US20190282787A1 - Joining dissimilar metals for guidewire applications - Google Patents

Joining dissimilar metals for guidewire applications Download PDF

Info

Publication number
US20190282787A1
US20190282787A1 US16/354,295 US201916354295A US2019282787A1 US 20190282787 A1 US20190282787 A1 US 20190282787A1 US 201916354295 A US201916354295 A US 201916354295A US 2019282787 A1 US2019282787 A1 US 2019282787A1
Authority
US
United States
Prior art keywords
section
wire
joining
alloy
medical guidewire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/354,295
Inventor
Jack Dant
Mark Erie
David Johnson
Trent Birkholz
Eric Lundequam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Medical Components LLC
Original Assignee
Heraeus Medical Components LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Medical Components LLC filed Critical Heraeus Medical Components LLC
Priority to US16/354,295 priority Critical patent/US20190282787A1/en
Assigned to HERAEUS MEDICAL COMPONENTS LLC reassignment HERAEUS MEDICAL COMPONENTS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Birkholz, Trent, DANT, JACK, Erie, Mark, JOHNSON, DAVID, Lundequam, Eric
Publication of US20190282787A1 publication Critical patent/US20190282787A1/en
Priority to US18/234,019 priority patent/US20230381461A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09108Methods for making a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09133Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque
    • A61M2025/09141Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque made of shape memory alloys which take a particular shape at a certain temperature

Definitions

  • One aspect relates to joined dissimilar materials.
  • the joined materials form a guide wire configured for intravascular use.
  • Intravascular guidewires are used in conjunction with intravascular devices such as catheters to facilitate navigation through the vasculature of a patient.
  • Such guidewires are typically very small in diameter.
  • a guidewire can have multiple sections that are joined together in order to form a single wire. Joining sections of such a wire having a small diameter can be challenging, particularly where the sections being joined are configured of different materials. Because there are limitations to many present approaches, there is a need for the present invention.
  • FIG. 1 illustrates a sectional view of joined dissimilar materials in accordance with one embodiment.
  • FIG. 2A illustrates a sectional view of joined dissimilar materials in accordance with one embodiment.
  • FIG. 2B illustrates an enlarged view of the section from FIG. 2A in accordance with one embodiment.
  • FIG. 3 illustrates a sectional view of joined dissimilar materials in accordance with one embodiment.
  • FIG. 1 illustrates a guidewire 10 in accordance with one embodiment.
  • guidewire 10 has a proximal section 12 , a distal section 14 and a joining section 16 .
  • proximal, distal and joining sections 12 and 14 are each configured of separate wire segments that are joined together at joining section 16 .
  • proximal and distal sections 12 and 14 are adapted with differing diameter regions, are adapted and configured to obtain a transition in stiffness, and provide a desired flexibility characteristic.
  • guidewire 10 is illustrated with a truncation in its ends, as its length may vary in accordance with particular applications.
  • the proximal section 12 and the distal section 14 can generically refer to any two adjacent wire sections along any portion of guidewire 10 .
  • the wire segments can be applicable to almost any intravascular device.
  • they are applicable to hypotube shafts for drive shafts for intravascular rotational devices (atherectomy catheters, IVUS catheters, etc.).
  • Such devices may be useful in clinical applications including, but not limited to, interventional oncology, electrophysiology, peripheral, cardiac, urology, neurology, and gastroenterology.
  • proximal section 12 is configured of a relatively stiff material, such as stainless steel wire, CoCr alloy or other stiff alloy. In one embodiment, proximal section 12 has a material selected to be relatively stiff for pushability and torqueability.
  • distal section 14 is configured of a relatively flexible material, such as a super elastic or linear elastic alloy, wire, such as linear elastic nickel-titanium (NiTi), nickel-titanium alloy, nickel-chromium alloy, nickel-chromium-iron alloy, nickel-titanium-cobalt alloy, or other suitable material, or alternatively, a polymer material, such as a high performance polymer.
  • the material used to configure distal section 14 can be selected to be relatively flexible for trackability and kink resistance.
  • proximal section 12 and the distal section 14 are separate pieces that are joined together with joining section 16 .
  • joining section 16 is a hypotube configured to receive proximal section 12 and the distal section 14 at each of its ends to forms joints 18 .
  • proximal section 12 has a taper at its distal end that is configured to fit into joining section 16 at joint 18 .
  • distal section 14 has a taper at its proximal end that is configured to fit into joining section 16 at joint 18 .
  • an adhesive such as UV Cure, heat cure, Cyanoacrylate, etc.
  • an adhesive is placed in or adjacent joining section 16 before proximal section 12 and distal section 14 are inserted in order to secure them at joints 18 .
  • proximal section 12 and distal section 14 are secured in joining section 16 with solder, weld or other similar securing method(s).
  • joining section 16 is a Nitinol alloy hypotube. In other embodiments, similar alloy materials, or materials that are relatively compatible with the materials used for proximal section 12 and distal section 14 can be used for joining section 16 .
  • the adjoining tapered sections of proximal section 12 and distal section 14 may or may not meet or overlap each other within joining section 16 .
  • average results for tensile-to-fail testing for 0.014 guidewires ranges from 6.9 to 9.1 lbf, depending upon configuration.
  • guidewire 10 is configured for intravascular use and can be used in conjunction with intravascular devices such as catheters to facilitate navigation through the vasculature of a patient.
  • Guidewire 10 can embody a range of dimensions that are considered as appropriate for various embodiments.
  • its outer diameter G D ranges from about 0.005 to about 0.04 inches.
  • Guidewire 10 is configured in a variety of lengths, and in one embodiment, its overall length G L ranges from about 6.0 to about 140.0 inches.
  • the length of the distal taper DT L on distal section 14 ranges from 0.5 to 12.0 inches.
  • the distal length D L of the distal section 14 is from 0.25 to 20.0 inches.
  • the length JS L of joining section 16 is from 0.5 to 4.0 inches, while the diameter JS D of joining section 16 is from 0.005 to 0.04 inches.
  • FIG. 2A illustrates a guidewire 20 in accordance with one embodiment.
  • guidewire 20 has a proximal section 22 , a distal section 24 and a joining section 26 .
  • proximal, distal and joining sections 22 and 24 are each configured of separate wire segments that are joined together at joining section 26 .
  • proximal and distal sections 22 and 24 are adapted with differing diameter regions, are adapted and configured to obtain a transition in stiffness, and provide a desired flexibility characteristic.
  • guidewire 20 is illustrated with a truncation in its ends, as its length may vary in accordance with particular applications.
  • the proximal section 22 and the distal section 24 can generically refer to any two adjacent wire sections along any portion of guidewire 20 .
  • the wire segments can be applicable to almost any intravascular device.
  • they are applicable to hypotube shafts for drive shafts for intravascular rotational devices (atherectomy catheters, IVUS catheters, etc.).
  • Such devices may be useful in clinical applications including, but not limited to, interventional oncology, electrophysiology, peripheral, cardiac, urology, neurology, and gastroenterology.
  • proximal section 22 is configured of a relatively stiff material, such as stainless steel wire, CoCr alloy or other stiff alloy. In one embodiment, proximal section 22 has a material selected to be relatively stiff for pushability and torqueability.
  • distal section 24 is configured of a relatively flexible material, such as a super elastic or linear elastic alloy, wire, such as linear elastic nickel-titanium (NiTi), nickel-titanium alloy, nickel-chromium alloy, nickel-chromium-iron alloy, nickel-titanium-cobalt alloy, or other suitable material, or alternatively, a polymer material, such as a high performance polymer.
  • a relatively flexible material such as a super elastic or linear elastic alloy, wire, such as linear elastic nickel-titanium (NiTi), nickel-titanium alloy, nickel-chromium alloy, nickel-chromium-iron alloy, nickel-titanium-cobalt alloy, or other suitable material, or alternatively, a polymer material, such as a high performance polymer.
  • the material used to configure distal section 24 can be selected to be relatively flexible for trackability.
  • proximal section 22 and the distal section 24 are separate pieces that are joined together with joining section 26 .
  • joining section 26 is a hypotube configured to receive proximal section 22 and the distal section 24 at each of its ends to forms joints 28 .
  • proximal section 22 has a taper at its distal end that is configured to fit into joining section 26 at joint 28 .
  • distal section 24 has a taper at its proximal end that is configured to fit into joining section 26 at joint 28 .
  • proximal section 22 and distal section 24 are coupled with joining section 26 via a cold press process, whereby joining section 26 is forcibly assembled to the two other sections.
  • joining section 26 is thermally cooled below 32° F., followed by the immediate, forceful insertion of proximal and distal sections 22 , 24 into the joining section 26 , such that a flaring deformation occurs on both ends of joining section 26 .
  • all the joined sections are warmed to room temperature, or about 70° F., at which point the joining section 26 attempts to return to its pre-formed configuration, thereby creating a compressive force on the proximal and distal sections 22 , 24 .
  • FIG. 2B illustrates further detail of detail area A in FIG. 2A , illustrating a flare 29 in joining section 26 at joint 28 that results from the cold press process. This compressive force holds the components such that the assembly resists disassociation when acted upon by opposing tensile forces along the longitudinal axis.
  • joining section 26 is a Nitinol alloy hypotube. In other embodiments, similar alloy materials can be used for joining section 26 .
  • guidewire 20 is configured for intravascular use and can be used in conjunction with intravascular devices such as catheters to facilitate navigation through the vasculature of a patient.
  • Guidewire 20 can embody a range of dimensions that are considered as appropriate for various embodiments.
  • its outer diameter G D ranges from about 0.005 to about 0.04 inches.
  • Guidewire 20 is configured in a variety of lengths, and in one embodiment, its overall length G L ranges from about 6.0 to about 140.0 inches.
  • the length of the distal taper DT L on distal section 24 ranges from 0.5 to 12.0 inches. In one embodiment, outside the distal taper, the distal length D L of the distal section 24 is from 0.25 to 20.0 inches.
  • the length JS L of joining section 26 is from 0.5 to 4.0 inches, while the diameter JS D of joining section 26 is from 0.005 to 0.04 inches. In one embodiment, the length DT L of the distal taper of the distal section 24 extending into joining section 26 , is from 0.25 to 1.5 inches.
  • FIG. 3 illustrates a guidewire 30 in accordance with one embodiment.
  • guidewire 30 has a proximal section 32 , a distal section 34 and a joining section 36 .
  • proximal, distal and joining sections 32 and 34 are each configured of separate wire segments that are joined together at joining section 36 .
  • proximal and distal sections 32 and 34 are adapted with differing diameter regions, are adapted and configured to obtain a transition in stiffness, and provide a desired flexibility characteristic.
  • guidewire 30 is illustrated with a truncation in its ends, as its length may vary in accordance with particular applications.
  • the proximal section 32 and the distal section 34 can generically refer to any two adjacent wire sections along any portion of guidewire 30 .
  • the wire segments can be applicable to almost any intravascular device.
  • they are applicable to hypotube shafts for drive shafts for intravascular rotational devices (atherectomy catheters, IVUS catheters, etc.).
  • Such devices may be useful in clinical applications including, but not limited to, interventional oncology, electrophysiology, peripheral, cardiac, urology, neurology, and gastroenterology.
  • proximal section 32 is configured of a relatively stiff material, such as stainless steel wire, CoCr alloy or other stiff alloy. In one embodiment, proximal section 32 has a material selected to be relatively stiff for pushability and torqueability.
  • distal section 34 is configured of a relatively flexible material, such as a super elastic or linear elastic alloy, wire, such as linear elastic nickel-titanium (NiTi), nickel-titanium alloy, nickel-chromium alloy, nickel-chromium-iron alloy, nickel-titanium-cobalt alloy, or other suitable material, or alternatively, a polymer material, such as a high performance polymer.
  • a relatively flexible material such as a super elastic or linear elastic alloy, wire, such as linear elastic nickel-titanium (NiTi), nickel-titanium alloy, nickel-chromium alloy, nickel-chromium-iron alloy, nickel-titanium-cobalt alloy, or other suitable material, or alternatively, a polymer material, such as a high performance polymer.
  • the material used to configure distal section 34 can be selected to be relatively flexible for trackability.
  • proximal section 32 and the distal section 34 are separate pieces that are joined together at joining section 36 .
  • proximal section 32 has a flat grind taper at its distal end
  • distal section 34 has a flat grind taper at its proximal end that is complementary or a mirror image of the flat grind on proximal section 32 .
  • joining section 36 “scarf joint” with the two tapered portions joined together.
  • the two surfaces of the taper joint have a diagonally cut or ground mating surface.
  • the tapers are configured such that, when joined at joining section 36 , the outer diameter of guidewire 30 is constant from both sides of joining section 36 , as well as throughout joining section 36 .
  • the taper joint at joining section 36 is a flat diagonal line, while in other embodiments, it has a curved or parabolic shape.
  • the tapers can be achieved by grinding, machining, stamping, etc., and result in a configuration that, when joined to the mating component, results in an approximate restoration of the original component diameter.
  • the tapered portions of proximal section 32 and distal section 34 are coupled at joining section 36 using a variety of methods.
  • the mating surfaces can be secured together using solder, adhesive (UV Cure, heat cure, Cyanoacrylate, etc.), welding, etc., such that a secure, flexible bond is created between the two mating components.
  • the resulting assembly may be further ground, machined, etc. to create a smooth outer diameter, covered (with a polymer, heat shrink, coil, braid or other component) to further secure the joint and/or modify the assembly handling characteristics.
  • Average results for tensile-to-fail testing for 0.014 guidewires with this type of connection is 7.3 lbf.
  • FIG. 3 also includes a range of dimensions that could be considered as appropriate for the given features in some embodiments.
  • guidewire 30 is configured for intravascular use and can be used in conjunction with intravascular devices such as catheters to facilitate navigation through the vasculature of a patient.
  • Guidewire 30 can embody a range of dimensions that are considered as appropriate for various embodiments.
  • its outer diameter G D ranges from about 0.005 to about 0.04 inches.
  • Guidewire 30 is configured in a variety of lengths, and in one embodiment, its overall length G L ranges from about 6.0 to about 140.0 inches.
  • the length of the distal taper DT L on distal section 34 ranges from 0.5 to 12.0 inches.
  • the distal length D L of the distal section 34 is from 0.25 to 20.0 inches.
  • the length JS L of joining section 36 is from 0.25 to 1.5 inches.
  • dissimilar metals are joined together for use in guidewire applications.
  • the joining of a proximal component of relatively high stiffness (stainless steel, cobalt chromium, etc.) with a distal section that is relatively more flexible and resists kinking, manufactured from a material with superelastic properties (Nitinol, NiTiCo, etc.), provides useful characteristics for many guidewire applications.
  • one or more coils may be added to the distal end of the distal sections, which can be tapered at the distal end to receive such coil(s).
  • any of the above-described embodiments can partially or fully be covered by a polymer jacket.
  • portions of any of the guidewires that have superelastic properties e.g., Nitinol, NiTiCo, etc., can be annealed or semi-annealed, so that those portions can have a bend or kink introduced, which may be favorable feature in some applications.
  • the described joining structures and methods can be employed mid-shaft on a guidewire, more proximally or more distally as dictated by the specific requirements of the applications. Additionally, the connections may occur on a portion of the guidewire that has a shaft diameter that is reduced from the primary shaft diameter (e.g., a step-down portion of the distal tip) or on a tapered section of the guidewire.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

One aspect is a medical guidewire having a first wire section of a first material and a second wire section having a second material different from the first material. A joining section is adjacent both the first and second wire sections, and the joining section has a feature configured hold the first wire section to the second wire section.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This Non-Provisional Patent Application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 62/644,085, filed Mar. 16, 2018, ENTITLED “JOINING DISSIMILAR METALS FOR GUIDEWIRE APPLICATIONS,” which is incorporated herein by reference.
  • TECHNICAL FIELD
  • One aspect relates to joined dissimilar materials. In one embodiment, the joined materials form a guide wire configured for intravascular use.
  • BACKGROUND
  • Intravascular guidewires are used in conjunction with intravascular devices such as catheters to facilitate navigation through the vasculature of a patient. Such guidewires are typically very small in diameter. In some applications, a guidewire can have multiple sections that are joined together in order to form a single wire. Joining sections of such a wire having a small diameter can be challenging, particularly where the sections being joined are configured of different materials. Because there are limitations to many present approaches, there is a need for the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a sectional view of joined dissimilar materials in accordance with one embodiment.
  • FIG. 2A illustrates a sectional view of joined dissimilar materials in accordance with one embodiment.
  • FIG. 2B illustrates an enlarged view of the section from FIG. 2A in accordance with one embodiment.
  • FIG. 3 illustrates a sectional view of joined dissimilar materials in accordance with one embodiment.
  • DETAILED DESCRIPTION
  • In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
  • FIG. 1 illustrates a guidewire 10 in accordance with one embodiment. In one embodiment, guidewire 10 has a proximal section 12, a distal section 14 and a joining section 16. In one case, proximal, distal and joining sections 12 and 14 are each configured of separate wire segments that are joined together at joining section 16. In some embodiments, proximal and distal sections 12 and 14 are adapted with differing diameter regions, are adapted and configured to obtain a transition in stiffness, and provide a desired flexibility characteristic. In FIG. 1, guidewire 10 is illustrated with a truncation in its ends, as its length may vary in accordance with particular applications.
  • As used herein, the proximal section 12 and the distal section 14 can generically refer to any two adjacent wire sections along any portion of guidewire 10. Furthermore, although discussed with specific reference to guidewires, the wire segments can be applicable to almost any intravascular device. For example, they are applicable to hypotube shafts for drive shafts for intravascular rotational devices (atherectomy catheters, IVUS catheters, etc.). Such devices may be useful in clinical applications including, but not limited to, interventional oncology, electrophysiology, peripheral, cardiac, urology, neurology, and gastroenterology.
  • In one embodiment, proximal section 12 is configured of a relatively stiff material, such as stainless steel wire, CoCr alloy or other stiff alloy. In one embodiment, proximal section 12 has a material selected to be relatively stiff for pushability and torqueability.
  • In some embodiments, distal section 14 is configured of a relatively flexible material, such as a super elastic or linear elastic alloy, wire, such as linear elastic nickel-titanium (NiTi), nickel-titanium alloy, nickel-chromium alloy, nickel-chromium-iron alloy, nickel-titanium-cobalt alloy, or other suitable material, or alternatively, a polymer material, such as a high performance polymer. In one embodiment, the material used to configure distal section 14 can be selected to be relatively flexible for trackability and kink resistance.
  • In one embodiment, proximal section 12 and the distal section 14 are separate pieces that are joined together with joining section 16. In one embodiment, joining section 16 is a hypotube configured to receive proximal section 12 and the distal section 14 at each of its ends to forms joints 18. In one embodiment, proximal section 12 has a taper at its distal end that is configured to fit into joining section 16 at joint 18. Similarly, distal section 14 has a taper at its proximal end that is configured to fit into joining section 16 at joint 18.
  • In one embodiment, an adhesive, such as UV Cure, heat cure, Cyanoacrylate, etc., is placed in or adjacent joining section 16 before proximal section 12 and distal section 14 are inserted in order to secure them at joints 18. In one embodiment, proximal section 12 and distal section 14 are secured in joining section 16 with solder, weld or other similar securing method(s). In one embodiment, joining section 16 is a Nitinol alloy hypotube. In other embodiments, similar alloy materials, or materials that are relatively compatible with the materials used for proximal section 12 and distal section 14 can be used for joining section 16.
  • In various embodiments, the adjoining tapered sections of proximal section 12 and distal section 14 may or may not meet or overlap each other within joining section 16. In one embodiment, average results for tensile-to-fail testing for 0.014 guidewires ranges from 6.9 to 9.1 lbf, depending upon configuration.
  • In one embodiment, guidewire 10 is configured for intravascular use and can be used in conjunction with intravascular devices such as catheters to facilitate navigation through the vasculature of a patient. Guidewire 10 can embody a range of dimensions that are considered as appropriate for various embodiments. In one embodiment, its outer diameter GD ranges from about 0.005 to about 0.04 inches. Guidewire 10 is configured in a variety of lengths, and in one embodiment, its overall length GL ranges from about 6.0 to about 140.0 inches. In one embodiment, the length of the distal taper DTL on distal section 14 ranges from 0.5 to 12.0 inches. In one embodiment, outside the distal taper, the distal length DL of the distal section 14 is from 0.25 to 20.0 inches. In one embodiment, the length JSL of joining section 16 is from 0.5 to 4.0 inches, while the diameter JSD of joining section 16 is from 0.005 to 0.04 inches.
  • FIG. 2A illustrates a guidewire 20 in accordance with one embodiment. In one embodiment, guidewire 20 has a proximal section 22, a distal section 24 and a joining section 26. In one case, proximal, distal and joining sections 22 and 24 are each configured of separate wire segments that are joined together at joining section 26. In some embodiments, proximal and distal sections 22 and 24 are adapted with differing diameter regions, are adapted and configured to obtain a transition in stiffness, and provide a desired flexibility characteristic. In FIG. 2A, guidewire 20 is illustrated with a truncation in its ends, as its length may vary in accordance with particular applications.
  • As used herein, the proximal section 22 and the distal section 24 can generically refer to any two adjacent wire sections along any portion of guidewire 20. Furthermore, although discussed with specific reference to guidewires, the wire segments can be applicable to almost any intravascular device. For example, they are applicable to hypotube shafts for drive shafts for intravascular rotational devices (atherectomy catheters, IVUS catheters, etc.). Such devices may be useful in clinical applications including, but not limited to, interventional oncology, electrophysiology, peripheral, cardiac, urology, neurology, and gastroenterology.
  • In one embodiment, proximal section 22 is configured of a relatively stiff material, such as stainless steel wire, CoCr alloy or other stiff alloy. In one embodiment, proximal section 22 has a material selected to be relatively stiff for pushability and torqueability.
  • In some embodiments, distal section 24 is configured of a relatively flexible material, such as a super elastic or linear elastic alloy, wire, such as linear elastic nickel-titanium (NiTi), nickel-titanium alloy, nickel-chromium alloy, nickel-chromium-iron alloy, nickel-titanium-cobalt alloy, or other suitable material, or alternatively, a polymer material, such as a high performance polymer. In one embodiment, the material used to configure distal section 24 can be selected to be relatively flexible for trackability.
  • In one embodiment, proximal section 22 and the distal section 24 are separate pieces that are joined together with joining section 26. In one embodiment, joining section 26 is a hypotube configured to receive proximal section 22 and the distal section 24 at each of its ends to forms joints 28. In one embodiment, proximal section 22 has a taper at its distal end that is configured to fit into joining section 26 at joint 28. Similarly, distal section 24 has a taper at its proximal end that is configured to fit into joining section 26 at joint 28.
  • In one embodiment, proximal section 22 and distal section 24 are coupled with joining section 26 via a cold press process, whereby joining section 26 is forcibly assembled to the two other sections. In one embodiment, before proximal section 22 and distal section 24 are inserted, joining section 26 is thermally cooled below 32° F., followed by the immediate, forceful insertion of proximal and distal sections 22, 24 into the joining section 26, such that a flaring deformation occurs on both ends of joining section 26. Next, all the joined sections are warmed to room temperature, or about 70° F., at which point the joining section 26 attempts to return to its pre-formed configuration, thereby creating a compressive force on the proximal and distal sections 22, 24.
  • FIG. 2B, illustrates further detail of detail area A in FIG. 2A, illustrating a flare 29 in joining section 26 at joint 28 that results from the cold press process. This compressive force holds the components such that the assembly resists disassociation when acted upon by opposing tensile forces along the longitudinal axis.
  • In various embodiments, the adjoining tapered sections of proximal section 22 and distal section 24 may or may not meet or overlap each other within joining section 26. In one embodiment, average results for tensile-to-fail testing for 0.018 inch guidewires incorporating this type of connection is 3.1 lbf. In one embodiment, joining section 26 is a Nitinol alloy hypotube. In other embodiments, similar alloy materials can be used for joining section 26.
  • In one embodiment, guidewire 20 is configured for intravascular use and can be used in conjunction with intravascular devices such as catheters to facilitate navigation through the vasculature of a patient. Guidewire 20 can embody a range of dimensions that are considered as appropriate for various embodiments. In one embodiment, its outer diameter GD ranges from about 0.005 to about 0.04 inches. Guidewire 20 is configured in a variety of lengths, and in one embodiment, its overall length GL ranges from about 6.0 to about 140.0 inches. In one embodiment, the length of the distal taper DTL on distal section 24 ranges from 0.5 to 12.0 inches. In one embodiment, outside the distal taper, the distal length DL of the distal section 24 is from 0.25 to 20.0 inches. In one embodiment, the length JSL of joining section 26 is from 0.5 to 4.0 inches, while the diameter JSD of joining section 26 is from 0.005 to 0.04 inches. In one embodiment, the length DTL of the distal taper of the distal section 24 extending into joining section 26, is from 0.25 to 1.5 inches.
  • FIG. 3 illustrates a guidewire 30 in accordance with one embodiment. In one embodiment, guidewire 30 has a proximal section 32, a distal section 34 and a joining section 36. In one case, proximal, distal and joining sections 32 and 34 are each configured of separate wire segments that are joined together at joining section 36. In some embodiments, proximal and distal sections 32 and 34 are adapted with differing diameter regions, are adapted and configured to obtain a transition in stiffness, and provide a desired flexibility characteristic. In FIG. 3, guidewire 30 is illustrated with a truncation in its ends, as its length may vary in accordance with particular applications.
  • As used herein, the proximal section 32 and the distal section 34 can generically refer to any two adjacent wire sections along any portion of guidewire 30. Furthermore, although discussed with specific reference to guidewires, the wire segments can be applicable to almost any intravascular device. For example, they are applicable to hypotube shafts for drive shafts for intravascular rotational devices (atherectomy catheters, IVUS catheters, etc.). Such devices may be useful in clinical applications including, but not limited to, interventional oncology, electrophysiology, peripheral, cardiac, urology, neurology, and gastroenterology.
  • In one embodiment, proximal section 32 is configured of a relatively stiff material, such as stainless steel wire, CoCr alloy or other stiff alloy. In one embodiment, proximal section 32 has a material selected to be relatively stiff for pushability and torqueability.
  • In some embodiments, distal section 34 is configured of a relatively flexible material, such as a super elastic or linear elastic alloy, wire, such as linear elastic nickel-titanium (NiTi), nickel-titanium alloy, nickel-chromium alloy, nickel-chromium-iron alloy, nickel-titanium-cobalt alloy, or other suitable material, or alternatively, a polymer material, such as a high performance polymer. In one embodiment, the material used to configure distal section 34 can be selected to be relatively flexible for trackability.
  • In one embodiment, proximal section 32 and the distal section 34 are separate pieces that are joined together at joining section 36. In one embodiment, proximal section 32 has a flat grind taper at its distal end, while distal section 34 has a flat grind taper at its proximal end that is complementary or a mirror image of the flat grind on proximal section 32. As such, joining section 36 “scarf joint” with the two tapered portions joined together. In one embodiment, the two surfaces of the taper joint have a diagonally cut or ground mating surface. In one embodiment, the tapers are configured such that, when joined at joining section 36, the outer diameter of guidewire 30 is constant from both sides of joining section 36, as well as throughout joining section 36. In one embodiment, the taper joint at joining section 36 is a flat diagonal line, while in other embodiments, it has a curved or parabolic shape. In various embodiments, the tapers can be achieved by grinding, machining, stamping, etc., and result in a configuration that, when joined to the mating component, results in an approximate restoration of the original component diameter.
  • In one embodiment, the tapered portions of proximal section 32 and distal section 34 are coupled at joining section 36 using a variety of methods. The mating surfaces can be secured together using solder, adhesive (UV Cure, heat cure, Cyanoacrylate, etc.), welding, etc., such that a secure, flexible bond is created between the two mating components. Following the assembly, the resulting assembly may be further ground, machined, etc. to create a smooth outer diameter, covered (with a polymer, heat shrink, coil, braid or other component) to further secure the joint and/or modify the assembly handling characteristics. Average results for tensile-to-fail testing for 0.014 guidewires with this type of connection is 7.3 lbf. FIG. 3 also includes a range of dimensions that could be considered as appropriate for the given features in some embodiments.
  • In one embodiment, guidewire 30 is configured for intravascular use and can be used in conjunction with intravascular devices such as catheters to facilitate navigation through the vasculature of a patient. Guidewire 30 can embody a range of dimensions that are considered as appropriate for various embodiments. In one embodiment, its outer diameter GD ranges from about 0.005 to about 0.04 inches. Guidewire 30 is configured in a variety of lengths, and in one embodiment, its overall length GL ranges from about 6.0 to about 140.0 inches. In one embodiment, the length of the distal taper DTL on distal section 34 ranges from 0.5 to 12.0 inches. In one embodiment, outside the distal taper, the distal length DL of the distal section 34 is from 0.25 to 20.0 inches. In one embodiment, the length JSL of joining section 36 is from 0.25 to 1.5 inches.
  • With any of the above-described embodiments, dissimilar metals are joined together for use in guidewire applications. In many embodiments, the joining of a proximal component of relatively high stiffness (stainless steel, cobalt chromium, etc.) with a distal section that is relatively more flexible and resists kinking, manufactured from a material with superelastic properties (Nitinol, NiTiCo, etc.), provides useful characteristics for many guidewire applications.
  • With any of the above-described embodiments, one or more coils may be added to the distal end of the distal sections, which can be tapered at the distal end to receive such coil(s). Furthermore, any of the above-described embodiments can partially or fully be covered by a polymer jacket. Also, portions of any of the guidewires that have superelastic properties, e.g., Nitinol, NiTiCo, etc., can be annealed or semi-annealed, so that those portions can have a bend or kink introduced, which may be favorable feature in some applications.
  • The described joining structures and methods can be employed mid-shaft on a guidewire, more proximally or more distally as dictated by the specific requirements of the applications. Additionally, the connections may occur on a portion of the guidewire that has a shaft diameter that is reduced from the primary shaft diameter (e.g., a step-down portion of the distal tip) or on a tapered section of the guidewire.
  • Although specific examples have been illustrated and described herein, a variety of alternate and/or equivalent implementations may be substituted for the specific examples shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific examples discussed herein. Therefore, it is intended that this disclosure be limited only by the claims and the equivalents thereof.

Claims (15)

1. A medical guidewire comprising:
a first wire section comprising a first material;
a second wire section comprising a second material different from the first material; and
a joining section adjacent both the first and second wire sections, the joining section comprising a feature configured hold the first wire section to the second wire section.
2. The medical guidewire of claim 1, wherein the feature comprises a joint between the first and second wire sections that extends diagonally relative to the first and second sections.
3. The medical guidewire of claim 1, wherein the feature comprises a hypotube with a first and a second end, the hypotube receiving the first wire section at the first end and the second wire section at the second end, thereby securing them together.
4. The medical guidewire of claim 3, wherein the portion of the first and second wire sections received in the hypotube have a taper or a radial taper.
5. The medical guidewire of claim 4, wherein the tapered portions of the first and second wire sections overlap with the hypotube.
6. The medical guidewire of claim 1, wherein the first material comprises one of stainless steel, nickel-chromium alloy, nickel-chromium-iron alloy, and cobalt alloy and wherein the second material comprises nickel-titanium alloy.
7. The medical guidewire of claim 3, wherein the hypotube comprises nickel-titanium alloy.
8. The medical guidewire of claim 1, wherein the first and second wire sections are further secured together with solder, adhesive, welding, or with adhesive, such as UV cure, heat cure, or cyanoacrylate.
9. The medical guidewire of claim 1, wherein the joining section is a hypotube that has been cold pressed on to the first and second wire sections.
10. The medical guidewire of claim 2, wherein the joint between the first and second wire sections is diagonal or parabolic in shape.
11. The medical guidewire of claim 1, wherein the outer diameter of the guidewire is between 0.005 and about 0.04 inches.
12. A method of forming a wire comprising:
providing a first wire section comprising a first material;
providing a second wire section comprising a second material different from the first material;
cooling a joining section that comprises a superelastic material;
inserting the first and second wire sections into the joining section;
allowing the joining section to warm such that it compresses on to both the first and second wire section thereby joining them together.
13. The method of claim 12, wherein the first material comprising one of stainless steel, nickel-chromium alloy, nickel-chromium-iron alloy, and cobalt alloy and wherein the second material comprising nickel-titanium.
14. The method of claim 12, wherein cooling the joining section comprises cooling to a temperature below 32° F., and wherein allowing the joining section to warm comprises warming to room temperature.
15. The method of claim 12, wherein the joining section comprises a Nitinol alloy.
US16/354,295 2018-03-16 2019-03-15 Joining dissimilar metals for guidewire applications Abandoned US20190282787A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/354,295 US20190282787A1 (en) 2018-03-16 2019-03-15 Joining dissimilar metals for guidewire applications
US18/234,019 US20230381461A1 (en) 2018-03-16 2023-08-15 Joining dissimilar metals for guidewire applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862644085P 2018-03-16 2018-03-16
US16/354,295 US20190282787A1 (en) 2018-03-16 2019-03-15 Joining dissimilar metals for guidewire applications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/234,019 Division US20230381461A1 (en) 2018-03-16 2023-08-15 Joining dissimilar metals for guidewire applications

Publications (1)

Publication Number Publication Date
US20190282787A1 true US20190282787A1 (en) 2019-09-19

Family

ID=65817892

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/354,295 Abandoned US20190282787A1 (en) 2018-03-16 2019-03-15 Joining dissimilar metals for guidewire applications
US18/234,019 Pending US20230381461A1 (en) 2018-03-16 2023-08-15 Joining dissimilar metals for guidewire applications

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/234,019 Pending US20230381461A1 (en) 2018-03-16 2023-08-15 Joining dissimilar metals for guidewire applications

Country Status (2)

Country Link
US (2) US20190282787A1 (en)
EP (1) EP3539606A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488637B1 (en) * 1996-04-30 2002-12-03 Target Therapeutics, Inc. Composite endovascular guidewire
US6918882B2 (en) * 2001-10-05 2005-07-19 Scimed Life Systems, Inc. Guidewire with stiffness blending connection
US8569625B2 (en) * 2009-12-22 2013-10-29 W. C. Heraeus Gmbh Joined dissimilar materials

Also Published As

Publication number Publication date
EP3539606A1 (en) 2019-09-18
US20230381461A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
US8083689B2 (en) Distal protection guidewire with nitinol core
US6685720B1 (en) Catheter having improved shaped retention
CA2515383C (en) Bismuth alloy connector material for medical devices
US6918882B2 (en) Guidewire with stiffness blending connection
JP4808611B2 (en) Long-body medical device
US6652472B2 (en) Guidewire with smoothly tapered segment
US8022331B2 (en) Method of making elongated medical devices
JP5642544B2 (en) COMPOSITE LONGER MEDICAL APPARATUS PROVIDED WITH TIP TUBE AND MANUFACTURING METHOD
CA2462335C (en) Composite guidewire
US8337519B2 (en) Embolic protection filtering device
JP4939754B2 (en) Compound medical device with marker
JP2010535094A5 (en)
JP2007503929A (en) Long medical device for use in the body
JP2006509591A5 (en)
US6740050B2 (en) Intracorporeal member with improved transition section
US20230381461A1 (en) Joining dissimilar metals for guidewire applications
US20120239003A1 (en) Multiple Guidewire System
EP1523366B1 (en) Guidewire with tapered flexible core segment
WO2007145751A2 (en) Guidewire formed with composite construction and method for making the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HERAEUS MEDICAL COMPONENTS LLC, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DANT, JACK;ERIE, MARK;JOHNSON, DAVID;AND OTHERS;REEL/FRAME:048606/0338

Effective date: 20190128

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION