US20200361786A1 - System and apparatus for determining and controlling water clarity - Google Patents

System and apparatus for determining and controlling water clarity Download PDF

Info

Publication number
US20200361786A1
US20200361786A1 US16/912,927 US202016912927A US2020361786A1 US 20200361786 A1 US20200361786 A1 US 20200361786A1 US 202016912927 A US202016912927 A US 202016912927A US 2020361786 A1 US2020361786 A1 US 2020361786A1
Authority
US
United States
Prior art keywords
water
clarity
spa
control unit
pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/912,927
Inventor
Stephen P. Kasten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US16/912,927 priority Critical patent/US20200361786A1/en
Publication of US20200361786A1 publication Critical patent/US20200361786A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/763Devices for the addition of such compounds in gaseous form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D21/00Control of chemical or physico-chemical variables, e.g. pH value
    • G05D21/02Control of chemical or physico-chemical variables, e.g. pH value characterised by the use of electric means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/08Holders for targets or for other objects to be irradiated
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/766Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens by means of halogens other than chlorine or of halogenated compounds containing halogen other than chlorine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/42Nature of the water, waste water, sewage or sludge to be treated from bathing facilities, e.g. swimming pools
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/008Processes using a programmable logic controller [PLC] comprising telecommunication features, e.g. modems or antennas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant

Definitions

  • the present invention is directed to a system and apparatus for determining and controlling water clarity. More specifically, the present invention is directed to a system and apparatus for determining and controlling water clarity that includes a water chamber having an inlet, an outlet, and a transparent lens or window, a light source capable of lighting up the water contained in the water chamber, a light sensitive detection circuit positioned near the transparent lens or window of the water chamber, and a control unit capable of receiving an output signal from the light sensitive detection circuit to determine water clarity and/or to send a signal to a water treatment system.
  • the water chamber may specifically be a spa or a pool.
  • the present invention is also directed to a method for determining and controlling water clarity in a spa and/or pool which includes the steps of providing a water chamber having at least one transparent window, a water inlet, and a water outlet, directing water from the spa and/or pool through the water chamber, employing a light source to light up water contained in the water chamber, providing a light sensitive detection circuit near the transparent window, and employing a control unit to receive an output from the light sensitive detection circuit to determine clarity of the spa or pool water and/or to send a signal to a water treatment system for treating the spa or pool.
  • the system and method for determining and controlling water clarity can be a closed loop system (easily installed into an existing pool or spa unit or which can be built into a new pool or spa unit) where the control unit repeatedly determines water clarity and sends a signal to the water treatment system to adjust treatment of the water if necessary based on the clarity of the water.
  • the invention is directed to a system, method and apparatus for determining and controlling water clarity in a salt water pool or spa.
  • the salt water in the pool or spa is directed to a water chamber and associated control unit that are designed to determine the clarity of the salt water and then send a signal to a chlorine or bromine generator (which changes salt in the water to chlorine or bromine via electrolysis) that is in communication with the salt water in the pool or spa to adjust the output from the chlorine/bromine generator, if necessary, so that a consistent free chlorine or bromine level can be maintained in the pool or spa.
  • Salt water pools and spas have become increasingly popular over the last several years.
  • Chlorine generating salt water pools and spas are the most common and utilize systems that transform salt in the water (NaCl) to pure Chlorine (Cl) through electrolysis.
  • this quickly forms hypochlorous acid (HClO) and sodium hypochlorite (NaClO) which function as sanitation byproducts.
  • hypochlorous acid H2O
  • sodium hypochlorite NaClO
  • the salt is then converted to chlorine again through electrolysis, and the process continues to repeat itself. This largely eliminates the need for the addition of outside sanitizers.
  • These types of generators are installed with open loop control systems and the run time for the generator is usually set manually.
  • Non-salt water pools and spas may use chemical feed systems to sanitize the water in the pool or spa. These systems may be automatic or manual and, like the chlorine generator described above, they are typically installed with open loop systems where the chemical feed or sanitizer generator are set manually.
  • the present invention is directed to a system and apparatus for determining and controlling water clarity where the water clarity is used to determine whether a water treatment system connected to the water needs to be adjusted.
  • water clarity in a pool, spa, water cistern, or any other body of water is evaluated and used to determine whether an existing water treatment system in communication with the water needs to be adjusted to maintain a sanitization level of the water where the sanitization level is determined by the water clarity.
  • the invention is directed to an apparatus for determining and controlling water opacity or clarity that includes a water chamber having a water inlet, a water outlet, and a transparent member, a light source positioned near the transparent member for lighting the water contained in the water chamber, a light sensitive detection unit for detecting the light, and a control unit capable of receiving an output signal from the light sensitive detection unit for determining the opacity or clarity of the water contained within the water chamber.
  • the control unit may also be capable of determining and sending a target signal to a water treatment system which functions to treat the water that flows through the water chamber.
  • the apparatus in another exemplary embodiment of the apparatus of the present invention for determining and controlling water clarity or opacity, includes a water chamber having opposing open ends and a water inlet and water outlet located between the opposing ends, a transparent lens covering each of the opposing open ends of the water chamber, a light source positioned at one opposing end of the water chamber, a light sensitive detection circuit positioned at the other opposing end of the water chamber, and a control unit capable of receiving an output signal from the light sensitive detection circuit and determining a target signal to send to a water treatment system which functions to treat water.
  • the apparatus may also include an end cap placed over each transparent lens.
  • the light sensitive detection circuit may include, but is not limited to, one or more of the following: a photoresistor, a photodiode, a phototransistor, and a photovoltaic cell.
  • the water chamber may comprise any number of shapes which facilitate building it into an existing pool or spa system including, but not limited to, a cylindrical shape that can be easily fitted between existing water lines and/or existing water filtration systems.
  • the apparatus may include a local indicator connected to the control unit, and positioned close to a body of water that is capable of entering the water inlet of the water chamber, for indicating an opacity or clarity level of the water in the water chamber based on the output signal from the light sensitive detection circuit.
  • the apparatus of the present invention may also include a remote indicator connected to the control unit, and positioned remotely from a body of water that is capable of entering the water inlet of the water chamber, for indicating an opacity or clarity level of the water in the water chamber based on the output signal from the light sensitive detection circuit. Further, such a remote indicator may be wirelessly connected to the control unit.
  • the present invention includes an apparatus for determining and controlling water clarity or opacity in a treatable body of water that includes a water chamber having opposing open ends, a water inlet for receiving water from a treatable body of water, and a water outlet for releasing water from the water chamber, the water inlet and outlet being positioned between opposing open ends of the water chamber, a transparent lens covering each of the opposing open ends of the water chamber, a light source positioned at one opposing end of the water chamber, a light sensitive detection circuit positioned at the other opposing end of the water chamber, and a control unit capable of both receiving an output signal from the light sensitive detection circuit and computing a target signal to send to a water treatment system which functions to treat the treatable body of water.
  • the apparatus may also include an end cap placed over each transparent lens.
  • the light sensitive detection circuit may include, but is not limited to, one or more of the following: a photoresistor, a photodiode, a phototransistor, and a photovoltaic cell.
  • the water chamber may comprise any number of shapes which facilitate building it into an existing pool or spa system including, but not limited to, a cylindrical shape that can be easily fitted between existing water lines and/or existing water filtration systems.
  • the apparatus may include a local indicator connected to the control unit and positioned close to the treatable body of water for indicating an opacity or clarity level of the water in the water chamber based on the output signal from the light sensitive detection circuit.
  • the apparatus of the present invention may also include a remote indicator connected to the control unit and positioned remotely from the treatable body of water for indicating an opacity or clarity level of the water in the water chamber based on the output signal from the light sensitive detection circuit. Further, such a remote indicator may be wirelessly connected to the control unit.
  • the present invention is also directed to a system for determining and controlling water opacity or clarity in a treatable body of water contained in a water containment apparatus which includes a body of water contained in the water containment apparatus, a light source capable of lighting up the water contained in the water containment apparatus, at least one transparent window positioned within the water containment apparatus, a light sensitive detection circuit positioned near said at least one transparent window, and a control unit capable of receiving an output signal from the light sensitive detection circuit for determining an opacity or clarity level of the body of water.
  • the system may also include a local indicator connected to the control unit and positioned close to the body of water for indicating the clarity or opacity level of the body of water based on the output signal from the light sensitive detection circuit.
  • the system may also include a remote indicator connected to the control unit and positioned remotely from the body of water for indicating the clarity or opacity level of the body of water based on the output signal from the light sensitive detection circuit.
  • the remote indicator may be wirelessly connected to the control unit.
  • the water containment apparatus may include, but is not limited to, a spa, a pool, a water trough, a water cistern, or a water tank.
  • the system may further include a water treatment system connected to the body of water and the control unit where the control unit is also capable of computing and sending a target signal to the water treatment system to treat the body of water.
  • the water treatment system may include, but is not limited to, any of the following: a bromine generator, a chlorine generator, a filtration device, and a chemical injection system.
  • the control unit may be capable of repeatedly communicating with the water treatment system to maintain a predetermined level of an active disinfectant within the body of water where the predetermined level of the active disinfectant is determined based on the clarity level of the body of water.
  • the water treatment system may include a chlorine generator with the control unit continually communicating with the chlorine generator to maintain a specific free chlorine level within the body of water where the specific level of free chlorine is determined based on the clarity level of the body of water.
  • the present invention is also directed to a method for determining and controlling water clarity in a spa and/or pool which includes the steps of a) providing a water chamber having at least one transparent window, a water inlet, and a water outlet, b) directing water from the spa and/or pool through the water chamber, c) employing a light source to light up water contained within the water chamber, d) providing a light sensitive detection circuit adjacent to the transparent window(s), and e) employing a control unit to receive an output signal from the light sensitive detection circuit to determine a clarity or opacity level of the water in the water chamber.
  • the method may also include the step of f) utilizing the control unit to compute and send a signal to a water treatment system connected to the spa and/or pool to treat the water in the spa and/or pool.
  • the method may further include continuously repeating steps b) through f) to maintain a predetermined level of an active disinfectant within the spa and/or pool where the predetermined level of the active disinfectant is determined based on the clarity or opacity level of the water in the water chamber.
  • the water treatment system used in this method may be, but is not limited to, any of the following: a bromine generator, a chlorine generator, a filtration device, and a chemical injection system.
  • the water treatment system may be a chlorine generator which functions to convert salt to chlorine through electrolysis with steps b) through f) being continuously being repeated to maintain a specific free chlorine level within the pool and/or spa.
  • the method may also include the step of providing a local indicator positioned close to the pool and/or spa and/or a remote indicator positioned remotely from the pool and/or spa where the local and/or remote indicator is connected to the control unit for indicating the clarity level or opacity level of the water in the pool and/or spa.
  • FIG. 1 is a schematic showing a prior art open loop chorine generator control system used in salt water spas and/or a prior art open loop sanitation control system used in fresh water spas or pools;
  • FIG. 2 is a schematic view of an exemplary embodiment of the present invention of an apparatus for determining and controlling water clarity or water opacity;
  • FIG. 3 is a schematic of an exemplary closed loop system of the present invention for determining and controlling water clarity or water opacity in a spa or pool;
  • FIG. 4 is a side elevational view of an exemplary embodiment of an apparatus of the present invention for determining and controlling water arity or water opacity shown alone without being connected to a control unit;
  • FIG. 5 is another exemplary embodiment of a water clarity monitoring and control system of the present invention for monitoring and controlling water clarity in a treatable body of water;
  • FIG. 6 is yet another embodiment of a water clarity monitoring and control system of the present invention for monitoring and controlling water clarity in a treatable body of water having an apparatus for monitoring and controlling water clarity integrated into an existing filtration system for a pool or spa;
  • FIG. 7 is a flowchart showing an exemplary method of the present invention for determining and controlling water clarity in a pool or spa.
  • the present invention is directed to a system, method, and apparatus for determining, controlling and continuously monitoring the water clarity or water opacity of a treatable body of water such as the water contained in a spa, a pool, or any other body of water that needs to maintain a certain level of sanitation depending on its purpose.
  • a treatable body of water such as the water contained in a spa, a pool, or any other body of water that needs to maintain a certain level of sanitation depending on its purpose.
  • Any of the systems, methods, or apparatus that are described herein may be used to measure water clarity (i.e the clearness of the water) or water opacity (i.e. the opaqueness of the water). Either measurement of the water can be used to determine if the water needs more treatment, less treatment, or no treatment.
  • FIG. 1 is a schematic showing a prior art open loop chlorine generator control system used in salt water spas and/or a prior art open loop sanitation control system used in fresh water spas.
  • this open loop system 10 water from a spa (or pool) is drawn through a filter 12 . Once the water passes through filter 12 , it is directed to, and passes through, a generator 14 such as a chlorine generator (in the case of a salt water spa or pool) or a sanitizer injector (in the case of a fresh water spa or pool).
  • the generator 14 has a timer control 16 associated with it which is adjusted or set manually. After passing through the generator 14 , the water is returned to the spa or pool via a circulation pump 18 .
  • This system is referred to as an open loop system because the generator 14 controls chlorine or bromine generation (in a salt water pool or spa) or the sanitization amount or level (in a fresh water pool or spa) is controlled or set manually with no automatic feedback loop to reset the generator 14 .
  • the present invention is directed to a system and method for determining and controlling water clarity or opacity that provides automated feedback to automatically adjust the generator 14 .
  • FIG. 2 is a schematic view of an exemplary embodiment of the present invention of an apparatus 20 for determining and controlling water clarity or water opacity.
  • Apparatus 20 includes a water chamber 22 having opposing open ends, a water inlet 24 , and a water outlet 26 . Opposing open ends of water chamber 22 are each covered with a transparent lens 28 , 30 .
  • a light source 32 is positioned at one opposing end of the water chamber 22 while a light detection circuit 34 is positioned at the other opposing end of the water chamber 22 .
  • the light detection circuit 34 detects light contained within the water in the water chamber 22 and sends an output signal to a control unit 36 which determines the water clarity or water opacity of the water contained in the water chamber 22 .
  • the control unit 36 determines whether the water in the spa or pool needs more treatment, less treatment, or no treatment based on the water clarity or water opacity and sends a signal to a treatment system to adjust treatment of the water if necessary.
  • FIG. 3 is a schematic of an exemplary closed loop system of the present invention for determining and controlling water clarity or water opacity in a spa or pool.
  • System 40 for determining and controlling water clarity or water opacity includes a filter 42 though which water enters the system. After filtration, the water passes through a generator 44 before being drawn into the circulation pump 46 .
  • the generator 44 may be a chlorine or bromine generator (which uses salt in the water in a salt water spa or pool to create either chlorine or bromine via electrolysis) or a sanitizer injector (which injects a chemical sanitizer such as bromine, chlorine, or some other chemical into fresh water contained in a fresh water spa or pool).
  • Control unit 36 determines water clarity or water opacity and whether the water in the water chamber needs more treatment, less treatment, or no change in treatment. Control unit 36 then computes the proper signal to send to generator 44 to adjust generator 44 to properly treat the water. Control unit 36 may use an algorithm to maintain water clarity while minimizing “on” time of the generator 44 . In effect, it “hunts” for the lowest use level of the generator that works to maintain water clarity.
  • control unit 36 If at some point the water clarity begins to deteriorate, control unit 36 resets to the maximum level until water clarity returns. As water clarity is restored, the control unit 36 begins to back down on the run time of the generator 44 thereby “hunting” for the proper use level of generator 44 .
  • solid lines represent water connections and water flow through those connections while dashed lines represent electrical connections.
  • this system might be implemented, consider a chlorine generator system used in a salt water spa that is set to run 10 hours per day under moderate use conditions. Assume the owner goes on vacation and the use of the spa drops to zero use. If the system of the present invention determines that the water is clear, the system may reduce output by 10% daily from the chlorine generator until the system determines that there is an increase in the opacity of the water. Once the system detects an increase in the opacity of the water, it may increase output by 10% for one day. In the event that opacity of the water continues to increase, it may continue to increase output from the chlorine generator until opacity of the water stabilizes or begins to decrease. The system of the present invention can be used as a stand alone means of feedback or as a means of augmenting the open loop control systems currently used in the prior art.
  • the light source could be an LED in its simplest form or any other light source such as, but not limited to, a laser light source, an infra-red light source, an incandescent light source, a fluorescent light source, etc.
  • the light sensitive detection circuit could be a photoresistor used as the gain resistor in an operational amplifier.
  • the light sensitive detection circuit may include, but is not limited to, any one or more of the following: a photodiode, a phototransistor, and a photovoltaic cell.
  • the lenses would most likely be acrylic, as acrylic is inexpensive and very resistant to pool and spa chemicals.
  • the exemplary apparatus of the present invention shown in FIG. 2 is ideally located/positioned after the filter and before the heater in an existing spa system.
  • the apparatus can be easily removed, cleaned, and replaced if needed. If it is not practical to position the apparatus of the present invention before the chlorine generator in a salt water spa or before a sanitizer injection point/chlorine or bromine generator in a fresh water spa, it may be necessary to ignore the readings from the apparatus of the present invention when the generator or injector is operating. Chlorine (or bromine) generator control in a salt water spa and sanitizer feed control in a fresh water spa requires attention in the design of the present invention.
  • low opacity means that minimal sanitizer is needed and the chlorine (or bromine) generator (in the salt water system) need only run minimally, and the sanitizer injector (in the fresh water system) needs only minimum output.
  • the design may be able to integrate measurements over time thereby decreasing run time of the generator as repeated clear measurements accumulate over time. If the opacity of the water increases, the generator can increase output until the opacity of the water decreases.
  • the controller may be able to maintain a stable sanitizer minimum output in clear water conditions that is needed to maintain a particular sanitizer level in a particular size of spa or pool.
  • the generator or injector may create fine bubbles which could produce a false high opacity.
  • the system for determining and controlling water clarity of the present invention may also allow for the degradation of the water chamber and its associated components by periodically recalibrating, either automatically or manually, and by adjusting output based on calibration measurements over time.
  • Advantages of the system, method and apparatus of the present invention for determining and controlling water clarity or water opacity include 1) providing feedback to an otherwise open loop control system at low cost, 2) increasing the life span of the chlorine (or bromine) generator (in the salt water systems) and decreasing sanitizer use in the fresh water systems while still maintaining safe sanitizer levels, 3) decreasing the likelihood of over chlorination/sanitation and resulting spa damage, and 4) the utilization of simple and inexpensive feedback measurement technology.
  • FIG. 4 is a side elevational view of an exemplary embodiment of an apparatus 50 of the present invention for determining and controlling water clarity or water opacity shown alone without being connected to a control unit.
  • Apparatus 50 shown FIG. 5 includes a water chamber 52 (that can be made of one or more components) having opposing open ends, a water inlet 54 , and a water outlet 56 . Opposing open ends of water chamber 52 are each covered with a transparent lens 58 , 60 .
  • a light source 62 is positioned at one opposing end of the water chamber 52 while a light detection circuit 64 is positioned at the other opposing end of the water chamber 52 .
  • the light detection circuit 64 detects light contained within the water in the water chamber 52 and sends an output signal to a control unit (not shown) which determines the water clarity or water opacity of the water contained in the water chamber 52 .
  • End caps 78 , 80 are positioned over transparent lenses 58 , 60 to provide protection and wiring strain relief for light source 62 and light detection circuit 64 .
  • the edges and backs of transparent lenses 58 , 60 may be blacked out to prevent ambient light intrusion.
  • FIG. 5 is another exemplary embodiment of a water clarity monitoring and control system of the present invention for monitoring and controlling water clarity in a treatable body of water.
  • Water clarity monitoring and control system 100 includes a body of water contained in a water containment apparatus 102 (such as, for example, but not limited to, a pool, a spa, a water trough, a water cistern, and a water tank), a light source 104 capable of lighting up the water contained in the water containment apparatus 102 , at least one transparent window 106 positioned within the water containment apparatus 102 , a light sensitive detection circuit 108 positioned near at least one transparent window 106 in the water containment apparatus 102 , and a control unit 110 capable of receiving an output signal from the light sensitive detection circuit 108 for determining a clarity level of the body of water.
  • FIG. 5 also shows another transparent window 107 contained within the water containment apparatus 102 where the Eight source 104 is positioned on the outside of the water containment apparatus 102 near the transparent window 107 .
  • System 100 also includes an optional local indicator 112 connected to the control unit 110 and positioned close to the body of water for indicating the clarity level or opacity level of the body of water, an optional remote indicator 114 connected to the control unit 110 and positioned remotely from the body of water for indicating the clarity level or opacity level of the body of water, and an optional generator control system 116 for controlling output to a chemical feeder generator or some other water quality control mechanism that is capable of treating the body of water.
  • the local indicator 112 is particularly useful in the case of a closed spa or a closed cistern where water quality cannot be monitored without opening a lid or manway.
  • the remote indicator 114 is particularly useful when the body of water is far away from the entity or individual that needs to monitor it.
  • the remote indicator 114 can be accomplished via a hardwired remote indicator or via a handheld device using a computer or cellular phone network.
  • the generator control system 116 may operate one or more of the following: filtration pumps, chemical feeders, chlorine or bromine generators, ozone or UV systems, or some other water quality improvement device or devices.
  • FIG. 6 is yet another embodiment of a water clarity monitoring and control system of the present invention for monitoring and controlling water clarity in a treatable body of water having an apparatus for monitoring and controlling water clarity integrated into an existing filtration system for a pool or spa.
  • water from a pool, spa, or other water containment apparatus flow through circulation pump 246 and into a water chamber 222 . After passing through the circulation pump 246 , the water is directed into the water inlet 224 of the water chamber 222 .
  • Light source 232 lights up water contained in the water chamber 222 by shining light through transparent lens or window 228 .
  • Light detection circuit 234 detects light within the water through transparent lens or window 230 and sends a signal to control unit 236 for determining a clarity level or opacity level of the body of water.
  • system 200 also includes an optional local indicator 212 connected to the control unit 236 and positioned close to the pool, spa, or water containment apparatus for indicating the clarity level or opacity level of the body of water, an optional remote indicator 214 connected to the control unit 236 and positioned remotely from pool, spa, or water containment apparatus for indicating the clarity level or opacity level of the body of water, and an optional generator control system 216 for controlling output to a chemical feeder generator or some other water quality control mechanism that is capable of treating the body of water.
  • the local indicator 212 is particularly useful in the case of a closed spa or a closed cistern where water quality cannot be monitored without opening a lid or manway.
  • the remote indicator 214 is particularly useful when the body of water is far away from the entity or individual that needs to monitor it.
  • the remote indicator 214 can be accomplished via a hardwired remote indicator or via a handheld device using a computer or cellular phone network.
  • the generator control system 216 may operate one or more of the following: filtration pumps, chemical feeders, chlorine or bromine generators, ozone or UV systems, or some other water quality improvement device or devices.
  • FIGS. 5 and 6 solid lines represent water connections and water flow through those connections while dashed lines represent electrical connections.
  • the purpose of system 100 and system 200 is to provide accurate readings and therefore requires that determination or measurement of water clarity or water opacity be performed at times of minimum interference. Items that might interfere with accurate determinations/measurements include operation of pumps or aerators, injection of chemicals, ambient light sources, temperature variations, etc. System 100 and system 200 either do not make determinations/measurements at these times or alternatively compensate for the variations in the determinations/measurements.
  • Advantages of water clarity monitoring and control systems 100 and 200 of the present invention include 1) providing quantitative water quality information at a low price, 2) easy integration into new pool, spa, and water containment apparatus and easy retrofitting into existing pool, spa, and water containment apparatus, 3) ability to remotely indicate water quality information, and 4) ability to easily use in feedback control systems at low cost.
  • FIG. 7 A flowchart showing an exemplary method 300 of the present invention for determining and controlling water clarity in a pool or spa is depicted in FIG. 7 .
  • a water chamber is provided having a water inlet, a water outlet, and a transparent window in step 302 .
  • the water from a pool or spa is then directed through the water chamber in step 304 via the water chamber inlet and outlet.
  • a light source is employed to light up the water in the water chamber and in step 308 a light sensitive detection circuit is positioned near the transparent window of the water chamber.
  • a control unit is employed to receive a signal from the light sensitive detection unit to determine water clarity in step 310 .
  • An evaluation is made in step 312 to determine if the water clarity is at an acceptable level.
  • a signal is sent to a water treatment system in step 314 to treat the water. Once treated, the water is again directed through the water chamber in step 304 and steps 304 through 312 are continuously repeated to monitor and adjust the water clarity. If the water clarity is at an acceptable level, water continues to be directed through the water chamber in step 304 and steps 304 through 312 are continuously repeated to monitor and adjust the water clarity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

A system, method and apparatus for determining and controlling water clarity or water opacity especially useful in pools, spas, and contained bodies of water.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of and claims the benefit of, and priority to U.S. Nonprovisional patent application Ser. No. 14/283,868 filed May 21, 2014, currently pending, which application claims the benefit of, and priority to, provisional patent application having Ser. No. 61/825,965, filed May 21, 2013, provisional patent application having Ser. No. 61/885,353, filed Oct. 1, 2013, and provisional patent application having Ser. No. 61/920,421, filed Dec. 23, 2013, which are all herein incorporated by reference in their entireties.
  • FIELD OF INVENTION
  • The present invention is directed to a system and apparatus for determining and controlling water clarity. More specifically, the present invention is directed to a system and apparatus for determining and controlling water clarity that includes a water chamber having an inlet, an outlet, and a transparent lens or window, a light source capable of lighting up the water contained in the water chamber, a light sensitive detection circuit positioned near the transparent lens or window of the water chamber, and a control unit capable of receiving an output signal from the light sensitive detection circuit to determine water clarity and/or to send a signal to a water treatment system. The water chamber may specifically be a spa or a pool.
  • The present invention is also directed to a method for determining and controlling water clarity in a spa and/or pool which includes the steps of providing a water chamber having at least one transparent window, a water inlet, and a water outlet, directing water from the spa and/or pool through the water chamber, employing a light source to light up water contained in the water chamber, providing a light sensitive detection circuit near the transparent window, and employing a control unit to receive an output from the light sensitive detection circuit to determine clarity of the spa or pool water and/or to send a signal to a water treatment system for treating the spa or pool. The system and method for determining and controlling water clarity can be a closed loop system (easily installed into an existing pool or spa unit or which can be built into a new pool or spa unit) where the control unit repeatedly determines water clarity and sends a signal to the water treatment system to adjust treatment of the water if necessary based on the clarity of the water.
  • In a particularly useful embodiment, the invention is directed to a system, method and apparatus for determining and controlling water clarity in a salt water pool or spa. The salt water in the pool or spa is directed to a water chamber and associated control unit that are designed to determine the clarity of the salt water and then send a signal to a chlorine or bromine generator (which changes salt in the water to chlorine or bromine via electrolysis) that is in communication with the salt water in the pool or spa to adjust the output from the chlorine/bromine generator, if necessary, so that a consistent free chlorine or bromine level can be maintained in the pool or spa.
  • BACKGROUND OF THE INVENTION
  • Salt water pools and spas have become increasingly popular over the last several years. Chlorine generating salt water pools and spas are the most common and utilize systems that transform salt in the water (NaCl) to pure Chlorine (Cl) through electrolysis. In water, this quickly forms hypochlorous acid (HClO) and sodium hypochlorite (NaClO) which function as sanitation byproducts. After reacting with the contaminants in the water, these sanitation byproducts revert back to salt. The salt is then converted to chlorine again through electrolysis, and the process continues to repeat itself. This largely eliminates the need for the addition of outside sanitizers. These types of generators are installed with open loop control systems and the run time for the generator is usually set manually.
  • Non-salt water pools and spas may use chemical feed systems to sanitize the water in the pool or spa. These systems may be automatic or manual and, like the chlorine generator described above, they are typically installed with open loop systems where the chemical feed or sanitizer generator are set manually.
  • Manually setting the run time for the generator in a salt water pool or spa, or for the chemical feed or sanitizer systems in a non-salt water pool or spa, is effective provided that the sanitation demand on the system is constant. If the load is too high, the system will not generate enough sanitizer, resulting in under sanitation. In these cases, unhealthy organic build up or microbial life may develop. Alternatively, if the load is too light, extra chlorine or extra sanitizer may be generated resulting in irritation to bathers, equipment corrosion, and reduced generator cell life or reduced equipment life.
  • Over sanitation and under sanitation are particularly problematic in spa sanitizer systems, especially the newly developed spa sanitizer systems for salt water spas. Unlike swimming pools, many spas sit idle for long periods of time. They are generally covered and often have sophisticated filtration and sanitation systems. In these cases, it is possible that a sanitizer or a chlorine/bromine generator (in the case of salt water spas) set for one type of use one week may produce far too much sanitizer the next week when the spa goes unused and remains covered. The result can be severe corrosion of internal components and/or external decorative stainless jet trim, and severe deterioration of spa pillows, spa covers, and even jet seal O-rings.
  • The simplest way to overcome these problems associated with over sanitation is to include feedback to eliminate over-sanitation and over-chlorination. On the most popular spa systems available today, this is done by a timer that shuts down the system and forces the user (via indicator lights on the spa) to test the water and reset use parameters on the control system. This produces a somewhat modified open loop system. An ideal system would actually analyze the water and determine exactly how much sanitizer or chlorine is needed for proper sanitation, and how much will result in over sanitation or chlorination. From a practical standpoint, this has been historically difficult and expensive to implement on a consumer-level scale.
  • A more practical solution is to use an analog to proper sanitation—something that is readily (and inexpensively) measured. Fortunately, anyone who has owned a spa knows that the most common way to determine whether or not the water needs attention is simply by looking at it—i.e. by checking the clarity or opacity of the water. Accordingly, there is a need for a simple and inexpensive system and apparatus that can measure the water clarity or opacity in a pool or spa (or any other body of water) which can be easily incorporated into, and/or associated with, an existing water treatment system that already functions with the pool or spa (or any other body of water).
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a system and apparatus for determining and controlling water clarity where the water clarity is used to determine whether a water treatment system connected to the water needs to be adjusted. In other words, water clarity in a pool, spa, water cistern, or any other body of water is evaluated and used to determine whether an existing water treatment system in communication with the water needs to be adjusted to maintain a sanitization level of the water where the sanitization level is determined by the water clarity.
  • In one exemplary embodiment of the invention, the invention is directed to an apparatus for determining and controlling water opacity or clarity that includes a water chamber having a water inlet, a water outlet, and a transparent member, a light source positioned near the transparent member for lighting the water contained in the water chamber, a light sensitive detection unit for detecting the light, and a control unit capable of receiving an output signal from the light sensitive detection unit for determining the opacity or clarity of the water contained within the water chamber. The control unit may also be capable of determining and sending a target signal to a water treatment system which functions to treat the water that flows through the water chamber.
  • In another exemplary embodiment of the apparatus of the present invention for determining and controlling water clarity or opacity, the apparatus includes a water chamber having opposing open ends and a water inlet and water outlet located between the opposing ends, a transparent lens covering each of the opposing open ends of the water chamber, a light source positioned at one opposing end of the water chamber, a light sensitive detection circuit positioned at the other opposing end of the water chamber, and a control unit capable of receiving an output signal from the light sensitive detection circuit and determining a target signal to send to a water treatment system which functions to treat water. The apparatus may also include an end cap placed over each transparent lens. The light sensitive detection circuit may include, but is not limited to, one or more of the following: a photoresistor, a photodiode, a phototransistor, and a photovoltaic cell. Further, the water chamber may comprise any number of shapes which facilitate building it into an existing pool or spa system including, but not limited to, a cylindrical shape that can be easily fitted between existing water lines and/or existing water filtration systems. In addition, the apparatus may include a local indicator connected to the control unit, and positioned close to a body of water that is capable of entering the water inlet of the water chamber, for indicating an opacity or clarity level of the water in the water chamber based on the output signal from the light sensitive detection circuit. The apparatus of the present invention may also include a remote indicator connected to the control unit, and positioned remotely from a body of water that is capable of entering the water inlet of the water chamber, for indicating an opacity or clarity level of the water in the water chamber based on the output signal from the light sensitive detection circuit. Further, such a remote indicator may be wirelessly connected to the control unit.
  • In still another exemplary embodiment, the present invention includes an apparatus for determining and controlling water clarity or opacity in a treatable body of water that includes a water chamber having opposing open ends, a water inlet for receiving water from a treatable body of water, and a water outlet for releasing water from the water chamber, the water inlet and outlet being positioned between opposing open ends of the water chamber, a transparent lens covering each of the opposing open ends of the water chamber, a light source positioned at one opposing end of the water chamber, a light sensitive detection circuit positioned at the other opposing end of the water chamber, and a control unit capable of both receiving an output signal from the light sensitive detection circuit and computing a target signal to send to a water treatment system which functions to treat the treatable body of water. The apparatus may also include an end cap placed over each transparent lens. The light sensitive detection circuit may include, but is not limited to, one or more of the following: a photoresistor, a photodiode, a phototransistor, and a photovoltaic cell. Further, the water chamber may comprise any number of shapes which facilitate building it into an existing pool or spa system including, but not limited to, a cylindrical shape that can be easily fitted between existing water lines and/or existing water filtration systems. In addition, the apparatus may include a local indicator connected to the control unit and positioned close to the treatable body of water for indicating an opacity or clarity level of the water in the water chamber based on the output signal from the light sensitive detection circuit. The apparatus of the present invention may also include a remote indicator connected to the control unit and positioned remotely from the treatable body of water for indicating an opacity or clarity level of the water in the water chamber based on the output signal from the light sensitive detection circuit. Further, such a remote indicator may be wirelessly connected to the control unit.
  • The present invention is also directed to a system for determining and controlling water opacity or clarity in a treatable body of water contained in a water containment apparatus which includes a body of water contained in the water containment apparatus, a light source capable of lighting up the water contained in the water containment apparatus, at least one transparent window positioned within the water containment apparatus, a light sensitive detection circuit positioned near said at least one transparent window, and a control unit capable of receiving an output signal from the light sensitive detection circuit for determining an opacity or clarity level of the body of water. The system may also include a local indicator connected to the control unit and positioned close to the body of water for indicating the clarity or opacity level of the body of water based on the output signal from the light sensitive detection circuit. In addition, the system may also include a remote indicator connected to the control unit and positioned remotely from the body of water for indicating the clarity or opacity level of the body of water based on the output signal from the light sensitive detection circuit. When the system includes a remote indicator, the remote indicator may be wirelessly connected to the control unit. The water containment apparatus may include, but is not limited to, a spa, a pool, a water trough, a water cistern, or a water tank. The system may further include a water treatment system connected to the body of water and the control unit where the control unit is also capable of computing and sending a target signal to the water treatment system to treat the body of water. The water treatment system may include, but is not limited to, any of the following: a bromine generator, a chlorine generator, a filtration device, and a chemical injection system. In addition, the control unit may be capable of repeatedly communicating with the water treatment system to maintain a predetermined level of an active disinfectant within the body of water where the predetermined level of the active disinfectant is determined based on the clarity level of the body of water. The water treatment system may include a chlorine generator with the control unit continually communicating with the chlorine generator to maintain a specific free chlorine level within the body of water where the specific level of free chlorine is determined based on the clarity level of the body of water.
  • The present invention is also directed to a method for determining and controlling water clarity in a spa and/or pool which includes the steps of a) providing a water chamber having at least one transparent window, a water inlet, and a water outlet, b) directing water from the spa and/or pool through the water chamber, c) employing a light source to light up water contained within the water chamber, d) providing a light sensitive detection circuit adjacent to the transparent window(s), and e) employing a control unit to receive an output signal from the light sensitive detection circuit to determine a clarity or opacity level of the water in the water chamber. The method may also include the step of f) utilizing the control unit to compute and send a signal to a water treatment system connected to the spa and/or pool to treat the water in the spa and/or pool. The method may further include continuously repeating steps b) through f) to maintain a predetermined level of an active disinfectant within the spa and/or pool where the predetermined level of the active disinfectant is determined based on the clarity or opacity level of the water in the water chamber. The water treatment system used in this method may be, but is not limited to, any of the following: a bromine generator, a chlorine generator, a filtration device, and a chemical injection system. If the method of the present invention is used for determining and controlling water clarity or opacity in a salt water pool and/or spa, the water treatment system may be a chlorine generator which functions to convert salt to chlorine through electrolysis with steps b) through f) being continuously being repeated to maintain a specific free chlorine level within the pool and/or spa. Finally, the method may also include the step of providing a local indicator positioned close to the pool and/or spa and/or a remote indicator positioned remotely from the pool and/or spa where the local and/or remote indicator is connected to the control unit for indicating the clarity level or opacity level of the water in the pool and/or spa.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject invention will hereafter be described in conjunction with the appended drawing figures, wherein like numerals denote like elements, and
  • FIG. 1 is a schematic showing a prior art open loop chorine generator control system used in salt water spas and/or a prior art open loop sanitation control system used in fresh water spas or pools;
  • FIG. 2 is a schematic view of an exemplary embodiment of the present invention of an apparatus for determining and controlling water clarity or water opacity;
  • FIG. 3 is a schematic of an exemplary closed loop system of the present invention for determining and controlling water clarity or water opacity in a spa or pool;
  • FIG. 4 is a side elevational view of an exemplary embodiment of an apparatus of the present invention for determining and controlling water arity or water opacity shown alone without being connected to a control unit;
  • FIG. 5 is another exemplary embodiment of a water clarity monitoring and control system of the present invention for monitoring and controlling water clarity in a treatable body of water;
  • FIG. 6 is yet another embodiment of a water clarity monitoring and control system of the present invention for monitoring and controlling water clarity in a treatable body of water having an apparatus for monitoring and controlling water clarity integrated into an existing filtration system for a pool or spa; and
  • FIG. 7 is a flowchart showing an exemplary method of the present invention for determining and controlling water clarity in a pool or spa.
  • DETAILED DESCRIPTION
  • The present invention is directed to a system, method, and apparatus for determining, controlling and continuously monitoring the water clarity or water opacity of a treatable body of water such as the water contained in a spa, a pool, or any other body of water that needs to maintain a certain level of sanitation depending on its purpose. Any of the systems, methods, or apparatus that are described herein may be used to measure water clarity (i.e the clearness of the water) or water opacity (i.e. the opaqueness of the water). Either measurement of the water can be used to determine if the water needs more treatment, less treatment, or no treatment.
  • FIG. 1 is a schematic showing a prior art open loop chlorine generator control system used in salt water spas and/or a prior art open loop sanitation control system used in fresh water spas. In this open loop system 10, water from a spa (or pool) is drawn through a filter 12. Once the water passes through filter 12, it is directed to, and passes through, a generator 14 such as a chlorine generator (in the case of a salt water spa or pool) or a sanitizer injector (in the case of a fresh water spa or pool). The generator 14 has a timer control 16 associated with it which is adjusted or set manually. After passing through the generator 14, the water is returned to the spa or pool via a circulation pump 18. This system is referred to as an open loop system because the generator 14 controls chlorine or bromine generation (in a salt water pool or spa) or the sanitization amount or level (in a fresh water pool or spa) is controlled or set manually with no automatic feedback loop to reset the generator 14. The present invention is directed to a system and method for determining and controlling water clarity or opacity that provides automated feedback to automatically adjust the generator 14.
  • The present invention also includes an apparatus for determining and controlling water clarity or water opacity. FIG. 2 is a schematic view of an exemplary embodiment of the present invention of an apparatus 20 for determining and controlling water clarity or water opacity. Apparatus 20 includes a water chamber 22 having opposing open ends, a water inlet 24, and a water outlet 26. Opposing open ends of water chamber 22 are each covered with a transparent lens 28, 30. A light source 32 is positioned at one opposing end of the water chamber 22 while a light detection circuit 34 is positioned at the other opposing end of the water chamber 22. The light detection circuit 34 detects light contained within the water in the water chamber 22 and sends an output signal to a control unit 36 which determines the water clarity or water opacity of the water contained in the water chamber 22. The control unit 36 then determines whether the water in the spa or pool needs more treatment, less treatment, or no treatment based on the water clarity or water opacity and sends a signal to a treatment system to adjust treatment of the water if necessary.
  • FIG. 3 is a schematic of an exemplary closed loop system of the present invention for determining and controlling water clarity or water opacity in a spa or pool. System 40 for determining and controlling water clarity or water opacity includes a filter 42 though which water enters the system. After filtration, the water passes through a generator 44 before being drawn into the circulation pump 46. The generator 44 may be a chlorine or bromine generator (which uses salt in the water in a salt water spa or pool to create either chlorine or bromine via electrolysis) or a sanitizer injector (which injects a chemical sanitizer such as bromine, chlorine, or some other chemical into fresh water contained in a fresh water spa or pool). After passing through the circulation pump 46, the water is directed into the water inlet 24 of the water chamber 22. Light source 32 lights up water contained in the water chamber 22 by shining light through transparent lens or window 28. Light detection circuit 34 detects light within the water through transparent lens or window 30 and sends a signal to control unit 36. Control unit 36 determines water clarity or water opacity and whether the water in the water chamber needs more treatment, less treatment, or no change in treatment. Control unit 36 then computes the proper signal to send to generator 44 to adjust generator 44 to properly treat the water. Control unit 36 may use an algorithm to maintain water clarity while minimizing “on” time of the generator 44. In effect, it “hunts” for the lowest use level of the generator that works to maintain water clarity. If at some point the water clarity begins to deteriorate, control unit 36 resets to the maximum level until water clarity returns. As water clarity is restored, the control unit 36 begins to back down on the run time of the generator 44 thereby “hunting” for the proper use level of generator 44. In FIG. 3, solid lines represent water connections and water flow through those connections while dashed lines represent electrical connections.
  • As an example of how this system might be implemented, consider a chlorine generator system used in a salt water spa that is set to run 10 hours per day under moderate use conditions. Assume the owner goes on vacation and the use of the spa drops to zero use. If the system of the present invention determines that the water is clear, the system may reduce output by 10% daily from the chlorine generator until the system determines that there is an increase in the opacity of the water. Once the system detects an increase in the opacity of the water, it may increase output by 10% for one day. In the event that opacity of the water continues to increase, it may continue to increase output from the chlorine generator until opacity of the water stabilizes or begins to decrease. The system of the present invention can be used as a stand alone means of feedback or as a means of augmenting the open loop control systems currently used in the prior art.
  • With respect to the components of the system, the light source could be an LED in its simplest form or any other light source such as, but not limited to, a laser light source, an infra-red light source, an incandescent light source, a fluorescent light source, etc. In its simplest form, the light sensitive detection circuit could be a photoresistor used as the gain resistor in an operational amplifier. In addition, the light sensitive detection circuit may include, but is not limited to, any one or more of the following: a photodiode, a phototransistor, and a photovoltaic cell. The lenses would most likely be acrylic, as acrylic is inexpensive and very resistant to pool and spa chemicals. Those skilled in the art will recognize that there are numerous and varied options for designing light sensitive detection circuits and the examples set forth here are not meant to be limiting in any way.
  • The exemplary apparatus of the present invention shown in FIG. 2 is ideally located/positioned after the filter and before the heater in an existing spa system. The apparatus can be easily removed, cleaned, and replaced if needed. If it is not practical to position the apparatus of the present invention before the chlorine generator in a salt water spa or before a sanitizer injection point/chlorine or bromine generator in a fresh water spa, it may be necessary to ignore the readings from the apparatus of the present invention when the generator or injector is operating. Chlorine (or bromine) generator control in a salt water spa and sanitizer feed control in a fresh water spa requires attention in the design of the present invention. In general, low opacity (clear water) means that minimal sanitizer is needed and the chlorine (or bromine) generator (in the salt water system) need only run minimally, and the sanitizer injector (in the fresh water system) needs only minimum output. With salt water spas, the design may be able to integrate measurements over time thereby decreasing run time of the generator as repeated clear measurements accumulate over time. If the opacity of the water increases, the generator can increase output until the opacity of the water decreases. With either fresh or salt water spas or pools, the controller may be able to maintain a stable sanitizer minimum output in clear water conditions that is needed to maintain a particular sanitizer level in a particular size of spa or pool.
  • It may be necessary to refrain from determining water clarity or water opacity using the system, method and apparatus of the present invention during certain periods of spa or pool operation including when a chlorine (or bromine) generator is running in a salt water spa or pool and when a sanitizer injector is running in a fresh water spa or pool. The generator or injector may create fine bubbles which could produce a false high opacity. It may also be necessary to refrain from determining water clarity or water opacity when the jets in the spa or certain pool filtration equipment is running since some such equipment may cause air to be trapped in the water which could also produce a false high opacity reading. There may also be a need to override or reset the readings for water clarity or water opacity in instances where the introduction of additives temporarily cloud the water.
  • The system for determining and controlling water clarity of the present invention may also allow for the degradation of the water chamber and its associated components by periodically recalibrating, either automatically or manually, and by adjusting output based on calibration measurements over time. Advantages of the system, method and apparatus of the present invention for determining and controlling water clarity or water opacity include 1) providing feedback to an otherwise open loop control system at low cost, 2) increasing the life span of the chlorine (or bromine) generator (in the salt water systems) and decreasing sanitizer use in the fresh water systems while still maintaining safe sanitizer levels, 3) decreasing the likelihood of over chlorination/sanitation and resulting spa damage, and 4) the utilization of simple and inexpensive feedback measurement technology.
  • FIG. 4 is a side elevational view of an exemplary embodiment of an apparatus 50 of the present invention for determining and controlling water clarity or water opacity shown alone without being connected to a control unit. Apparatus 50 shown FIG. 5 includes a water chamber 52 (that can be made of one or more components) having opposing open ends, a water inlet 54, and a water outlet 56. Opposing open ends of water chamber 52 are each covered with a transparent lens 58, 60. A light source 62 is positioned at one opposing end of the water chamber 52 while a light detection circuit 64 is positioned at the other opposing end of the water chamber 52. The light detection circuit 64 detects light contained within the water in the water chamber 52 and sends an output signal to a control unit (not shown) which determines the water clarity or water opacity of the water contained in the water chamber 52. End caps 78, 80 are positioned over transparent lenses 58, 60 to provide protection and wiring strain relief for light source 62 and light detection circuit 64. The edges and backs of transparent lenses 58, 60 may be blacked out to prevent ambient light intrusion.
  • FIG. 5 is another exemplary embodiment of a water clarity monitoring and control system of the present invention for monitoring and controlling water clarity in a treatable body of water. Water clarity monitoring and control system 100 includes a body of water contained in a water containment apparatus 102 (such as, for example, but not limited to, a pool, a spa, a water trough, a water cistern, and a water tank), a light source 104 capable of lighting up the water contained in the water containment apparatus 102, at least one transparent window 106 positioned within the water containment apparatus 102, a light sensitive detection circuit 108 positioned near at least one transparent window 106 in the water containment apparatus 102, and a control unit 110 capable of receiving an output signal from the light sensitive detection circuit 108 for determining a clarity level of the body of water. FIG. 5 also shows another transparent window 107 contained within the water containment apparatus 102 where the Eight source 104 is positioned on the outside of the water containment apparatus 102 near the transparent window 107.
  • System 100 also includes an optional local indicator 112 connected to the control unit 110 and positioned close to the body of water for indicating the clarity level or opacity level of the body of water, an optional remote indicator 114 connected to the control unit 110 and positioned remotely from the body of water for indicating the clarity level or opacity level of the body of water, and an optional generator control system 116 for controlling output to a chemical feeder generator or some other water quality control mechanism that is capable of treating the body of water. The local indicator 112 is particularly useful in the case of a closed spa or a closed cistern where water quality cannot be monitored without opening a lid or manway. The remote indicator 114 is particularly useful when the body of water is far away from the entity or individual that needs to monitor it. The remote indicator 114 can be accomplished via a hardwired remote indicator or via a handheld device using a computer or cellular phone network. The generator control system 116 may operate one or more of the following: filtration pumps, chemical feeders, chlorine or bromine generators, ozone or UV systems, or some other water quality improvement device or devices.
  • FIG. 6 is yet another embodiment of a water clarity monitoring and control system of the present invention for monitoring and controlling water clarity in a treatable body of water having an apparatus for monitoring and controlling water clarity integrated into an existing filtration system for a pool or spa. In this exemplary embodiment of system 200, water from a pool, spa, or other water containment apparatus flow through circulation pump 246 and into a water chamber 222. After passing through the circulation pump 246, the water is directed into the water inlet 224 of the water chamber 222. Light source 232 lights up water contained in the water chamber 222 by shining light through transparent lens or window 228. Light detection circuit 234 detects light within the water through transparent lens or window 230 and sends a signal to control unit 236 for determining a clarity level or opacity level of the body of water.
  • Like system 100 shown in FIG. 5, system 200 also includes an optional local indicator 212 connected to the control unit 236 and positioned close to the pool, spa, or water containment apparatus for indicating the clarity level or opacity level of the body of water, an optional remote indicator 214 connected to the control unit 236 and positioned remotely from pool, spa, or water containment apparatus for indicating the clarity level or opacity level of the body of water, and an optional generator control system 216 for controlling output to a chemical feeder generator or some other water quality control mechanism that is capable of treating the body of water. The local indicator 212 is particularly useful in the case of a closed spa or a closed cistern where water quality cannot be monitored without opening a lid or manway. The remote indicator 214 is particularly useful when the body of water is far away from the entity or individual that needs to monitor it. The remote indicator 214 can be accomplished via a hardwired remote indicator or via a handheld device using a computer or cellular phone network. The generator control system 216 may operate one or more of the following: filtration pumps, chemical feeders, chlorine or bromine generators, ozone or UV systems, or some other water quality improvement device or devices.
  • In FIGS. 5 and 6, solid lines represent water connections and water flow through those connections while dashed lines represent electrical connections. The purpose of system 100 and system 200 is to provide accurate readings and therefore requires that determination or measurement of water clarity or water opacity be performed at times of minimum interference. Items that might interfere with accurate determinations/measurements include operation of pumps or aerators, injection of chemicals, ambient light sources, temperature variations, etc. System 100 and system 200 either do not make determinations/measurements at these times or alternatively compensate for the variations in the determinations/measurements. Advantages of water clarity monitoring and control systems 100 and 200 of the present invention include 1) providing quantitative water quality information at a low price, 2) easy integration into new pool, spa, and water containment apparatus and easy retrofitting into existing pool, spa, and water containment apparatus, 3) ability to remotely indicate water quality information, and 4) ability to easily use in feedback control systems at low cost.
  • A flowchart showing an exemplary method 300 of the present invention for determining and controlling water clarity in a pool or spa is depicted in FIG. 7. In method 300, a water chamber is provided having a water inlet, a water outlet, and a transparent window in step 302. The water from a pool or spa is then directed through the water chamber in step 304 via the water chamber inlet and outlet. Next, in step 306, a light source is employed to light up the water in the water chamber and in step 308 a light sensitive detection circuit is positioned near the transparent window of the water chamber. A control unit is employed to receive a signal from the light sensitive detection unit to determine water clarity in step 310. An evaluation is made in step 312 to determine if the water clarity is at an acceptable level. If the water clarity is not at an acceptable level, a signal is sent to a water treatment system in step 314 to treat the water. Once treated, the water is again directed through the water chamber in step 304 and steps 304 through 312 are continuously repeated to monitor and adjust the water clarity. If the water clarity is at an acceptable level, water continues to be directed through the water chamber in step 304 and steps 304 through 312 are continuously repeated to monitor and adjust the water clarity.
  • The detailed description of exemplary embodiments of the invention herein shows various exemplary embodiments and the best modes, known to the inventor at this time, of the invention. These exemplary embodiments and modes are described in sufficient detail to enable those skilled in the art to practice the invention and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the following disclosure is intended to teach both the implementation of the exemplary embodiments and modes and any equivalent modes or embodiments that are known or obvious to those reasonably skilled in the art. Additionally, all included figures are non-limiting illustrations of the exemplary embodiments and modes, which similarly avail themselves to any equivalent modes or embodiments that are known or obvious to those reasonably skilled in the art.
  • Other combinations and/or modifications of structures, arrangements, applications, proportions, elements, materials, or components used in the practice of the instant invention, in addition to those not specifically recited, can be varied or otherwise particularly adapted to specific environments, manufacturing specifications, design parameters, or other operating requirements without departing from the scope of the instant invention and are intended to be included in this disclosure.

Claims (15)

1. A system for determining and controlling water clarity in a treatable body of water contained in a water containment apparatus comprising:
a body of water contained in a water containment apparatus having a plurality of sides;
a first transparent window positioned within one side of the water containment apparatus and a second transparent window positioned within an opposite side of the water containment apparatus;
a light source capable of lighting up the water contained in the water containment apparatus wherein the light source is positioned outside of the water containment apparatus near the first transparent window;
a light sensitive detection circuit positioned outside of the water containment apparatus near the second transparent window; and
a control unit capable of receiving an output signal from the light sensitive detection circuit for determining a clarity level of the body of water.
2. The system of claim 1 further comprising a local indicator connected to the control unit and positioned close to the body of water for indicating the clarity level of the body of water based on the output signal from the light sensitive detection circuit.
3. The system of claim 1 further comprising a remote indicator connected to the control unit and positioned remotely from the body of water for indicating the clarity level of the body of water based on the output signal from the light sensitive detection circuit.
4. The system of claim 3 wherein the remote indicator is wirelessly connected to the control unit.
5. The system of claim 1 wherein the water containment apparatus comprises at least one of a spa, a pool, a water trough, a water cistern, and a water tank.
6. The system of claim 1 further comprising a water treatment system connected to the body of water and the control unit wherein the control unit is also capable of computing and sending a target signal to the water treatment system to treat the body of water.
7. The system of claim 6 wherein the control unit is capable of continually receiving signals from the light sensitive detection circuit and capable of continuously communicating with the water treatment system to maintain a predetermined level of an active disinfectant within said body of water wherein said predetermined level of active disinfectant is determined based on the clarity level of the body of water.
8. The system of claim 7 wherein the water treatment system comprises a chlorine or bromine generator and the control unit continually communicates with the chlorine or bromine generator to maintain a specific free chlorine level within the body of water where the specific level of free chlorine or bromine is determined based on the clarity level of the body of water.
9. The system of claim 6 wherein the water treatment system comprises at least one of a bromine generator, a chlorine generator, a filtration device, a chemical injection system, a UV treatment system, or another type of water treatment system or device.
10. A method for determining and controlling water clarity in at least one of a spa and pool comprising the steps of:
a) providing a water chamber having opposing open ends and a water inlet and water outlet located between the opposing open ends where the water inlet is located near one of the opposing open ends of the water chamber and the water outlet is located near the other of the opposing open ends of the water chamber, a first transparent lens covering one of the opposing open ends of the water chamber, and a second transparent lens covering the other of the opposing open ends of the water chamber;
b) directing water from said at least one of a spa and pool through the water chamber;
c) employing a light source positioned at one of the opposing open ends of the water chamber located near the water inlet to light up water contained within the water chamber;
d) providing a light sensitive detection circuit positioned at the other of the opposing open ends of the water chamber located near the water outlet; and
e) employing a control unit to receive an output signal from the light sensitive detection circuit to determine a clarity level of the water in the water chamber.
11. The method of claim 10 further comprising the step of f) utilizing the control unit to compute and send a signal to a water treatment system connected to said at least one of a spa and pool to treat water in said at least one of a spa and pool.
12. The method of claim 11 wherein steps b) through f) are continuously repeated to maintain a predetermined level of an active disinfectant within said at least one of a spa and pool wherein said predetermined level of active disinfectant is determined based on the clarity level of the water in the water chamber.
13. The method of claim 10 further comprising the step of providing a local indicator connected to the control unit and positioned close to said at least one of a spa and pool for indicating the clarity of the water within said at least one of a spa and pool.
14. The method of claim 10 further comprising the step of providing a remote indicator connected to the control unit and positioned remotely from said at least one of a spa and pool for indicating the clarity of the water within said at least one of a spa and pool.
15. The method of claim 11 wherein the step of utilizing the control unit to compute a signal to send to a water treatment system comprises the step of utilizing the control unit to compute and send a signal to at least one of a bromine generator, a chlorine generator, a filtration device, a chemical injection system, and a dissolved air floatation unit.
US16/912,927 2013-05-21 2020-06-26 System and apparatus for determining and controlling water clarity Abandoned US20200361786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/912,927 US20200361786A1 (en) 2013-05-21 2020-06-26 System and apparatus for determining and controlling water clarity

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361825965P 2013-05-21 2013-05-21
US201361885353P 2013-10-01 2013-10-01
US201361920421P 2013-12-23 2013-12-23
US14/283,868 US10710902B2 (en) 2013-05-21 2014-05-21 System and apparatus for determining and controlling water clarity
US16/912,927 US20200361786A1 (en) 2013-05-21 2020-06-26 System and apparatus for determining and controlling water clarity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/283,868 Continuation US10710902B2 (en) 2013-05-21 2014-05-21 System and apparatus for determining and controlling water clarity

Publications (1)

Publication Number Publication Date
US20200361786A1 true US20200361786A1 (en) 2020-11-19

Family

ID=51934123

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/283,868 Active 2037-01-10 US10710902B2 (en) 2013-05-21 2014-05-21 System and apparatus for determining and controlling water clarity
US16/912,927 Abandoned US20200361786A1 (en) 2013-05-21 2020-06-26 System and apparatus for determining and controlling water clarity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/283,868 Active 2037-01-10 US10710902B2 (en) 2013-05-21 2014-05-21 System and apparatus for determining and controlling water clarity

Country Status (6)

Country Link
US (2) US10710902B2 (en)
AU (1) AU2014268558A1 (en)
CA (1) CA2913158A1 (en)
DE (1) DE112014002531T5 (en)
GB (1) GB2529353A (en)
WO (1) WO2014190089A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170057842A1 (en) * 2015-09-01 2017-03-02 Sensor Electronic Technology, Inc. Fluid Disinfection Using Ultraviolet Light
US10942493B2 (en) 2016-05-16 2021-03-09 Lowell Ball Fluid monitoring system and method
WO2019080126A1 (en) * 2017-10-27 2019-05-02 深圳前海小有技术有限公司 Sterilization module and sterilization unit
CN110542654A (en) * 2019-09-10 2019-12-06 武汉永清环保科技工程有限公司 Device for automatically measuring water transparency
US12006724B2 (en) 2022-10-13 2024-06-11 Zachary W. Russell Spa tub cover and method of sterilizing water within spa tub
CN116559122B (en) * 2023-06-01 2024-03-29 上海勘测设计研究院有限公司 Test device and method for rapidly judging water transparency influence factors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725148A (en) * 1984-06-07 1988-02-16 Komatsugawa Chemical Engineering Co., Ltd. Turbidimeter employing a semiconductor laser diode and a photodiode
US4783599A (en) * 1987-02-10 1988-11-08 High Yield Technology Particle detector for flowing liquids with the ability to distinguish bubbles via photodiodes disposed 180° apart
US20060049115A1 (en) * 2004-09-08 2006-03-09 Paul Birkbeck Recreational spas, bromine generators for water treatment, and related methods
US20100206787A1 (en) * 2007-09-17 2010-08-19 Ytzhak Rozenberg Control of oxidation processes in ultraviolet liquid treatment systems
US20110253638A1 (en) * 2010-06-24 2011-10-20 Breakpoint Commercial Pool Systems Inc. Systems and methods for reducing electric power by optimizing water turbidity, suspended solids, circulation and filtration in pools, spas, water features, and other closed bodies of water

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2251149A (en) * 1941-07-29 Treating liquids
US2204225A (en) * 1936-06-27 1940-06-11 Wallace & Tiernan Inc Method of and means for purifying water
US4263511A (en) 1978-12-29 1981-04-21 University Of Miami Turbidity meter
GB9005021D0 (en) 1990-03-06 1990-05-02 Alfa Laval Sharples Ltd Turbidity measurement
US5241368A (en) 1991-01-07 1993-08-31 Custom Sample Systems, Inc. Fiber-optic probe for absorbance and turbidity measurement
US5489977A (en) 1993-08-11 1996-02-06 Texaco Inc. Photomeric means for monitoring solids and fluorescent material in waste water using a falling stream water sampler
US6059192A (en) * 1996-04-04 2000-05-09 Zosimadis; Peter Wireless temperature monitoring system
US6270680B1 (en) 1997-11-07 2001-08-07 Bioquest Amperometric sensor probe for an automatic halogen control system
US5972211A (en) * 1998-03-19 1999-10-26 Jones; Terry L. Water filtration system
EP1070953A1 (en) 1999-07-21 2001-01-24 Societe D'etude Et De Realisation D'equipements Speciaux - S.E.R.E.S. Method and device for optically measuring liquid transparency
WO2001029541A1 (en) * 1999-10-18 2001-04-26 Siemens Plc Device for measuring water quality
US6836332B2 (en) 2001-09-25 2004-12-28 Tennessee Scientific, Inc. Instrument and method for testing fluid characteristics
US20050190370A1 (en) * 2004-02-26 2005-09-01 Rosemount Analytical Inc. Turbidity sensing system with reduced temperature effects
JP2006218378A (en) 2005-02-09 2006-08-24 Fuji Clean Kogyo Kk Water treatment device and water quality control method
US7491366B2 (en) 2005-03-03 2009-02-17 Ecolab Inc. Portable multi-channel device for optically testing a liquid sample
US7400407B2 (en) 2005-08-31 2008-07-15 Avago Technologies Ecbu Ip Pte Ltd Meter for measuring the turbidity of fluids using reflected light
JP2007130583A (en) 2005-11-10 2007-05-31 Fuji Clean Kogyo Kk Apparatus and method for treating water
US7671994B2 (en) 2007-05-14 2010-03-02 Watkins Manufacturing Corporation Method for measuring chemical levels using pH shift
US8212222B2 (en) 2008-02-28 2012-07-03 Watkins Manufacturing Corporation Spa chlorine measurement via temperature shift UV spectrometry
DE102008018592A1 (en) 2008-04-11 2009-10-15 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Method and device for turbidity measurement
US8488122B2 (en) 2010-05-05 2013-07-16 Ysi Incorporated Turbidity sensors and probes
AU2011284790A1 (en) * 2010-07-29 2013-03-14 Bpv Holdings Pty Ltd. A method and a system for managing a reservoir of water requiring recirculation at time intervals
DE102010064248A1 (en) 2010-12-28 2012-06-28 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Method for determining a measured variable of a medium, in particular for turbidity measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725148A (en) * 1984-06-07 1988-02-16 Komatsugawa Chemical Engineering Co., Ltd. Turbidimeter employing a semiconductor laser diode and a photodiode
US4783599A (en) * 1987-02-10 1988-11-08 High Yield Technology Particle detector for flowing liquids with the ability to distinguish bubbles via photodiodes disposed 180° apart
US20060049115A1 (en) * 2004-09-08 2006-03-09 Paul Birkbeck Recreational spas, bromine generators for water treatment, and related methods
US20100206787A1 (en) * 2007-09-17 2010-08-19 Ytzhak Rozenberg Control of oxidation processes in ultraviolet liquid treatment systems
US20110253638A1 (en) * 2010-06-24 2011-10-20 Breakpoint Commercial Pool Systems Inc. Systems and methods for reducing electric power by optimizing water turbidity, suspended solids, circulation and filtration in pools, spas, water features, and other closed bodies of water

Also Published As

Publication number Publication date
CA2913158A1 (en) 2014-11-27
GB201520769D0 (en) 2016-01-06
AU2014268558A1 (en) 2015-12-17
WO2014190089A1 (en) 2014-11-27
GB2529353A (en) 2016-02-17
DE112014002531T5 (en) 2016-03-17
US20140346122A1 (en) 2014-11-27
US10710902B2 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
US20200361786A1 (en) System and apparatus for determining and controlling water clarity
US20210179454A1 (en) Systems and Methods for Sanitizing Pool and Spa Water
US20210372154A1 (en) Systems and Methods for Controlling Chlorinators
US9776888B1 (en) Water monitoring device and method
US8266736B2 (en) Drop-in chlorinator for portable spas
US20130126440A1 (en) Method and system for managing a reservoir of water requiring recirculation at time intervals
US20060027463A1 (en) Water treatment apparatus utilizing ozonation and electrolytic chlorination
ES2890448T3 (en) Systems and methods for interrelated control of chlorinators and pumps
US10801225B1 (en) Heat pump or water pump for a swimming pool having an integral water purifier
CA2767748C (en) Drop-in chlorinator for portable spas
KR101393225B1 (en) The aquarium system with remote control and alarm
US11352266B2 (en) Method and system for controlling disinfection in recirculating water systems
JPH07190989A (en) Electrolytic water circulation characteristic detector
US20240345023A1 (en) Aquatic total alkalinity measurement system and method
TWM544083U (en) Cloud aquaculture ecology monitoring device
TWM515277U (en) Remote monitoring system of aquarium
IL190379A (en) Method and system for providing chlorine to a pool
JPH1133532A (en) Water quality-keeping apparatus
KR20170011790A (en) Clorine generator and management system using the same
BR112019013504A2 (en) A SYSTEM AND METHOD FOR COMPREHENSIVE MONITORING, ANALYSIS AND MAINTENANCE OF WATER AND EQUIPMENT IN SWIMMING POOLS
JPH11267650A (en) Water quality maintaining device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION