US20160331689A1 - Aqueous enteric coating composition - Google Patents
Aqueous enteric coating composition Download PDFInfo
- Publication number
- US20160331689A1 US20160331689A1 US15/132,627 US201615132627A US2016331689A1 US 20160331689 A1 US20160331689 A1 US 20160331689A1 US 201615132627 A US201615132627 A US 201615132627A US 2016331689 A1 US2016331689 A1 US 2016331689A1
- Authority
- US
- United States
- Prior art keywords
- coating composition
- enteric coating
- aqueous enteric
- percent
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
- A61K47/183—Amino acids, e.g. glycine, EDTA or aspartame
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2806—Coating materials
- A61K9/282—Organic compounds, e.g. fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
- A61K47/38—Cellulose; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2806—Coating materials
- A61K9/2833—Organic macromolecular compounds
- A61K9/286—Polysaccharides, e.g. gums; Cyclodextrin
- A61K9/2866—Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5015—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5036—Polysaccharides, e.g. gums, alginate; Cyclodextrin
- A61K9/5042—Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
Definitions
- the present invention relates to an aqueous enteric coating composition with improved processability.
- Enteric coatings are used on various tablets or pellets utilized to orally deliver a wide range of pharmaceuticals and nutraceuticals. Enteric coatings are typically applied to protect the pharmaceutical or nutraceutical being delivered from the acid pH of the stomach. Most enteric coatings comprise one or more of hydroxypropylmethylcellulose phthalate, cellulose acetate phthalate, carboxymethylethylcellulose, methyl methacrylate-methacrylate copolymer, methacrylate-ethyl acrylate copolymer, methacrylate-methyl acrylate-methyl methacrylate copolymer, hydroxypropylmethylcellulose acetate succinate, polyvinyl acetate phthalate and shellac.
- HPMCAS hydroxypropylmethylcellulose acetate succinate
- AQOAT® Shin-Etsu Chemical Co., Ltd. (Japan).
- HPMCAS hydroxypropylmethylcellulose acetate succinate
- Existing coating methods utilizing HPMCAS have some processing difficulties. There is a significant problem with respect to nozzle clogging in the spray apparatus.
- One solution is to cool the coating fluid to a temperature less than 10° C. and to reduce polymer concentration to less than 7 percent.
- Other solutions include suspending the HPMCAS in ammonia or to dissolve it in a solvent such as ethanol or acetone. Use of ammonia or solvents may be difficult to handle for large scale commercial purposes, as there are stability issues and potential environmental and safety issues.
- Other options are to use a special dual spray nozzle or to use a powder nozzle. These options require a significant capital investment in the spray technology.
- the present invention aims to overcome the above problems and difficulties with an aqueous enteric coating composition that does not cause clogging in spray nozzles, avoids the use of ammonia or solvents and does not require expensive nozzle or spray technology.
- the aqueous enteric coating composition comprises hydroxypropylmethylcellulose acetate succinate and a basic amino acid.
- the aqueous enteric coating composition comprises 5 to 20 percent hydroxypropylmethylcellulose acetate succinate, 0.05 to 1.0 percent L-alginine or L-histidine, 0.5 to 10 percent plasticizer, 0.1 to 10 percent anti-tacking agent, 0.05 to 0.5 percent surfactant, and 65 to 95 percent water.
- the present invention is directed to a novel aqueous enteric coating composition
- a novel aqueous enteric coating composition comprising hydroxypropylmethylcellulose acetate succinate (HPMCAS), a basic amino acid and additives such as plasticizers, surfactants, anti-tacking agents and the like.
- HPMCAS hydroxypropylmethylcellulose acetate succinate
- additives such as plasticizers, surfactants, anti-tacking agents and the like.
- the HPMCAS is Shin-Etsu AQOAT® available from Shin-Etsu Chemical Co., Ltd. (Japan).
- other enteric coating materials may be included. Exemplary other materials include hydroxypropylmethylcellulose phthalate, cellulose acetate phthalate, carboxymethylethylcellulose, methyl methacrylate-methacrylate copolymer, methacrylate-ethyl acrylate copolymer, methacrylate-methyl acrylate-methyl methacrylate copolymer, hydroxypropylmethylcellulose acetate succinate, polyvinyl acetate phthalate and shellac. Often such materials are included to allow the overall enteric coating to dissolve at different rates based on different pHs.
- the amount of HPMCAS in the composition may be from about 5 to about 20 percent by weight of the composition.
- Suitable basic amino acids include one or more of L-alginine, L-histidine and L-lysine.
- the amount of basic amino acid in the composition may be from about 0.05 percent to about 1.0 percent by weight of the composition.
- Plasticizers are added to assist in the melting characteristics of the composition.
- Exemplary of plasticizers that may be employed in this invention are triethyl citrate (TEC), triacetin, tributyl citrate, acetyl triethyl citrate (ATEC), acetyl tributyl citrate (ATBC), dibutyl phthalate, dibutyl sebacate (DBS), diethyl phthalate, vinyl pyrrolidone glycol triacetate, polyethylene glycol, polyoxyethylene sorbitan monolaurate, propylene glycol, propylene carbonate or castor oil; and combinations or mixtures thereof.
- the amount of plasticizers in the composition may be from about 0.5 to about 10 percent by weight of the composition.
- Surfactants are added to modify surface characteristics of the coated material and include Pluronics® (block copolymers of ethylene oxide and propylene oxide), lecithin, Aerosol OT® (sodium dioctyl sulfosuccinate), sodium lauryl sulfate, Polyoxyl 40TM hydrogenated castor oil, polyoxyethylene sorbitan fatty acid esters, i.e., the polysorbates such as Tween®, such as Tween 20, 60 & 80, the sorbitan fatty acid esters, i.e., sorbitan monolaurate, monooleate, monopalmitate, monostearate, etc.
- Pluronics® block copolymers of ethylene oxide and propylene oxide
- Aerosol OT® sodium dioctyl sulfosuccinate
- sodium lauryl sulfate sodium lauryl sulfate
- Polyoxyl 40TM hydrogenated castor oil polyoxyethylene sorbitan fatty
- Span® or Arlacel® such as Span® or Arlacel®, Emsorb®, Capmul®, or Sorbester®, Triton X-200, polyethylene glycol's, glyceryl monostearate, Vitamin E-TPGS® (d-alpha-tocopheryl polyethylene glycol 1000 succinate), sucrose fatty acid esters, such as sucrose stearate, sucrose oleate, sucrose palmitate, sucrose laurate, and sucrose acetate butyrate, and combinations and mixtures thereof.
- Preferred surfactants are Vitamin E-TPGS®, sodium lauryl sulfate, sucrose fatty acid esters, lecithin, and the Pluronic groups.
- the amount of surfactant in the composition may be from about 0.05 to about 0.5 percent by weight of the composition.
- Anti-tacking agents or processing lubricants may be included.
- Exemplary agents and lubricants include stearyl alcohol, stearic acid, glycerol monostearate (GMS), talc, magnesium stearate, silicon dioxide, amorphous silicic acid, and fumed silica; and combinations or mixtures thereof.
- the amount of anti-tacking agent or processing lubricant may be from about 0.1 percent to about 10 percent by weight of the composition.
- the overall composition may include about 65 to about 95 percent by water weight as the dispersing agent to provide the composition in aqueous form.
- additives may include absorption enhancers, dissolution modifying agents, coloring aids, flavoring agents, and stabilizing agents (e.g., dibasic sodium phosphate).
- the aqueous enteric coating composition may be used on tablets, pellets, granules, hard and soft capsules to deliver pharmaceuticals and nutraceuticals.
- pharmaceutical is defined as any chemical substance intended for use in the medical diagnosis, cure, treatment, or prevention of disease, for example over-the-counter drugs (OTC) and prescription only medicine (POM).
- OTC over-the-counter drugs
- POM prescription only medicine
- “nutraceutical” supplement include any nutrients that may provide health and medical benefits, including the prevention and treatment of disease. Examples include, but are not limited to, vitamins, minerals, probiotics, enzymes, herb and other botanical extracts, amino acid, concentrates, metabolites, constituents, etc.
- Exemplary vitamins and minerals include, but are not limited to, vitamins A (in the form of, for example, palmitate or beta carotene), B-complex (such as B-1, B-2, B-6 and B-12), C, D, E and K; niacin; acid vitamins such as pantothenic acid and folic acid; biotin; minerals such as iron, calcium, magnesium, iodine, copper, phosphorus, zinc, manganese, potassium, chromium, cobalt, molybdenum, selenium, nickel, tin, silicon, vanadium and boron; nutraceutical supplements such as fluorine and chlorine; and the like.
- nutraceutical supplements such as fluorine and chlorine; and the like.
- Various herbs and herbal remedies may be utilized as the nutraceutical supplements.
- the herbs are generally selected from those which have various medicinal or dietary supplement properties.
- Herbs are generally aromatic plants or plant parts that can be used medicinally or for flavoring. Examples include Gingko biloba, gotu kola, echinacea, St. John's wort, ginseng, valerian and the like. Suitable herbs may be used alone or in various mixtures in the filling described herein.
- a stock solution of L-histidine was prepared by dissolving 3 g in 100 ml water. The pH of the solution was 7.47. The following formulation was prepared and evaluated:
- HPMCAS (AS-MF) 7 (wt %)
- TEC Triethyl citrate
- Talc 2.1
- SLS Sodium lauryl sulfate
- Water ad 100 (Final wt 600 g)
- HPMCAS (AS-MF) 10 (wt %) L-histidine 0.03 TEC (Triethyl citrate) 3.0 Talc 2.5 SLS (Sodium lauryl sulfate) 0.3 Water ad 100 (Final wt 600 g)
- SLS was dissolved in water.
- HPMCAS was then dispersed in a same amount of water.
- the L-histidine solution was added to the above dispersion slowly to increase the pH (target 5.6 to 5.8). After adding 100 ml the pH was measured as 5.3.
- Talc was dispersed in a separate container and pass through high shear homogenizer as described earlier and then added to the above dispersion and mixed for another 30 minute.
- TEC was then added to the above dispersion and mixed for 30 minutes.
- the coating dispersion was passed through a 60 mesh screen.
- the conventional formulation showed coagulation at room temperature and a considerably amount of aggregated mass are remaining on the screen.
- the Formulation of Example 1 showed no coagulation was remaining mass on the screen was minimal.
- the coating experiment was also performed using:
- Placebo tablets prepared mainly from lactose and cornstarch
- L-arginine Another amino acid L-arginine was used as stabilizer. 10 g of L-arginine was dissolved in 100 mL water as a stock solution.
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 13%.
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 14%.
- the test method was the same as Example 2. All tablets were intact and the average uptake of gastric fluid (tablet weight gain after the test) was only 4.0%. The tablets were put into accelerated stability test at 40° C./75% RH (closed bottle). The gastric uptake after 4 weeks was only 2.9%.
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 14%.
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 14%.
- Silicon Dioxide was used as anti-tacking agent:
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 14%.
- the formulation was the same as Example 3.
- the core pellet was cellulose beads.
- Machine MIDI-GLATT Wurster Coating Charge 180 g (Celphere CP-507) Inlet Temperature 42-43° C. Product Temperature 33-35° C. Air flow 0.8 m 3 /min Spray feed rate 3.3 g/min Atomizing pressure 100 kPa Spray Nozzle 0.5 mm Partition Height 20 mm Retaining Screen 100 mesh
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 30%.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- General Preparation And Processing Of Foods (AREA)
Abstract
Description
- This Application claims priority to U.S. Provisional Application No. 62/160,203 filed May 12, 2015 the disclosure of which is incorporated herein by reference in its entirety.
- The present invention relates to an aqueous enteric coating composition with improved processability.
- Enteric coatings are used on various tablets or pellets utilized to orally deliver a wide range of pharmaceuticals and nutraceuticals. Enteric coatings are typically applied to protect the pharmaceutical or nutraceutical being delivered from the acid pH of the stomach. Most enteric coatings comprise one or more of hydroxypropylmethylcellulose phthalate, cellulose acetate phthalate, carboxymethylethylcellulose, methyl methacrylate-methacrylate copolymer, methacrylate-ethyl acrylate copolymer, methacrylate-methyl acrylate-methyl methacrylate copolymer, hydroxypropylmethylcellulose acetate succinate, polyvinyl acetate phthalate and shellac.
- One particular enteric coating composition is based on hydroxypropylmethylcellulose acetate succinate (HPMCAS) available as Shin-Etsu AQOAT® from Shin-Etsu Chemical Co., Ltd. (Japan). Existing coating methods utilizing HPMCAS, however, have some processing difficulties. There is a significant problem with respect to nozzle clogging in the spray apparatus. One solution is to cool the coating fluid to a temperature less than 10° C. and to reduce polymer concentration to less than 7 percent. Other solutions include suspending the HPMCAS in ammonia or to dissolve it in a solvent such as ethanol or acetone. Use of ammonia or solvents may be difficult to handle for large scale commercial purposes, as there are stability issues and potential environmental and safety issues. Other options are to use a special dual spray nozzle or to use a powder nozzle. These options require a significant capital investment in the spray technology.
- The present invention aims to overcome the above problems and difficulties with an aqueous enteric coating composition that does not cause clogging in spray nozzles, avoids the use of ammonia or solvents and does not require expensive nozzle or spray technology.
- The aqueous enteric coating composition comprises hydroxypropylmethylcellulose acetate succinate and a basic amino acid. In one embodiment, the aqueous enteric coating composition comprises 5 to 20 percent hydroxypropylmethylcellulose acetate succinate, 0.05 to 1.0 percent L-alginine or L-histidine, 0.5 to 10 percent plasticizer, 0.1 to 10 percent anti-tacking agent, 0.05 to 0.5 percent surfactant, and 65 to 95 percent water.
- The foregoing and other aspects of the present invention will now be described in more detail with respect to the description and methodologies provided herein. It should be appreciated that the invention can be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
- The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the embodiments of the invention and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items. Furthermore, the term “about,” as used herein when referring to a measurable value such as an amount of a compound, dose, time, temperature, and the like, is meant to encompass variations of 20%, 10%, 5%, 1%, 0.5%, or even 0.1% of the specified amount.
- It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Unless otherwise defined, all terms, including technical and scientific terms used in the description, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
- The term “consists essentially of” (and grammatical variants), as applied to the methods in this invention, means the methods or compositions can contain additional steps as long as the additional steps or components do not materially alter the basic and novel characteristic(s) of the present invention.
- The term “consisting of” excludes any additional step that is not specified in the claim.
- Unless the context indicates otherwise, it is specifically intended that the various features of the invention described herein can be used in any combination.
- Moreover, the present invention also contemplates that in some embodiments of the invention, any feature or combination of features set forth herein can be excluded or omitted.
- All patents, patent applications and publications referred to herein are incorporated by reference in their entirety. In case of a conflict in terminology, the present specification is controlling.
- As one of ordinary skill in the art may appreciate, the parameters described herein may vary greatly depending on the process, and/or formulation as well as the desired properties of the final product.
- The present invention is directed to a novel aqueous enteric coating composition comprising hydroxypropylmethylcellulose acetate succinate (HPMCAS), a basic amino acid and additives such as plasticizers, surfactants, anti-tacking agents and the like.
- In one embodiment, the HPMCAS is Shin-Etsu AQOAT® available from Shin-Etsu Chemical Co., Ltd. (Japan). Optionally, other enteric coating materials may be included. Exemplary other materials include hydroxypropylmethylcellulose phthalate, cellulose acetate phthalate, carboxymethylethylcellulose, methyl methacrylate-methacrylate copolymer, methacrylate-ethyl acrylate copolymer, methacrylate-methyl acrylate-methyl methacrylate copolymer, hydroxypropylmethylcellulose acetate succinate, polyvinyl acetate phthalate and shellac. Often such materials are included to allow the overall enteric coating to dissolve at different rates based on different pHs. The amount of HPMCAS in the composition may be from about 5 to about 20 percent by weight of the composition.
- Suitable basic amino acids include one or more of L-alginine, L-histidine and L-lysine. The amount of basic amino acid in the composition may be from about 0.05 percent to about 1.0 percent by weight of the composition.
- Plasticizers are added to assist in the melting characteristics of the composition. Exemplary of plasticizers that may be employed in this invention are triethyl citrate (TEC), triacetin, tributyl citrate, acetyl triethyl citrate (ATEC), acetyl tributyl citrate (ATBC), dibutyl phthalate, dibutyl sebacate (DBS), diethyl phthalate, vinyl pyrrolidone glycol triacetate, polyethylene glycol, polyoxyethylene sorbitan monolaurate, propylene glycol, propylene carbonate or castor oil; and combinations or mixtures thereof. The amount of plasticizers in the composition may be from about 0.5 to about 10 percent by weight of the composition.
- Surfactants are added to modify surface characteristics of the coated material and include Pluronics® (block copolymers of ethylene oxide and propylene oxide), lecithin, Aerosol OT® (sodium dioctyl sulfosuccinate), sodium lauryl sulfate, Polyoxyl 40™ hydrogenated castor oil, polyoxyethylene sorbitan fatty acid esters, i.e., the polysorbates such as Tween®, such as Tween 20, 60 & 80, the sorbitan fatty acid esters, i.e., sorbitan monolaurate, monooleate, monopalmitate, monostearate, etc. such as Span® or Arlacel®, Emsorb®, Capmul®, or Sorbester®, Triton X-200, polyethylene glycol's, glyceryl monostearate, Vitamin E-TPGS® (d-alpha-tocopheryl polyethylene glycol 1000 succinate), sucrose fatty acid esters, such as sucrose stearate, sucrose oleate, sucrose palmitate, sucrose laurate, and sucrose acetate butyrate, and combinations and mixtures thereof. Preferred surfactants are Vitamin E-TPGS®, sodium lauryl sulfate, sucrose fatty acid esters, lecithin, and the Pluronic groups. The amount of surfactant in the composition may be from about 0.05 to about 0.5 percent by weight of the composition.
- Anti-tacking agents or processing lubricants may be included. Exemplary agents and lubricants include stearyl alcohol, stearic acid, glycerol monostearate (GMS), talc, magnesium stearate, silicon dioxide, amorphous silicic acid, and fumed silica; and combinations or mixtures thereof. The amount of anti-tacking agent or processing lubricant may be from about 0.1 percent to about 10 percent by weight of the composition.
- The overall composition may include about 65 to about 95 percent by water weight as the dispersing agent to provide the composition in aqueous form.
- Other additives may include absorption enhancers, dissolution modifying agents, coloring aids, flavoring agents, and stabilizing agents (e.g., dibasic sodium phosphate).
- The aqueous enteric coating composition may be used on tablets, pellets, granules, hard and soft capsules to deliver pharmaceuticals and nutraceuticals.
- As used herein “pharmaceutical” is defined as any chemical substance intended for use in the medical diagnosis, cure, treatment, or prevention of disease, for example over-the-counter drugs (OTC) and prescription only medicine (POM). Exemplary active pharmaceutical components are listed in U.S. Pat. No. 6,723,358, column 9, line 25 to column 13, line 25, the disclosure of which is incorporated herein by reference in its entirety.
- As used herein “nutraceutical” supplement include any nutrients that may provide health and medical benefits, including the prevention and treatment of disease. Examples include, but are not limited to, vitamins, minerals, probiotics, enzymes, herb and other botanical extracts, amino acid, concentrates, metabolites, constituents, etc.
- Exemplary vitamins and minerals include, but are not limited to, vitamins A (in the form of, for example, palmitate or beta carotene), B-complex (such as B-1, B-2, B-6 and B-12), C, D, E and K; niacin; acid vitamins such as pantothenic acid and folic acid; biotin; minerals such as iron, calcium, magnesium, iodine, copper, phosphorus, zinc, manganese, potassium, chromium, cobalt, molybdenum, selenium, nickel, tin, silicon, vanadium and boron; nutraceutical supplements such as fluorine and chlorine; and the like. Various herbs and herbal remedies may be utilized as the nutraceutical supplements. The herbs are generally selected from those which have various medicinal or dietary supplement properties. Herbs are generally aromatic plants or plant parts that can be used medicinally or for flavoring. Examples include Gingko biloba, gotu kola, echinacea, St. John's wort, ginseng, valerian and the like. Suitable herbs may be used alone or in various mixtures in the filling described herein.
- The present invention will be further illustrated by the following non-limiting examples.
- A stock solution of L-histidine was prepared by dissolving 3 g in 100 ml water. The pH of the solution was 7.47. The following formulation was prepared and evaluated:
-
-
HPMCAS (AS-MF) 7 (wt %) TEC (Triethyl citrate) 2.1 Talc 2.1 SLS (Sodium lauryl sulfate) 0.2 Water ad 100 (Final wt 600 g) - SLS was dissolved in water. HPMCAS was then dispersed in a same amount of water. Talc was dispersed in a separate container and pass through high shear homogenizer as described earlier and then added to the above dispersion and mixed for another 30 minute. TEC was then added to the above dispersion and mixed for 30 minutes
-
-
HPMCAS (AS-MF) 10 (wt %) L-histidine 0.03 TEC (Triethyl citrate) 3.0 Talc 2.5 SLS (Sodium lauryl sulfate) 0.3 Water ad 100 (Final wt 600 g) - SLS was dissolved in water. HPMCAS was then dispersed in a same amount of water. The L-histidine solution was added to the above dispersion slowly to increase the pH (target 5.6 to 5.8). After adding 100 ml the pH was measured as 5.3. Talc was dispersed in a separate container and pass through high shear homogenizer as described earlier and then added to the above dispersion and mixed for another 30 minute. TEC was then added to the above dispersion and mixed for 30 minutes.
- The coating dispersion was passed through a 60 mesh screen. The conventional formulation showed coagulation at room temperature and a considerably amount of aggregated mass are remaining on the screen. The Formulation of Example 1 showed no coagulation was remaining mass on the screen was minimal.
- The coating experiment was also performed using:
- Equipment: A table-top side-vented pan coater (Glatt GMPC-I, batch size: 500 g)
- Core tablets: Placebo tablets (prepared mainly from lactose and cornstarch)
-
Machine GLATT Mini Coater GMPC1 Pan Size 0.8 L Charge 500 g Inlet Temperature 50-55° C. Outlet Temperature 33-36° C. Air flow 1.0 m3/min Spray feed rate 3.5-4.5 g/min Atomizing pressure 100 kPa Nozzle diameter 0.8 mm Distance 10 cm Pan speed 7-13 rpm Post drying 30-60 min. at 55° C. (inlet) - With the conventional formulation, the coating could not be performed due to the coagulation at room temperature. Using Formulation A, the coating went well without nozzle clogging.
- Another amino acid L-arginine was used as stabilizer. 10 g of L-arginine was dissolved in 100 mL water as a stock solution.
-
-
HPMCAS (AS-MF) 10 (wt %) L-arginine 0.33 TEC 2.5 Talc 3.0 SLS 0.3 Water ad 100 (Final wt 600 g) - SLS was dissolved in a required quantity of water. HPMCAS was then added and mix for 60 minutes. Talc was dispersed in a separate container with a high shear homogenizer and then added to the above dispersion and mix for 30 minutes Finally added TEC into the above dispersion and mix for another 60 minutes The pH of the dispersion was 5.08.
- No coagulation was observed.
- Coating Experiment (same as Example 1)
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 13%.
- Six tablets were immersed in USP simulated gastric fluid (pH 1.2, without pepsin) for 1 hr using a disintegration tester. All tablets were intact and the average uptake of gastric fluid (tablet weight gain after the test) was only 4.2%.
- The loading of HPMCAS was then increased to 12% with the following formulation:
-
-
HPMCAS (AS-MF) 12 (wt %) L-arginine 0.33 TEC 3.6 Talc 3.6 SLS 0.12 Water ad 100 (Final wt 600 g) - Preparation procedure was the same as Example 2.
- No coagulation was observed.
- Coating Experiment (same as Example 1)
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 14%.
- The test method was the same as Example 2. All tablets were intact and the average uptake of gastric fluid (tablet weight gain after the test) was only 4.0%. The tablets were put into accelerated stability test at 40° C./75% RH (closed bottle). The gastric uptake after 4 weeks was only 2.9%.
- Having thus described certain embodiments of the present invention, it is to be understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope thereof as hereinafter claimed.
- Coloring agent (titanium oxide) was added:
-
-
HPMCAS (AS-MF) 12 (wt %) L-arginine 0.33 TEC 3.6 Talc 3.6 SLS 0.25 Titanium Dioxide 0.5 Water ad 100 (Final wt 600 g) - Preparation procedure was the same as Example 2.
- No coagulation was observed.
- Coating Experiment (same as Example 1)
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 14%.
- Another coloring agent (iron oxide) was added:
-
HPMCAS (AS-MF) 12 (wt %) L-arginine 0.33 TEC 3.6 Talc 3.6 SLS 0.25 Iron oxide 0.5 Water ad 100 (Final wt 600 g) - Preparation procedure was the same as Example 2.
- No coagulation was observed.
- Coating Experiment (same as Example 1)
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 14%.
- Silicon Dioxide was used as anti-tacking agent:
-
HPMCAS (AS-MF) 12 (wt %) L-arginine 0.33 TEC 3.6 Silicon Dioxide (Aerosil ® R972) 0.5 SLS 0.25 - Preparation procedure was the same as Example 2.
- No coagulation was observed.
- Coating Experiment (same as Example 1)
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 14%.
- Example of pellet coating:
- The formulation was the same as Example 3. The core pellet was cellulose beads.
-
Machine MIDI-GLATT Wurster Coating Charge 180 g (Celphere CP-507) Inlet Temperature 42-43° C. Product Temperature 33-35° C. Air flow 0.8 m3/min Spray feed rate 3.3 g/min Atomizing pressure 100 kPa Spray Nozzle 0.5 mm Partition Height 20 mm Retaining Screen 100 mesh - No coagulation was observed.
- Coating Experiment (same as Example 1)
- Coating went smoothly without any nozzle clogging. Coating was performed to the weight gain of 30%.
- Having thus described certain embodiments of the present invention, it is to be understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope thereof as hereinafter claimed.
Claims (11)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/132,627 US20160331689A1 (en) | 2015-05-12 | 2016-04-19 | Aqueous enteric coating composition |
JP2017559615A JP6910962B2 (en) | 2015-05-12 | 2016-04-27 | Aqueous enteric coating composition |
EP16793160.9A EP3294272B1 (en) | 2015-05-12 | 2016-04-27 | Aqueous enteric coating composition |
PCT/US2016/029514 WO2016182737A1 (en) | 2015-05-12 | 2016-04-27 | Aqueous enteric coating composition |
KR1020177032322A KR102579495B1 (en) | 2015-05-12 | 2016-04-27 | Aqueous enteric coating composition |
CN201680027470.4A CN107847456A (en) | 2015-05-12 | 2016-04-27 | Aqueous enteric coated composition |
CN202211017772.7A CN115381960A (en) | 2015-05-12 | 2016-04-27 | Aqueous enteric coating composition |
US17/001,152 US11833252B2 (en) | 2015-05-12 | 2020-08-24 | Aqueous enteric coating composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562160203P | 2015-05-12 | 2015-05-12 | |
US15/132,627 US20160331689A1 (en) | 2015-05-12 | 2016-04-19 | Aqueous enteric coating composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/001,152 Continuation US11833252B2 (en) | 2015-05-12 | 2020-08-24 | Aqueous enteric coating composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160331689A1 true US20160331689A1 (en) | 2016-11-17 |
Family
ID=57249000
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/132,627 Abandoned US20160331689A1 (en) | 2015-05-12 | 2016-04-19 | Aqueous enteric coating composition |
US17/001,152 Active 2038-04-11 US11833252B2 (en) | 2015-05-12 | 2020-08-24 | Aqueous enteric coating composition |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/001,152 Active 2038-04-11 US11833252B2 (en) | 2015-05-12 | 2020-08-24 | Aqueous enteric coating composition |
Country Status (6)
Country | Link |
---|---|
US (2) | US20160331689A1 (en) |
EP (1) | EP3294272B1 (en) |
JP (1) | JP6910962B2 (en) |
KR (1) | KR102579495B1 (en) |
CN (2) | CN115381960A (en) |
WO (1) | WO2016182737A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060280794A1 (en) * | 2003-06-06 | 2006-12-14 | Naoru Hamaguchi | Solid pharmaceutical preparation |
US20070178152A1 (en) * | 2005-11-04 | 2007-08-02 | Shelton Michael C | Carboxyalkylcellulose esters for administration of poorly soluble pharmaceutically active agents |
US20080226731A1 (en) * | 2005-05-10 | 2008-09-18 | Madhav Vasanthavada | Pharmaceutical Compositions Comprising I Matinib and a Release Retardant |
US20090028939A1 (en) * | 2005-12-22 | 2009-01-29 | Takeda Pharmaceutical Company Limited | Solid Preparation |
US20090253808A1 (en) * | 2007-11-12 | 2009-10-08 | Pharmaceutics International, Inc. | Tri-molecular complexes and their use in drug delivery systems |
US20110150942A1 (en) * | 2008-06-13 | 2011-06-23 | Natalija Zajc | Gastro-resistant pharmaceutical oral compositions comprising duloxetine or its pharmaceutically acceptable derivatives |
US20110229567A1 (en) * | 2008-09-25 | 2011-09-22 | Takeda Pharmaceutical Company Limited | Solid pharmaceutical composition |
US20120115837A1 (en) * | 2009-04-30 | 2012-05-10 | Takeda Pharmaceutical Company Limited | Solid Preparation |
US20120129878A1 (en) * | 2009-07-28 | 2012-05-24 | Takeda Pharmaceutical Company Limited | Tablet |
US20120322851A1 (en) * | 2009-10-20 | 2012-12-20 | Gregroy Hardee | Oral delivery of therapeutically effective lna oligonucleotides |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5535031A (en) | 1978-09-04 | 1980-03-11 | Shin Etsu Chem Co Ltd | Enteric coating composition |
AR014765A1 (en) | 1998-03-23 | 2001-03-28 | Gen Mills Marketing Inc | COMPOSITION OF EDIBLE MATRIX WITH CHEATABLE TEXTURE, EDIBLE AND CHEATABLE PRODUCT, EDIBLE COMPOSITION, FOOD COVERAGE AND METHOD FOR THE MANUFACTURE OF EDIBLE PRODUCTS |
US6139875A (en) | 1998-09-29 | 2000-10-31 | Eastman Chemical Company | Aqueous enteric coating composition and low gastric permeability enteric coating |
IL130602A0 (en) * | 1999-06-22 | 2000-06-01 | Dexcel Ltd | Stable benzimidazole formulation |
US6228400B1 (en) * | 1999-09-28 | 2001-05-08 | Carlsbad Technology, Inc. | Orally administered pharmaceutical formulations of benzimidazole derivatives and the method of preparing the same |
CA2359812C (en) | 2000-11-20 | 2004-02-10 | The Procter & Gamble Company | Pharmaceutical dosage form with multiple coatings for reduced impact of coating fractures |
US7842308B2 (en) | 2001-01-30 | 2010-11-30 | Smithkline Beecham Limited | Pharmaceutical formulation |
US20040103821A1 (en) * | 2002-11-29 | 2004-06-03 | Freund Industrial Co., Ltd. | Aqueous shellac coating agent and production process therefor, and coated food and production process therefor, coated drug and production process therefor, glazing composition for oil-based confectionary, glazing process, and glazed oil-based confectionary using same |
CN1717180A (en) * | 2002-11-29 | 2006-01-04 | 服洛因得产业股份有限公司 | Water-based shellac coating material, process for producing the same, coated food obtained with the coating material, process for producing the same, coated medicine, process for producing the same, g |
WO2005053727A2 (en) * | 2003-11-29 | 2005-06-16 | Sangstat Medical Corporation | Pharmaceutical compositions for bioactive peptide agents |
KR20050080626A (en) | 2004-02-10 | 2005-08-17 | 삼성정밀화학 주식회사 | Preparation method of hydroxypropyl methylcellulose phthalate nanoparticle composition |
TW201240679A (en) | 2004-03-12 | 2012-10-16 | Capsugel Belgium Nv | Pharmaceutical formulations |
EP2275088B2 (en) | 2005-02-25 | 2018-09-26 | Takeda Pharmaceutical Company Limited | Method for producing granules |
WO2007029660A1 (en) * | 2005-09-06 | 2007-03-15 | Astellas Pharma Inc. | Microparticle of hardly-soluble substance having enteric base material adsorbed on the surface of the substance |
WO2008081891A1 (en) | 2006-12-28 | 2008-07-10 | Takeda Pharmaceutical Company Limited | Orally disintegrating solid preparation |
CN101686943B (en) * | 2007-02-20 | 2014-03-26 | 阿普塔利斯制药有限公司 | Stable digestive enzyme compositions |
CN101896170A (en) * | 2007-11-13 | 2010-11-24 | 赫尔克里士公司 | Water dispersible enteric coating formulation for nutraceutical and pharmaceutical dosage forms |
CN101756960B (en) | 2008-12-26 | 2012-06-27 | 上海中西制药有限公司 | Duloxetine enteric-coated preparation and core material and preparation method thereof |
US20110217426A1 (en) | 2010-03-04 | 2011-09-08 | Perry Stephen C | Enteric coating composition |
KR20120068277A (en) * | 2010-12-17 | 2012-06-27 | 한미사이언스 주식회사 | PHARMACEUTICAL COMPOSITE FORMULATION COMPRISING HMG-CoA REDUCTASE INHIBITOR AND ASPIRIN |
US10463625B2 (en) * | 2012-05-02 | 2019-11-05 | Capsugel Belgium Nv | Bulk enteric capsule shells |
-
2016
- 2016-04-19 US US15/132,627 patent/US20160331689A1/en not_active Abandoned
- 2016-04-27 WO PCT/US2016/029514 patent/WO2016182737A1/en active Application Filing
- 2016-04-27 JP JP2017559615A patent/JP6910962B2/en active Active
- 2016-04-27 EP EP16793160.9A patent/EP3294272B1/en active Active
- 2016-04-27 KR KR1020177032322A patent/KR102579495B1/en active IP Right Grant
- 2016-04-27 CN CN202211017772.7A patent/CN115381960A/en active Pending
- 2016-04-27 CN CN201680027470.4A patent/CN107847456A/en active Pending
-
2020
- 2020-08-24 US US17/001,152 patent/US11833252B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060280794A1 (en) * | 2003-06-06 | 2006-12-14 | Naoru Hamaguchi | Solid pharmaceutical preparation |
US20080226731A1 (en) * | 2005-05-10 | 2008-09-18 | Madhav Vasanthavada | Pharmaceutical Compositions Comprising I Matinib and a Release Retardant |
US20070178152A1 (en) * | 2005-11-04 | 2007-08-02 | Shelton Michael C | Carboxyalkylcellulose esters for administration of poorly soluble pharmaceutically active agents |
US20090028939A1 (en) * | 2005-12-22 | 2009-01-29 | Takeda Pharmaceutical Company Limited | Solid Preparation |
US20090253808A1 (en) * | 2007-11-12 | 2009-10-08 | Pharmaceutics International, Inc. | Tri-molecular complexes and their use in drug delivery systems |
US20110150942A1 (en) * | 2008-06-13 | 2011-06-23 | Natalija Zajc | Gastro-resistant pharmaceutical oral compositions comprising duloxetine or its pharmaceutically acceptable derivatives |
US20110229567A1 (en) * | 2008-09-25 | 2011-09-22 | Takeda Pharmaceutical Company Limited | Solid pharmaceutical composition |
US20120115837A1 (en) * | 2009-04-30 | 2012-05-10 | Takeda Pharmaceutical Company Limited | Solid Preparation |
US20120129878A1 (en) * | 2009-07-28 | 2012-05-24 | Takeda Pharmaceutical Company Limited | Tablet |
US20120322851A1 (en) * | 2009-10-20 | 2012-12-20 | Gregroy Hardee | Oral delivery of therapeutically effective lna oligonucleotides |
US9364495B2 (en) * | 2009-10-20 | 2016-06-14 | Roche Innovation Center Copenhagen A/S | Oral delivery of therapeutically effective LNA oligonucleotides |
Also Published As
Publication number | Publication date |
---|---|
EP3294272A1 (en) | 2018-03-21 |
WO2016182737A1 (en) | 2016-11-17 |
US11833252B2 (en) | 2023-12-05 |
US20200383925A1 (en) | 2020-12-10 |
JP6910962B2 (en) | 2021-07-28 |
CN107847456A (en) | 2018-03-27 |
JP2018519272A (en) | 2018-07-19 |
KR102579495B1 (en) | 2023-09-15 |
CN115381960A (en) | 2022-11-25 |
EP3294272B1 (en) | 2022-11-16 |
KR20180004149A (en) | 2018-01-10 |
EP3294272A4 (en) | 2018-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3137060B2 (en) | Extended release suspension compositions | |
RU2248200C2 (en) | Vitamin composition with sustained-release of active component | |
US10420730B2 (en) | L-menthol dosage forms having a proteinaceous coating for enhanced storage stability | |
CN106063780B (en) | A kind of tetradoxin fast release micropill preparation, preparation method and applications | |
CA2895529C (en) | Supersaturated stabilized nanoparticles for poorly soluble drugs | |
US20130059010A1 (en) | Alcohol-resistant oral pharmaceutical form | |
CN102215827A (en) | Alcohol-resistant tablet | |
JP2014516080A5 (en) | ||
US20050266079A1 (en) | Process for making aqueous coated beadlets | |
EP3137057B1 (en) | Extended release liquid compositions of metformin | |
CN107260700A (en) | A kind of preparation method of ticagrelor compound oral solid pharmaceutical preparation | |
US20180200192A1 (en) | Formulations of n-acetylcysteine and uses thereof | |
EP1748764B1 (en) | An amine drug-containing slow-release granule preparation based on particles with a coating layer and the corresponding method of production | |
US11833252B2 (en) | Aqueous enteric coating composition | |
US20200230067A1 (en) | Suspensions of encapsulated pharmaceuticals and methods of making and using the same | |
ES2376095B1 (en) | ENERGY PELLETS OF DULOXETINE. | |
JP2002003366A (en) | Aqueous coating composition for solid medicine | |
Mohylyuka et al. | A Patient-Centric Approach: Formulation of Prolonged Release Microparticles to Be Used in Oral Suspensions for Older Patients with Dysphagia | |
US20100239681A1 (en) | Controlled Release Particulates Containing Water-Insoluble Drug | |
Shen | Cover Up | |
Singh et al. | AN OVERVIEW ON SUSTAINED RELEASE ENTERIC COATED TABLET OF PENTOPRAZOLE | |
EP3441064A1 (en) | Extended release liquid compositions of guaifenesin | |
US20170065531A9 (en) | Alcohol-resistant oral pharmaceutical form |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SE TYLOSE USA, INC., LOUISIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUADIR, ANISUL;REEL/FRAME:040996/0033 Effective date: 20161215 |
|
AS | Assignment |
Owner name: SHIN-ETSU CHEMICAL CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OBARA, SAKAE;REEL/FRAME:040859/0656 Effective date: 20161222 |
|
STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AMENDMENT / ARGUMENT AFTER BOARD OF APPEALS DECISION |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |