US20220039740A1 - Tactile sensing device for lumbar punctures - Google Patents

Tactile sensing device for lumbar punctures Download PDF

Info

Publication number
US20220039740A1
US20220039740A1 US17/507,592 US202117507592A US2022039740A1 US 20220039740 A1 US20220039740 A1 US 20220039740A1 US 202117507592 A US202117507592 A US 202117507592A US 2022039740 A1 US2022039740 A1 US 2022039740A1
Authority
US
United States
Prior art keywords
sensing device
tactile sensing
needle
individual
needle guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/507,592
Inventor
Nicole C. MOSKOWITZ
Jessica TRAVER
Xavier GARCIA-ROJAS
Yashar GANJEH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Medical Center
Original Assignee
Texas Medical Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Medical Center filed Critical Texas Medical Center
Priority to US17/507,592 priority Critical patent/US20220039740A1/en
Assigned to Texas Medical Center reassignment Texas Medical Center ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GANJEH, Yashar, MOSKOWITZ, Nicole C., GARCIA-ROJAS, Xavier, TRAVER, Jessica
Publication of US20220039740A1 publication Critical patent/US20220039740A1/en
Priority to US17/805,157 priority patent/US20220287627A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4566Evaluating the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3401Puncturing needles for the peridural or subarachnoid space or the plexus, e.g. for anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3468Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3494Trocars; Puncturing needles with safety means for protection against accidental cutting or pricking, e.g. limiting insertion depth, pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0053Detecting, measuring or recording by applying mechanical forces or stimuli by applying pressure, e.g. compression, indentation, palpation, grasping, gauging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • A61B5/066Superposing sensor position on an image of the patient, e.g. obtained by ultrasound or x-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/4896Epidural space
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/42Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for desensitising skin, for protruding skin to facilitate piercing, or for locating point where body is to be pierced
    • A61M5/427Locating point where body is to be pierced, e.g. vein location means using ultrasonic waves, injection site templates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/46Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for controlling depth of insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3405Needle locating or guiding means using mechanical guide means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3405Needle locating or guiding means using mechanical guide means
    • A61B2017/3407Needle locating or guiding means using mechanical guide means including a base for support on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3413Needle locating or guiding means guided by ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1003Spinal column

Definitions

  • tactile sensing devices for imaging bone and non-bone structures in an individual in need thereof.
  • methods for performing a lumbar puncture utilizing the tactile sensing device are also described herein.
  • methods for administering a therapeutic to an epidural space of an individual utilizing the tactile sensing device are also described herein.
  • Accessing the epidural or subarachnoid space via a lumbar puncture is a technically challenging procedure that is performed quite commonly in the clinic, especially in the Emergency Room.
  • the procedure involves “blindly” landmarking, or landmarking by manually palpating, the lumbar spine, to identify a gap between two spinous processes through which a needle can be inserted into the epidural or subarachnoid space for fluid collection or injection.
  • the “blind” landmarking technique improves with time and practice therefore, physicians with limited experience find the lumbar puncture procedure challenging.
  • the lumbar puncture procedure becomes difficult to perform with obese patients or patients with a high body mass index (BMI) because their high accumulation of subcutaneous adipose tissue prevents the physician to accurately landmark the lumbar spine via manual palpation.
  • Current landmarking techniques only have a 30% accuracy, making it necessary for an average of >4 attempts to properly puncture the space, and resulting in >25% of patients having traumatic lumbar punctures and >32% of patients left with post-dural puncture headaches (PDPHs).
  • PDPHs post-dural puncture headaches
  • elderly patients or pregnant patients have limited flexibility and are unable to maximally flex the hips, knees, and back, as is required during a lumbar puncture procedure in order to increase the opening space between the intervertebral disks.
  • CSF cerebrospinal fluid
  • tactile sensing devices for imaging a target tissue location in an individual in need thereof, comprising: a) a needle guide having a proximal opening and a distal opening, configured for guiding a needle towards the individual; and b) a sensor array comprising at least one sensor configured to detect applied pressure.
  • tactile sensing devices for imaging a target tissue location in an individual in need thereof, comprising: a) a needle guide cartridge comprising at least two needle guides, wherein each needle guide has a side opening and a distal opening, and each needle guide is configured for guiding a needle towards the individual; and b) a sensor array comprising at least one sensor configured to detect applied pressure.
  • tactile sensing devices for imaging a target tissue location in an individual in need thereof, comprising: a) a sensor array comprising at least one sensor configured to detect applied pressure; b) a display screen; and c) a marking tool to mark the target tissue location.
  • tactile sensing devices for imaging a target tissue location in an individual in need thereof, comprising: a) a sensor array comprising at least one sensor configured to detect applied pressure; b) a connection to a display screen; and c) a marking tool to mark the target tissue location.
  • the needle guide cartridge allows for the needle to be inserted into the individual at more than one level. In some embodiments, the needle guide allows for the needle to be inserted into the individual at more than one angle. In some embodiments, the angle is a cephalad angle between about ⁇ 45 degrees to about 45 degrees. In some embodiments, the angle is a 15 degree cephalad angle. In some embodiments, the sensor array is configured to be loaded into a sensor array holder. In some embodiments, the tactile sensing devices further comprise a frame. In some embodiments, the frame further comprises an elongated portion carrying the needle guide, a downwardly elbowed portion serving as a handle, and a sensor array holder positioned distally away from the handle.
  • the tactile sensing devices further comprise a display screen positioned directly above the sensor array.
  • the display screen is configured to display the target tissue location and the needle to be inserted into the individual.
  • the display screen is a computer screen, a mobile device screen, a liquid crystal display (LCD), a thin film transistor liquid crystal display (TFT-LCD), or an organic light emitting diode (OLED) display.
  • the tactile sensing devices further comprise a needle hub connector that connects to the needle, configured to be inserted through an opening of the needle guide.
  • the opening of the needle guide is the proximal opening of the needle guide or a knob opening of the needle guide.
  • the tactile sensing devices further comprise a knob that is coupled to a needle hub connector or extends from a needle hub connector. In some embodiments, the knob protrudes from a side opening or a slit. In some embodiments, the tactile sensing devices further comprise a valve. In some embodiments, the valve is a 3-way valve or a 3-way stopcock valve. In some embodiments, the valve is configured to be inserted through a knob opening of a needle guide. In some embodiments, the valve is fixed onto a needle guide cartridge. In some embodiments, the valve further comprises a needle hub connector, a fluid connector, a fluid port, a pressure gauge connector, a pressure gauge port, or a combination thereof.
  • the tactile sensing devices further comprise a fluid collection system.
  • the fluid collection system is a faucet fluid collection system, rail fluid collection system, diaphragm fluid collection system, or spoke fluid collection system.
  • the faucet fluid collection system comprises at least one collection tube, a central rod extending downwardly from a frame, a faucet base extending downwardly from the central rod, and a rotating handle for generating a rotational movement, said rotating handle coupled to the faucet base, wherein at least one collection tube sits on the faucet base.
  • the rail fluid collection system comprises a pair of guide rails extending beneath a needle guide cartridge, said guide rails configured to receive a sliding rail platform, said rail platform comprising at least one opening, said opening configured to hold at least one collection tube.
  • the diaphragm fluid collection system comprises at least one collection tube, at least one diaphragm, at least one rotating band allowing the diaphragm to be opened or closed, and a cap configured to be secured onto a first collection tube.
  • the spoke fluid collection system comprises a central hub; at least one central hub opening located on a side surface of the central hub, said central hub opening configured to connect to at least one collection tube; and a spoke connector extending outwardly from a front face of the central hub.
  • the needle is a spinal needle, an epidural needle, or a biopsy needle.
  • the sensor array is a 6 ⁇ 3 sensor array comprising eighteen sensors. In some embodiments, the sensor array is an 8 ⁇ 4 array comprising thirty two sensors.
  • the sensor array is secured onto a platform. In some embodiments, the platform comprises projections onto which the sensors are adhered to. In some embodiments, the projections are struts or connectors. In some embodiments, the sensor is covered with a material configured to enhance force feedback. In some embodiments, the sensor is a force-sensitive resistor.
  • the marking tool is a light, an ink, a hydrogel, a nanoparticle.
  • the light is a laser light or a light emitting diode (LED).
  • the ink is a permanent ink, a gentian violent ink, a water-based ink, an oil-based in, a liquid ink, or a gel ink.
  • the hydrogel further comprises a contrast agent.
  • the nanoparticle further comprises a contrast agent.
  • the tactile sensing devices further comprise a multiplexer.
  • the tactile sensing devices further comprise a voltage divider.
  • the tactile sensing devices further comprise a voltage source.
  • the tactile sensing devices further comprise a pressure sensor operatively connected to the tactile sensing device and configured to measure an intracranial pressure.
  • the pressure sensor is a piezoresistive pressure sensor, a capacitive pressure sensor, an electromagnetic pressure sensor, a piezoelectric pressure sensor, an optical pressure sensor, or a potentiometric pressure sensor.
  • a tactile sensing device comprising: a) a tactile sensing device; and b) a computing device comprising: i) at least one processor operatively coupled to the tactile sensing device; ii) a memory device; and iii) a non-transitory computer readable storage medium with a computer program including instructions executable by the processor causing the processor to convert a voltage signal into an image.
  • the computing device is a microcontroller.
  • the computing device further comprises a second computer program including instructions executable by the processor that cause the processor to encode the voltage signal into a first computer signal and a second computer signal.
  • the systems further comprise a transmitter configured to transmit the first computer signal to the computing device. In some embodiments, the systems further comprise a receiver configured to receive the second computer signal from the tactile sensing device. In some embodiments, the first and second computer signals are transmitted remotely, directly, wirelessly, or via a wire. In some embodiments, the first computer signal and the second computer signals are wireless signals.
  • the computing device is a mobile device. In some embodiments, the computing device further comprises a third computer program including instructions executable by the processor that cause the processor to calculate a projected needle position and display it on the display screen.
  • the computing device further comprises a fourth computer program including instructions executable by the processor causing the processor to: a) determine, as a first requirement, a location of a target tissue location detected by the tactile sensing device; and b) perform predictive analysis based on application of machine learning to approximate the projected needle position.
  • the target tissue location is a bone structure.
  • the bone structure is an articular surface.
  • the articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulation of a first bone of a foot with a second bone of the foot.
  • the vertebral articulation is a spinous process.
  • the target tissue location is a subcutaneous tissue, a muscle, a ligament, an adipose tissue, a cyst, a cavity, or a tumor mass.
  • placing the tactile sensing device on the individual further comprises positioning the tactile sensing device on a bone structure.
  • the bone structure is a vertebral column of an individual.
  • collecting the plurality of voltage signals further comprises transmitting the data via a multiplexer.
  • collecting the plurality of the voltage signals further comprises transmitting the data via a voltage divider.
  • converting the plurality of the voltage signals comprises acquiring, processing, and transforming the plurality of voltage signals into the image using a computer processor.
  • the image is a pressure map representing the target tissue location. In some embodiments, the pressure map is overlaid on top of a structural spinal image.
  • the therapeutic agent is an analgesic, an anesthetic, a chemotherapeutic agent, or a contrast agent or dye.
  • the therapeutic agent is an analgesic, an anesthetic, a contrast agent or dye, a chemotherapeutic agent, or a steroid.
  • the first spinous process is a part of L1, L2, L3, or L4 lumbar vertebrae and the second spinous process is a part of L2, L3, L4, or L5 lumbar vertebrae.
  • the needle is a traumatic or an atraumatic needle.
  • the methods further comprise using a stylet or a catheter in conjunction with the needle.
  • the target tissue location is a bone structure.
  • the bone structure is an articular surface.
  • the articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulation of a first bone of a foot with a second bone of the foot.
  • a vertebral articulation is a spinous process.
  • the target tissue location is a subcutaneous tissue, a muscle, a ligament, an adipose tissue, a cyst, a cavity, or a tumor mass.
  • placing the tactile sensing device on the individual further comprises positioning the tactile sensing device on a bone structure.
  • the bone structure is a vertebral column of an individual.
  • the tactile sensing device comprises an array of force-sensitive resistors.
  • the array of force-sensitive resistors is a 6 ⁇ 3 array comprising eighteen force-sensitive resistors.
  • the array of force-sensitive resistors is an 8 ⁇ 4 array comprising thirty two force-sensitive resistors.
  • the array of force-sensitive resistors is secured onto a platform.
  • the platform comprises projections onto which the force-sensitive resistors are adhered to.
  • the projections are struts or connectors.
  • the force-sensitive resistors are covered with a material configured to enhance force feedback.
  • the material configured to enhance force feedback is a hemispherical rubber disk.
  • collecting the plurality of voltage signals further comprises transmitting the data via a multiplexer. In some embodiments, collecting the plurality of the voltage signals further comprises transmitting the data via a voltage divider.
  • converting the plurality of the voltage signals comprises acquiring, processing, and transforming the plurality of voltage signals into the image using a computer processor.
  • the image is a pressure map representing the target tissue location.
  • the pressure map is overlaid on top of a structural spinal image.
  • the therapeutic agent is an analgesic, an anesthetic, a chemotherapeutic agent, or a contrast agent or dye.
  • the therapeutic agent is an analgesic, an anesthetic, a contrast agent or dye, a chemotherapeutic agent, or a steroid.
  • the first spinous process is a part of L1, L2, L3, or L4 lumbar vertebrae and the second spinous process is a part of L2, L3, L4, or L5 lumbar vertebrae.
  • the needle is a traumatic or an atraumatic needle.
  • the methods further comprise using a stylet or a catheter in conjunction with the needle.
  • the needle guide is oriented between ⁇ 45° and 45° cephalad angle and terminating at an opening located on the center of the tactile sensing device, thereby controlling the angle at which the needle is inserted into a human body.
  • the opening located on the center of the tactile sensing device is an elongated slit.
  • the needle guide is oriented at a 15° cephalad angle.
  • the needle guide terminates at a plurality of openings formed by an elongated slit with a plurality of columns.
  • the methods further comprise using a plurality of needle guides oriented between a ⁇ 45° and 45° cephalad angle and terminating at a plurality of openings located along the midline of the tactile sensing device, thereby controlling the angle at which the needle is inserted into a human body.
  • the methods further comprise using a plurality of needle guides oriented at a 15° cephalad angle.
  • the plurality of needle guides terminates at an opening.
  • the opening is an elongated slit.
  • tactile sensing devices for imaging a target tissue location in an individual in need thereof, comprising: a needle guide having a proximal opening and a distal opening, configured for guiding a needle towards the individual; wherein said needle guide allows for the needle to be inserted into the individual at about a 15° cephalad angle; a sensor array comprising at least one sensor configured to output a signal in response to a change in force applied to its surface; and a fluid collection system positioned within a handle, comprising at least one collection tube, a central rod extending downwardly from a frame, a faucet base extending downwardly from the central rod, and a rotating handle for generating rotational movement, said rotating handle coupled to the faucet base, wherein at least one collection tube sits on the faucet base.
  • the needle guide allows for the needle to be inserted into the individual at a cephalad angle between about 10° and about 20°.
  • the sensor array is configured to be loaded into a sensor array holder.
  • the sensor is a force-sensitive resistor.
  • the tactile sensing devices further comprise a frame.
  • the frame further comprises an elongated portion carrying the needle guide, a downwardly elbowed portion serving as the handle, and a sensor array holder positioned distally away from the handle.
  • the signal is converted to a pressure map.
  • the pressure map represents a target tissue location in an individual.
  • the pressure map displays a position of a needle at a skin level and a projected position of a needle.
  • the tactile sensing devices further comprise a 3-way valve configured to be inserted through the proximal opening of the needle guide, and retained within the needle guide, said 3-way valve comprising a needle hub connector, a fluid port, and a pressure gauge connector.
  • the needle hub connector connects to the needle.
  • the fluid port is an open port through which a fluid flows freely.
  • the pressure gauge connector is configured to connect to a pressure sensor. In some embodiments, the pressure sensor measures an intracranial pressure.
  • the pressure sensor is a piezoresistive pressure sensor, a capacitive pressure sensor, an electromagnetic pressure sensor, a piezoelectric pressure sensor, an optical pressure sensor, or a potentiometric pressure sensor.
  • the tactile sensing devices further comprise a knob that is coupled to a needle hub connector or extends from a needle hub connector. In some embodiments, the knob protrudes from a side opening or a slit.
  • the fluid collection system is a faucet fluid collection system, a rail fluid collection system, a diaphragm fluid a collection system, or a spoke fluid collection system.
  • FIGS. 1A-C illustrate a tactile sensing device with a faucet fluid collection system.
  • FIG. 1A shows a front view of the tactile sensing device 1000 with an exemplary output image displayed on its display screen 1032 .
  • FIG. 1B shows a cross-section view of the tactile sensing device 1000 .
  • FIG. 1C shows a wire frame side view of the tactile sensing device 1000 .
  • FIGS. 2A-C illustrate another embodiment of a tactile sensing device 2000 comprising multiple needle guides and a gripper 2004 .
  • FIG. 2A shows a side view of the tactile sensing device 2000 with an exemplary output image displayed on its display screen 2032 .
  • FIG. 2B shows a side view of the tactile sensing device 2000 .
  • FIG. 2C shows a cross-section view of the tactile sensing device 2000 .
  • FIGS. 3A-B exemplify a sensor array 3008 of eighteen force-sensitive resistors with silicon disks adhered onto them to enhance force feedback.
  • FIG. 3A shows a side view of the sensor array 3008 .
  • FIG. 3B shows a front view of the sensor array 3008 .
  • FIG. 4 is an exemplary flowchart illustrating a method of to generate an image with the tactile sensing device.
  • FIG. 5 illustrates a diaphragm fluid collection system of the tactile sensing device.
  • FIG. 6 illustrates a top faucet fluid collection system of the tactile sensing device.
  • FIG. 7 illustrates a spoke fluid collection system of the tactile sensing device.
  • FIG. 8 illustrates a rail fluid collection system of the tactile sensing.
  • FIGS. 9A-B illustrate voltage signals acquired by a tactile sensing device utilizing an artificial lumbar vertebrae model.
  • FIG. 9A shows voltage values across a single sensor, when the sensor is moved in 1 cm increments, as a function of a force applied (in units of grams).
  • FIG. 9B shows the normalized voltage of a column of 6 sensors for six different trials. A fixed and equal force was applied onto the column of six sensors for each trial.
  • FIG. 10 is an exemplary flowchart illustrating one method for generating an image from voltage signals collected by the tactile sensing device.
  • FIGS. 11A-B are exemplary pressure maps generated by the tactile sensing device.
  • FIG. 11A is a visual representation of underlying bony landmarks as detected and generated by the tactile sensing device.
  • FIG. 11B illustrates a needle's position at the skin level (“original”) and its projected subcutaneous location on a pressure map generated by the tactile sensing device.
  • the term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, e.g., the limitations of the measurement system. In certain embodiments, the term “about” or “approximately” means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term “about” or “approximately” means within 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.05% of a given value or range.
  • the term “about” or “approximately” means within 20.0 degrees, 15.0 degrees, 10.0 degrees, 9.0 degrees, 8.0 degrees, 7.0 degrees, 6.0 degrees, 5.0 degrees, 4.0 degrees, 3.0 degrees, 2.0 degrees, 1.0 degrees, 0.9 degrees, 0.8 degrees, 0.7 degrees, 0.6 degrees, 0.5 degrees, 0.4 degrees, 0.3 degrees, 0.2 degrees, 0.1 degrees, 0.09 degrees. 0.08 degrees, 0.07 degrees, 0.06 degrees, 0.05 degrees, 0.04 degrees, 0.03 degrees, 0.02 degrees or 0.01 degrees of a given value or range.
  • a health care worker e.g. a doctor, a registered nurse, a nurse practitioner, a physician's assistant, an orderly, or a hospice worker.
  • the terms “user,” “health care worker,” “doctor,” and “physician” are used interchangeably. These terms refer to any person that operates the devices described herein. Additional non-liming examples of a user include “registered nurse,” “nurse practitioner,” and “physician's assistant.”
  • ICP intracranial pressure
  • CSF cerebrospinal fluid
  • needle hub refers to the hub at one end of a needle that commonly attaches to a syringe.
  • the shaft of the needle is an elongated, slender stem of the needle that extends from the needle hub and is beveled at the end opposite to the needle hub end.
  • Accessing the epidural or subarachnoid space via a lumbar puncture is a technically challenging procedure that is performed quite commonly in the clinic, especially in the Emergency Room.
  • the procedure involves “blindly” landmarking, or landmarking by manually palpating, the lumbar spine, to identify a gap between two spinous processes through which a needle can be inserted into the epidural or subarachnoid space for fluid collection or injection.
  • the “blind” landmarking technique improves with time and practice therefore, physicians with limited experience find the lumbar puncture procedure challenging.
  • the lumbar puncture procedure becomes difficult to perform with obese patients or patients with a high body mass index (BMI) because their high accumulation of subcutaneous adipose tissue prevents the physician to accurately landmark the lumbar spine via manual palpation.
  • Current landmarking techniques only have a 30% accuracy, making it necessary for an average of >4 attempts to properly puncture the space, and resulting in >25% of patients having traumatic lumbar punctures and >32% of patients left with post-dural puncture headaches (PDPHs).
  • PDPHs post-dural puncture headaches
  • elderly patients or pregnant patients have limited flexibility and are unable to maximally flex the hips, knees, and back, as is required during a lumbar puncture procedure in order to increase the opening space between the intervertebral disks.
  • CSF cerebrospinal fluid
  • a lumbar puncture is an invasive procedure performed in a clinical setting for diagnostic or therapeutic purposes.
  • a diagnostic lumbar puncture also known as “spinal tap,” is one of the most commonly invasive tests performed in the clinic. Every year, approximately 400,000 diagnostic lumbar punctures are performed in the United States.
  • cerebrospinal fluid is collected and in some cases, cerebrospinal fluid (CSF) opening pressure is measured.
  • Therapeutic lumbar punctures are most commonly performed to deliver spinal anesthesia, intrathecal chemotherapeutics, intrathecal pain killers, intrathecal antibiotics, and contrast agents.
  • a lumbar puncture is performed with a patient in a lateral decubitus position or lying down on their side, knees bent, and head in a neutral position.
  • a lumbar puncture is performed with a patient upright, seated with the chin down and feet supported. Aseptic technique is used when performing a lumbar puncture.
  • a practitioner performs a series of steps including: identifying an intraspineous process space between the 4 th and 5 th lumbar vertebrae (L4 and L5), between L3 and L4, or between L2 and L3; cleaning the patient's skin in the lumbar area with iodinated solution, ethanol or isopropyl alcohol, and chlorhexidine; administering a local anesthetic such as, but not limited to, xylocaine or lidocaine, in a manner such that it raises a small bleb on the skin; administering additional local anesthetic, such as lidocaine, to deeper subcutaneous and intraspinous tissues; slowly inserting a spinal needle angling towards the patient's head until the epidural or subarachnoid space is entered.
  • a local anesthetic such as, but not limited to, xylocaine or lidocaine
  • CSF cerebrospinal fluid
  • the CSF is collected and its physical, chemical, microscopic, and infectious properties are inspected. Physical properties of CSF that are checked include: color, turbidity, and viscosity. Chemical components of CSF that are routinely tested for include glucose and proteins.
  • additional testing includes: protein electrophoresis to distinguish different types of protein; immunoglobulin G (IgG) detection; myelin basic protein detection; lactic acid detection; lactate dehydrogenase detection; glutamine detection; C-reactive protein detection; tumor markers such as carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), and human chorionic gonadotropin (hCG); amyloid beta 42 (A ⁇ 42) protein detection; and tau protein detection.
  • IgG immunoglobulin G
  • myelin basic protein detection lactic acid detection
  • lactate dehydrogenase detection glutamine detection
  • C-reactive protein detection tumor markers such as carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), and human chorionic gonadotropin (hCG); amyloid beta 42 (A ⁇ 42) protein detection
  • tau protein detection comprises analyzing the sample for total cell counts including red and white blood cells; additionally, in some instances, a cytology test is performed to
  • Infectious tests performed include: CSF gram stain, culture, and sensitivity test to detect microorganisms and predict best choices for antimicrobial therapy; detection of viruses using polymerase chain reaction (PCR); detection of CSF cryptococcal antigen to detect a fungal infection caused by yeast; detection of specific antibodies; CSF acid-fast bacilli (AFB) test to detect mycobacteria such as Mycobacterium tuberculosis ; detection of parasites; and CSF syphilis test.
  • CSF gram stain, culture, and sensitivity test to detect microorganisms and predict best choices for antimicrobial therapy
  • detection of CSF cryptococcal antigen to detect a fungal infection caused by yeast detection of specific antibodies
  • CSF acid-fast bacilli (AFB) test to detect mycobacteria such as Mycobacterium tuberculosis ; detection of parasites
  • CSF syphilis test CSF gram stain
  • diagnostic lumbar punctures are used to diagnose: bacterial, fungal, and viral infections including meningitis, encephalitis, and neurosyphilis or syphilis; bleeding around the brain or spinal cord including subarachnoid hemorrhages; inflammation of the brain, spinal cord, or bone marrow including myelitis; cancer including brain cancer, spinal cord cancer, and leukemia; neurological disorders including demyelinating diseases such as multiple sclerosis and demyelination polyneuropathy, Guillain-Barré syndrome, mitochondrial disorders, leukencephalopathies, paraneoplastic syndromes, Reye syndrome; headaches of unknown cause; and intracranial pressure disorders including pseudotumor cerebri also known as idiopathic intracranial hypertension (IIH), spontaneous intracranial hypotension, and normal pressure hydrocephalus.
  • IIH intracranial hypertension
  • therapeutic lumbar punctures are performed in the same manner as diagnostic lumbar punctures however, instead of collecting a sample of CSF, a therapeutic agent is delivered to the subarachnoid space.
  • therapeutic agents delivered via a lumbar puncture include but are not limited to: anesthetics such as bupivacaine, lidocaine, tetracaine, procaine, ropivacaine, levobupivacaine, prilocaine, and cinchocaine; opioids such as morphine, fentanyl, diamorphine, buprenorphine, and pethidine or meperidine; non-opioids such as clonidine; chemotherapeutic agents such as methotrexate, cytarabine, hydrocortisone, and thiotepa; contrast agents or dyes such as iohexol, metrizamide, iopamidol, ioversol, iopromide, iodixano
  • tactile sensing devices for imaging bone and non-bone structures in an individual in need thereof, comprising: a display screen 1032 , 2032 to visualize an image of the bone and non-bone structures; and a needle guide 1002 , 2002 operatively configured to guide a needle into a target tissue location within the individual, as shown in FIGS. 1A, 1B, 1C, 2A, 2B, and 2C .
  • the tactile sensing device 1000 , 2000 images a first and second bone and non-bone structure.
  • the tactile sensing device 1000 comprises an array of sensors 1008 .
  • the sensor array 1008 is a tactile sensor array.
  • the sensor array 1008 is an ultrasound sensor array.
  • the sensor array 1008 is an infrared radiation (IR) sensor array.
  • the sensor array 1008 comprises sensors that are piezoresistive sensors.
  • the sensor array 1008 comprises sensors are piezoelectric sensors.
  • the sensor array 1008 comprises sensors that are optical sensors.
  • the sensor array 1008 comprises sensors that are electromagnetic sensors.
  • the sensor array 1008 comprises sensors that are capacitive sensors.
  • the sensor array 1008 comprises sensors that are potentiometric sensors.
  • the sensor array 1008 comprises pressure sensors.
  • the pressure sensors are force-sensitive resistors. Force-sensitive resistors change their resistance in response to a change in force applied to their surface. In some embodiments, the force-sensitive resistors decrease their resistance with an increase in force applied the surface of the sensor.
  • the sensor array comprises at least one sensor configured to output a signal in response to a change in force applied to its surface. Force-sensitive resistors are two wire devices with a resistance that depends on applied force. In some embodiments, the force-sensitive resistors comprise a voltage divider.
  • the voltage divider outputs a voltage value that is correlated to the resistance; thus, the output voltage value also changes in response to a force applied to the surface of the sensor.
  • an increase in voltage indicates an increase in a force applied to the surface of the sensor.
  • the force-sensitive resistors output voltage signals.
  • the array of force-sensitive resistors is a 6 ⁇ 3 array comprising eighteen force-sensitive resistors.
  • the array of force-sensitive resistors is an 8 ⁇ 4 array comprising thirty two force-sensitive resistors.
  • the size of the array of force-sensitive resistors is dependent upon the surface area of the individual's body to be examined.
  • the array of force-sensitive resistors is configured in a way that is sufficient to visualize the bone and non-bone structures in the individual.
  • the sensor array 3008 is secured onto a sensor array platform 3022 .
  • the sensor array platform 3022 comprises cylindrical struts 3026 onto which the sensors are adhered to.
  • the cylindrical struts 3026 onto which the sensors are adhered are connectors.
  • the cylindrical struts or connectors are not cylindrical, but rather rectangular or square shaped.
  • the cylindrical struts are spring loaded connectors.
  • the cylindrical struts 3026 are Pogo pins. In some embodiments, the Pogo pins establish a connection to a printed circuit board (PCT) or between pluralities of PCTs.
  • PCT printed circuit board
  • Pogo pins include vertical mount surface mount technology (SMT), vertical type, through hole type, horizontal type, right angle type, cable solder type, or water proof connector type.
  • SMT vertical mount surface mount technology
  • the sensor 3016 is covered with a hemispherical disk 3024 configured to enhance force feedback.
  • the hemispherical disk 3024 covering the force-sensitive resistors is a hemispherical rubber disk.
  • the rubber material includes, but is not limited to: silicone rubber, natural rubber, acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, ethylene propylene diene rubber, fluorocarbon rubber, chloroprene rubber, fluorosilicone rubber, polyacrylate rubber, ethylene acrylic rubber, styrene-butadiene rubber, polyester urethane rubber, or polyether urethane rubber.
  • the tactile sensing device images a target tissue location.
  • the desired target tissue location is the bone marrow.
  • the tactile sensing device images bone and non-bone structures around a target tissue location.
  • the tactile sensing device images the lumbar vertebrae and the non-bone structures surrounding the lumbar vertebrae.
  • the tactile sensing device images the sacral vertebrae and the non-bone structures surrounding the sacral vertebrae.
  • the tactile sensing device images the lumbar and sacral vertebrae and the non-bone structures surrounding the lumbar and sacral vertebrae.
  • the tactile sensing device images the spinous processes and the non-bone structures surrounding the spinous processes.
  • the tactile sensing device images the L3 and L4 spinous processes and the non-bone structures surrounding the L3 and L4 spinous processes. In some embodiments, the tactile sensing device images the L5 and L5 spinous processes and the non-bone structures surrounding the L4 and L5 spinous processes. In some embodiments, the tactile sensing device images the L5 and S1 spinous processes and the non-bone structures surrounding the L3 and L4 spinous processes.
  • the tactile sensing device 1000 , 2000 images a first and second bone and non-bone structures. In some embodiments, the tactile sensing device 1000 , 2000 images a plurality of bone and non-bone structures. In some embodiments, a bone structure is a rib. In some embodiments, a bone structure is an articular surface.
  • an articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulations of a first bone of a foot with a second bone of the foot.
  • a vertebral articulation is a spinous process.
  • a non-bone structure is subcutaneous tissue, a muscle, a ligament, adipose tissue, a cyst, or a cavity.
  • the tactile sensing device 1000 , 2000 comprises a display screen 1032 , 2032 to provide visual information to a user.
  • the display screen 1032 , 2032 is operatively connected to the tactile sensing device 1000 , 2000 .
  • the display screen 1032 , 2032 is a computer screen, a mobile device screen, or a portable device screen.
  • the display screen 1032 , 2032 is a cathode ray tube (CRT).
  • the display screen 1032 , 2032 is a liquid crystal display (LCD).
  • the display screen 1032 , 2032 is a thin film transistor liquid crystal display (TFT-LCD).
  • the display screen 1032 , 2032 is an organic light emitting diode (OLED) display.
  • OLED organic light emitting diode
  • an OLED display is a passive-matrix OLED (PMOLED) or active-matrix OLED (AMOLED) display.
  • the display screen 1032 , 2032 is a plasma display.
  • the display screen 1032 , 2032 is a video projector.
  • the display screen 1032 , 2032 is a combination of devices such as those disclosed herein.
  • the visual information provided to the user via a display screen 1032 is a pressure map representing bone and non-bone structures.
  • the pressure map is a heat map.
  • the sensor array comprises at least one sensor configured to output a signal in response to a change in force applied to its surface, wherein the signal is represented as a heat map.
  • the heat map is a graphical representation of voltage signals wherein the individual voltage output signals are represented as a plurality of colors, color hues, color saturations, graphical patterns, shading, geometrical figures, or any combination thereof.
  • high voltage output signals are represented in a red-based color and low voltage output signals are represented in blue-based color.
  • the pressure map is overlaid onto a second image.
  • the second image is a type of diagnostic image including, but not limited to: radiography image, magnetic resonance imaging (MRI) image, computed tomography (CT) image, nuclear medicine image, ultrasound image, photoacoustic image, or thermography image.
  • the second image is an image of bone and non-bone structures.
  • the second image of a bone and non-bone structure is an image of a rib; an articular surface such as, a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulations of a first bone of a foot with a second bone of the foot; non-bone structure is subcutaneous tissue, a muscle, a ligament, adipose tissue, a cyst, or a cavity.
  • a needle guide 1002 is operatively connected to the tactile sensing device 1000 .
  • the needle guide 1002 operatively connected to the tactile sensing device 1000 , is used to control the angle and direction of a needle that is inserted into an individual in need thereof.
  • the needle guide 1002 is oriented between a ⁇ 45° and 45° cephalad angle, terminating at a needle orifice 1038 located on the center of the sensor array 1008 , thereby controlling the angle at which the needle is inserted into a human body.
  • the needle guide 1002 is oriented between a ⁇ 45° and 45° cephalad angle, wherein ⁇ 45° is equivalent to 315°. In some embodiments, the needle guide allows for the needle to be inserted into an individual at a cephalad angle between about 10° and about 20°.
  • the needle guide allows for the needle to be inserted into an individual at a cephalad angle between about 0° and about 30°. In some embodiments, the needle guide allows for the needle to be inserted into an individual at a cephalad angle between about 0° and about 50°.
  • the needle guide 1002 is oriented between a 0° and 15° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a 15° and 30° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a 30° and 45° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a 45° and 60° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a 0° and ⁇ 15° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a ⁇ 15° and ⁇ 30° cephalad angle.
  • the needle guide 1002 is oriented between a ⁇ 30° and ⁇ 45° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a ⁇ 45° and ⁇ 60° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 0° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 1° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 2° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 3° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 4° cephalad angle.
  • the needle guide 1002 is oriented at a 5° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 6° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 7° cephalad angle. In some embodiments, the needle guide 1002 is oriented at an 8° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 9° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 10° cephalad angle. In some embodiments, the needle guide 1002 is oriented at an 11° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 12° cephalad angle.
  • the needle guide 1002 is oriented at a 13° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 14° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 15° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 16° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 17° cephalad angle. In some embodiments, the needle guide 1002 is oriented at an 18° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 19° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 20° cephalad angle.
  • the needle guide 1002 is oriented at a 21° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 22° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 23° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 24° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 25° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 26° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 27° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 28° cephalad angle.
  • the needle guide 1002 is oriented at a 29° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 30° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 31° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 32° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 33° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 34° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 35° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 36° cephalad angle.
  • the needle guide 1002 is oriented at a 37° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 38° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 39° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 40° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 41° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 42° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 43° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 44° cephalad angle.
  • the needle guide 1002 is oriented at a 45° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 46° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 47° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 48° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 49° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 50° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 51° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 52° cephalad angle.
  • the needle guide 1002 is oriented at a 53° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 54° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 55° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 56° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 57° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 58° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 59° cephalad angle.
  • the needle guide 1002 is oriented at a 60° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 315° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 316° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 317° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 318° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 319° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 320° cephalad angle.
  • the needle guide 1002 is oriented at a 321° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 322° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 323° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 324° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 325° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 326° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 327° cephalad angle.
  • the needle guide 1002 is oriented at a 328° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 329° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 330° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 331° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 332° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 333° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 334° cephalad angle.
  • the needle guide 1002 is oriented at a 335° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 336° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 337° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 338° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 339° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 340° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 341° cephalad angle.
  • the needle guide 1002 is oriented at a 342° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 343° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 344° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 345° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 346° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 347° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 348° cephalad angle.
  • the needle guide 1002 is oriented at a 349° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 350° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 351° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 352° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 353° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 354° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 355° cephalad angle.
  • the needle guide 1002 is oriented at a 356° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 357° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 358° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 359° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 360° cephalad angle. In some embodiments, the needle orifice 1038 located on the center of the sensor array 1008 is an elongated slit. In some embodiments, the needle guide 1002 terminates at a plurality of openings formed by an elongated slit with a plurality of columns.
  • a needle guide cartridge 2012 is operatively connected to the tactile sensing device 2000 .
  • the needle guide cartridge 2012 is oriented between a ⁇ 45° and 45° cephalad angle, terminating at a needle orifice 2038 located along the midline of the sensor array 2008 , thereby controlling the angle at which the needle is inserted into a human body.
  • the needle guide cartridge 2012 is oriented between a ⁇ 45° and 45° cephalad angle, wherein ⁇ 45° is equivalent to 315°.
  • the needle guide cartridge 2012 is oriented between a 0° and 15° cephalad angle.
  • the needle guide cartridge 2012 is oriented between a 15° and 30° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a 30° and 45° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a 45° and 60° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a 0° and ⁇ 15° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a ⁇ 15° and ⁇ 30° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a ⁇ 30° and ⁇ 45° cephalad angle.
  • the needle guide cartridge 2012 is oriented between a ⁇ 45° and ⁇ 60° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 0° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 1° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 2° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 3° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 4° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 5° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 6° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 7° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at an 8° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 9° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 10° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at an 11° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 12° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 13° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 14° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 15° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 16° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 17° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at an 18° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 19° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 20° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 21° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 22° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 23° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 24° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 25° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 26° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 27° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 28° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 29° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 30° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 31° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 32° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 33° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 34° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 35° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 36° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 37° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 38° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 39° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 40° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 41° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 42° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 43° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 44° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 45° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 46° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 47° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 48° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 49° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 50° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 51° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 52° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 53° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 54° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 55° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 56° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 57° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 58° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 59° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 60° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 315° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 316° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 317° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 318° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 319° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 320° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 321° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 322° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 323° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 324° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 325° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 326° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 327° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 328° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 329° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 330° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 331° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 332° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 333° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 334° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 335° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 336° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 337° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 338° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 339° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 340° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 341° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 342° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 343° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 344° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 345° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 346° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 347° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 348° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 349° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 350° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 351° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 352° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 353° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 354° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 355° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 356° cephalad angle.
  • the needle guide cartridge 2012 is oriented at a 357° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 358° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 359° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 360° cephalad angle. In some embodiments, the needle guide cartridge 2012 terminates at an opening. In some embodiments, the needle guide cartridge 2012 terminates at an opening. In some embodiments, the needle orifice 2038 located on the center of the sensor array 2008 is an elongated slit.
  • the tactile sensing device 1000 , 2000 further comprises a multiplexer.
  • the multiplexer selects voltage output signals from the sensor 3016 and forwards the selected voltage output signals into a single line.
  • the multiplexer is an analog multiplexer.
  • the analog multiplexer is a 16:1 or an 8:1 multiplexer.
  • the analog multiplexer is a frequency division multiplexer or a wave division multiplexer.
  • the multiplexer is a digital multiplexer.
  • the digital multiplexer is a time division multiplexer.
  • the time division multiplexer is a synchronous time division multiplexer or an asynchronous time division multiplexer.
  • the multiplexer is mounted onto a printed circuit board.
  • the tactile sensing device further comprises a voltage divider.
  • the voltage divider is a component of a force-sensitive resistor.
  • the force-sensitive resistor is coupled to a measuring resistor R M in a voltage divider.
  • the output voltage signal from the force-sensitive resistors is read out using a voltage divider.
  • the output voltage signal read out using the voltage divider is described by Equation 1 below.
  • V OUT (R M V IN )/(R M +R FSR ); wherein V OUT is the output voltage signal, R M is the measuring resistor, V IN is the input voltage signal, and R FSR is the resistance detected by the force-sensitive resistor.
  • the voltage divider is a resistive voltage divider, a low-pass RC filter voltage divider, an inductive voltage divider, or a capacitive voltage divider.
  • the tactile sensing device 1000 , 2000 further comprises a computing device.
  • the computing device is a microcontroller.
  • the microcontroller is an 8-bit, 16-bit, or 32-bit microcontroller.
  • the microcontroller is an 8051 microcontroller, a programmable interface controller (PIC), an AVR or Advanced Virtual RISC microcontroller, or an ARM® microcontroller.
  • the microcontroller is, by way of non-limiting examples, an electrician Uno microcontroller or a Raspberry Pi microcontroller.
  • the computing device is a desktop computer or a laptop computer. In some embodiments, the computing device is a mobile device. In some embodiments, the mobile device is a smart phone or a smart watch. In some embodiments, the computing device is a portable device.
  • suitable computing devices further include, by way of non-limiting examples, notebook computers, tablet computers, netbook computers, smart book computers, subnotebook computers, ultra-mobile PCs, handheld computers, personal digital assistants, Internet appliances, smart phones, music players, and portable video game systems. Many mobile smart phones are suitable for use in the systems described herein. Suitable tablet computers include those with booklet, slate, and convertible configurations. Suitable portable video game systems include, by way of non-limiting examples, Nintendo DSTM and Sony PSPTM Voltage Source
  • the tactile sensing device 1000 , 2000 further comprises a voltage source.
  • the voltage source is a battery.
  • the voltage source is rechargeable.
  • the voltage source is removable.
  • the voltage source includes, but is not limited to: a nickel cadmium (NiCd) battery, nickel-metal hydride (NiMH) battery, a nickel zinc (NiZn) battery, a lead acid battery, a lithium ion battery (Li-ion), or a lithium ion polymer (Li-ion polymer) battery.
  • a critical component of a lumbar puncture is the recording of intracranial (ICP) pressure, represented by the ultra-low pressure of the cerebrospinal fluid.
  • ICP or cerebrospinal fluid pressure is typically in the 8-15 mmHg (10-20 mbar) range.
  • Cerebrospinal fluid pressure is typically determined using a two-piece manometer attached to a 3-way stopcock valve which is connected to a spinal needle.
  • the tactile sensing device 1000 , 2000 further comprises a pressure sensor operatively connected to the tactile sensing device 1000 , 2000 and configured to measure cerebrospinal fluid pressure.
  • the pressure sensor is operatively connected to the tactile sensing device 2000 via a 3-way valve 2014 .
  • the pressure sensor is an electronic pressure sensor.
  • the pressure sensor is a piezoresistive, capacitive, electromagnetic, piezoelectric, optical, or potentiometric pressure sensor.
  • cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed digitally.
  • cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed on a display screen 1032 in real-time.
  • the electronic pressure sensor is a Honeywell TruStability®, board mount pressure sensor, which is capable of sensing 0-60 mbar.
  • the electronic pressure sensor is an uncompensated and unamplified piezoresistive silicon pressure sensor.
  • the electronic pressure sensor is operatively connected to a barbed port.
  • the barbed port is liquid-compatible and replaces a traditional manometer connected to a 3-way stopcock valve.
  • the tactile sensing device further comprises a fluid collection system configured to collect a fluid such as cerebrospinal fluid.
  • the fluid collection system is disposable.
  • the fluid collection system is a diaphragm fluid collection system 5042 .
  • the fluid collection system is a faucet fluid collection system 1006 .
  • the fluid collection system is a top faucet fluid collection system 6120 .
  • the fluid collection system is a spoke fluid collection system 7058 .
  • the fluid collection system is a rail fluid collection system 8062 .
  • tactile sensing device 1000 , 2000 comprises a diaphragm fluid collection system 5042 , as shown in FIG. 5 .
  • the diaphragm fluid collection system 5042 comprises a set of stackable collection tubes 5010 .
  • the first collection tube 5010 a , the second collection tube 5010 b , the third collection tube 5010 c , and the fourth collection tube 5010 d comprises a first diaphragm 5044 a , a second diaphragm 5044 b , and a third diaphragm 5044 c .
  • a cap 5046 is first threaded off the first collection tube 5010 a .
  • the stackable collection tubes 5010 are placed under a needle hub, a 3-way valve, or tubing connected to a 3-way valve, with the first diaphragm 5044 a , the second diaphragm 5044 b , and the third diaphragm 5044 c in the open position. Once sufficient fluid is collected in the fourth collection tube 5010 d , the third diaphragm 5044 c is closed and the third collection tube 5010 c , the second collection tube 5010 b , and the first collection tube 5010 a are subsequently filled in the same manner.
  • the fluid collection system operatively connected to the tactile sensing tactile sensing device comprises a top faucet fluid collection system 6120 , as shown in FIG. 6 .
  • the top faucet fluid collection system 6120 further comprises a container 6056 into which open collection tubes 6010 are placed.
  • the top faucet fluid collection system 6120 further comprises a rotating handle 6052 attached to a faucet base 6054 to which the collection tubes 6010 ( 1010 , as shown in FIG. 1 ) are connected to.
  • Above the collection tubes 6010 is a plate with a single hole (not shown in FIG. 6 ) located beneath a faucet connector 6050 , which connects directly to a needle hub or a 3-way valve 2014 .
  • the tactile sensing device comprises a spoke fluid collection system 7058 , as shown in FIG. 7 .
  • the spoke fluid collection system 7058 comprises a central hub 7060 with four central hub openings 7086 .
  • the collection tubes 7010 are operatively connected to the central hub 7060 .
  • the collection tubes 7010 are threaded into the central hub openings 7086 .
  • the collection tubes 7010 are snapped into the central hub openings 7086 .
  • the collection tubes 7010 are operatively connected to the central hub openings 7086 via a snap fitting.
  • the spoke fluid collection system 7058 further comprises a spoke connector 7088 connecting the central hub 7060 to a needle hub or a three-way valve.
  • Fluid flows from a needle hub or a three-way valve through the spoke connector 7088 and into a first collection tube 7010 a .
  • the fluid exits the spoke connector 7088 and flows only into a first collection tube 7010 a that is immediately underneath the spoke connector 7088 .
  • the spoke fluid collection system 7058 further comprises a knob (not shown in FIG. 7 ) secured to the back face of the central hub 7060 , which is rotated clockwise or counterclockwise to allow for sequential filling of the collection tubes 7010 .
  • the knob either clicks into place or has markings corresponding to four positions, which, when aligned, signals whether a first collection tube 7010 a , a second collection tube 7010 b , a third collection tube 7010 c , or a fourth collection tube 7010 d is in position to be filled. Once a first collection tube 7010 a is sufficiently filled, the knob is turned clockwise or counterclockwise to allow a second collection tube 7010 b , a third collection tube 7010 c , or a fourth collection tube 7010 d to be filled.
  • the central hub openings 7086 comprise gaskets. In some embodiments, the gaskets prevent fluid from spilling or exiting the collection tubes 7010 during or between filling periods.
  • the tactile sensing device comprises a rail fluid collection system 8062 , as shown in FIGS. 2 and 8 .
  • the rail fluid collection system 8062 comprises a rail platform 8064 located beneath a needle hub connector 8100 , a fluid connector 8068 , or a three-way valve 8014 .
  • the rail platform 8064 slides along guide rails 8134 , which are operatively connected to the tactile sensing device.
  • the fluid collection tubes 8010 are placed beneath a fluid connector 8068 to allow for fluid collection.
  • the user waits for a first collection tube 8010 a to fill; then, the user slides the rail platform 8064 containing the collection tubes 8010 to allow for sequential filling of a second collection tube 8010 b , a third collection tube 8010 c , and a fourth collection tube 8010 d.
  • the tactile sensing device 1000 , 2000 comprises a frame 1018 .
  • the frame 1018 is a basic structure that supports the modular components of the tactile sensing device.
  • the frame 1018 or 2018 holds the modular components of the tactile sensing device.
  • the frame 1018 or 2018 has a plurality of voids that are filled with a plurality of protrusions from the modular components of the tactile sensing device.
  • the modular components of the tactile sensing device include a sensor array 1008 , 2008 , 3008 , the diaphragm fluid collection system 5042 , the faucet fluid collection system 6048 , the spoke fluid collection system 7058 , or the rail fluid collection system 8062 .
  • the frame 1018 or 2018 is composed of a metal, plastic, or elastomer material.
  • the frame 1018 or 2018 is made out of a plastic or elastomer material including, but not limited to: polyethylene; polypropylene; polystyrene; polyester; polylactic acid (PLA); polycarbonate, polyvinyl chloride, polyethersulfone, polyacrylate or acrylic or polymethylmethacrylate (PMMA); polysulfone; polyetheretherketone; thermoplastic elastomers or thermoplastic urethanes; or poly-p-xylylene or parylene.
  • a plastic or elastomer material including, but not limited to: polyethylene; polypropylene; polystyrene; polyester; polylactic acid (PLA); polycarbonate, polyvinyl chloride, polyethersulfone, polyacrylate or acrylic or polymethylmethacrylate (PMMA); polysulfone; polyetheretherketone; thermoplastic elastomers or thermoplastic urethanes; or poly-p-xylylene or parylene.
  • the tactile sensing device comprises a handle 1004 .
  • the handle 1004 is operatively connected to the tactile sensing device 1000 .
  • the handle 1004 is a part of the tactile sensing device 1000 by which the tactile sensing device 1000 is held, controlled, carried, maneuvered, or gripped.
  • the gripper 1004 orients the user's hand in a forward orientation.
  • the tactile sensing device comprises a gripper 2020 .
  • the gripper 2020 is operatively connected to the tactile sensing device 2000 .
  • the gripper 2020 is a part of the tactile sensing device 2000 by which the tactile sensing device 2000 is held, controlled, carried, maneuvered, or gripped. In some embodiments, as shown in FIGS. 2A, 2B, and 2C , the gripper 2020 is ergonomically shaped and configured to enhance application of force to the tactile sensing device 2004 . In some embodiments, a fluid collection system is contained within a void inside the handle of the tactile sensing device 1000 .
  • the handle 1004 or gripper 2020 comprises a plastic or elastomer material including, but not limited to: polyethylene; polypropylene; polystyrene; polyester; polylactic acid (PLA); polycarbonate, polyvinyl chloride, polyethersulfone, polyacrylate or acrylic or polymethylmethacrylate (PMMA); polysulfone; polyetheretherketone (PEEK); thermoplastic elastomers or thermoplastic urethanes; or polyp-xylylene or parylene.
  • a plastic or elastomer material including, but not limited to: polyethylene; polypropylene; polystyrene; polyester; polylactic acid (PLA); polycarbonate, polyvinyl chloride, polyethersulfone, polyacrylate or acrylic or polymethylmethacrylate (PMMA); polysulfone; polyetheretherketone (PEEK); thermoplastic elastomers or thermoplastic urethanes; or polyp-xylylene or parylene.
  • the handle 1004 or gripper 2020 is made out of a rubber material including, but not limited to: silicone rubber, natural rubber, acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, ethylene propylene diene rubber, fluorocarbon rubber, chloroprene rubber, fluorosilicone rubber, polyacrylate rubber, ethylene acrylic rubber, styrene-butadiene rubber, polyester urethane rubber, or polyether urethane rubber.
  • silicone rubber natural rubber
  • acrylonitrile-butadiene rubber hydrogenated acrylonitrile-butadiene rubber
  • ethylene propylene diene rubber fluorocarbon rubber
  • chloroprene rubber fluorosilicone rubber
  • polyacrylate rubber ethylene acrylic rubber, styrene-butadiene rubber, polyester urethane rubber, or polyether urethane rubber.
  • a tactile sensing device to detect voltage signals resulting from application of force to the tactile sensing device against the individual; a display screen to visualize an image of the bone and non-bone structures obtained from the voltage signals detected by the tactile sensing device; and a computing device comprising: at least one processor operatively coupled to the tactile sensing device; a memory device; and a non-transitory computer readable storage medium with a computer program including instructions executable by the processor causing the processor to convert the voltage signals into the image.
  • the systems for imaging bone and non-bone structures image a first and second bone and non-bone structures. In some embodiments, the systems for imaging bone and non-bone structures image a plurality of bone and non-bone structures. In some embodiments, a bone structure is a rib. In some embodiments, a bone structure is an articular surface.
  • an articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulations of a first bone of a foot with a second bone of the foot.
  • a vertebral articulation is a spinous process.
  • a non-bone structure is subcutaneous tissue, a muscle, a ligament, adipose tissue, a cyst, or a cavity.
  • the tactile sensing device 1000 comprises a sensor array 1008 .
  • the sensor array comprises a plurality of sensors.
  • the sensors are tactile sensors.
  • the sensors are force-sensitive resistors.
  • the force-sensitive resistors change their resistive value in response to a change in applied pressure.
  • the force-sensitive resistors output voltage signals.
  • the array of force-sensitive resistors is a 6 ⁇ 3 array comprising eighteen force-sensitive resistors.
  • the array of force-sensitive resistors is an 8 ⁇ 4 array comprising thirty two force-sensitive resistors.
  • the size of the array of force-sensitive resistors is dependent upon the surface area of the individual's body to be examined. In some embodiments, the array of force-sensitive resistors is configured in a way that is sufficient to visualize the bone and non-bone structures in the individual.
  • the array of force-sensitive resistors is secured onto a sensor array platform 3022 .
  • the sensor array platform 3022 comprises cylindrical struts 3026 onto which the sensors are adhered to.
  • the cylindrical struts 3026 onto which the sensors are adhered to are struts or connectors of any shape that adequately supports the sensors being used.
  • the tactile sensing device 1000 , 2000 comprises a display screen 1032 , 2032 to provide visual information to a user.
  • the display screen 1032 is operatively connected to the tactile sensing device 1000 .
  • the display screen 2032 is operatively connected to the tactile sensing device 2000 .
  • the display screen is a computer screen, a mobile device screen, or a portable device screen.
  • the display screen is a cathode ray tube (CRT).
  • the display screen is a liquid crystal display (LCD).
  • the display screen is a thin film transistor liquid crystal display (TFT-LCD).
  • the display screen is an organic light emitting diode (OLED) display.
  • OLED organic light emitting diode
  • an OLED display is a passive-matrix OLED (PMOLED) or active-matrix OLED (AMOLED) display.
  • the display screen is a plasma display.
  • the display screen is a video projector.
  • the display screen is a combination of devices such as those disclosed herein.
  • the visual information provided to the user via a display screen is a pressure map representing bone and non-bone structures.
  • the pressure map is a heat map.
  • the heat map is a graphical representation of voltage signals wherein the individual voltage output signals are represented as a plurality of colors, color hues, color saturations, graphical patterns, shading, geometrical figures, or any combination thereof.
  • the tactile sensing device further comprises a computing device.
  • the computing device is a microcontroller.
  • the microcontroller is an 8-bit, 16-bit, or 32-bit microcontroller.
  • the microcontroller is an 8051 microcontroller, a programmable interface controller (PIC), an AVR or Advanced Virtual RISC microcontroller, or an ARM® microcontroller.
  • the microcontroller is, by way of non-limiting examples, an electrician Uno microcontroller or a Raspberry Pi microcontroller.
  • the computing device is a microprocessor.
  • the microprocessor is manufactured by AMD®, Intel®, or ARM®.
  • the AMD® microprocessors include, but are not limited to: AMD SempronTM, AMD Turion IITM, AMD Athlon IITM, AMD SempronTM, AMD Phenom IITM, AMD A-Series, or AMD FXTM.
  • the Intel® microprocessors include, but are not limited to: Intel AtomTM, Intel CeleronTM, Intel PentiumTM, Intel Core i3TM, Intel Core i5TM, or Intel Core i7TM.
  • the ARM® microprocessors include, but are not limited to: ARM OMAP 3, ARM MAP 4, ARM OMAP 5, ARM SnapDragon S2, ARM SnapDragon S, ARM SnapDragon S4, ARM Tegra, ARM Tegra 2, ARM Tegra 3, ARM Exynos 3 Single, ARM Exynos 4 Dual, ARM Exynos 4 Quad, ARM Exynos 5 Dual, ARM A4, ARM A5, or ARM A5X.
  • the computing device further comprises a memory device.
  • the processing device includes a memory device.
  • a memory device is one or more physical apparatus used to store data or programs on a temporary basis, a permanent basis, or combinations thereof.
  • a memory device is volatile and requires power to maintain stored information.
  • a memory device is non-volatile and retains stored information and does not require power to maintain stored information.
  • the computing device further comprises a non-transitory computer readable storage medium with a computer program including instructions executable by the processor causing the processor to convert the voltage signals into an image.
  • the computer program includes instructions executable by the processor that cause the processor to encode the voltage signals into a first and second computer signals.
  • the computer program includes instructions executable by the processor that cause the processor to calculate a projected needle position and display it on the display screen. In some embodiments, the computer program includes instructions executable by the processor that cause the processor to calculate a projected needle position for any potential needle guide when using a tactile sensing device 2000 comprising a needle guide cartridge 2012 , as shown in FIGS. 2A, 2B, and 2C .
  • a needle projection calculation is a trigonometric algorithm. In some embodiments, the trigonometric algorithm determines the depth of the needle once it traverses subcutaneous adipose tissue. In some embodiments, the needle projection calculation is adjusted based on amount of subcutaneous adipose tissue.
  • the computer program includes instructions executable by the processor causing the processor to: determine, as a first requirement, a location of a bone detected by the tactile sensing device; ii) determine, as a second requirement, the space between said bone structures; and iii) perform predictive analysis based on application of machine learning.
  • the predictive analysis performed by the processor enhances the accuracy of a needle projection calculation.
  • the predictive analysis performed by the processor locates a desired bone and non-bone structure.
  • the predictive analysis performed by the processor locates a gap between bone and non-bone structures.
  • the predictive analysis performed by the processor suggests a needle insertion location to the user based on the voltage signals detected by the tactile sensing device.
  • the computer program is, for example, software, including computer algorithms, computer codes, programs, and data, which manages the device's hardware and provides services for execution of instructions.
  • Suitable computer program languages include, by way of non-limiting examples, C, C++, C#, Objective C, Perl, Scala, Haskell, Go, iOS C, Python, Java, SQL, JavaScript, PHP, iOS Swift, or Ruby.
  • the computing device is a desktop computer or a laptop computer. In some embodiments, the computing device is a mobile device. In some embodiments, the mobile device is a smart phone or a smart watch. In some embodiments, the computing device is a portable device.
  • suitable computing devices further include, by way of non-limiting examples, notebook computers, tablet computers, netbook computers, smart book computers, subnotebook computers, ultra-mobile PCs, handheld computers, personal digital assistants, Internet appliances, smart phones, music players, and portable video game systems. Many mobile smart phones are suitable for use in the systems described herein. Suitable tablet computers include those with booklet, slate, and convertible configurations. Suitable portable video game systems include, by way of non-limiting examples, Nintendo DSTM and Sony® PSPTM
  • the processor encodes the voltage signals into a first and second computer signals.
  • the tactile sensing device comprises a signal transmitter.
  • the tactile sensing device comprises a signal receiver.
  • a transmitter is configured to transmit the first computer signal to a computing device.
  • a receiver is configured to receive the second computer signal from a tactile sensing device.
  • the first and second computer signals are transmitted via a USB (Universal Serial Bus) cable.
  • the first and second computer signals are wireless signals.
  • the signal receiver is a wireless element.
  • the signal transmitter is a wireless element.
  • the wireless element is configured to receive a signal from a computing device, for example, a mobile device.
  • the signal receiver is a wireless element which is configured to receive a signal from the tactile sensing device.
  • the wireless element is a wireless network technology.
  • the wireless network technology is ANT, ANT+, INSTEON, IrDA, Wireless USB, Bluetooth, Z-Wave, or ZigBee, IEEE 802.15.4, 6LoWPAN, or Wi-Fi.
  • the system further comprises a needle, a needle guide, a stylet, or a catheter.
  • the needle is an atraumatic, also known as pencil-point type needle, or a traumatic needle, also known as a classic needle or a Quincke type needle.
  • the system further comprises a spinal needle.
  • the spinal needle is a Quincke spinal needle, a Whitacre spinal needle, or a Sprotte spinal needle.
  • the system further comprises an epidural needle.
  • the epidural needle is a Weiss epidural needle, a Tuohy epidural needle, or a Hustead epidural needle.
  • the needle incudes, by way of non-limiting examples, a 6-gauge needle, an 8-gauge needle, a 13-gauge needle, a 15-gauge needle, a 17-gauge needle, an 18-gauge needle, a 19-gauge needle, a 20-gauge needle, a 21-gauge needle, a 22-gauge needle, a 23-gauge needle, a 24-gauge needle, a 25-gauge needle, a 26-gauge needle, a 27-gauge needle, a 28-gauge needle, a 29-gauge needle, a 30-gauge needle, a 31-gauge needle, and a 32-gauge needle.
  • the needle is a spinal needle ranging between 1-10 inches in length.
  • the needle contains a stylet, also known as an obturator or an introducer, which is a fine wire, a slender probe, or a solid rod with a metal hub fitted to match a needle's bevel.
  • a stylet is withdrawn from the needle to allow cerebrospinal fluid to flow out from the spinal canal and through the needle hub.
  • the system further comprises a catheter.
  • the catheter is an epidural tunneled catheter, which is implanted into the epidural space as a medication delivery port.
  • the catheter is used to monitor intracranial pressure during a diagnostic lumbar puncture procedure.
  • the catheter is used as means to continuously remove cerebrospinal fluid and relieve pressure on the brain of a patient suffering from hydrocephalus.
  • a needle guide 1002 is operatively connected to the tactile sensing device 1000 .
  • the needle guide 1002 operatively connected to the tactile sensing device 1000 , is used to control the angle and direction of a needle that is inserted into an individual in need thereof.
  • the needle guide 1002 is oriented between a ⁇ 45° and 45° cephalad angle, terminating at a needle orifice 1038 located on the center of the sensor array 1008 , thereby controlling the angle at which the needle is inserted into a human body.
  • the needle guide 1002 is oriented at a 15° cephalad angle.
  • the needle orifice 1038 located on the center of the sensor array 1008 is an elongated slit.
  • the needle guide 1002 terminates at a plurality of openings formed by an elongated slit with a plurality of columns.
  • a needle guide cartridge 2012 is operatively connected to the tactile sensing device 2000 .
  • the needle guide cartridge 2012 is oriented between a ⁇ 45° and 45° cephalad angle, terminating at needle orifice 2038 located along the midline of the sensor array 2008 , thereby controlling the angle at which the needle is inserted into a human body.
  • the needle guide cartridge 2012 is oriented at a 15° cephalad angle. In some embodiments, the needle guide cartridge 2012 2012 terminates at an opening. In some embodiments, the needle orifice 2038 located on the center of the sensor array 2008 is an elongated slit.
  • the system further comprises a fluid collection system operatively connected to the tactile sensing device and configured to collect a fluid such as cerebrospinal fluid.
  • the fluid collection system is disposable.
  • the fluid collection system comprises a diaphragm, faucet, top faucet, spoke, or rail design.
  • the fluid collection system is sterile.
  • the fluid collection system is modular.
  • the system further comprises a pressure sensor operatively connected to the tactile sensing device and configured to measure cerebrospinal fluid pressure.
  • the pressure sensor is operatively connected to the tactile sensing device via a 3-way valve.
  • the pressure sensor is an electronic pressure sensor.
  • the pressure sensor is a piezoresistive, capacitive, electromagnetic, piezoelectric, optical, or potentiometric pressure sensor.
  • cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed digitally.
  • cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed on a display screen in real-time.
  • FIG. 4 exemplifies these methods for imaging bone and non-bone structures in a flowchart.
  • the process to image bone and non-bone structures with the tactile sensing device during a lumbar puncture begins by having the user identify the midline of the patient by moving the tactile sensing device laterally along the patient's back until the midline is identified.
  • the midline of the patient is identified when the image of the bone and non-bone structures shows the patient's spine centered on the display screen.
  • the user ensures force is applied to the tactile sensing device and against the patient 4078 , in order to obtain the most accurate readings.
  • voltage signals is generated by the tactile sensing device and then collected 4080 , as shown in FIG. 4 .
  • the collected voltage signals is processed by a computing device and transformed into an image 4082 , which the user visualizes 4084 on the display screen.
  • converting the voltage signals comprises acquiring, processing, and transforming the signals into the image using a computer processor.
  • FIG. 10 exemplifies these methods for generating an image of bone and non-bone structures in a flowchart.
  • voltage signals generated by the tactile sensing device are transmitted via a multiplexer and a voltage divider. In some embodiments, voltage signals generated by the tactile sensing device are transmitted via a voltage divider. In some embodiments, the transmitted voltage signals are collected using a computer processor 10124 . In some embodiments, the computer processor converts the collected voltage signals into a mathematical array 10126 . In some embodiments, the computer processor rescales the mathematical array 10128 . In some embodiments, the rescaled mathematical array is transformed into an image 10130 that is displayed in real-time on the display screen.
  • the methods for imaging bone and non-bone structures comprise imaging a first and second bone and non-bone structures. In some embodiments, the methods for generating an image of bone and non-bone structures comprise generating an image of a first and second bone and non-bone structures. In some embodiments, the methods for imaging bone and non-bone structures image a plurality of bone and non-bone structures. In some embodiments, the methods for generating an image of bone and non-bone structures image a plurality of bone and non-bone structures. In some embodiments, the methods for imaging bone and non-bone structures comprise placing the tactile sensing device on the individual. In some embodiments, placing the tactile sensing device on the individual further comprises positioning the tactile sensing device on a bone structure.
  • a bone structure is a rib.
  • a bone structure is an articular surface.
  • an articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulations of a first bone of a foot with a second bone of the foot.
  • a vertebral articulation is a spinous process.
  • a non-bone structure is subcutaneous tissue, a muscle, a ligament, adipose tissue, a cyst, or a cavity.
  • the tactile sensing device 1000 comprises a sensor array 1008 .
  • the sensor array comprises tactile sensors.
  • the tactile sensors are force-sensitive resistors.
  • the force-sensitive resistors change their resistive value in response to a change in applied pressure.
  • the force-sensitive resistors output voltage signals.
  • the array of force-sensitive resistors is a 6 ⁇ 3 array comprising eighteen force-sensitive resistors.
  • the array of force-sensitive resistors is an 8 ⁇ 4 array comprising thirty two force-sensitive resistors.
  • the size of the array of force-sensitive resistors is dependent upon the surface area of the individual's body to be examined.
  • the array of force-sensitive resistors is configured in a way that is sufficient to visualize the bone and non-bone structures in the individual.
  • the array of force-sensitive resistors is secured onto a sensor array platform 3022 .
  • the sensor array platform 3022 comprises cylindrical struts 3026 onto which the force-sensitive resistors are adhered to.
  • the cylindrical struts 3026 onto which the force-sensitive resistors are adhered are connectors.
  • each sensor 3016 is covered with a material configured to enhance force feedback.
  • the material covering the force-sensitive resistors is a hemispherical rubber disk.
  • the tactile sensing device further comprises a multiplexer.
  • the multiplexer selects voltage output signals from the force-sensitive resistors and forwards the selected voltage output signals into a single line.
  • the multiplexer is mounted onto a printed circuit board.
  • the tactile sensing device further comprises a voltage divider.
  • the voltage signal output from the force-sensitive resistors is read out using a voltage divider.
  • the image of bone and non-bone structures provided to the user via a display screen is a pressure map representing bone and non-bone structures.
  • the pressure map is a heat map.
  • the heat map is a graphical representation of voltage signals wherein the individual voltage output signals are represented as a plurality of colors, color hues, color saturations, graphical patterns, shading, geometrical figures, or any combination thereof.
  • the pressure map is overlaid onto a second image.
  • a tactile sensing device on a lumbar region of the individual; applying force to the tactile sensing device against the lumbar region; viewing voltage signals, corresponding to vertebral articulations, detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region, on a display screen; localizing two spinous processes on the image; identifying a gap between a first spinous process and a second spinous process of the individual; using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and collecting cerebrospinal fluid or administering a therapeutic agent.
  • a tactile sensing device placed on a lumbar region of the individual; applying force to the tactile sensing device against the lumbar region; viewing voltage signals, corresponding to vertebral articulations, detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region, on a display screen; localizing two spinous processes on the image; identifying a gap between a first spinous process and a second spinous process of the individual; using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and injecting a therapeutic agent into the epidural space.
  • therapeutic agents are delivered via a lumbar puncture.
  • therapeutic agents delivered via a lumbar puncture include but are not limited to: anesthetics, analgesics, chemotherapeutic agents, contrast agents or dyes, anti-spasmodic agents, antibiotics, or proteins.
  • anesthetics delivered via a lumbar puncture include but are not limited to: bupivacaine, lidocaine, tetracaine, procaine, ropivacaine, levobupivacaine, prilocaine, and cinchocaine.
  • analgesics delivered via a lumbar puncture include but are not limited to: opioids such as morphine, fentanyl, diamorphine, buprenorphine, and pethidine or meperidine; and non-opioids such as clonidine.
  • chemotherapeutic agents delivered via a lumbar puncture include but are not limited to: methotrexate, cytarabine, hydrocortisone, and thiotepa.
  • contrast agents or dyes delivered via a lumbar puncture include but are not limited to: iohexol, metrizamide, iopamidol, ioversol, iopromide, iodixanol, iolotran, and iodophenylundecylic acid.
  • anti-spasmodic agents delivered via a lumbar puncture include baclofen.
  • antibiotics delivered via a lumbar puncture include gentamicin sulphate.
  • proteins delivered via a lumbar puncture include idursulfase.
  • methods for performing a lumbar puncture in an individual in need thereof comprise using a needle guide to insert a needle between the first and second spinous processes and into the subarachnoid space of the individual.
  • methods for administering a therapeutic agent to an epidural space of an individual in need thereof comprise using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual.
  • the first spinous process is a part of the first lumbar vertebra (L1), L2, L3, or L4 lumbar vertebrae and the second spinous process is a part of L2, L3, L4, or L5 lumbar vertebrae.
  • the first and spinous process is a part of any cervical, thoracic, lumbar, sacrum, or coccyx vertebrae.
  • the system further comprises a needle, a needle guide, a stylet, or a catheter.
  • the needle is an atraumatic, also known as pencil-point type needle, or a traumatic needle, also known as a classic needle or a Quincke type needle.
  • the system further comprises a spinal needle.
  • the spinal needle is a Quincke spinal needle, a Whitacre spinal needle, or a Sprotte spinal needle.
  • the system further comprises an epidural needle.
  • the epidural needle is a Weiss epidural needle, a Tuohy epidural needle, or a Hustead epidural needle.
  • the needle incudes, by way of non-limiting examples, a 6-gauge needle, an 8-gauge needle, a 13-gauge needle, a 15-gauge needle, a 17-gauge needle, an 18-gauge needle, a 19-gauge needle, a 20-gauge needle, a 21-gauge needle, a 22-gauge needle, a 23-gauge needle, a 24-gauge needle, a 25-gauge needle, a 26-gauge needle, a 27-gauge needle, a 28-gauge needle, a 29-gauge needle, a 30-gauge needle, a 31-gauge needle, and a 32-gauge needle.
  • the needle is a spinal needle ranging between 1-10 inches in length.
  • the needle contains a stylet, also known as an obturator or an introducer, which is a fine wire, a slender probe, or a solid rod with a metal hub fitted to match a needle's bevel.
  • a stylet is withdrawn from the needle to allow cerebrospinal fluid to flow out from the spinal canal and through the needle hub.
  • the system further comprises a catheter.
  • the catheter is an epidural tunneled catheter, which is implanted into the epidural space as a medication delivery port.
  • the catheter is used to monitor intracranial pressure during a diagnostic lumbar puncture procedure.
  • the catheter is used as means to continuously remove cerebrospinal fluid and relieve pressure on the brain of a patient suffering from hydrocephalus.
  • a needle guide 1002 is operatively connected to the tactile sensing device 1000 .
  • the needle guide 1002 operatively connected to the tactile sensing device 1000 , is used to control the angle and direction of a needle that is inserted into an individual in need thereof.
  • the needle guide 1002 is oriented between a ⁇ 45° and 45° cephalad angle, terminating at a needle orifice 1038 located on the center of the sensor array 1008 , thereby controlling the angle at which the needle is inserted into a human body.
  • the needle guide 1002 is oriented at a 15° cephalad angle.
  • the needle orifice 1038 located on the center of the sensor array 1008 is an elongated slit.
  • the needle guide 1002 terminates at a plurality of openings formed by an elongated slit with a plurality of columns.
  • a needle guide cartridge 2012 is operatively connected to the tactile sensing device 2000 .
  • the needle guide cartridge 2012 is oriented between a ⁇ 45° and 45° cephalad angle, terminating at a needle orifice 2038 located along the midline of the sensor array 2008 , thereby controlling the angle at which the needle is inserted into a human body.
  • the needle guide cartridge 2012 is oriented at a 15° cephalad angle. In some embodiments, the needle guide cartridge 2012 terminates at an opening. In some embodiments, the needle orifice 2038 located on the center of the sensor array 2008 is an elongated slit.
  • a tactile sensing device on a lumbar region of the individual; applying force to the tactile sensing device against the lumbar region; viewing voltage signals, corresponding to vertebral articulations, detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region, on a display screen; localizing two spinous processes on the image; identifying a gap between a first spinous process and a second spinous process of the individual; using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and collecting cerebrospinal fluid or administering a therapeutic agent.
  • a tactile sensing device on a lumbar region of the individual; applying force to the tactile sensing device against the lumbar region; viewing voltage signals, corresponding to vertebral articulations, detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region, on a display screen; localizing two spinous processes on the image; identifying a gap between a first spinous process and a second spinous process of the individual; using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and injecting a therapeutic agent into the epidural space.
  • kits for performing a diagnostic lumbar puncture in an individual in need thereof comprising: a tactile sensing device to image bone and non-bone structures in the individual; a computer to process voltage signals detected by the tactile sensing device; a display screen to visualize the bone and non-bone structures; an electronic pressure sensor to measure cerebrospinal fluid pressure; and a fluid collection system to collect cerebrospinal fluid.
  • the tactile sensing device 1000 comprises a sensor array 1008 .
  • the sensor array comprises a plurality of tactile sensors.
  • the tactile sensors are force-sensitive resistors.
  • the force-sensitive resistors change their resistive value in response to a change in applied pressure.
  • the force-sensitive resistors output voltage signals.
  • the array of force-sensitive resistors is a 6 ⁇ 3 array comprising eighteen force-sensitive resistors.
  • the array of force-sensitive resistors is an 8 ⁇ 4 array comprising thirty two force-sensitive resistors.
  • the size of the array of force-sensitive resistors is dependent upon the surface area of the individual's body to be examined.
  • the array of force-sensitive resistors is configured in a way that is sufficient to visualize the bone and non-bone structures in the individual.
  • the array of force-sensitive resistors is secured onto a sensor array platform 3022 .
  • the sensor array platform 3022 comprises cylindrical struts 3026 onto which the sensors are adhered to.
  • the cylindrical struts 3026 onto which the sensors are adhered are connectors.
  • the force-sensitive resistors are covered with a material configured to enhance force feedback.
  • the material covering the force-sensitive resistors is a hemispherical rubber disk.
  • the tactile sensing device images a first and second bone and non-bone structures. In some embodiments, the tactile sensing device images a plurality of bone and non-bone structures. In some embodiments, a bone structure is a rib. In some embodiments, a bone structure is an articular surface.
  • an articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulations of a first bone of a foot with a second bone of the foot.
  • a vertebral articulation is a spinous process.
  • a non-bone structure is subcutaneous tissue, a muscle, a ligament, adipose tissue, a cyst, or a cavity.
  • the tactile sensing device further comprises a computing device.
  • the computing device is a microcontroller.
  • the microcontroller is an 8-bit, 16-bit, or 32-bit microcontroller.
  • the microcontroller is an 8051 microcontroller, a programmable interface controller (PIC), an AVR or Advanced Virtual RISC microcontroller, or an ARM® microcontroller.
  • the microcontroller is, by way of non-limiting examples, an electrician Uno microcontroller or a Raspberry Pi microcontroller.
  • the tactile sensing device 1000 , 2000 comprises a display screen 1032 , 2032 to provide visual information to a user.
  • the display screen 1032 is operatively connected to the tactile sensing device 1000 .
  • the display screen 2032 is operatively connected to the tactile sensing device 2000 .
  • the display screen is a computer screen, a mobile device screen, or a portable device screen.
  • the display screen is a cathode ray tube (CRT).
  • the display screen is a liquid crystal display (LCD).
  • the display screen is a thin film transistor liquid crystal display (TFT-LCD).
  • the display screen is an organic light emitting diode (OLED) display.
  • OLED organic light emitting diode
  • an OLED display is a passive-matrix OLED (PMOLED) or active-matrix OLED (AMOLED) display.
  • the display screen 1032 , 2032 is a plasma display.
  • the display screen is a video projector.
  • the display screen is a combination of devices such as those disclosed herein.
  • the visual information provided to the user via a display screen is a pressure map representing bone and non-bone structures.
  • the pressure map is a heat map.
  • the heat map is a graphical representation of voltage signals wherein the individual voltage output signals are represented as a plurality of colors, color hues, color saturations, graphical patterns, shading, geometrical figures, or any combination thereof.
  • a needle guide 1002 is operatively connected to the tactile sensing device 1000 .
  • the needle guide 1002 operatively connected to the tactile sensing device 1000 , is used to control the angle and direction of a needle that is inserted into an individual in need thereof.
  • the needle guide 1002 is oriented between a ⁇ 45° and 45° cephalad angle, terminating at a needle orifice 1038 located on the center of the sensor array 1008 , thereby controlling the angle at which the needle is inserted into a human body.
  • the needle guide 1002 is oriented at a 15° cephalad angle.
  • the needle orifice 1038 located on the center of the sensor array 1008 is an elongated slit.
  • the needle guide 1002 terminates at a plurality of openings formed by an elongated slit with a plurality of columns.
  • a needle guide cartridge 2012 is operatively connected to the tactile sensing device 2000 .
  • the needle guide cartridge 2012 is oriented between a ⁇ 45° and 45° cephalad angle, terminating at a needle orifice 2038 located along the midline of the sensor array 2008 , thereby controlling the angle at which the needle is inserted into a human body.
  • the needle guide cartridge 2012 is oriented at a 15° cephalad angle. In some embodiments, the needle guide cartridge 2012 terminates at an opening. In some embodiments, the needle orifice 2038 located on the center of the sensor array 2008 is an elongated slit.
  • the tactile sensing device further comprises a pressure sensor operatively connected to the tactile sensing device and configured to measure cerebrospinal fluid pressure.
  • the pressure sensor is operatively connected to the tactile sensing device via a 3-way valve 2014 .
  • the pressure sensor is an electronic pressure sensor.
  • the pressure sensor is a piezoresistive, capacitive, electromagnetic, piezoelectric, optical, or potentiometric pressure sensor.
  • cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed digitally.
  • cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed on a display screen in real-time.
  • the tactile sensing device further comprises a fluid collection system operatively connected to the tactile sensing device and configured to collect a fluid such as cerebrospinal fluid.
  • the fluid collection system is disposable.
  • the fluid collection system comprises a diaphragm, faucet, spoke, or rail design.
  • the fluid collection system is sterile.
  • the fluid collection system is modular.
  • FIGS. 1A, 1B, and 1C show an illustration of one embodiment of the tactile sensing device 1000 .
  • the tactile sensing device 1000 comprises a sensor array 1008 , a display screen 1032 , a needle guide 1002 , and a faucet fluid collection system 1006 .
  • the tactile sensing device further comprises a handle 1004 in the shape of a pistol grip.
  • the handle 1004 is proximal to the user.
  • the tactile sensing device 1000 is configured to image a target tissue location and to guide a needle to a desired target tissue location.
  • Sensor array 1008 is distal to the user.
  • Sensor array 1008 comprises 18 sensors; only a first sensor 1016 a , a second sensor 1016 b , a third sensor 1016 c , a fourth sensor 1016 d , a fifth sensor 1016 e , and a sixth sensor 1016 f are shown in FIG. 1B .
  • the sensor array 1008 is a tactile sensor array. In some embodiments, the sensor array 1008 is an ultrasound sensor array.
  • the sensor array 1008 is an infrared radiation (IR) sensor array.
  • Sensor array 1008 is a sensor array cartridge that is pressed into a sensor array holder 1104 , which is located distally, beneath the display screen 1032 . Sensors in the sensor array 1008 face away from the user when the sensor array 1008 is loaded into place within the tactile sensing device. In some embodiments, the sensor array 1008 turns on once it is loaded into the sensor array holder 1104 . Sensor array holder 1104 is loaded into place in a multitude of ways. Non-limiting examples of loading the sensor array 1008 into the sensor array holder 1104 that are not shown in FIGS.
  • the sensor array 1008 includes: pressing the sensor array 1008 into the sensor array holder 1104 , including snap fit features that allow the sensor array 1008 to stay in place once loaded, any magnetic means to hold the sensor array 1008 in place, any mechanical means to hold the sensor array 1008 in place.
  • a tugging string is used to snap the sensor array 1008 out of the sensor array holder 1104 .
  • the sensor array 1008 comprises snap ledges, or other reversible means of loading the sensor array 1008 into the sensor array holder 1104 .
  • the sensor array 1008 remains in place simply because it abuts the ledge of the sensor array holder 1104 .
  • one or more tabs are present on the external surface of the sensor array holder 1104 .
  • the tabs are able to be twisted in order to prevent unwanted movement or removal that is distally of the sensor array 1008 relative to the sensor array holder 1104 .
  • the sensor array 1008 is reversibly loaded into the sensor array holder 1104 .
  • the sensors in the sensor array 1008 generate output voltage signals when the user applies a force using the tactile sensing device 1000 onto a surface, for example, onto a tissue of a patient.
  • the sensor array 1008 is operatively connected to the display screen 1032 and a computing device (not shown in FIGS. 1A, 1B, and 1C ).
  • the sensor array 1008 relays its output voltage signals to the computing device (not shown in FIGS. 1A, 1B, and 1C ), the computing device processes the output voltage signals, and an image of the output voltage signals is visualized on the display screen 1032 .
  • the needle guide 1002 is shaped as a track, and it is configured to accept a needle 1142 .
  • the needle guide 1002 includes a proximal opening 1140 a and a distal opening 1140 b .
  • the needle guide 1002 is oriented at a 15° cephalad angle.
  • the needle guide 1002 is oriented between a ⁇ 45° and 45° cephalad angle.
  • the needle 1142 is inserted into the needle guide 1002 through the proximal opening 1140 a and sits on the needle guide 1002 . Once inserted into the needle guide 1002 , the needle 1142 exits the needle guide 1002 through a needle orifice 1038 located in the sensor array 1008 , between the third sensor 1016 c and the fourth sensor 1016 d.
  • a 3-way valve 1014 is inserted into the needle guide 1002 through the distal slit 1090 b and sits on the needle guide 1002 .
  • the 3-way valve 1014 is connected to a needle via its needle hub prior to insertion into the needle guide 1002 .
  • the 3-way valve 1014 is shown in the center of the needle guide 1002 in FIGS. 1B and 1C .
  • the 3-way valve comprises a needle hub connector 1100 , a pressure gauge connector 1094 , and a fluid port 1096 .
  • the needle hub connector 1100 faces distally away from the user, and it is configured to connect to a needle hub.
  • the pressure gauge connector 1094 is oriented upward, and it is configured to connect to a pressure sensor (not shown in FIGS.
  • the pressure gauge connector 1094 protrudes through the slit 1090 .
  • the fluid port 1096 faces the user, and it is an open port through which fluid flows freely.
  • the fluid port 1096 faces the user, and it is an open port through which fluid, collected from a patient, flows freely.
  • First fluid hole 1098 a is located between the 3-way valve 1014 and the proximal needle guide 1002 a .
  • Second fluid hole 1098 b is located directly beneath first fluid hole 1098 a .
  • cerebrospinal fluid flows freely through the fluid port 1096 , follows the downward sloping needle guide 1002 , flows through the first fluid hole 1098 a , flows through the second fluid hole 1098 b , and flows into a collection tube 1010 a .
  • fluid collected from a patient flows freely through the fluid port 1096 , follows the downward sloping needle guide 1002 , flows through the first fluid hole 1098 a , flows through the second fluid hole 1098 b , and flows into a collection tube 1010 a.
  • a knob (not shown in FIGS. 1A, 1B, and 1C ) is operatively connected to the 3-way valve 1014 . In some embodiments, a knob (not shown in FIGS. 1A, 1B, and 1C ) is operatively coupled to the tactile sensing device 1000 .
  • Non-liming examples of operatively connecting the knob include: coupling the knob to the needle hub connector 1100 , coupling the knob to the pressure gauge connector 1094 , coupling the knob to a pressure gauge (not shown in FIG. 1A, 1B , or 1 C) connected to the pressure gauge connector 1094 , or coupling the knob to a pressure sensor (not shown in FIG.
  • the knob (not shown in FIG. 1A, 1B , or 1 C) enables the needle to be reversibly moved towards the sensor array 1008 or away from the sensor array 1008 , once the needle 1142 is operatively coupled to the tactile sensing device 1000 .
  • the knob (not shown in FIG. 1A, 1B , or 1 C) protrudes through the slit 1090 and may be displaced through the length of the slit. In some embodiments, the knob (not shown in FIG. 1A, 1B , or 1 C) protrudes through the proximal slit 1090 a when the needle 1142 has not been inserted into a patient.
  • the knob protrudes through the distal slit 1090 b or close to the distal slit 1090 b when the user has inserted or is in the process of inserting the needle 1142 into a patient.
  • the direction of the needle movement 1136 is shown in FIG. 1B .
  • the faucet fluid collection system 1006 comprises a central rod 1116 , a faucet base 1054 , a rotating handle 1052 , and collection tubes 1010 .
  • the faucet base 1054 includes an elongated central rod 1116 extending upwardly therefrom.
  • the faucet base 1054 is located directly above, and it is operatively connected to the rotating handle 1052 via a projection 1132 .
  • the rotating handle 1052 is able to be rotated clockwise or counterclockwise about an imaginary Y-axis that vertically traverses the central rod 1116 . Rotating the rotating handle 1052 enables rotation of the collection tubes 1010 .
  • the collection tubes 1010 sit on the faucet base 1054 .
  • the faucet base 1054 comprises individual round receptacles (not shown in FIGS.
  • Collection tubes 1010 comprise a first collection tube 1010 a , a second collection tube 1010 b , and a third collection tube 1010 c , as shown in FIG. 1B .
  • the faucet fluid collection system 1006 comprises at least one collection tube.
  • the faucet fluid collection system comprises up to 20 collection tubes. The position of collection tubes 1010 is controlled by the rotation of the rotating handle 1052 . Collection tubes 1010 are positioned directly beneath the second fluid hole 1098 b when collecting a fluid.
  • the tactile sensing device 1000 is turned on by the user via the insertion of the sensor array 1008 into the sensor array holder 1114 .
  • the user holds the tactile sensing device by the handle 1004 and presses the sensor array 1008 against the patient.
  • the user visualizes underlying bone and/or soft tissue on the display screen 1032 .
  • the user inserts a needle into the needle guide 1002 and connects the needle to the 3-way valve 1014 via a needle hub connector 1100 . Based on the image on the display screen 1032 , the user is able to guide the needle at a 15° cephalad angle into a desired target location in the patient.
  • the user utilizes the tactile sensing device 1000 to perform a lumbar puncture to collect cerebrospinal fluid (CSF).
  • CSF cerebrospinal fluid
  • CSF Collection of CSF is facilitated by the faucet fluid collection system 1006 . Further non-limiting examples of fluid collections systems are illustrated in FIGS. 5-8 .
  • CSF begins to flow from the subarachnoid space, into the needle, through the needle hub, into the needle hub connector 1100 , through the 3-way valve 1014 , through the fluid port 1096 , through the first fluid hole 1098 a , through the second fluid hole 1098 b , and finally into a first collection tube 1010 a .
  • the user optionally monitors the CSF pressure in real time once the needle is in the subarachnoid space by connecting a pressure sensor (not shown in FIGS. 1A, 1B, and 1C ) to the 3-way valve 1014 via a pressure gauge connector 1094 .
  • FIGS. 2A, 2B, and 2C illustrate another embodiment of the tactile sensing device 2000 .
  • the tactile sensing device 2000 comprises a sensor array 2008 , a display screen 2032 , a needle guide cartridge 2012 , and a rail fluid collection system 2062 .
  • the tactile sensing device further comprises a gripper 2020 with a curved shape.
  • the gripper 2020 is proximal to the user.
  • the tactile sensing device 2000 is configured to image a target tissue location and to guide a needle to a desired target tissue location.
  • the tactile sensing device 2000 further enables positioning of a needle at five discrete levels.
  • the tactile sensing device 2000 further enables positioning of a needle at a 15° cephalad angle; this angle is not accurately shown in FIGS. 2A, 2B, and 2C .
  • Sensor array 2008 is distal to the user.
  • Sensor array 2008 comprises 18 sensors: a first sensor 2016 a , a second sensor 2016 b , a third sensor 2016 c , a fourth sensor 2016 d , a fifth sensor 2016 e , a sixth sensor 2016 f , a seventh sensor 2016 g , an eighth sensor 2016 h , a ninth sensor 2016 i , a tenth sensor 2016 j , an eleventh sensor 2016 k , a twelfth sensor 2016 l , a thirteenth sensor 2016 m , a fourteenth sensor 2016 n , an fifteenth sensor 2016 o , a sixteenth sensor 2016 p , a seventeenth sensor 2016 q , and an eighteenth sensor 2016 r are shown in FIG.
  • the sensor array 2008 is a tactile sensor array.
  • Sensor array 2008 is a sensor array cartridge that is loaded into a sensor array holder 2104 , which is located distally, beneath the display screen 2032 . Sensors in the sensor array 2008 face away from the user when the sensor array 2008 is loaded into place. In some embodiments, the sensor array 2008 turns on once it is loaded into the sensor array holder 2104 .
  • the sensor array 2008 is loaded in a multitude of ways, including all the non-limiting examples of loading sensor array 1008 mentioned supra.
  • the sensors in the sensor array 2008 generate output voltage signals when the user applies a force using the tactile sensing device 2000 onto a surface, for example, onto a tissue of a patient.
  • the sensor array 2008 is operatively connected to the display screen 2032 and a computing device (not shown in FIGS. 2A, 2B, and 2C ).
  • the sensor array 2008 relays its output voltage signals to the computing device (not shown in FIGS. 2A, 2B, and 2C ), the computing device processes the output voltage signals, and an image of the output voltage signals is visualized on the display screen 2032 .
  • the needle guide cartridge 2012 is a modular component. In some embodiments, the needle guide cartridge 2012 is disposable. In some embodiments, the needle guide cartridge 2012 is loaded into place.
  • the needle guide cartridge 2012 comprises a first needle guide 2002 a , a second needle guide 2002 b , a third needle guide 2002 c , a fourth needle guide 2002 d , and a fifth needle guide 2002 e .
  • the needle guides are shaped like tracks and are configured to accept a needle (needle is not shown in FIGS. 2A, 2B, and 2C ).
  • a needle is placed on the needle guide by introducing it from the top, using either a proximal slit 2190 a , a distal slit 2190 b , a knob opening 2110 , or a combination thereof.
  • a needle is placed on the needle guide by introducing it through a first side opening 2106 a , a second side opening 2106 b , a third side opening 2106 c , a fourth side opening 2106 d , or a fifth side opening 2106 e .
  • the needle guides are oriented at a 15° cephalad angle. Once inserted into a needle guide, the needle (not shown in FIGS.
  • a needle inserted into the first needle guide 2002 a exits the sensor array 2008 through the first needle orifice 2038 a located in the sensor array 2008 .
  • a needle inserted into the second needle guide 2002 b exits the sensor array 2008 through the second needle orifice 2038 b located in the sensor array 2008 .
  • a needle inserted into the third needle guide 2002 c exits the sensor array 2008 through the third needle orifice 2038 c located in the sensor array 2008 .
  • a needle inserted into the fourth needle guide 2002 d exits the sensor array 2008 through the fourth needle orifice 2038 d located in the sensor array 2008 .
  • a needle inserted into the fifth needle guide 2002 e exits the sensor array 2008 through the fifth needle orifice 2038 e located in the sensor array 2008 .
  • a 3-way valve 2014 is fixed to the needle guide cartridge 2012 , below the fifth side opening 2106 e , and in between the guide rails 2134 .
  • the 3-way valve comprises a needle hub connector 2100 , a pressure gauge port 2108 , and a fluid connector 2068 .
  • the needle hub connector 2100 faces distally away from the user, and it is configured to connect to tubing that further connects to a needle hub (tubing and needle not shown in FIGS. 2A, 2B, and 2C ).
  • the pressure gauge port 2108 is oriented away from the needle guide cartridge 2012 .
  • the pressure gauge port 2108 is configured to connect to a pressure sensor (not shown in FIGS. 2A, 2B, and 2C ).
  • the fluid connector 2068 is configured to connect to tubing.
  • the fluid connector 2068 comprises an opening that is oriented downward in order to lead a fluid into a collection tube. For example, FIG. 2B shows the fluid connector 2068 protruding into a third collection tube 2010 c.
  • the rail fluid collection system 2062 comprises a sliding rail platform 2064 and collection tubes.
  • the rail fluid collection system 2062 includes a first collection tube 2010 a , a second collection tube 2010 b , a third collection tube 2010 c , and a fourth collection tube 2010 d .
  • Two guide rails 2134 extend beneath the needle guide cartridge 2012 and receive two longitudinal edges of the sliding rail platform 2064 .
  • the sliding rail platform 2064 includes rail platform openings 2132 . In some embodiments, the rail platform openings 2132 are circular in shape. The rail platform openings 2132 are configured to hold collection tubes.
  • the position of collection tubes 1010 is controlled by the sliding of rail platform 2064 along the guide rails 2134 . Collection tubes 1010 are positioned directly beneath the fluid connector 2068 when collecting a fluid.
  • FIGS. 3A and 3B illustrate a sensor array 3008 .
  • FIG. 3B illustrates the application of the sensor array 3008 onto artificial lumbar vertebrae 3030 .
  • the sensor array 3008 comprises a sensor array platform 3022 that is rectangular in shape.
  • the sensor array platform 3022 comprises a 6 ⁇ 3 array of cylindrical struts 3026 that protrude from the surface of the sensor array platform.
  • the cylindrical struts 3026 are 5 mm in diameter.
  • the center-to-center distance between the cylindrical struts 3026 is 11 mm.
  • Each sensor 3016 is adhered onto the top surface of the cylindrical struts 3026 .
  • a hemispherical disk 3024 is secured above each adhered sensor 3016 .
  • the hemispherical disk 3024 enhances force feedback to each sensor 3016 .
  • the hemispherical disk 3024 is composed of a compressible material.
  • the hemispherical disk 3024 is composed of a plastic that is soft and pliable at room temperature.
  • the hemispherical disk 3024 is composed of rubber.
  • the hemispherical disk 3024 is composed of silicone.
  • the hemispherical disk 3024 is composed of polyethylene.
  • the hemispherical disk 3024 is composed of a plastic that is hard and non-pliable at room temperature.
  • the hemispherical disk 3024 is composed of polystyrene.
  • materials that are used to fabricate the hemispherical disk 3024 include: polypropylene, polyester, polycarbonate, polyvinyl chloride, nylon, poly(methyl methacrylate), polyethylene terephthalate, polyimide, or Bakelite.
  • FIG. 4 shows a method of using a tactile sensing device to obtain an image.
  • the tactile sensing device is pressed against an area that is to be imaged and force is applied to the sensor array of the tactile sensing device.
  • a computing device is provided, and the computing device is operatively connected to the tactile sensing device.
  • the computing device collects voltage signals that are generated by the sensor array of the tactile sensing device after a force is applied onto the surface of the sensors in the sensor array.
  • the computing device processes the collected voltage signals such that the voltage signals are converted into an image.
  • the image is displayed on a display screen of the tactile sensing device.
  • the image displayed is a heat map. In some embodiments, the image displayed provides the user feedback regarding the uniformity of their application of force to the tactile sensing device. In some embodiments, the image displayed includes the approximate position of a needle at the skin surface as well as the approximate depth of a needle. In some embodiments, for example, when the tactile sensing device comprises multiple needle guides as the exemplary embodiment shown in FIGS. 2A, 2B, and 2C , the image displayed includes the approximate positions and depths at all levels corresponding with the multiple needle guides.
  • FIG. 5 illustrates a flow control diaphragm fluid collection system 5042 .
  • the diaphragm fluid collection system 5042 is amenable to be incorporated into the tactile sensing device.
  • the diaphragm fluid collection system 5042 includes a first collection tube 5010 a , a second collection tube 5010 b , a third collection tube 5010 c , and a fourth collection tube 5010 d .
  • the collection tubes are stacked vertically, one on top of the other.
  • the first collection tube 5010 a is located on top of the second collection tube 5010 b , which is located on top of the third collection tube 5010 c , which is located on top of the fourth collection tube 5010 d .
  • a cap 5046 is configured to be secured on the first collection tube 5010 a .
  • Non-limiting examples of configurations to secure the cap 5046 onto the first collection tube 5010 a include: threading, snap-fitting into the collection tube's circumference, snap-fitting into a slot, and snug-fitting.
  • the first collection tube 5010 a is connected to the second collection tube.
  • the first collection tube 5010 a has a first diaphragm 5044 a instead of a bottom flat surface.
  • a first rotating band 5112 a allows the first diaphragm 5044 a to be opened by rotating the first rotating band 5112 a counterclockwise.
  • the first rotating band 5112 a allows the first diaphragm 5044 a to be opened by rotating the first rotating band 5112 a clockwise.
  • a first rotating band 5112 a allows the first diaphragm 5044 a to be closed by rotating the first rotating band 5112 a clockwise.
  • the first rotating band 5112 a allows the first diaphragm 5044 a to be closed by rotating the first rotating band 5112 a counterclockwise.
  • the second collection tube 5010 b includes a second diaphragm 5044 b and a second rotating band 5112 b that controls the opening and closing of the second diaphragm 5044 b in the same manner as the first collection tube 5010 a set up.
  • the third collection tube 5010 c includes a third diaphragm 5044 c and a third rotating band 5112 c that controls the opening and closing of the third diaphragm 5044 c in the same manner as already described.
  • the fourth collection tube 5010 d does not comprise a diaphragm.
  • the diaphragm fluid collection system 5042 comprises at least two collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises three collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises four collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises five collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises six collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises seven collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises eight collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises nine collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises ten collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises between ten and fifteen collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises between fifteen and twenty collection tubes.
  • FIG. 6 illustrates a top faucet fluid collection system 6120 .
  • a faucet element or rotating handle 6052 is operatively connected to housing 6118 that serves also as a cap to a container 6056 .
  • a faucet element or rotating handle 6052 is placed at the bottom of a faucet base 6054 (this embodiment is now shown in FIG. 6 ), similar to the faucet fluid collection system 1006 of FIGS. 1A, 1B, and 1C .
  • the rotating handle 6052 enables the collection tubes to be rotated clockwise or counterclockwise about an imaginary Y-axis that vertically traverses the center of the container 6056 .
  • the rotating handle 6052 is reversibly connected to a central rod 6116 .
  • the central rod 6116 is permanently connected to the faucet base 6054 .
  • the rotational movement of the rotating handle 6052 enables the simultaneous rotation of the central rod 6116 and the faucet base 6054 .
  • the container 6056 holds a plurality of collection tubes. In FIG. 6 , there are a total of four collection tubes, but only a first collection tube 6010 a and a second collection tube 6010 b are clearly depicted.
  • the housing 6118 is reversibly connected to the container 6056 .
  • Non-limiting examples of configurations to reversibly secure the housing 6118 onto the container 6056 include: threading, snap-fitting into the collection tube's circumference, snap-fitting into a slot, or snug-fitting.
  • the collection tubes are reversibly secured to the bottom of the container 6056 .
  • the collection tubes are reversibly secured to the faucet base 6054 . The user detaches the container 6056 from the housing 6118 and disconnects the central rod 6116 from the rotating handle 6052 , in order to access the collection tubes inside the container 6056 .
  • a circular plate is found within the housing 6118 (not shown in FIG. 6 ), lying parallel to the rotating handle 6052 .
  • the circular plate (not shown in FIG. 6 ) has a single orifice located directly beneath the faucet connector 6050 .
  • the faucet connector 6050 extends outwardly from the housing 6118 and is perpendicular to the container 6056 .
  • the faucet connector 6050 is configured to connect to a needle hub or tubing. Fluid traveling from a needle hub or from tubing and through the faucet connector 6050 flows through an elbow hollow opening (not shown in FIG. 6 ) that aligns with the orifice in the circular plate, the fluid exits the orifice in the circular plate (not shown in FIG. 6 ), and flows into one of the collection tubes inside the container.
  • the collection tubes are rotated clockwise or counterclockwise to allow for sequential filling.
  • the housing 6118 has numbers or labels to indicate the position of a collection tube.
  • the rotating handle 6052 has numbers or labels to indicate the position of a collection tube.
  • FIG. 7 illustrates a spoke fluid collection system 7058 .
  • the spoke fluid collection system 7058 comprises a central hub 7060 , which is octagonal in shape.
  • the central hub 7060 includes a first central hub opening 7086 a , a second central hub opening 7086 b , a third central hub opening 7086 c , and a fourth central hub opening 7086 d .
  • Each central hub opening is located on a side surface of the central hub 7060 .
  • FIG. 7 illustrates the third central hub opening 7086 c is located on the third side surface 7102 c and the fourth central hub opening 7086 d is located on the fourth side surface 7102 d .
  • the first central hub opening 7086 a and the second central hub opening 7086 b are also located on side surfaces, however, these side surfaces are not shown in FIG. 7 .
  • the first central hub opening 7086 a is configured to connect to a first collection tube 7010 a .
  • the second central hub opening 7086 b is configured to connect to a second collection tube 7010 b .
  • the third central hub opening 7086 c is configured to connect to a third collection tube 7010 c .
  • the fourth central hub opening 7086 d is configured to connect to a fourth collection tube 7010 d .
  • Non-limiting examples of configurations to connect the collection tubes to the central hub openings include: threading, snap-fitting into the collection tube's circumference, snap-fitting into a slot, or snug-fitting.
  • the central hub 7060 has a front face 7092 that is planar.
  • a spoke connector 7088 extends outwardly from the front face 7092 and is perpendicular to an imaginary Y-axis vertically traversing the central hub 7060 through the center of the first collection tube 7010 a and through the center of the third collection tube 7010 c .
  • the spoke connector 7088 is configured to connect to a needle hub, tubing, or a 3-way valve.
  • the spoke connector 7088 is hollow inside and serves as a channel to transport fluid.
  • the interior (not shown in FIG. 7 ) of the central hub 7060 is completely sealed except for openings that coincide with the central hub openings.
  • the central hub 7060 comprises a solid inner ring-like structure (not shown in FIG.
  • the solid inner ring-like structure (not shown in FIG. 7 ) has a single orifice that aligns with the first collection tube 7010 a . Fluid flowing through the spoke connector 7088 exits the spoke connector 7088 and falls at a 90° angle into the orifice of the solid inner ring-like structure. Thus, any fluid flowing through the spoke connector 7088 only accumulates in a collection tube that is in the position of the first collection tube 7010 a shown in FIG. 7 .
  • a knob (not shown in FIG. 7 ) that allows for the rotation of the central hub 7060 about an imaginary Z-axis that traverses the central hub 7060 through its center, perpendicular to the first collection tube 7010 a and the third collection tube 7010 c .
  • the knob (not shown in FIG. 7 ) is rotated clockwise or counterclockwise.
  • the rotation of the central hub 7060 by the knob (not shown in FIG. 7 ) enables the collection tubes to be rotated about the imaginary Z-axis when attached to the central hub 7060 .
  • the knob (not shown in FIG. 7 ) has numbers or labels to indicate the position of a collection tube.
  • FIG. 8 illustrates a rail fluid collection system 8062 .
  • the rail fluid collection system 8062 comprises a sliding rail platform 8064 , a first collection tube 8010 a , a second collection tube 8010 b , a third collection tube 8010 c , a fourth collection tube 8010 d , and guide rails 8134 .
  • the guide rails 8134 receive two longitudinal edges of the sliding rail platform 8064 .
  • the sliding rail platform 8064 includes rail platform openings 8132 . In some embodiments, the rail platform openings 8132 are circular in shape.
  • the rail platform openings 8132 are configured to hold collection tubes.
  • the lip 8122 of the collection tube projects onto the rail platform 8064 .
  • the position of the collection tubes is controlled by a manual sliding motion 8138 of the rail platform 8064 along the guide rails 8134 .
  • the collection tubes are positioned directly beneath a 3-way valve 8014 when they are to collect fluid.
  • the function of the 3-way valve 8014 is to direct fluid from an external needle hub or tubing into a collection tube.
  • the 3-way valve 8014 includes a fluid connector 8068 , which protrudes from the bottom surface of the 3-way valve 8014 .
  • the 3-way valve also includes a needle hub connector 8100 , which protrudes outwardly from the 3-way valve 8014 and is perpendicular to the fluid connector 8100 .
  • the needle hub connector 8100 is configured to connect to an external needle hub or tubing. A fluid flowing from an external needle hub or tubing, through the needle hub connector 8100 , flows downward at a 90° angle through the fluid connector 8068 when exiting the needle hub connector 8100 , and subsequently flows into a first collection tube 8010 a .
  • the fluid connector 8068 is configured to connect to tubing. In some embodiments, the fluid connector 8068 is optionally connected to tubing instead of only openly protruding into a collection tube. Another function of the 3-way valve 8014 is to enable a pressure sensor to obtain a pressure measurement of the fluid that is in contact with the 3-way valve 8014 .
  • the 3-way valve 8014 includes a pressure gauge port 8108 facing away from the guide rails 8134 .
  • the pressure gauge port 8108 is configured to connect to a pressure sensor.
  • FIGS. 9A and 9B are exemplary data demonstrating the functionality of the tactile sensing device on a lumbar spine model. Recordings are acquired using a combination of signal acquisition and processing executed by a computing device.
  • the computing device further comprises a non-transitory computer readable storage medium with a computer program including instructions executable by a processor.
  • the computer program is written in Python code, iOS code, or a combination thereof.
  • FIG. 9A demonstrates the change in voltage across a single sensor when moved in 1 cm increments, with changes in applied force. The applied force varies based on a mass.
  • FIG. 9A shows the mass, and thus the applied force, varies between 20 g to 500 g.
  • FIG. 9B demonstrates the change in voltage across a tactile sensing device comprising a column of 6 sensors with a 1 cm center-to-center distance. Voltages across each sensor are shown in FIG. 9B for 6 trials. In each trial, the column of 6 sensors is moved 1 cm increments. An increase in voltage is apparent for sensors above the underlying spinous processes 9070 (denoted as “bone” in FIG. 9B ) throughout the 6 trials.
  • FIG. 10 is a flow chart describing the instructions included in a computer program, which are executable by a computing device.
  • a sensor array comprising at least one sensor is configured to output a signal in response to a change in force applied to its surface; wherein the signal is converted to a pressure map.
  • Step 1 10124 describes the output voltage signals generated by the force-sensitive resistors via a voltage divider are inputted into the computing device via a multiplexer.
  • Step 2 10126 describes the inputted voltage signals are written to a serial monitor.
  • step 2 10126 further comprises organizing the inputted voltage signals.
  • a first computer program that includes instructions executable by a processor performs step 2 10126 .
  • a second computer program includes instructions to acquire the inputted voltage signals that were written to the serial monitor and generates a 6 ⁇ 3 array of sensor data.
  • the instructions to perform step 3 10128 which are included in the second computer program are executable by a processor.
  • a second computer program includes instructions to process the inputted voltage signals that were written to the serial monitor and rescales the previously generated 6 ⁇ 3 array of sensor data to a 60 ⁇ 30 array of sensor data.
  • the instructions to perform step 4 10130 use cubic interpolation methods to rescale the array of sensor data.
  • the instructions to perform step 4 10130 which are included in the second computer program are executable by a processor.
  • a second computer program includes instructions to update the display for real-time target tissue visualization.
  • the instructions to perform step 3 10128 , step 4 10130 , and step 5 10132 which are included in the second computer program are written in Python programming language.
  • the display is updated for real-time visualization of a patient's spine.
  • FIG. 10 illustrates the process of transforming sensor output into a visual display.
  • the visual display is a pressure map.
  • the algorithm shown in FIG. 10 is used to generate a pressure map.
  • the pressure map is a heat map.
  • the heat map displays high voltages in a red color.
  • high voltages are at or near 5V, corresponding to greater applied force.
  • high voltages in a heat map correspond to a bone.
  • high voltages in a heat map correspond to spinous processes.
  • the heat map displays low voltages in a blue color.
  • low voltages in a heat map correspond to tissue softer than bone.
  • low voltages in a heat map correspond to inter interspinous ligaments.
  • FIG. 11A illustrates a representative image of a pressure-mapping output.
  • the pressure map 11046 visually represents a target tissue location in an individual.
  • a pressure map 11046 is generated using the algorithm shown in FIG. 10 .
  • the pressure map 11046 shown in FIG. 11A is generated by using the tactile sensing device on an obese model of the lumbar spine.
  • a representation of the setup for using the tactile-sensing array applied to an obese model of the lumbar spine is shown in FIG. 3B .
  • the tactile sensing device comprising the sensor array, is pressed lightly against the lumbar spine model; the 2nd and 5th midline sensors are positioned directly over the spinous processes.
  • a third computer program which includes instructions to display the voltage signals sensed at a 1st midline sensor 11016 a , a 2nd midline sensor 11016 b , a 3rd midline sensor 11016 c , a 4th midline sensor 11016 d , a 5th midline sensor 11016 e , and a 6th midline sensor 11016 f along the midline (column 2 of the sensor array) after interpolation, was added to the algorithm described in FIG. 10 .
  • the pressure map 11046 is generated using the algorithm as described in FIG. 10 and the third computer program described supra.
  • the voltage values 11042 which are shown in FIG.
  • FIG. 11A range between about 0V and about 5V. In some embodiments, high voltage values are shown in a color red. In some embodiments, low voltage values are shown in a color blue. As shown in FIG. 11A , the greatest force, as evidenced by higher voltages, is found over the 2nd midline sensor 11016 b and 5th midline sensor 11016 e , which correspond to bony landmarks. In addition to revealing the gap between spinous processes, this visualization is also useful in providing feedback to the user on the uniformity of their force application. For example, it is clear in this pressure map 11046 that the user's force is slightly biased toward the sensors on the right. Therefore, the pressure map 11046 indicates to the user that the force that they are applying onto the tactile sensing device needs to be better distributed or corrected.
  • FIG. 11B illustrates a pressure map 11046 showing the needle's position at the skin level (“original”), and its adjusted, projected location, accounting for the remaining depth of the subcutaneous fat.
  • the pressure map 11046 only displays the needle position at the skin level 11048 .
  • the pressure map 11046 only displays the projected position of the needle 11050 , adjusted for the remaining depth of the subcutaneous fat.
  • the pressure map 11046 shown in FIG. 11B is generated by using the tactile sensing device on a lumbar spine model.
  • the depth used in this equation is experimentally determined to robustly apply to lumbar spine models with a wide spectrum of body mass indexes (BMIs): provided that the user applies significant force to overcome the damping in the underlying fat layers, the remaining depth to the spinous process becomes fairly uniform across cases.
  • BMIs body mass indexes
  • the depth level at which the needle will be once it traverses the subcutaneous fat is calculated proportionally. In some embodiments, the depth level at which the needle will be once it traverses the subcutaneous fat is calculated based on calculating the ratio between the maximum voltage reading (for example, over a spinous process) and the minimum voltage reading (for example, over an interspinous ligament) for the midline sensors and comparing this ratio to an empirically determined ratio of the maximum voltage reading to the minimum voltage reading. In some embodiments, the empirically determined ratio of the maximum voltage reading to the minimum voltage reading is determined based on a known depth.
  • the depth level at which the needle will be once it traverses the subcutaneous fat is calculated based on machine-learning algorithms. In some embodiments, machine-learning algorithms enhance the accuracy of the displayed needle projection.
  • the tactile sensing device further comprises a marking tool.
  • the marking tool helps the user identify the tissue target location.
  • the marking tool enables the user to mark the entry point of a needle on the skin surface of the patient.
  • the marking tool enables the user to mark or label a tissue target location.
  • marking or labeling the tissue target location is done subcutaneously, intramuscularly, or on the skin surface.
  • the marked tissue location is detected by a medical imaging device.
  • the marking tool enables the user to mark or label a target tissue location in order to be identified by a medical imaging device or system.
  • the marking tool is a light, an ink, a hydrogel, a nanoparticle.
  • the light is a laser light or a light emitting diode (LED).
  • the ink is a permanent ink, a gentian violent ink, a water-based ink, an oil-based in, a liquid ink, or a gel ink.
  • the hydrogel further comprises a contrast agent.
  • the nanoparticle further comprises a contrast agent.
  • the contrast agent includes, but is not limited to: a magnetic contrast agent, a radiocontrast agent, a radioactive contrast agent, a magnetic resonance imaging contrast agent, and a microbubble contrast agent.
  • Non-limiting examples of the magnetic contrast agent include: gadolinium-based agents or nanoparticles, iron oxide-based agents or nanoparticles, iron platinum-based agents or nanoparticles, and manganese-based agents or nanoparticles.
  • Non-limiting examples of the radiocontrast agent include: iodine-based agents or nanoparticles, air, thorium dioxide, carbon dioxide, gastrografin, and barium-based agents or nanoparticles.
  • Non-limiting examples of the radioactive contrast agent include: 64 Cu diacetyl-bis(N 4 -methylthiosemicarbazone), also called ATSM or Copper 64, 18 F-fluorodeoxyglucose (FDG), 18 F-fluoride, 3′-deoxy-3′[ 18 F]fluorothymidine (FLT), 18 F-fluoromisonidazole, gallium, techtenium-99m, and thallium.
  • FDG F-fluorodeoxyglucose
  • FLT 3′-deoxy-3′[ 18 F]fluorothymidine
  • 18 F-fluoromisonidazole gallium, techtenium-99m, and thallium.
  • Example 1 Tactile Sensing Device Prototype Testing in a Lumbar Spine Model
  • FIG. 9A illustrates the change in voltage across a single sensor when moved in 1 centimeter increments, with changes in applied force 9076 .
  • the bolded horizontal lines 9070 represent the underlying artificial spinous processes 3030 ; voltage increases 9072 are apparent for sensors that are situated above these artificial spinous processes. Detected voltage values are the lowest 9074 when there are no artificial spinous processes present below the tactile sensing device 1000 .
  • FIG. 9B exemplifies a column of 6 sensors with 1 centimeter center-to-center distance was designed.
  • Example 2 Diagnostic Lumbar Puncture Using a Tactile Sensing Device
  • a health care worker performing a lumbar puncture on an obese subject places the tactile sensing device on the lumbar region of the subject.
  • a pressure map viewed as a heat map by the health care worker, appears on the display screen 1032 , 2032 of the tactile sensing device 1000 , 2000 .
  • the heat map indicates bone structures, in this case spinous processes of the lumbar vertebrae, by representing these in red color base and indicates non-bone structures by representing these in a blue color base.
  • the tactile sensing device simultaneously computes a needle projection and displays it on the pressure map.
  • the health care worker adjusts the tactile sensing device's needle guide angle to a cephalad angle degree between ⁇ 45° and 45°.
  • the health care worker After identifying a gap between two of the lumbar vertebrae, for example L2 and L3, the health care worker inserts a spinal needle into the tactile sensing device's needle guide.
  • the health care worker uses the needle guide and the needle projection and heat map on the screen to guide the needle into the subarachnoid space.
  • the health care worker then uses the tactile sensing device's 1000 modular fluid collection system 1006 to collect cerebrospinal fluid (CSF). Once all CSF samples are collected, the health care worker uses the tactile sensing device's 1000 electronic pressure sensor, which automatically displays the CSF pressure CSF flow is detected, to readout and record the subject's intracranial pressure.
  • CSF cerebrospinal fluid
  • Example 3 Epidural Administration of a Therapeutic Using a Tactile Sensing Device
  • a pressure map viewed as a heat map by the health care worker, appears on the display screen 1032 , 2032 of the tactile sensing device 1000 , 2000 .
  • the heat map indicates bone structures, in this case spinous processes of the lumbar vertebrae, by representing these in red color base and indicates non-bone structures by representing these in a blue color base.
  • the tactile sensing device simultaneously computes a needle projection and displays it on the pressure map.
  • the health care worker adjusts the tactile sensing device's needle guide angle to a cephalad angle degree between ⁇ 45° and 45°.
  • the health care worker After identifying a gap between two of the lumbar vertebrae, for example L2 and L3, the health care worker inserts a spinal needle into the tactile sensing device's needle guide.
  • the health care worker uses the needle guide and the needle projection and heat map on the screen to guide the needle into the epidural space and inject the anesthetic.
  • a health care worker administering a hyaluronan injection, such as Synvisc-One®, to the knee joint of a patient suffering from osteoarthritis uses the tactile sensing device, instead of the traditional palpation and pen marking approach, to correctly localize needle placement. Correct needle placement is crucial in order to avoid accidentally jabbing the knee's cartilage and eliciting further damage.
  • the health care worker places the tactile sensing device 1000 , 2000 on the patient's knee.
  • a pressure map viewed as a heat map by the health care worker, appears on the display screen 1032 , 2032 of the tactile sensing device 1000 , 2000 .
  • the heat map indicates bone structures, in this case the patella, femur and tibia, by representing these in a red color base.
  • the heat map indicates non-bone structures, in this case the bursae of the knee, by representing these in a blue color base.
  • the tactile sensing device 1000 , 2000 simultaneously computes a needle projection and displays it on the pressure map.
  • the health care worker adjusts the tactile sensing device's 1000 , 2000 needle guide angle to a cephalad angle degree between ⁇ 45° and 45°. After identifying the suprapatellar bursa, the health care worker inserts a needle into the tactile sensing device's 1000 , 2000 needle guide.
  • the health care worker uses the needle guide and the needle projection and heat map on the screen to guide the needle into the suprapatellar bursa and inject hyaluronan.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dermatology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Physiology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Surgical Instruments (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Tactile sensing devices, systems, and methods to image a target tissue location are disclosed. When force is applied to the tactile sensing device, voltage data is detected and visualized on a screen, indicating the target tissue location.

Description

    CROSS-REFERENCE
  • This application is a continuation of U.S. application. Ser. No. 15/927,664, filed Mar. 21, 2018, which is a continuation of U.S. application Ser. No. 15/584,875, filed on May 2, 2017, which claims the benefit of priority to U.S. Provisional Application 62/331,279, filed on May 3, 2016, and U.S. Provisional Application No. 62/484,354, filed Apr. 11, 2017, each of which are incorporated herein by reference in their entireties.
  • SUMMARY
  • Disclosed herein, in certain embodiments, are tactile sensing devices, systems, methods, and kits for imaging bone and non-bone structures in an individual in need thereof. In certain embodiments, also described herein are methods for performing a lumbar puncture utilizing the tactile sensing device. In certain embodiments, also described herein are methods for administering a therapeutic to an epidural space of an individual utilizing the tactile sensing device.
  • Accessing the epidural or subarachnoid space via a lumbar puncture is a technically challenging procedure that is performed quite commonly in the clinic, especially in the Emergency Room. The procedure involves “blindly” landmarking, or landmarking by manually palpating, the lumbar spine, to identify a gap between two spinous processes through which a needle can be inserted into the epidural or subarachnoid space for fluid collection or injection. The “blind” landmarking technique improves with time and practice therefore, physicians with limited experience find the lumbar puncture procedure challenging. Furthermore, regardless of experience, the lumbar puncture procedure becomes difficult to perform with obese patients or patients with a high body mass index (BMI) because their high accumulation of subcutaneous adipose tissue prevents the physician to accurately landmark the lumbar spine via manual palpation. Current landmarking techniques only have a 30% accuracy, making it necessary for an average of >4 attempts to properly puncture the space, and resulting in >25% of patients having traumatic lumbar punctures and >32% of patients left with post-dural puncture headaches (PDPHs). Additionally, elderly patients or pregnant patients have limited flexibility and are unable to maximally flex the hips, knees, and back, as is required during a lumbar puncture procedure in order to increase the opening space between the intervertebral disks. Beyond just landmarking and localization, other functional steps of performing a diagnostic lumbar puncture, where cerebrospinal fluid (CSF) samples are collected and intracranial pressure is measured, are severely inefficient. In order to obtain an intracranial pressure reading, physicians use a two-piece manometer connected to a needle hub by a three-way stopcock, which requires estimation of fluid levels in determining intracranial pressure. To simultaneously balance a manometer and one or more cerebrospinal fluid collection tubes requires significant dexterity and/or sometimes more than one pair of hands. Thus, the risk of CSF spillages is high and further increases the risk of contamination. Accordingly, there is a need for improved devices, methods, systems, and kits to perform a lumbar puncture. There is also a need for improved devices, methods, systems and kits to visualize bone and non-bone structures. In view of these deficiencies in the current state of the art, the subject matter presented herein addresses these and other needs.
  • Disclosed herein, in certain embodiments, are tactile sensing devices for imaging a target tissue location in an individual in need thereof, comprising: a) a needle guide having a proximal opening and a distal opening, configured for guiding a needle towards the individual; and b) a sensor array comprising at least one sensor configured to detect applied pressure.
  • Disclosed herein, in certain embodiments, are tactile sensing devices for imaging a target tissue location in an individual in need thereof, comprising: a) a needle guide cartridge comprising at least two needle guides, wherein each needle guide has a side opening and a distal opening, and each needle guide is configured for guiding a needle towards the individual; and b) a sensor array comprising at least one sensor configured to detect applied pressure.
  • Disclosed herein, in certain embodiments, are tactile sensing devices for imaging a target tissue location in an individual in need thereof, comprising: a) a sensor array comprising at least one sensor configured to detect applied pressure; b) a display screen; and c) a marking tool to mark the target tissue location.
  • Disclosed herein, in certain embodiments, are tactile sensing devices for imaging a target tissue location in an individual in need thereof, comprising: a) a sensor array comprising at least one sensor configured to detect applied pressure; b) a connection to a display screen; and c) a marking tool to mark the target tissue location.
  • In some embodiments, the needle guide cartridge allows for the needle to be inserted into the individual at more than one level. In some embodiments, the needle guide allows for the needle to be inserted into the individual at more than one angle. In some embodiments, the angle is a cephalad angle between about −45 degrees to about 45 degrees. In some embodiments, the angle is a 15 degree cephalad angle. In some embodiments, the sensor array is configured to be loaded into a sensor array holder. In some embodiments, the tactile sensing devices further comprise a frame. In some embodiments, the frame further comprises an elongated portion carrying the needle guide, a downwardly elbowed portion serving as a handle, and a sensor array holder positioned distally away from the handle. In some embodiments, the tactile sensing devices further comprise a display screen positioned directly above the sensor array. In some embodiments, the display screen is configured to display the target tissue location and the needle to be inserted into the individual. In some embodiments, the display screen is a computer screen, a mobile device screen, a liquid crystal display (LCD), a thin film transistor liquid crystal display (TFT-LCD), or an organic light emitting diode (OLED) display. In some embodiments, the tactile sensing devices further comprise a needle hub connector that connects to the needle, configured to be inserted through an opening of the needle guide. In some embodiments, the opening of the needle guide is the proximal opening of the needle guide or a knob opening of the needle guide. In some embodiments, the tactile sensing devices further comprise a knob that is coupled to a needle hub connector or extends from a needle hub connector. In some embodiments, the knob protrudes from a side opening or a slit. In some embodiments, the tactile sensing devices further comprise a valve. In some embodiments, the valve is a 3-way valve or a 3-way stopcock valve. In some embodiments, the valve is configured to be inserted through a knob opening of a needle guide. In some embodiments, the valve is fixed onto a needle guide cartridge. In some embodiments, the valve further comprises a needle hub connector, a fluid connector, a fluid port, a pressure gauge connector, a pressure gauge port, or a combination thereof. In some embodiments, the tactile sensing devices further comprise a fluid collection system. In some embodiments, the fluid collection system is a faucet fluid collection system, rail fluid collection system, diaphragm fluid collection system, or spoke fluid collection system. In some embodiments, the faucet fluid collection system comprises at least one collection tube, a central rod extending downwardly from a frame, a faucet base extending downwardly from the central rod, and a rotating handle for generating a rotational movement, said rotating handle coupled to the faucet base, wherein at least one collection tube sits on the faucet base. In some embodiments, the rail fluid collection system comprises a pair of guide rails extending beneath a needle guide cartridge, said guide rails configured to receive a sliding rail platform, said rail platform comprising at least one opening, said opening configured to hold at least one collection tube. In some embodiments, the diaphragm fluid collection system comprises at least one collection tube, at least one diaphragm, at least one rotating band allowing the diaphragm to be opened or closed, and a cap configured to be secured onto a first collection tube. In some embodiments, the spoke fluid collection system comprises a central hub; at least one central hub opening located on a side surface of the central hub, said central hub opening configured to connect to at least one collection tube; and a spoke connector extending outwardly from a front face of the central hub. In some embodiments, the needle is a spinal needle, an epidural needle, or a biopsy needle. In some embodiments, the sensor array is a 6×3 sensor array comprising eighteen sensors. In some embodiments, the sensor array is an 8×4 array comprising thirty two sensors. In some embodiments, the sensor array is secured onto a platform. In some embodiments, the platform comprises projections onto which the sensors are adhered to. In some embodiments, the projections are struts or connectors. In some embodiments, the sensor is covered with a material configured to enhance force feedback. In some embodiments, the sensor is a force-sensitive resistor. In some embodiments, the marking tool is a light, an ink, a hydrogel, a nanoparticle. In some embodiments, the light is a laser light or a light emitting diode (LED). In some embodiments, the ink is a permanent ink, a gentian violent ink, a water-based ink, an oil-based in, a liquid ink, or a gel ink. In some embodiments, the hydrogel further comprises a contrast agent. In some embodiments, the nanoparticle further comprises a contrast agent. In some embodiments, the tactile sensing devices further comprise a multiplexer. In some embodiments, the tactile sensing devices further comprise a voltage divider. In some embodiments, the tactile sensing devices further comprise a voltage source. In some embodiments, the tactile sensing devices further comprise a pressure sensor operatively connected to the tactile sensing device and configured to measure an intracranial pressure. In some embodiments, the pressure sensor is a piezoresistive pressure sensor, a capacitive pressure sensor, an electromagnetic pressure sensor, a piezoelectric pressure sensor, an optical pressure sensor, or a potentiometric pressure sensor.
  • Disclosed herein, in certain embodiments, are systems for imaging a target tissue location in an individual in need thereof, comprising: a) a tactile sensing device; and b) a computing device comprising: i) at least one processor operatively coupled to the tactile sensing device; ii) a memory device; and iii) a non-transitory computer readable storage medium with a computer program including instructions executable by the processor causing the processor to convert a voltage signal into an image. In some embodiments, the computing device is a microcontroller. In some embodiments, the computing device further comprises a second computer program including instructions executable by the processor that cause the processor to encode the voltage signal into a first computer signal and a second computer signal. In some embodiments, the systems further comprise a transmitter configured to transmit the first computer signal to the computing device. In some embodiments, the systems further comprise a receiver configured to receive the second computer signal from the tactile sensing device. In some embodiments, the first and second computer signals are transmitted remotely, directly, wirelessly, or via a wire. In some embodiments, the first computer signal and the second computer signals are wireless signals. In some embodiments, the computing device is a mobile device. In some embodiments, the computing device further comprises a third computer program including instructions executable by the processor that cause the processor to calculate a projected needle position and display it on the display screen. In some embodiments, the computing device further comprises a fourth computer program including instructions executable by the processor causing the processor to: a) determine, as a first requirement, a location of a target tissue location detected by the tactile sensing device; and b) perform predictive analysis based on application of machine learning to approximate the projected needle position.
  • Disclosed herein, in certain embodiments, are methods for imaging a target tissue location in an individual in need thereof, comprising: a) placing a tactile sensing device on the individual; b) applying force to the tactile sensing device against the individual; and c) viewing an image of the target tissue location, obtained from voltage signals generated by the tactile sensing device, resulting from the application of force to the tactile sensing device against an individual, on a display screen.
  • Disclosed herein, in certain embodiments, are methods for generating an image of a target tissue location in an individual in need thereof, comprising: a) collecting a plurality of voltage signals generated by a tactile sensing device, resulting from the application of force to the tactile sensing device against an individual; b) converting the voltage signals into a mathematical array; c) rescaling the mathematical array; and d) transforming the rescaled mathematical array into the image of a target tissue location of the individual.
  • In some embodiments, the target tissue location is a bone structure. In some embodiments, the bone structure is an articular surface. In some embodiments, the articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulation of a first bone of a foot with a second bone of the foot. In some embodiments, the vertebral articulation is a spinous process. In some embodiments, the target tissue location is a subcutaneous tissue, a muscle, a ligament, an adipose tissue, a cyst, a cavity, or a tumor mass. In some embodiments, placing the tactile sensing device on the individual further comprises positioning the tactile sensing device on a bone structure. In some embodiments, the bone structure is a vertebral column of an individual. In some embodiments, collecting the plurality of voltage signals further comprises transmitting the data via a multiplexer. In some embodiments, collecting the plurality of the voltage signals further comprises transmitting the data via a voltage divider. In some embodiments, converting the plurality of the voltage signals comprises acquiring, processing, and transforming the plurality of voltage signals into the image using a computer processor. In some embodiments, the image is a pressure map representing the target tissue location. In some embodiments, the pressure map is overlaid on top of a structural spinal image.
  • Disclosed herein, in certain embodiments, are methods for performing a lumbar puncture in an individual in need thereof, comprising: a) placing a tactile sensing device on a lumbar region of the individual; b) applying force to the tactile sensing device against the lumbar region; c)
  • viewing an image of vertebral articulations on a display screen; wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region; d) localizing two spinous processes on the image; e) identifying a gap between a first spinous process and a second spinous process of the individual; f) using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and g) collecting cerebrospinal fluid or administering a therapeutic agent. In some embodiments, the therapeutic agent is an analgesic, an anesthetic, a chemotherapeutic agent, or a contrast agent or dye.
  • Disclosed herein, in certain embodiments, are methods for administering a therapeutic agent to an epidural space of an individual in need thereof, comprising: a) placing a tactile sensing device on a lumbar region of the individual; b) applying force to the tactile sensing device against the lumbar region; c) viewing an image of vertebral articulations on a display screen; wherein the image is detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region; d) localizing two spinous processes on the image; e) identifying a gap between a first spinous process and a second spinous process of the individual; f) using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and g) injecting a therapeutic agent into the epidural space. In some embodiments, the therapeutic agent is an analgesic, an anesthetic, a contrast agent or dye, a chemotherapeutic agent, or a steroid. In some embodiments, the first spinous process is a part of L1, L2, L3, or L4 lumbar vertebrae and the second spinous process is a part of L2, L3, L4, or L5 lumbar vertebrae. In some embodiments, the needle is a traumatic or an atraumatic needle. In some embodiments, the methods further comprise using a stylet or a catheter in conjunction with the needle.
  • Disclosed herein, in certain embodiments, are methods for guiding a first individual performing a lumbar puncture on a second individual in need thereof, comprising: a) placing a tactile sensing device on a lumbar region of the individual; b) applying force to the tactile sensing device against the lumbar region; c) viewing an image of vertebral articulations on a display screen, wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region; d) localizing two spinous processes on the image; e) identifying a gap between a first spinous process and a second spinous process of the individual; f) using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and g) collecting cerebrospinal fluid or administering a therapeutic agent.
  • Disclosed herein, in certain embodiments, are methods for guiding a first individual administering a therapeutic agent into an epidural space of a second individual in need thereof, comprising: a) placing a tactile sensing device on a lumbar region of the individual; b) applying force to the tactile sensing device against the lumbar region; c) viewing an image of vertebral articulations on a display screen, wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region; d) localizing two spinous processes on the image; e) identifying a gap between a first spinous process and a second spinous process of the individual; f) using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and g) injecting a therapeutic agent into the epidural space.
  • Disclosed herein, in certain embodiments, are methods for imaging a target tissue location in an individual in need thereof, comprising: a) placing a tactile sensing device on the individual; b) applying force to the tactile sensing device against the individual; and c) viewing an image of the target tissue location, obtained from voltage signals generated by the tactile sensing device, resulting from the application of force to the tactile sensing device against an individual, on a display screen.
  • Disclosed herein, in certain embodiments, are methods for generating an image of a target tissue location in an individual in need thereof, comprising: a) collecting a plurality of voltage signals generated by a tactile sensing device, resulting from the application of force to the tactile sensing device against an individual; b) converting the voltage signals into a mathematical array; c) rescaling the mathematical array; and d) transforming the rescaled mathematical array into the image of a target tissue location of the individual. In some embodiments, the target tissue location is a bone structure. In some embodiments, the bone structure is an articular surface. In some embodiments, the articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulation of a first bone of a foot with a second bone of the foot. In some embodiments, a vertebral articulation is a spinous process. In some embodiments, the target tissue location is a subcutaneous tissue, a muscle, a ligament, an adipose tissue, a cyst, a cavity, or a tumor mass. In some embodiments, placing the tactile sensing device on the individual further comprises positioning the tactile sensing device on a bone structure. In some embodiments, the bone structure is a vertebral column of an individual. In some embodiments, the tactile sensing device comprises an array of force-sensitive resistors. In some embodiments, the array of force-sensitive resistors is a 6×3 array comprising eighteen force-sensitive resistors. In some embodiments, the array of force-sensitive resistors is an 8×4 array comprising thirty two force-sensitive resistors. In some embodiments, the array of force-sensitive resistors is secured onto a platform. In some embodiments, the platform comprises projections onto which the force-sensitive resistors are adhered to. In some embodiments, the projections are struts or connectors. In some embodiments, the force-sensitive resistors are covered with a material configured to enhance force feedback. In some embodiments, the material configured to enhance force feedback is a hemispherical rubber disk. In some embodiments, collecting the plurality of voltage signals further comprises transmitting the data via a multiplexer. In some embodiments, collecting the plurality of the voltage signals further comprises transmitting the data via a voltage divider. In some embodiments, converting the plurality of the voltage signals comprises acquiring, processing, and transforming the plurality of voltage signals into the image using a computer processor. In some embodiments, the image is a pressure map representing the target tissue location. In some embodiments, the pressure map is overlaid on top of a structural spinal image.
  • Disclosed herein, in certain embodiments, are methods for performing a lumbar puncture in an individual in need thereof, comprising: a) placing a tactile sensing device on a lumbar region of the individual; b) applying force to the tactile sensing device against the lumbar region; c) viewing an image of vertebral articulations on a display screen; wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region; d) localizing two spinous processes on the image; e) identifying a gap between a first spinous process and a second spinous process of the individual; f) using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and g) collecting cerebrospinal fluid or administering a therapeutic agent. In some embodiments, the therapeutic agent is an analgesic, an anesthetic, a chemotherapeutic agent, or a contrast agent or dye.
  • Disclosed herein, in certain embodiments, are methods for administering a therapeutic agent to an epidural space of an individual in need thereof, comprising: a) placing a tactile sensing device on a lumbar region of the individual; b) applying force to the tactile sensing device against the lumbar region; c) viewing an image of vertebral articulations on a display screen; wherein the image is detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region; d) localizing two spinous processes on the image; e) identifying a gap between a first spinous process and a second spinous process of the individual; f) using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and g) injecting a therapeutic agent into the epidural space. In some embodiments, the therapeutic agent is an analgesic, an anesthetic, a contrast agent or dye, a chemotherapeutic agent, or a steroid. In some embodiments, the first spinous process is a part of L1, L2, L3, or L4 lumbar vertebrae and the second spinous process is a part of L2, L3, L4, or L5 lumbar vertebrae. In some embodiments, the needle is a traumatic or an atraumatic needle. In some embodiments, the methods further comprise using a stylet or a catheter in conjunction with the needle. In some embodiments, the needle guide is oriented between −45° and 45° cephalad angle and terminating at an opening located on the center of the tactile sensing device, thereby controlling the angle at which the needle is inserted into a human body. In some embodiments, the opening located on the center of the tactile sensing device is an elongated slit. In some embodiments, the needle guide is oriented at a 15° cephalad angle. In some embodiments, the needle guide terminates at a plurality of openings formed by an elongated slit with a plurality of columns. In some embodiments, the methods further comprise using a plurality of needle guides oriented between a −45° and 45° cephalad angle and terminating at a plurality of openings located along the midline of the tactile sensing device, thereby controlling the angle at which the needle is inserted into a human body. In some embodiments, the methods further comprise using a plurality of needle guides oriented at a 15° cephalad angle. In some embodiments, the plurality of needle guides terminates at an opening. In some embodiments, the opening is an elongated slit.
  • Disclosed herein, in certain embodiments, are methods for guiding a first individual performing a lumbar puncture on a second individual in need thereof, comprising: a) placing a tactile sensing device on a lumbar region of the individual; b) applying force to the tactile sensing device against the lumbar region; c) viewing an image of vertebral articulations on a display screen, wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region; d) localizing two spinous processes on the image; e) identifying a gap between a first spinous process and a second spinous process of the individual; f) using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and g) collecting cerebrospinal fluid or administering a therapeutic agent.
  • Disclosed herein, in certain embodiments, are methods for guiding a first individual administering a therapeutic agent into an epidural space of a second individual in need thereof, comprising: a) placing a tactile sensing device on a lumbar region of the individual; b) applying force to the tactile sensing device against the lumbar region; c) viewing an image of vertebral articulations on a display screen, wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region; d) localizing two spinous processes on the image; e) identifying a gap between a first spinous process and a second spinous process of the individual; f) using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and g) injecting a therapeutic agent into the epidural space.
  • Disclosed herein, in certain embodiments, are tactile sensing devices for imaging a target tissue location in an individual in need thereof, comprising: a needle guide having a proximal opening and a distal opening, configured for guiding a needle towards the individual; wherein said needle guide allows for the needle to be inserted into the individual at about a 15° cephalad angle; a sensor array comprising at least one sensor configured to output a signal in response to a change in force applied to its surface; and a fluid collection system positioned within a handle, comprising at least one collection tube, a central rod extending downwardly from a frame, a faucet base extending downwardly from the central rod, and a rotating handle for generating rotational movement, said rotating handle coupled to the faucet base, wherein at least one collection tube sits on the faucet base. In some embodiments, the needle guide allows for the needle to be inserted into the individual at a cephalad angle between about 10° and about 20°. In some embodiments, the sensor array is configured to be loaded into a sensor array holder. In some embodiments, the sensor is a force-sensitive resistor. In some embodiments, the tactile sensing devices further comprise a frame. In some embodiments, the frame further comprises an elongated portion carrying the needle guide, a downwardly elbowed portion serving as the handle, and a sensor array holder positioned distally away from the handle. In some embodiments, the signal is converted to a pressure map. In some embodiments, the pressure map represents a target tissue location in an individual. In some embodiments, the pressure map displays a position of a needle at a skin level and a projected position of a needle. In some embodiments, the tactile sensing devices further comprise a 3-way valve configured to be inserted through the proximal opening of the needle guide, and retained within the needle guide, said 3-way valve comprising a needle hub connector, a fluid port, and a pressure gauge connector. In some embodiments, the needle hub connector connects to the needle. In some embodiments, the fluid port is an open port through which a fluid flows freely. In some embodiments, the pressure gauge connector is configured to connect to a pressure sensor. In some embodiments, the pressure sensor measures an intracranial pressure. In some embodiments, the pressure sensor is a piezoresistive pressure sensor, a capacitive pressure sensor, an electromagnetic pressure sensor, a piezoelectric pressure sensor, an optical pressure sensor, or a potentiometric pressure sensor. In some embodiments, the tactile sensing devices further comprise a knob that is coupled to a needle hub connector or extends from a needle hub connector. In some embodiments, the knob protrudes from a side opening or a slit. In some embodiments, the fluid collection system is a faucet fluid collection system, a rail fluid collection system, a diaphragm fluid a collection system, or a spoke fluid collection system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the subject matter disclosed herein are set forth with particularity in the appended claims. A better understanding of the features and advantages of the subject matter disclosed herein will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the subject matter disclosed herein are utilized, and the accompanying drawings of which:
  • FIGS. 1A-C illustrate a tactile sensing device with a faucet fluid collection system. FIG. 1A shows a front view of the tactile sensing device 1000 with an exemplary output image displayed on its display screen 1032. FIG. 1B shows a cross-section view of the tactile sensing device 1000. FIG. 1C shows a wire frame side view of the tactile sensing device 1000.
  • FIGS. 2A-C illustrate another embodiment of a tactile sensing device 2000 comprising multiple needle guides and a gripper 2004. FIG. 2A shows a side view of the tactile sensing device 2000 with an exemplary output image displayed on its display screen 2032. FIG. 2B shows a side view of the tactile sensing device 2000. FIG. 2C shows a cross-section view of the tactile sensing device 2000.
  • FIGS. 3A-B exemplify a sensor array 3008 of eighteen force-sensitive resistors with silicon disks adhered onto them to enhance force feedback. FIG. 3A shows a side view of the sensor array 3008. FIG. 3B shows a front view of the sensor array 3008.
  • FIG. 4 is an exemplary flowchart illustrating a method of to generate an image with the tactile sensing device.
  • FIG. 5 illustrates a diaphragm fluid collection system of the tactile sensing device.
  • FIG. 6 illustrates a top faucet fluid collection system of the tactile sensing device.
  • FIG. 7 illustrates a spoke fluid collection system of the tactile sensing device.
  • FIG. 8 illustrates a rail fluid collection system of the tactile sensing.
  • FIGS. 9A-B illustrate voltage signals acquired by a tactile sensing device utilizing an artificial lumbar vertebrae model. FIG. 9A shows voltage values across a single sensor, when the sensor is moved in 1 cm increments, as a function of a force applied (in units of grams). FIG. 9B shows the normalized voltage of a column of 6 sensors for six different trials. A fixed and equal force was applied onto the column of six sensors for each trial.
  • FIG. 10 is an exemplary flowchart illustrating one method for generating an image from voltage signals collected by the tactile sensing device.
  • FIGS. 11A-B are exemplary pressure maps generated by the tactile sensing device. FIG. 11A is a visual representation of underlying bony landmarks as detected and generated by the tactile sensing device. FIG. 11B illustrates a needle's position at the skin level (“original”) and its projected subcutaneous location on a pressure map generated by the tactile sensing device.
  • DETAILED DESCRIPTION
  • While preferred embodiments of the subject matter disclosed herein have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the subject matter disclosed herein. It should be understood that various alternatives to the embodiments of the subject matter disclosed herein may be employed in practicing the subject matter disclosed herein. It is intended that the following claims define the scope of the subject matter disclosed herein and that methods and structures within the scope of these claims and their equivalents be covered thereby.
  • Certain Definitions
  • The terminology used herein is for the purpose of describing particular cases only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising”.
  • The term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, e.g., the limitations of the measurement system. In certain embodiments, the term “about” or “approximately” means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term “about” or “approximately” means within 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.05% of a given value or range. In certain embodiments, the term “about” or “approximately” means within 20.0 degrees, 15.0 degrees, 10.0 degrees, 9.0 degrees, 8.0 degrees, 7.0 degrees, 6.0 degrees, 5.0 degrees, 4.0 degrees, 3.0 degrees, 2.0 degrees, 1.0 degrees, 0.9 degrees, 0.8 degrees, 0.7 degrees, 0.6 degrees, 0.5 degrees, 0.4 degrees, 0.3 degrees, 0.2 degrees, 0.1 degrees, 0.09 degrees. 0.08 degrees, 0.07 degrees, 0.06 degrees, 0.05 degrees, 0.04 degrees, 0.03 degrees, 0.02 degrees or 0.01 degrees of a given value or range.
  • The terms “individual,” “patient,” or “subject” are used interchangeably. None of the terms require or are limited to situation characterized by the supervision (e.g. constant or intermittent) of a health care worker (e.g. a doctor, a registered nurse, a nurse practitioner, a physician's assistant, an orderly, or a hospice worker).
  • The terms “user,” “health care worker,” “doctor,” and “physician” are used interchangeably. These terms refer to any person that operates the devices described herein. Additional non-liming examples of a user include “registered nurse,” “nurse practitioner,” and “physician's assistant.”
  • The terms “intracranial pressure (ICP)” and “cerebrospinal fluid (CSF) pressure” are used interchangeably. ICP is the pressure inside a skull and thus, it is the pressure in the brain tissue and CSF.
  • The terms “lumbar puncture” and “spinal tap” are used interchangeably herein.
  • The term “needle hub,” as used herein, refers to the hub at one end of a needle that commonly attaches to a syringe. The shaft of the needle is an elongated, slender stem of the needle that extends from the needle hub and is beveled at the end opposite to the needle hub end.
  • Accessing the epidural or subarachnoid space via a lumbar puncture is a technically challenging procedure that is performed quite commonly in the clinic, especially in the Emergency Room. The procedure involves “blindly” landmarking, or landmarking by manually palpating, the lumbar spine, to identify a gap between two spinous processes through which a needle can be inserted into the epidural or subarachnoid space for fluid collection or injection. The “blind” landmarking technique improves with time and practice therefore, physicians with limited experience find the lumbar puncture procedure challenging. Furthermore, regardless of experience, the lumbar puncture procedure becomes difficult to perform with obese patients or patients with a high body mass index (BMI) because their high accumulation of subcutaneous adipose tissue prevents the physician to accurately landmark the lumbar spine via manual palpation. Current landmarking techniques only have a 30% accuracy, making it necessary for an average of >4 attempts to properly puncture the space, and resulting in >25% of patients having traumatic lumbar punctures and >32% of patients left with post-dural puncture headaches (PDPHs). Additionally, elderly patients or pregnant patients have limited flexibility and are unable to maximally flex the hips, knees, and back, as is required during a lumbar puncture procedure in order to increase the opening space between the intervertebral disks. Beyond just landmarking and localization, other functional steps of performing a diagnostic lumbar puncture, where cerebrospinal fluid (CSF) samples are collected and intracranial pressure is measured, are severely inefficient. In order to obtain an intracranial pressure reading, physicians use a two-piece manometer connected to a needle hub by a three-way stopcock, which requires estimation of fluid levels in determining intracranial pressure. To simultaneously balance a manometer and one or more cerebrospinal fluid collection tubes requires significant dexterity and/or sometimes more than one pair of hands. Thus, the risk of CSF spillages is high and further increases the risk of contamination. Accordingly, there is a need for improved devices, methods, systems, and kits to perform a lumbar puncture. There is also a need for improved devices, methods, systems and kits to visualize bone and non-bone structures. In view of these deficiencies in the current state of the art, the subject matter presented herein addresses these and other needs.
  • Lumbar Punctures
  • A lumbar puncture is an invasive procedure performed in a clinical setting for diagnostic or therapeutic purposes. A diagnostic lumbar puncture, also known as “spinal tap,” is one of the most commonly invasive tests performed in the clinic. Every year, approximately 400,000 diagnostic lumbar punctures are performed in the United States. During a lumbar puncture, cerebrospinal fluid is collected and in some cases, cerebrospinal fluid (CSF) opening pressure is measured. Therapeutic lumbar punctures are most commonly performed to deliver spinal anesthesia, intrathecal chemotherapeutics, intrathecal pain killers, intrathecal antibiotics, and contrast agents.
  • In some instances, a lumbar puncture is performed with a patient in a lateral decubitus position or lying down on their side, knees bent, and head in a neutral position. In some instances, a lumbar puncture is performed with a patient upright, seated with the chin down and feet supported. Aseptic technique is used when performing a lumbar puncture. In some instances, to perform a lumbar puncture, a practitioner performs a series of steps including: identifying an intraspineous process space between the 4th and 5th lumbar vertebrae (L4 and L5), between L3 and L4, or between L2 and L3; cleaning the patient's skin in the lumbar area with iodinated solution, ethanol or isopropyl alcohol, and chlorhexidine; administering a local anesthetic such as, but not limited to, xylocaine or lidocaine, in a manner such that it raises a small bleb on the skin; administering additional local anesthetic, such as lidocaine, to deeper subcutaneous and intraspinous tissues; slowly inserting a spinal needle angling towards the patient's head until the epidural or subarachnoid space is entered.
  • Diagnostic Lumbar Puncture
  • During a diagnostic lumbar puncture, a needle is inserted between two lumbar vertebrae and into the spinal canal in order to remove a sample(s) of cerebrospinal fluid (CSF), which surrounds the brain and the spinal cord. In some instances, the CSF is collected and its physical, chemical, microscopic, and infectious properties are inspected. Physical properties of CSF that are checked include: color, turbidity, and viscosity. Chemical components of CSF that are routinely tested for include glucose and proteins. However, additional testing includes: protein electrophoresis to distinguish different types of protein; immunoglobulin G (IgG) detection; myelin basic protein detection; lactic acid detection; lactate dehydrogenase detection; glutamine detection; C-reactive protein detection; tumor markers such as carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), and human chorionic gonadotropin (hCG); amyloid beta 42 (Aβ42) protein detection; and tau protein detection. Microscopic examination of CSF comprises analyzing the sample for total cell counts including red and white blood cells; additionally, in some instances, a cytology test is performed to determine the presence or absence of abnormal cells such as tumor cells or immature blood cells. Infectious tests performed include: CSF gram stain, culture, and sensitivity test to detect microorganisms and predict best choices for antimicrobial therapy; detection of viruses using polymerase chain reaction (PCR); detection of CSF cryptococcal antigen to detect a fungal infection caused by yeast; detection of specific antibodies; CSF acid-fast bacilli (AFB) test to detect mycobacteria such as Mycobacterium tuberculosis; detection of parasites; and CSF syphilis test.
  • In some instances, diagnostic lumbar punctures are used to diagnose: bacterial, fungal, and viral infections including meningitis, encephalitis, and neurosyphilis or syphilis; bleeding around the brain or spinal cord including subarachnoid hemorrhages; inflammation of the brain, spinal cord, or bone marrow including myelitis; cancer including brain cancer, spinal cord cancer, and leukemia; neurological disorders including demyelinating diseases such as multiple sclerosis and demyelination polyneuropathy, Guillain-Barré syndrome, mitochondrial disorders, leukencephalopathies, paraneoplastic syndromes, Reye syndrome; headaches of unknown cause; and intracranial pressure disorders including pseudotumor cerebri also known as idiopathic intracranial hypertension (IIH), spontaneous intracranial hypotension, and normal pressure hydrocephalus.
  • Therapeutic Lumbar Puncture
  • Therapeutic lumbar punctures are performed in the same manner as diagnostic lumbar punctures however, instead of collecting a sample of CSF, a therapeutic agent is delivered to the subarachnoid space. In some embodiments, therapeutic agents delivered via a lumbar puncture include but are not limited to: anesthetics such as bupivacaine, lidocaine, tetracaine, procaine, ropivacaine, levobupivacaine, prilocaine, and cinchocaine; opioids such as morphine, fentanyl, diamorphine, buprenorphine, and pethidine or meperidine; non-opioids such as clonidine; chemotherapeutic agents such as methotrexate, cytarabine, hydrocortisone, and thiotepa; contrast agents or dyes such as iohexol, metrizamide, iopamidol, ioversol, iopromide, iodixanol, iolotran, and iodophenylundecylic acid; anti-spasmodic agents such as baclofen; antibiotics such as gentamicin sulphate; proteins such as idursulfase.
  • Tactile Sensing Device Tactile Sensing Device: Device
  • Disclosed herein, in certain embodiments, are tactile sensing devices for imaging bone and non-bone structures in an individual in need thereof, comprising: a display screen 1032, 2032 to visualize an image of the bone and non-bone structures; and a needle guide 1002, 2002 operatively configured to guide a needle into a target tissue location within the individual, as shown in FIGS. 1A, 1B, 1C, 2A, 2B, and 2C. In some embodiments, the tactile sensing device 1000, 2000 images a first and second bone and non-bone structure.
  • Sensor Arrays
  • In some embodiments, the tactile sensing device 1000 comprises an array of sensors 1008. In some embodiments, the sensor array 1008 is a tactile sensor array. In some embodiments, the sensor array 1008 is an ultrasound sensor array. In some embodiments, the sensor array 1008 is an infrared radiation (IR) sensor array. In some embodiments, the sensor array 1008 comprises sensors that are piezoresistive sensors. In some embodiments, the sensor array 1008 comprises sensors are piezoelectric sensors. In some embodiments, the sensor array 1008 comprises sensors that are optical sensors. In some embodiments, the sensor array 1008 comprises sensors that are electromagnetic sensors. In some embodiments, the sensor array 1008 comprises sensors that are capacitive sensors. In some embodiments, the sensor array 1008 comprises sensors that are potentiometric sensors.
  • In some embodiments, the sensor array 1008 comprises pressure sensors. In some embodiments, the pressure sensors are force-sensitive resistors. Force-sensitive resistors change their resistance in response to a change in force applied to their surface. In some embodiments, the force-sensitive resistors decrease their resistance with an increase in force applied the surface of the sensor. In some embodiments, the sensor array comprises at least one sensor configured to output a signal in response to a change in force applied to its surface. Force-sensitive resistors are two wire devices with a resistance that depends on applied force. In some embodiments, the force-sensitive resistors comprise a voltage divider. In some embodiments, the voltage divider outputs a voltage value that is correlated to the resistance; thus, the output voltage value also changes in response to a force applied to the surface of the sensor. In some embodiments, an increase in voltage indicates an increase in a force applied to the surface of the sensor. In some instances, the force-sensitive resistors output voltage signals. In some embodiments, the array of force-sensitive resistors is a 6×3 array comprising eighteen force-sensitive resistors. In some embodiments, the array of force-sensitive resistors is an 8×4 array comprising thirty two force-sensitive resistors. In some embodiments, the size of the array of force-sensitive resistors is dependent upon the surface area of the individual's body to be examined. In some embodiments, the array of force-sensitive resistors is configured in a way that is sufficient to visualize the bone and non-bone structures in the individual.
  • In some embodiments, as shown in FIGS. 3A and 3B, the sensor array 3008 is secured onto a sensor array platform 3022. In some embodiments, the sensor array platform 3022 comprises cylindrical struts 3026 onto which the sensors are adhered to. In some embodiments, the cylindrical struts 3026 onto which the sensors are adhered are connectors. In some embodiments, the cylindrical struts or connectors are not cylindrical, but rather rectangular or square shaped. In some embodiments, the cylindrical struts are spring loaded connectors. In some embodiments, the cylindrical struts 3026 are Pogo pins. In some embodiments, the Pogo pins establish a connection to a printed circuit board (PCT) or between pluralities of PCTs. Non-limiting types of Pogo pins include vertical mount surface mount technology (SMT), vertical type, through hole type, horizontal type, right angle type, cable solder type, or water proof connector type. In some embodiments, the sensor 3016 is covered with a hemispherical disk 3024 configured to enhance force feedback. In some embodiments, the hemispherical disk 3024 covering the force-sensitive resistors is a hemispherical rubber disk. In some embodiments, the rubber material includes, but is not limited to: silicone rubber, natural rubber, acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, ethylene propylene diene rubber, fluorocarbon rubber, chloroprene rubber, fluorosilicone rubber, polyacrylate rubber, ethylene acrylic rubber, styrene-butadiene rubber, polyester urethane rubber, or polyether urethane rubber.
  • Bone and Non-Bone Structures
  • In some embodiments, the tactile sensing device images a target tissue location. In some embodiments, the desired target tissue location is the bone marrow. In some embodiments, the tactile sensing device images bone and non-bone structures around a target tissue location. In some embodiments, the tactile sensing device images the lumbar vertebrae and the non-bone structures surrounding the lumbar vertebrae. In some embodiments, the tactile sensing device images the sacral vertebrae and the non-bone structures surrounding the sacral vertebrae. In some embodiments, the tactile sensing device images the lumbar and sacral vertebrae and the non-bone structures surrounding the lumbar and sacral vertebrae. In some embodiments, the tactile sensing device images the spinous processes and the non-bone structures surrounding the spinous processes. In some embodiments, the tactile sensing device images the L3 and L4 spinous processes and the non-bone structures surrounding the L3 and L4 spinous processes. In some embodiments, the tactile sensing device images the L5 and L5 spinous processes and the non-bone structures surrounding the L4 and L5 spinous processes. In some embodiments, the tactile sensing device images the L5 and S1 spinous processes and the non-bone structures surrounding the L3 and L4 spinous processes.
  • In some embodiments, the tactile sensing device 1000, 2000 images a first and second bone and non-bone structures. In some embodiments, the tactile sensing device 1000, 2000 images a plurality of bone and non-bone structures. In some embodiments, a bone structure is a rib. In some embodiments, a bone structure is an articular surface. In some embodiments an articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulations of a first bone of a foot with a second bone of the foot. In some instances, a vertebral articulation is a spinous process. In some embodiments, a non-bone structure is subcutaneous tissue, a muscle, a ligament, adipose tissue, a cyst, or a cavity.
  • Display Screen
  • As shown in FIGS. 1A, 1B, 1C, 2A, 2B, and 2C, in some embodiments, the tactile sensing device 1000, 2000 comprises a display screen 1032, 2032 to provide visual information to a user. In some embodiments, the display screen 1032, 2032 is operatively connected to the tactile sensing device 1000, 2000. In some embodiments, the display screen 1032, 2032 is a computer screen, a mobile device screen, or a portable device screen. In some embodiments, the display screen 1032, 2032 is a cathode ray tube (CRT). In some embodiments, the display screen 1032, 2032 is a liquid crystal display (LCD). In further embodiments, the display screen 1032, 2032 is a thin film transistor liquid crystal display (TFT-LCD). In some embodiments, the display screen 1032, 2032 is an organic light emitting diode (OLED) display. In various further embodiments, an OLED display is a passive-matrix OLED (PMOLED) or active-matrix OLED (AMOLED) display. In some embodiments, the display screen 1032, 2032 is a plasma display. In other embodiments, the display screen 1032, 2032 is a video projector. In still further embodiments, the display screen 1032, 2032 is a combination of devices such as those disclosed herein.
  • In some embodiments, the visual information provided to the user via a display screen 1032 is a pressure map representing bone and non-bone structures. In some embodiments, the pressure map is a heat map. In some embodiments, the sensor array comprises at least one sensor configured to output a signal in response to a change in force applied to its surface, wherein the signal is represented as a heat map. In some embodiments, the heat map is a graphical representation of voltage signals wherein the individual voltage output signals are represented as a plurality of colors, color hues, color saturations, graphical patterns, shading, geometrical figures, or any combination thereof. In some embodiments, high voltage output signals are represented in a red-based color and low voltage output signals are represented in blue-based color. In some embodiments, the pressure map is overlaid onto a second image. In some embodiments, the second image is a type of diagnostic image including, but not limited to: radiography image, magnetic resonance imaging (MRI) image, computed tomography (CT) image, nuclear medicine image, ultrasound image, photoacoustic image, or thermography image. In some embodiments, the second image is an image of bone and non-bone structures. In some embodiments, the second image of a bone and non-bone structure is an image of a rib; an articular surface such as, a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulations of a first bone of a foot with a second bone of the foot; non-bone structure is subcutaneous tissue, a muscle, a ligament, adipose tissue, a cyst, or a cavity.
  • Needle Guide
  • In some embodiments, as shown in FIGS. 1A, 1B, and 1C, a needle guide 1002 is operatively connected to the tactile sensing device 1000. In some embodiments, the needle guide 1002, operatively connected to the tactile sensing device 1000, is used to control the angle and direction of a needle that is inserted into an individual in need thereof. In some embodiments, the needle guide 1002 is oriented between a −45° and 45° cephalad angle, terminating at a needle orifice 1038 located on the center of the sensor array 1008, thereby controlling the angle at which the needle is inserted into a human body. In some embodiments, the needle guide 1002 is oriented between a −45° and 45° cephalad angle, wherein −45° is equivalent to 315°. In some embodiments, the needle guide allows for the needle to be inserted into an individual at a cephalad angle between about 10° and about 20°.
  • In some embodiments, the needle guide allows for the needle to be inserted into an individual at a cephalad angle between about 0° and about 30°. In some embodiments, the needle guide allows for the needle to be inserted into an individual at a cephalad angle between about 0° and about 50°.
  • In some embodiments, the needle guide 1002 is oriented between a 0° and 15° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a 15° and 30° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a 30° and 45° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a 45° and 60° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a 0° and −15° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a −15° and −30° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a −30° and −45° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a −45° and −60° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 0° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 1° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 2° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 3° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 4° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 5° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 6° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 7° cephalad angle. In some embodiments, the needle guide 1002 is oriented at an 8° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 9° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 10° cephalad angle. In some embodiments, the needle guide 1002 is oriented at an 11° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 12° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 13° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 14° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 15° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 16° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 17° cephalad angle. In some embodiments, the needle guide 1002 is oriented at an 18° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 19° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 20° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 21° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 22° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 23° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 24° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 25° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 26° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 27° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 28° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 29° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 30° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 31° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 32° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 33° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 34° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 35° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 36° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 37° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 38° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 39° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 40° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 41° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 42° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 43° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 44° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 45° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 46° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 47° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 48° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 49° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 50° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 51° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 52° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 53° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 54° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 55° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 56° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 57° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 58° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 59° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 60° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 315° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 316° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 317° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 318° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 319° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 320° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 321° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 322° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 323° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 324° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 325° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 326° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 327° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 328° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 329° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 330° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 331° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 332° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 333° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 334° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 335° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 336° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 337° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 338° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 339° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 340° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 341° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 342° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 343° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 344° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 345° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 346° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 347° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 348° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 349° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 350° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 351° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 352° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 353° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 354° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 355° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 356° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 357° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 358° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 359° cephalad angle. In some embodiments, the needle guide 1002 is oriented at a 360° cephalad angle. In some embodiments, the needle orifice 1038 located on the center of the sensor array 1008 is an elongated slit. In some embodiments, the needle guide 1002 terminates at a plurality of openings formed by an elongated slit with a plurality of columns.
  • In various further embodiments, as shown in FIGS. 2A, 2B, and 2C, a needle guide cartridge 2012 is operatively connected to the tactile sensing device 2000. In some embodiments, the needle guide cartridge 2012 is oriented between a −45° and 45° cephalad angle, terminating at a needle orifice 2038 located along the midline of the sensor array 2008, thereby controlling the angle at which the needle is inserted into a human body. In some embodiments, the needle guide cartridge 2012 is oriented between a −45° and 45° cephalad angle, wherein −45° is equivalent to 315°. In some embodiments, the needle guide cartridge 2012 is oriented between a 0° and 15° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a 15° and 30° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a 30° and 45° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a 45° and 60° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a 0° and −15° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a −15° and −30° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a −30° and −45° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented between a −45° and −60° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 0° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 1° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 2° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 3° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 4° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 5° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 6° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 7° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at an 8° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 9° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 10° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at an 11° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 12° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 13° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 14° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 15° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 16° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 17° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at an 18° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 19° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 20° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 21° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 22° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 23° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 24° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 25° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 26° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 27° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 28° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 29° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 30° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 31° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 32° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 33° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 34° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 35° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 36° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 37° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 38° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 39° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 40° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 41° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 42° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 43° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 44° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 45° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 46° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 47° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 48° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 49° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 50° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 51° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 52° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 53° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 54° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 55° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 56° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 57° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 58° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 59° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 60° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 315° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 316° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 317° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 318° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 319° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 320° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 321° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 322° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 323° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 324° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 325° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 326° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 327° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 328° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 329° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 330° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 331° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 332° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 333° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 334° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 335° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 336° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 337° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 338° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 339° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 340° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 341° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 342° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 343° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 344° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 345° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 346° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 347° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 348° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 349° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 350° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 351° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 352° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 353° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 354° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 355° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 356° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 357° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 358° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 359° cephalad angle. In some embodiments, the needle guide cartridge 2012 is oriented at a 360° cephalad angle. In some embodiments, the needle guide cartridge 2012 terminates at an opening. In some embodiments, the needle guide cartridge 2012 terminates at an opening. In some embodiments, the needle orifice 2038 located on the center of the sensor array 2008 is an elongated slit.
  • Multiplexer
  • In some embodiments, the tactile sensing device 1000, 2000 further comprises a multiplexer. The multiplexer selects voltage output signals from the sensor 3016 and forwards the selected voltage output signals into a single line. In some embodiments, the multiplexer is an analog multiplexer. In some embodiments, the analog multiplexer is a 16:1 or an 8:1 multiplexer. In some embodiments, the analog multiplexer is a frequency division multiplexer or a wave division multiplexer. In various further embodiments, the multiplexer is a digital multiplexer. In some instances, the digital multiplexer is a time division multiplexer. In some embodiments, the time division multiplexer is a synchronous time division multiplexer or an asynchronous time division multiplexer. In some embodiments, the multiplexer is mounted onto a printed circuit board.
  • Voltage Divider
  • In some embodiments, the tactile sensing device further comprises a voltage divider. In some embodiments, the voltage divider is a component of a force-sensitive resistor. In some embodiments, the force-sensitive resistor is coupled to a measuring resistor RM in a voltage divider. In some embodiments, the output voltage signal from the force-sensitive resistors is read out using a voltage divider. In some embodiments, the output voltage signal read out using the voltage divider is described by Equation 1 below.
  • Equation 1: VOUT=(RM VIN)/(RM+RFSR); wherein VOUT is the output voltage signal, RM is the measuring resistor, VIN is the input voltage signal, and RFSR is the resistance detected by the force-sensitive resistor.
  • In some embodiments, the voltage divider is a resistive voltage divider, a low-pass RC filter voltage divider, an inductive voltage divider, or a capacitive voltage divider.
  • Computing Device
  • In some embodiments, the tactile sensing device 1000, 2000 further comprises a computing device. In some embodiments, the computing device is a microcontroller. In some embodiments, the microcontroller is an 8-bit, 16-bit, or 32-bit microcontroller. In some embodiments, the microcontroller is an 8051 microcontroller, a programmable interface controller (PIC), an AVR or Advanced Virtual RISC microcontroller, or an ARM® microcontroller. In some embodiments, the microcontroller is, by way of non-limiting examples, an Arduino Uno microcontroller or a Raspberry Pi microcontroller.
  • In some embodiments, the computing device is a desktop computer or a laptop computer. In some embodiments, the computing device is a mobile device. In some embodiments, the mobile device is a smart phone or a smart watch. In some embodiments, the computing device is a portable device. In accordance with the description herein, suitable computing devices further include, by way of non-limiting examples, notebook computers, tablet computers, netbook computers, smart book computers, subnotebook computers, ultra-mobile PCs, handheld computers, personal digital assistants, Internet appliances, smart phones, music players, and portable video game systems. Many mobile smart phones are suitable for use in the systems described herein. Suitable tablet computers include those with booklet, slate, and convertible configurations. Suitable portable video game systems include, by way of non-limiting examples, Nintendo DS™ and Sony PSP™ Voltage Source
  • In some embodiments, the tactile sensing device 1000, 2000 further comprises a voltage source. In some embodiments, the voltage source is a battery. In some embodiments, the voltage source is rechargeable. In some embodiments, the voltage source is removable. In some embodiments, the voltage source includes, but is not limited to: a nickel cadmium (NiCd) battery, nickel-metal hydride (NiMH) battery, a nickel zinc (NiZn) battery, a lead acid battery, a lithium ion battery (Li-ion), or a lithium ion polymer (Li-ion polymer) battery.
  • Pressure Sensor
  • A critical component of a lumbar puncture is the recording of intracranial (ICP) pressure, represented by the ultra-low pressure of the cerebrospinal fluid. ICP or cerebrospinal fluid pressure is typically in the 8-15 mmHg (10-20 mbar) range. Cerebrospinal fluid pressure is typically determined using a two-piece manometer attached to a 3-way stopcock valve which is connected to a spinal needle.
  • In some embodiments, the tactile sensing device 1000, 2000 further comprises a pressure sensor operatively connected to the tactile sensing device 1000, 2000 and configured to measure cerebrospinal fluid pressure. In some embodiments, the pressure sensor is operatively connected to the tactile sensing device 2000 via a 3-way valve 2014. In some embodiments, the pressure sensor is an electronic pressure sensor. In some instances, the pressure sensor is a piezoresistive, capacitive, electromagnetic, piezoelectric, optical, or potentiometric pressure sensor. In some embodiments, cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed digitally. In some embodiments, cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed on a display screen 1032 in real-time.
  • In some embodiments, the electronic pressure sensor is a Honeywell TruStability®, board mount pressure sensor, which is capable of sensing 0-60 mbar. In some embodiments, the electronic pressure sensor is an uncompensated and unamplified piezoresistive silicon pressure sensor. In some embodiments, the electronic pressure sensor is operatively connected to a barbed port. In some embodiments, the barbed port is liquid-compatible and replaces a traditional manometer connected to a 3-way stopcock valve.
  • Fluid Collection Systems
  • In some embodiments, the tactile sensing device further comprises a fluid collection system configured to collect a fluid such as cerebrospinal fluid. In some embodiments, the fluid collection system is disposable. In some embodiments, the fluid collection system is a diaphragm fluid collection system 5042. In some embodiments, the fluid collection system is a faucet fluid collection system 1006. In some embodiments, the fluid collection system is a top faucet fluid collection system 6120. In some embodiments, the fluid collection system is a spoke fluid collection system 7058. In some embodiments, the fluid collection system is a rail fluid collection system 8062.
  • In some embodiments, tactile sensing device 1000, 2000 comprises a diaphragm fluid collection system 5042, as shown in FIG. 5. In some embodiments, the diaphragm fluid collection system 5042 comprises a set of stackable collection tubes 5010. The first collection tube 5010 a, the second collection tube 5010 b, the third collection tube 5010 c, and the fourth collection tube 5010 d comprises a first diaphragm 5044 a, a second diaphragm 5044 b, and a third diaphragm 5044 c. To collect a fluid with the diaphragm fluid collection system 5042, a cap 5046 is first threaded off the first collection tube 5010 a. The stackable collection tubes 5010 are placed under a needle hub, a 3-way valve, or tubing connected to a 3-way valve, with the first diaphragm 5044 a, the second diaphragm 5044 b, and the third diaphragm 5044 c in the open position. Once sufficient fluid is collected in the fourth collection tube 5010 d, the third diaphragm 5044 c is closed and the third collection tube 5010 c, the second collection tube 5010 b, and the first collection tube 5010 a are subsequently filled in the same manner.
  • In some embodiments, the fluid collection system operatively connected to the tactile sensing tactile sensing device comprises a top faucet fluid collection system 6120, as shown in FIG. 6. In some embodiments, the top faucet fluid collection system 6120 further comprises a container 6056 into which open collection tubes 6010 are placed. Additionally, the top faucet fluid collection system 6120 further comprises a rotating handle 6052 attached to a faucet base 6054 to which the collection tubes 6010 (1010, as shown in FIG. 1) are connected to. Above the collection tubes 6010, is a plate with a single hole (not shown in FIG. 6) located beneath a faucet connector 6050, which connects directly to a needle hub or a 3-way valve 2014. Once a first collection tube 6010 a is sufficiently filled with fluid, the rotating handle 6052 is rotated clockwise or counterclockwise to allow for filling of the second collection tube 6010 b, and the process repeats until all collection tubes 6010 are filled with fluid.
  • In some embodiments, the tactile sensing device comprises a spoke fluid collection system 7058, as shown in FIG. 7. In some embodiments, the spoke fluid collection system 7058 comprises a central hub 7060 with four central hub openings 7086. In some embodiments, the collection tubes 7010 are operatively connected to the central hub 7060. In some embodiments, the collection tubes 7010 are threaded into the central hub openings 7086. In some embodiments, the collection tubes 7010 are snapped into the central hub openings 7086. In some embodiments, the collection tubes 7010 are operatively connected to the central hub openings 7086 via a snap fitting. The spoke fluid collection system 7058 further comprises a spoke connector 7088 connecting the central hub 7060 to a needle hub or a three-way valve. Fluid flows from a needle hub or a three-way valve through the spoke connector 7088 and into a first collection tube 7010 a. In some embodiments, the fluid exits the spoke connector 7088 and flows only into a first collection tube 7010 a that is immediately underneath the spoke connector 7088. The spoke fluid collection system 7058 further comprises a knob (not shown in FIG. 7) secured to the back face of the central hub 7060, which is rotated clockwise or counterclockwise to allow for sequential filling of the collection tubes 7010. In some embodiments, the knob either clicks into place or has markings corresponding to four positions, which, when aligned, signals whether a first collection tube 7010 a, a second collection tube 7010 b, a third collection tube 7010 c, or a fourth collection tube 7010 d is in position to be filled. Once a first collection tube 7010 a is sufficiently filled, the knob is turned clockwise or counterclockwise to allow a second collection tube 7010 b, a third collection tube 7010 c, or a fourth collection tube 7010 d to be filled. In some embodiments, the central hub openings 7086 comprise gaskets. In some embodiments, the gaskets prevent fluid from spilling or exiting the collection tubes 7010 during or between filling periods.
  • In some embodiments, the tactile sensing device comprises a rail fluid collection system 8062, as shown in FIGS. 2 and 8. In some embodiments, the rail fluid collection system 8062 comprises a rail platform 8064 located beneath a needle hub connector 8100, a fluid connector 8068, or a three-way valve 8014. The rail platform 8064 slides along guide rails 8134, which are operatively connected to the tactile sensing device. In some embodiments, the fluid collection tubes 8010 are placed beneath a fluid connector 8068 to allow for fluid collection. Once fluid begins to flow, the user waits for a first collection tube 8010 a to fill; then, the user slides the rail platform 8064 containing the collection tubes 8010 to allow for sequential filling of a second collection tube 8010 b, a third collection tube 8010 c, and a fourth collection tube 8010 d.
  • Frame
  • In some embodiments, as shown in FIGS. 1A, 1B, 1C, 2A, 2B, and 2C, the tactile sensing device 1000, 2000 comprises a frame 1018. In some embodiments, the frame 1018 is a basic structure that supports the modular components of the tactile sensing device. In some embodiments, the frame 1018 or 2018 holds the modular components of the tactile sensing device. In some embodiments, the frame 1018 or 2018 has a plurality of voids that are filled with a plurality of protrusions from the modular components of the tactile sensing device. In some embodiments, the modular components of the tactile sensing device include a sensor array 1008, 2008, 3008, the diaphragm fluid collection system 5042, the faucet fluid collection system 6048, the spoke fluid collection system 7058, or the rail fluid collection system 8062. In some embodiments, the frame 1018 or 2018 is composed of a metal, plastic, or elastomer material. In some embodiments, the frame 1018 or 2018 is made out of a plastic or elastomer material including, but not limited to: polyethylene; polypropylene; polystyrene; polyester; polylactic acid (PLA); polycarbonate, polyvinyl chloride, polyethersulfone, polyacrylate or acrylic or polymethylmethacrylate (PMMA); polysulfone; polyetheretherketone; thermoplastic elastomers or thermoplastic urethanes; or poly-p-xylylene or parylene.
  • Handle
  • In some embodiments, as shown in in FIGS. 1A, 1B, and 1C, the tactile sensing device comprises a handle 1004. In some embodiments, the handle 1004 is operatively connected to the tactile sensing device 1000. In some embodiments, the handle 1004 is a part of the tactile sensing device 1000 by which the tactile sensing device 1000 is held, controlled, carried, maneuvered, or gripped. In some embodiments, the gripper 1004 orients the user's hand in a forward orientation. In some embodiments, as shown in in FIGS. 2A, 2B, and 2C, the tactile sensing device comprises a gripper 2020. In some embodiments, the gripper 2020 is operatively connected to the tactile sensing device 2000. In some embodiments, the gripper 2020 is a part of the tactile sensing device 2000 by which the tactile sensing device 2000 is held, controlled, carried, maneuvered, or gripped. In some embodiments, as shown in FIGS. 2A, 2B, and 2C, the gripper 2020 is ergonomically shaped and configured to enhance application of force to the tactile sensing device 2004. In some embodiments, a fluid collection system is contained within a void inside the handle of the tactile sensing device 1000. In some embodiments, the handle 1004 or gripper 2020 comprises a plastic or elastomer material including, but not limited to: polyethylene; polypropylene; polystyrene; polyester; polylactic acid (PLA); polycarbonate, polyvinyl chloride, polyethersulfone, polyacrylate or acrylic or polymethylmethacrylate (PMMA); polysulfone; polyetheretherketone (PEEK); thermoplastic elastomers or thermoplastic urethanes; or polyp-xylylene or parylene. In some embodiments, the handle 1004 or gripper 2020 is made out of a rubber material including, but not limited to: silicone rubber, natural rubber, acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, ethylene propylene diene rubber, fluorocarbon rubber, chloroprene rubber, fluorosilicone rubber, polyacrylate rubber, ethylene acrylic rubber, styrene-butadiene rubber, polyester urethane rubber, or polyether urethane rubber.
  • Tactile Sensing Device: Systems
  • Disclosed herein, in certain embodiments, are systems for imaging bone and non-bone structures in an individual in need thereof, comprising: a tactile sensing device to detect voltage signals resulting from application of force to the tactile sensing device against the individual; a display screen to visualize an image of the bone and non-bone structures obtained from the voltage signals detected by the tactile sensing device; and a computing device comprising: at least one processor operatively coupled to the tactile sensing device; a memory device; and a non-transitory computer readable storage medium with a computer program including instructions executable by the processor causing the processor to convert the voltage signals into the image.
  • Bone and Non-Bone Structures
  • In some embodiments, the systems for imaging bone and non-bone structures image a first and second bone and non-bone structures. In some embodiments, the systems for imaging bone and non-bone structures image a plurality of bone and non-bone structures. In some embodiments, a bone structure is a rib. In some embodiments, a bone structure is an articular surface. In some embodiments an articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulations of a first bone of a foot with a second bone of the foot. In some instances, a vertebral articulation is a spinous process. In some embodiments, a non-bone structure is subcutaneous tissue, a muscle, a ligament, adipose tissue, a cyst, or a cavity.
  • Sensor Array
  • In some embodiments, the tactile sensing device 1000 comprises a sensor array 1008. In some embodiments, the sensor array comprises a plurality of sensors. In some embodiments, the sensors are tactile sensors. In some embodiments, the sensors are force-sensitive resistors. In some embodiments, the force-sensitive resistors change their resistive value in response to a change in applied pressure. In some instances, the force-sensitive resistors output voltage signals. In some embodiments, the array of force-sensitive resistors is a 6×3 array comprising eighteen force-sensitive resistors. In some embodiments, the array of force-sensitive resistors is an 8×4 array comprising thirty two force-sensitive resistors. In some embodiments, the size of the array of force-sensitive resistors is dependent upon the surface area of the individual's body to be examined. In some embodiments, the array of force-sensitive resistors is configured in a way that is sufficient to visualize the bone and non-bone structures in the individual.
  • In some embodiments, as shown in FIGS. 3A and 3B, the array of force-sensitive resistors is secured onto a sensor array platform 3022. In some embodiments, the sensor array platform 3022 comprises cylindrical struts 3026 onto which the sensors are adhered to. In some embodiments, the cylindrical struts 3026 onto which the sensors are adhered to are struts or connectors of any shape that adequately supports the sensors being used.
  • Display Screen
  • As shown in FIGS. 1A, 1B, 1C, 2A, 2B, and 2C, in some embodiments, the tactile sensing device 1000, 2000 comprises a display screen 1032, 2032 to provide visual information to a user. In some embodiments, the display screen 1032 is operatively connected to the tactile sensing device 1000. In some embodiments, the display screen 2032 is operatively connected to the tactile sensing device 2000. In some embodiments, the display screen is a computer screen, a mobile device screen, or a portable device screen. In some embodiments, the display screen is a cathode ray tube (CRT). In some embodiments, the display screen is a liquid crystal display (LCD). In further embodiments, the display screen is a thin film transistor liquid crystal display (TFT-LCD). In some embodiments, the display screen is an organic light emitting diode (OLED) display. In various further embodiments, an OLED display is a passive-matrix OLED (PMOLED) or active-matrix OLED (AMOLED) display. In some embodiments, the display screen is a plasma display. In other embodiments, the display screen is a video projector. In still further embodiments, the display screen is a combination of devices such as those disclosed herein.
  • In some embodiments, the visual information provided to the user via a display screen is a pressure map representing bone and non-bone structures. In some embodiments, the pressure map is a heat map. In some embodiments, the heat map is a graphical representation of voltage signals wherein the individual voltage output signals are represented as a plurality of colors, color hues, color saturations, graphical patterns, shading, geometrical figures, or any combination thereof.
  • Computing Device
  • In some embodiments, the tactile sensing device further comprises a computing device. In some embodiments, the computing device is a microcontroller. In some embodiments, the microcontroller is an 8-bit, 16-bit, or 32-bit microcontroller. In some embodiments, the microcontroller is an 8051 microcontroller, a programmable interface controller (PIC), an AVR or Advanced Virtual RISC microcontroller, or an ARM® microcontroller. In some embodiments, the microcontroller is, by way of non-limiting examples, an Arduino Uno microcontroller or a Raspberry Pi microcontroller.
  • In some embodiments, the computing device is a microprocessor. In some embodiments, the microprocessor is manufactured by AMD®, Intel®, or ARM®. In some embodiments, the AMD® microprocessors include, but are not limited to: AMD Sempron™, AMD Turion II™, AMD Athlon II™, AMD Sempron™, AMD Phenom II™, AMD A-Series, or AMD FX™. In some embodiments, the Intel® microprocessors include, but are not limited to: Intel Atom™, Intel Celeron™, Intel Pentium™, Intel Core i3™, Intel Core i5™, or Intel Core i7™. In some embodiments, the ARM® microprocessors include, but are not limited to: ARM OMAP 3, ARM MAP 4, ARM OMAP 5, ARM SnapDragon S2, ARM SnapDragon S, ARM SnapDragon S4, ARM Tegra, ARM Tegra 2, ARM Tegra 3, ARM Exynos 3 Single, ARM Exynos 4 Dual, ARM Exynos 4 Quad, ARM Exynos 5 Dual, ARM A4, ARM A5, or ARM A5X.
  • In some embodiments, the computing device further comprises a memory device. In some embodiments, the processing device includes a memory device. A memory device is one or more physical apparatus used to store data or programs on a temporary basis, a permanent basis, or combinations thereof. In some embodiments, a memory device is volatile and requires power to maintain stored information. In some embodiments, a memory device is non-volatile and retains stored information and does not require power to maintain stored information.
  • In some embodiments, the computing device further comprises a non-transitory computer readable storage medium with a computer program including instructions executable by the processor causing the processor to convert the voltage signals into an image. In some embodiments, the computer program includes instructions executable by the processor that cause the processor to encode the voltage signals into a first and second computer signals.
  • In some embodiments, the computer program includes instructions executable by the processor that cause the processor to calculate a projected needle position and display it on the display screen. In some embodiments, the computer program includes instructions executable by the processor that cause the processor to calculate a projected needle position for any potential needle guide when using a tactile sensing device 2000 comprising a needle guide cartridge 2012, as shown in FIGS. 2A, 2B, and 2C. In some embodiments, a needle projection calculation is a trigonometric algorithm. In some embodiments, the trigonometric algorithm determines the depth of the needle once it traverses subcutaneous adipose tissue. In some embodiments, the needle projection calculation is adjusted based on amount of subcutaneous adipose tissue.
  • In some embodiments, the computer program includes instructions executable by the processor causing the processor to: determine, as a first requirement, a location of a bone detected by the tactile sensing device; ii) determine, as a second requirement, the space between said bone structures; and iii) perform predictive analysis based on application of machine learning. In some embodiments, the predictive analysis performed by the processor enhances the accuracy of a needle projection calculation. In some embodiments, the predictive analysis performed by the processor locates a desired bone and non-bone structure. In some embodiments, the predictive analysis performed by the processor locates a gap between bone and non-bone structures. In some embodiments, the predictive analysis performed by the processor suggests a needle insertion location to the user based on the voltage signals detected by the tactile sensing device.
  • The computer program is, for example, software, including computer algorithms, computer codes, programs, and data, which manages the device's hardware and provides services for execution of instructions. Suitable computer program languages include, by way of non-limiting examples, C, C++, C#, Objective C, Perl, Scala, Haskell, Go, Arduino C, Python, Java, SQL, JavaScript, PHP, iOS Swift, or Ruby.
  • In some embodiments, the computing device is a desktop computer or a laptop computer. In some embodiments, the computing device is a mobile device. In some embodiments, the mobile device is a smart phone or a smart watch. In some embodiments, the computing device is a portable device. In accordance with the description herein, suitable computing devices further include, by way of non-limiting examples, notebook computers, tablet computers, netbook computers, smart book computers, subnotebook computers, ultra-mobile PCs, handheld computers, personal digital assistants, Internet appliances, smart phones, music players, and portable video game systems. Many mobile smart phones are suitable for use in the systems described herein. Suitable tablet computers include those with booklet, slate, and convertible configurations. Suitable portable video game systems include, by way of non-limiting examples, Nintendo DS™ and Sony® PSP™
  • Signal Transmitter and Receiver
  • In some embodiments, the processor encodes the voltage signals into a first and second computer signals. In some embodiments, the tactile sensing device comprises a signal transmitter. In some embodiments, the tactile sensing device comprises a signal receiver. In some embodiments, a transmitter is configured to transmit the first computer signal to a computing device. In some embodiments, a receiver is configured to receive the second computer signal from a tactile sensing device. In some embodiments, the first and second computer signals are transmitted via a USB (Universal Serial Bus) cable. In some embodiments, the first and second computer signals are wireless signals.
  • In some embodiments, the signal receiver is a wireless element. In some embodiments, the signal transmitter is a wireless element. In some embodiments, the wireless element is configured to receive a signal from a computing device, for example, a mobile device. In some embodiments, the signal receiver is a wireless element which is configured to receive a signal from the tactile sensing device. In some embodiments, the wireless element is a wireless network technology. In some embodiments, the wireless network technology is ANT, ANT+, INSTEON, IrDA, Wireless USB, Bluetooth, Z-Wave, or ZigBee, IEEE 802.15.4, 6LoWPAN, or Wi-Fi.
  • Needles and Needle Guide
  • In some embodiments, the system further comprises a needle, a needle guide, a stylet, or a catheter. In some embodiments, the needle is an atraumatic, also known as pencil-point type needle, or a traumatic needle, also known as a classic needle or a Quincke type needle. In some embodiments, the system further comprises a spinal needle. In some embodiments, the spinal needle is a Quincke spinal needle, a Whitacre spinal needle, or a Sprotte spinal needle. In some embodiments, the system further comprises an epidural needle. In some embodiments, the epidural needle is a Weiss epidural needle, a Tuohy epidural needle, or a Hustead epidural needle. In some embodiments, the needle incudes, by way of non-limiting examples, a 6-gauge needle, an 8-gauge needle, a 13-gauge needle, a 15-gauge needle, a 17-gauge needle, an 18-gauge needle, a 19-gauge needle, a 20-gauge needle, a 21-gauge needle, a 22-gauge needle, a 23-gauge needle, a 24-gauge needle, a 25-gauge needle, a 26-gauge needle, a 27-gauge needle, a 28-gauge needle, a 29-gauge needle, a 30-gauge needle, a 31-gauge needle, and a 32-gauge needle. In some embodiments, the needle is a spinal needle ranging between 1-10 inches in length. In some embodiments, the needle contains a stylet, also known as an obturator or an introducer, which is a fine wire, a slender probe, or a solid rod with a metal hub fitted to match a needle's bevel. In diagnostic lumbar punctures, a stylet is withdrawn from the needle to allow cerebrospinal fluid to flow out from the spinal canal and through the needle hub.
  • In some embodiments, the system further comprises a catheter. In some embodiments, the catheter is an epidural tunneled catheter, which is implanted into the epidural space as a medication delivery port. In some embodiments, the catheter is used to monitor intracranial pressure during a diagnostic lumbar puncture procedure. In some embodiments, the catheter is used as means to continuously remove cerebrospinal fluid and relieve pressure on the brain of a patient suffering from hydrocephalus.
  • In some embodiments, a needle guide 1002 is operatively connected to the tactile sensing device 1000. In some embodiments, the needle guide 1002, operatively connected to the tactile sensing device 1000, is used to control the angle and direction of a needle that is inserted into an individual in need thereof. In some embodiments, the needle guide 1002 is oriented between a −45° and 45° cephalad angle, terminating at a needle orifice 1038 located on the center of the sensor array 1008, thereby controlling the angle at which the needle is inserted into a human body. In some embodiments, the needle guide 1002 is oriented at a 15° cephalad angle. In some embodiments, the needle orifice 1038 located on the center of the sensor array 1008 is an elongated slit. In some embodiments, the needle guide 1002 terminates at a plurality of openings formed by an elongated slit with a plurality of columns. In various further embodiments, as shown in FIGS. 2A, 2B, and 2C, a needle guide cartridge 2012 is operatively connected to the tactile sensing device 2000. In some embodiments, the needle guide cartridge 2012 is oriented between a −45° and 45° cephalad angle, terminating at needle orifice 2038 located along the midline of the sensor array 2008, thereby controlling the angle at which the needle is inserted into a human body. In some embodiments, the needle guide cartridge 2012 is oriented at a 15° cephalad angle. In some embodiments, the needle guide cartridge 2012 2012 terminates at an opening. In some embodiments, the needle orifice 2038 located on the center of the sensor array 2008 is an elongated slit.
  • Fluid Collection System
  • In some embodiments, the system further comprises a fluid collection system operatively connected to the tactile sensing device and configured to collect a fluid such as cerebrospinal fluid. In some embodiments, the fluid collection system is disposable. In some embodiments, the fluid collection system comprises a diaphragm, faucet, top faucet, spoke, or rail design. In some embodiments, the fluid collection system is sterile. In some embodiments, the fluid collection system is modular.
  • Pressure Sensor
  • In some embodiments, the system further comprises a pressure sensor operatively connected to the tactile sensing device and configured to measure cerebrospinal fluid pressure. In some embodiments, the pressure sensor is operatively connected to the tactile sensing device via a 3-way valve. In some embodiments, the pressure sensor is an electronic pressure sensor. In some instances, the pressure sensor is a piezoresistive, capacitive, electromagnetic, piezoelectric, optical, or potentiometric pressure sensor. In some embodiments, cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed digitally. In some embodiments, cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed on a display screen in real-time.
  • Tactile Sensing Device: Uses
  • Disclosed herein, in certain embodiments, are methods for imaging bone and non-bone structures in an individual in need thereof, comprising: placing a tactile sensing device on the individual; applying force to the tactile sensing device against the individual; and viewing an image of bone and non-bone structures, obtained from voltage signals detected by the tactile sensing device, resulting from the application of force to the tactile sensing device against an individual, on a display screen. FIG. 4 exemplifies these methods for imaging bone and non-bone structures in a flowchart. In some embodiments, the process to image bone and non-bone structures with the tactile sensing device during a lumbar puncture begins by having the user identify the midline of the patient by moving the tactile sensing device laterally along the patient's back until the midline is identified. In some embodiments, the midline of the patient is identified when the image of the bone and non-bone structures shows the patient's spine centered on the display screen. In some embodiments, once the tactile sensing device is correctly aligned along the midline of the patient, the user ensures force is applied to the tactile sensing device and against the patient 4078, in order to obtain the most accurate readings. In some embodiments, voltage signals is generated by the tactile sensing device and then collected 4080, as shown in FIG. 4. In some embodiments, the collected voltage signals is processed by a computing device and transformed into an image 4082, which the user visualizes 4084 on the display screen.
  • Disclosed herein, in certain embodiments, are methods for generating an image of bone and non-bone structures in an individual in need thereof, comprising: collecting voltage signals detected by a tactile sensing device, resulting from the application of force to the tactile sensing device against an individual; converting the voltage signals into a mathematical array; rescaling the mathematical array; and transforming the rescaled mathematical array into an image of bone and non-bone structures of the individual. In some embodiments, converting the voltage signals comprises acquiring, processing, and transforming the signals into the image using a computer processor. FIG. 10 exemplifies these methods for generating an image of bone and non-bone structures in a flowchart. In some embodiments, voltage signals generated by the tactile sensing device are transmitted via a multiplexer and a voltage divider. In some embodiments, voltage signals generated by the tactile sensing device are transmitted via a voltage divider. In some embodiments, the transmitted voltage signals are collected using a computer processor 10124. In some embodiments, the computer processor converts the collected voltage signals into a mathematical array 10126. In some embodiments, the computer processor rescales the mathematical array 10128. In some embodiments, the rescaled mathematical array is transformed into an image 10130 that is displayed in real-time on the display screen.
  • Bone and Non-Bone Structures
  • In some embodiments, the methods for imaging bone and non-bone structures comprise imaging a first and second bone and non-bone structures. In some embodiments, the methods for generating an image of bone and non-bone structures comprise generating an image of a first and second bone and non-bone structures. In some embodiments, the methods for imaging bone and non-bone structures image a plurality of bone and non-bone structures. In some embodiments, the methods for generating an image of bone and non-bone structures image a plurality of bone and non-bone structures. In some embodiments, the methods for imaging bone and non-bone structures comprise placing the tactile sensing device on the individual. In some embodiments, placing the tactile sensing device on the individual further comprises positioning the tactile sensing device on a bone structure. In some embodiments, a bone structure is a rib. In some embodiments, a bone structure is an articular surface. In some embodiments an articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulations of a first bone of a foot with a second bone of the foot. In some instances, a vertebral articulation is a spinous process. In some embodiments, a non-bone structure is subcutaneous tissue, a muscle, a ligament, adipose tissue, a cyst, or a cavity.
  • Sensor Array
  • In some embodiments, the tactile sensing device 1000 comprises a sensor array 1008. In some embodiments, the sensor array comprises tactile sensors. In some embodiments, the tactile sensors are force-sensitive resistors. In some embodiments, the force-sensitive resistors change their resistive value in response to a change in applied pressure. In some instances, the force-sensitive resistors output voltage signals. In some embodiments, the array of force-sensitive resistors is a 6×3 array comprising eighteen force-sensitive resistors. In some embodiments, the array of force-sensitive resistors is an 8×4 array comprising thirty two force-sensitive resistors. In some embodiments, the size of the array of force-sensitive resistors is dependent upon the surface area of the individual's body to be examined. In some embodiments, the array of force-sensitive resistors is configured in a way that is sufficient to visualize the bone and non-bone structures in the individual.
  • In some embodiments, as shown in FIGS. 3A and 3B, the array of force-sensitive resistors is secured onto a sensor array platform 3022. In some embodiments, the sensor array platform 3022 comprises cylindrical struts 3026 onto which the force-sensitive resistors are adhered to. In some embodiments, the cylindrical struts 3026 onto which the force-sensitive resistors are adhered are connectors. In some embodiments, each sensor 3016 is covered with a material configured to enhance force feedback. In some embodiments, the material covering the force-sensitive resistors is a hemispherical rubber disk.
  • Multiplexer
  • In some embodiments, the tactile sensing device further comprises a multiplexer. The multiplexer selects voltage output signals from the force-sensitive resistors and forwards the selected voltage output signals into a single line. In some embodiments, the multiplexer is mounted onto a printed circuit board.
  • Voltage Divider
  • In some embodiments, the tactile sensing device further comprises a voltage divider. In some embodiments, the voltage signal output from the force-sensitive resistors is read out using a voltage divider.
  • Pressure Map
  • In some embodiments, the image of bone and non-bone structures provided to the user via a display screen is a pressure map representing bone and non-bone structures. In some embodiments, the pressure map is a heat map. In some embodiments, the heat map is a graphical representation of voltage signals wherein the individual voltage output signals are represented as a plurality of colors, color hues, color saturations, graphical patterns, shading, geometrical figures, or any combination thereof. In some embodiments, the pressure map is overlaid onto a second image.
  • Lumbar Puncture Methods
  • Disclosed herein, in certain embodiments, are methods for performing a lumbar puncture in an individual in need thereof, comprising: placing a tactile sensing device on a lumbar region of the individual; applying force to the tactile sensing device against the lumbar region; viewing voltage signals, corresponding to vertebral articulations, detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region, on a display screen; localizing two spinous processes on the image; identifying a gap between a first spinous process and a second spinous process of the individual; using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and collecting cerebrospinal fluid or administering a therapeutic agent.
  • Epidural Methods
  • Disclosed herein, in certain embodiments, are methods for administering a therapeutic agent to an epidural space of an individual in need thereof, comprising: placing a tactile sensing device on a lumbar region of the individual; applying force to the tactile sensing device against the lumbar region; viewing voltage signals, corresponding to vertebral articulations, detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region, on a display screen; localizing two spinous processes on the image; identifying a gap between a first spinous process and a second spinous process of the individual; using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and injecting a therapeutic agent into the epidural space.
  • Therapeutic Agents
  • In some embodiments, therapeutic agents are delivered via a lumbar puncture. In some embodiments, therapeutic agents delivered via a lumbar puncture include but are not limited to: anesthetics, analgesics, chemotherapeutic agents, contrast agents or dyes, anti-spasmodic agents, antibiotics, or proteins. In some embodiments, anesthetics delivered via a lumbar puncture include but are not limited to: bupivacaine, lidocaine, tetracaine, procaine, ropivacaine, levobupivacaine, prilocaine, and cinchocaine. In some embodiments, analgesics delivered via a lumbar puncture include but are not limited to: opioids such as morphine, fentanyl, diamorphine, buprenorphine, and pethidine or meperidine; and non-opioids such as clonidine. In some embodiments, chemotherapeutic agents delivered via a lumbar puncture include but are not limited to: methotrexate, cytarabine, hydrocortisone, and thiotepa. In some embodiments, contrast agents or dyes delivered via a lumbar puncture include but are not limited to: iohexol, metrizamide, iopamidol, ioversol, iopromide, iodixanol, iolotran, and iodophenylundecylic acid. In some embodiments, anti-spasmodic agents delivered via a lumbar puncture include baclofen. In some embodiments, antibiotics delivered via a lumbar puncture include gentamicin sulphate. In some embodiments, proteins delivered via a lumbar puncture include idursulfase.
  • Spinous Processes
  • In some embodiments, methods for performing a lumbar puncture in an individual in need thereof comprise using a needle guide to insert a needle between the first and second spinous processes and into the subarachnoid space of the individual. In some embodiments, methods for administering a therapeutic agent to an epidural space of an individual in need thereof comprise using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual. In some embodiments, the first spinous process is a part of the first lumbar vertebra (L1), L2, L3, or L4 lumbar vertebrae and the second spinous process is a part of L2, L3, L4, or L5 lumbar vertebrae. In some further embodiments, the first and spinous process is a part of any cervical, thoracic, lumbar, sacrum, or coccyx vertebrae.
  • Needles and Needle Guide
  • In some embodiments, the system further comprises a needle, a needle guide, a stylet, or a catheter. In some embodiments, the needle is an atraumatic, also known as pencil-point type needle, or a traumatic needle, also known as a classic needle or a Quincke type needle. In some embodiments, the system further comprises a spinal needle. In some embodiments, the spinal needle is a Quincke spinal needle, a Whitacre spinal needle, or a Sprotte spinal needle. In some embodiments, the system further comprises an epidural needle. In some embodiments, the epidural needle is a Weiss epidural needle, a Tuohy epidural needle, or a Hustead epidural needle. In some embodiments, the needle incudes, by way of non-limiting examples, a 6-gauge needle, an 8-gauge needle, a 13-gauge needle, a 15-gauge needle, a 17-gauge needle, an 18-gauge needle, a 19-gauge needle, a 20-gauge needle, a 21-gauge needle, a 22-gauge needle, a 23-gauge needle, a 24-gauge needle, a 25-gauge needle, a 26-gauge needle, a 27-gauge needle, a 28-gauge needle, a 29-gauge needle, a 30-gauge needle, a 31-gauge needle, and a 32-gauge needle. In some embodiments, the needle is a spinal needle ranging between 1-10 inches in length. In some embodiments, the needle contains a stylet, also known as an obturator or an introducer, which is a fine wire, a slender probe, or a solid rod with a metal hub fitted to match a needle's bevel. In diagnostic lumbar punctures, a stylet is withdrawn from the needle to allow cerebrospinal fluid to flow out from the spinal canal and through the needle hub.
  • In some embodiments, the system further comprises a catheter. In some embodiments, the catheter is an epidural tunneled catheter, which is implanted into the epidural space as a medication delivery port. In some embodiments, the catheter is used to monitor intracranial pressure during a diagnostic lumbar puncture procedure. In some embodiments, the catheter is used as means to continuously remove cerebrospinal fluid and relieve pressure on the brain of a patient suffering from hydrocephalus.
  • In some embodiments, a needle guide 1002 is operatively connected to the tactile sensing device 1000. In some embodiments, the needle guide 1002, operatively connected to the tactile sensing device 1000, is used to control the angle and direction of a needle that is inserted into an individual in need thereof. In some embodiments, the needle guide 1002 is oriented between a −45° and 45° cephalad angle, terminating at a needle orifice 1038 located on the center of the sensor array 1008, thereby controlling the angle at which the needle is inserted into a human body. In some embodiments, the needle guide 1002 is oriented at a 15° cephalad angle. In some embodiments, the needle orifice 1038 located on the center of the sensor array 1008 is an elongated slit. In some embodiments, the needle guide 1002 terminates at a plurality of openings formed by an elongated slit with a plurality of columns. In various further embodiments, as shown in FIGS. 2A, 2B, and 2C, a needle guide cartridge 2012 is operatively connected to the tactile sensing device 2000. In some embodiments, the needle guide cartridge 2012 is oriented between a −45° and 45° cephalad angle, terminating at a needle orifice 2038 located along the midline of the sensor array 2008, thereby controlling the angle at which the needle is inserted into a human body. In some embodiments, the needle guide cartridge 2012 is oriented at a 15° cephalad angle. In some embodiments, the needle guide cartridge 2012 terminates at an opening. In some embodiments, the needle orifice 2038 located on the center of the sensor array 2008 is an elongated slit.
  • Guiding Methods
  • Disclosed herein, in certain embodiments, are methods for guiding a first individual performing a lumbar puncture on a second individual in need thereof, comprising: placing a tactile sensing device on a lumbar region of the individual; applying force to the tactile sensing device against the lumbar region; viewing voltage signals, corresponding to vertebral articulations, detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region, on a display screen; localizing two spinous processes on the image; identifying a gap between a first spinous process and a second spinous process of the individual; using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and collecting cerebrospinal fluid or administering a therapeutic agent.
  • Disclosed herein, in certain embodiments, are methods for guiding a first individual administering a therapeutic agent into an epidural space of a second individual in need thereof, comprising: placing a tactile sensing device on a lumbar region of the individual; applying force to the tactile sensing device against the lumbar region; viewing voltage signals, corresponding to vertebral articulations, detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region, on a display screen; localizing two spinous processes on the image; identifying a gap between a first spinous process and a second spinous process of the individual; using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and injecting a therapeutic agent into the epidural space.
  • Tactile Sensing Device: Kits
  • Disclosed herein, in certain embodiments, are kits for performing a diagnostic lumbar puncture in an individual in need thereof, comprising: a tactile sensing device to image bone and non-bone structures in the individual; a computer to process voltage signals detected by the tactile sensing device; a display screen to visualize the bone and non-bone structures; an electronic pressure sensor to measure cerebrospinal fluid pressure; and a fluid collection system to collect cerebrospinal fluid.
  • Sensor Array
  • In some embodiments, the tactile sensing device 1000 comprises a sensor array 1008. In some embodiments, the sensor array comprises a plurality of tactile sensors. In some embodiments, the tactile sensors are force-sensitive resistors. In some embodiments, the force-sensitive resistors change their resistive value in response to a change in applied pressure. In some instances, the force-sensitive resistors output voltage signals. In some embodiments, the array of force-sensitive resistors is a 6×3 array comprising eighteen force-sensitive resistors. In some embodiments, the array of force-sensitive resistors is an 8×4 array comprising thirty two force-sensitive resistors. In some embodiments, the size of the array of force-sensitive resistors is dependent upon the surface area of the individual's body to be examined. In some embodiments, the array of force-sensitive resistors is configured in a way that is sufficient to visualize the bone and non-bone structures in the individual. In some embodiments, as shown in FIGS. 3A and 3B, the array of force-sensitive resistors is secured onto a sensor array platform 3022. In some embodiments, the sensor array platform 3022 comprises cylindrical struts 3026 onto which the sensors are adhered to. In some embodiments, the cylindrical struts 3026 onto which the sensors are adhered are connectors. In some embodiments, the force-sensitive resistors are covered with a material configured to enhance force feedback. In some embodiments, the material covering the force-sensitive resistors is a hemispherical rubber disk.
  • Bone and Non-Bone Structures
  • In some embodiments, the tactile sensing device images a first and second bone and non-bone structures. In some embodiments, the tactile sensing device images a plurality of bone and non-bone structures. In some embodiments, a bone structure is a rib. In some embodiments, a bone structure is an articular surface. In some embodiments an articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulations of a first bone of a foot with a second bone of the foot. In some instances, a vertebral articulation is a spinous process. In some embodiments, a non-bone structure is subcutaneous tissue, a muscle, a ligament, adipose tissue, a cyst, or a cavity.
  • Computing Device
  • In some embodiments, the tactile sensing device further comprises a computing device. In some embodiments, the computing device is a microcontroller. In some embodiments, the microcontroller is an 8-bit, 16-bit, or 32-bit microcontroller. In some embodiments, the microcontroller is an 8051 microcontroller, a programmable interface controller (PIC), an AVR or Advanced Virtual RISC microcontroller, or an ARM® microcontroller. In some embodiments, the microcontroller is, by way of non-limiting examples, an Arduino Uno microcontroller or a Raspberry Pi microcontroller.
  • Display Screen
  • As shown in FIGS. 1A, 1B, 1C, 2A, 2B, and 2C, in some embodiments, the tactile sensing device 1000, 2000 comprises a display screen 1032, 2032 to provide visual information to a user. In some embodiments, the display screen 1032 is operatively connected to the tactile sensing device 1000. In some embodiments, the display screen 2032 is operatively connected to the tactile sensing device 2000. In some embodiments, the display screen is a computer screen, a mobile device screen, or a portable device screen. In some embodiments, the display screen is a cathode ray tube (CRT). In some embodiments, the display screen is a liquid crystal display (LCD). In further embodiments, the display screen is a thin film transistor liquid crystal display (TFT-LCD). In some embodiments, the display screen is an organic light emitting diode (OLED) display. In various further embodiments, an OLED display is a passive-matrix OLED (PMOLED) or active-matrix OLED (AMOLED) display. In some embodiments, the display screen 1032, 2032 is a plasma display. In other embodiments, the display screen is a video projector. In still further embodiments, the display screen is a combination of devices such as those disclosed herein.
  • In some embodiments, the visual information provided to the user via a display screen is a pressure map representing bone and non-bone structures. In some embodiments, the pressure map is a heat map. In some embodiments, the heat map is a graphical representation of voltage signals wherein the individual voltage output signals are represented as a plurality of colors, color hues, color saturations, graphical patterns, shading, geometrical figures, or any combination thereof.
  • Needle Guide
  • In some embodiments, as shown in FIGS. 1A, 1B, and 1C, a needle guide 1002 is operatively connected to the tactile sensing device 1000. In some embodiments, the needle guide 1002, operatively connected to the tactile sensing device 1000, is used to control the angle and direction of a needle that is inserted into an individual in need thereof. In some embodiments, the needle guide 1002 is oriented between a −45° and 45° cephalad angle, terminating at a needle orifice 1038 located on the center of the sensor array 1008, thereby controlling the angle at which the needle is inserted into a human body. In some embodiments, the needle guide 1002 is oriented at a 15° cephalad angle. In some embodiments, the needle orifice 1038 located on the center of the sensor array 1008 is an elongated slit. In some embodiments, the needle guide 1002 terminates at a plurality of openings formed by an elongated slit with a plurality of columns. In various further embodiments, as shown in FIGS. 2A, 2B, and 2C, a needle guide cartridge 2012 is operatively connected to the tactile sensing device 2000. In some embodiments, the needle guide cartridge 2012 is oriented between a −45° and 45° cephalad angle, terminating at a needle orifice 2038 located along the midline of the sensor array 2008, thereby controlling the angle at which the needle is inserted into a human body. In some embodiments, the needle guide cartridge 2012 is oriented at a 15° cephalad angle. In some embodiments, the needle guide cartridge 2012 terminates at an opening. In some embodiments, the needle orifice 2038 located on the center of the sensor array 2008 is an elongated slit.
  • Pressure Sensor
  • In some embodiments, the tactile sensing device further comprises a pressure sensor operatively connected to the tactile sensing device and configured to measure cerebrospinal fluid pressure. In some embodiments, the pressure sensor is operatively connected to the tactile sensing device via a 3-way valve 2014. In some embodiments, the pressure sensor is an electronic pressure sensor. In some instances, the pressure sensor is a piezoresistive, capacitive, electromagnetic, piezoelectric, optical, or potentiometric pressure sensor. In some embodiments, cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed digitally. In some embodiments, cerebrospinal fluid pressure measured with the electronic pressure sensor is displayed on a display screen in real-time.
  • Fluid Collection System
  • In some embodiments, the tactile sensing device further comprises a fluid collection system operatively connected to the tactile sensing device and configured to collect a fluid such as cerebrospinal fluid. In some embodiments, the fluid collection system is disposable. In some embodiments, the fluid collection system comprises a diaphragm, faucet, spoke, or rail design. In some embodiments, the fluid collection system is sterile. In some embodiments, the fluid collection system is modular.
  • FIGS. 1A, 1B, and 1C show an illustration of one embodiment of the tactile sensing device 1000. The tactile sensing device 1000 comprises a sensor array 1008, a display screen 1032, a needle guide 1002, and a faucet fluid collection system 1006. The tactile sensing device further comprises a handle 1004 in the shape of a pistol grip. The handle 1004 is proximal to the user. The tactile sensing device 1000 is configured to image a target tissue location and to guide a needle to a desired target tissue location.
  • Sensor array 1008 is distal to the user. Sensor array 1008 comprises 18 sensors; only a first sensor 1016 a, a second sensor 1016 b, a third sensor 1016 c, a fourth sensor 1016 d, a fifth sensor 1016 e, and a sixth sensor 1016 f are shown in FIG. 1B. One additional row of six sensors is found adjacent to the right of first sensor 1016 a, second sensor 1016 b, third sensor 1016 c, fourth sensor 1016 d, fifth sensor 1016 e, and sixth sensor 1016 f, and an additional row of six sensors is found adjacent to the left of sensor first sensor 1016 a, second sensor 1016 b, third sensor 1016 c, fourth sensor 1016 d, fifth sensor 1016 e, and sixth sensor 1016 f (not shown in FIGS. 1A, 1B, and 1C). In some embodiments, the sensor array 1008 is a tactile sensor array. In some embodiments, the sensor array 1008 is an ultrasound sensor array. In some embodiments, the sensor array 1008 is an infrared radiation (IR) sensor array. Sensor array 1008 is a sensor array cartridge that is pressed into a sensor array holder 1104, which is located distally, beneath the display screen 1032. Sensors in the sensor array 1008 face away from the user when the sensor array 1008 is loaded into place within the tactile sensing device. In some embodiments, the sensor array 1008 turns on once it is loaded into the sensor array holder 1104. Sensor array holder 1104 is loaded into place in a multitude of ways. Non-limiting examples of loading the sensor array 1008 into the sensor array holder 1104 that are not shown in FIGS. 1A, 1B, and 1C, include: pressing the sensor array 1008 into the sensor array holder 1104, including snap fit features that allow the sensor array 1008 to stay in place once loaded, any magnetic means to hold the sensor array 1008 in place, any mechanical means to hold the sensor array 1008 in place. In some embodiments, a tugging string is used to snap the sensor array 1008 out of the sensor array holder 1104. In some embodiments the sensor array 1008 comprises snap ledges, or other reversible means of loading the sensor array 1008 into the sensor array holder 1104. In some embodiments, the sensor array 1008 remains in place simply because it abuts the ledge of the sensor array holder 1104. In some embodiments, one or more tabs are present on the external surface of the sensor array holder 1104. The tabs are able to be twisted in order to prevent unwanted movement or removal that is distally of the sensor array 1008 relative to the sensor array holder 1104. In addition, the sensor array 1008 is reversibly loaded into the sensor array holder 1104.
  • The sensors in the sensor array 1008 generate output voltage signals when the user applies a force using the tactile sensing device 1000 onto a surface, for example, onto a tissue of a patient. The sensor array 1008 is operatively connected to the display screen 1032 and a computing device (not shown in FIGS. 1A, 1B, and 1C). The sensor array 1008 relays its output voltage signals to the computing device (not shown in FIGS. 1A, 1B, and 1C), the computing device processes the output voltage signals, and an image of the output voltage signals is visualized on the display screen 1032.
  • The needle guide 1002 is shaped as a track, and it is configured to accept a needle 1142. The needle guide 1002 includes a proximal opening 1140 a and a distal opening 1140 b. In some embodiments, the needle guide 1002 is oriented at a 15° cephalad angle. In some embodiments, the needle guide 1002 is oriented between a −45° and 45° cephalad angle. The needle 1142 is inserted into the needle guide 1002 through the proximal opening 1140 a and sits on the needle guide 1002. Once inserted into the needle guide 1002, the needle 1142 exits the needle guide 1002 through a needle orifice 1038 located in the sensor array 1008, between the third sensor 1016 c and the fourth sensor 1016 d.
  • A 3-way valve 1014 is inserted into the needle guide 1002 through the distal slit 1090 b and sits on the needle guide 1002. In some embodiments, the 3-way valve 1014 is connected to a needle via its needle hub prior to insertion into the needle guide 1002. The 3-way valve 1014 is shown in the center of the needle guide 1002 in FIGS. 1B and 1C. The 3-way valve comprises a needle hub connector 1100, a pressure gauge connector 1094, and a fluid port 1096. The needle hub connector 1100 faces distally away from the user, and it is configured to connect to a needle hub. The pressure gauge connector 1094 is oriented upward, and it is configured to connect to a pressure sensor (not shown in FIGS. 1A, 1B, and 1C). In some embodiments, the pressure gauge connector 1094 protrudes through the slit 1090. The fluid port 1096 faces the user, and it is an open port through which fluid flows freely. The fluid port 1096 faces the user, and it is an open port through which fluid, collected from a patient, flows freely. First fluid hole 1098 a is located between the 3-way valve 1014 and the proximal needle guide 1002 a. Second fluid hole 1098 b is located directly beneath first fluid hole 1098 a. In some embodiments, cerebrospinal fluid (CSF) flows freely through the fluid port 1096, follows the downward sloping needle guide 1002, flows through the first fluid hole 1098 a, flows through the second fluid hole 1098 b, and flows into a collection tube 1010 a. In some embodiments, fluid collected from a patient flows freely through the fluid port 1096, follows the downward sloping needle guide 1002, flows through the first fluid hole 1098 a, flows through the second fluid hole 1098 b, and flows into a collection tube 1010 a.
  • In some embodiments, a knob (not shown in FIGS. 1A, 1B, and 1C) is operatively connected to the 3-way valve 1014. In some embodiments, a knob (not shown in FIGS. 1A, 1B, and 1C) is operatively coupled to the tactile sensing device 1000. Non-liming examples of operatively connecting the knob (not shown in FIGS. 1A, 1B, and 1C) include: coupling the knob to the needle hub connector 1100, coupling the knob to the pressure gauge connector 1094, coupling the knob to a pressure gauge (not shown in FIG. 1A, 1B, or 1C) connected to the pressure gauge connector 1094, or coupling the knob to a pressure sensor (not shown in FIG. 1A, 1B, or 1C) connected to the pressure gauge connector 1094. The knob (not shown in FIG. 1A, 1B, or 1C) enables the needle to be reversibly moved towards the sensor array 1008 or away from the sensor array 1008, once the needle 1142 is operatively coupled to the tactile sensing device 1000. The knob (not shown in FIG. 1A, 1B, or 1C) protrudes through the slit 1090 and may be displaced through the length of the slit. In some embodiments, the knob (not shown in FIG. 1A, 1B, or 1C) protrudes through the proximal slit 1090 a when the needle 1142 has not been inserted into a patient. In some embodiments, the knob (not shown in FIG. 1A, 1B, or 1C) protrudes through the distal slit 1090 b or close to the distal slit 1090 b when the user has inserted or is in the process of inserting the needle 1142 into a patient. The direction of the needle movement 1136 is shown in FIG. 1B.
  • The faucet fluid collection system 1006 comprises a central rod 1116, a faucet base 1054, a rotating handle 1052, and collection tubes 1010. The faucet base 1054 includes an elongated central rod 1116 extending upwardly therefrom. The faucet base 1054 is located directly above, and it is operatively connected to the rotating handle 1052 via a projection 1132. The rotating handle 1052 is able to be rotated clockwise or counterclockwise about an imaginary Y-axis that vertically traverses the central rod 1116. Rotating the rotating handle 1052 enables rotation of the collection tubes 1010. The collection tubes 1010 sit on the faucet base 1054. In some embodiments, the faucet base 1054 comprises individual round receptacles (not shown in FIGS. 1A, 1B, and 1C) that hold and provide support for collections tubes 1010. Collection tubes 1010 comprise a first collection tube 1010 a, a second collection tube 1010 b, and a third collection tube 1010 c, as shown in FIG. 1B. In some embodiments, the faucet fluid collection system 1006 comprises at least one collection tube. In some embodiments, the faucet fluid collection system comprises up to 20 collection tubes. The position of collection tubes 1010 is controlled by the rotation of the rotating handle 1052. Collection tubes 1010 are positioned directly beneath the second fluid hole 1098 b when collecting a fluid.
  • In use, the tactile sensing device 1000 is turned on by the user via the insertion of the sensor array 1008 into the sensor array holder 1114. The user holds the tactile sensing device by the handle 1004 and presses the sensor array 1008 against the patient. The user visualizes underlying bone and/or soft tissue on the display screen 1032. The user inserts a needle into the needle guide 1002 and connects the needle to the 3-way valve 1014 via a needle hub connector 1100. Based on the image on the display screen 1032, the user is able to guide the needle at a 15° cephalad angle into a desired target location in the patient. In some embodiments, the user utilizes the tactile sensing device 1000 to perform a lumbar puncture to collect cerebrospinal fluid (CSF). Collection of CSF is facilitated by the faucet fluid collection system 1006. Further non-limiting examples of fluid collections systems are illustrated in FIGS. 5-8. Once the needle reaches the subarachnoid space, CSF begins to flow from the subarachnoid space, into the needle, through the needle hub, into the needle hub connector 1100, through the 3-way valve 1014, through the fluid port 1096, through the first fluid hole 1098 a, through the second fluid hole 1098 b, and finally into a first collection tube 1010 a. The user optionally monitors the CSF pressure in real time once the needle is in the subarachnoid space by connecting a pressure sensor (not shown in FIGS. 1A, 1B, and 1C) to the 3-way valve 1014 via a pressure gauge connector 1094.
  • FIGS. 2A, 2B, and 2C illustrate another embodiment of the tactile sensing device 2000. The tactile sensing device 2000 comprises a sensor array 2008, a display screen 2032, a needle guide cartridge 2012, and a rail fluid collection system 2062. The tactile sensing device further comprises a gripper 2020 with a curved shape. The gripper 2020 is proximal to the user. The tactile sensing device 2000 is configured to image a target tissue location and to guide a needle to a desired target tissue location. The tactile sensing device 2000 further enables positioning of a needle at five discrete levels. The tactile sensing device 2000 further enables positioning of a needle at a 15° cephalad angle; this angle is not accurately shown in FIGS. 2A, 2B, and 2C.
  • Sensor array 2008 is distal to the user. Sensor array 2008 comprises 18 sensors: a first sensor 2016 a, a second sensor 2016 b, a third sensor 2016 c, a fourth sensor 2016 d, a fifth sensor 2016 e, a sixth sensor 2016 f, a seventh sensor 2016 g, an eighth sensor 2016 h, a ninth sensor 2016 i, a tenth sensor 2016 j, an eleventh sensor 2016 k, a twelfth sensor 2016 l, a thirteenth sensor 2016 m, a fourteenth sensor 2016 n, an fifteenth sensor 2016 o, a sixteenth sensor 2016 p, a seventeenth sensor 2016 q, and an eighteenth sensor 2016 r are shown in FIG. 2B. In some embodiments, the sensor array 2008 is a tactile sensor array. Sensor array 2008 is a sensor array cartridge that is loaded into a sensor array holder 2104, which is located distally, beneath the display screen 2032. Sensors in the sensor array 2008 face away from the user when the sensor array 2008 is loaded into place. In some embodiments, the sensor array 2008 turns on once it is loaded into the sensor array holder 2104. The sensor array 2008 is loaded in a multitude of ways, including all the non-limiting examples of loading sensor array 1008 mentioned supra. The sensors in the sensor array 2008 generate output voltage signals when the user applies a force using the tactile sensing device 2000 onto a surface, for example, onto a tissue of a patient. The sensor array 2008 is operatively connected to the display screen 2032 and a computing device (not shown in FIGS. 2A, 2B, and 2C). The sensor array 2008 relays its output voltage signals to the computing device (not shown in FIGS. 2A, 2B, and 2C), the computing device processes the output voltage signals, and an image of the output voltage signals is visualized on the display screen 2032.
  • The needle guide cartridge 2012 is a modular component. In some embodiments, the needle guide cartridge 2012 is disposable. In some embodiments, the needle guide cartridge 2012 is loaded into place. The needle guide cartridge 2012 comprises a first needle guide 2002 a, a second needle guide 2002 b, a third needle guide 2002 c, a fourth needle guide 2002 d, and a fifth needle guide 2002 e. The needle guides are shaped like tracks and are configured to accept a needle (needle is not shown in FIGS. 2A, 2B, and 2C). A needle is placed on the needle guide by introducing it from the top, using either a proximal slit 2190 a, a distal slit 2190 b, a knob opening 2110, or a combination thereof. In some embodiments, a needle is placed on the needle guide by introducing it through a first side opening 2106 a, a second side opening 2106 b, a third side opening 2106 c, a fourth side opening 2106 d, or a fifth side opening 2106 e. The needle guides are oriented at a 15° cephalad angle. Once inserted into a needle guide, the needle (not shown in FIGS. 2A, 2B, and 2C) exits the needle guide through a needle orifice located in the sensor array 2008. A needle inserted into the first needle guide 2002 a exits the sensor array 2008 through the first needle orifice 2038 a located in the sensor array 2008. A needle inserted into the second needle guide 2002 b exits the sensor array 2008 through the second needle orifice 2038 b located in the sensor array 2008. A needle inserted into the third needle guide 2002 c exits the sensor array 2008 through the third needle orifice 2038 c located in the sensor array 2008. A needle inserted into the fourth needle guide 2002 d exits the sensor array 2008 through the fourth needle orifice 2038 d located in the sensor array 2008. A needle inserted into the fifth needle guide 2002 e exits the sensor array 2008 through the fifth needle orifice 2038 e located in the sensor array 2008.
  • A 3-way valve 2014 is fixed to the needle guide cartridge 2012, below the fifth side opening 2106 e, and in between the guide rails 2134. The 3-way valve comprises a needle hub connector 2100, a pressure gauge port 2108, and a fluid connector 2068. The needle hub connector 2100 faces distally away from the user, and it is configured to connect to tubing that further connects to a needle hub (tubing and needle not shown in FIGS. 2A, 2B, and 2C). The pressure gauge port 2108 is oriented away from the needle guide cartridge 2012. The pressure gauge port 2108 is configured to connect to a pressure sensor (not shown in FIGS. 2A, 2B, and 2C). The fluid connector 2068 is configured to connect to tubing. The fluid connector 2068 comprises an opening that is oriented downward in order to lead a fluid into a collection tube. For example, FIG. 2B shows the fluid connector 2068 protruding into a third collection tube 2010 c.
  • The rail fluid collection system 2062 comprises a sliding rail platform 2064 and collection tubes. For example, the rail fluid collection system 2062 includes a first collection tube 2010 a, a second collection tube 2010 b, a third collection tube 2010 c, and a fourth collection tube 2010 d. Two guide rails 2134 extend beneath the needle guide cartridge 2012 and receive two longitudinal edges of the sliding rail platform 2064. The sliding rail platform 2064 includes rail platform openings 2132. In some embodiments, the rail platform openings 2132 are circular in shape. The rail platform openings 2132 are configured to hold collection tubes. The position of collection tubes 1010 is controlled by the sliding of rail platform 2064 along the guide rails 2134. Collection tubes 1010 are positioned directly beneath the fluid connector 2068 when collecting a fluid.
  • FIGS. 3A and 3B illustrate a sensor array 3008. In particular, FIG. 3B illustrates the application of the sensor array 3008 onto artificial lumbar vertebrae 3030. The sensor array 3008 comprises a sensor array platform 3022 that is rectangular in shape. The sensor array platform 3022 comprises a 6×3 array of cylindrical struts 3026 that protrude from the surface of the sensor array platform. In some embodiments, the cylindrical struts 3026 are 5 mm in diameter. In some embodiments, the center-to-center distance between the cylindrical struts 3026 is 11 mm. Each sensor 3016 is adhered onto the top surface of the cylindrical struts 3026. A hemispherical disk 3024 is secured above each adhered sensor 3016. The hemispherical disk 3024 enhances force feedback to each sensor 3016. In some embodiments, the hemispherical disk 3024 is composed of a compressible material. In some embodiments, the hemispherical disk 3024 is composed of a plastic that is soft and pliable at room temperature. In some embodiments, the hemispherical disk 3024 is composed of rubber. In some embodiments, the hemispherical disk 3024 is composed of silicone. In some embodiments, the hemispherical disk 3024 is composed of polyethylene. In some embodiments, the hemispherical disk 3024 is composed of a plastic that is hard and non-pliable at room temperature. In some embodiments, the hemispherical disk 3024 is composed of polystyrene. Non-limiting examples of materials that are used to fabricate the hemispherical disk 3024 include: polypropylene, polyester, polycarbonate, polyvinyl chloride, nylon, poly(methyl methacrylate), polyethylene terephthalate, polyimide, or Bakelite.
  • FIG. 4 shows a method of using a tactile sensing device to obtain an image. In a step 4078, the tactile sensing device is pressed against an area that is to be imaged and force is applied to the sensor array of the tactile sensing device. In a step 4080, a computing device is provided, and the computing device is operatively connected to the tactile sensing device. The computing device collects voltage signals that are generated by the sensor array of the tactile sensing device after a force is applied onto the surface of the sensors in the sensor array. In a step 4082, the computing device processes the collected voltage signals such that the voltage signals are converted into an image. In a step 4084, the image is displayed on a display screen of the tactile sensing device. In some embodiments, the image displayed is a heat map. In some embodiments, the image displayed provides the user feedback regarding the uniformity of their application of force to the tactile sensing device. In some embodiments, the image displayed includes the approximate position of a needle at the skin surface as well as the approximate depth of a needle. In some embodiments, for example, when the tactile sensing device comprises multiple needle guides as the exemplary embodiment shown in FIGS. 2A, 2B, and 2C, the image displayed includes the approximate positions and depths at all levels corresponding with the multiple needle guides.
  • FIG. 5 illustrates a flow control diaphragm fluid collection system 5042. The diaphragm fluid collection system 5042 is amenable to be incorporated into the tactile sensing device. The diaphragm fluid collection system 5042 includes a first collection tube 5010 a, a second collection tube 5010 b, a third collection tube 5010 c, and a fourth collection tube 5010 d. The collection tubes are stacked vertically, one on top of the other. The first collection tube 5010 a is located on top of the second collection tube 5010 b, which is located on top of the third collection tube 5010 c, which is located on top of the fourth collection tube 5010 d. A cap 5046 is configured to be secured on the first collection tube 5010 a. Non-limiting examples of configurations to secure the cap 5046 onto the first collection tube 5010 a include: threading, snap-fitting into the collection tube's circumference, snap-fitting into a slot, and snug-fitting. The first collection tube 5010 a is connected to the second collection tube. The first collection tube 5010 a has a first diaphragm 5044 a instead of a bottom flat surface. A first rotating band 5112 a allows the first diaphragm 5044 a to be opened by rotating the first rotating band 5112 a counterclockwise. In some embodiments, the first rotating band 5112 a allows the first diaphragm 5044 a to be opened by rotating the first rotating band 5112 a clockwise. A first rotating band 5112 a allows the first diaphragm 5044 a to be closed by rotating the first rotating band 5112 a clockwise. In some embodiments, the first rotating band 5112 a allows the first diaphragm 5044 a to be closed by rotating the first rotating band 5112 a counterclockwise. When the first diaphragm 5044 a is opened, fluid is able to flow through the first aperture 5114 a. The second collection tube 5010 b includes a second diaphragm 5044 b and a second rotating band 5112 b that controls the opening and closing of the second diaphragm 5044 b in the same manner as the first collection tube 5010 a set up. Similarly, the third collection tube 5010 c includes a third diaphragm 5044 c and a third rotating band 5112 c that controls the opening and closing of the third diaphragm 5044 c in the same manner as already described. The fourth collection tube 5010 d does not comprise a diaphragm. When the first diaphragm 5044 a, the second diaphragm 5044 b, and the third diaphragm 5044 c are open, fluid flows through the first aperture 5114 a, the second aperture 5114 b, and the third aperture 5114 c and collects inside the fourth collection tube 5010 d. In this manner, the user is able to control which collection tube the fluid is to be collected in.
  • In some embodiments, the diaphragm fluid collection system 5042 comprises at least two collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises three collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises four collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises five collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises six collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises seven collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises eight collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises nine collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises ten collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises between ten and fifteen collection tubes. In some embodiments, the diaphragm fluid collection system 5042 comprises between fifteen and twenty collection tubes.
  • FIG. 6 illustrates a top faucet fluid collection system 6120. In the top faucet fluid collection system 6120, a faucet element or rotating handle 6052 is operatively connected to housing 6118 that serves also as a cap to a container 6056. In some embodiments, a faucet element or rotating handle 6052 is placed at the bottom of a faucet base 6054 (this embodiment is now shown in FIG. 6), similar to the faucet fluid collection system 1006 of FIGS. 1A, 1B, and 1C. The rotating handle 6052 enables the collection tubes to be rotated clockwise or counterclockwise about an imaginary Y-axis that vertically traverses the center of the container 6056. The rotating handle 6052 is reversibly connected to a central rod 6116. The central rod 6116 is permanently connected to the faucet base 6054. Thus, when the central rod 6116 is attached to the rotating handle 6052 and the rotating handle 6052 is rotated, the rotational movement of the rotating handle 6052 enables the simultaneous rotation of the central rod 6116 and the faucet base 6054.
  • The container 6056 holds a plurality of collection tubes. In FIG. 6, there are a total of four collection tubes, but only a first collection tube 6010 a and a second collection tube 6010 b are clearly depicted. The housing 6118 is reversibly connected to the container 6056. Non-limiting examples of configurations to reversibly secure the housing 6118 onto the container 6056 include: threading, snap-fitting into the collection tube's circumference, snap-fitting into a slot, or snug-fitting. In some embodiments, the collection tubes are reversibly secured to the bottom of the container 6056. In some embodiments, the collection tubes are reversibly secured to the faucet base 6054. The user detaches the container 6056 from the housing 6118 and disconnects the central rod 6116 from the rotating handle 6052, in order to access the collection tubes inside the container 6056.
  • A circular plate is found within the housing 6118 (not shown in FIG. 6), lying parallel to the rotating handle 6052. The circular plate (not shown in FIG. 6) has a single orifice located directly beneath the faucet connector 6050. The faucet connector 6050 extends outwardly from the housing 6118 and is perpendicular to the container 6056. The faucet connector 6050 is configured to connect to a needle hub or tubing. Fluid traveling from a needle hub or from tubing and through the faucet connector 6050 flows through an elbow hollow opening (not shown in FIG. 6) that aligns with the orifice in the circular plate, the fluid exits the orifice in the circular plate (not shown in FIG. 6), and flows into one of the collection tubes inside the container. The collection tubes are rotated clockwise or counterclockwise to allow for sequential filling. In some embodiments, the housing 6118 has numbers or labels to indicate the position of a collection tube. In some embodiments, the rotating handle 6052 has numbers or labels to indicate the position of a collection tube.
  • FIG. 7 illustrates a spoke fluid collection system 7058. The spoke fluid collection system 7058 comprises a central hub 7060, which is octagonal in shape. The central hub 7060 includes a first central hub opening 7086 a, a second central hub opening 7086 b, a third central hub opening 7086 c, and a fourth central hub opening 7086 d. Each central hub opening is located on a side surface of the central hub 7060. For example, FIG. 7 illustrates the third central hub opening 7086 c is located on the third side surface 7102 c and the fourth central hub opening 7086 d is located on the fourth side surface 7102 d. The first central hub opening 7086 a and the second central hub opening 7086 b are also located on side surfaces, however, these side surfaces are not shown in FIG. 7. The first central hub opening 7086 a is configured to connect to a first collection tube 7010 a. The second central hub opening 7086 b is configured to connect to a second collection tube 7010 b. The third central hub opening 7086 c is configured to connect to a third collection tube 7010 c. The fourth central hub opening 7086 d is configured to connect to a fourth collection tube 7010 d. Non-limiting examples of configurations to connect the collection tubes to the central hub openings include: threading, snap-fitting into the collection tube's circumference, snap-fitting into a slot, or snug-fitting. The central hub 7060 has a front face 7092 that is planar. A spoke connector 7088 extends outwardly from the front face 7092 and is perpendicular to an imaginary Y-axis vertically traversing the central hub 7060 through the center of the first collection tube 7010 a and through the center of the third collection tube 7010 c. The spoke connector 7088 is configured to connect to a needle hub, tubing, or a 3-way valve. The spoke connector 7088 is hollow inside and serves as a channel to transport fluid. The interior (not shown in FIG. 7) of the central hub 7060 is completely sealed except for openings that coincide with the central hub openings. In addition, the central hub 7060 comprises a solid inner ring-like structure (not shown in FIG. 7) located in the interior of the central hub 7060. The solid inner ring-like structure (not shown in FIG. 7) has a single orifice that aligns with the first collection tube 7010 a. Fluid flowing through the spoke connector 7088 exits the spoke connector 7088 and falls at a 90° angle into the orifice of the solid inner ring-like structure. Thus, any fluid flowing through the spoke connector 7088 only accumulates in a collection tube that is in the position of the first collection tube 7010 a shown in FIG. 7.
  • Secured to the back face (not shown in FIG. 7) of the central hub 7060 is a knob (not shown in FIG. 7) that allows for the rotation of the central hub 7060 about an imaginary Z-axis that traverses the central hub 7060 through its center, perpendicular to the first collection tube 7010 a and the third collection tube 7010 c. The knob (not shown in FIG. 7) is rotated clockwise or counterclockwise. The rotation of the central hub 7060 by the knob (not shown in FIG. 7) enables the collection tubes to be rotated about the imaginary Z-axis when attached to the central hub 7060. In some embodiments, the knob (not shown in FIG. 7) has numbers or labels to indicate the position of a collection tube.
  • FIG. 8 illustrates a rail fluid collection system 8062. The rail fluid collection system 8062 comprises a sliding rail platform 8064, a first collection tube 8010 a, a second collection tube 8010 b, a third collection tube 8010 c, a fourth collection tube 8010 d, and guide rails 8134. The guide rails 8134 receive two longitudinal edges of the sliding rail platform 8064. The sliding rail platform 8064 includes rail platform openings 8132. In some embodiments, the rail platform openings 8132 are circular in shape. The rail platform openings 8132 are configured to hold collection tubes. The lip 8122 of the collection tube projects onto the rail platform 8064. The position of the collection tubes is controlled by a manual sliding motion 8138 of the rail platform 8064 along the guide rails 8134. The collection tubes are positioned directly beneath a 3-way valve 8014 when they are to collect fluid.
  • The function of the 3-way valve 8014 is to direct fluid from an external needle hub or tubing into a collection tube. The 3-way valve 8014 includes a fluid connector 8068, which protrudes from the bottom surface of the 3-way valve 8014. The 3-way valve also includes a needle hub connector 8100, which protrudes outwardly from the 3-way valve 8014 and is perpendicular to the fluid connector 8100. The needle hub connector 8100 is configured to connect to an external needle hub or tubing. A fluid flowing from an external needle hub or tubing, through the needle hub connector 8100, flows downward at a 90° angle through the fluid connector 8068 when exiting the needle hub connector 8100, and subsequently flows into a first collection tube 8010 a. The fluid connector 8068 is configured to connect to tubing. In some embodiments, the fluid connector 8068 is optionally connected to tubing instead of only openly protruding into a collection tube. Another function of the 3-way valve 8014 is to enable a pressure sensor to obtain a pressure measurement of the fluid that is in contact with the 3-way valve 8014. The 3-way valve 8014 includes a pressure gauge port 8108 facing away from the guide rails 8134. The pressure gauge port 8108 is configured to connect to a pressure sensor.
  • FIGS. 9A and 9B are exemplary data demonstrating the functionality of the tactile sensing device on a lumbar spine model. Recordings are acquired using a combination of signal acquisition and processing executed by a computing device. In some embodiments, the computing device further comprises a non-transitory computer readable storage medium with a computer program including instructions executable by a processor. In some embodiments, the computer program is written in Python code, Arduino code, or a combination thereof. FIG. 9A demonstrates the change in voltage across a single sensor when moved in 1 cm increments, with changes in applied force. The applied force varies based on a mass. FIG. 9A shows the mass, and thus the applied force, varies between 20 g to 500 g. The bolded horizontal lines represent the underlying spinous processes 9070. Voltage increases are apparent for sensors that are situated above these underlying spinous processes 9070. FIG. 9B demonstrates the change in voltage across a tactile sensing device comprising a column of 6 sensors with a 1 cm center-to-center distance. Voltages across each sensor are shown in FIG. 9B for 6 trials. In each trial, the column of 6 sensors is moved 1 cm increments. An increase in voltage is apparent for sensors above the underlying spinous processes 9070 (denoted as “bone” in FIG. 9B) throughout the 6 trials.
  • FIG. 10 is a flow chart describing the instructions included in a computer program, which are executable by a computing device. In some embodiments, a sensor array comprising at least one sensor is configured to output a signal in response to a change in force applied to its surface; wherein the signal is converted to a pressure map. Step 1 10124 describes the output voltage signals generated by the force-sensitive resistors via a voltage divider are inputted into the computing device via a multiplexer. Step 2 10126 describes the inputted voltage signals are written to a serial monitor. In some embodiments, step 2 10126 further comprises organizing the inputted voltage signals. In some embodiments, a first computer program that includes instructions executable by a processor performs step 2 10126. In some embodiments, the instructions to perform step 2 10126, which are included in the computer program are written in Arduino programming language. In step 3 10128, a second computer program includes instructions to acquire the inputted voltage signals that were written to the serial monitor and generates a 6×3 array of sensor data. In some embodiments, the instructions to perform step 3 10128, which are included in the second computer program are executable by a processor. In step 4 10130, a second computer program includes instructions to process the inputted voltage signals that were written to the serial monitor and rescales the previously generated 6×3 array of sensor data to a 60×30 array of sensor data. In some embodiments, the instructions to perform step 4 10130 use cubic interpolation methods to rescale the array of sensor data. In some embodiments, the instructions to perform step 4 10130, which are included in the second computer program are executable by a processor. In step 5 10132, a second computer program includes instructions to update the display for real-time target tissue visualization. In some embodiments, the instructions to perform step 3 10128, step 4 10130, and step 5 10132, which are included in the second computer program are written in Python programming language. In some embodiments, the display is updated for real-time visualization of a patient's spine. Thus, FIG. 10 illustrates the process of transforming sensor output into a visual display. In some embodiments, the visual display is a pressure map.
  • In some embodiments, the algorithm shown in FIG. 10 is used to generate a pressure map. In some embodiments, the pressure map is a heat map. In some embodiments, the heat map displays high voltages in a red color. In some embodiments, high voltages are at or near 5V, corresponding to greater applied force. In some embodiments, high voltages in a heat map correspond to a bone. In some embodiments, high voltages in a heat map correspond to spinous processes. In some embodiments, the heat map displays low voltages in a blue color. In some embodiments, low voltages in a heat map correspond to tissue softer than bone. In some embodiments, low voltages in a heat map correspond to inter interspinous ligaments.
  • FIG. 11A illustrates a representative image of a pressure-mapping output. In some embodiments, the pressure map 11046 visually represents a target tissue location in an individual. In some embodiments, a pressure map 11046 is generated using the algorithm shown in FIG. 10. In some embodiments, the pressure map 11046 shown in FIG. 11A is generated by using the tactile sensing device on an obese model of the lumbar spine. In some embodiments, a representation of the setup for using the tactile-sensing array applied to an obese model of the lumbar spine is shown in FIG. 3B. In some embodiments, the tactile sensing device, comprising the sensor array, is pressed lightly against the lumbar spine model; the 2nd and 5th midline sensors are positioned directly over the spinous processes. In some embodiments, a third computer program, which includes instructions to display the voltage signals sensed at a 1st midline sensor 11016 a, a 2nd midline sensor 11016 b, a 3rd midline sensor 11016 c, a 4th midline sensor 11016 d, a 5th midline sensor 11016 e, and a 6th midline sensor 11016 f along the midline (column 2 of the sensor array) after interpolation, was added to the algorithm described in FIG. 10. In some embodiments, the pressure map 11046 is generated using the algorithm as described in FIG. 10 and the third computer program described supra. In some embodiments, the voltage values 11042, which are shown in FIG. 11A, range between about 0V and about 5V. In some embodiments, high voltage values are shown in a color red. In some embodiments, low voltage values are shown in a color blue. As shown in FIG. 11A, the greatest force, as evidenced by higher voltages, is found over the 2nd midline sensor 11016 b and 5th midline sensor 11016 e, which correspond to bony landmarks. In addition to revealing the gap between spinous processes, this visualization is also useful in providing feedback to the user on the uniformity of their force application. For example, it is clear in this pressure map 11046 that the user's force is slightly biased toward the sensors on the right. Therefore, the pressure map 11046 indicates to the user that the force that they are applying onto the tactile sensing device needs to be better distributed or corrected.
  • FIG. 11B illustrates a pressure map 11046 showing the needle's position at the skin level (“original”), and its adjusted, projected location, accounting for the remaining depth of the subcutaneous fat. In some embodiments, the pressure map 11046 only displays the needle position at the skin level 11048. In some embodiments, the pressure map 11046 only displays the projected position of the needle 11050, adjusted for the remaining depth of the subcutaneous fat. In some embodiments, the pressure map 11046 shown in FIG. 11B is generated by using the tactile sensing device on a lumbar spine model.
  • In some embodiments, a trigonometric algorithm, as shown in Equation 2 below, is used to determine the depth level at which the needle will be once it traverses the subcutaneous fat. Equation 2: h=tan(θ)*d; wherein where h is the adjustment level; d refers to the tissue depth; and θ is the cephalad angle at which the needle is inserted.
    In some embodiments, the depth used in this equation is experimentally determined to robustly apply to lumbar spine models with a wide spectrum of body mass indexes (BMIs): provided that the user applies significant force to overcome the damping in the underlying fat layers, the remaining depth to the spinous process becomes fairly uniform across cases.
  • In some embodiments, the depth level at which the needle will be once it traverses the subcutaneous fat is calculated proportionally. In some embodiments, the depth level at which the needle will be once it traverses the subcutaneous fat is calculated based on calculating the ratio between the maximum voltage reading (for example, over a spinous process) and the minimum voltage reading (for example, over an interspinous ligament) for the midline sensors and comparing this ratio to an empirically determined ratio of the maximum voltage reading to the minimum voltage reading. In some embodiments, the empirically determined ratio of the maximum voltage reading to the minimum voltage reading is determined based on a known depth.
  • In some embodiments, the depth level at which the needle will be once it traverses the subcutaneous fat is calculated based on machine-learning algorithms. In some embodiments, machine-learning algorithms enhance the accuracy of the displayed needle projection.
  • In some embodiments, the tactile sensing device further comprises a marking tool. The marking tool helps the user identify the tissue target location. In some embodiments, the marking tool enables the user to mark the entry point of a needle on the skin surface of the patient. In some embodiments, the marking tool enables the user to mark or label a tissue target location. In some embodiments, marking or labeling the tissue target location is done subcutaneously, intramuscularly, or on the skin surface. In some embodiments, the marked tissue location is detected by a medical imaging device. In some embodiments, the marking tool enables the user to mark or label a target tissue location in order to be identified by a medical imaging device or system. In some embodiments, the marking tool is a light, an ink, a hydrogel, a nanoparticle. In some embodiments, the light is a laser light or a light emitting diode (LED). In some embodiments, the ink is a permanent ink, a gentian violent ink, a water-based ink, an oil-based in, a liquid ink, or a gel ink. In some embodiments, the hydrogel further comprises a contrast agent. In some embodiments, the nanoparticle further comprises a contrast agent. In some embodiments, the contrast agent includes, but is not limited to: a magnetic contrast agent, a radiocontrast agent, a radioactive contrast agent, a magnetic resonance imaging contrast agent, and a microbubble contrast agent. Non-limiting examples of the magnetic contrast agent include: gadolinium-based agents or nanoparticles, iron oxide-based agents or nanoparticles, iron platinum-based agents or nanoparticles, and manganese-based agents or nanoparticles. Non-limiting examples of the radiocontrast agent include: iodine-based agents or nanoparticles, air, thorium dioxide, carbon dioxide, gastrografin, and barium-based agents or nanoparticles. Non-limiting examples of the radioactive contrast agent include: 64Cu diacetyl-bis(N4-methylthiosemicarbazone), also called ATSM or Copper 64, 18F-fluorodeoxyglucose (FDG), 18F-fluoride, 3′-deoxy-3′[18F]fluorothymidine (FLT), 18F-fluoromisonidazole, gallium, techtenium-99m, and thallium.
  • EXAMPLES Example 1: Tactile Sensing Device Prototype Testing in a Lumbar Spine Model
  • Select data is presented here to demonstrate the functionality of the tactile sensing device 1000 on an artificial lumbar spine model 3028, as shown in FIG. 3B. Recordings were acquired using a combination of signal acquisition and processing in a computing device. FIG. 9A illustrates the change in voltage across a single sensor when moved in 1 centimeter increments, with changes in applied force 9076. The bolded horizontal lines 9070 represent the underlying artificial spinous processes 3030; voltage increases 9072 are apparent for sensors that are situated above these artificial spinous processes. Detected voltage values are the lowest 9074 when there are no artificial spinous processes present below the tactile sensing device 1000. FIG. 9B exemplifies a column of 6 sensors with 1 centimeter center-to-center distance was designed. Voltages across each sensor were recorded for 6 trials, moving the column 1 centimeter each time. Again, an increase in voltage 9072 is apparent for sensors above the artificial spinous processes 3030 (denoted as ‘bone’ and illustrated by the bolded horizontal lines 9070 on FIG. 9B). Results presented by FIG. 9B demonstrate the detection of artificial bone using the tactile sensing device was accurate and consistent across all six trials.
  • Example 2: Diagnostic Lumbar Puncture Using a Tactile Sensing Device
  • A health care worker performing a lumbar puncture on an obese subject places the tactile sensing device on the lumbar region of the subject. A pressure map, viewed as a heat map by the health care worker, appears on the display screen 1032, 2032 of the tactile sensing device 1000, 2000. The heat map indicates bone structures, in this case spinous processes of the lumbar vertebrae, by representing these in red color base and indicates non-bone structures by representing these in a blue color base. The tactile sensing device simultaneously computes a needle projection and displays it on the pressure map. The health care worker adjusts the tactile sensing device's needle guide angle to a cephalad angle degree between −45° and 45°. After identifying a gap between two of the lumbar vertebrae, for example L2 and L3, the health care worker inserts a spinal needle into the tactile sensing device's needle guide. The health care worker uses the needle guide and the needle projection and heat map on the screen to guide the needle into the subarachnoid space. The health care worker then uses the tactile sensing device's 1000 modular fluid collection system 1006 to collect cerebrospinal fluid (CSF). Once all CSF samples are collected, the health care worker uses the tactile sensing device's 1000 electronic pressure sensor, which automatically displays the CSF pressure CSF flow is detected, to readout and record the subject's intracranial pressure.
  • Example 3: Epidural Administration of a Therapeutic Using a Tactile Sensing Device
  • A health care worker performing an epidural administration of an anesthetic on a pregnant patient to places the tactile sensing device on the lumbar region of the pregnant patient. A pressure map, viewed as a heat map by the health care worker, appears on the display screen 1032, 2032 of the tactile sensing device 1000, 2000. The heat map indicates bone structures, in this case spinous processes of the lumbar vertebrae, by representing these in red color base and indicates non-bone structures by representing these in a blue color base. The tactile sensing device simultaneously computes a needle projection and displays it on the pressure map. The health care worker adjusts the tactile sensing device's needle guide angle to a cephalad angle degree between −45° and 45°. After identifying a gap between two of the lumbar vertebrae, for example L2 and L3, the health care worker inserts a spinal needle into the tactile sensing device's needle guide. The health care worker uses the needle guide and the needle projection and heat map on the screen to guide the needle into the epidural space and inject the anesthetic.
  • Example 4: Synovial Cavity Injection Using a Tactile Sensing Device
  • A health care worker administering a hyaluronan injection, such as Synvisc-One®, to the knee joint of a patient suffering from osteoarthritis uses the tactile sensing device, instead of the traditional palpation and pen marking approach, to correctly localize needle placement. Correct needle placement is crucial in order to avoid accidentally jabbing the knee's cartilage and eliciting further damage. The health care worker places the tactile sensing device 1000, 2000 on the patient's knee. A pressure map, viewed as a heat map by the health care worker, appears on the display screen 1032, 2032 of the tactile sensing device 1000, 2000. The heat map indicates bone structures, in this case the patella, femur and tibia, by representing these in a red color base. The heat map indicates non-bone structures, in this case the bursae of the knee, by representing these in a blue color base. The tactile sensing device 1000, 2000 simultaneously computes a needle projection and displays it on the pressure map. The health care worker adjusts the tactile sensing device's 1000, 2000 needle guide angle to a cephalad angle degree between −45° and 45°. After identifying the suprapatellar bursa, the health care worker inserts a needle into the tactile sensing device's 1000, 2000 needle guide. The health care worker uses the needle guide and the needle projection and heat map on the screen to guide the needle into the suprapatellar bursa and inject hyaluronan.

Claims (119)

What is claimed is:
1. A tactile sensing device for imaging a target tissue location in an individual in need thereof, comprising:
a) a needle guide having a proximal opening and a distal opening, configured for guiding a needle towards the individual; and
b) a sensor array comprising at least one sensor configured to detect applied pressure.
2. A tactile sensing device for imaging a target tissue location in an individual in need thereof, comprising:
a) a needle guide cartridge comprising at least two needle guides, wherein each needle guide has a side opening and a distal opening, and each needle guide is configured for guiding a needle towards the individual; and
b) a sensor array comprising at least one sensor configured to detect applied pressure.
3. A tactile sensing device for imaging a target tissue location in an individual in need thereof, comprising:
a) a sensor array comprising at least one sensor configured to detect applied pressure;
b) a display screen; and
c) a marking tool to mark the target tissue location.
4. A tactile sensing device for imaging a target tissue location in an individual in need thereof, comprising:
a) a sensor array comprising at least one sensor configured to detect applied pressure;
b) a connection to a display screen; and
c) a marking tool to mark the target tissue location.
5. The tactile sensing device of claim 2, wherein the needle guide cartridge allows for the needle to be inserted into the individual at more than one level.
6. The tactile sensing device of any of claims 1-4, and wherein the needle guide allows for the needle to be inserted into the individual at more than one angle.
7. The tactile sensing device of claim 6, wherein the angle is a cephalad angle between about −45 degrees to about 45 degrees.
8. The tactile sensing device of claim 7, wherein the angle is a 15 degree cephalad angle.
9. The tactile sensing device of any one of claims 1-4, wherein the sensor array is configured to be loaded into a sensor array holder.
10. The tactile sensing device of any one of claims 1-4, further comprising a frame.
11. The tactile sensing device of claim 10, wherein the frame further comprises an elongated portion carrying the needle guide, a downwardly elbowed portion serving as a handle, and a sensor array holder positioned distally away from the handle.
12. The tactile sensing device of any one of claims 1-2, further comprising a display screen positioned directly above the sensor array.
13. The tactile sensing device of any one of claim 3, 4, or 12, wherein the display screen is configured to display the target tissue location and the needle to be inserted into the individual.
14. The tactile sensing device of any one of claim 3, 4, or 12, wherein the display screen is a computer screen, a mobile device screen, a liquid crystal display (LCD), a thin film transistor liquid crystal display (TFT-LCD), or an organic light emitting diode (OLED) display.
15. The tactile sensing device of any one of claims 1-4, further comprising a needle hub connector that connects to the needle, configured to be inserted through an opening of the needle guide.
16. The tactile sensing device of claim 15, wherein the opening of the needle guide is the proximal opening of the needle guide or a knob opening of the needle guide.
17. The tactile sensing device of any one of claims 1-4, further comprising a knob that is coupled to a needle hub connector or extends from a needle hub connector.
18. The tactile sensing device of claim 17, wherein the knob protrudes from a side opening or a slit.
19. The tactile sensing device of any one of claims 1-4, further comprising a valve.
20. The tactile sensing device of claim 19, wherein the valve is a 3-way valve or a 3-way stopcock valve.
21. The tactile sensing device of claim 19, wherein the valve is configured to be inserted through a knob opening of a needle guide.
22. The tactile sensing device of claim 19, wherein the valve is fixed onto a needle guide cartridge.
23. The tactile sensing device of claim 19, wherein the valve further comprises a needle hub connector, a fluid connector, a fluid port, a pressure gauge connector, a pressure gauge port, or a combination thereof.
24. The tactile sensing device of any one of claims 1-4, further comprising a fluid collection system.
25. The tactile sensing device of claim 24, wherein the fluid collection system is a faucet fluid collection system, rail fluid collection system, diaphragm fluid collection system, or spoke fluid collection system.
26. The tactile sensing device of claim 25, wherein the faucet fluid collection system comprises at least one collection tube, a central rod extending downwardly from a frame, a faucet base extending downwardly from the central rod, and a rotating handle for generating a rotational movement, said rotating handle coupled to the faucet base, wherein at least one collection tube sits on the faucet base.
27. The tactile sensing device of claim 25, wherein the rail fluid collection system comprises a pair of guide rails extending beneath a needle guide cartridge, said guide rails configured to receive a sliding rail platform, said rail platform comprising at least one opening, said opening configured to hold at least one collection tube.
28. The tactile sensing device of claim 25, wherein the diaphragm fluid collection system comprises at least one collection tube, at least one diaphragm, at least one rotating band allowing the diaphragm to be opened or closed, and a cap configured to be secured onto a first collection tube.
29. The tactile sensing device of claim 25, wherein the spoke fluid collection system comprises a central hub; at least one central hub opening located on a side surface of the central hub, said central hub opening configured to connect to at least one collection tube; and a spoke connector extending outwardly from a front face of the central hub.
30. The tactile sensing device of any one of claims 1-4, wherein the needle is a spinal needle, an epidural needle, or a biopsy needle.
31. The tactile sensing device of any one of claims 1-4, wherein the sensor array is a 6×3 sensor array comprising eighteen sensors.
32. The tactile sensing device of any one of claims 1-4, wherein the sensor array is an 8×4 array comprising thirty two sensors.
33. The tactile sensing device of any one of claims 1-4, wherein the sensor array is secured onto a platform.
34. The tactile sensing device of claim 33, wherein the platform comprises projections onto which the sensors are adhered to.
35. The tactile sensing device of claim 34, wherein the projections are struts or connectors.
36. The tactile sensing device of any one of claims 1-4, wherein the sensor is covered with a material configured to enhance force feedback.
37. The tactile sensing device of any one of claims 31-36, wherein the sensor is a force-sensitive resistor.
38. The tactile sensing device of any one of claims 3-4, wherein the marking tool is a light, an ink, a hydrogel, a nanoparticle.
39. The tactile sensing device of claim 38, wherein the light is a laser light or a light emitting diode (LED).
40. The tactile sensing device of claim 38, wherein the ink is a permanent ink, a gentian violent ink, a water-based ink, an oil-based in, a liquid ink, or a gel ink.
41. The tactile sensing device of claim 38, wherein the hydrogel further comprises a contrast agent.
42. The tactile sensing device of claim 38, wherein the nanoparticle further comprises a contrast agent.
43. The tactile sensing device of any one of claims 1-4, further comprising a multiplexer.
44. The tactile sensing device of any one of claims 1-4, further comprising a voltage divider.
45. The tactile sensing device of any one of claims 1-4, further comprising a voltage source.
46. The tactile sensing device of any one of claims 1-4, further comprising a pressure sensor operatively connected to the tactile sensing device and configured to measure an intracranial pressure.
47. The tactile sensing device of claim 46, wherein the pressure sensor is a piezoresistive pressure sensor, a capacitive pressure sensor, an electromagnetic pressure sensor, a piezoelectric pressure sensor, an optical pressure sensor, or a potentiometric pressure sensor.
48. A system for imaging a target tissue location in an individual in need thereof, comprising:
a) a tactile sensing device of any one of claims 1-47; and
b) a computing device comprising:
i) at least one processor operatively coupled to the tactile sensing device;
ii) a memory device; and
iii) a non-transitory computer readable storage medium with a computer program including instructions executable by the processor causing the processor to convert a voltage signal into an image.
49. The system of claim 48, wherein the computing device is a microcontroller.
50. The system of claim 48, wherein the computing device further comprises a second computer program including instructions executable by the processor that cause the processor to encode the voltage signal into a first computer signal and a second computer signal.
51. The system of claim 50, further comprising a transmitter configured to transmit the first computer signal to the computing device.
52. The system of claim 50, further comprising a receiver configured to receive the second computer signal from the tactile sensing device.
53. The system of claim 50, wherein the first and second computer signals are transmitted remotely, directly, wirelessly, or via a wire.
54. The system of claim 50, wherein the first computer signal and the second computer signals are wireless signals.
55. The system of claim 48, wherein the computing device is a mobile device.
56. The system of claim 50, wherein the computing device further comprises a third computer program including instructions executable by the processor that cause the processor to calculate a projected needle position and display it on the display screen.
57. The system of claim 56, wherein the computing device further comprises a fourth computer program including instructions executable by the processor causing the processor to:
a) determine, as a first requirement, a location of a target tissue location detected by the tactile sensing device; and
b) perform predictive analysis based on application of machine learning to approximate the projected needle position.
58. A method for imaging a target tissue location in an individual in need thereof, comprising:
a) placing a tactile sensing device of any one of claims 1-47 on the individual;
b) applying force to the tactile sensing device against the individual; and
c) viewing an image of the target tissue location, obtained from voltage signals generated by the tactile sensing device, resulting from the application of force to the tactile sensing device against an individual, on a display screen.
59. A method for generating an image of a target tissue location in an individual in need thereof, comprising:
a) collecting a plurality of voltage signals generated by a tactile sensing device of any one of claims 1-47, resulting from the application of force to the tactile sensing device against an individual;
b) converting the voltage signals into a mathematical array;
c) rescaling the mathematical array; and
d) transforming the rescaled mathematical array into the image of a target tissue location of the individual.
60. The method of any one of claim 58 or 59, wherein the target tissue location is a bone structure.
61. The method of claim 60, wherein the bone structure is an articular surface.
62. The method of claim 61, wherein the articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulation of a first bone of a foot with a second bone of the foot.
63. The method of claim 62, wherein a vertebral articulation is a spinous process.
64. The method of any one of claim 58 or 59, wherein the target tissue location is a subcutaneous tissue, a muscle, a ligament, an adipose tissue, a cyst, a cavity, or a tumor mass.
65. The method of claim 58, wherein placing the tactile sensing device on the individual further comprises positioning the tactile sensing device on a bone structure.
66. The method of claim 65, wherein the bone structure is a vertebral column of an individual.
67. The method of claim 59, wherein collecting the plurality of voltage signals further comprises transmitting the data via a multiplexer.
68. The method of claim 59, wherein collecting the plurality of the voltage signals further comprises transmitting the data via a voltage divider.
69. The method of claim 59, wherein converting the plurality of the voltage signals comprises acquiring, processing, and transforming the plurality of voltage signals into the image using a computer processor.
70. The method of claim 69, wherein the image is a pressure map representing the target tissue location.
71. The method of claim 70, wherein the pressure map is overlaid on top of a structural spinal image.
72. A method for performing a lumbar puncture in an individual in need thereof, comprising:
a) placing a tactile sensing device of any one of claims 1-47 on a lumbar region of the individual;
b) applying force to the tactile sensing device against the lumbar region;
c) viewing an image of vertebral articulations on a display screen; wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region;
d) localizing two spinous processes on the image;
e) identifying a gap between a first spinous process and a second spinous process of the individual;
f) using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and
g) collecting cerebrospinal fluid or administering a therapeutic agent.
73. The method of claim 72, wherein the therapeutic agent is an analgesic, an anesthetic, a chemotherapeutic agent, or a contrast agent or dye.
74. A method for administering a therapeutic agent to an epidural space of an individual in need thereof, comprising:
a) placing a tactile sensing device of any one of claims 1-47 on a lumbar region of the individual;
b) applying force to the tactile sensing device against the lumbar region;
c) viewing an image of vertebral articulations on a display screen; wherein the image is detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region;
d) localizing two spinous processes on the image;
e) identifying a gap between a first spinous process and a second spinous process of the individual;
f) using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and
g) injecting a therapeutic agent into the epidural space.
75. The method of claim 74, wherein the therapeutic agent is an analgesic, an anesthetic, a contrast agent or dye, a chemotherapeutic agent, or a steroid.
76. The method of any one of claim 72 or 74, wherein the first spinous process is a part of L1, L2, L3, or L4 lumbar vertebrae and the second spinous process is a part of L2, L3, L4, or L5 lumbar vertebrae.
77. The method of any one of claim 72 or 74, wherein the needle is a traumatic or an atraumatic needle.
78. The method of any one of claim 72 or 74, further comprising using a stylet or a catheter in conjunction with the needle.
79. A method for guiding a first individual performing a lumbar puncture on a second individual in need thereof, comprising:
a) placing a tactile sensing device of any one of claims 1-47 on a lumbar region of the individual;
b) applying force to the tactile sensing device against the lumbar region;
c) viewing an image of vertebral articulations on a display screen, wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region;
d) localizing two spinous processes on the image;
e) identifying a gap between a first spinous process and a second spinous process of the individual;
f) using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and
g) collecting cerebrospinal fluid or administering a therapeutic agent.
80. A method for guiding a first individual administering a therapeutic agent into an epidural space of a second individual in need thereof, comprising:
a) placing a tactile sensing device of any one of claims 1-47 on a lumbar region of the individual;
b) applying force to the tactile sensing device against the lumbar region;
c) viewing an image of vertebral articulations on a display screen, wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region;
d) localizing two spinous processes on the image;
e) identifying a gap between a first spinous process and a second spinous process of the individual;
f) using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and
g) injecting a therapeutic agent into the epidural space.
81. A method for imaging a target tissue location in an individual in need thereof, comprising:
a) placing a tactile sensing device on the individual;
b) applying force to the tactile sensing device against the individual; and
c) viewing an image of the target tissue location, obtained from voltage signals generated by the tactile sensing device, resulting from the application of force to the tactile sensing device against an individual, on a display screen.
82. A method for generating an image of a target tissue location in an individual in need thereof, comprising:
a) collecting a plurality of voltage signals generated by a tactile sensing device, resulting from the application of force to the tactile sensing device against an individual;
b) converting the voltage signals into a mathematical array;
c) rescaling the mathematical array; and
d) transforming the rescaled mathematical array into the image of a target tissue location of the individual.
83. The method of any one of claim 81 or 82, wherein the target tissue location is a bone structure.
84. The method of claim 83, wherein the bone structure is an articular surface.
85. The method of claim 84, wherein the articular surface is a vertebral articulation, an articulation of a first bone of a hand with a second bone of the hand, an elbow joint, a wrist joint, an axillary articulation of a first bone of a shoulder with a second bone of the shoulder, a sternoclavicular joint, a temporomandibular joint, a sacroiliac joint, a hip joint, a knee joint, or an articulation of a first bone of a foot with a second bone of the foot.
86. The method of claim 85, wherein a vertebral articulation is a spinous process.
87. The method of any one of claim 81 or 82, wherein the target tissue location is a subcutaneous tissue, a muscle, a ligament, an adipose tissue, a cyst, a cavity, or a tumor mass.
88. The method of claim 81, wherein placing the tactile sensing device on the individual further comprises positioning the tactile sensing device on a bone structure.
89. The method of claim 88, wherein the bone structure is a vertebral column of an individual.
90. The method of any one of claim 81 or 82, wherein the tactile sensing device comprises an array of force-sensitive resistors.
91. The method of claim 90, wherein the array of force-sensitive resistors is a 6×3 array comprising eighteen force-sensitive resistors.
92. The method of claim 90, wherein the array of force-sensitive resistors is an 8×4 array comprising thirty two force-sensitive resistors.
93. The method of claim 90, wherein the array of force-sensitive resistors is secured onto a platform.
94. The method of claim 93, wherein the platform comprises projections onto which the force-sensitive resistors are adhered to.
95. The method of claim 94, wherein the projections are struts or connectors.
96. The method of claim 95, wherein the force-sensitive resistors are covered with a material configured to enhance force feedback.
97. The method of claim 96, wherein the material configured to enhance force feedback is a hemispherical rubber disk.
98. The method of claim 82, wherein collecting the plurality of voltage signals further comprises transmitting the data via a multiplexer.
99. The method of claim 82, wherein collecting the plurality of the voltage signals further comprises transmitting the data via a voltage divider.
100. The method of claim 82, wherein converting the plurality of the voltage signals comprises acquiring, processing, and transforming the plurality of voltage signals into the image using a computer processor.
101. The method of claim 100, wherein the image is a pressure map representing the target tissue location.
102. The method of claim 101, wherein the pressure map is overlaid on top of a structural spinal image.
103. A method for performing a lumbar puncture in an individual in need thereof, comprising:
a) placing a tactile sensing device on a lumbar region of the individual;
b) applying force to the tactile sensing device against the lumbar region;
c) viewing an image of vertebral articulations on a display screen; wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region;
d) localizing two spinous processes on the image;
e) identifying a gap between a first spinous process and a second spinous process of the individual;
f) using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and
g) collecting cerebrospinal fluid or administering a therapeutic agent.
104. The method of 103, wherein the therapeutic agent is an analgesic, an anesthetic, a chemotherapeutic agent, or a contrast agent or dye.
105. A method for administering a therapeutic agent to an epidural space of an individual in need thereof, comprising:
a) placing a tactile sensing device on a lumbar region of the individual;
b) applying force to the tactile sensing device against the lumbar region;
c) viewing an image of vertebral articulations on a display screen; wherein the image is detected by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region;
d) localizing two spinous processes on the image;
e) identifying a gap between a first spinous process and a second spinous process of the individual;
f) using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and
g) injecting a therapeutic agent into the epidural space.
106. The method of claim 105, wherein the therapeutic agent is an analgesic, an anesthetic, a contrast agent or dye, a chemotherapeutic agent, or a steroid.
107. The method of any one of claims 103 and 105, wherein the first spinous process is a part of L1, L2, L3, or L4 lumbar vertebrae and the second spinous process is a part of L2, L3, L4, or L5 lumbar vertebrae.
108. The method of any one of claims 103 and 105, wherein the needle is a traumatic or an atraumatic needle.
109. The method of any one of claims 103 and 105, further comprising using a stylet or a catheter in conjunction with the needle.
110. The method of any one of claims 103 and 105, wherein the needle guide is oriented between −45° and 45° cephalad angle and terminating at an opening located on the center of the tactile sensing device, thereby controlling the angle at which the needle is inserted into a human body.
111. The method of claim 110, wherein the opening located on the center of the tactile sensing device is an elongated slit.
112. The method of any one of claims 103 and 105, wherein the needle guide is oriented at a 15° cephalad angle.
113. The method of any one of claims 103 and 105, wherein the needle guide terminates at a plurality of openings formed by an elongated slit with a plurality of columns.
114. The method of any one of claims 103 and 105, further comprising using a plurality of needle guides oriented between a −45° and 45° cephalad angle and terminating at a plurality of openings located along the midline of the tactile sensing device, thereby controlling the angle at which the needle is inserted into a human body.
115. The method of any one of claims 103 and 105, further comprising using a plurality of needle guides oriented at a 15° cephalad angle.
116. The method of claim 115, wherein the plurality of needle guides terminates at an opening.
117. The method of claim 116, wherein the opening is an elongated slit.
118. A method for guiding a first individual performing a lumbar puncture on a second individual in need thereof, comprising:
a) placing a tactile sensing device on a lumbar region of the individual;
b) applying force to the tactile sensing device against the lumbar region;
c) viewing an image of vertebral articulations on a display screen, wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region;
d) localizing two spinous processes on the image;
e) identifying a gap between a first spinous process and a second spinous process of the individual;
f) using a needle guide to insert a needle between the first and second spinous processes of the individual and into a subarachnoid space; and
g) collecting cerebrospinal fluid or administering a therapeutic agent.
119. A method for guiding a first individual administering a therapeutic agent into an epidural space of a second individual in need thereof, comprising:
a) placing a tactile sensing device on a lumbar region of the individual;
b) applying force to the tactile sensing device against the lumbar region;
c) viewing an image of vertebral articulations on a display screen, wherein the image is generated by the tactile sensing device resulting from the application of force to the tactile sensing device against the lumbar region;
d) localizing two spinous processes on the image;
e) identifying a gap between a first spinous process and a second spinous process of the individual;
f) using a needle guide to insert a needle between the first and second spinous processes and into the epidural space of the individual; and
g) injecting a therapeutic agent into the epidural space.
US17/507,592 2016-05-03 2021-10-21 Tactile sensing device for lumbar punctures Abandoned US20220039740A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/507,592 US20220039740A1 (en) 2016-05-03 2021-10-21 Tactile sensing device for lumbar punctures
US17/805,157 US20220287627A1 (en) 2016-05-03 2022-06-02 Tactile sensing device for lumbar punctures

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662331279P 2016-05-03 2016-05-03
US201762484354P 2017-04-11 2017-04-11
US15/584,875 US10004450B2 (en) 2016-05-03 2017-05-02 Tactile sensing device for lumbar punctures
US15/927,664 US11179097B2 (en) 2016-05-03 2018-03-21 Tactile sensing device for lumbar punctures
US17/507,592 US20220039740A1 (en) 2016-05-03 2021-10-21 Tactile sensing device for lumbar punctures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/927,664 Continuation US11179097B2 (en) 2016-05-03 2018-03-21 Tactile sensing device for lumbar punctures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/805,157 Continuation US20220287627A1 (en) 2016-05-03 2022-06-02 Tactile sensing device for lumbar punctures

Publications (1)

Publication Number Publication Date
US20220039740A1 true US20220039740A1 (en) 2022-02-10

Family

ID=60203386

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/584,875 Active US10004450B2 (en) 2016-05-03 2017-05-02 Tactile sensing device for lumbar punctures
US15/927,664 Active 2039-06-18 US11179097B2 (en) 2016-05-03 2018-03-21 Tactile sensing device for lumbar punctures
US17/507,592 Abandoned US20220039740A1 (en) 2016-05-03 2021-10-21 Tactile sensing device for lumbar punctures
US17/805,157 Abandoned US20220287627A1 (en) 2016-05-03 2022-06-02 Tactile sensing device for lumbar punctures

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/584,875 Active US10004450B2 (en) 2016-05-03 2017-05-02 Tactile sensing device for lumbar punctures
US15/927,664 Active 2039-06-18 US11179097B2 (en) 2016-05-03 2018-03-21 Tactile sensing device for lumbar punctures

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/805,157 Abandoned US20220287627A1 (en) 2016-05-03 2022-06-02 Tactile sensing device for lumbar punctures

Country Status (9)

Country Link
US (4) US10004450B2 (en)
EP (1) EP3451925B1 (en)
JP (1) JP7076735B2 (en)
CN (1) CN109414220B (en)
AU (1) AU2017260251B2 (en)
CA (1) CA3022932A1 (en)
IL (1) IL262739B2 (en)
MX (1) MX2018013412A (en)
WO (1) WO2017192596A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9956341B2 (en) 2012-07-03 2018-05-01 Milestone Scientific, Inc. Drug infusion with pressure sensing and non-continuous flow for identification of and injection into fluid-filled anatomic spaces
US10220180B2 (en) 2015-10-16 2019-03-05 Milestone Scientific, Inc. Method and apparatus for performing a peripheral nerve block
JP7076735B2 (en) 2016-05-03 2022-05-30 テキサス メディカル センター Tactile sensing device for lumbar puncture
US11471595B2 (en) 2017-05-04 2022-10-18 Milestone Scientific, Inc. Method and apparatus for performing a peripheral nerve block
CN111601566A (en) * 2017-10-27 2020-08-28 因图伊泰普医疗公司 Tactile sensing and needle guide device
US10383610B2 (en) * 2017-10-27 2019-08-20 Intuitap Medical, Inc. Tactile sensing and needle guidance device
US10646660B1 (en) 2019-05-16 2020-05-12 Milestone Scientific, Inc. Device and method for identification of a target region
EP4106647A4 (en) 2020-02-21 2024-02-21 Intuitap Medical, Inc. Tactile sensing and guidance system
US20210330349A1 (en) 2020-04-24 2021-10-28 Milestone Scientific, Inc. Device and Method for Needle/Catheter Location Utilizing Correlation Analysis
CN113171177B (en) * 2021-04-07 2023-02-17 上海交通大学 Human-computer interaction control method and system capable of capturing breakthrough sensation of lumbar puncture tissue layer
CN113442143B (en) * 2021-08-10 2021-11-19 北京瑞医博科技有限公司 Mechanical arm motion control method and device, controller and storage medium
CN116030694B (en) * 2023-03-27 2023-06-27 江西明天高科技股份有限公司 Lumbar puncture simulation device and control method thereof

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941127A (en) * 1974-10-03 1976-03-02 Froning Edward C Apparatus and method for stereotaxic lateral extradural disc puncture
JPS62281927A (en) * 1986-04-17 1987-12-07 マシユ−、ジエ−、マ−リス Cerebospinal fluid sampling system
ES2007667A6 (en) 1987-07-28 1989-07-01 Espejo Martinez Antonio A device for locating the epidural space.
IL94522A (en) 1990-05-28 1994-02-27 Joseph Eldor Device for combined spinal and epidural anesthesia
US5097842A (en) 1990-07-23 1992-03-24 Bonn Gina B Device for withdrawing fluids
EP0538259A1 (en) 1991-02-28 1993-04-28 Industrias Palex, S.A. Method and apparatus for locating anatomical cavities
US5785663A (en) 1992-12-21 1998-07-28 Artann Corporation Method and device for mechanical imaging of prostate
US6142959A (en) 1992-12-21 2000-11-07 Armed L.L.C. Device for palpation and mechanical imaging of the prostate
US5860934A (en) 1992-12-21 1999-01-19 Artann Corporation Method and device for mechanical imaging of breast
CN1169673A (en) * 1994-02-22 1998-01-07 尔高医药公司 Apparatus and method for continuous passive movement of the lumbar region
WO1997011641A1 (en) 1995-09-27 1997-04-03 Artann Laboratories Measuring anisotropic mechanical properties of tissue
US5833634A (en) * 1995-11-09 1998-11-10 Uromed Corporation Tissue examination
US5795307A (en) * 1997-04-29 1998-08-18 Krueger; John A. Shunt tap apparatus and method
US6063031A (en) 1997-10-14 2000-05-16 Assurance Medical, Inc. Diagnosis and treatment of tissue with instruments
US6251686B1 (en) 1998-02-26 2001-06-26 Edward J. Studer Liquid transfer apparatus
US20060122555A1 (en) 1998-04-10 2006-06-08 Mark Hochman Drug infusion device for neural axial and peripheral nerve tissue identification using exit pressure sensing
US6500119B1 (en) * 1999-12-01 2002-12-31 Medical Tactile, Inc. Obtaining images of structures in bodily tissue
US6595933B2 (en) 2000-03-31 2003-07-22 Artann Laboratories Self-palpation device for examination of breast with 3-D positioning system
US6468231B2 (en) 2000-03-31 2002-10-22 Artann Laboratories Self-palpation device for examination of breast
US7056294B2 (en) 2000-04-13 2006-06-06 Ev3 Sunnyvale, Inc Method and apparatus for accessing the left atrial appendage
AU2001257329A1 (en) 2000-04-28 2001-11-12 Armed L.L.C. Apparatus and method for mechanical imaging of breast
US6569108B2 (en) 2001-03-28 2003-05-27 Profile, Llc Real time mechanical imaging of the prostate
US20040010204A1 (en) 2002-03-28 2004-01-15 Pearl Technology Holdings, Llc Electronic/fiberoptic tissue differentiation instrumentation
US20040267165A1 (en) 2003-06-12 2004-12-30 Sarvazyan Armen P. Tactile breast imager and method for use
US20040267121A1 (en) * 2003-06-12 2004-12-30 Sarvazyan Armen P. Device and method for biopsy guidance using a tactile breast imager
US20040254503A1 (en) 2003-06-13 2004-12-16 Sarvazyan Armen P. Internet-based system and a method for automated analysis of tactile imaging data and detection of lesions
WO2005027753A1 (en) 2003-09-19 2005-03-31 St. Jude Medical, Inc. Apparatus and methods for tissue gathering and securing
US7033321B1 (en) 2004-10-25 2006-04-25 Artann Laboratories, Inc. Ultrasonic water content monitor and methods for monitoring tissue hydration
US8480404B2 (en) 2004-11-30 2013-07-09 Eric A. Savitsky Multimodal ultrasound training system
US7585280B2 (en) * 2004-12-29 2009-09-08 Codman & Shurtleff, Inc. System and method for measuring the pressure of a fluid system within a patient
US20060195043A1 (en) * 2005-02-28 2006-08-31 101 Associates Methods and apparatus for measuring pressures in bodily fluids
US20060206178A1 (en) 2005-03-11 2006-09-14 Kim Daniel H Percutaneous endoscopic access tools for the spinal epidural space and related methods of treatment
US7922674B2 (en) 2005-05-06 2011-04-12 Artann Laboratories Inc Method and device for real time mechanical imaging of prostate
US7819824B2 (en) 2005-05-06 2010-10-26 Artann Laboratories Inc. Method and a dual-array transducer probe for real time mechanical imaging of prostate
US20090143656A1 (en) * 2005-08-15 2009-06-04 Preston Manwaring System for determination of brain compliance and associated methods
CA2619900A1 (en) 2005-08-26 2007-03-01 Novodural Pty Ltd Improvements relating to epidural administration systems
CN2827276Y (en) * 2005-08-26 2006-10-18 郭霞 Apparatus for lumber puncture to take sample cerebrospinal fluid and testing intracranial pressure
WO2009009621A2 (en) 2007-07-09 2009-01-15 Baxano, Inc. Spinal access system and method
US20090131832A1 (en) 2007-11-20 2009-05-21 Innovamedica S.A.P.I. De C.V. Electronic Syringe with Safety System for Spinal Injection
US9521961B2 (en) * 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
WO2010018536A2 (en) 2008-08-13 2010-02-18 Malarme, Luc Handheld imaging guided biopsy device
US8142368B2 (en) 2008-10-02 2012-03-27 Artann Laboratories Inc. Method of characterization and differentiation of tissue
US20140288427A1 (en) 2009-04-03 2014-09-25 James K. Wall Devices and methods for tissue navigation
US20100256483A1 (en) 2009-04-03 2010-10-07 Insite Medical Technologies, Inc. Devices and methods for tissue navigation
CN101877192A (en) * 2009-04-29 2010-11-03 营口巨成教学科技开发有限公司 Spinal puncture training stimulation standard patient
US8814807B2 (en) 2009-08-19 2014-08-26 Mirador Biomedical Spinal canal access and probe positioning, devices and methods
US8052622B2 (en) 2009-09-02 2011-11-08 Artann Laboratories Inc Methods for characterizing vaginal tissue elasticity
US8187208B2 (en) 2009-09-02 2012-05-29 Artann Laboratories Inc. Methods for assessment of pelvic organ conditions affecting the vagina
US20110066078A1 (en) 2009-09-14 2011-03-17 Artann Laboratories, Inc. Pain monitor for a patient undergoing a medical procedure
US20110092818A1 (en) 2009-10-16 2011-04-21 Artann Laboratories, Inc. Ultrasonometer for bone assessment in infants
JP4940340B2 (en) * 2009-11-27 2012-05-30 富士フイルム株式会社 Vertebral segmentation device, method and program
US7955278B1 (en) 2009-11-30 2011-06-07 Artann Laboratories Inc. Aspiration methods and devices for assessment of viscoelastic properties of soft tissues
EP2515750A4 (en) 2009-12-21 2013-07-10 Sherwin Hua Insertion of medical devices through non-orthogonal and orthogonal trajectories within the cranium and methods of using
US20110166442A1 (en) 2010-01-07 2011-07-07 Artann Laboratories, Inc. System for optically detecting position of an indwelling catheter
WO2011094585A1 (en) * 2010-01-29 2011-08-04 University Of Virginia Ultrasound for locating anatomy or probe guidance
EP2579765B1 (en) 2010-06-13 2019-08-07 Omeq Medical Ltd. Anatomical-positioning apparatus with an expandable device
US8425425B2 (en) * 2010-09-20 2013-04-23 M. Dexter Hagy Virtual image formation method for an ultrasound device
US8016777B1 (en) 2010-10-13 2011-09-13 Artann Laboratories Inc. Hand-held probe for prostate cancer screening
US8069735B1 (en) 2010-11-10 2011-12-06 Artann Laboratories Inc. Tactile sensor array for soft tissue elasticity imaging
CN102133096B (en) * 2011-03-09 2012-09-26 深圳市德普施科技有限公司 Treatment instrument for intracranial pressure monitoring and drainage and replacement of cerebrospinal fluid
JP6057985B2 (en) * 2011-04-26 2017-01-11 ユニバーシティ オブ バージニア パテント ファウンデーション Bone surface image reconstruction using ultrasound
EP2734131A4 (en) 2011-07-18 2015-09-09 Truminim Internat Corp Percutaneous methods for spinal stenosis and foraminal stenosis
JP6146875B2 (en) 2011-10-11 2017-06-14 ホスピテック レスピレーション リミテッド Pressure controlled syringe
EP2765932A1 (en) 2011-10-13 2014-08-20 Lumoptik LLC Needle guidance system
EP2583945A1 (en) 2011-10-19 2013-04-24 Imec MIMCAP structure comprising doped rutile titanium oxide and method of forming
US20160008007A1 (en) 2012-07-17 2016-01-14 Truminim, LLC Percutaneous system and methods for enhanced epidural access for spine surgery
EP2934302B9 (en) 2012-12-22 2020-03-11 Omeq Medical Ltd. Positioning and tissue sensing devices
US9775636B2 (en) 2013-03-12 2017-10-03 Corvia Medical, Inc. Devices, systems, and methods for treating heart failure
US20140276925A1 (en) 2013-03-12 2014-09-18 Spinal Modulation, Inc. Methods and systems for use in guiding implantation of a neuromodulation lead
US10178984B2 (en) * 2014-01-10 2019-01-15 Soma Research, Llc Needle guidance systems for use with ultrasound devices
US20160270810A1 (en) 2014-06-13 2016-09-22 InterShunt Technologies, Inc. Method and catheter for creating an interatrial aperture
EP3160325A4 (en) 2014-06-25 2018-01-24 Massachusetts Institute of Technology Optical sensor for needle-tip tissue identification and diagnosis
CN104140066B (en) 2014-07-31 2016-01-13 山东省农业科学院 A kind of culture packaging device for test tube
WO2016034910A1 (en) 2014-09-02 2016-03-10 Salguero Beltrán Andrés Ernesto Device for assisting in the detection of body cavities
CN104523297B (en) * 2014-09-16 2017-06-06 万鹏 The disposable rotary cerebrospinal fluid collection of cavum subarachnoidale, display, pressure tester
US9993226B2 (en) * 2014-12-09 2018-06-12 Mylan Inc. Device and method for detecting skin to muscle depth by simultaneous detection of ultrasonic depth sensor and force sensor
CN204318870U (en) * 2014-12-12 2015-05-13 西安交通大学医学院第一附属医院 The visual lumbar puncture device of optical fiber
US10426497B2 (en) 2015-07-24 2019-10-01 Route 92 Medical, Inc. Anchoring delivery system and methods
CN204744429U (en) * 2015-07-15 2015-11-11 刘兰泽 Intervertebral disc function method localize puncture frame
JP7076735B2 (en) 2016-05-03 2022-05-30 テキサス メディカル センター Tactile sensing device for lumbar puncture
WO2018148456A1 (en) 2017-02-10 2018-08-16 Texas Medical Center Transcatheter device for interatrial anastomosis
US10383610B2 (en) 2017-10-27 2019-08-20 Intuitap Medical, Inc. Tactile sensing and needle guidance device
CN111601566A (en) 2017-10-27 2020-08-28 因图伊泰普医疗公司 Tactile sensing and needle guide device

Also Published As

Publication number Publication date
EP3451925A4 (en) 2019-12-04
CA3022932A1 (en) 2017-11-09
WO2017192596A1 (en) 2017-11-09
US10004450B2 (en) 2018-06-26
US20170319127A1 (en) 2017-11-09
US20220287627A1 (en) 2022-09-15
EP3451925B1 (en) 2024-07-03
AU2017260251A1 (en) 2018-11-29
JP7076735B2 (en) 2022-05-30
AU2017260251B2 (en) 2022-08-04
JP2019522503A (en) 2019-08-15
IL262739B2 (en) 2023-03-01
IL262739B (en) 2022-11-01
CN109414220A (en) 2019-03-01
CN109414220B (en) 2021-12-14
EP3451925A1 (en) 2019-03-13
MX2018013412A (en) 2019-06-06
US20180206781A1 (en) 2018-07-26
US11179097B2 (en) 2021-11-23
IL262739A (en) 2018-12-31

Similar Documents

Publication Publication Date Title
US20220287627A1 (en) Tactile sensing device for lumbar punctures
US11000311B2 (en) Tactile sensing and needle guidance device
US20220079619A1 (en) Tactile sensing and needle guidance device
Karmakar et al. Real-time ultrasound-guided paramedian epidural access: evaluation of a novel in-plane technique
US20190282262A1 (en) Needle guides
US6533794B2 (en) Simplified stereotactic apparatus and methods
US20150359991A1 (en) System for image guided procedure
EP3046500A1 (en) Surgical navigation systems, related devices and methods
Tebo et al. An optical 3D digitizer for frameless stereotactic surgery
CN204890176U (en) External locator of pedicle of vertebral arch passageway
CN202723973U (en) Implantation angle guide device for spinal pedicle screw
US12064139B2 (en) System and method for placement of neurostimulation leads
Karmakar Ultrasound-guided central neuraxial blocks
US20240324989A1 (en) System for hands-free securement of an ultrasound transducer
Helen et al. Downloaded on 2017-02-12T04: 50: 12Z

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXAS MEDICAL CENTER, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOSKOWITZ, NICOLE C.;TRAVER, JESSICA;GARCIA-ROJAS, XAVIER;AND OTHERS;SIGNING DATES FROM 20170504 TO 20170505;REEL/FRAME:057884/0076

STCB Information on status: application discontinuation

Free format text: ABANDONED -- INCOMPLETE APPLICATION (PRE-EXAMINATION)