers bound to a single solid support
US5530516A (en) 1994-10-04 1996-06-25 Tamarack Scientific Co., Inc. Large-area projection exposure system
US6635226B1 (en) 1994-10-19 2003-10-21 Agilent Technologies, Inc. Microanalytical device and use thereof for conducting chemical processes
US6613560B1 (en) 1994-10-19 2003-09-02 Agilent Technologies, Inc. PCR microreactor for amplifying DNA using microquantities of sample fluid
US5556752A (en) 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
EP0792195A4 (en) 1994-11-22 1999-05-26 Complex Fluid Systems Inc Non-aminic photoresist adhesion promoters for microelectronic applications
US5688642A (en) 1994-12-01 1997-11-18 The United States Of America As Represented By The Secretary Of The Navy Selective attachment of nucleic acid molecules to patterned self-assembled surfaces
US6017434A (en) 1995-05-09 2000-01-25 Curagen Corporation Apparatus and method for the generation, separation, detection, and recognition of biopolymer fragments
US5830655A (en) 1995-05-22 1998-11-03 Sri International Oligonucleotide sizing using cleavable primers
US5700642A (en) 1995-05-22 1997-12-23 Sri International Oligonucleotide sizing using immobilized cleavable primers
US6446682B1 (en) 1995-06-06 2002-09-10 James P. Viken Auto-loading fluid exchanger and method of use
US5877280A (en) 1995-06-06 1999-03-02 The Mount Sinai School Of Medicine Of The City University Of New York Thermostable muts proteins
US5707806A (en) 1995-06-07 1998-01-13 Genzyme Corporation Direct sequence identification of mutations by cleavage- and ligation-associated mutation-specific sequencing
US5712126A (en) 1995-08-01 1998-01-27 Yale University Analysis of gene expression by display of 3-end restriction fragments of CDNA
US5780613A (en) 1995-08-01 1998-07-14 Northwestern University Covalent lock for self-assembled oligonucleotide constructs
US5854033A (en) 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
US6352842B1 (en) 1995-12-07 2002-03-05 Diversa Corporation Exonucease-mediated gene assembly in directed evolution
US6537776B1 (en) 1999-06-14 2003-03-25 Diversa Corporation Synthetic ligation reassembly in directed evolution
ATE236270T1 (en) 1995-12-15 2003-04-15 Univ Duke METHOD FOR DETECTION AND REMOVAL OF MUTANT SEQUENCES FORMED DURING ENZYMATIC AMPLIFICATION
US5962271A (en) 1996-01-03 1999-10-05 Cloutech Laboratories, Inc. Methods and compositions for generating full-length cDNA having arbitrary nucleotide sequence at the 3'-end
US5976846A (en) 1996-01-13 1999-11-02 Passmore; Steven E. Method for multifragment in vivo cloning and mutation mapping
US7527928B2 (en) 1996-11-29 2009-05-05 Third Wave Technologies, Inc. Reactions on a solid surface
US5985557A (en) 1996-01-24 1999-11-16 Third Wave Technologies, Inc. Invasive cleavage of nucleic acids
US6706471B1 (en) 1996-01-24 2004-03-16 Third Wave Technologies, Inc. Detection of nucleic acid sequences by invader-directed cleavage
US6090606A (en) 1996-01-24 2000-07-18 Third Wave Technologies, Inc. Cleavage agents
US7122364B1 (en) 1998-03-24 2006-10-17 Third Wave Technologies, Inc. FEN endonucleases
US7432048B2 (en) 1996-11-29 2008-10-07 Third Wave Technologies, Inc. Reactions on a solid surface
US6274369B1 (en) 1996-02-02 2001-08-14 Invitrogen Corporation Method capable of increasing competency of bacterial cell transformation
US6013440A (en) 1996-03-11 2000-01-11 Affymetrix, Inc. Nucleic acid affinity columns
US6020481A (en) 1996-04-01 2000-02-01 The Perkin-Elmer Corporation Asymmetric benzoxanthene dyes
US6706875B1 (en) 1996-04-17 2004-03-16 Affyemtrix, Inc. Substrate preparation process
US5869245A (en) 1996-06-05 1999-02-09 Fox Chase Cancer Center Mismatch endonuclease and its use in identifying mutations in targeted polynucleotide strands
US5863801A (en) 1996-06-14 1999-01-26 Sarnoff Corporation Automated nucleic acid isolation
US6780982B2 (en) 1996-07-12 2004-08-24 Third Wave Technologies, Inc. Charge tags and the separation of nucleic acid molecules
US5853993A (en) 1996-10-21 1998-12-29 Hewlett-Packard Company Signal enhancement method and kit
WO1998022541A2 (en) 1996-11-08 1998-05-28 Ikonos Corporation Method for coating substrates
US5750672A (en) 1996-11-22 1998-05-12 Barrskogen, Inc. Anhydrous amine cleavage of oligonucleotides
ES2375764T3 (en) 1996-11-29 2012-03-06 Third Wave Technologies, Inc. ENDONUCLEASAS FEN-1, MIXTURES AND SCISSOR PROCEDURES.
US6083763A (en) 1996-12-31 2000-07-04 Genometrix Inc. Multiplexed molecular analysis apparatus and method
ATE294229T1 (en) 1997-02-12 2005-05-15 Invitrogen Corp METHOD FOR DRYING COMPETENT CELLS
US5882496A (en) 1997-02-27 1999-03-16 The Regents Of The University Of California Porous silicon structures with high surface area/specific pore size
US6770748B2 (en) 1997-03-07 2004-08-03 Takeshi Imanishi Bicyclonucleoside and oligonucleotide analogue
CA2284211A1 (en) 1997-03-20 1998-09-24 University Of Washington Solvent for biopolymer synthesis, solvent microdroplets and methods of use
US6419883B1 (en) 1998-01-16 2002-07-16 University Of Washington Chemical synthesis using solvent microdroplets
US6028189A (en) 1997-03-20 2000-02-22 University Of Washington Solvent for oligonucleotide synthesis and methods of use
WO1998042860A1 (en) 1997-03-21 1998-10-01 Stratagene Polymerase enhancing factor (pef) extracts, pef protein complexes, isolated pef protein, and methods for purifying and identifying
US5922593A (en) 1997-05-23 1999-07-13 Becton, Dickinson And Company Microbiological test panel and method therefor
US6969488B2 (en) 1998-05-22 2005-11-29 Solexa, Inc. System and apparatus for sequential processing of analytes
WO1999000657A1 (en) 1997-06-26 1999-01-07 Perseptive Biosystems, Inc. High density sample holder for analysis of biological samples
GB9714716D0 (en) 1997-07-11 1997-09-17 Brax Genomics Ltd Characterising nucleic acids
US5989872A (en) 1997-08-12 1999-11-23 Clontech Laboratories, Inc. Methods and compositions for transferring DNA sequence information among vectors
US6027898A (en) 1997-08-18 2000-02-22 Transgenomic, Inc. Chromatographic method for mutation detection using mutation site specifically acting enzymes and chemicals
US6794499B2 (en) 1997-09-12 2004-09-21 Exiqon A/S Oligonucleotide analogues
US6136568A (en) 1997-09-15 2000-10-24 Hiatt; Andrew C. De novo polynucleotide synthesis using rolling templates
PT1538206E (en) 1997-09-16 2010-04-12 Centocor Ortho Biotech Inc Method for the complete chemical synthesis and assembly of genes and genomes
US6670127B2 (en) 1997-09-16 2003-12-30 Egea Biosciences, Inc. Method for assembly of a polynucleotide encoding a target polypeptide
US5976842A (en) 1997-10-30 1999-11-02 Clontech Laboratories, Inc. Methods and compositions for use in high fidelity polymerase chain reaction
US8182991B1 (en) 1997-11-26 2012-05-22 Third Wave Technologies, Inc. FEN-1 endonucleases, mixtures and cleavage methods
US6408308B1 (en) 1998-01-29 2002-06-18 Incyte Pharmaceuticals, Inc. System and method for generating, analyzing and storing normalized expression datasets from raw expression datasets derived from microarray includes nucleic acid probe sequences
US6287776B1 (en) 1998-02-02 2001-09-11 Signature Bioscience, Inc. Method for detecting and classifying nucleic acid hybridization
US6251588B1 (en) 1998-02-10 2001-06-26 Agilent Technologies, Inc. Method for evaluating oligonucleotide probe sequences
EP1054726B1 (en) 1998-02-11 2003-07-30 University of Houston, Office of Technology Transfer Apparatus for chemical and biochemical reactions using photo-generated reagents
IL137901A (en) 1998-02-23 2004-07-25 Wisconsin Alumni Res Found Method and apparatus for synthesis of arrays of dna probes
JP4493844B2 (en) 1998-03-25 2010-06-30 ランデグレン、ウルフ Rolling circle replication of padlock probe
US6284497B1 (en) 1998-04-09 2001-09-04 Trustees Of Boston University Nucleic acid arrays and methods of synthesis
ATE339517T1 (en) 1998-04-13 2006-10-15 Isis Pharmaceuticals Inc IDENTIFICATION OF GENETIC TARGETS FOR MODULATION BY OLIGONUCLEOTIDES AND PRODUCTION OF OLIGONUCLEOTIDES FOR MODULATION OF GENES
US7321828B2 (en) 1998-04-13 2008-01-22 Isis Pharmaceuticals, Inc. System of components for preparing oligonucleotides
US6376285B1 (en) 1998-05-28 2002-04-23 Texas Instruments Incorporated Annealed porous silicon with epitaxial layer for SOI
US6274725B1 (en) 1998-06-02 2001-08-14 Isis Pharmaceuticals, Inc. Activators for oligonucleotide synthesis
US6130045A (en) 1998-06-11 2000-10-10 Clontech Laboratories, Inc. Thermostable polymerase
US6251595B1 (en) 1998-06-18 2001-06-26 Agilent Technologies, Inc. Methods and devices for carrying out chemical reactions
EP0967217B1 (en) 1998-06-22 2005-12-21 Affymetrix, Inc. (a California Corporation) Reagents and methods for solid phase synthesis and display
US6218118B1 (en) 1998-07-09 2001-04-17 Agilent Technologies, Inc. Method and mixture reagents for analyzing the nucleotide sequence of nucleic acids by mass spectrometry
US7399844B2 (en) 1998-07-09 2008-07-15 Agilent Technologies, Inc. Method and reagents for analyzing the nucleotide sequence of nucleic acids
US20030022207A1 (en) 1998-10-16 2003-01-30 Solexa, Ltd. Arrayed polynucleotides and their use in genome analysis
US6787308B2 (en) 1998-07-30 2004-09-07 Solexa Ltd. Arrayed biomolecules and their use in sequencing
US6222030B1 (en) 1998-08-03 2001-04-24 Agilent Technologies, Inc. Solid phase synthesis of oligonucleotides using carbonate protecting groups and alpha-effect nucleophile deprotection
US6951719B1 (en) 1999-08-11 2005-10-04 Proteus S.A. Process for obtaining recombined nucleotide sequences in vitro, libraries of sequences and sequences thus obtained
US6991922B2 (en) 1998-08-12 2006-01-31 Proteus S.A. Process for in vitro creation of recombinant polynucleotide sequences by oriented ligation
US6107038A (en) 1998-08-14 2000-08-22 Agilent Technologies Inc. Method of binding a plurality of chemicals on a substrate by electrophoretic self-assembly
DE19940751A1 (en) 1998-08-28 2000-03-02 Febit Ferrarius Biotech Gmbh Apparatus for detecting light emissions comprises light-emitting matrix facing light-detection matrix, which together sandwich test substance
US6258454B1 (en) 1998-09-01 2001-07-10 Agilent Technologies Inc. Functionalization of substrate surfaces with silane mixtures
US6458583B1 (en) 1998-09-09 2002-10-01 Agilent Technologies, Inc. Method and apparatus for making nucleic acid arrays
US6461812B2 (en) 1998-09-09 2002-10-08 Agilent Technologies, Inc. Method and multiple reservoir apparatus for fabrication of biomolecular arrays
US6287824B1 (en) 1998-09-15 2001-09-11 Yale University Molecular cloning using rolling circle amplification
AR021833A1 (en) 1998-09-30 2002-08-07 Applied Research Systems METHODS OF AMPLIFICATION AND SEQUENCING OF NUCLEIC ACID
US6399516B1 (en) 1998-10-30 2002-06-04 Massachusetts Institute Of Technology Plasma etch techniques for fabricating silicon structures from a substrate
US6309828B1 (en) 1998-11-18 2001-10-30 Agilent Technologies, Inc. Method and apparatus for fabricating replicate arrays of nucleic acid molecules
GB9900298D0 (en) 1999-01-07 1999-02-24 Medical Res Council Optical sorting method
AU2415200A (en) 1999-01-18 2000-08-01 Maxygen, Inc. Methods of populating data structures for use in evolutionary simulations
US6376246B1 (en) 1999-02-05 2002-04-23 Maxygen, Inc. Oligonucleotide mediated nucleic acid recombination
EP1072010B1 (en) 1999-01-19 2010-04-21 Maxygen, Inc. Oligonucleotide mediated nucleic acid recombination
US20070065838A1 (en) 1999-01-19 2007-03-22 Maxygen, Inc. Oligonucleotide mediated nucleic acid recombination
US6251685B1 (en) 1999-02-18 2001-06-26 Agilent Technologies, Inc. Readout method for molecular biological electronically addressable arrays
AU767606B2 (en) 1999-02-19 2003-11-20 Synthetic Genomics, Inc. Method for producing polymers
ATE469699T1 (en) 1999-02-23 2010-06-15 Caliper Life Sciences Inc MANIPULATION OF MICROPARTICLES IN MICROFLUID SYSTEMS
US20030186226A1 (en) 1999-03-08 2003-10-02 Brennan Thomas M. Methods and compositions for economically synthesizing and assembling long DNA sequences
US6824866B1 (en) 1999-04-08 2004-11-30 Affymetrix, Inc. Porous silica substrates for polymer synthesis and assays
US6284465B1 (en) 1999-04-15 2001-09-04 Agilent Technologies, Inc. Apparatus, systems and method for locating nucleic acids bound to surfaces
US6469156B1 (en) 1999-04-20 2002-10-22 The United States Of America As Represented By The Department Of Health And Human Services Rapid and sensitive method for detecting histoplasma capsulatum
US6518056B2 (en) 1999-04-27 2003-02-11 Agilent Technologies Inc. Apparatus, systems and method for assaying biological materials using an annular format
US6773676B2 (en) 1999-04-27 2004-08-10 Agilent Technologies, Inc. Devices for performing array hybridization assays and methods of using the same
US6221653B1 (en) 1999-04-27 2001-04-24 Agilent Technologies, Inc. Method of performing array-based hybridization assays using thermal inkjet deposition of sample fluids
US6300137B1 (en) 1999-04-28 2001-10-09 Agilent Technologies Inc. Method for synthesizing a specific, surface-bound polymer uniformly over an element of a molecular array
US6323043B1 (en) 1999-04-30 2001-11-27 Agilent Technologies, Inc. Fabricating biopolymer arrays
US6242266B1 (en) 1999-04-30 2001-06-05 Agilent Technologies Inc. Preparation of biopolymer arrays
US7276336B1 (en) 1999-07-22 2007-10-02 Agilent Technologies, Inc. Methods of fabricating an addressable array of biopolymer probes
CN1365292A (en) 1999-05-01 2002-08-21 秦内蒂克有限公司 Derivatized porous silicon
AU4703300A (en) 1999-05-06 2000-11-21 Mount Sinai School Of Medicine Of The City University Of New York, The Dna-based steganography
US7056661B2 (en) 1999-05-19 2006-06-06 Cornell Research Foundation, Inc. Method for sequencing nucleic acid molecules
JP2003522119A (en) 1999-05-24 2003-07-22 インビトロジェン コーポレイション Method for deblocking labeled oligonucleotide
US6472147B1 (en) 1999-05-25 2002-10-29 The Scripps Research Institute Methods for display of heterodimeric proteins on filamentous phage using pVII and pIX, compositions, vectors and combinatorial libraries
US6132997A (en) 1999-05-28 2000-10-17 Agilent Technologies Method for linear mRNA amplification
US6815218B1 (en) 1999-06-09 2004-11-09 Massachusetts Institute Of Technology Methods for manufacturing bioelectronic devices
EP1190097A2 (en) 1999-06-22 2002-03-27 Invitrogen Corporation Improved primers and methods for the detection and discrimination of nucleic acids
US6709852B1 (en) 1999-06-22 2004-03-23 Invitrogen Corporation Rapid growing microorganisms for biotechnology applications
DE19928410C2 (en) 1999-06-22 2002-11-28 Agilent Technologies Inc Device housing with a device for operating a laboratory microchip
US6399394B1 (en) 1999-06-30 2002-06-04 Agilent Technologies, Inc. Testing multiple fluid samples with multiple biopolymer arrays
US6465183B2 (en) 1999-07-01 2002-10-15 Agilent Technologies, Inc. Multidentate arrays
US6461816B1 (en) 1999-07-09 2002-10-08 Agilent Technologies, Inc. Methods for controlling cross-hybridization in analysis of nucleic acid sequences
US7504213B2 (en) 1999-07-09 2009-03-17 Agilent Technologies, Inc. Methods and apparatus for preparing arrays comprising features having degenerate biopolymers
US6306599B1 (en) 1999-07-16 2001-10-23 Agilent Technologies Inc. Biopolymer arrays and their fabrication
US6346423B1 (en) 1999-07-16 2002-02-12 Agilent Technologies, Inc. Methods and compositions for producing biopolymeric arrays
US6201112B1 (en) 1999-07-22 2001-03-13 Agilent Technologies Inc. Method for 3′ end-labeling ribonucleic acids
US6180351B1 (en) 1999-07-22 2001-01-30 Agilent Technologies Inc. Chemical array fabrication with identifier
CA2382157C (en) 1999-08-18 2012-04-03 Illumina, Inc. Compositions and methods for preparing oligonucleotide solutions
US6262490B1 (en) 1999-11-05 2001-07-17 Advanced Semiconductor Engineering, Inc. Substrate strip for use in packaging semiconductor chips
US6319674B1 (en) 1999-09-16 2001-11-20 Agilent Technologies, Inc. Methods for attaching substances to surfaces
US7244559B2 (en) 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US7211390B2 (en) 1999-09-16 2007-05-01 454 Life Sciences Corporation Method of sequencing a nucleic acid
US6743585B2 (en) 1999-09-16 2004-06-01 Agilent Technologies, Inc. Methods for preparing conjugates
US7122303B2 (en) 1999-09-17 2006-10-17 Agilent Technologies, Inc. Arrays comprising background features that provide for a measure of a non-specific binding and methods for using the same
US7078167B2 (en) 1999-09-17 2006-07-18 Agilent Technologies, Inc. Arrays having background features and methods for using the same
AU7537200A (en) 1999-09-29 2001-04-30 Solexa Ltd. Polynucleotide sequencing
DE19964337B4 (en) 1999-10-01 2004-09-16 Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto Microfluidic microchip with bendable suction tube
EP1235932A2 (en) 1999-10-08 2002-09-04 Protogene Laboratories, Inc. Method and apparatus for performing large numbers of reactions using array assembly
US6232072B1 (en) 1999-10-15 2001-05-15 Agilent Technologies, Inc. Biopolymer array inspection
US6451998B1 (en) 1999-10-18 2002-09-17 Agilent Technologies, Inc. Capping and de-capping during oligonucleotide synthesis
US6171797B1 (en) 1999-10-20 2001-01-09 Agilent Technologies Inc. Methods of making polymeric arrays
US6387636B1 (en) 1999-10-22 2002-05-14 Agilent Technologies, Inc. Method of shielding biosynthesis reactions from the ambient environment on an array
US7115423B1 (en) 1999-10-22 2006-10-03 Agilent Technologies, Inc. Fluidic structures within an array package
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6329210B1 (en) 1999-10-29 2001-12-11 Agilent Technologies, Inc. Method and apparatus for high volume polymer synthesis
US6689319B1 (en) 1999-10-29 2004-02-10 Agilent Technologies, Ind. Apparatus for deposition and inspection of chemical and biological fluids
US20010055761A1 (en) 1999-10-29 2001-12-27 Agilent Technologies Small scale dna synthesis using polymeric solid support with functionalized regions
US8268605B2 (en) 1999-10-29 2012-09-18 Agilent Technologies, Inc. Compositions and methods utilizing DNA polymerases
US6406849B1 (en) 1999-10-29 2002-06-18 Agilent Technologies, Inc. Interrogating multi-featured arrays
US6428957B1 (en) 1999-11-08 2002-08-06 Agilent Technologies, Inc. Systems tools and methods of assaying biological materials using spatially-addressable arrays
US6440669B1 (en) 1999-11-10 2002-08-27 Agilent Technologies, Inc. Methods for applying small volumes of reagents
US7041445B2 (en) 1999-11-15 2006-05-09 Clontech Laboratories, Inc. Long oligonucleotide arrays
US6446642B1 (en) 1999-11-22 2002-09-10 Agilent Technologies, Inc. Method and apparatus to clean an inkjet reagent deposition device
US6582938B1 (en) 2001-05-11 2003-06-24 Affymetrix, Inc. Amplification of nucleic acids
US6800439B1 (en) 2000-01-06 2004-10-05 Affymetrix, Inc. Methods for improved array preparation
WO2001051663A2 (en) 2000-01-11 2001-07-19 Maxygen, Inc. Integrated systems and methods for diversity generation and screening
EP1118661A1 (en) 2000-01-13 2001-07-25 Het Nederlands Kanker Instituut T cell receptor libraries
CN100350406C (en) 2000-01-25 2007-11-21 阿菲梅特里克斯公司 Method, system and computer software for providing genomic web portal
US6587579B1 (en) 2000-01-26 2003-07-01 Agilent Technologies Inc. Feature quality in array fabrication
US7198939B2 (en) 2000-01-28 2007-04-03 Agilent Technologies, Inc. Apparatus for interrogating an addressable array
US6458526B1 (en) 2000-01-28 2002-10-01 Agilent Technologies, Inc. Method and apparatus to inhibit bubble formation in a fluid
US6406851B1 (en) 2000-01-28 2002-06-18 Agilent Technologies, Inc. Method for coating a substrate quickly and uniformly with a small volume of fluid
US6235483B1 (en) 2000-01-31 2001-05-22 Agilent Technologies, Inc. Methods and kits for indirect labeling of nucleic acids
GB0002389D0 (en) 2000-02-02 2000-03-22 Solexa Ltd Molecular arrays
US6403314B1 (en) 2000-02-04 2002-06-11 Agilent Technologies, Inc. Computational method and system for predicting fragmented hybridization and for identifying potential cross-hybridization
US6833450B1 (en) 2000-03-17 2004-12-21 Affymetrix, Inc. Phosphite ester oxidation in nucleic acid array preparation
US6365355B1 (en) 2000-03-28 2002-04-02 The Regents Of The University Of California Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches
US20020025561A1 (en) 2000-04-17 2002-02-28 Hodgson Clague Pitman Vectors for gene-self-assembly
US7776021B2 (en) 2000-04-28 2010-08-17 The Charles Stark Draper Laboratory Micromachined bilayer unit for filtration of small molecules
US7163660B2 (en) 2000-05-31 2007-01-16 Infineon Technologies Ag Arrangement for taking up liquid analytes
US6716634B1 (en) 2000-05-31 2004-04-06 Agilent Technologies, Inc. Increasing ionization efficiency in mass spectrometry
US6664112B2 (en) 2000-06-02 2003-12-16 Blue Heron Biotechnology, Inc. Methods for improving the sequence fidelity of synthetic double-stranded oligonucleotides
US7312043B2 (en) 2000-07-10 2007-12-25 Vertex Pharmaceuticals (San Diego) Llc Ion channel assay methods
WO2002010443A1 (en) 2000-07-27 2002-02-07 The Australian National University Combinatorial probes and uses therefor
EP1176151B1 (en) 2000-07-28 2014-08-20 Agilent Technologies, Inc. Synthesis of polynucleotides using combined oxidation/deprotection chemistry
DE60114525T2 (en) 2000-07-31 2006-07-20 Agilent Technologies Inc., A Delaware Corp., Palo Alto Array-based methods for the synthesis of nucleic acid mixtures
US6890760B1 (en) 2000-07-31 2005-05-10 Agilent Technologies, Inc. Array fabrication
US6613893B1 (en) 2000-07-31 2003-09-02 Agilent Technologies Inc. Array fabrication
US6599693B1 (en) 2000-07-31 2003-07-29 Agilent Technologies Inc. Array fabrication
US7205400B2 (en) 2000-07-31 2007-04-17 Agilent Technologies, Inc. Array fabrication
GB0018876D0 (en) 2000-08-01 2000-09-20 Applied Research Systems Method of producing polypeptides
CN1468313A (en) 2000-08-24 2004-01-14 �����ɷ� Novel constructs and their use in metabolic pathway engineering
US20030036066A1 (en) 2000-09-08 2003-02-20 University Technologies International Inc. Linker phosphoramidites for oligonucleotide synthesis
US6966945B1 (en) 2000-09-20 2005-11-22 Goodrich Corporation Inorganic matrix compositions, composites and process of making the same
WO2002027029A2 (en) 2000-09-27 2002-04-04 Lynx Therapeutics, Inc. Method for determining relative abundance of nucleic acid sequences
NO20004869D0 (en) 2000-09-28 2000-09-28 Torbjoern Rognes Method for fast optimal local sequence alignment using parallel processing
US7097809B2 (en) 2000-10-03 2006-08-29 California Institute Of Technology Combinatorial synthesis system
US6716629B2 (en) 2000-10-10 2004-04-06 Biotrove, Inc. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
DE10051396A1 (en) 2000-10-17 2002-04-18 Febit Ferrarius Biotech Gmbh An integrated synthesis and identification of an analyte, comprises particles immobilized at a carrier to be coupled to receptors in a structured pattern to give receptor arrays for biochemical reactions
ES2240178T3 (en) 2000-10-18 2005-10-16 Ultra Proizvodnja Elektronskih Naprav D.O.O. SYSTEM FOR INFORMATION EXCHANGE PAYMENT AND TERMINAL PAYMENT DEVICE USED IN THE SAME.
EP1203945B1 (en) 2000-10-26 2006-12-20 Agilent Technologies, Inc. (a Delaware corporation) Microarray
US6905816B2 (en) 2000-11-27 2005-06-14 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
US20020155439A1 (en) 2000-12-04 2002-10-24 Ana Rodriguez Method for generating a library of mutant oligonucleotides using the linear cyclic amplification reaction
CN1302005C (en) 2000-12-05 2007-02-28 艾夫西亚有限公司 Process for preparation of thiophosphate oligonucleotides
DE10060433B4 (en) 2000-12-05 2006-05-11 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Method for producing a fluid component, fluid component and analysis device
US6768005B2 (en) 2000-12-20 2004-07-27 Avecia Limited Process
US6660475B2 (en) 2000-12-15 2003-12-09 New England Biolabs, Inc. Use of site-specific nicking endonucleases to create single-stranded regions and applications thereof
AUPR259301A0 (en) 2001-01-18 2001-02-15 Polymerat Pty Ltd Polymers having co-continuous architecture
MXPA03006344A (en) 2001-01-19 2004-12-03 Egea Biosciences Inc Computer-directed assembly of a polynucleotide encoding a target polypeptide.
US6958217B2 (en) 2001-01-24 2005-10-25 Genomic Expression Aps Single-stranded polynucleotide tags
US6879915B2 (en) 2001-01-31 2005-04-12 Agilent Technologies, Inc. Chemical array fabrication and use
US7166258B2 (en) 2001-01-31 2007-01-23 Agilent Technologies, Inc. Automation-optimized microarray package
US7027930B2 (en) 2001-01-31 2006-04-11 Agilent Technologies, Inc. Reading chemical arrays
US20020164824A1 (en) 2001-02-16 2002-11-07 Jianming Xiao Method and apparatus based on bundled capillaries for high throughput screening
US6660338B1 (en) 2001-03-08 2003-12-09 Agilent Technologies, Inc. Functionalization of substrate surfaces with silane mixtures
US7211654B2 (en) 2001-03-14 2007-05-01 Regents Of The University Of Michigan Linkers and co-coupling agents for optimization of oligonucleotide synthesis and purification on solid supports
EP2801624B1 (en) 2001-03-16 2019-03-06 Singular Bio, Inc Arrays and methods of use
US6610978B2 (en) 2001-03-27 2003-08-26 Agilent Technologies, Inc. Integrated sample preparation, separation and introduction microdevice for inductively coupled plasma mass spectrometry
WO2002078947A1 (en) 2001-04-02 2002-10-10 Prolinx Incorporated Sensor surfaces for detecting analytes
US20030022240A1 (en) 2001-04-17 2003-01-30 Peizhi Luo Generation and affinity maturation of antibody library in silico
US6943036B2 (en) 2001-04-30 2005-09-13 Agilent Technologies, Inc. Error detection in chemical array fabrication
WO2002090923A2 (en) 2001-05-03 2002-11-14 Sigma-Genosys, Ltd. Methods for assembling protein microarrays
ATE403013T1 (en) 2001-05-18 2008-08-15 Wisconsin Alumni Res Found METHOD FOR SYNTHESIS OF DNA SEQUENCES USING PHOTOLABILE LINKERS
US20040175710A1 (en) 2001-05-22 2004-09-09 Haushalter Robert C. Method for in situ, on-chip chemical synthesis
US6880576B2 (en) 2001-06-07 2005-04-19 Nanostream, Inc. Microfluidic devices for methods development
US6649348B2 (en) 2001-06-29 2003-11-18 Agilent Technologies Inc. Methods for manufacturing arrays
US6613523B2 (en) 2001-06-29 2003-09-02 Agilent Technologies, Inc. Method of DNA sequencing using cleavable tags
US20040161741A1 (en) 2001-06-30 2004-08-19 Elazar Rabani Novel compositions and processes for analyte detection, quantification and amplification
US6989267B2 (en) 2001-07-02 2006-01-24 Agilent Technologies, Inc. Methods of making microarrays with substrate surfaces having covalently bound polyelectrolyte films
US6753145B2 (en) 2001-07-05 2004-06-22 Agilent Technologies, Inc. Buffer composition and method for hybridization of microarrays on adsorbed polymer siliceous surfaces
US7314599B2 (en) 2001-07-17 2008-01-01 Agilent Technologies, Inc. Paek embossing and adhesion for microfluidic devices
US6702256B2 (en) 2001-07-17 2004-03-09 Agilent Technologies, Inc. Flow-switching microdevice
US7128876B2 (en) 2001-07-17 2006-10-31 Agilent Technologies, Inc. Microdevice and method for component separation in a fluid
US20030108903A1 (en) 2001-07-19 2003-06-12 Liman Wang Multiple word DNA computing on surfaces
CA2454319A1 (en) 2001-07-26 2003-03-27 Stratagene Multi-site mutagenesis
EP1432980A4 (en) 2001-08-10 2006-04-12 Xencor Inc Protein design automation for protein libraries
US6682702B2 (en) 2001-08-24 2004-01-27 Agilent Technologies, Inc. Apparatus and method for simultaneously conducting multiple chemical reactions
US7371580B2 (en) 2001-08-24 2008-05-13 Agilent Technologies, Inc. Use of unstructured nucleic acids in assaying nucleic acid molecules
JP2003101204A (en) 2001-09-25 2003-04-04 Nec Kansai Ltd Wiring substrate, method of manufacturing the same, and electronic component
US6902921B2 (en) 2001-10-30 2005-06-07 454 Corporation Sulfurylase-luciferase fusion proteins and thermostable sulfurylase
US20050124022A1 (en) 2001-10-30 2005-06-09 Maithreyan Srinivasan Novel sulfurylase-luciferase fusion proteins and thermostable sulfurylase
US7524950B2 (en) 2001-10-31 2009-04-28 Agilent Technologies, Inc. Uses of cationic salts for polynucleotide synthesis
US6852850B2 (en) 2001-10-31 2005-02-08 Agilent Technologies, Inc. Use of ionic liquids for fabrication of polynucleotide arrays
US6858720B2 (en) 2001-10-31 2005-02-22 Agilent Technologies, Inc. Method of synthesizing polynucleotides using ionic liquids
WO2003040410A1 (en) 2001-11-02 2003-05-15 Nimblegen Systems, Inc. Detection of hybridization oligonucleotide microarray through covalently labeling microarray probe
ATE509272T1 (en) 2001-11-09 2011-05-15 3Dbiosurfaces Technologies Llc SUBSTRATES WITH HIGH SURFACE AREA FOR MICROARRAYS AND METHOD FOR PRODUCING SAME
US7482118B2 (en) 2001-11-15 2009-01-27 Third Wave Technologies, Inc. Endonuclease-substrate complexes
DK1314783T3 (en) 2001-11-22 2009-03-16 Sloning Biotechnology Gmbh Nucleic acid linkers and their use in gene synthesis
US20030099952A1 (en) 2001-11-26 2003-05-29 Roland Green Microarrays with visible pattern detection
AU2002365811A1 (en) 2001-12-03 2003-06-17 Zymogenetics, Inc. Methods for the selection and cloning of nucleic acid molecules free of unwanted nucleotide sequence alterations
US6927029B2 (en) 2001-12-03 2005-08-09 Agilent Technologies, Inc. Surface with tethered polymeric species for binding biomolecules
US6838888B2 (en) 2001-12-13 2005-01-04 Agilent Technologies, Inc. Flow cell humidity sensor system
WO2003054232A2 (en) 2001-12-13 2003-07-03 Blue Heron Biotechnology, Inc. Methods for removal of double-stranded oligonucleotides containing sequence errors using mismatch recognition proteins
US7932070B2 (en) 2001-12-21 2011-04-26 Agilent Technologies, Inc. High fidelity DNA polymerase compositions and uses therefor
US6790620B2 (en) 2001-12-24 2004-09-14 Agilent Technologies, Inc. Small volume chambers
US7282183B2 (en) 2001-12-24 2007-10-16 Agilent Technologies, Inc. Atmospheric control in reaction chambers
US6846454B2 (en) 2001-12-24 2005-01-25 Agilent Technologies, Inc. Fluid exit in reaction chambers
US20030171325A1 (en) 2002-01-04 2003-09-11 Board Of Regents, The University Of Texas System Proofreading, error deletion, and ligation method for synthesis of high-fidelity polynucleotide sequences
US7025324B1 (en) 2002-01-04 2006-04-11 Massachusetts Institute Of Technology Gating apparatus and method of manufacture
US6673552B2 (en) 2002-01-14 2004-01-06 Diversa Corporation Methods for purifying annealed double-stranded oligonucleotides lacking base pair mismatches or nucleotide gaps
US20040009498A1 (en) 2002-01-14 2004-01-15 Diversa Corporation Chimeric antigen binding molecules and methods for making and using them
JP2005514927A (en) 2002-01-14 2005-05-26 ディヴァーサ コーポレイション Method for producing polynucleotide and method for purifying double-stranded polynucleotide
US7141368B2 (en) 2002-01-30 2006-11-28 Agilent Technologies, Inc. Multi-directional deposition in array fabrication
US7157229B2 (en) 2002-01-31 2007-01-02 Nimblegen Systems, Inc. Prepatterned substrate for optical synthesis of DNA probes
US20040126757A1 (en) 2002-01-31 2004-07-01 Francesco Cerrina Method and apparatus for synthesis of arrays of DNA probes
US7037659B2 (en) 2002-01-31 2006-05-02 Nimblegen Systems Inc. Apparatus for constructing DNA probes having a prismatic and kaleidoscopic light homogenizer
US7422851B2 (en) 2002-01-31 2008-09-09 Nimblegen Systems, Inc. Correction for illumination non-uniformity during the synthesis of arrays of oligomers
US7083975B2 (en) 2002-02-01 2006-08-01 Roland Green Microarray synthesis instrument and method
US20030148291A1 (en) 2002-02-05 2003-08-07 Karla Robotti Method of immobilizing biologically active molecules for assay purposes in a microfluidic format
US6728129B2 (en) 2002-02-19 2004-04-27 The Regents Of The University Of California Multistate triple-decker dyads in three distinct architectures for information storage applications
US6958119B2 (en) 2002-02-26 2005-10-25 Agilent Technologies, Inc. Mobile phase gradient generation microfluidic device
US6929951B2 (en) 2002-02-28 2005-08-16 Agilent Technologies, Inc. Method and system for molecular array scanner calibration
US6914229B2 (en) 2002-02-28 2005-07-05 Agilent Technologies, Inc. Signal offset for prevention of data clipping in a molecular array scanner
US6770892B2 (en) 2002-02-28 2004-08-03 Agilent Technologies, Inc. Method and system for automated focus-distance determination for molecular array scanners
US20050084907A1 (en) 2002-03-01 2005-04-21 Maxygen, Inc. Methods, systems, and software for identifying functional biomolecules
US6919181B2 (en) 2002-03-25 2005-07-19 Agilent Technologies, Inc. Methods for generating ligand arrays
WO2003085094A2 (en) 2002-04-01 2003-10-16 Blue Heron Biotechnology, Inc. Solid phase methods for polynucleotide production
EP1350853A1 (en) 2002-04-05 2003-10-08 ID-Lelystad, Instituut voor Dierhouderij en Diergezondheid B.V. Detection of polymorphisms
US6773888B2 (en) 2002-04-08 2004-08-10 Affymetrix, Inc. Photoactivatable silane compounds and methods for their synthesis and use
US20060014146A1 (en) 2002-04-22 2006-01-19 Philippe Soucaille Method of creating a library of bacterial clones with varying levels of gene expression
GB0209539D0 (en) 2002-04-26 2002-06-05 Avecia Ltd Monomer Polymer and process
US7125523B2 (en) 2002-04-29 2006-10-24 Agilent Technologies, Inc. Holders for arrays
US6946285B2 (en) 2002-04-29 2005-09-20 Agilent Technologies, Inc. Arrays with elongated features
US7094537B2 (en) 2002-04-30 2006-08-22 Agilent Technologies, Inc. Micro arrays with structured and unstructured probes
US6621076B1 (en) 2002-04-30 2003-09-16 Agilent Technologies, Inc. Flexible assembly for transporting sample fluids into a mass spectrometer
WO2003093504A1 (en) 2002-05-06 2003-11-13 Noxxon Pharma Ag Method for amplifying nucleic acids
US20030211478A1 (en) 2002-05-08 2003-11-13 Gentel Corporation Transcription factor profiling on a solid surface
US7221785B2 (en) 2002-05-21 2007-05-22 Agilent Technologies, Inc. Method and system for measuring a molecular array background signal from a continuous background region of specified size
EP1546378B1 (en) 2002-05-24 2011-06-22 Roche NimbleGen, Inc. Microarrays and method for running hybridization reaction for multiple samples on a single microarray
AU2003240795A1 (en) 2002-05-24 2003-12-12 Invitrogen Corporation Nested pcr employing degradable primers
US7537936B2 (en) 2002-05-31 2009-05-26 Agilent Technologies, Inc. Method of testing multiple fluid samples with multiple biopolymer arrays
US6789965B2 (en) 2002-05-31 2004-09-14 Agilent Technologies, Inc. Dot printer with off-axis loading
US7078505B2 (en) 2002-06-06 2006-07-18 Agilent Technologies, Inc. Manufacture of arrays with varying deposition parameters
US7919308B2 (en) 2002-06-14 2011-04-05 Agilent Technologies, Inc. Form in place gaskets for assays
US6939673B2 (en) 2002-06-14 2005-09-06 Agilent Technologies, Inc. Manufacture of arrays with reduced error impact
US7351379B2 (en) 2002-06-14 2008-04-01 Agilent Technologies, Inc. Fluid containment structure
US7371348B2 (en) 2002-06-14 2008-05-13 Agilent Technologies Multiple array format
US7220573B2 (en) 2002-06-21 2007-05-22 Agilent Technologies, Inc. Array assay devices and methods of using the same
US6713262B2 (en) 2002-06-25 2004-03-30 Agilent Technologies, Inc. Methods and compositions for high throughput identification of protein/nucleic acid binding pairs
US7894998B2 (en) 2002-06-26 2011-02-22 Agilent Technologies, Inc. Method for identifying suitable nucleic acid probe sequences for use in nucleic acid arrays
US7202358B2 (en) 2002-07-25 2007-04-10 Agilent Technologies, Inc. Methods for producing ligand arrays
US7452712B2 (en) 2002-07-30 2008-11-18 Applied Biosystems Inc. Sample block apparatus and method of maintaining a microcard on a sample block
US7101508B2 (en) 2002-07-31 2006-09-05 Agilent Technologies, Inc. Chemical array fabrication errors
US6835938B2 (en) 2002-07-31 2004-12-28 Agilent Technologies, Inc. Biopolymer array substrate thickness dependent automated focus-distance determination method for biopolymer array scanners
US7153689B2 (en) 2002-08-01 2006-12-26 Agilent Technologies, Inc. Apparatus and methods for cleaning and priming droplet dispensing devices
US8946387B2 (en) 2002-08-14 2015-02-03 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US7205128B2 (en) 2002-08-16 2007-04-17 Agilent Technologies, Inc. Method for synthesis of the second strand of cDNA
US7563600B2 (en) 2002-09-12 2009-07-21 Combimatrix Corporation Microarray synthesis and assembly of gene-length polynucleotides
WO2004029220A2 (en) 2002-09-26 2004-04-08 Kosan Biosciences, Inc. Synthetic genes
US7498176B2 (en) 2002-09-27 2009-03-03 Roche Nimblegen, Inc. Microarray with hydrophobic barriers
JP4471927B2 (en) 2002-09-30 2010-06-02 ニンブルゲン システムズ インコーポレイテッド Array parallel loading method
AU2003277059A1 (en) 2002-10-01 2004-04-23 Nimblegen Systems, Inc. Microarrays having multiple oligonucleotides in single array features
US7129075B2 (en) 2002-10-18 2006-10-31 Transgenomic, Inc. Isolated CEL II endonuclease
US8283148B2 (en) 2002-10-25 2012-10-09 Agilent Technologies, Inc. DNA polymerase compositions for quantitative PCR and methods thereof
WO2004039953A2 (en) 2002-10-28 2004-05-13 Xeotron Corporation Array oligomer synthesis and use.
AU2003287449A1 (en) 2002-10-31 2004-05-25 Nanostream, Inc. Parallel detection chromatography systems
US7390457B2 (en) 2002-10-31 2008-06-24 Agilent Technologies, Inc. Integrated microfluidic array device
US7629120B2 (en) 2002-10-31 2009-12-08 Rice University Method for assembling PCR fragments of DNA
US7402279B2 (en) 2002-10-31 2008-07-22 Agilent Technologies, Inc. Device with integrated microfluidic and electronic components
US7364896B2 (en) 2002-10-31 2008-04-29 Agilent Technologies, Inc. Test strips including flexible array substrates and method of hybridization
US7422911B2 (en) 2002-10-31 2008-09-09 Agilent Technologies, Inc. Composite flexible array substrate having flexible support
US20040086892A1 (en) 2002-11-06 2004-05-06 Crothers Donald M. Universal tag assay
US7029854B2 (en) 2002-11-22 2006-04-18 Agilent Technologies, Inc. Methods designing multiple mRNA transcript nucleic acid probe sequences for use in nucleic acid arrays
US7062385B2 (en) 2002-11-25 2006-06-13 Tufts University Intelligent electro-optical nucleic acid-based sensor array and method for detecting volatile compounds in ambient air
JP4754219B2 (en) 2002-12-02 2011-08-24 アムジエン・フレモント・インコーポレイテツド Antibodies directed against tumor necrosis factor and their use
US20040110133A1 (en) 2002-12-06 2004-06-10 Affymetrix, Inc. Functionated photoacid generator for biological microarray synthesis
US7879580B2 (en) 2002-12-10 2011-02-01 Massachusetts Institute Of Technology Methods for high fidelity production of long nucleic acid molecules
US7932025B2 (en) 2002-12-10 2011-04-26 Massachusetts Institute Of Technology Methods for high fidelity production of long nucleic acid molecules with error control
US20060076482A1 (en) 2002-12-13 2006-04-13 Hobbs Steven E High throughput systems and methods for parallel sample analysis
US6987263B2 (en) 2002-12-13 2006-01-17 Nanostream, Inc. High throughput systems and methods for parallel sample analysis
US7247337B1 (en) 2002-12-16 2007-07-24 Agilent Technologies, Inc. Method and apparatus for microarray fabrication
US20040191810A1 (en) 2002-12-17 2004-09-30 Affymetrix, Inc. Immersed microarrays in conical wells
GB0229443D0 (en) 2002-12-18 2003-01-22 Avecia Ltd Process
US7960157B2 (en) 2002-12-20 2011-06-14 Agilent Technologies, Inc. DNA polymerase blends and uses thereof
CA2508660C (en) 2002-12-23 2013-08-20 Wyeth Antibodies against pd-1 and uses therefor
DE10260805A1 (en) 2002-12-23 2004-07-22 Geneart Gmbh Method and device for optimizing a nucleotide sequence for expression of a protein
WO2004058392A2 (en) 2002-12-23 2004-07-15 Febit Ag Intramolecular triplet-sensitized o-nitrophenylethyl photoprotective groups
AU2003303396A1 (en) 2002-12-23 2004-07-22 Agilent Technologies, Inc. Comparative genomic hybridization assays using immobilized oligonucleotide features and compositions for practicing the same
US7372982B2 (en) 2003-01-14 2008-05-13 Agilent Technologies, Inc. User interface for molecular array feature analysis
US6809277B2 (en) 2003-01-22 2004-10-26 Agilent Technologies, Inc. Method for registering a deposited material with channel plate channels, and switch produced using same
JP4480715B2 (en) 2003-01-29 2010-06-16 454 コーポレーション Double-end sequencing
US7202264B2 (en) 2003-01-31 2007-04-10 Isis Pharmaceuticals, Inc. Supports for oligomer synthesis
US8073626B2 (en) 2003-01-31 2011-12-06 Agilent Technologies, Inc. Biopolymer array reading
US6950756B2 (en) 2003-02-05 2005-09-27 Agilent Technologies, Inc. Rearrangement of microarray scan images to form virtual arrays
GB2398383B (en) 2003-02-12 2005-03-09 Global Genomics Ab Method and means for nucleic acid sequencing
US7413709B2 (en) 2003-02-12 2008-08-19 Agilent Technologies, Inc. PAEK-based microfluidic device with integrated electrospray emitter
US7244513B2 (en) 2003-02-21 2007-07-17 Nano-Proprietary, Inc. Stain-etched silicon powder
US7252938B2 (en) 2003-02-25 2007-08-07 Agilent Technologies, Inc. Methods and devices for producing a polymer at a location of a substrate
US7070932B2 (en) 2003-02-25 2006-07-04 Agilent Technologies, Inc. Methods and devices for detecting printhead misalignment of an in situ polymeric array synthesis device
US6977223B2 (en) 2003-03-07 2005-12-20 Massachusetts Institute Of Technology Three dimensional microfabrication
US20050053968A1 (en) 2003-03-31 2005-03-10 Council Of Scientific And Industrial Research Method for storing information in DNA
US20060134638A1 (en) 2003-04-02 2006-06-22 Blue Heron Biotechnology, Inc. Error reduction in automated gene synthesis
US7534561B2 (en) 2003-04-02 2009-05-19 Agilent Technologies, Inc. Nucleic acid array in situ fabrication methods and arrays produced using the same
US20040219663A1 (en) 2003-04-30 2004-11-04 Page Robert D. Biopolymer array fabrication using different drop deposition heads
US7206439B2 (en) 2003-04-30 2007-04-17 Agilent Technologies, Inc. Feature locations in array reading
US7269518B2 (en) 2003-04-30 2007-09-11 Agilent Technologies, Inc. Chemical array reading
US6916113B2 (en) 2003-05-16 2005-07-12 Agilent Technologies, Inc. Devices and methods for fluid mixing
AU2004240944A1 (en) 2003-05-20 2004-12-02 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
CA2531197A1 (en) 2003-05-30 2005-01-06 The Board Of Trustees Of The University Of Illinois Gene expression profiles that identify genetically elite ungulate mammals
EP1660512A4 (en) 2003-06-02 2009-12-23 Isis Pharmaceuticals Inc Oligonucleotide synthesis with alternative solvents
US8133670B2 (en) 2003-06-13 2012-03-13 Cold Spring Harbor Laboratory Method for making populations of defined nucleic acid molecules
US6938476B2 (en) 2003-06-25 2005-09-06 Agilent Technologies, Inc. Apparatus and methods for sensing fluid levels
US7534563B2 (en) 2003-06-30 2009-05-19 Agilent Technologies, Inc. Methods for producing ligand arrays
US20050016851A1 (en) 2003-07-24 2005-01-27 Jensen Klavs F. Microchemical method and apparatus for synthesis and coating of colloidal nanoparticles
US6843281B1 (en) 2003-07-30 2005-01-18 Agilent Techinologies, Inc. Methods and apparatus for introducing liquids into microfluidic chambers
US7353116B2 (en) 2003-07-31 2008-04-01 Agilent Technologies, Inc. Chemical array with test dependent signal reading or processing
US7939310B2 (en) 2003-08-06 2011-05-10 University Of Massachusetts Systems and methods for analyzing nucleic acid sequences
US7028536B2 (en) 2004-06-29 2006-04-18 Nanostream, Inc. Sealing interface for microfluidic device
US7348144B2 (en) 2003-08-13 2008-03-25 Agilent Technologies, Inc. Methods and system for multi-drug treatment discovery
US7229497B2 (en) 2003-08-26 2007-06-12 Massachusetts Institute Of Technology Method of preparing nanocrystals
US7385050B2 (en) 2003-08-30 2008-06-10 Agilent Technologies, Inc. Cleavable linker for polynucleotide synthesis
US7417139B2 (en) 2003-08-30 2008-08-26 Agilent Technologies, Inc. Method for polynucleotide synthesis
US7193077B2 (en) 2003-08-30 2007-03-20 Agilent Technologies, Inc. Exocyclic amine triaryl methyl protecting groups in two-step polynucleotide synthesis
US7427679B2 (en) 2003-08-30 2008-09-23 Agilent Technologies, Inc. Precursors for two-step polynucleotide synthesis
US7585970B2 (en) 2003-08-30 2009-09-08 Agilent Technologies, Inc. Method of polynucleotide synthesis using modified support
US20050049796A1 (en) 2003-09-03 2005-03-03 Webb Peter G. Methods for encoding non-biological information on microarrays
WO2005023993A2 (en) 2003-09-09 2005-03-17 Integrigen, Inc. Methods and compositions for generation of germline human antibody genes
US20050112636A1 (en) 2003-09-23 2005-05-26 Atom Sciences Polymeric nucleic acid hybridization probes
US7488607B2 (en) 2003-09-30 2009-02-10 Agilent Technologies, Inc. Electronically readable microarray with electronic addressing function
US7147362B2 (en) 2003-10-15 2006-12-12 Agilent Technologies, Inc. Method of mixing by intermittent centrifugal force
US7075161B2 (en) 2003-10-23 2006-07-11 Agilent Technologies, Inc. Apparatus and method for making a low capacitance artificial nanopore
US20050277125A1 (en) 2003-10-27 2005-12-15 Massachusetts Institute Of Technology High-density reaction chambers and methods of use
US7169560B2 (en) 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US7276338B2 (en) 2003-11-17 2007-10-02 Jacobson Joseph M Nucleotide sequencing via repetitive single molecule hybridization
DE10353887A1 (en) 2003-11-18 2005-06-16 Febit Ag Highly parallel matrix-based DNA synthesizer
US7851192B2 (en) 2004-11-22 2010-12-14 New England Biolabs, Inc. Modified DNA cleavage enzymes and methods for use
US7282705B2 (en) 2003-12-19 2007-10-16 Agilent Technologies, Inc. Microdevice having an annular lining for producing an electrospray emitter
EP2789383B1 (en) 2004-01-07 2023-05-03 Illumina Cambridge Limited Molecular arrays
ES2432040T3 (en) 2004-01-28 2013-11-29 454 Life Sciences Corporation Nucleic acid amplification with continuous flow emulsion
US7084180B2 (en) 2004-01-28 2006-08-01 Velocys, Inc. Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor
JP2007521833A (en) 2004-02-12 2007-08-09 コンパス ジェネティクス エルエルシー Genetic analysis by sequence-specific classification
US7125488B2 (en) 2004-02-12 2006-10-24 Varian, Inc. Polar-modified bonded phase materials for chromatographic separations
EP1733055A4 (en) 2004-02-27 2009-03-11 Harvard College Polynucleotide synthesis
WO2005093092A2 (en) 2004-03-26 2005-10-06 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with g-protein coupled receptor 44 (gpr44)
US7875463B2 (en) 2004-03-26 2011-01-25 Agilent Technologies, Inc. Generalized pulse jet ejection head control model
US20050214779A1 (en) 2004-03-29 2005-09-29 Peck Bill J Methods for in situ generation of nucleic acid arrays
US20050214778A1 (en) 2004-03-29 2005-09-29 Peck Bill J Methods for in situ generation of nucleic acid arrays
US8825411B2 (en) 2004-05-04 2014-09-02 Dna Twopointo, Inc. Design, synthesis and assembly of synthetic nucleic acids
US20060010513A1 (en) 2004-05-11 2006-01-12 Melville Mark W Oligonucleotide arrays to monitor gene expression and methods for making and using same
PL1773978T3 (en) 2004-05-19 2014-09-30 Massachusetts Inst Technology Perfused three-dimensional cell/tissue disease models
US7302348B2 (en) 2004-06-02 2007-11-27 Agilent Technologies, Inc. Method and system for quantifying and removing spatial-intensity trends in microarray data
US20060024711A1 (en) 2004-07-02 2006-02-02 Helicos Biosciences Corporation Methods for nucleic acid amplification and sequence determination
WO2006023144A2 (en) 2004-07-06 2006-03-02 Bioren Inc. Look-through mutagenesis for developing altered polypeptides with enhanced properties
US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US20060012793A1 (en) 2004-07-19 2006-01-19 Helicos Biosciences Corporation Apparatus and methods for analyzing samples
US7276720B2 (en) 2004-07-19 2007-10-02 Helicos Biosciences Corporation Apparatus and methods for analyzing samples
US20060019084A1 (en) 2004-07-23 2006-01-26 Pearson Laurence T Monolithic composition and method
US20060024678A1 (en) 2004-07-28 2006-02-02 Helicos Biosciences Corporation Use of single-stranded nucleic acid binding proteins in sequencing
DK1776460T3 (en) 2004-08-03 2010-04-12 Geneart Ag Method for modulating gene expression by altering CpG content
WO2006073504A2 (en) 2004-08-04 2006-07-13 President And Fellows Of Harvard College Wobble sequencing
WO2006018044A1 (en) 2004-08-18 2006-02-23 Agilent Technologies, Inc. Microfluidic assembly with coupled microfluidic devices
US7034290B2 (en) 2004-09-24 2006-04-25 Agilent Technologies, Inc. Target support with pattern recognition sites
US7943046B2 (en) 2004-10-01 2011-05-17 Agilent Technologies, Inc Methods and systems for on-column protein delipidation
AU2005295351A1 (en) 2004-10-18 2006-04-27 Codon Devices, Inc. Methods for assembly of high fidelity synthetic polynucleotides
US20070122817A1 (en) 2005-02-28 2007-05-31 George Church Methods for assembly of high fidelity synthetic polynucleotides
US7141807B2 (en) 2004-10-22 2006-11-28 Agilent Technologies, Inc. Nanowire capillaries for mass spectrometry
US20060110744A1 (en) 2004-11-23 2006-05-25 Sampas Nicolas M Probe design methods and microarrays for comparative genomic hybridization and location analysis
US8380441B2 (en) 2004-11-30 2013-02-19 Agilent Technologies, Inc. Systems for producing chemical array layouts
US7977119B2 (en) 2004-12-08 2011-07-12 Agilent Technologies, Inc. Chemical arrays and methods of using the same
US7439272B2 (en) 2004-12-20 2008-10-21 Varian, Inc. Ultraporous sol gel monoliths
US20090285825A1 (en) 2004-12-22 2009-11-19 National University Of Singapore Novel snake toxin
US20060160138A1 (en) 2005-01-13 2006-07-20 George Church Compositions and methods for protein design
US20060171855A1 (en) 2005-02-03 2006-08-03 Hongfeng Yin Devices,systems and methods for multi-dimensional separation
US20090088679A1 (en) 2005-02-07 2009-04-02 Massachusetts Institute Of Technology Electronically-Degradable Layer-by-Layer Thin Films
US7393665B2 (en) 2005-02-10 2008-07-01 Population Genetics Technologies Ltd Methods and compositions for tagging and identifying polynucleotides
JP4641199B2 (en) 2005-02-28 2011-03-02 国立感染症研究所長 Apparatus for designing RNA interference polynucleotide mixture, method for producing RNA interference polynucleotide mixture, and program for designing RNA interference polynucleotide mixture
US20060203236A1 (en) 2005-03-08 2006-09-14 Zhenghua Ji Sample cell
EP1623763A1 (en) 2005-03-11 2006-02-08 Agilent Technologies, Inc. Chip with cleaning cavity
US7618777B2 (en) 2005-03-16 2009-11-17 Agilent Technologies, Inc. Composition and method for array hybridization
US20060219637A1 (en) 2005-03-29 2006-10-05 Killeen Kevin P Devices, systems and methods for liquid chromatography
WO2006116476A1 (en) 2005-04-27 2006-11-02 Sigma-Aldrich Co. Activators for oligonucleotide and phosphoramidite synthesis
DK1885880T3 (en) 2005-04-29 2010-11-08 Synthetic Genomics Inc Amplification and cloning of single DNA molecules using rolling circle amplification
US7572907B2 (en) 2005-04-29 2009-08-11 Agilent Technologies, Inc. Methods and compounds for polynucleotide synthesis
US7396676B2 (en) 2005-05-31 2008-07-08 Agilent Technologies, Inc. Evanescent wave sensor with attached ligand
CN101466847B (en) 2005-06-15 2014-02-19 考利达基因组股份有限公司 Single molecule arrays for genetic and chemical analysis
US7919239B2 (en) 2005-07-01 2011-04-05 Agilent Technologies, Inc. Increasing hybridization efficiencies
US8076064B2 (en) 2005-07-09 2011-12-13 Agilent Technologies, Inc. Method of treatment of RNA sample
US7718365B2 (en) 2005-07-09 2010-05-18 Agilent Technologies, Inc. Microarray analysis of RNA
EP1924704B1 (en) 2005-08-02 2011-05-25 Rubicon Genomics, Inc. Compositions and methods for processing and amplification of dna, including using multiple enzymes in a single reaction
DE102005037351B3 (en) 2005-08-08 2007-01-11 Geneart Ag In vitro method for directed evolution of proteins, useful e.g. in pharmaceutical development, uses expression system for performing translation, transcription and reverse transcription
EP1929012B1 (en) 2005-08-11 2010-10-06 Synthetic Genomics, Inc. Method for in vitro recombination
US7749701B2 (en) 2005-08-11 2010-07-06 Agilent Technologies, Inc. Controlling use of oligonucleotide sequences released from arrays
US7723077B2 (en) 2005-08-11 2010-05-25 Synthetic Genomics, Inc. In vitro recombination method
US9404882B2 (en) 2005-08-11 2016-08-02 New Mexico Tech Research Foundation Method of producing a multi-microchannel, flow-through element and device using same
US7805252B2 (en) 2005-08-16 2010-09-28 Dna Twopointo, Inc. Systems and methods for designing and ordering polynucleotides
WO2007025059A1 (en) 2005-08-26 2007-03-01 Surmodics, Inc. Silane coating compositions, coating systems, and methods
US20070196834A1 (en) 2005-09-09 2007-08-23 Francesco Cerrina Method and system for the generation of large double stranded DNA fragments
WO2007033176A2 (en) 2005-09-14 2007-03-22 Illumina, Inc. Continuous polymer synthesizer
WO2007032236A1 (en) 2005-09-16 2007-03-22 Yamatake Corporation Substrate for biochip, biochip, method for manufacturing substrate for biochip, and method for manufacturing biochip
US20080308884A1 (en) 2005-10-13 2008-12-18 Silex Microsystems Ab Fabrication of Inlet and Outlet Connections for Microfluidic Chips
US8552174B2 (en) 2005-10-31 2013-10-08 Agilent Technologies, Inc. Solutions, methods, and processes for deprotection of polynucleotides
US7368550B2 (en) 2005-10-31 2008-05-06 Agilent Technologies, Inc. Phosphorus protecting groups
US7759471B2 (en) 2005-10-31 2010-07-20 Agilent Technologies, Inc. Monomer compositions for the synthesis of RNA, methods of synthesis, and methods of deprotection
US8202985B2 (en) 2005-10-31 2012-06-19 Agilent Technologies, Inc. Monomer compositions for the synthesis of polynucleotides, methods of synthesis, and methods of deprotection
GB0522310D0 (en) 2005-11-01 2005-12-07 Solexa Ltd Methods of preparing libraries of template polynucleotides
US7291471B2 (en) 2005-11-21 2007-11-06 Agilent Technologies, Inc. Cleavable oligonucleotide arrays
GB0524069D0 (en) 2005-11-25 2006-01-04 Solexa Ltd Preparation of templates for solid phase amplification
US8137936B2 (en) 2005-11-29 2012-03-20 Macevicz Stephen C Selected amplification of polynucleotides
WO2007073171A2 (en) 2005-12-22 2007-06-28 Keygene N.V. Improved strategies for transcript profiling using high throughput sequencing technologies
EP1989318B1 (en) 2006-01-06 2014-07-30 Agilent Technologies, Inc. Reaction buffer composition for nucleic acid replication with packed dna polymerases
EP1987162A4 (en) 2006-01-23 2009-11-25 Population Genetics Technologi Nucleic acid analysis using sequence tokens
WO2007087377A2 (en) 2006-01-25 2007-08-02 Massachusetts Institute Of Technology Photoelectrochemical synthesis of high density combinatorial polymer arrays
WO2008057127A2 (en) 2006-02-06 2008-05-15 Massachusetts Institute Of Technology Self-assembly of macromolecules on multilayered polymer surfaces
WO2007095171A2 (en) 2006-02-14 2007-08-23 Massachusetts Institute Of Technology Absorbing film
US7807356B2 (en) 2006-03-09 2010-10-05 Agilent Technologies, Inc. Labeled nucleotide composition
TW200806317A (en) 2006-03-20 2008-02-01 Wyeth Corp Methods for reducing protein aggregation
US7572908B2 (en) 2006-03-23 2009-08-11 Agilent Technologies, Inc. Cleavable linkers for polynucleotides
US7855281B2 (en) 2006-03-23 2010-12-21 Agilent Technologies, Inc. Cleavable thiocarbonate linkers for polynucleotide synthesis
US20070231800A1 (en) 2006-03-28 2007-10-04 Agilent Technologies, Inc. Determination of methylated DNA
CN101460953B (en) 2006-03-31 2012-05-30 索雷克萨公司 Systems and devices for sequence by synthesis analysis
US20070238106A1 (en) 2006-04-07 2007-10-11 Agilent Technologies, Inc. Systems and methods of determining alleles and/or copy numbers
US20070238108A1 (en) 2006-04-07 2007-10-11 Agilent Technologies, Inc. Validation of comparative genomic hybridization
US20070238104A1 (en) 2006-04-07 2007-10-11 Agilent Technologies, Inc. Competitive oligonucleotides
US8058055B2 (en) 2006-04-07 2011-11-15 Agilent Technologies, Inc. High resolution chromosomal mapping
JP2009533028A (en) 2006-04-07 2009-09-17 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ アズ リプレゼンティッド バイ ザ セクレタリー デパートメント オブ ヘルス アンド ヒューマン サービシーズ Antibody compositions and methods for the treatment of neoplastic diseases
US20100173364A1 (en) 2006-04-11 2010-07-08 New England Biolabs, Inc. Repair of Nucleic Acids for Improved Amplification
US20090062129A1 (en) 2006-04-19 2009-03-05 Agencourt Personal Genomics, Inc. Reagents, methods, and libraries for gel-free bead-based sequencing
US8383338B2 (en) 2006-04-24 2013-02-26 Roche Nimblegen, Inc. Methods and systems for uniform enrichment of genomic regions
US20070259346A1 (en) 2006-05-03 2007-11-08 Agilent Technologies, Inc. Analysis of arrays
US20070259347A1 (en) 2006-05-03 2007-11-08 Agilent Technologies, Inc. Methods of increasing the effective probe densities of arrays
US20070259344A1 (en) 2006-05-03 2007-11-08 Agilent Technologies, Inc. Compound probes and methods of increasing the effective probe densities of arrays
US20070259345A1 (en) 2006-05-03 2007-11-08 Agilent Technologies, Inc. Target determination using compound probes
WO2007136834A2 (en) 2006-05-19 2007-11-29 Codon Devices, Inc. Combined extension and ligation for nucleic acid assembly
WO2007137242A2 (en) 2006-05-19 2007-11-29 Massachusetts Institute Of Technology Microfluidic-based gene synthesis
WO2008054543A2 (en) 2006-05-20 2008-05-08 Codon Devices, Inc. Oligonucleotides for multiplex nucleic acid assembly
US8962532B2 (en) 2006-06-19 2015-02-24 Yeda Research And Development Co. Ltd. Programmable iterated elongation: a method for manufacturing synthetic genes and combinatorial DNA and protein libraries
AT503861B1 (en) 2006-07-05 2008-06-15 F Star Biotech Forsch & Entw METHOD FOR MANIPULATING T-CELL RECEPTORS
AT503902B1 (en) 2006-07-05 2008-06-15 F Star Biotech Forsch & Entw METHOD FOR MANIPULATING IMMUNE LOBULINS
US20080193772A1 (en) 2006-07-07 2008-08-14 Bio-Rad Laboratories, Inc Mass spectrometry probes having hydrophobic coatiings
WO2008015396A2 (en) 2006-07-31 2008-02-07 Solexa Limited Method of library preparation avoiding the formation of adaptor dimers
US7572585B2 (en) 2006-07-31 2009-08-11 Agilent Technologies, Inc. Enzymatic labeling of RNA
US7524942B2 (en) 2006-07-31 2009-04-28 Agilent Technologies, Inc. Labeled nucleotide composition
SI2056845T1 (en) 2006-08-08 2018-02-28 Rheinische Friedrich-Wilhelms-Universitaet Bonn Structure and use of 5' phosphate oligonucleotides
DE102006039479A1 (en) 2006-08-23 2008-03-06 Febit Biotech Gmbh Programmable oligonucleotide synthesis
EP2061909A2 (en) 2006-08-24 2009-05-27 Illumina Cambridge Limited Method for retaining even coverage of short insert libraries
WO2008027558A2 (en) 2006-08-31 2008-03-06 Codon Devices, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
US8415138B2 (en) 2006-08-31 2013-04-09 Agilent Technologies, Inc. Apparatuses and methods for oligonucleotide preparation
US8097711B2 (en) 2006-09-02 2012-01-17 Agilent Technologies, Inc. Thioether substituted aryl carbonate protecting groups
US20080311628A1 (en) 2006-10-03 2008-12-18 Ghc Technologies, Inc. Methods and compositions for rapid amplification and capture of nucleic acid sequences
EP2078077A2 (en) 2006-10-04 2009-07-15 Codon Devices, Inc Nucleic acid libraries and their design and assembly
US20080085511A1 (en) 2006-10-05 2008-04-10 Peck Bill J Preparation of biopolymer arrays
JP2008097189A (en) 2006-10-10 2008-04-24 National Institute Of Advanced Industrial & Technology Method for judging transfer object specificity or gene specificity of base sequence fragment
US20080085514A1 (en) 2006-10-10 2008-04-10 Peck Bill J Methods and devices for array synthesis
US7867782B2 (en) 2006-10-19 2011-01-11 Agilent Technologies, Inc. Nanoscale moiety placement methods
US7999087B2 (en) 2006-11-15 2011-08-16 Agilent Technologies, Inc. 2′-silyl containing thiocarbonate protecting groups for RNA synthesis
WO2008063134A1 (en) 2006-11-24 2008-05-29 Agency For Science, Technology And Research Method of producing a pattern of discriminative wettability
WO2008063135A1 (en) 2006-11-24 2008-05-29 Agency For Science, Technology And Research Apparatus for processing a sample in a liquid droplet and method of using the same
US8242258B2 (en) 2006-12-03 2012-08-14 Agilent Technologies, Inc. Protecting groups for RNA synthesis
US20080267949A1 (en) 2006-12-05 2008-10-30 Ablynx N.V. Peptides capable of binding to serum proteins
US7989396B2 (en) 2006-12-05 2011-08-02 The Board Of Trustees Of The Leland Stanford Junior University Biomolecule immobilization on biosensors
US7862999B2 (en) 2007-01-17 2011-01-04 Affymetrix, Inc. Multiplex targeted amplification using flap nuclease
US8314220B2 (en) 2007-01-26 2012-11-20 Agilent Technologies, Inc. Methods compositions, and kits for detection of microRNA
US20080182296A1 (en) 2007-01-31 2008-07-31 Chanda Pranab K Pcr-directed gene synthesis from large number of overlapping oligodeoxyribonucleotides
KR100827449B1 (en) 2007-02-07 2008-05-07 삼성전자주식회사 Photolabile compound, oligomer probe array and substrate for oligomer probe array with the same and the method of fabricating the same
US20100323404A1 (en) 2007-02-09 2010-12-23 Richard Lathrop Method for recombining dna sequences and compositions related thereto
US8603950B2 (en) 2007-02-20 2013-12-10 Anaptysbio, Inc. Methods of generating libraries and uses thereof
US9029085B2 (en) 2007-03-07 2015-05-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
US7651762B2 (en) 2007-03-13 2010-01-26 Varian, Inc. Methods and devices using a shrinkable support for porous monolithic materials
KR101521990B1 (en) 2007-04-04 2015-05-20 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 Compositions, devices, systems, and methods for using a nanopore
EP2476689B1 (en) 2007-05-10 2015-10-21 Agilent Technologies, Inc. Thiocarbon-protecting groups for RNA synthesis
WO2008148392A1 (en) 2007-06-04 2008-12-11 In Situ Rcp A/S Enzyme activity assay using rolling circle amplification
US20080318334A1 (en) 2007-06-20 2008-12-25 Robotti Karla M Microfluidic devices comprising fluid flow paths having a monolithic chromatographic material
US20090023190A1 (en) 2007-06-20 2009-01-22 Kai Qin Lao Sequence amplification with loopable primers
US8194244B2 (en) 2007-06-29 2012-06-05 Intel Corporation Solution sample plate with wells designed for improved Raman scattering signal detection efficiency
US7659069B2 (en) 2007-08-31 2010-02-09 Agilent Technologies, Inc. Binary signaling assay using a split-polymerase
US7979215B2 (en) 2007-07-30 2011-07-12 Agilent Technologies, Inc. Methods and systems for evaluating CGH candidate probe nucleic acid sequences
US8685642B2 (en) 2007-07-30 2014-04-01 Agilent Technologies, Inc. Allele-specific copy number measurement using single nucleotide polymorphism and DNA arrays
US20090036664A1 (en) 2007-07-31 2009-02-05 Brian Jon Peter Complex oligonucleotide primer mix
JP2010535502A (en) 2007-08-07 2010-11-25 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Integrated microfluidic device for gene synthesis
EP2185285A4 (en) 2007-08-14 2015-08-19 Arcxis Biotechnologies Inc Polymer microfluidic biochip fabrication
US20110126929A1 (en) 2007-08-15 2011-06-02 Massachusetts Institute Of Technology Microstructures For Fluidic Ballasting and Flow Control
US20090053704A1 (en) 2007-08-24 2009-02-26 Natalia Novoradovskaya Stabilization of nucleic acids on solid supports
US9598737B2 (en) 2012-05-09 2017-03-21 Longhorn Vaccines And Diagnostics, Llc Next generation genomic sequencing methods
US8877688B2 (en) 2007-09-14 2014-11-04 Adimab, Llc Rationally designed, synthetic antibody libraries and uses therefor
EP2198000A4 (en) 2007-09-17 2013-02-20 Supramolecular nanostamping printing device
US7790387B2 (en) 2007-09-24 2010-09-07 Agilent Technologies, Inc. Thiocarbonate linkers for polynucleotides
WO2009045344A2 (en) 2007-09-28 2009-04-09 Pacific Biosciences Of California, Inc. Error-free amplification of dna for clonal sequencing
EP2053132A1 (en) 2007-10-23 2009-04-29 Roche Diagnostics GmbH Enrichment and sequence analysis of geomic regions
US8617811B2 (en) 2008-01-28 2013-12-31 Complete Genomics, Inc. Methods and compositions for efficient base calling in sequencing reactions
WO2009070665A1 (en) 2007-11-27 2009-06-04 Massachusetts Institute Of Technology Near field detector for integrated surface plasmon resonance biosensor applications
WO2009076580A2 (en) 2007-12-12 2009-06-18 Thomas Jefferson University Compositions and methods for the treatment and prevention of cardiovascular diseases
WO2009078016A2 (en) 2007-12-17 2009-06-25 Yeda Research And Develompment Co. Ltd. System and method for editing and manipulating dna
WO2012044847A1 (en) 2010-10-01 2012-04-05 Life Technologies Corporation Nucleic acid adaptors and uses thereof
WO2009089384A1 (en) 2008-01-09 2009-07-16 Life Technologies Method of making a paired tag library for nucleic acid sequencing
US7682809B2 (en) 2008-01-11 2010-03-23 Agilent Technologies, Inc. Direct ATP release sequencing
EP2238459B1 (en) 2008-01-23 2019-05-08 Roche Diagnostics GmbH Integrated instrument performing synthesis and amplification
WO2009131724A2 (en) 2008-01-24 2009-10-29 Massachusetts Institute Of Technology Insulated nanogap devices and methods of use thereof
US20090194483A1 (en) 2008-01-31 2009-08-06 Robotti Karla M Microfluidic device having monolithic separation medium and method of use
EP3064599B1 (en) 2008-02-15 2018-12-12 Synthetic Genomics, Inc. Methods for in vitro joining and combinatorial assembly of nucleic acid molecules
EP2270142A4 (en) 2008-03-11 2011-06-01 Univ Tokyo Method of preparing dna fragment having sticky end
US20090230044A1 (en) 2008-03-13 2009-09-17 Agilent Technologies, Inc. Microfluid Chip Cleaning
US20090238722A1 (en) 2008-03-18 2009-09-24 Agilent Technologies, Inc. Pressure-Reinforced Fluidic Chip
US8906831B2 (en) 2008-03-31 2014-12-09 Pacific Biosciences Of California, Inc. Single molecule loading methods and compositions
US20090246788A1 (en) 2008-04-01 2009-10-01 Roche Nimblegen, Inc. Methods and Assays for Capture of Nucleic Acids
US8911948B2 (en) 2008-04-30 2014-12-16 Integrated Dna Technologies, Inc. RNase H-based assays utilizing modified RNA monomers
EP2113255A1 (en) 2008-05-02 2009-11-04 f-star Biotechnologische Forschungs- und Entwicklungsges.m.b.H. Cytotoxic immunoglobulin
JP4582224B2 (en) 2008-05-02 2010-11-17 ソニー株式会社 Microbead manufacturing method and microbead
US8278065B2 (en) 2008-06-30 2012-10-02 Morphotek, Inc. Polynucleotides encoding anti-GD2 antibodies
GB2461546B (en) 2008-07-02 2010-07-07 Argen X Bv Antigen binding polypeptides
JP4667490B2 (en) 2008-07-09 2011-04-13 三菱電機株式会社 Cooker
WO2010014903A1 (en) 2008-07-31 2010-02-04 Massachusetts Institute Of Technology Multiplexed olfactory receptor-based microsurface plasmon polariton detector
US20100069250A1 (en) 2008-08-16 2010-03-18 The Board Of Trustees Of The Leland Stanford Junior University Digital PCR Calibration for High Throughput Sequencing
SG10201609144RA (en) 2008-08-22 2016-12-29 Sangamo Biosciences Inc Methods and compositions for targeted single-stranded cleavage and targeted integration
US8808986B2 (en) 2008-08-27 2014-08-19 Gen9, Inc. Methods and devices for high fidelity polynucleotide synthesis
US8034917B2 (en) 2008-08-28 2011-10-11 Agilent Technologies, Inc. Primer-directed chromosome painting
EP2334692B1 (en) 2008-09-05 2016-04-13 The Royal Institution for the Advancement of Learning/McGill University Rna monomers containing o-acetal levulinyl ester groups and their use in rna microarrays
JP2012501658A (en) 2008-09-05 2012-01-26 ライフ テクノロジーズ コーポレーション Methods and systems for nucleic acid sequencing validation, calibration, and standardization
US8586310B2 (en) 2008-09-05 2013-11-19 Washington University Method for multiplexed nucleic acid patch polymerase chain reaction
US8541569B2 (en) 2008-09-06 2013-09-24 Chemgenes Corporation Phosphoramidites for synthetic RNA in the reverse direction, efficient RNA synthesis and convenient introduction of 3'-end ligands, chromophores and modifications of synthetic RNA
CA2735251C (en) 2008-09-06 2017-07-11 Chemgenes Corporation Rna synthesis - phosphoramidites for synthetic rna in the reverse direction, and application in convenient introduction of ligands, chromophores and modifications of synthetic rna at the 3' - end
WO2010030776A1 (en) 2008-09-10 2010-03-18 Genscript Corporation Homologous recombination-based dna cloning methods and compositions
US20100076183A1 (en) 2008-09-22 2010-03-25 Dellinger Douglas J Protected monomer and method of final deprotection for rna synthesis
US8213015B2 (en) 2008-09-25 2012-07-03 Agilent Technologies, Inc. Integrated flow cell with semiconductor oxide tubing
NZ591543A (en) 2008-09-30 2012-11-30 Abbott Lab Improved antibody libraries
US20100090341A1 (en) 2008-10-14 2010-04-15 Molecular Imprints, Inc. Nano-patterned active layers formed by nano-imprint lithography
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US9080211B2 (en) 2008-10-24 2015-07-14 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
US8357489B2 (en) 2008-11-13 2013-01-22 The Board Of Trustees Of The Leland Stanford Junior University Methods for detecting hepatocellular carcinoma
CN102282155B (en) 2008-12-02 2017-06-09 日本波涛生命科学公司 The synthetic method of the nucleic acid of phosphorus atoms modification
US8963262B2 (en) 2009-08-07 2015-02-24 Massachusettes Institute Of Technology Method and apparatus for forming MEMS device
TW201104253A (en) 2008-12-31 2011-02-01 Nat Health Research Institutes Microarray chip and method of fabricating for the same
US9409969B2 (en) 2009-02-09 2016-08-09 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Repertoire of allo-restricted peptide-specific T cell receptor sequences and use thereof
WO2010094772A1 (en) 2009-02-20 2010-08-26 Febit Holding Gmbh Synthesis of sequence-verified nucleic acids
US8569046B2 (en) 2009-02-20 2013-10-29 Massachusetts Institute Of Technology Microarray with microchannels
ES2661310T3 (en) 2009-03-09 2018-03-28 Bioatla, Llc Mirac proteins
WO2010115122A2 (en) 2009-04-03 2010-10-07 Illumina, Inc. Generation of uniform fragments of nucleic acids using patterned substrates
US7862716B2 (en) 2009-04-13 2011-01-04 Sielc Technologies Corporation HPLC schematic with integrated sample cleaning system
EP2424669B1 (en) 2009-04-29 2020-06-03 Sicpa Holding Sa Method for depositing a biological fluid onto a substrate
WO2010127186A1 (en) 2009-04-30 2010-11-04 Prognosys Biosciences, Inc. Nucleic acid constructs and methods of use
EP2248914A1 (en) 2009-05-05 2010-11-10 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. The use of class IIB restriction endonucleases in 2nd generation sequencing applications
US9309557B2 (en) 2010-12-17 2016-04-12 Life Technologies Corporation Nucleic acid amplification
US20100292102A1 (en) 2009-05-14 2010-11-18 Ali Nouri System and Method For Preventing Synthesis of Dangerous Biological Sequences
US20100300882A1 (en) 2009-05-26 2010-12-02 General Electric Company Devices and methods for in-line sample preparation of materials
WO2010141249A2 (en) 2009-06-02 2010-12-09 Merck Sharp & Dohme Corp. Generation, characterization and uses thereof of anti-notch3 antibodies
ES2532891T3 (en) 2009-06-02 2015-04-01 The Regents Of The University Of California Virus discovery by sequencing and assembly of siRNA, miRNA, siRNA derived from viruses
US8309710B2 (en) 2009-06-29 2012-11-13 Agilent Technologies, Inc. Use of N-alkyl imidazole for sulfurization of oligonucleotides with an acetyl disulfide
US8642755B2 (en) 2009-06-30 2014-02-04 Agilent Technologies, Inc. Use of thioacetic acid derivatives in the sulfurization of oligonucleotides with phenylacetyl disulfide
GB0912909D0 (en) 2009-07-23 2009-08-26 Olink Genomics Ab Probes for specific analysis of nucleic acids
US8329208B2 (en) 2009-07-28 2012-12-11 Methylation Sciences International Srl Pharmacokinetics of S-adenosylmethionine formulations
JP6013912B2 (en) 2009-07-30 2016-10-25 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Oligonucleotide probe sets and related methods and uses
KR101606236B1 (en) 2009-08-19 2016-03-24 메르크 파텐트 게엠베하 Antibodies for the detection of integrin complexes in ffpe material
WO2011021102A2 (en) 2009-08-20 2011-02-24 Population Genetics Technologies Ltd Compositions and methods for intramolecular nucleic acid rearrangement
US8476598B1 (en) 2009-08-31 2013-07-02 Sionyx, Inc. Electromagnetic radiation imaging devices and associated methods
US20110082055A1 (en) 2009-09-18 2011-04-07 Codexis, Inc. Reduced codon mutagenesis
US20120184724A1 (en) 2009-09-22 2012-07-19 Agilent Technologies, Inc. Protected monomers and methods of deprotection for rna synthesis
WO2011038241A1 (en) 2009-09-25 2011-03-31 President And Fellows Of Harvard College Nucleic acid amplification and sequencing by synthesis with fluorogenic nucleotides
US8975019B2 (en) 2009-10-19 2015-03-10 University Of Massachusetts Deducing exon connectivity by RNA-templated DNA ligation/sequencing
EP2494062B1 (en) 2009-10-28 2016-12-28 Janssen Biotech, Inc. Anti-glp-1r antibodies and their uses
US20120315670A1 (en) 2009-11-02 2012-12-13 Gen9, Inc. Compositions and Methods for the Regulation of Multiple Genes of Interest in a Cell
US10207240B2 (en) 2009-11-03 2019-02-19 Gen9, Inc. Methods and microfluidic devices for the manipulation of droplets in high fidelity polynucleotide assembly
US20110114549A1 (en) 2009-11-13 2011-05-19 Agilent Technolgies, Inc. Microfluidic device comprising separation columns
US9216414B2 (en) 2009-11-25 2015-12-22 Gen9, Inc. Microfluidic devices and methods for gene synthesis
EP3597771A1 (en) 2009-11-25 2020-01-22 Gen9, Inc. Methods and apparatuses for chip-based dna error reduction
US8500979B2 (en) 2009-12-31 2013-08-06 Intel Corporation Nanogap chemical and biochemical sensors
US9217144B2 (en) 2010-01-07 2015-12-22 Gen9, Inc. Assembly of high fidelity polynucleotides
US9758817B2 (en) 2010-01-13 2017-09-12 Agilent Technologies, Inc. Method for identifying a nucleic acid in a sample
KR101230350B1 (en) 2010-01-27 2013-02-06 주식회사 엘지화학 Battery Pack of Excellent Structural Stability
US20120027786A1 (en) 2010-02-23 2012-02-02 Massachusetts Institute Of Technology Genetically programmable pathogen sense and destroy
GB201003036D0 (en) 2010-02-23 2010-04-07 Fermentas Uab Restriction endonucleases and their applications
US8716467B2 (en) 2010-03-03 2014-05-06 Gen9, Inc. Methods and devices for nucleic acid synthesis
JP2013520989A (en) 2010-03-05 2013-06-10 シンセティック ジェノミクス インコーポレーテッド Methods for genome cloning and manipulation
WO2011143556A1 (en) 2010-05-13 2011-11-17 Gen9, Inc. Methods for nucleotide sequencing and high fidelity polynucleotide synthesis
WO2011150168A1 (en) 2010-05-28 2011-12-01 Gen9, Inc. Methods and devices for in situ nucleic acid synthesis
GB2481425A (en) 2010-06-23 2011-12-28 Iti Scotland Ltd Method and device for assembling polynucleic acid sequences
CA2805320A1 (en) 2010-07-28 2012-02-02 Immunocore Ltd T cell receptors
US8481292B2 (en) 2010-09-21 2013-07-09 Population Genetics Technologies Litd. Increasing confidence of allele calls with molecular counting
US8715933B2 (en) 2010-09-27 2014-05-06 Nabsys, Inc. Assay methods using nicking endonucleases
US20130289246A1 (en) 2010-09-30 2013-10-31 Vanderbilt University Influenza virus antibodies and immunogens and uses therefor
US9689012B2 (en) * 2010-10-12 2017-06-27 Cornell University Method of dual-adapter recombination for efficient concatenation of multiple DNA fragments in shuffled or specified arrangements
US20140045728A1 (en) 2010-10-22 2014-02-13 President And Fellows Of Harvard College Orthogonal Amplification and Assembly of Nucleic Acid Sequences
WO2012061832A1 (en) 2010-11-05 2012-05-10 Illumina, Inc. Linking sequence reads using paired code tags
EP2638157B1 (en) 2010-11-12 2015-07-22 Gen9, Inc. Methods and devices for nucleic acids synthesis
US10457935B2 (en) 2010-11-12 2019-10-29 Gen9, Inc. Protein arrays and methods of using and making the same
EP3147374B1 (en) 2010-12-17 2019-01-30 Life Technologies Corporation Methods for nucleic acid amplification
WO2012092260A1 (en) 2010-12-27 2012-07-05 Ibis Biosciences, Inc. Compositions and methods for producing single-stranded circular dna
US20120164633A1 (en) 2010-12-27 2012-06-28 Ibis Biosciences, Inc. Digital droplet sequencing
EP2658970B1 (en) 2010-12-31 2016-09-28 Bioatla LLC Express humanization of antibodies
CN104673670A (en) 2011-03-30 2015-06-03 独立行政法人国立长寿医疗研究中心 Membrane-separation-type Culture Device, Membrane-separation-type Culture Kit, Stem Cell Separation Method Using Same, And Separation Membrane
US10131903B2 (en) 2011-04-01 2018-11-20 The Regents Of The University Of California Microfluidic platform for synthetic biology applications
US9384920B1 (en) 2011-04-04 2016-07-05 Eric J. Bakulich Locking knob
WO2012149171A1 (en) 2011-04-27 2012-11-01 The Regents Of The University Of California Designing padlock probes for targeted genomic sequencing
US8722585B2 (en) 2011-05-08 2014-05-13 Yan Wang Methods of making di-tagged DNA libraries from DNA or RNA using double-tagged oligonucleotides
CN112592960B (en) 2011-05-20 2024-08-27 富鲁达公司 Nucleic acid encoding reactions
US9752176B2 (en) 2011-06-15 2017-09-05 Ginkgo Bioworks, Inc. Methods for preparative in vitro cloning
CN104053667B (en) 2011-06-21 2017-09-15 非营利性组织佛兰芒综合大学生物技术研究所 For GPCR:The binding structural domain of G-protein compound and the purposes from it
US9487824B2 (en) 2011-06-28 2016-11-08 Igor Kutyavin Methods and compositions for enrichment of nucleic acids in mixtures of highly homologous sequences
US20130045483A1 (en) 2011-07-01 2013-02-21 Whitehead Institute For Biomedical Research Yeast cells expressing amyloid beta and uses therefor
US9139874B2 (en) 2011-07-07 2015-09-22 Life Technologies Corporation Bi-directional sequencing compositions and methods
US20130017978A1 (en) 2011-07-11 2013-01-17 Finnzymes Oy Methods and transposon nucleic acids for generating a dna library
WO2013010062A2 (en) 2011-07-14 2013-01-17 Life Technologies Corporation Nucleic acid complexity reduction
IL280334B2 (en) 2011-08-26 2023-09-01 Gen9 Inc Compositions and methods for high fidelity assembly of nucleic acids
US20150203839A1 (en) 2011-08-26 2015-07-23 Gen9, Inc. Compositions and Methods for High Fidelity Assembly of Nucleic Acids
WO2013030827A1 (en) 2011-09-01 2013-03-07 Genome Compiler Corporation System for polynucleotide construct design, visualization and transactions to manufacture the same
EP2753714B1 (en) 2011-09-06 2017-04-12 Gen-Probe Incorporated Circularized templates for sequencing
US8840981B2 (en) 2011-09-09 2014-09-23 Eastman Kodak Company Microfluidic device with multilayer coating
CN107058059B (en) 2011-09-26 2020-08-07 基因技术股份公司 Efficient small volume nucleic acid synthesis
WO2013055822A2 (en) 2011-10-11 2013-04-18 Life Technologies Corporation Systems and methods for analysis and interpretation of nucleic acid sequence data
EP2769007B1 (en) 2011-10-19 2016-12-07 Nugen Technologies, Inc. Compositions and methods for directional nucleic acid amplification and sequencing
US8987174B2 (en) 2011-10-28 2015-03-24 Prognosys Biosciences, Inc. Methods for manufacturing molecular arrays
US8815782B2 (en) 2011-11-11 2014-08-26 Agilent Technologies, Inc. Use of DNAzymes for analysis of an RNA sample
JP2013151468A (en) 2011-11-30 2013-08-08 Agilent Technologies Inc Novel methods for synthesis and purification of oligomers
US8450107B1 (en) 2011-11-30 2013-05-28 The Broad Institute Inc. Nucleotide-specific recognition sequences for designer TAL effectors
US20130137173A1 (en) 2011-11-30 2013-05-30 Feng Zhang Nucleotide-specific recognition sequences for designer tal effectors
WO2013096692A1 (en) 2011-12-21 2013-06-27 Illumina, Inc. Apparatus and methods for kinetic analysis and determination of nucleic acid sequences
WO2013093693A1 (en) 2011-12-22 2013-06-27 Rinat Neuroscience Corp. Staphylococcus aureus specific antibodies and uses thereof
EP3495499A1 (en) 2011-12-30 2019-06-12 Quest Diagnostics Investments Incorporated Nucleic acid analysis using emulsion pcr
AU2013214771B2 (en) 2012-02-01 2017-09-07 Synthetic Genomics, Inc. Materials and methods for the synthesis of error-minimized nucleic acid molecules
EP2820174B1 (en) 2012-02-27 2019-12-25 The University of North Carolina at Chapel Hill Methods and uses for molecular tags
EP3287531B1 (en) 2012-02-28 2019-06-19 Agilent Technologies, Inc. Method for attaching a counter sequence to a nucleic acid sample
CA2867235C (en) 2012-03-14 2021-11-09 Innovative Targeting Solutions Inc. Generating targeted sequence diversity in fusion proteins
US9150853B2 (en) 2012-03-21 2015-10-06 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
EP2830555B1 (en) 2012-03-28 2017-08-02 KCI Licensing, Inc. Reduced-pressure systems and dressings facilitating separation of electronic and clinical component parts
US9732384B2 (en) 2012-04-02 2017-08-15 Lux Bio Group, Inc. Apparatus and method for molecular separation, purification, and sensing
JP6301311B2 (en) 2012-04-10 2018-03-28 ザ トラスティーズ オブ プリンストン ユニバーシティThe Trustees Of Princeton University Ultra high sensitivity sensor
US20150353921A9 (en) 2012-04-16 2015-12-10 Jingdong Tian Method of on-chip nucleic acid molecule synthesis
US20130281308A1 (en) 2012-04-24 2013-10-24 Gen9, Inc. Methods for sorting nucleic acids and preparative in vitro cloning
LT2841601T (en) 2012-04-24 2019-07-10 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
CA3051210A1 (en) 2012-05-10 2013-11-14 Bioatla, Llc Multi-specific monclonal antibodies
AU2013266394B2 (en) 2012-05-21 2019-03-14 The Scripps Research Institute Methods of sample preparation
JP2015529864A (en) 2012-06-01 2015-10-08 ヨーロピアン モレキュラー バイオロジー ラボラトリーEuropean Molecular Biology Laboratory High capacity storage of digital information in DNA
US10308979B2 (en) 2012-06-01 2019-06-04 Agilent Technologies, Inc. Target enrichment and labeling for multi-kilobase DNA
WO2013188037A2 (en) 2012-06-11 2013-12-19 Agilent Technologies, Inc Method of adaptor-dimer subtraction using a crispr cas6 protein
IL236303B (en) 2012-06-25 2022-07-01 Gen9 Inc Methods for nucleic acid assembly and high throughput sequencing
SG11201408807YA (en) 2012-07-03 2015-01-29 Integrated Dna Tech Inc Tm-enhanced blocking oligonucleotides and baits for improved target enrichment and reduced off-target selection
US9255245B2 (en) 2012-07-03 2016-02-09 Agilent Technologies, Inc. Sample probes and methods for sampling intracellular material
US20140038240A1 (en) 2012-07-10 2014-02-06 Pivot Bio, Inc. Methods for multipart, modular and scarless assembly of dna molecules
US9073962B2 (en) 2012-07-12 2015-07-07 Massachusetts Institute Of Technology Methods of serial assembly of DNA bricks into larger structures
JP6239813B2 (en) 2012-07-18 2017-11-29 株式会社Screenセミコンダクターソリューションズ Substrate processing apparatus and substrate processing method
CN104662544B (en) 2012-07-19 2018-08-03 哈佛大学校长及研究员协会 The method for storing information using nucleic acid
RU2020108070A (en) 2012-07-27 2020-03-16 Дзе Борд Оф Трастиз Оф Дзе Юниверсити Оф Иллинойс CONSTRUCTION OF T-CELL RECEPTORS
WO2014021938A1 (en) 2012-08-02 2014-02-06 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatus for nucleic acid synthesis using oligo-templated polymerization
AU2013302376B2 (en) 2012-08-16 2018-02-22 Synthetic Genomics, Inc. Digital to biological converter
EP2966088B1 (en) 2012-08-31 2019-10-16 The Scripps Research Institute Antibodies that modulate eukaryotic cells
WO2014039587A1 (en) 2012-09-05 2014-03-13 Bio-Rad Laboratories, Inc. Systems and methods for stabilizing droplets
CN107541546B (en) 2012-10-15 2021-06-15 生命技术公司 Compositions, methods, systems, and kits for target nucleic acid enrichment
KR20140048733A (en) 2012-10-16 2014-04-24 삼성전자주식회사 Multiwell plate and method for analyzing target material using the same
US9410173B2 (en) 2012-10-24 2016-08-09 Clontech Laboratories, Inc. Template switch-based methods for producing a product nucleic acid
WO2014089160A1 (en) 2012-12-04 2014-06-12 Phosphorex, Inc. Microparticles and nanoparticles having negative surface charges
CN104854246B (en) 2012-12-06 2018-05-01 安捷伦科技有限公司 The target enrichment of unrestricted enzyme
EP2929027B1 (en) 2012-12-06 2018-02-21 Agilent Technologies, Inc. Molecular fabrication
WO2014093330A1 (en) 2012-12-10 2014-06-19 Clearfork Bioscience, Inc. Methods for targeted genomic analysis
US9976162B2 (en) 2012-12-10 2018-05-22 Agilent Technologies, Inc. Pairing code directed assembly
WO2014093694A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
WO2014133457A1 (en) 2013-02-28 2014-09-04 Nanyang Technological University Method of manufacturing a device for supporting biological material growth and device therefrom
US9580746B2 (en) 2013-03-05 2017-02-28 Agilent Technologies, Inc. Synthesis of long fish probes
EP2964778B1 (en) 2013-03-05 2019-10-09 Agilent Technologies, Inc. Detection of genomic rearrangements by sequence capture
WO2014160059A1 (en) 2013-03-13 2014-10-02 Gen9, Inc. Compositions and methods for synthesis of high fidelity oligonucleotides
DK3828277T3 (en) 2013-03-13 2023-09-04 Gen9 Inc COMPOSITIONS, METHODS AND APPARATUS FOR THE SYNTHESIS OF OLIGONUCLEOTIDES
ES2831148T3 (en) 2013-03-15 2021-06-07 Univ Leland Stanford Junior Identification and use of circulating nucleic acid tumor markers
US10273471B2 (en) 2013-03-15 2019-04-30 Gen 9, Inc. Compositions and methods for multiplex nucleic acids synthesis
US20140274729A1 (en) 2013-03-15 2014-09-18 Nugen Technologies, Inc. Methods, compositions and kits for generation of stranded rna or dna libraries
US20140328849A1 (en) 2013-03-15 2014-11-06 Genentech, Inc. Anti-crth2 antibodies and methods of use
US20140274741A1 (en) 2013-03-15 2014-09-18 The Translational Genomics Research Institute Methods to capture and sequence large fragments of dna and diagnostic methods for neuromuscular disease
US9771613B2 (en) 2013-04-02 2017-09-26 Molecular Assemblies, Inc. Methods and apparatus for synthesizing nucleic acid
US9279149B2 (en) 2013-04-02 2016-03-08 Molecular Assemblies, Inc. Methods and apparatus for synthesizing nucleic acids
US10683536B2 (en) 2013-04-02 2020-06-16 Molecular Assemblies, Inc. Reusable initiators for synthesizing nucleic acids
US20150293102A1 (en) 2013-04-13 2015-10-15 Jung-Uk Shim Detecting low-abundant analyte in microfluidic droplets
ITRM20130278A1 (en) 2013-05-10 2014-11-11 Consiglio Nazionale Ricerche PROCESS OF MANUFACTURE OF SELF-ASSEMBLED FILMS OF BLOCKED COPOLYMERS
RU2645256C2 (en) 2013-06-26 2018-02-19 Гуандун Сянсюэ Лайф Сайенсис, Лтд. High-stable t-cell receptor and method for its obtaining and application
US20150010953A1 (en) 2013-07-03 2015-01-08 Agilent Technologies, Inc. Method for producing a population of oligonucleotides that has reduced synthesis errors
KR20150005062A (en) 2013-07-04 2015-01-14 삼성전자주식회사 Processor using mini-cores
US10421957B2 (en) 2013-07-29 2019-09-24 Agilent Technologies, Inc. DNA assembly using an RNA-programmable nickase
WO2015017527A2 (en) 2013-07-30 2015-02-05 Gen9, Inc. Methods for the production of long length clonal sequence verified nucleic acid constructs
EP3722442B1 (en) 2013-08-05 2023-04-05 Twist Bioscience Corporation De novo synthesized gene libraries
US9595180B2 (en) 2013-08-07 2017-03-14 Nike, Inc. Activity recognition with activity reminders
CN104371019B (en) 2013-08-13 2019-09-10 鸿运华宁(杭州)生物医药有限公司 It is a kind of can with GLP-1R specifically bind antibody and its with the fused protein of GLP-1
GB201314721D0 (en) 2013-08-16 2013-10-02 Almagen Ltd A method of selectively masking one or more sites on a surface and a method of synthesising an array of molecules
GB2534067B (en) 2013-08-30 2021-07-21 Personalis Inc Methods and systems for genomic analysis
CN105916873B (en) 2013-09-14 2020-06-19 坎姆根公司 Efficient synthesis of long RNAs using the reverse method
WO2015040075A1 (en) 2013-09-18 2015-03-26 Genome Research Limited Genomic screening methods using rna-guided endonucleases
US9422325B2 (en) 2013-10-04 2016-08-23 Trustees Of Tufts College Glycosylation reactions using phenyl(trifluoroethyl)iodonium salts
WO2015054292A1 (en) 2013-10-07 2015-04-16 Cellular Research, Inc. Methods and systems for digitally counting features on arrays
CA2929108A1 (en) 2013-10-29 2015-05-07 Longhorn Vaccines And Diagnostics, Llc Next generation genomic sequencing methods
WO2015081142A1 (en) 2013-11-26 2015-06-04 Xenco Medical, Llc Lock and release implant delivery system
CA2931989C (en) 2013-11-27 2023-04-04 Gen9, Inc. Libraries of nucleic acids and methods for making the same
CA2932325A1 (en) 2013-12-04 2015-06-11 Innovative Targeting Solutions Inc. G-protein coupled receptor agonists and methods
SG11201604495PA (en) 2013-12-04 2016-07-28 Chugai Pharmaceutical Co Ltd Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
WO2015089053A1 (en) 2013-12-09 2015-06-18 Integrated Dna Technologies, Inc. Long nucleic acid sequences containing variable regions
KR102447878B1 (en) 2013-12-17 2022-09-26 제넨테크, 인크. Methods of treating cancers using pd-1 axis binding antagonists and taxanes
GB2521387B (en) 2013-12-18 2020-05-27 Ge Healthcare Uk Ltd Oligonucleotide data storage on solid supports
WO2015103225A1 (en) 2013-12-31 2015-07-09 Illumina, Inc. Addressable flow cell using patterned electrodes
US9587268B2 (en) 2014-01-29 2017-03-07 Agilent Technologies Inc. Fast hybridization for next generation sequencing target enrichment
WO2015120403A1 (en) 2014-02-08 2015-08-13 The Regents Of The University Of Colorado, A Body Corporate Multiplexed linking pcr
US10208338B2 (en) 2014-03-03 2019-02-19 Swift Biosciences, Inc. Enhanced adaptor ligation
MX2016011817A (en) 2014-03-14 2017-05-12 Immunocore Ltd Tcr libraries.
US10675618B2 (en) 2014-03-27 2020-06-09 University Of Maryland, College Park Integration of ex situ fabricated porous polymer monoliths into fluidic chips
WO2015160004A1 (en) 2014-04-15 2015-10-22 볼보 컨스트럭션 이큅먼트 에이비 Device for controlling engine and hydraulic pump of construction equipment and control method therefor
GB201407852D0 (en) 2014-05-02 2014-06-18 Iontas Ltd Preparation of libraries od protein variants expressed in eukaryotic cells and use for selecting binding molecules
WO2015175832A1 (en) 2014-05-16 2015-11-19 Illumina, Inc. Nucleic acid synthesis techniques
US20150361423A1 (en) 2014-06-16 2015-12-17 Agilent Technologies, Inc. High throughput gene assembly in droplets
US20150361422A1 (en) 2014-06-16 2015-12-17 Agilent Technologies, Inc. High throughput gene assembly in droplets
US10472620B2 (en) 2014-07-01 2019-11-12 General Electric Company Method, substrate and device for separating nucleic acids
US10870845B2 (en) 2014-07-01 2020-12-22 Global Life Sciences Solutions Operations UK Ltd Methods for capturing nucleic acids
EP3167071B1 (en) 2014-07-09 2020-10-07 Gen9, Inc. Compositions and methods for site-directed dna nicking and cleaving
WO2016011080A2 (en) 2014-07-14 2016-01-21 The Regents Of The University Of California Crispr/cas transcriptional modulation
EP3169781B1 (en) 2014-07-15 2020-04-08 Life Technologies Corporation Compositions and methods for nucleic acid assembly
WO2016022557A1 (en) 2014-08-05 2016-02-11 Twist Bioscience Corporation Cell free cloning of nucleic acids
EP3201356A1 (en) 2014-10-03 2017-08-09 Life Technologies Corporation Genetic sequence verification compositions, methods and kits
WO2016057951A2 (en) 2014-10-09 2016-04-14 Life Technologies Corporation Crispr oligonucleotides and gene editing
CN107109485B (en) 2014-10-10 2020-12-08 因维蒂公司 Universal blocking oligomer systems for multiple capture reactions and improved methods of hybrid capture
WO2016059610A1 (en) 2014-10-18 2016-04-21 Malik Girik A biomolecule based data storage system
WO2016065056A1 (en) 2014-10-22 2016-04-28 The Regents Of The University Of California High definition microdroplet printer
US9890417B2 (en) 2014-11-03 2018-02-13 Agilent Technologies, Inc. Signal amplification of fluorescence in situ hybridization
US10233490B2 (en) * 2014-11-21 2019-03-19 Metabiotech Corporation Methods for assembling and reading nucleic acid sequences from mixed populations
CN104562213A (en) 2014-12-26 2015-04-29 北京诺禾致源生物信息科技有限公司 Amplification sublibrary and construction method thereof
CA2975852A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
CA2975855A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
US9834774B2 (en) 2015-02-11 2017-12-05 Agilent Technologies, Inc. Methods and compositions for rapid seamless DNA assembly
WO2016130868A2 (en) 2015-02-13 2016-08-18 Vaccine Research Institute Of San Diego Materials and methods to analyze rna isoforms in transcriptomes
CN104734848A (en) 2015-03-02 2015-06-24 郑州轻工业学院 Recombinant DNA technology based information encrypting and hiding method and application
CN107847543A (en) 2015-04-01 2018-03-27 斯克利普斯研究院 The method and composition related to GPCR agonist polypeptides
EP3280723B1 (en) 2015-04-08 2021-01-06 Polyphor AG Backbone-cyclized peptidomimetics
US11164661B2 (en) 2015-04-10 2021-11-02 University Of Washington Integrated system for nucleic acid-based storage and retrieval of digital data using keys
WO2016168755A1 (en) 2015-04-17 2016-10-20 Distributed Bio, Inc. Method for mass humanization of non-human antibodies
WO2016172377A1 (en) 2015-04-21 2016-10-27 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
EP3288973B1 (en) 2015-04-30 2021-10-20 AbCheck s.r.o. Method for mass humanization of rabbit antibodies
WO2016183100A1 (en) 2015-05-11 2016-11-17 Twist Bioscience Corporation Compositions and methods for nucleic acid amplification
US9928869B2 (en) 2015-07-13 2018-03-27 President And Fellows Of Harvard College Methods for retrievable information storage using nucleic acids
EP3350314A4 (en) 2015-09-18 2019-02-06 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
WO2017053450A1 (en) 2015-09-22 2017-03-30 Twist Bioscience Corporation Flexible substrates for nucleic acid synthesis
US20180320166A1 (en) * 2015-10-01 2018-11-08 University Of Washington Multiplex pairwise assembly of dna oligonucleotides
US20170141793A1 (en) 2015-11-13 2017-05-18 Microsoft Technology Licensing, Llc Error correction for nucleotide data stores
CA3006867A1 (en) 2015-12-01 2017-06-08 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
AU2016366231B2 (en) 2015-12-08 2022-12-15 Twinstrand Biosciences, Inc. Improved adapters, methods, and compositions for duplex sequencing
JP7308505B2 (en) 2016-01-08 2023-07-14 マキシオン セラピューティクス リミテッド Binding members with scaffold domains of varying diversity
GB201604492D0 (en) 2016-03-16 2016-04-27 Immatics Biotechnologies Gmbh Transfected t-cells and t-cell receptors for use in immunotherapy against cancers
WO2017214557A1 (en) 2016-06-10 2017-12-14 Counsyl, Inc. Nucleic acid sequencing adapters and uses thereof
CA3027127A1 (en) 2016-06-10 2017-12-14 Twist Bioscience Corporation Systems and methods for automated annotation and screening of biological sequences
CN110088281A (en) 2016-08-03 2019-08-02 特韦斯特生物科学公司 Texturizing surfaces for polynucleotides synthesis
GB2568444A (en) 2016-08-22 2019-05-15 Twist Bioscience Corp De novo synthesized nucleic acid libraries
CN117298260A (en) 2016-09-02 2023-12-29 莱蒂恩技术公司 Compositions and methods for treating cancer with DuoCAR
EP3516528A4 (en) 2016-09-21 2020-06-24 Twist Bioscience Corporation Nucleic acid based data storage
IL314890A (en) 2016-11-18 2024-10-01 Twist Bioscience Corp Polynucleotide libraries having controlled stoichiometry and synthesis thereof
AU2017378492B2 (en) 2016-12-16 2022-06-16 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
MA47130A (en) 2016-12-21 2019-10-30 Cephalon Inc ANTIBODIES SPECIFICALLY BINDING TO HUMAN IL-15 AND THEIR USES
CA3054303A1 (en) 2017-02-22 2018-08-30 Twist Bioscience Corporation Nucleic acid based data storage
EP3595674A4 (en) 2017-03-15 2020-12-16 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
CN117888207A (en) 2017-03-15 2024-04-16 特韦斯特生物科学公司 Combinatorial nucleic acid libraries synthesized de novo
WO2018170559A1 (en) 2017-03-23 2018-09-27 Qbiotics Limited Combination therapy for the treatment or prevention of tumours
WO2018183918A1 (en) 2017-03-30 2018-10-04 Grail, Inc. Enhanced ligation in sequencing library preparation
DK3615690T3 (en) 2017-04-23 2021-11-15 Illumina Cambridge Ltd COMPOSITIONS AND METHODS FOR IMPROVING SAMPLE IDENTIFICATION IN INDEXED NUCLEIC ACID LIBRARIES
FI3622089T3 (en) 2017-05-08 2024-10-23 Illumina Inc Method for sequencing using universal short adapters for indexing of polynucleotide samples
KR102628876B1 (en) 2017-06-12 2024-01-23 트위스트 바이오사이언스 코포레이션 Methods for seamless nucleic acid assembly
CN110997116B (en) 2017-07-18 2022-08-26 百奥福瑞斯特森林研究有限公司 Method and apparatus for asymmetric polarity inversion in electromembrane processes
CA3075505A1 (en) 2017-09-11 2019-03-14 Twist Bioscience Corporation Gpcr binding proteins and synthesis thereof
SG11202003574TA (en) 2017-10-20 2020-05-28 Twist Bioscience Corp Heated nanowells for polynucleotide synthesis
EP3701023A4 (en) 2017-10-27 2021-07-28 Twist Bioscience Corporation Systems and methods for polynucleotide scoring
GB2585506A (en) 2018-01-04 2021-01-13 Twist Bioscience Corp DNA-based digital information storage
US10722916B2 (en) 2018-01-19 2020-07-28 Caulk Garbage Can LLC Caulk gun attachment for wiping excess caulk
CA3100739A1 (en) 2018-05-18 2019-11-21 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
EP3814494B1 (en) 2018-06-29 2023-11-01 Thermo Fisher Scientific GENEART GmbH High throughput assembly of nucleic acid molecules
US20200222875A1 (en) 2018-12-26 2020-07-16 Twist Bioscience Corporation Highly accurate de novo polynucleotide synthesis
CN113728100A (en) 2019-02-25 2021-11-30 特韦斯特生物科学公司 Compositions and methods for next generation sequencing
US11492727B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for GLP1 receptor
SG11202109283UA (en) 2019-02-26 2021-09-29 Twist Bioscience Corp Variant nucleic acid libraries for antibody optimization
AU2020298294A1 (en) 2019-06-21 2022-02-17 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
CN115023440A (en) 2019-09-23 2022-09-06 特韦斯特生物科学公司 Variant nucleic acid libraries for single domain antibodies
EP4034566A4 (en) 2019-09-23 2024-01-24 Twist Bioscience Corporation Variant nucleic acid libraries for crth2
MX2022006995A (en) 2019-12-09 2022-10-27 Twist Bioscience Corp Variant nucleic acid libraries for adenosine receptors.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11697668B2 (en) 2015-02-04 2023-07-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
US11691118B2 (en) 2015-04-21 2023-07-04 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
US11807956B2 (en) 2015-09-18 2023-11-07 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
US12056264B2 (en) 2016-09-21 2024-08-06 Twist Bioscience Corporation Nucleic acid based data storage
US11550939B2 (en) 2017-02-22 2023-01-10 Twist Bioscience Corporation Nucleic acid based data storage using enzymatic bioencryption
US11745159B2 (en) 2017-10-20 2023-09-05 Twist Bioscience Corporation Heated nanowells for polynucleotide synthesis
US11732294B2 (en) 2018-05-18 2023-08-22 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
US12091777B2 (en) 2019-09-23 2024-09-17 Twist Bioscience Corporation Variant nucleic acid libraries for CRTH2
US12018065B2 (en) 2020-04-27 2024-06-25 Twist Bioscience Corporation Variant nucleic acid libraries for coronavirus
US11970697B2 (en) 2020-10-19 2024-04-30 Twist Bioscience Corporation Methods of synthesizing oligonucleotides using tethered nucleotides

Also Published As

Publication number Publication date
US11377676B2 (en) 2022-07-05
US20200181667A1 (en) 2020-06-11
WO2018231864A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
US20220315971A1 (en) Methods for seamless nucleic acid assembly
US20220325278A1 (en) Methods for seamless nucleic acid assembly
US20210348220A1 (en) Polynucleotide libraries having controlled stoichiometry and synthesis thereof
US11332738B2 (en) Barcode-based nucleic acid sequence assembly
AU2017315294B2 (en) De novo synthesized nucleic acid libraries
AU2018234624B2 (en) De novo synthesized combinatorial nucleic acid libraries
US20220243195A1 (en) Barcode-based nucleic acid sequence assembly
US20220277808A1 (en) Libraries for identification of genomic variants
US20220325276A2 (en) Cell free cloning of nucleic acids

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION