US20160369107A9 - Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment - Google Patents

Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment Download PDF

Info

Publication number
US20160369107A9
US20160369107A9 US14/154,677 US201414154677A US2016369107A9 US 20160369107 A9 US20160369107 A9 US 20160369107A9 US 201414154677 A US201414154677 A US 201414154677A US 2016369107 A9 US2016369107 A9 US 2016369107A9
Authority
US
United States
Prior art keywords
chemical conversion
coating film
treatment liquid
chromium
conversion treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/154,677
Other versions
US20140124099A1 (en
Inventor
Manabu Inoue
Kimitaka Watanabe
Go NAGATA
Motoi Nakatani
Keita Ishizu
Toshiki Inomata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dipsol Chemicals Co Ltd
Original Assignee
Dipsol Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40341329&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20160369107(A9) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dipsol Chemicals Co Ltd filed Critical Dipsol Chemicals Co Ltd
Priority to US14/154,677 priority Critical patent/US20160369107A9/en
Publication of US20140124099A1 publication Critical patent/US20140124099A1/en
Publication of US20160369107A9 publication Critical patent/US20160369107A9/en
Priority to US15/497,776 priority patent/US11643732B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/46Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/77Controlling or regulating of the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/26Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also organic compounds
    • C23C22/27Acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/30Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/46Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates
    • C23C22/47Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]
    • Y10T428/273Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.] of coating

Definitions

  • the present invention relates to a trivalent chromium corrosion resistant chemical conversion treatment coating film from which hexavalent chromium is not substantially eluted, the coating film being formed on zinc plating or zinc alloy plating, and a trivalent chromium chemical conversion treatment solution and a post-treatment solution after chemical conversion treatment used to form such a chemical conversion treatment coating film.
  • a method using zinc plating has been relatively widely employed as a method for inhibiting corrosion of the surface of a metal.
  • the plating by itself does not provide a sufficient corrosion resistance, and thus a chromate treatment using hexavalent chromium after plating has been widely employed in industry.
  • hexavalent chromium harms human bodies and the environment, and, as a result, the use of hexavalent chromium has been regulated.
  • a trivalent chromium chemical conversion coating film using trivalent chromium has been developed as an alternative technology to a coating film formed with hexavalent chromium, and has started to be used.
  • Japanese Patent Application Publication No. 2000-509434 discloses a treatment method in which 5 to 100 g/L of trivalent chromium, nitrate, an organic acid and a salt of a metal such as cobalt are used. This method is to obtain a good corrosion resistance by carrying out the treatment at an elevated temperature in high concentration of chromium to form a thick trivalent chromium chemical conversion coating film.
  • the method has disadvantage in wastewater treatment, because the concentration of chromium and the concentration of the organic acid in the treatment bath are high.
  • An object of the present invention is to provide a trivalent chromium corrosion resistant chemical conversion treatment coating film being formed on zinc or zinc-based alloy plating, and having a corrosion resistance equal to or more than a conventional coating film with a low chromium content. Moreover, in consideration of effect on human bodies and the environment, hexavalent chromium is not substantially detected in the coating film even after the coating film is left.
  • another object of the present invention is to provide a trivalent chromium chemical conversion treatment solution and a post-treatment solution used after chemical conversion treatment, the treatment solution and the post-treatment solution being capable of forming such a chemical conversion treatment coating film.
  • the present inventors have made a thorough examination and found that a chemical conversion coating film that has a high corrosion resistance and from which hexavalent chromium is substantially not eluted even after the coating film is left can be obtained from a trivalent chromium chemical conversion coating film having low trivalent chromium concentration if the coating film itself is provided with a function of suppressing oxidation from trivalent chromium in the coating film to hexavalent chromium.
  • the present inventors also found that such a chemical conversion coating film can be obtained by using a chemical conversion treatment liquid having a specific composition.
  • the present invention is a trivalent chromium chemical conversion coating film formed on a surface of zinc or zinc alloy plating characterized in that a corrosion resistance (a time required for the formation of white rust) in a salt spray test is 96 hours or more, a concentration of hexavalent chromium in terms of metal atoms in the chemical conversion coating film is less than 0.01 ⁇ g/cm 2 , and an amount of hexavalent chromium eluted from the coating film left for 30 days in a constant temperature and humidity chamber at a temperature of 80° C. and at a humidity of 95% (an amount eluted by immersion of the coating film into hot water at a temperature of 100° C. for 10 minutes) is less than 0.05 ⁇ g/cm 2 .
  • a preferred aspect of the present invention is the above-descried trivalent chromium chemical conversion coating film, in which a concentration of trivalent chromium in terms of metal atoms in the chemical conversion coating film is 2 to 20 ⁇ g/cm 2 .
  • the trivalent chromium chemical conversion coating film in which a cobalt concentration in the chemical conversion coating film is 0.2 to 3.5 ⁇ g/cm 2 , is an aspect of the present invention.
  • a preferable cobalt concentration is 0.3 to 3 ⁇ g/cm 2 .
  • the trivalent chromium chemical conversion coating film in which a cobalt concentration in the chemical conversion coating film is less than 0.2 ⁇ g/cm 2 , is an aspect of the present invention.
  • a preferable cobalt concentration is 0 to 0.17 ⁇ g/cm 2 .
  • Chromium hydroxide is generated by the rise of pH of the treatment liquid.
  • trivalent cobalt in the coating film oxidizes trivalent chromium to generate hexavalent chromium.
  • the present invention is achieved on the basis of the following discovery. Specifically, by adding a hexavalent chromium generation suppressing agent having an effect of suppressing hexavalent chromium generation to any one of a trivalent chromium chemical conversion treatment liquid, washing water for a trivalent chromium chemical conversion coating film and a finishing liquid therefor, hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film can be suppressed, and an amount of hexavalent chromium eluted from the trivalent chromium chemical conversion coating film (an amount eluted when the coating film is immersed in a hot water at a temperature of 100° C. for 10 minutes) can be less than 0.05 ⁇ g/cm 2 even after the coating film is left.
  • the present invention provides a chemical conversion treatment liquid for forming, on zinc or zinc alloy plating, a trivalent chromium chemical conversion coating film from which hexavalent chromium is substantially not eluted even after the coating film is left.
  • the chemical conversion treatment liquid is characterized in that a content of trivalent chromium ions in the treatment liquid is 0.002 to 0.5 mol/l, a concentration of hexavalent chromium ions is 1 ppm or less, a content of cobalt ions is 0.1 mol/l or less, a hexavalent chromium generation suppressing agent that can suppress generation of hexavalent chromium which is generated in the trivalent chromium chemical conversion coating film is contained in said liquid, and a pH of the chemical conversion treatment liquid is 0.5 to 5.
  • the present invention provides washing water or a finishing liquid for a trivalent chromium chemical conversion coating film formed on zinc or zinc alloy plating, for suppressing hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film.
  • the washing water or the finishing liquid is characterized by containing a hexavalent chromium generation suppressing agent that can suppress generation of hexavalent chromium which is generated in the trivalent chromium chemical conversion coating film at 0.1 to 10 g/l, and characterized in that a pH of the washing water or the finishing liquid is 2 to 10.
  • a trivalent chromate coating film is formed by use of a trivalent chromium chemical conversion treatment liquid in which a content of cobalt ions is 250 ppm or less and a content of a sulfur compound is in the range of 100 to 1000 ppm in terms of sulfur atoms.
  • hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film can be suppressed, and an amount of hexavalent chromium eluted from the trivalent chromium chemical conversion coating film can be less than 0.05 ⁇ g/cm 2 even after the coating film is left (an amount eluted when the coating film is immersed in hot water at a temperature of 100° C. for 10 minutes).
  • the present invention provides a chemical conversion treatment liquid for forming a trivalent chromate coating film from which hexavalent chromium is not substantially eluted after the coating film is left, the trivalent chromate coating film being formed on zinc or zinc alloy plating.
  • the chemical conversion treatment liquid is characterized in that a content of trivalent chromium ions in the treatment liquid is 0.002 to 0.5 mol/l, a concentration of hexavalent chromium ions is 1 ppm or less, a content of cobalt ions is 250 ppm or less, and a sulfur compound is contained in the range of 100 to 1500 ppm in terms of sulfur atoms.
  • the trivalent chromium chemical conversion coating film according to the present invention further has an excellent corrosion resistance of the trivalent chromium chemical conversion coating film, in addition to a corrosion resistance of zinc plating itself.
  • the coating film obtained by forming the trivalent chromium chemical conversion coating film directly on zinc plating undergoes no substantial elution of hexavalent chromium after the coating film is left, has a corrosion resistance and a salt water resistance equal to or higher than those of conventional hexavalent chromate, and can be applied in various colors.
  • the chemical conversion treatment liquid according to the present invention that can form such a chemical conversion coating film the trivalent chromium concentration in the treatment liquid is low, and an organic acid concentration or nitrogen concentration can also further be reduced. Therefore, the treatment liquid is advantageous in wastewater treatment and thus has excellent cost performance.
  • the substrate used in the present invention may be made of any of the following materials: various metals such as iron, nickel and copper; alloys thereof; and metals and alloys such as aluminum, which have been subjected to zincate conversion treatment, and may have any of various shapes such as plate-like, rectangular, column-like, cylindrical and spherical shapes.
  • the above substrate is plated with zinc or a zinc alloy by the usual method.
  • the zinc plating may be deposited on the substrate using either of the following baths: an acidic/neutral bath such as a sulfuric acid bath, a borofluoride bath, a potassium chloride bath, a sodium chloride bath or an ammonium chloride-potassium chloride bath; or an alkaline bath such as a cyanide bath, a zincate bath or a pyrophoric acid bath, but particularly, a cyanide bath is preferable.
  • the zinc alloy plating may be performed using either an ammonium chloride bath or an alkaline bath such as an organic chelate bath.
  • the zinc alloy plating may be zinc-iron alloy plating, zinc-nickel alloy plating, zinc-cobalt alloy plating or tin-zinc alloy plating.
  • Zinc-iron alloy plating is preferable.
  • the zinc or zinc alloy plating may be deposited on a substrate in any thickness, but preferably in a thickness of 1 ⁇ m or more, and more preferably in a thickness of 5 to 25 ⁇ m.
  • the plated substrate is appropriately pretreated by, for example, being washed with water and optionally activated by a nitric acid, as needed. Thereafter, the zinc or zinc alloy plating is subjected to chemical conversion treatment by a dipping treatment, or the like using a chemical conversion treatment liquid for forming the trivalent chromium chemical conversion coating film according to the present invention.
  • the chemical conversion treatment liquid of the first aspect of the present invention contains trivalent chromium ions, cobalt ions and hexavalent chromium generation suppressing agent that can suppress generation of hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film.
  • any chromium compound containing trivalent chromium ions may be used as a source of trivalent chromium ions.
  • the sources of trivalent chromium salts such as chromium chloride, chromium sulfate, chromium nitrate, chromium phosphate or chromium acetate can be used, or, alternatively, trivalent chromium ions can be obtained by the reduction of hexavalent chromium ions of chromic acid, a dichromate, or the like with a reducing agent.
  • the sources are not limited to these examples.
  • One of the above sources of trivalent chromium ions or any combination of at least two of them may be used.
  • a content of trivalent chromium ions in the chemical conversion treatment liquid should preferably be 0.002 to 0.5 mol/l, and should more preferably be 0.02 to 0.1 mol/l. Meanwhile, a concentration of hexavalent chromium ions in the chemical conversion treatment liquid should preferably be 1 ppm or less, and should more preferably be 0.5 ppm or less.
  • any metal compound containing cobalt may be used as a source of cobalt ions.
  • metal compounds include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt carbonate and cobalt hydroxide.
  • the metal compounds are not limited to these examples.
  • One of the above metal compounds or any combination of at least two of them may be used.
  • a content of cobalt ions in the chemical conversion treatment liquid should preferably be 0.1 mol/l or less, should more preferably be 0.001 to 0.06 mol/l, and should still more preferably be 0.005 to 0.04 mol/l.
  • any additives can be used as the hexavalent chromium generation suppressing agent as long as the additives can suppress generation of hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film.
  • various additives are added to chemical conversion treatment liquids for forming the trivalent chromate coating film and effect of the additives is examined by experiments.
  • organic reducing compounds such as ascorbate ions, citrate ions, tannate ions, gallate ions, tartrate ions, hydroxy(iso)quinolines, phenols and thiourea
  • inorganic or metal reducing compounds such as phosphate ions, chromium phosphate ions, vanadium ions and titanium ions show the effect. Therefore, preferable hexavalent chromium generation suppressing agents include ascorbic acid, salts thereof, citric acid, salts thereof, tannic acid, salts thereof, gallic acid, salts thereof, tartaric acid, salts thereof, thiourea, phosphoric acid, salts thereof, vanadium compounds, titanium compounds, and the like.
  • a content of the hexavalent chromium generation suppressing agent in the chemical conversion treatment liquid should preferably be 0.1 to 5 g/l, should more preferably be 0.2 to 3 g/l, and should still more preferably be 0.3 to 2 g/l.
  • a pH of the chemical conversion treatment liquid should preferably be 0.5 to 5, and should more preferably be 2 to 3.
  • the pH can be adjusted to this range by using the inorganic acid ions as described below, and also by using an alkaline agent such as an alkaline hydroxide, ammonia water, or the like.
  • the chemical conversion treatment liquid may contain one or more kinds selected from inorganic acids, alkaline salts thereof, and the like.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, and the like.
  • the inorganic acids are not limited to these examples.
  • a concentration thereof in the chemical conversion treatment liquid should preferably be 1 to 50 g/L, and should more preferably be 4 to 20 g/L.
  • the chemical conversion treatment liquid may contain one or more kinds of hydroxycarboxylic acids, monocarboxylic acids, polyvalent carboxylic acids, aminocarboxylic acids, alkaline salts thereof, and the like as chelating agents for trivalent chromium ions.
  • hydroxycarboxylic acids include malic acid, and the like.
  • monocarboxylic acids include formic acid, acetic acid, and the like.
  • the monocarboxylic acids are not limited to these examples.
  • polyvalent carboxylic acids examples include: dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, adipic acid and diglycolic acid; tricarboxylic acids such as propanetricarboxylic acid, and the like.
  • dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, adipic acid and diglycolic acid
  • tricarboxylic acids such as propanetricarboxylic acid, and the like.
  • the polyvalent carboxylic acids are not limited to these examples.
  • aminocarboxylic acids examples include glycine, aspartic acid, and the like. However, the aminocarboxylic acids are not limited to these examples.
  • polyvalent carboxylic acids are preferable, and oxalic acid, malonic acid and succinic acid are more preferable.
  • a concentration thereof in the chemical conversion treatment liquid should preferably be in the range of 0.2 to 2 mole, should more preferably be in the range of 0.3 to 2 mole, should still more preferably be in the range of 0.5 to 2 mole, and should still further more preferably be in the range of 0.7 to 1.8 mole per mole of trivalent chromium ions.
  • the chemical conversion treatment liquid may contain one or more kinds of silicon compounds.
  • silicon compounds include colloidal silica, sodium silicate, potassium silicate, lithium silicate, and the like.
  • a concentration thereof in the chemical conversion treatment liquid should preferably be 1 to 20 g/l, and should more preferably be 2 to 10 g/l in terms of Si.
  • Colloidal silica is particularly preferable.
  • a concentration thereof should preferably be 1 to 100 ml/l as a 20% SiO2 aqueous solution.
  • the chemical conversion treatment liquid may contain one or more kinds of agents for reducing a coating film overall friction coefficient.
  • agents for reducing a coating film overall friction coefficient include quinoline-based compounds such as quinoline sulfonic acid, quinaldic acid, quinophthalone and derivatives thereof described in Japanese Patent Application Publication No. 2005-248233.
  • a concentration thereof in the chemical conversion treatment liquid should preferably be 0.1 to 25 g/l, and should more preferably be 0.2 to 15 g/l.
  • the trivalent chromium chemical conversion coating film according to the present invention formed by treatment with the chemical conversion treatment liquid containing such a agent for reducing a coating film overall friction coefficient is a coating film that has a reduced coating film overall friction coefficient.
  • the rest of the chemical conversion treatment liquid other than the above essential components is water.
  • a nitrogen-containing compound mainly nitrate ions
  • a trivalent chromium chemical conversion treatment liquid for improving the corrosion resistance of a trivalent chromium chemical conversion coating film. Consequently, the nitrogen atom concentration in the treatment liquid is high, for example 3 to 9 g/l, and there is a problem in terms of the wastewater treatment.
  • nitrate ions may be used in an amount similar to a conventional treatment liquid.
  • the trivalent chromium chemical conversion coating film that has an excellent corrosion resistance and from which elution of hexavalent chromium is suppressed when the coating film is left can be obtained from the chemical conversion treatment liquid.
  • a content is specifically 500 ppm or less in terms of nitrogen atoms, should preferably be in the range of 30 to 400 ppm and should more preferably be in the range of 50 to 300 ppm, for example.
  • a metal reducing compound is preferable as the hexavalent chromium generation suppressing agent. Particularly, vanadium compounds, titanium compounds, magnesium compounds and combination thereof are preferable.
  • cobalt ions may be contained but are not necessarily contained. However, cobalt ions should be contained preferably in the range of 0.001 to 0.06 mol/l, and more preferably in the range of 0.005 to 0.04 mol/l, because corrosion resistance of the chemical conversion coating film under heating is further improved.
  • a method for forming a trivalent chromium chemical conversion coating film on zinc or zinc alloy plating by using the chemical conversion treatment liquid is commonly to immerse a zinc or zinc alloy plated substrate into the chemical conversion treatment liquid.
  • a temperature of the chemical conversion treatment liquid at immersion is, for example, 10 to 70° C. The temperature should preferably be 30 to 50° C.
  • An immersion time should preferably be 5 to 600 seconds, and should more preferably be 15 to 120 seconds. Meanwhile, immersion into a diluted nitric acid solution, a diluted sulfuric acid solution, a diluted hydrochloric acid solution, a diluted hydrofluoric acid solution, or the like may be performed before trivalent chromium chemical conversion treatment, for activating the surface of the zinc or zinc alloy plating.
  • the conditions and treatment operations other than those described above may follow the conventional hexavalent chromate treatment method.
  • the second aspect of the present invention is washing water or a finishing liquid for a trivalent chromium chemical conversion coating film formed on zinc or zinc alloy plating.
  • the washing water or the finishing liquid is used for suppressing hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film.
  • the washing water or the finishing liquid contains a hexavalent chromium generation suppressing agent that can suppress generation of hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film.
  • a method for forming a trivalent chromium chemical conversion coating film to which the washing water or the finishing liquid is applied is not particularly limited, and may be any known method.
  • the trivalent chromium chemical conversion coating film contains Co 2+ and Co 3+ ;
  • the trivalent chromium chemical conversion coating film is a coating film formed from a chemical conversion treatment liquid having a stronger oxidizing effect caused by a combination of chloric acid-nitric acid, or the like;
  • the trivalent chromium chemical conversion coating film contains a manganese compound such as manganese dioxide;
  • the trivalent chromium chemical conversion coating film contains, in the coating film, a large amount of ions of an element, other than Co, whose valence can vary.
  • the hexavalent chromium generation suppressing agent is already described above.
  • a content of the hexavalent chromium generation suppressing agent in the washing water or the finishing liquid should preferably be 0.1 to 10 g/l, should more preferably be 0.2 to 5 g/l, and should still more preferably be 0.3 to 3 g/l.
  • preferable hexavalent chromium generation suppressing agents include ascorbic acid, salts thereof, citric acid, salts thereof, tannic acid, salts thereof, gallic acid, salts thereof, tartaric acid, salts thereof, thiourea, phosphoric acid, salts thereof, and the like.
  • a pH of the washing water or the finishing liquid should preferably be 2 to 10, and should more preferably be 3 to 6.
  • the pH may be adjusted to this range by using the inorganic acid ions as described below, or by using an alkaline agent such as an alkaline hydroxide, ammonia water, or the like.
  • a method for treating a trivalent chromium chemical conversion coating film using the washing water or the finishing liquid is not particularly limited, and conventional and known methods such as immersing, applying, spraying, and the like may be used. However, to immerse a trivalent chromium chemical conversion coating film into the washing water or the finishing liquid is commonly employed.
  • a temperature of the washing water or the finishing liquid at immersion is, for example, 10 to 70° C. The temperature should preferably be 20 to 50° C.
  • An immersion time should preferably be 5 to 120 seconds, and should more preferably be 5 to 15 seconds.
  • a chemical conversion treatment liquid of the third aspect of the present invention contains trivalent chromium ions, cobalt ions and a sulfur compound.
  • any chromium compound containing trivalent chromium ions may be used as a source of trivalent chromium ions.
  • the source should be trivalent chromium salt such as chromium chloride, chromium sulfate, chromium nitrate, chromium phosphate or chromium acetate, or, alternatively, trivalent chromium ions can be obtained by the reduction of hexavalent chromium ions of chromic acid, a dichromate, or the like with a reducing agent.
  • the source is not limited to these examples.
  • One of the above sources of trivalent chromium ions or any combination of at least two of them may be used.
  • a content of trivalent chromium ions in the chemical conversion treatment liquid should preferably be 0.002 to 0.5 mol/l, and should more preferably be 0.02 to 0.1 mol/l. Meanwhile, a concentration of hexavalent chromium ions in the chemical conversion treatment liquid should preferably be 1 ppm or less, and should more preferably be 0.5 ppm or less.
  • a content of cobalt ions in the chemical conversion treatment liquid is 250 ppm or less.
  • the chemical conversion treatment liquid does not necessarily contain cobalt ions. Since the sulfur compound is contained, the formed trivalent chromium chemical conversion coating film has a sufficient corrosion resistance even when cobalt ions are not contained.
  • a content of cobalt ions in the chemical conversion treatment liquid should preferably be 100 to 250 ppm, and should more preferably be 150 to 200 ppm, when a higher corrosion resistance is required. When the chemical conversion treatment liquid contains cobalt ions, any metal compound containing cobalt can be used as a source of cobalt ions.
  • metal compounds examples include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt carbonate and cobalt hydroxide.
  • the metal compounds are not limited to these examples. One of the above metal compounds or any combination of at least two of them may be used.
  • an organic sulfur compound is preferable as the sulfur compound.
  • organic sulfur compounds include thiourea, thioglycerin, thioacetic acid, potassium thioacetate, thiodiacetic acid, 3,3-thiodipropionic acid, thiosemicarbazide, thioglycolic acid, thiodiglycolic acid, thiomaleic acid, thioacetamide, dithioglycolic acid, dithiodiglycolic acid, alkaline salts thereof, and the like.
  • one of the above sulfur compounds or a mixture of two or more of them can be used.
  • a content of the sulfur compound in the chemical conversion treatment liquid should preferably be 100 to 1500 ppm, should more preferably be 300 to 1000 ppm, and should still more preferably be 400 to 800 ppm in terms of sulfur atoms.
  • the formed trivalent chromium chemical conversion coating film has a sufficient corrosion resistance, even when a concentration of cobalt ions in the coating film is 0.2 ⁇ g/cm or less, and preferably 0.17 ⁇ g/cm or less.
  • hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film can be suppressed because of low concentration of cobalt ions in the coating film.
  • a preferable nitrogen content is 500 ppm or less, and preferably 200 ppm or less in terms of nitrogen atoms.
  • the content should more preferably be 40 to 200 ppm, and should still more preferably be 60 to 130 ppm.
  • the chemical conversion treatment liquid may contain one or more kinds of silicon compounds.
  • silicon compounds include colloidal silica, sodium silicate, potassium silicate, lithium silicate, and the like.
  • a concentration thereof in the chemical conversion treatment liquid should preferably be 1 to 20 g/l, and should more preferably be 2 to 10 g/l in terms of Si.
  • Colloidal silica is particularly preferable.
  • a concentration thereof should preferably be 1 to 100 ml/l as a 20% SiO 2 aqueous solution.
  • the chemical conversion treatment liquid may contain one or more kinds of agents for reducing a coating film overall friction coefficient.
  • agents for reducing a coating film overall friction coefficient include quinoline-based compounds such as quinoline sulfonic acid, quinaldic acid, quinophthalone and derivatives thereof described in Japanese Patent Application Publication No. 2005-248233.
  • a concentration thereof in the chemical conversion treatment liquid should preferably be 0.1 to 25 g/l, and should more preferably be 0.2 to 15 g/l.
  • the trivalent chromium chemical conversion coating film according to the present invention formed by treatment with the chemical conversion treatment liquid containing such a agent for reducing a coating film overall friction coefficient is a coating film that has a reduced coating film overall friction coefficient.
  • the chemical conversion treatment liquid may contain one or more kinds selected from inorganic acids, alkaline salts thereof, and the like.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, and the like.
  • the inorganic acids are not limited to these examples.
  • a concentration thereof in the chemical conversion treatment liquid should preferably be 0.01 to 50 g/L, and should more preferably be 0.05 to 20 g/L.
  • the chemical conversion treatment liquid may contain one or more kinds selected from phosphorus oxoacids such as hypophosphorous acid, phosphoric acid, alkaline salts thereof, and the like.
  • the concentration thereof in the chemical conversion treatment liquid should preferably be 0.1 to 50 g/L, and should more preferably be 4 to 25 g/L.
  • the chemical conversion treatment liquid may contain one or more kinds of hydroxycarboxylic acids, monocarboxylic acids, polyvalent carboxylic acids, aminocarboxylic acids, alkaline salts thereof, and the like as chelating agents for trivalent chromium ions.
  • hydroxycarboxylic acids include malic acid, and the like.
  • monocarboxylic acids include formic acid, acetic acid, and the like.
  • the monocarboxylic acids are not limited to these examples.
  • polyvalent carboxylic acids examples include: dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, adipic acid and diglycolic acid; tricarboxylic acids such as propanetricarboxylic acid, and the like.
  • dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, adipic acid and diglycolic acid
  • tricarboxylic acids such as propanetricarboxylic acid, and the like.
  • the polyvalent carboxylic acids are not limited to these examples.
  • aminocarboxylic acids examples include glycine, aspartic acid, and the like. However, the aminocarboxylic acids are not limited to these examples.
  • polyvalent carboxylic acids are preferable, and oxalic acid, malonic acid and succinic acid are more preferable.
  • a concentration thereof in the chemical conversion treatment liquid should preferably be in the range of 0.2 to 2 mole, should more preferably be in the range of 0.3 to 2 mole, should still more preferably be in the range of 0.5 to 2 mole, and should still further more preferably be in the range of 0.7 to 1.8 mole per mole of trivalent chromium ions.
  • the chemical conversion treatment liquid may contain one or more kinds of ions of metal selected from Mg, Al, Mn, Ti, W, V, Mo, Ni, Fe, Zn, Zr, Ca, Nb, Ta, Sn and Ce.
  • a concentration thereof in the chemical conversion treatment liquid should preferably be 1 to 10 g/l, and should more preferably be 2 to 8 g/l.
  • a pH of the chemical conversion treatment liquid should preferably be 0.5 to 5, and should more preferably be 2 to 3.
  • the pH may be adjusted to this range by using the inorganic acid ions as described below, or by using an alkaline agent such as an alkaline hydroxide, ammonia water, or the like.
  • the rest of the chemical conversion treatment liquid other than the above essential components is water.
  • a method for forming a trivalent chromium chemical conversion coating film on zinc or zinc alloy plating by using the chemical conversion treatment liquid is commonly to immerse a zinc or zinc alloy plated substrate into the chemical conversion treatment liquid.
  • a temperature of the chemical conversion treatment liquid at immersion is, for example, 10 to 70° C. The temperature should preferably be 25 to 35° C.
  • An immersion time should preferably be 5 to 600 seconds, and should more preferably be 15 to 120 seconds. Meanwhile, immersion into a diluted nitric acid solution, a diluted sulfuric acid solution, a diluted hydrochloric acid solution, a diluted hydrofluoric acid solution, or the like may be performed before trivalent chromium chemical conversion treatment, for activating the surface of the zinc or zinc alloy plating.
  • the conditions and treatment operations other than those described above may follow the conventional hexavalent chromate treatment method.
  • Overcoating the trivalent chromium chemical conversion coating film formed by using the chemical conversion treatment liquid according to the present invention can improve the corrosion resistance thereof, and thus is a highly effective means for achieving longer-lasting corrosion resistance.
  • the trivalent chromium chemical conversion coating film is firstly formed on the zinc or zinc alloy plating using the chemical conversion treatment liquid according to the present invention, then washed with water, then immersed into an overcoating solution or subjected to an electrolytic treatment therein, and thereafter dried.
  • the trivalent chromium chemical conversion coating film may be dried after formation thereof, and thereafter further immersed into an overcoating solution or subjected to an electrolytic treatment therein, and then dried.
  • an organic coating film made of polyethylene, polyvinyl chloride, polystyrene, polypropylene, methacrylate resin, polycarbonate, polyamide, polyacetal, fluorine resin, urea resin, phenolic resin, unsaturated polyester resin, polyurethane, alkyd resin, epoxy resin, melamine resin, or the like may be effectively used.
  • the overcoating solution for overcoating such a film DIPCOAT W or CC445 available from Dipsol Chemicals Co., Ltd. or the like may be used.
  • the thickness of the overcoating may be any value, but should preferably be 0.1 to 30 ⁇ m.
  • An M6 bolt (material: iron), which had been plated with zinc using a zincate (NZ-200 available from Dipsol Chemicals Co., Ltd.) in Examples 1 to 2 and 6 to 8 or acidic zinc (EZ-960 available from Dipsol Chemicals Co., Ltd.) in Examples 3 to 5 in a thickness of 8 ⁇ m, was immersed in a chemical conversion treatment liquid shown in Table 1 under conditions shown in Table 1.
  • the immersed bolt was immersed in a finishing liquid shown in Table 1 under conditions shown in Table 1. After immersion, the coating film was dried under conditions at 80° C. for 10 minutes.
  • a 40% chromium nitrate aqueous solution was employed as a source of Cr 3+ , and cobalt nitrate was employed as a source of Co 2+ .
  • the rest of the solution was water.
  • An M6 bolt (material: iron), which had been plated with zinc using a zincate (NZ-200 available from Dipsol Chemicals Co., Ltd.) in a thickness of 8 ⁇ m, was subjected to a hexavalent chromate treatment.
  • a hexavalent chromate treatment liquid Z-493 (10 ml/l) available from Dipsol Chemicals Co., Ltd. was used, and the bolt was immersed at 25° C. for 20 seconds. After immersion, the coating film was dried under conditions at 60° C. for 10 minutes.
  • a trivalent chromium chemical conversion coating film was formed on an M6 bolt (material: iron), which had been plated with zinc using a zincate (NZ-200 available from Dipsol Chemicals Co., Ltd.) in a thickness of 8 um.
  • the chemical conversion treatment liquid a chemical conversion treatment liquid having the following composition was used, and the bolt was immersed at 30° C. for 40 seconds. After immersion, the coating film was dried under conditions at 80° C. for 10 minutes.
  • Table 2 shows concentrations of Cr 3+ , concentrations of Cr 6+ and concentrations of Co 2+ in the chemical conversion coating films obtained in Examples 1 to 8 and Comparative Examples 1 and 2, appearances, results of salt spray test (JIS Z-2371) and amounts of hexavalent chromium eluted after the storage test.
  • the coating films of Examples 1 to 8 exhibited corrosion resistance equal to or better than that of the conventional hexavalent chromate chemical conversion coating film of Comparative Example 1.
  • the amounts of hexavalent chromium eluted after storage test were less than the measurement limit value.
  • An M6 Bolt (material: iron), which had been plated with zinc using a zincate (NZ-200 available from Dipsol Chemicals Co., Ltd.) in a thickness of 8 ⁇ m, were immersed into a chemical conversion treatment liquid shown in Table 3 under conditions shown in Table 3. After immersion, the coating film was dried under conditions at 80° C. for 10 minutes.
  • Example 9 10 11 Cr 3+ (mol/l) 0.038 0.038 0.038 Cr 6+ (ppm) 0 0 0 Nitrogen content in terms of 90 90 90 nitrogen atoms (ppm) SO 4 2 ⁇ (g/L) 0 6.0 6.0 Cl ⁇ (g/L) 4.4 0 0 Thiodiglycolic acid (g/L) 2 (430) 2 (430) 0 (in terms of sulfur content (ppm)) Thiourea (g/L) 0 0 2 (840) (in terms of sulfur content (ppm)) Co 2+ (ppm) 200 200 200 Si (g/L) 2 2 2 ph of treatment liquid 2.4 2.4 2.4 Treatment temperature (° C.) 30 30 30 30 30 Treatment time (seconds) 60 40 40 40
  • a 35% chromium chloride aqueous solution (Example 9) or a 35% chromium sulfate aqueous solution (Examples 10 and 11) was employed as a source of Cr 3+ .
  • Cobalt chloride (Example 9) or cobalt sulfate (Examples 10 and 11) was employed as a source of Co 2+ .
  • Si was an acidic colloidal silica (SNOWTEX-O available from Nissan Chemical Industries, Ltd.). The rest of the solution was water.
  • Example 12 14 Type of Chromium Inorganic Methacrylate overcoating phosphate-based silicate-based resin-based inorganic inorganic Si-dispersed-type coating film coating film organic coating film
  • Table 5 shows concentrations of Cr 3+ , concentrations of Cr 6+ and concentrations of Co 2+ in the chemical conversion coating films obtained in Examples 9 to 14 and Comparative Examples 1 and 2, appearances, results of salt spray test (JIS Z-2371) and amounts of hexavalent chromium eluted after storage test.
  • the coating films of Examples 9 to 14 exhibited corrosion resistance equal to or better than that of the conventional hexavalent chromate chemical conversion coating film of Comparative Example 1.
  • the overcoated coating films (Examples 12 to 14) exhibited better corrosion resistance than the conventional hexavalent chromate chemical conversion coating film.
  • the amounts of hexavalent chromium eluted after storage test were less than the measurement limit value.
  • a coating film sample (50 cm 2 ) was immersed into approximately 50 ml of hot water at a temperature of 100° C. for 10 minutes.
  • An amount of hexavalent chromium eluted from the coating film sample was determined by the absorption spectroscopy using diphenylcarbazide (in accordance with EN-15205).
  • a storage test was performed as an acceleration test by employing a method in which a sample for the elution test was left for 30 days in a constant temperature and humidity chamber maintained at a temperature of 80° C. and a humidity of 95%. Then, the sample after the storage test was immersed into hot water at a temperature of 100° C. for 10 minutes by a method similar to the above-described measuring method of Cr 6+ concentration in a coating film. An amount of hexavalent chromium eluted from the coating film sample was determined by absorption spectroscopy using diphenylcarbazide (in accordance with EN-15205).
  • An M6 Bolt (material: iron), which had been plated with zinc using a zincate (NZ-200 available from Dipsol Chemicals Co., Ltd.) in a thickness of 8 ⁇ m, was immersed into a chemical conversion treatment liquid shown in Table 6 under conditions shown in Table 6. After immersion, the coating film was dried under conditions at 80° C. for 10 minutes.
  • a 35% chromium chloride aqueous solution was employed as a source of Cr 3+ .
  • Cobalt chloride was employed as a source of Co 2+ .
  • Si was an acidic colloidal silica (SNOWTEX-O available from Nissan Chemical Industries, Ltd.). The rest of the solution was water. Note that, the nitrogen content was derived from NO 3 ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

A trivalent-chromium chemical conversion coating from which substantially no hexavalent chromium is released. The trivalent-chromium chemical conversion coating is one formed on the surface of a zinc or zinc-alloy deposit. In a brine spray test, the chemical conversion coating has unsusceptibility to corrosion (time required for white-rust formation) of 96 hours or longer. The chemical conversion coating has a hexavalent-chromium concentration less than 0.01 μg/cm in terms of metal atom amount. The amount of hexavalent chromium released after 30-day standing in a thermo-hygrostatic chamber at a temperature of 80° C. and a humidity of 95% (amount of hexavalent chromium released when the coating is immersed in 100° C. water for 10 minutes) is smaller than 0.05 μg/cm2.

Description

    TECHNICAL FIELD
  • The present invention relates to a trivalent chromium corrosion resistant chemical conversion treatment coating film from which hexavalent chromium is not substantially eluted, the coating film being formed on zinc plating or zinc alloy plating, and a trivalent chromium chemical conversion treatment solution and a post-treatment solution after chemical conversion treatment used to form such a chemical conversion treatment coating film.
  • BACKGROUND ART
  • A method using zinc plating has been relatively widely employed as a method for inhibiting corrosion of the surface of a metal. However, the plating by itself does not provide a sufficient corrosion resistance, and thus a chromate treatment using hexavalent chromium after plating has been widely employed in industry. However, it has been pointed out in recent years that hexavalent chromium harms human bodies and the environment, and, as a result, the use of hexavalent chromium has been regulated.
  • In this connection, a trivalent chromium chemical conversion coating film using trivalent chromium has been developed as an alternative technology to a coating film formed with hexavalent chromium, and has started to be used. For example, Japanese Patent Application Publication No. 2000-509434 discloses a treatment method in which 5 to 100 g/L of trivalent chromium, nitrate, an organic acid and a salt of a metal such as cobalt are used. This method is to obtain a good corrosion resistance by carrying out the treatment at an elevated temperature in high concentration of chromium to form a thick trivalent chromium chemical conversion coating film. However, the method has disadvantage in wastewater treatment, because the concentration of chromium and the concentration of the organic acid in the treatment bath are high.
    • Patent Article 1: Japanese Patent Application Publication No. 2000-509434
    DISCLOSURE OF THE INVENTION
  • In addition, it has been found out that there is a problem that, when such a conventional hexavalent chromium-free trivalent chromium chemical conversion treatment coating film is left for a long period in a natural environment, trivalent chromium in the coating film is oxidized, and harmful hexavalent chromium is detected in the coating film.
  • An object of the present invention is to provide a trivalent chromium corrosion resistant chemical conversion treatment coating film being formed on zinc or zinc-based alloy plating, and having a corrosion resistance equal to or more than a conventional coating film with a low chromium content. Moreover, in consideration of effect on human bodies and the environment, hexavalent chromium is not substantially detected in the coating film even after the coating film is left. In addition, another object of the present invention is to provide a trivalent chromium chemical conversion treatment solution and a post-treatment solution used after chemical conversion treatment, the treatment solution and the post-treatment solution being capable of forming such a chemical conversion treatment coating film.
  • The present inventors have made a thorough examination and found that a chemical conversion coating film that has a high corrosion resistance and from which hexavalent chromium is substantially not eluted even after the coating film is left can be obtained from a trivalent chromium chemical conversion coating film having low trivalent chromium concentration if the coating film itself is provided with a function of suppressing oxidation from trivalent chromium in the coating film to hexavalent chromium. In addition, the present inventors also found that such a chemical conversion coating film can be obtained by using a chemical conversion treatment liquid having a specific composition.
  • Accordingly, the present invention is a trivalent chromium chemical conversion coating film formed on a surface of zinc or zinc alloy plating characterized in that a corrosion resistance (a time required for the formation of white rust) in a salt spray test is 96 hours or more, a concentration of hexavalent chromium in terms of metal atoms in the chemical conversion coating film is less than 0.01 μg/cm2, and an amount of hexavalent chromium eluted from the coating film left for 30 days in a constant temperature and humidity chamber at a temperature of 80° C. and at a humidity of 95% (an amount eluted by immersion of the coating film into hot water at a temperature of 100° C. for 10 minutes) is less than 0.05 μg/cm2.
  • A preferred aspect of the present invention is the above-descried trivalent chromium chemical conversion coating film, in which a concentration of trivalent chromium in terms of metal atoms in the chemical conversion coating film is 2 to 20 μg/cm2.
  • In addition, the trivalent chromium chemical conversion coating film, in which a cobalt concentration in the chemical conversion coating film is 0.2 to 3.5 μg/cm2, is an aspect of the present invention. In this aspect, a preferable cobalt concentration is 0.3 to 3 μg/cm2.
  • Furthermore, the trivalent chromium chemical conversion coating film, in which a cobalt concentration in the chemical conversion coating film is less than 0.2 μg/cm2, is an aspect of the present invention. In this aspect, a preferable cobalt concentration is 0 to 0.17 μg/cm2.
  • The reason why the chemical conversion coating film that have a high corrosion resistance and from which hexavalent chromium is substantially not eluted even after the coating film is left can be obtained by providing the coating film itself with a function of suppressing oxidation from trivalent chromium in the coating film to hexavalent chromium is not clear. However, through the investigation in the present invention, the present inventors assume that the reason is as follows. Specifically, it is assumed that detection of hexavalent chromium from a generally used trivalent chromium chemical conversion coating film which is being left is caused because Co3+ in the chemical conversion coating film acts as an oxidizing agent to oxidize trivalent chromium.
  • Formation of a trivalent chromium chemical conversion coating film and an assumed generation mechanism of Cr6+ by action of Co3+ will be described below.
  • (i) Zinc is dissolved in an acidic treatment liquid, and electrons are released.

  • Zn→Zn2++2e
  • (ii) Hydrogen ions are consumed at the interface between the zinc and the treatment liquid, and the pH of the treatment liquid rises.

  • 2H++2e →H2↑
  • (iii) Chromium hydroxide is generated by the rise of pH of the treatment liquid.

  • 2Cr3++6(OH)→2Cr(OH)3↑
  • (iv) Also from Co2+ that is used for improving the corrosion resistance in the treatment liquid, cobalt(II) hydroxide is generated in the vicinity of the interface with the zinc with the rise of pH. However, Co2+ is converted to stable Co3+ with time, because Co2+ is unstable on the alkaline side.

  • Co(OH)2→Co(OH)3
  • (v) Other insoluble substances (SiO2) and a small amount of the treatment liquid are also adsorbed and impregnated to be taken into the coating film, with gelation and deposition of chromium hydroxide and cobalt hydroxide (Co2+, Co3+).
    (vi) The coating film is hardened in drying processes by deposition, dewatering of adsorbed substances and solidification. However, the coating film is not hardened when the drying is insufficient, and it is expected that chemical reactions will proceed in the coating film.
    (vii) Since the chemical conversion coating film containing the treatment liquid is in a slightly acidic atmosphere, cobalt (III) hydroxide in the coating film is gradually liberated and dissolved, and Co3+ is converted to Co2+ that is stable in an acidic condition. In addition, it is considered that chromium hydroxide is also liberated and dissolved to cause the following reactions.

  • 3Co3++3e →3Co2+

  • Cr3+→Cr6++3e
  • Combination of these formulae gives the following.

  • Cr3++3Co3+→Cr6++3Co2+
  • In short, it is considered that trivalent cobalt in the coating film oxidizes trivalent chromium to generate hexavalent chromium.
  • Meanwhile, it is considered that, even when Co3+ is not contained or even when the coating film is formed from a chemical conversion treatment liquid having a strong oxidizing effect caused by a combination of chloric acid-nitric acid, or the like, hexavalent chromium is generated. Therefore, it is assumed that reduction of nitrate ion concentration in the treatment liquid is also helps to suppress the generation of hexavalent chromium. It is considered that, in a chemical conversion coating film containing a manganese compound such as manganese dioxide, and in a chemical conversion coating film containing, in the coating film, a large amount of ions of an element other than Co whose valence can vary, hexavalent chromium is generated by oxidation of trivalent chromium in a similar manner.
  • In addition, the present invention is achieved on the basis of the following discovery. Specifically, by adding a hexavalent chromium generation suppressing agent having an effect of suppressing hexavalent chromium generation to any one of a trivalent chromium chemical conversion treatment liquid, washing water for a trivalent chromium chemical conversion coating film and a finishing liquid therefor, hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film can be suppressed, and an amount of hexavalent chromium eluted from the trivalent chromium chemical conversion coating film (an amount eluted when the coating film is immersed in a hot water at a temperature of 100° C. for 10 minutes) can be less than 0.05 μg/cm2 even after the coating film is left.
  • Therefore, the present invention provides a chemical conversion treatment liquid for forming, on zinc or zinc alloy plating, a trivalent chromium chemical conversion coating film from which hexavalent chromium is substantially not eluted even after the coating film is left. The chemical conversion treatment liquid is characterized in that a content of trivalent chromium ions in the treatment liquid is 0.002 to 0.5 mol/l, a concentration of hexavalent chromium ions is 1 ppm or less, a content of cobalt ions is 0.1 mol/l or less, a hexavalent chromium generation suppressing agent that can suppress generation of hexavalent chromium which is generated in the trivalent chromium chemical conversion coating film is contained in said liquid, and a pH of the chemical conversion treatment liquid is 0.5 to 5.
  • In addition, the present invention provides washing water or a finishing liquid for a trivalent chromium chemical conversion coating film formed on zinc or zinc alloy plating, for suppressing hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film. The washing water or the finishing liquid is characterized by containing a hexavalent chromium generation suppressing agent that can suppress generation of hexavalent chromium which is generated in the trivalent chromium chemical conversion coating film at 0.1 to 10 g/l, and characterized in that a pH of the washing water or the finishing liquid is 2 to 10.
  • In addition, the present invention is achieved on the basis of the following discovery. Specifically, a trivalent chromate coating film is formed by use of a trivalent chromium chemical conversion treatment liquid in which a content of cobalt ions is 250 ppm or less and a content of a sulfur compound is in the range of 100 to 1000 ppm in terms of sulfur atoms. As a result, hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film can be suppressed, and an amount of hexavalent chromium eluted from the trivalent chromium chemical conversion coating film can be less than 0.05 μg/cm2 even after the coating film is left (an amount eluted when the coating film is immersed in hot water at a temperature of 100° C. for 10 minutes).
  • Therefore, the present invention provides a chemical conversion treatment liquid for forming a trivalent chromate coating film from which hexavalent chromium is not substantially eluted after the coating film is left, the trivalent chromate coating film being formed on zinc or zinc alloy plating. The chemical conversion treatment liquid is characterized in that a content of trivalent chromium ions in the treatment liquid is 0.002 to 0.5 mol/l, a concentration of hexavalent chromium ions is 1 ppm or less, a content of cobalt ions is 250 ppm or less, and a sulfur compound is contained in the range of 100 to 1500 ppm in terms of sulfur atoms.
  • The trivalent chromium chemical conversion coating film according to the present invention further has an excellent corrosion resistance of the trivalent chromium chemical conversion coating film, in addition to a corrosion resistance of zinc plating itself. In addition, the coating film obtained by forming the trivalent chromium chemical conversion coating film directly on zinc plating undergoes no substantial elution of hexavalent chromium after the coating film is left, has a corrosion resistance and a salt water resistance equal to or higher than those of conventional hexavalent chromate, and can be applied in various colors. In addition, in the chemical conversion treatment liquid according to the present invention that can form such a chemical conversion coating film, the trivalent chromium concentration in the treatment liquid is low, and an organic acid concentration or nitrogen concentration can also further be reduced. Therefore, the treatment liquid is advantageous in wastewater treatment and thus has excellent cost performance.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • The substrate used in the present invention may be made of any of the following materials: various metals such as iron, nickel and copper; alloys thereof; and metals and alloys such as aluminum, which have been subjected to zincate conversion treatment, and may have any of various shapes such as plate-like, rectangular, column-like, cylindrical and spherical shapes.
  • The above substrate is plated with zinc or a zinc alloy by the usual method. The zinc plating may be deposited on the substrate using either of the following baths: an acidic/neutral bath such as a sulfuric acid bath, a borofluoride bath, a potassium chloride bath, a sodium chloride bath or an ammonium chloride-potassium chloride bath; or an alkaline bath such as a cyanide bath, a zincate bath or a pyrophoric acid bath, but particularly, a cyanide bath is preferable. The zinc alloy plating may be performed using either an ammonium chloride bath or an alkaline bath such as an organic chelate bath.
  • In addition, the zinc alloy plating may be zinc-iron alloy plating, zinc-nickel alloy plating, zinc-cobalt alloy plating or tin-zinc alloy plating. Zinc-iron alloy plating is preferable. The zinc or zinc alloy plating may be deposited on a substrate in any thickness, but preferably in a thickness of 1 μm or more, and more preferably in a thickness of 5 to 25 μm.
  • In the present invention, after the zinc or zinc alloy plating is deposited on a substrate according to the above method, the plated substrate is appropriately pretreated by, for example, being washed with water and optionally activated by a nitric acid, as needed. Thereafter, the zinc or zinc alloy plating is subjected to chemical conversion treatment by a dipping treatment, or the like using a chemical conversion treatment liquid for forming the trivalent chromium chemical conversion coating film according to the present invention.
  • The chemical conversion treatment liquid of the first aspect of the present invention contains trivalent chromium ions, cobalt ions and hexavalent chromium generation suppressing agent that can suppress generation of hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film.
  • In the chemical conversion treatment liquid, any chromium compound containing trivalent chromium ions may be used as a source of trivalent chromium ions. For example, the sources of trivalent chromium salts such as chromium chloride, chromium sulfate, chromium nitrate, chromium phosphate or chromium acetate can be used, or, alternatively, trivalent chromium ions can be obtained by the reduction of hexavalent chromium ions of chromic acid, a dichromate, or the like with a reducing agent. However, the sources are not limited to these examples. One of the above sources of trivalent chromium ions or any combination of at least two of them may be used. A content of trivalent chromium ions in the chemical conversion treatment liquid should preferably be 0.002 to 0.5 mol/l, and should more preferably be 0.02 to 0.1 mol/l. Meanwhile, a concentration of hexavalent chromium ions in the chemical conversion treatment liquid should preferably be 1 ppm or less, and should more preferably be 0.5 ppm or less.
  • In the chemical conversion treatment liquid, any metal compound containing cobalt may be used as a source of cobalt ions. Examples of such metal compounds include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt carbonate and cobalt hydroxide. However, the metal compounds are not limited to these examples. One of the above metal compounds or any combination of at least two of them may be used. A content of cobalt ions in the chemical conversion treatment liquid should preferably be 0.1 mol/l or less, should more preferably be 0.001 to 0.06 mol/l, and should still more preferably be 0.005 to 0.04 mol/l.
  • In the chemical conversion treatment liquid, any additives can be used as the hexavalent chromium generation suppressing agent as long as the additives can suppress generation of hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film. In order to find out additives that can suppress generation of hexavalent chromium, various additives are added to chemical conversion treatment liquids for forming the trivalent chromate coating film and effect of the additives is examined by experiments. As a result, organic reducing compounds such as ascorbate ions, citrate ions, tannate ions, gallate ions, tartrate ions, hydroxy(iso)quinolines, phenols and thiourea, and inorganic or metal reducing compounds such as phosphate ions, chromium phosphate ions, vanadium ions and titanium ions show the effect. Therefore, preferable hexavalent chromium generation suppressing agents include ascorbic acid, salts thereof, citric acid, salts thereof, tannic acid, salts thereof, gallic acid, salts thereof, tartaric acid, salts thereof, thiourea, phosphoric acid, salts thereof, vanadium compounds, titanium compounds, and the like. A content of the hexavalent chromium generation suppressing agent in the chemical conversion treatment liquid should preferably be 0.1 to 5 g/l, should more preferably be 0.2 to 3 g/l, and should still more preferably be 0.3 to 2 g/l.
  • A pH of the chemical conversion treatment liquid should preferably be 0.5 to 5, and should more preferably be 2 to 3. The pH can be adjusted to this range by using the inorganic acid ions as described below, and also by using an alkaline agent such as an alkaline hydroxide, ammonia water, or the like.
  • The chemical conversion treatment liquid may contain one or more kinds selected from inorganic acids, alkaline salts thereof, and the like. Examples of inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, and the like. However, the inorganic acids are not limited to these examples. When one or more kinds selected from inorganic acids, alkaline salts thereof, and the like are contained, a concentration thereof in the chemical conversion treatment liquid should preferably be 1 to 50 g/L, and should more preferably be 4 to 20 g/L.
  • In addition, the chemical conversion treatment liquid may contain one or more kinds of hydroxycarboxylic acids, monocarboxylic acids, polyvalent carboxylic acids, aminocarboxylic acids, alkaline salts thereof, and the like as chelating agents for trivalent chromium ions. Examples of hydroxycarboxylic acids include malic acid, and the like. However, the hydroxycarboxylic acids are not limited to these examples. Examples of monocarboxylic acids include formic acid, acetic acid, and the like. However, the monocarboxylic acids are not limited to these examples. Examples of polyvalent carboxylic acids include: dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, adipic acid and diglycolic acid; tricarboxylic acids such as propanetricarboxylic acid, and the like. However, the polyvalent carboxylic acids are not limited to these examples. Examples of aminocarboxylic acids include glycine, aspartic acid, and the like. However, the aminocarboxylic acids are not limited to these examples. Among these, polyvalent carboxylic acids are preferable, and oxalic acid, malonic acid and succinic acid are more preferable. When the chelating agent for trivalent chromium ions is contained, a concentration thereof in the chemical conversion treatment liquid should preferably be in the range of 0.2 to 2 mole, should more preferably be in the range of 0.3 to 2 mole, should still more preferably be in the range of 0.5 to 2 mole, and should still further more preferably be in the range of 0.7 to 1.8 mole per mole of trivalent chromium ions.
  • In addition, the chemical conversion treatment liquid may contain one or more kinds of silicon compounds. Examples of silicon compounds include colloidal silica, sodium silicate, potassium silicate, lithium silicate, and the like. However, the silicon compounds are not limited to these examples. When the silicon compound is contained, a concentration thereof in the chemical conversion treatment liquid should preferably be 1 to 20 g/l, and should more preferably be 2 to 10 g/l in terms of Si. Colloidal silica is particularly preferable. A concentration thereof should preferably be 1 to 100 ml/l as a 20% SiO2 aqueous solution. By adding colloidal silica, a coating film with a bilayer structure of a Si—O layer and a Cr—O layer can be formed, whereby the corrosion resistance can be further improved.
  • In addition, the chemical conversion treatment liquid may contain one or more kinds of agents for reducing a coating film overall friction coefficient. Examples of such agents for reducing a coating film overall friction coefficient include quinoline-based compounds such as quinoline sulfonic acid, quinaldic acid, quinophthalone and derivatives thereof described in Japanese Patent Application Publication No. 2005-248233. When the agent for reducing a coating film overall friction coefficient is contained, a concentration thereof in the chemical conversion treatment liquid should preferably be 0.1 to 25 g/l, and should more preferably be 0.2 to 15 g/l. The trivalent chromium chemical conversion coating film according to the present invention formed by treatment with the chemical conversion treatment liquid containing such a agent for reducing a coating film overall friction coefficient is a coating film that has a reduced coating film overall friction coefficient.
  • The rest of the chemical conversion treatment liquid other than the above essential components is water.
  • Usually, a nitrogen-containing compound, mainly nitrate ions, is used in large amount in a trivalent chromium chemical conversion treatment liquid, for improving the corrosion resistance of a trivalent chromium chemical conversion coating film. Consequently, the nitrogen atom concentration in the treatment liquid is high, for example 3 to 9 g/l, and there is a problem in terms of the wastewater treatment. In the chemical conversion treatment liquid according to the present invention, nitrate ions may be used in an amount similar to a conventional treatment liquid. However, even when nitrate ions are considerably decreased, and a nitrogen atom concentration, in the chemical conversion treatment liquid, mainly derived from nitrate ions is considerably reduced to 500 ppm/1 or less, the trivalent chromium chemical conversion coating film that has an excellent corrosion resistance and from which elution of hexavalent chromium is suppressed when the coating film is left can be obtained from the chemical conversion treatment liquid. In the above treatment liquid, a content is specifically 500 ppm or less in terms of nitrogen atoms, should preferably be in the range of 30 to 400 ppm and should more preferably be in the range of 50 to 300 ppm, for example. A metal reducing compound is preferable as the hexavalent chromium generation suppressing agent. Particularly, vanadium compounds, titanium compounds, magnesium compounds and combination thereof are preferable.
  • In addition, cobalt ions may be contained but are not necessarily contained. However, cobalt ions should be contained preferably in the range of 0.001 to 0.06 mol/l, and more preferably in the range of 0.005 to 0.04 mol/l, because corrosion resistance of the chemical conversion coating film under heating is further improved.
  • A method for forming a trivalent chromium chemical conversion coating film on zinc or zinc alloy plating by using the chemical conversion treatment liquid is commonly to immerse a zinc or zinc alloy plated substrate into the chemical conversion treatment liquid. A temperature of the chemical conversion treatment liquid at immersion is, for example, 10 to 70° C. The temperature should preferably be 30 to 50° C. An immersion time should preferably be 5 to 600 seconds, and should more preferably be 15 to 120 seconds. Meanwhile, immersion into a diluted nitric acid solution, a diluted sulfuric acid solution, a diluted hydrochloric acid solution, a diluted hydrofluoric acid solution, or the like may be performed before trivalent chromium chemical conversion treatment, for activating the surface of the zinc or zinc alloy plating. The conditions and treatment operations other than those described above may follow the conventional hexavalent chromate treatment method.
  • Meanwhile, the second aspect of the present invention is washing water or a finishing liquid for a trivalent chromium chemical conversion coating film formed on zinc or zinc alloy plating. The washing water or the finishing liquid is used for suppressing hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film. The washing water or the finishing liquid contains a hexavalent chromium generation suppressing agent that can suppress generation of hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film. A method for forming a trivalent chromium chemical conversion coating film to which the washing water or the finishing liquid is applied is not particularly limited, and may be any known method. The washing water or the finishing liquid is particularly effective in the following cases: the trivalent chromium chemical conversion coating film contains Co2+ and Co3+; the trivalent chromium chemical conversion coating film is a coating film formed from a chemical conversion treatment liquid having a stronger oxidizing effect caused by a combination of chloric acid-nitric acid, or the like; the trivalent chromium chemical conversion coating film contains a manganese compound such as manganese dioxide; and the trivalent chromium chemical conversion coating film contains, in the coating film, a large amount of ions of an element, other than Co, whose valence can vary. Meanwhile, the hexavalent chromium generation suppressing agent is already described above. A content of the hexavalent chromium generation suppressing agent in the washing water or the finishing liquid should preferably be 0.1 to 10 g/l, should more preferably be 0.2 to 5 g/l, and should still more preferably be 0.3 to 3 g/l. Examples of preferable hexavalent chromium generation suppressing agents include ascorbic acid, salts thereof, citric acid, salts thereof, tannic acid, salts thereof, gallic acid, salts thereof, tartaric acid, salts thereof, thiourea, phosphoric acid, salts thereof, and the like.
  • A pH of the washing water or the finishing liquid should preferably be 2 to 10, and should more preferably be 3 to 6. The pH may be adjusted to this range by using the inorganic acid ions as described below, or by using an alkaline agent such as an alkaline hydroxide, ammonia water, or the like.
  • A method for treating a trivalent chromium chemical conversion coating film using the washing water or the finishing liquid is not particularly limited, and conventional and known methods such as immersing, applying, spraying, and the like may be used. However, to immerse a trivalent chromium chemical conversion coating film into the washing water or the finishing liquid is commonly employed. A temperature of the washing water or the finishing liquid at immersion is, for example, 10 to 70° C. The temperature should preferably be 20 to 50° C. An immersion time should preferably be 5 to 120 seconds, and should more preferably be 5 to 15 seconds.
  • Meanwhile, a chemical conversion treatment liquid of the third aspect of the present invention contains trivalent chromium ions, cobalt ions and a sulfur compound.
  • In the chemical conversion treatment liquid, any chromium compound containing trivalent chromium ions may be used as a source of trivalent chromium ions. For example, the source should be trivalent chromium salt such as chromium chloride, chromium sulfate, chromium nitrate, chromium phosphate or chromium acetate, or, alternatively, trivalent chromium ions can be obtained by the reduction of hexavalent chromium ions of chromic acid, a dichromate, or the like with a reducing agent. However, the source is not limited to these examples. One of the above sources of trivalent chromium ions or any combination of at least two of them may be used. A content of trivalent chromium ions in the chemical conversion treatment liquid should preferably be 0.002 to 0.5 mol/l, and should more preferably be 0.02 to 0.1 mol/l. Meanwhile, a concentration of hexavalent chromium ions in the chemical conversion treatment liquid should preferably be 1 ppm or less, and should more preferably be 0.5 ppm or less.
  • A content of cobalt ions in the chemical conversion treatment liquid is 250 ppm or less. The chemical conversion treatment liquid does not necessarily contain cobalt ions. Since the sulfur compound is contained, the formed trivalent chromium chemical conversion coating film has a sufficient corrosion resistance even when cobalt ions are not contained. A content of cobalt ions in the chemical conversion treatment liquid should preferably be 100 to 250 ppm, and should more preferably be 150 to 200 ppm, when a higher corrosion resistance is required. When the chemical conversion treatment liquid contains cobalt ions, any metal compound containing cobalt can be used as a source of cobalt ions. Examples of such metal compounds include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt carbonate and cobalt hydroxide. However, the metal compounds are not limited to these examples. One of the above metal compounds or any combination of at least two of them may be used.
  • In the chemical conversion treatment liquid, an organic sulfur compound is preferable as the sulfur compound. Specific examples of organic sulfur compounds include thiourea, thioglycerin, thioacetic acid, potassium thioacetate, thiodiacetic acid, 3,3-thiodipropionic acid, thiosemicarbazide, thioglycolic acid, thiodiglycolic acid, thiomaleic acid, thioacetamide, dithioglycolic acid, dithiodiglycolic acid, alkaline salts thereof, and the like. In addition, one of the above sulfur compounds or a mixture of two or more of them can be used. A content of the sulfur compound in the chemical conversion treatment liquid should preferably be 100 to 1500 ppm, should more preferably be 300 to 1000 ppm, and should still more preferably be 400 to 800 ppm in terms of sulfur atoms. By adding the sulfur compound, the formed trivalent chromium chemical conversion coating film has a sufficient corrosion resistance, even when a concentration of cobalt ions in the coating film is 0.2 μg/cm or less, and preferably 0.17 μg/cm or less. In addition, in the trivalent chromium chemical conversion coating film formed from the chemical conversion treatment liquid, hexavalent chromium which is otherwise generated in the trivalent chromium chemical conversion coating film can be suppressed because of low concentration of cobalt ions in the coating film.
  • In the chemical conversion treatment liquid, a high corrosion resistance can be maintained even when nitrogen content in the treatment liquid is considerably reduced. A preferable nitrogen content is 500 ppm or less, and preferably 200 ppm or less in terms of nitrogen atoms. The content should more preferably be 40 to 200 ppm, and should still more preferably be 60 to 130 ppm.
  • In addition, the chemical conversion treatment liquid may contain one or more kinds of silicon compounds. Examples of silicon compounds include colloidal silica, sodium silicate, potassium silicate, lithium silicate, and the like. However, the silicon compounds are not limited to these examples. When the silicon compound is contained, a concentration thereof in the chemical conversion treatment liquid should preferably be 1 to 20 g/l, and should more preferably be 2 to 10 g/l in terms of Si. Colloidal silica is particularly preferable. A concentration thereof should preferably be 1 to 100 ml/l as a 20% SiO2 aqueous solution. By adding colloidal silica, a coating film with a bilayer structure of a Si—O layer and a Cr—O layer can be formed, whereby corrosion resistance can be further improved.
  • In addition, the chemical conversion treatment liquid may contain one or more kinds of agents for reducing a coating film overall friction coefficient. Examples of such agents for reducing a coating film overall friction coefficient include quinoline-based compounds such as quinoline sulfonic acid, quinaldic acid, quinophthalone and derivatives thereof described in Japanese Patent Application Publication No. 2005-248233. When the agent for reducing a coating film overall friction coefficient is contained, a concentration thereof in the chemical conversion treatment liquid should preferably be 0.1 to 25 g/l, and should more preferably be 0.2 to 15 g/l. The trivalent chromium chemical conversion coating film according to the present invention formed by treatment with the chemical conversion treatment liquid containing such a agent for reducing a coating film overall friction coefficient is a coating film that has a reduced coating film overall friction coefficient.
  • In addition, the chemical conversion treatment liquid may contain one or more kinds selected from inorganic acids, alkaline salts thereof, and the like. Examples of inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, and the like. However, the inorganic acids are not limited to these examples. When one or more kinds selected from inorganic acids, the alkaline salts thereof, and the like are contained, a concentration thereof in the chemical conversion treatment liquid should preferably be 0.01 to 50 g/L, and should more preferably be 0.05 to 20 g/L.
  • In addition, the chemical conversion treatment liquid may contain one or more kinds selected from phosphorus oxoacids such as hypophosphorous acid, phosphoric acid, alkaline salts thereof, and the like. When one or more kinds selected from phosphorus oxoacids such as hypophosphorous acid, phosphoric acid, alkaline salts thereof, and the like are contained, the concentration thereof in the chemical conversion treatment liquid should preferably be 0.1 to 50 g/L, and should more preferably be 4 to 25 g/L.
  • Furthermore, the chemical conversion treatment liquid may contain one or more kinds of hydroxycarboxylic acids, monocarboxylic acids, polyvalent carboxylic acids, aminocarboxylic acids, alkaline salts thereof, and the like as chelating agents for trivalent chromium ions. Examples of hydroxycarboxylic acids include malic acid, and the like. However, the hydroxycarboxylic acids are not limited to these examples. Examples of monocarboxylic acids include formic acid, acetic acid, and the like. However, the monocarboxylic acids are not limited to these examples. Examples of polyvalent carboxylic acids include: dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, adipic acid and diglycolic acid; tricarboxylic acids such as propanetricarboxylic acid, and the like. However, the polyvalent carboxylic acids are not limited to these examples. Examples of aminocarboxylic acids include glycine, aspartic acid, and the like. However, the aminocarboxylic acids are not limited to these examples. Among these, polyvalent carboxylic acids are preferable, and oxalic acid, malonic acid and succinic acid are more preferable. When the above carboxylic acids and alkaline salts thereof are contained, a concentration thereof in the chemical conversion treatment liquid should preferably be in the range of 0.2 to 2 mole, should more preferably be in the range of 0.3 to 2 mole, should still more preferably be in the range of 0.5 to 2 mole, and should still further more preferably be in the range of 0.7 to 1.8 mole per mole of trivalent chromium ions.
  • In addition, the chemical conversion treatment liquid may contain one or more kinds of ions of metal selected from Mg, Al, Mn, Ti, W, V, Mo, Ni, Fe, Zn, Zr, Ca, Nb, Ta, Sn and Ce. When the metal ions are contained, a concentration thereof in the chemical conversion treatment liquid should preferably be 1 to 10 g/l, and should more preferably be 2 to 8 g/l.
  • A pH of the chemical conversion treatment liquid should preferably be 0.5 to 5, and should more preferably be 2 to 3. The pH may be adjusted to this range by using the inorganic acid ions as described below, or by using an alkaline agent such as an alkaline hydroxide, ammonia water, or the like.
  • The rest of the chemical conversion treatment liquid other than the above essential components is water.
  • A method for forming a trivalent chromium chemical conversion coating film on zinc or zinc alloy plating by using the chemical conversion treatment liquid is commonly to immerse a zinc or zinc alloy plated substrate into the chemical conversion treatment liquid. A temperature of the chemical conversion treatment liquid at immersion is, for example, 10 to 70° C. The temperature should preferably be 25 to 35° C. An immersion time should preferably be 5 to 600 seconds, and should more preferably be 15 to 120 seconds. Meanwhile, immersion into a diluted nitric acid solution, a diluted sulfuric acid solution, a diluted hydrochloric acid solution, a diluted hydrofluoric acid solution, or the like may be performed before trivalent chromium chemical conversion treatment, for activating the surface of the zinc or zinc alloy plating. The conditions and treatment operations other than those described above may follow the conventional hexavalent chromate treatment method.
  • Overcoating the trivalent chromium chemical conversion coating film formed by using the chemical conversion treatment liquid according to the present invention can improve the corrosion resistance thereof, and thus is a highly effective means for achieving longer-lasting corrosion resistance. For example, the trivalent chromium chemical conversion coating film is firstly formed on the zinc or zinc alloy plating using the chemical conversion treatment liquid according to the present invention, then washed with water, then immersed into an overcoating solution or subjected to an electrolytic treatment therein, and thereafter dried. Alternatively, the trivalent chromium chemical conversion coating film may be dried after formation thereof, and thereafter further immersed into an overcoating solution or subjected to an electrolytic treatment therein, and then dried. Here, as the overcoating, as well as an inorganic coating film made of silicates, phosphates, or the like, an organic coating film made of polyethylene, polyvinyl chloride, polystyrene, polypropylene, methacrylate resin, polycarbonate, polyamide, polyacetal, fluorine resin, urea resin, phenolic resin, unsaturated polyester resin, polyurethane, alkyd resin, epoxy resin, melamine resin, or the like may be effectively used.
  • As the overcoating solution for overcoating such a film, DIPCOAT W or CC445 available from Dipsol Chemicals Co., Ltd. or the like may be used. The thickness of the overcoating may be any value, but should preferably be 0.1 to 30 μm.
  • Next, the present invention is described by referring to Examples and Comparative Examples.
  • EXAMPLES Examples 1 to 8
  • An M6 bolt (material: iron), which had been plated with zinc using a zincate (NZ-200 available from Dipsol Chemicals Co., Ltd.) in Examples 1 to 2 and 6 to 8 or acidic zinc (EZ-960 available from Dipsol Chemicals Co., Ltd.) in Examples 3 to 5 in a thickness of 8 μm, was immersed in a chemical conversion treatment liquid shown in Table 1 under conditions shown in Table 1. In addition, in Examples 6 to 8, the immersed bolt was immersed in a finishing liquid shown in Table 1 under conditions shown in Table 1. After immersion, the coating film was dried under conditions at 80° C. for 10 minutes.
  • TABLE 1
    Example 1 2 3 4 5 6 7 8
    Composition of trivalent chromium chemical conversion treatment liquid
    Cr3− (mol/l) 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
    Cr6+ 0 0 0 0 0 0 0 0
    Oxalic acid (g/l) 12 12 12 12 12 12 12 12
    (mol/mol of Cr3+) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7) (1.7)
    Co2+ (mol/l) 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034
    hexavalent chromium generation Tannic Gallic Thiourea Vanadium ion phosphate ion
    suppressing agent (0.5 g/l) acid acid (vanadium (sodium
    chloride) dihydrogen
    phosphate)
    Nitrogen content in terms of 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2
    nitrogen atoms (g/l)
    pH 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
    Treatment temperature (° C.) 30 30 30 30 30 30 30 30
    Treatment time (seconds) 40 40 40 40 40 40 40 40
    Composition of finishing liquid
    Ascorbic acid (g/l) 2
    Tannic acid (g/l) 1
    Chromium phosphate (g/l) + 2 + 3
    citric acid (g/l)
    pH of finishing liquid 4 4 6
    Finishing treatment 25 40 25
    temperature (° C.)
    Finishing treatment 15 5 15
    time (seconds)
  • A 40% chromium nitrate aqueous solution was employed as a source of Cr3+, and cobalt nitrate was employed as a source of Co2+. The rest of the solution was water.
  • Comparative Example 1
  • An M6 bolt (material: iron), which had been plated with zinc using a zincate (NZ-200 available from Dipsol Chemicals Co., Ltd.) in a thickness of 8 μm, was subjected to a hexavalent chromate treatment. As the hexavalent chromate treatment liquid, Z-493 (10 ml/l) available from Dipsol Chemicals Co., Ltd. was used, and the bolt was immersed at 25° C. for 20 seconds. After immersion, the coating film was dried under conditions at 60° C. for 10 minutes.
  • Comparative Example 2
  • A trivalent chromium chemical conversion coating film was formed on an M6 bolt (material: iron), which had been plated with zinc using a zincate (NZ-200 available from Dipsol Chemicals Co., Ltd.) in a thickness of 8 um. As the chemical conversion treatment liquid, a chemical conversion treatment liquid having the following composition was used, and the bolt was immersed at 30° C. for 40 seconds. After immersion, the coating film was dried under conditions at 80° C. for 10 minutes.
  • Cr3+ 4 g/l (40% chromium nitrate was used.
    0.077 mol/l in terms of Cr)
    Oxalic acid 12 g/l
    Co(NO3)2 10 g/l (0.034 mol/l in terms of Co)
    pH 2.3
  • Table 2 shows concentrations of Cr3+, concentrations of Cr6+ and concentrations of Co2+ in the chemical conversion coating films obtained in Examples 1 to 8 and Comparative Examples 1 and 2, appearances, results of salt spray test (JIS Z-2371) and amounts of hexavalent chromium eluted after the storage test. As shown in Table 3, the coating films of Examples 1 to 8 exhibited corrosion resistance equal to or better than that of the conventional hexavalent chromate chemical conversion coating film of Comparative Example 1. In addition, the amounts of hexavalent chromium eluted after storage test were less than the measurement limit value.
  • TABLE 2
    Corrosion resistance Amount of
    Concentration in Time required for Cr6+ eluted
    coating film (μg/cm2) Appearance of the formation of after shelf
    Cr3+ Cr6+ Co2+ coating film white rust (Hrs) test (μg/cm2)
    Example 1 8.5 0 0.7 Pale reddish green 300 <0.05
    Example 2 10.5 0 2.5 Pale reddish green 300 <0.05
    Example 3 6.7 0 1.6 Pale reddish green 300 <0.05
    Example 4 7.0 0 0.6 Pale reddish green 300 <0.05
    Example 5 5.4 0 0.4 Pale reddish green 300 <0.05
    Example 6 10.0 0 2.3 Pale reddish green 300 <0.05
    Example 7 10.8 0 1.0 Pale reddish green 300 <0.05
    Example 8 10.7 0 2.9 Pale reddish green 300 <0.05
    Comparative 20 6.8 0 Reddish green 240 6.8
    Example 1
    Comparative 11 0.01 2.8 Pale reddish green 240 0.12
    Example 2
  • Examples 9 to 11
  • An M6 Bolt (material: iron), which had been plated with zinc using a zincate (NZ-200 available from Dipsol Chemicals Co., Ltd.) in a thickness of 8 μm, were immersed into a chemical conversion treatment liquid shown in Table 3 under conditions shown in Table 3. After immersion, the coating film was dried under conditions at 80° C. for 10 minutes.
  • TABLE 3
    Example 9 10 11
    Cr3+ (mol/l) 0.038 0.038 0.038
    Cr6+ (ppm) 0 0 0
    Nitrogen content in terms of 90 90 90
    nitrogen atoms (ppm)
    SO4 2− (g/L) 0 6.0 6.0
    Cl (g/L) 4.4 0 0
    Thiodiglycolic acid (g/L) 2 (430) 2 (430) 0
    (in terms of sulfur content (ppm))
    Thiourea (g/L) 0 0 2 (840)
    (in terms of sulfur content (ppm))
    Co2+ (ppm) 200 200 200
    Si (g/L) 2 2 2
    ph of treatment liquid 2.4 2.4 2.4
    Treatment temperature (° C.) 30 30 30
    Treatment time (seconds) 60 40 40
  • A 35% chromium chloride aqueous solution (Example 9) or a 35% chromium sulfate aqueous solution (Examples 10 and 11) was employed as a source of Cr3+. Cobalt chloride (Example 9) or cobalt sulfate (Examples 10 and 11) was employed as a source of Co2+. Si was an acidic colloidal silica (SNOWTEX-O available from Nissan Chemical Industries, Ltd.). The rest of the solution was water.
  • Examples 12 to 14
  • Overcoating was performed on the trivalent chromium chemical conversion coating film of Example 9. Table 4 shows the overcoating conditions.
  • TABLE 4
    Example 12 13 14
    Type of Chromium Inorganic Methacrylate
    overcoating phosphate-based silicate-based resin-based
    inorganic inorganic Si-dispersed-type
    coating film coating film organic coating
    film
    Treatment 150 ml/l 200 ml/l Undiluted liquid
    concentration was used
    Treatment 45° C., 25° C., 25° C.,
    conditions 10 seconds 30 seconds 30 seconds
    Name of agent ZTB-118 CC-445Y DIPCOAT W
    available from available from available from
    Dipsol Chemicals Dipsol Chemicals Dipsol Chemicals
    Co., Ltd. Co., Ltd. Co., Ltd.
  • Table 5 shows concentrations of Cr3+, concentrations of Cr6+ and concentrations of Co2+ in the chemical conversion coating films obtained in Examples 9 to 14 and Comparative Examples 1 and 2, appearances, results of salt spray test (JIS Z-2371) and amounts of hexavalent chromium eluted after storage test. As shown in Table 5, the coating films of Examples 9 to 14 exhibited corrosion resistance equal to or better than that of the conventional hexavalent chromate chemical conversion coating film of Comparative Example 1. In addition, the overcoated coating films (Examples 12 to 14) exhibited better corrosion resistance than the conventional hexavalent chromate chemical conversion coating film. In addition, the amounts of hexavalent chromium eluted after storage test were less than the measurement limit value.
  • TABLE 5
    Corrosion resistance Amount of
    Concentration in Time required for Cr6 + eluted
    coating film (μg/cm2) Appearance of the formation of after shelf
    Cr3+ Cr6+ Co2+ coating film white rust (Hrs) test (μg/cm2)
    Example 9 7.0 0 0.1 Light blue 240 <0.05
    Example 10 5.8 0 0.1 Light blue 240 <0.05
    Example 11 6.0 0 0.1 Light blue 240 <0.05
    Example 12 7.0 0 0.1 light interference 1000 or more <0.05
    color
    Example 13 7.0 0 0.1 colorless 1000 or more <0.05
    Example 14 7.0 0 0.1 colorless 1000 or more <0.05
    Comparative 20 6.8 0 Reddish green 240 6.8
    Example 1
    Comparative 11 0.11 2.8 Pale reddish green 240 0.12
    Example 2
  • (Measurement of Cr6+ Concentration in Coating Film)
  • A coating film sample (50 cm2) was immersed into approximately 50 ml of hot water at a temperature of 100° C. for 10 minutes. An amount of hexavalent chromium eluted from the coating film sample was determined by the absorption spectroscopy using diphenylcarbazide (in accordance with EN-15205).
  • (Measurement of Cr3+ Concentration and Co2+ Concentration in Coating Film)
  • After measuring the Cr6+ concentration, the same sample was dissolved into hydrochloric acid, and Cr3+ and Co2+ concentrations in the solution was measured by ICP optical emission spectrometry.
  • (Salt Spray Test)
  • In a salt spray test, evaluation was made in accordance with JIS-Z-2371.
  • (Procedure of Storage Test and Measurement of Amount of Hexavalent Chromium Eluted after the Storage Test)
  • A storage test was performed as an acceleration test by employing a method in which a sample for the elution test was left for 30 days in a constant temperature and humidity chamber maintained at a temperature of 80° C. and a humidity of 95%. Then, the sample after the storage test was immersed into hot water at a temperature of 100° C. for 10 minutes by a method similar to the above-described measuring method of Cr6+ concentration in a coating film. An amount of hexavalent chromium eluted from the coating film sample was determined by absorption spectroscopy using diphenylcarbazide (in accordance with EN-15205).
  • Examples 15 to 20
  • An M6 Bolt (material: iron), which had been plated with zinc using a zincate (NZ-200 available from Dipsol Chemicals Co., Ltd.) in a thickness of 8 μm, was immersed into a chemical conversion treatment liquid shown in Table 6 under conditions shown in Table 6. After immersion, the coating film was dried under conditions at 80° C. for 10 minutes.
  • TABLE 6
    Example 15 16 17 18 19 20
    Cr3+ (mol/l) 0.038 0.038 0.038 0.038 0.038 0.038
    Cr6+ (ppm) 0 0 0 0 0 0
    Nitrogen content in 135 270 270 90 90 90
    terms of nitrogen
    atoms (ppm)
    Tartaric acid (g/l) 0 0 0 2 (0.35) 2 (0.35) 0
    (mol/mol of Cr3+)
    Malic acid(g/l) 5 (0.97) 5 (0.97) 0 0 0 5 (0.97)
    (mol/mol of Cr3+)
    SO4 2− (g/l) 0 0 2 2 0 0
    Cl (g/l) 4 4 4 4 4 4
    Co2+ (mol/l) 0.015 0.008 0 0.008 0.008 0.008
    VOSO4 (g/l) 1 1 0 0 1 0
    Ti(SO4)2 0 0 1 0 0 1
    MgSO4 (g/l) 0 0 0 2 0 0
    Si (g/l) 5 2 5 10 5 10
    ph of treatment 2.0 2.1 2.0 2.3 2.4 2.5
    liquid
    Treatment temperature 40 40 30 30 30 30
    (° C.)
    Treatment time 20 30 60 40 40 60
    (seconds)
  • A 35% chromium chloride aqueous solution was employed as a source of Cr3+. Cobalt chloride was employed as a source of Co2+. Si was an acidic colloidal silica (SNOWTEX-O available from Nissan Chemical Industries, Ltd.). The rest of the solution was water. Note that, the nitrogen content was derived from NO3 .
  • TABLE 7
    Corrosion resistance Amount of
    Concentration in Time required for Cr6+ eluted
    coating film (μg/cm2) Appearance of the formation of after shelf
    Cr3+ Cr6+ Co2+ coating film white rust (Hrs) test (μg/cm2)
    Example 15 7.2 0 0.15 Light blue 240 <0.05
    Example 16 7.0 0 0.1 Light blue 240 <0.05
    Example 17 6.2 0 0 Light blue 168 <0.05
    Example 18 5.0 0 0.15 Light blue 144 <0.05
    Example 19 4.3 0 0.1 Light blue 144 <0.05
    Example 20 4.0 0 0.1 Light blue 144 <0.05

Claims (16)

1-19. (canceled)
20-23. (canceled)
24. A chemical conversion treatment liquid for forming a trivalent chromium chemical conversion coating film on zinc or zinc alloy plating, characterized in that
a content of trivalent chromium ions in the treatment liquid is 0.002 to 0.5 mol/l,
a concentration of hexavalent chromium ions is 1 ppm or less,
a content of cobalt ions is 0.1 mol/1 or less,
a hexavalent chromium generation suppressing agent that can suppress generation of hexavalent chromium which is generated in the trivalent chromium chemical conversion coating film is contained in said liquid, and
a pH of the chemical conversion treatment liquid is 0.5 to 5.
25. The chemical conversion treatment liquid according to claim 24, wherein the hexavalent chromium generation suppressing agent is within the range of 0.1 to 5 g/l.
26. The chemical conversion treatment liquid according to claim 24, wherein the hexavalent chromium generation suppressing agent is a reducing compound.
27. The chemical conversion treatment liquid according to claim 24, wherein the hexavalent chromium generation suppressing agent is selected from the group consisting of a tannic acid and a salt thereof, gallic acid and a salt thereof, tartaric acid and a salt thereof, citric acid and a salt thereof, ascorbic acid and a salt thereof, a vanadium compound, a titanium compound, phosphoric acid and a salt thereof, and chromium phosphate.
28. The chemical conversion treatment liquid according to claim 24, further comprising a chelating agent in the range of 0.2 to 2 mole per mole of Cr3+.
29. The chemical conversion treatment liquid according to claim 24, wherein a content of nitrogen is 500 ppm or less in terms of nitrogen atoms.
30. The chemical conversion treatment liquid according to claim 24, further comprising a quinoline-based compound or a derivative thereof.
31. Washing water or a finishing liquid for a trivalent chromium chemical conversion coating film formed on zinc plating or zinc alloy plating, characterized by comprising
a hexavalent chromium generation suppressing agent that can suppress generation of hexavalent chromium which is generated in the trivalent chromium chemical conversion coating film at 0.1 to 10 g/l, wherein
a pH of the washing water or the finishing liquid is 2 to 10.
32. A chemical conversion treatment liquid for forming a trivalent chromium chemical conversion coating film on zinc or zinc alloy plating, characterized in that
a content of trivalent chromium ions in the treatment liquid is 0.002 to 0.5 mol/l,
a concentration of hexavalent chromium ions is 1 ppm or less,
a content of cobalt ions is 250 ppm or less, and
a sulfur compound is contained in the range of 100 to 1500 ppm in terms of sulfur atoms.
33. The chemical conversion treatment liquid according to claim 32, wherein a content of nitrogen is 500 ppm or less in terms of nitrogen atoms.
34. The chemical conversion treatment liquid according to claim 32, further comprising a silicon compound.
35. The chemical conversion treatment liquid according to claim 32, further comprising a quinoline-based compound or a derivative thereof.
36-37. (canceled)
38. The trivalent chromium chemical conversion coating film, wherein
a corrosion resistance (a time required for the formation of white rust) in a salt spray test is 96 hours or more,
a concentration of hexavalent chromium in terms of metal atoms in the chemical conversion coating film is less than 0.01 μg/cm2, and
an amount of hexavalent chromium eluted from the coating film left for 30 days in a constant temperature and humidity chamber at a temperature of 80° C. and at a humidity of 95% (an amount eluted by immersion of the coating film into hot water at a temperature of 100° C. for 10 minutes) is less than 0.05 μg/cm2, wherein
the trivalent chromium chemical conversion coating film is formed on zinc or zinc alloy plating, and
after the formation thereof, the coating film is treated with the washing water or the finishing liquid; comprising:
a hexavalent chromium generation suppressing agent that can suppress generation of hexavalent chromium which is generated in the trivalent chromium chemical conversion coating film at 0.1 to 10 g/l, wherein
a pH of the washing water or the finishing liquid is 2 to 10.
US14/154,677 2007-08-03 2014-01-14 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment Abandoned US20160369107A9 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/154,677 US20160369107A9 (en) 2007-08-03 2014-01-14 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
US15/497,776 US11643732B2 (en) 2007-08-03 2017-04-26 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2007-203284 2007-08-03
JP2007203284 2007-08-03
JP2007298411 2007-11-16
JP2007-298411 2007-11-16
PCT/JP2008/063963 WO2009020097A1 (en) 2007-08-03 2008-08-04 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
US67178610A 2010-03-10 2010-03-10
US14/154,677 US20160369107A9 (en) 2007-08-03 2014-01-14 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US12/671,786 Division US20100203327A1 (en) 2007-08-03 2008-08-04 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
PCT/JP2008/063963 Division WO2009020097A1 (en) 2007-08-03 2008-08-04 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
US67178610A Division 2007-08-03 2010-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/497,776 Continuation US11643732B2 (en) 2007-08-03 2017-04-26 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment

Publications (2)

Publication Number Publication Date
US20140124099A1 US20140124099A1 (en) 2014-05-08
US20160369107A9 true US20160369107A9 (en) 2016-12-22

Family

ID=40341329

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/671,786 Abandoned US20100203327A1 (en) 2007-08-03 2008-08-04 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
US14/154,677 Abandoned US20160369107A9 (en) 2007-08-03 2014-01-14 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
US15/497,776 Active 2029-06-29 US11643732B2 (en) 2007-08-03 2017-04-26 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/671,786 Abandoned US20100203327A1 (en) 2007-08-03 2008-08-04 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/497,776 Active 2029-06-29 US11643732B2 (en) 2007-08-03 2017-04-26 Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment

Country Status (6)

Country Link
US (3) US20100203327A1 (en)
EP (3) EP2940188B1 (en)
JP (2) JP5914949B2 (en)
CN (4) CN102758197A (en)
ES (1) ES2638442T3 (en)
WO (1) WO2009020097A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568863B2 (en) * 2007-09-03 2010-10-27 ユケン工業株式会社 Composition for chemical conversion treatment and member having chemical conversion film formed by the treatment
KR20100002359U (en) * 2008-08-26 2010-03-08 정순학 Vinyl house pipe fixation nine
US8272571B2 (en) * 2008-08-29 2012-09-25 The Invention Science Fund I, Llc E-paper display control of classified content based on e-paper conformation
WO2010087442A1 (en) * 2009-01-30 2010-08-05 ユケン工業株式会社 Composition for chemical conversion coating, and member equipped with chemical conversion coating film comprising the composition
IT1405319B1 (en) 2010-12-27 2014-01-03 Fontana R D S R L COATING PROCESS OF THREADED METAL PARTS
EP2492371A1 (en) * 2011-02-24 2012-08-29 Dr.Ing. Max Schlötter GmbH & Co. KG Cobalt-free passivation solution and method for depositing cobalt-free passivation coatings on zinc and zinc alloy surfaces
EP2691555A2 (en) 2011-03-30 2014-02-05 Mahindra & Mahindra Ltd. Corrosion resistance passivation formulation and process of preparation thereof
JP6106596B2 (en) * 2011-11-02 2017-04-05 東罐マテリアル・テクノロジー株式会社 Hexavalent chromium elution reduction complex oxide pigment
CN103205741B (en) * 2012-01-13 2016-01-20 苏州汉扬精密电子有限公司 Magnesium alloy passivating solution and surface treatment method of Mg alloy
JP6216936B2 (en) * 2013-01-24 2017-10-25 ユケン工業株式会社 Method for producing member having reactive composition and acidic coating for chemical conversion treatment and chemical coating on its surface
CN103215787A (en) * 2013-04-18 2013-07-24 无锡小天鹅股份有限公司 Washing machine inner barrel support, manufacturing method thereof and washing machine with the inner barrel support
CN103320779B (en) * 2013-06-25 2015-05-20 上海应用技术学院 Passivation solution capable of inhibiting formation of hexavalent chromium in trivalent chromium passivation layer as well as preparation method and application of passivation solution
US9683293B2 (en) 2013-08-07 2017-06-20 The Boeing Company Reduction of chromium waste water in an aluminum conversion coat processing line
EP3040385A4 (en) * 2013-08-28 2017-03-29 Dipsol Chemicals Co., Ltd. Friction modifier for top coating agent for trivalent chromium chemical conversion coating film or chromium-free chemical conversion coating film, and top coating agent including same
KR20170033384A (en) * 2014-08-04 2017-03-24 시티즌 도케이 가부시키가이샤 Leather or leather article and method for producing same, hexavalent chromium treatment agent, method for treating hexavalent chromium in crude leather or curde leather article
CN104651823B (en) * 2015-02-14 2017-08-22 上海盛田化工科技有限公司 One kind is without environmentally friendly trivalent chromium black passivation solution of cobalt and preparation method thereof
US9915006B2 (en) 2015-07-10 2018-03-13 Yuken Industry Co., Ltd. Reactive-type chemical conversion treatment composition and production method of member with chemical conversion coated surface
JP6562782B2 (en) * 2015-09-04 2019-08-21 日本パーカライジング株式会社 Metal surface treatment agent
US10376824B2 (en) * 2016-03-22 2019-08-13 Ecological World For Life S.A.S. Mechanical system to capture and transform contaminant gases, and method to purify air
JP6377226B1 (en) * 2017-09-14 2018-08-22 ディップソール株式会社 Trivalent chromium chemical conversion treatment solution for zinc or zinc alloy substrate and chemical conversion treatment method using the same
CN108823559A (en) * 2018-08-06 2018-11-16 广州和力表面处理技术有限公司 A kind of cover packaging material pre-treatment trivalent chromium passivator and preparation method thereof
MX2022007699A (en) 2019-12-20 2022-07-19 Atotech Deutschland Gmbh & Co Kg Passivation composition and method for depositing a chromium-comprising passivation layer on a zinc or zinc-nickel coated substrate.
CN116940710A (en) 2021-02-05 2023-10-24 德国艾托特克有限两合公司 Method for depositing chromium-containing passivation layer on zinc-containing coating
CN113549911A (en) * 2021-07-27 2021-10-26 贵州航天精工制造有限公司 Zinc-plating colorful passivation solution and passivation process thereof
US12037690B2 (en) 2022-06-13 2024-07-16 Chemeon Surface Technology, Llc Conversion coating application system including hydrogels and methods of using same
JP7340900B1 (en) * 2023-06-01 2023-09-08 ユケン工業株式会社 Trivalent chromium black chemical conversion treatment composition and method for producing a member provided with a chemical conversion film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392922A (en) * 1980-11-10 1983-07-12 Occidental Chemical Corporation Trivalent chromium electrolyte and process employing vanadium reducing agent
US5807442A (en) * 1996-04-26 1998-09-15 Henkel Corporation Chromate passivating and storage stable concentrate solutions therefor

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215507B2 (en) 1973-05-18 1977-04-30
US7314671B1 (en) * 1996-04-19 2008-01-01 Surtec International Gmbh Chromium(VI)-free conversion layer and method for producing it
DE19615664A1 (en) 1996-04-19 1997-10-23 Surtec Produkte Und Systeme Fu Chromium (VI) free chromate layer and process for its production
JPH1081976A (en) * 1996-09-05 1998-03-31 Nisshin Steel Co Ltd Chromate treating solution and treatment
JPH10176279A (en) * 1996-12-18 1998-06-30 Nisshin Steel Co Ltd Production of structural hot-dip coated steel excellent in resistance to white rust and chromium (vi) ion elution
JP3983386B2 (en) * 1998-04-03 2007-09-26 日本ペイント株式会社 Chromate antirust treatment agent
ID27370A (en) * 1998-06-01 2001-04-05 Nihon Parkerizing MATERIALS OF WATER CHEMICALS USED FOR METAL SURFACE TREATMENT
JP2000199074A (en) * 1998-12-28 2000-07-18 Nippon Parkerizing Co Ltd Deposition type surface treating liquid of rare earth- iron sintered permanent magnet, its surface treatment, and rare earth-iron sintered permanent magnet having surface treated by that surface treatment
JP2002199074A (en) * 2000-12-25 2002-07-12 Hayami Kosan Kk Neck strap
US20040173289A1 (en) * 2001-01-31 2004-09-09 Yasuhiro Kinoshita Rustproofing agent for zinc plated steel sheet
JP4145016B2 (en) * 2001-01-31 2008-09-03 日本パーカライジング株式会社 Rust preventive agent for galvanized steel sheet and galvanized steel sheet
JP2003147544A (en) * 2001-11-07 2003-05-21 Nippon Parkerizing Co Ltd Surface treatment film of zinc plated film, surface treatment solution for zinc plated film, and surface treatment method
JP3332373B1 (en) * 2001-11-30 2002-10-07 ディップソール株式会社 A treatment solution for forming a hexavalent chromium-free rust preventive film on zinc and zinc alloy plating, a hexavalent chromium-free rust preventive film, and a method for forming the same.
JP3332374B1 (en) 2001-11-30 2002-10-07 ディップソール株式会社 A treatment solution for forming a hexavalent chromium-free rust preventive film on zinc and zinc alloy plating, a hexavalent chromium-free rust preventive film, and a method for forming the same.
US7029541B2 (en) * 2002-01-24 2006-04-18 Pavco, Inc. Trivalent chromate conversion coating
JP3774415B2 (en) * 2002-03-14 2006-05-17 ディップソール株式会社 A treatment solution for forming a black hexavalent chromium-free conversion coating on zinc and zinc alloy plating and a method of forming a black hexavalent chromium-free conversion coating on zinc and zinc alloy plating.
US20050109426A1 (en) * 2002-03-14 2005-05-26 Dipsol Chemicals Co., Ltd. Processing solution for forming hexavalent chromium free, black conversion film on zinc or zinc alloy plating layers, and method for forming hexavalent chromium free, black conversion film on zinc or zinc alloy plating layers
JP3620510B2 (en) 2002-04-05 2005-02-16 ユケン工業株式会社 Substrate, manufacturing method thereof and automobile parts
JP2005085497A (en) 2003-09-04 2005-03-31 Furukawa Electric Co Ltd:The Lamination connector
JP4446230B2 (en) * 2003-12-09 2010-04-07 ディップソール株式会社 Trivalent chromate solution for aluminum or aluminum alloy and method for forming corrosion-resistant film on aluminum or aluminum alloy surface using the same
JP4508634B2 (en) * 2003-12-26 2010-07-21 株式会社タイホー Metal surface treatment agent, metal surface treatment liquid, corrosion-resistant colored film formed thereby, corrosion-resistant colored part having this corrosion-resistant colored film, and method for producing this corrosion-resistant colored part
JP3584937B1 (en) * 2004-01-05 2004-11-04 ユケン工業株式会社 Hexavalent chromium-free black rust-proof coating, surface treatment solution and treatment method
JP4738747B2 (en) * 2004-01-22 2011-08-03 日本表面化学株式会社 Black film agent and black film forming method
JP5061395B2 (en) * 2004-02-24 2012-10-31 日本表面化学株式会社 Hexavalent chromium-free film-forming agent and method for zinc or zinc-nickel alloy plating
JP2005240084A (en) * 2004-02-25 2005-09-08 Nitto Seiko Co Ltd Trivalent chromate plating system
JP4446233B2 (en) * 2004-03-03 2010-04-07 ディップソール株式会社 Covalent friction coefficient reducing agent for trivalent chromate treatment solution, trivalent chromate treatment solution and production method thereof, trivalent chromate coating with reduced overall friction coefficient and production method thereof
JP4142616B2 (en) * 2004-07-13 2008-09-03 株式会社三原産業 Preparation method of surface treatment liquid
JP2006274321A (en) * 2005-03-28 2006-10-12 Mihara Sangyo:Kk Surface treatment film
JP4520360B2 (en) * 2005-05-13 2010-08-04 日東精工株式会社 Program for calculating impurity concentration in plating film
WO2006128154A1 (en) * 2005-05-26 2006-11-30 Pavco, Inc. Trivalent chromium conversion coating and method of application thereof
JP4429214B2 (en) * 2005-06-07 2010-03-10 株式会社ムラタ Surface treatment liquid and method for forming chemical conversion film
JP5007469B2 (en) * 2005-06-09 2012-08-22 日本表面化学株式会社 Green trivalent chromium conversion coating
ES2456952T3 (en) * 2006-02-17 2014-04-24 Dipsol Chemicals Co., Ltd. Treatment solution for forming a chemical coating of black trivalent chromium on zinc or zinc alloy and method of forming the chemical coating of black trivalent chromium on zinc or zinc alloy
WO2007100135A1 (en) * 2006-03-03 2007-09-07 Dipsol Chemicals Co., Ltd. Aqueous treating solution for forming black trivalent-chromium chemical conversion coating on zinc or zinc alloy and method of forming black trivalent-chromium chemical conversion coating
US20070243397A1 (en) * 2006-04-17 2007-10-18 Ludwig Robert J Chromium(VI)-free, aqueous acidic chromium(III) conversion solutions
US20090014094A1 (en) * 2007-07-12 2009-01-15 Joseph Kuezynski Methods for Reducing Hexavalent Chromium in Trivalent Chromate Conversion Coatings
JP5449325B2 (en) * 2008-04-25 2014-03-19 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Trivalent chromium passivator for treating galvanized steel
US20200094456A1 (en) 2018-09-21 2020-03-26 Dentsply Sirona Inc. Method and apparatus for overmolding gutta-percha onto carriers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392922A (en) * 1980-11-10 1983-07-12 Occidental Chemical Corporation Trivalent chromium electrolyte and process employing vanadium reducing agent
US5807442A (en) * 1996-04-26 1998-09-15 Henkel Corporation Chromate passivating and storage stable concentrate solutions therefor

Also Published As

Publication number Publication date
JP2015007294A (en) 2015-01-15
EP2189551A1 (en) 2010-05-26
CN104805427A (en) 2015-07-29
EP2189551B1 (en) 2017-07-05
EP2940188B1 (en) 2019-02-13
EP2189551A4 (en) 2011-04-06
CN102758197A (en) 2012-10-31
US20100203327A1 (en) 2010-08-12
US20170226644A1 (en) 2017-08-10
CN101815809A (en) 2010-08-25
JP5914949B2 (en) 2016-05-11
JP5957742B2 (en) 2016-07-27
EP2735626A2 (en) 2014-05-28
WO2009020097A1 (en) 2009-02-12
ES2638442T3 (en) 2017-10-20
US20140124099A1 (en) 2014-05-08
EP2735626B1 (en) 2019-04-10
CN102268667B (en) 2016-08-10
EP2940188A1 (en) 2015-11-04
JPWO2009020097A1 (en) 2010-11-04
EP2735626A3 (en) 2014-10-22
CN102268667A (en) 2011-12-07
US11643732B2 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
US11643732B2 (en) Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
US7914627B2 (en) Processing solution for forming hexavalent chromium free and corrosion resistant conversion film on zinc or zinc alloy plating layers, hexavalent chromium free and corrosion resistant conversion film, method for forming the same
US6719852B2 (en) Processing solution for forming hexavalent chromium free and corrosion resistant conversion film on zinc or zinc alloy plating layers, hexavalent chromium free and corrosion resistant conversion film and method for forming the same
US8337641B2 (en) Treatment solution for forming black hexavalent chromium-free chemical conversion coating film on zinc or zinc alloy
EP1484432B1 (en) Treating solution for forming black hexavalent chromium-free chemical coating on zinc or zinc alloy plated substrate, and method for forming black hexavalent chromium-free chemical coating on zinc or zinc alloy plated substrate
KR101020920B1 (en) Treatment solution for forming of black trivalent chromium chemical coating on zinc or zinc alloy and method of forming black trivalent chromium chemical coating on zinc or zinc alloy
US9057133B2 (en) Processing solution for forming hexavalent chromium free, black conversion film on zinc or zinc alloy plating layers, and method for forming hexavalent chromium free, black conversion film on zinc or zinc alloy plating layers
US9157154B2 (en) Aqueous treating solution for forming black trivalent-chromium chemical conversion coating on zinc or zinc alloy and method of forming black trivalent-chromium chemical conversion coating
RU2418098C2 (en) Material of zinc containing clad steel with composite coating distinguished with excellent corrosion and blackening resistance, adhesion of coating and alkali resistance
JP3584937B1 (en) Hexavalent chromium-free black rust-proof coating, surface treatment solution and treatment method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION