US20160312092A1 - Adhesive for Laminated Sheets - Google Patents
Adhesive for Laminated Sheets Download PDFInfo
- Publication number
- US20160312092A1 US20160312092A1 US15/198,528 US201615198528A US2016312092A1 US 20160312092 A1 US20160312092 A1 US 20160312092A1 US 201615198528 A US201615198528 A US 201615198528A US 2016312092 A1 US2016312092 A1 US 2016312092A1
- Authority
- US
- United States
- Prior art keywords
- adhesive
- isocyanate
- film
- laminated sheets
- isocyanate compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 155
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 155
- -1 acrylic polyol Chemical class 0.000 claims abstract description 182
- 239000012948 isocyanate Substances 0.000 claims abstract description 99
- 229920005862 polyol Polymers 0.000 claims abstract description 78
- 239000000178 monomer Substances 0.000 claims abstract description 65
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 41
- 125000003118 aryl group Chemical group 0.000 claims abstract description 36
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000002156 mixing Methods 0.000 claims abstract description 16
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 230000000379 polymerizing effect Effects 0.000 claims abstract description 9
- 239000007795 chemical reaction product Substances 0.000 claims abstract 2
- 239000000463 material Substances 0.000 claims description 33
- 150000002513 isocyanates Chemical class 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 230000009477 glass transition Effects 0.000 claims description 18
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 12
- 150000003077 polyols Chemical class 0.000 claims description 11
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 11
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 8
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 7
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 6
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 claims description 6
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 5
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical group O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 5
- 239000010408 film Substances 0.000 description 101
- 230000007062 hydrolysis Effects 0.000 description 34
- 238000006460 hydrolysis reaction Methods 0.000 description 34
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 31
- 230000032683 aging Effects 0.000 description 26
- 150000001875 compounds Chemical class 0.000 description 26
- 239000003054 catalyst Substances 0.000 description 18
- 238000012360 testing method Methods 0.000 description 16
- 230000007774 longterm Effects 0.000 description 15
- 239000007787 solid Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 239000004698 Polyethylene Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 9
- 150000001412 amines Chemical class 0.000 description 9
- 229920000098 polyolefin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- 239000002985 plastic film Substances 0.000 description 8
- 229920006255 plastic film Polymers 0.000 description 8
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2,2'-azo-bis-isobutyronitrile Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 7
- 229920001519 homopolymer Polymers 0.000 description 7
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 6
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 239000003063 flame retardant Substances 0.000 description 6
- 238000010030 laminating Methods 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 5
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 5
- 229920000058 polyacrylate Polymers 0.000 description 5
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 4
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000005056 polyisocyanate Substances 0.000 description 4
- 229920001228 polyisocyanate Polymers 0.000 description 4
- 239000003505 polymerization initiator Substances 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 2
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 2
- VMRIVYANZGSGRV-UHFFFAOYSA-N 4-phenyl-2h-triazin-5-one Chemical compound OC1=CN=NN=C1C1=CC=CC=C1 VMRIVYANZGSGRV-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 239000012986 chain transfer agent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 238000009408 flooring Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000012974 tin catalyst Substances 0.000 description 2
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 2
- 150000003918 triazines Chemical class 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 1
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- ZBBLRPRYYSJUCZ-GRHBHMESSA-L (z)-but-2-enedioate;dibutyltin(2+) Chemical compound [O-]C(=O)\C=C/C([O-])=O.CCCC[Sn+2]CCCC ZBBLRPRYYSJUCZ-GRHBHMESSA-L 0.000 description 1
- VGHSXKTVMPXHNG-UHFFFAOYSA-N 1,3-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC(N=C=O)=C1 VGHSXKTVMPXHNG-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- DFPJRUKWEPYFJT-UHFFFAOYSA-N 1,5-diisocyanatopentane Chemical compound O=C=NCCCCCN=C=O DFPJRUKWEPYFJT-UHFFFAOYSA-N 0.000 description 1
- ATOUXIOKEJWULN-UHFFFAOYSA-N 1,6-diisocyanato-2,2,4-trimethylhexane Chemical compound O=C=NCCC(C)CC(C)(C)CN=C=O ATOUXIOKEJWULN-UHFFFAOYSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- VFBJXXJYHWLXRM-UHFFFAOYSA-N 2-[2-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]ethylsulfanyl]ethyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCCSCCOC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 VFBJXXJYHWLXRM-UHFFFAOYSA-N 0.000 description 1
- SITYOOWCYAYOKL-UHFFFAOYSA-N 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(3-dodecoxy-2-hydroxypropoxy)phenol Chemical compound OC1=CC(OCC(O)COCCCCCCCCCCCC)=CC=C1C1=NC(C=2C(=CC(C)=CC=2)C)=NC(C=2C(=CC(C)=CC=2)C)=N1 SITYOOWCYAYOKL-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- GAODDBNJCKQQDY-UHFFFAOYSA-N 2-methyl-4,6-bis(octylsulfanylmethyl)phenol Chemical compound CCCCCCCCSCC1=CC(C)=C(O)C(CSCCCCCCCC)=C1 GAODDBNJCKQQDY-UHFFFAOYSA-N 0.000 description 1
- HNNQYHFROJDYHQ-UHFFFAOYSA-N 3-(4-ethylcyclohexyl)propanoic acid 3-(3-ethylcyclopentyl)propanoic acid Chemical compound CCC1CCC(CCC(O)=O)C1.CCC1CCC(CCC(O)=O)CC1 HNNQYHFROJDYHQ-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- GPZYYYGYCRFPBU-UHFFFAOYSA-N 6-Hydroxyflavone Chemical compound C=1C(=O)C2=CC(O)=CC=C2OC=1C1=CC=CC=C1 GPZYYYGYCRFPBU-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- TUEIURIZJQRMQE-UHFFFAOYSA-N [2-(tert-butylsulfamoyl)phenyl]boronic acid Chemical compound CC(C)(C)NS(=O)(=O)C1=CC=CC=C1B(O)O TUEIURIZJQRMQE-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- FLPKSBDJMLUTEX-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) 2-butyl-2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]propanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)C(C(=O)OC1CC(C)(C)N(C)C(C)(C)C1)(CCCC)CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FLPKSBDJMLUTEX-UHFFFAOYSA-N 0.000 description 1
- RSOILICUEWXSLA-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)N(C)C(C)(C)C1 RSOILICUEWXSLA-UHFFFAOYSA-N 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical group NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- MAWOHFOSAIXURX-UHFFFAOYSA-N cyclopentylcyclopentane Chemical group C1CCCC1C1CCCC1 MAWOHFOSAIXURX-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- ACYQDCZIQOLHRX-UHFFFAOYSA-M dodecanoate;trimethylstannanylium Chemical compound CCCCCCCCCCCC(=O)O[Sn](C)(C)C ACYQDCZIQOLHRX-UHFFFAOYSA-M 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- GIWKOZXJDKMGQC-UHFFFAOYSA-L lead(2+);naphthalene-2-carboxylate Chemical compound [Pb+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 GIWKOZXJDKMGQC-UHFFFAOYSA-L 0.000 description 1
- DSSXKBBEJCDMBT-UHFFFAOYSA-M lead(2+);octanoate Chemical compound [Pb+2].CCCCCCCC([O-])=O DSSXKBBEJCDMBT-UHFFFAOYSA-M 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- AYLRODJJLADBOB-QMMMGPOBSA-N methyl (2s)-2,6-diisocyanatohexanoate Chemical compound COC(=O)[C@@H](N=C=O)CCCCN=C=O AYLRODJJLADBOB-QMMMGPOBSA-N 0.000 description 1
- AYLRODJJLADBOB-UHFFFAOYSA-N methyl 2,6-diisocyanatohexanoate Chemical compound COC(=O)C(N=C=O)CCCCN=C=O AYLRODJJLADBOB-UHFFFAOYSA-N 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- TXXWBTOATXBWDR-UHFFFAOYSA-N n,n,n',n'-tetramethylhexane-1,6-diamine Chemical compound CN(C)CCCCCCN(C)C TXXWBTOATXBWDR-UHFFFAOYSA-N 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- MBAUOPQYSQVYJV-UHFFFAOYSA-N octyl 3-[4-hydroxy-3,5-di(propan-2-yl)phenyl]propanoate Chemical compound OC1=C(C=C(C=C1C(C)C)CCC(=O)OCCCCCCCC)C(C)C MBAUOPQYSQVYJV-UHFFFAOYSA-N 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 239000012970 tertiary amine catalyst Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- IPBROXKVGHZHJV-UHFFFAOYSA-N tridecane-1-thiol Chemical compound CCCCCCCCCCCCCS IPBROXKVGHZHJV-UHFFFAOYSA-N 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical group NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
- C09J175/12—Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1802—C2-(meth)acrylate, e.g. ethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6216—Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
- C08G18/622—Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
- C08G18/6225—Polymers of esters of acrylic or methacrylic acid
- C08G18/6229—Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6216—Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
- C08G18/6262—Polymers of nitriles derived from alpha-beta ethylenically unsaturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/721—Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
- C08G18/724—Combination of aromatic polyisocyanates with (cyclo)aliphatic polyisocyanates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09J133/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09J133/10—Homopolymers or copolymers of methacrylic acid esters
- C09J133/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/049—Protective back sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/06—Coating on the layer surface on metal layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
- B32B2255/205—Metallic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/712—Weather resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/12—Photovoltaic modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2571/00—Protective equipment
-
- C08F2220/1825—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31565—Next to polyester [polyethylene terephthalate, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31605—Next to free metal
Definitions
- the present invention relates to an adhesive for laminated sheets.
- the present invention also relates to a laminated sheet obtainable by using the adhesive, and an outdoor material obtainable by using the laminated sheet.
- Outdoor materials such as wall protecting materials, roofing materials, solar battery panel materials, window materials, outdoor flooring materials, illumination protection materials, automobile members, and signboards comprise, as a constituent material, a laminate obtained by laminating a plurality of films to each other using an adhesive.
- the film composing the laminate include metal foils made of metals such as aluminum, copper, and steel; metal plates and metal deposited films; and films made of plastics such as polypropylene, polyvinyl chloride, polyester, fluororesin, and acrylic resin.
- a laminated sheet 10 is a laminate of a plurality of films 11 and 12 , and the films 11 and 12 are laminated by interposing an adhesive 13 therebetween.
- the laminated sheet 10 referred to as a back sheet is included in a solar battery module 1 , together with a sealing material 20 , a solar battery cell 30 , and a glass plate 40 .
- the solar battery module 1 Since the solar battery module 1 is exposed outdoors over a long term, sufficient durability against sunlight is required under conditions of high temperature and high humidity. Particularly, when the adhesive 13 has poor performance, the film 11 can become peeled from the film 12 , and thus the appearance of the sheet 10 deteriorates. Therefore, it is required that the adhesive for laminated sheets for the production of the solar battery module does not undergo peeling of the film even if the adhesive is exposed to high temperature over a long term.
- Patent Documents 1 to 3 disclose, as examples of adhesives for laminated sheets, urethane based adhesives for producing solar battery protection sheets.
- Patent Document 1 discloses that a urethane adhesive for laminated sheets synthesized from an acrylic polyol is suited as an adhesive for solar battery back sheets (see Claim 1 and the paragraph number 0048).
- Patent Document 2 discloses a protective sheet for solar battery modules in which an acrylic urethane resin is formed on a base material sheet (see Patent Document 2, Claim 1, and FIGS. 1 to 3).
- Patent Document 3 describes mixing an isocyanate curing agent with an acrylic polyol to produce adhesives (see Table 1, Table 2); a solar battery back sheet is produced by using these adhesives (see paragraph 0107).
- Patent Documents 1 to 3 teach that poor appearance of a solar battery module can be prevented by producing a solar battery back sheet using an adhesive which is excellent in hydrolysis resistance and laminate strength. However, it is hard to say that the adhesive sufficiently meets the high requirements of consumers. Furthermore, durability required of an adhesive for solar battery back sheets is getting higher year by year, and it is required for an adhesive for back sheets to have high adhesion. Since the solar battery module is mainly used outdoors, high adhesion at high temperature is required.
- an adhesive for solar battery back sheets has sufficient adhesion even at high temperature and can maintain adhesion even when exposed outdoors over a long time, and also has an acceptable curing rate and has higher adhesion (particularly adhesion after aging) to a film base material.
- a solar battery back sheet is produced by using the adhesives of Patent Documents 1 to 3, plural films composing the back sheet (laminated sheet) may be peeled under severe outdoor environments (at high temperature over a long period).
- the film 11 of the back sheet 10 and the sealing agent 20 are integrated with each other to form a relatively thick laminate (the sealing agent 20 , the film 11 and the adhesive 13 ); the film 11 and the adhesive 13 (or the film 12 ) may sometimes cause interfacial peeling due to the influence of film thickening or heating history.
- Patent Document 1 JP 2011-105819 A
- Patent Document 2 JP 2010-238815 A
- Patent Document 3 JP 2010-263193 A
- the present invention has been made so as to solve such a problem and an object thereof is to provide an adhesive for laminated sheets, which is excellent in curing rate and initial adhesion to a film after aging in the case of producing a laminate (laminated sheet), and is also excellent in hydrolysis resistance over a long term at high temperature; and, an outdoor material obtainable by using the laminated sheet.
- the present inventors have intensively studied and found, surprisingly, that it is possible to obtain an adhesive for laminated sheets, which is excellent in curing rate and initial adhesion to a film after aging in producing a laminated sheet, and is also excellent in hydrolysis resistance over a long term at high temperature, by using a specific polyol and a specific isocyanate as raw materials of a urethane resin.
- the present invention has been completed.
- the present invention provides, in an aspect, an adhesive for laminated sheets, comprising a urethane resin obtainable by mixing an acrylic polyol with an isocyanate compound, wherein the acrylic polyol is a polyol having a glass transition temperature of from ⁇ 20 to 20° C., which polyol is obtainable by polymerizing a polymerizable monomer; the polymerizable monomer includes a monomer having a hydroxyl group and the other monomer, and the other monomer includes acrylonitrile; and the isocyanate compound includes both an isocyanate compound having no aromatic ring and an isocyanate compound having an aromatic ring.
- the present invention provides, in an embodiment, the adhesive for laminated sheets, wherein the isocyanate compound having no aromatic ring is at least one selected from an aliphatic isocyanate compound and an alicyclic isocyanate compound.
- the present invention provides, in a preferred embodiment, the adhesive for laminated sheets, wherein the other monomer further includes a (meth)acrylic acid ester.
- the present invention provides, in a more preferred embodiment, the adhesive for laminated sheets, wherein the acrylic polyol has a hydroxyl value of from 0.5 to 45 mgKOH/g.
- the present invention provides, in the most preferred embodiment, the adhesive for laminated sheets, wherein an equivalent ratio of an isocyanate group derived from the isocyanate having an aromatic ring to a hydroxyl group derived from the acrylic polyol is 0.5 or more.
- the present invention provides, in another aspect, a laminated sheet obtainable by using the above adhesive for laminated sheets.
- the present invention provides, as a preferred aspect, an outdoor material obtainable by using the laminated sheet.
- the adhesive for laminated sheets according to the present invention comprises a urethane resin obtainable by mixing an acrylic polyol with the isocyanate compounds defined below;
- the acrylic polyol is a polyol having a glass transition temperature of from ⁇ 20 to 20° C., which polyol is obtainable by polymerizing a monomer having a hydroxyl group and at least one other monomer, wherein the at least one other monomer includes acrylonitrile; and said isocyanate compounds include both an isocyanate compound having no aromatic ring and an isocyanate compound having an aromatic ring.
- the adhesive for laminated sheets is excellent in curing rate and initial adhesion to a film after aging in producing a laminated sheet, is also excellent in hydrolysis resistance over a long period at high temperature and is excellent in overall balance.
- the adhesive of the present invention is preferably used in outdoor materials, and is particularly useful as an adhesive for solar battery protection sheets.
- the adhesive for laminated sheets according to the present invention is preferably used as an adhesive for solar battery protection sheets exposed to severe environment, particularly as an adhesive for solar battery back sheets, since initial adhesion after aging and long-term hydrolysis resistance at high temperature may be further improved when the isocyanate compound having no aromatic ring contains at least one selected from an aliphatic isocyanate compound and an alicyclic isocyanate compound.
- the adhesive according to the present invention can show improved initial adhesion to a film after aging when the other monomer further includes a (meth)acrylic acid ester.
- the acrylic polyol has a hydroxyl value of from 0.5 to 45 mgKOH/g, initial adhesion to a film after aging is more improved and also hydrolysis resistance is improved.
- the films and the adhesive become much less likely to cause interfacial peeling.
- the laminated sheet according to the present invention is obtainable by using the above adhesive, and is therefore excellent in productivity and also can prevent peeling of the film from the adhesive when exposed outdoors over a long term from the beginning of lamination.
- the outdoor material according to the present invention is obtainable by using the above laminated sheet, and is therefore excellent in productivity, and is less likely to suffer poor appearance and is also excellent in durability.
- FIG. 1 is a sectional view of an embodiment of the laminated sheet of the present invention.
- FIG. 2 is a sectional view of another embodiment of the laminated sheet of the present invention.
- FIG. 3 is a sectional view of an embodiment of the outdoor material (for example, a solar battery module) of the present invention.
- the adhesive for solar battery back sheets according to the present invention includes a urethane resin obtainable by mixing an acrylic polyol with an isocyanate compound.
- the urethane resin according to the present invention is a polymer obtainable by mixing and reacting the acrylic polyol with the isocyanate compound, and has a urethane bond. hydroxyl group of the acrylic polyol reacts with an isocyanate group.
- the acrylic polyol is obtainable by the addition polymerization of a polymerizable monomer, and the polymerizable monomer includes a “monomer having a hydroxyl group” and the “other monomer”.
- the “monomer having a hydroxyl group” is a radical polymerizable monomer having a hydroxyl group and an ethylenic double bond, and is not particularly limited as long as the objective adhesive for laminated sheets of the present invention can be obtained.
- the monomer having a hydroxyl group includes for example, hydroxyalkyl (meth)acrylate, and the hydroxyalkyl (meth)acrylate may be used alone, or two or more hydroxyalkyl (meth)acrylates may be used in combination.
- the hydroxyalkyl (meth)acrylate may also be used in combination with a monomer having a hydroxyl group, other than the hydroxyalkyl (meth) acrylate.
- hydroxyalkyl (meth)acrylate examples include, but are not limited to, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl acrylate and the like.
- polymerizable monomer having a hydroxyl group, other than the hydroxylalkyl (meth)acrylate examples include polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate and the like.
- the “other monomer” is a “radical polymerizable monomer having an ethylenic double bond” other than the monomer having a hydroxyl group and contains acrylonitrile, and is not particularly limited as long as the objective adhesive for laminated sheets of the present invention can be obtained.
- the other monomer may further include a (meth) acrylic ester.
- the other monomer may further include a radical polymerizable monomer having an ethylenic double bond, other than acrylonitrile and (meth)acrylic ester.
- the “(meth)acrylic ester” is obtainable, for example, by the condensation reaction of (meth)acrylic acid with a monoalcohol, and has an ester bond. Even if it has an ester bond, a monomer having a hydroxyl group is not included in the (meth)acrylic ester.
- (meth)acrylic acid alkyl esters such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth)acrylate, dicyclopentyl (meth)acrylate, and isobornyl (meth)acrylate; glycidyl (meth)acrylate and the like. Both linear alkyl group and cyclic alkyl group are included in this “alkyl group”.
- Examples of the “radical polymerizable monomers having an ethylenic double bond, other than acrylonitrile and (meth)acrylic ester” include, but are not limited to, (meth)acrylic acid, styrene, vinyltoluene and the like.
- acrylonitrile is a compound represented by the general formula: CH 2 ⁇ CH—CN, and is also called acrylic nitrile, acrylic acid nitrile, or vinyl cyanide.
- the acrylonitrile is preferably contained in the amount of from 1 to 40 parts by weight, more preferably from 5 to 35 parts by weight, and particularly preferably from 5 to 25 parts by weight, based on 100 parts by weight of the polymerizable monomers.
- amount of the acrylonitrile is within the above range, it is possible to obtain an adhesive for solar battery back sheets, which shows an excellent balance of coat-ability, initial adhesion to a film after aging, and adhesion at high temperature.
- acrylic acid and methacrylic acid are collectively referred to as “(meth)acrylic acid”, and “acrylic ester and methacrylic ester” are collectively referred to as “(meth)acrylic ester” or “(meth)acrylate”.
- the polymerization method of the polymerizable monomer there is no particular limitation on the polymerization method of the polymerizable monomer.
- the above-mentioned polymerizable monomer can be radically polymerized by a conventional solution polymerization method in an organic solvent using an appropriate catalyst.
- the organic solvent there is no particular limitation on the organic solvent as long as it can be used to polymerize the polymerizable monomer, and it does not substantially exert an adverse influence on the properties of the adhesive after the polymerization reaction.
- examples of such solvent include aromatic solvents such as toluene and xylene; ester based solvents such as ethyl acetate and butyl acetate; and combinations thereof.
- the polymerization reaction conditions such as reaction temperature, reaction time, type of organic solvents, type and concentration of monomers, stirring rate, as well as the type and concentration of polymerization initiators in the polymerization of the polymerizable monomers can be appropriately selected according to characteristics and so on of the objective adhesive.
- the “polymerization initiator” is preferably a compound which can accelerate the polymerization of the polymerizable monomer when added in a small amount and can be used in an organic solvent.
- examples of the polymerization initiator include ammonium persulfate, t-butyl peroxybenzoate, 2,2-azobisisobutyronitrile (AIBN), and 2,2-azobis(2,4-dimethylvarelonitrile).
- a chain transfer agent can be appropriately used for the polymerization in the present invention so as to adjust the molecular weight. It is possible to use, as the “chain transfer agent”, compounds well-known to those skilled in the art. Examples thereof include mercaptans such as n-dodecylmercaptan (nDM), laurylmethylmercaptan, and mercaptoethanol.
- nDM n-dodecylmercaptan
- laurylmethylmercaptan laurylmethylmercaptan
- mercaptoethanol mercaptoethanol
- the acrylic polyol is obtainable by polymerizing the polymerizable monomer.
- the weight average molecular weight (Mw) of the acrylic polyol is preferably 200,000 or less, and more preferably from 5,000 to 100,000.
- the weight average molecular weight (Mw) is a value measured by gel permeation chromatography (GPC) in terms of polystyrene standard. Specifically, the value can be measured using the following GPC apparatus and measuring method.
- GPC gel permeation chromatography
- HCL-8220GPC manufactured by TOSOH CORPORATION is used as a GPC apparatus, and RI is used as a detector.
- Two TSKgel SuperMultipore HZ-M manufactured by TOSOH CORPORATION are used as a GPC column.
- a sample is dissolved in tetrahydrofuran and the obtained solution is allowed to flow at a flow rate of 0.35 ml/minute and at a column temperature of 40° C., and then the Mw is determined by conversion of an observed molecular weight based on a calibration curve which is obtained by using polystyrene having a monodisperse molecular weight as a standard reference material.
- a glass transition temperature (Tg) of the acrylic polyol can be set by adjusting a mass fraction of a monomer to be used.
- the glass transition temperature (Tg) of the acrylic polyol can be determined based on a glass transition temperature of a homopolymer obtainable from each monomer and a mass fraction of the homopolymer used in the acrylic polyol using the following calculation formula (i). It is preferred to determine a composition of the monomer using the glass transition temperature determined by the calculation:
- Tg in the above formula (i) denotes the glass transition temperature of the acrylic polyol
- each of W 1 , W 2 , . . . , Wn denotes a mass fraction of each monomer
- each of Tg 1 , Tg 2 , . . . , and Tgn denotes a glass transition temperature of a homopolymer of each corresponding monomer.
- a value disclosed in a document can be used as a Tg of the homopolymer. It is possible to refer, for example, to the following documents: Acrylic Ester Catalog of Mitsubishi Rayon Co., Ltd. (1997 Version), edited by Kyozo Kitaoka; “Shin Kobunshi Bunko 7, Guide to Synthetic Resin for Coating Material”, Kobunshi Kankokai, published in 1997, pp. 168-169; and, “POLYMER HANDBOOK”, 3rd Edition, pp. 209-277, John Wiley & Sons, Inc. published in 1989.
- the glass transition temperatures of homopolymers of the following monomers are as follows.
- Methyl methacrylate 105° C. n-Butyl acrylate: ⁇ 54° C. Ethyl acrylate: ⁇ 20° C. 2-Hydroxyethyl methacrylate: 55° C. 2-Hydroxyethyl acrylate: ⁇ 15° C. Glycidyl methacrylate: 41° C.
- the glass transition temperature of the acrylic polyol is preferably from ⁇ 20° C. to 20° C., more preferably ⁇ 15° C. to 20° C., and particularly preferably ⁇ 10° C. to 15° C., from the viewpoint of the initial adhesion to a film after aging.
- the glass transition temperature is lower than ⁇ 20° C., the adhesive may cause decrease in cohesive force, resulting in deterioration of hydrolysis resistance.
- the initial adhesion to a film after aging may decrease since the adhesive may become too hard.
- the hydroxyl value of the acrylic polyol is preferably from 0.5 to 45 mgKOH/g, more preferably from 1 to 40 mgKOH/g, and particularly preferably from 5 to 35 mgKOH/g.
- the hydroxyl value of the acrylic polyol is within the above range, it is possible to obtain the adhesive which after aging, is excellent in initial adhesion, adhesion at high temperature, and hydrolysis resistance.
- the film becomes much less likely to peel from the adhesive.
- the hydroxyl value is a number of mg of potassium hydroxide required to neutralize acetic acid combined with hydroxyl groups when 1 g of a resin is acetylated.
- the hydroxyl value is specifically calculated by the following formula (ii).
- Hydroxyl value [(weight of (meth)acrylate having a hydroxyl group)/(molecular weight of (meth)acrylate having a hydroxyl group)] ⁇ (mole number of hydroxyl groups contained in 1 mol of (meth)acrylate monomer having a hydroxyl group) ⁇ (formula weight of KOH ⁇ 1,000)/(weight of the acrylic polyol) (ii):
- the isocyanate compound includes not only a monomer, but also all of a biuret form, an isocyanate form, a polyhydric alcohol adduct and an allophanate form, and mainly, it is roughly classified into an “isocyanate having no aromatic ring” and an “isocyanate having, an aromatic ring”.
- TMP trimethylolpropane
- the polyhydric alcohol is not limited only to the TMP.
- isocyanate having no aromatic ring examples include an “aliphatic isocyanate” and an “alicyclic isocyanate”.
- the aliphatic isocyanate refers to a compound which has a chain-like (or linear) hydrocarbon chain in which isocyanate groups are directly combined to the hydrocarbon chain, and also has no cyclic hydrocarbon chain.
- the alicyclic isocyanate is a compound which has a cyclic hydrocarbon chain and may have a chain-like hydrocarbon chain.
- the isocyanate group may be either directly combined with the cyclic hydrocarbon chain, or may be directly combined with the chain-like hydrocarbon chain which may be present.
- aliphatic isocyanate examples include 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, 1,6-diisocyanatohexane (HDI), 1,6-diisocyanato-2,2,4-trimethylhexane, methyl 2,6-diisocyanatohexanoate (lysine diisocyanate) and the like.
- alicyclic isocyanate examples include 5-isocyanato-1-isocyanatomethyl-1,3,3-trimethylcyclohexane (isophorone diisocyanate), 1,3-bis(isocyanatomethyl)cyclohexane (hydrogenated xylylene diisocyanate), bis(4-isocyanatocyclohexyl)methane (hydrogenated diphenylmethane diisocyanate), 1,4-diisocyanatocyclohexane and the like.
- aromatic isocyanate having an aromatic ring
- the aromatic ring may be an aromatic ring in which two or more benzene rings are fused.
- aromatic isocyanate examples include 4,4′-diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, m-phenylene diisocyanate, tolylene diisocyanate (TDI), xylene diisocyanate (XDI) and the like. These isocyanate compounds can be used alone or in combination.
- xylylene diisocyanate (OCN—CH 2 —C 6 H 4 —CH 2 —NCO) has an aromatic ring, it corresponds to the aromatic isocyanate even though the isocyanate groups are not directly combined with the aromatic ring.
- the isocyanate compound is not particularly limited as long as the objective urethane adhesive of the present invention can be obtained, and is particularly preferably HDI as the aliphatic isocyanate, isophorone diisocyanate as the alicyclic isocyanate, and 4,4′-diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI) and xylene diisocyanate (XDI) as the aromatic isocyanate, from the viewpoint of improving the initial adhesion to a film after aging, the curing time, and the hydrolysis resistance.
- HDI as the aliphatic isocyanate
- isophorone diisocyanate as the alicyclic isocyanate
- MDI 4,4′-diphenylmethane diisocyanate
- TDI tolylene diisocyanate
- XDI xylene diisocyanate
- HDI is more preferably an isocyanurate form
- isophorone diisocyanate is more preferably an isocyanurate form
- TDI is more preferably an adduct with trimethylolpropane.
- the urethane resin according to the present invention is obtainable by reacting the acrylic polyol with the isocyanate compound.
- a known method can be used and the reaction can be usually performed by mixing the acrylic polyol with the isocyanate compound.
- the mixing method There is no particular limitation on the mixing method as long as the urethane resin according to the present invention can be obtained.
- an equivalence ratio of the isocyanate group based on the isocyanate having an aromatic ring to the hydroxyl group based on the acrylic polyol is preferably 0.5 or more, particularly preferably from 0.5 to 2.5, and most preferably from 0.5 to 2.0.
- the adhesive exhibits more improved curing rate, is excellent in heat resistance and shows improved hydrolysis resistance at high temperature.
- the adhesive for laminated sheets of the present invention may contain an ultraviolet absorber for the purpose of improving long-term weatherability. It is possible to use, as the ultraviolet absorber, a hydroxyphenyltriazine based compound and other commercially available ultraviolet absorbers.
- the “hydroxyphenyltriazine based compound” is one type of a triazine derivative in which a hydroxyphenyl derivative is combined with a carbon atom of the triazine derivative, and examples thereof include TINUVIN 400, TINUVIN 405, TINUVIN 479, TINUVIN 477 and TINUVIN 460 (all of which are trade names) which are available from BASF Corporation.
- the adhesive for laminated sheets may further contain a hindered phenol based compound.
- the “hindered phenol based compound” is commonly referred to as a hindered phenol based compound, and there is no particular limitation as long as the objective adhesive for laminated sheets according to the present invention can be obtained.
- the hindered phenol based compound is, for example, commercially available from BASF Corporation. Examples thereof include IRGANOX1010, IRGANOX1035, IRGANOX1076, IRGANOX1135, IRGANOX1330 and IRGANOX1520 (all of which are trade names).
- the hindered phenol based compound is added to the adhesive as an antioxidant and may be used, for example, in combination with a phosphite based antioxidant, a thioether based antioxidant, an amine based antioxidant and the like.
- the adhesive for laminated sheets according to the present invention may further contain a hindered amine based compound.
- the “hindered amine based compound” is commonly referred to as a hindered amine based compound, and there is no particular limitation as long as the objective adhesive according to the present invention can be obtained.
- the hindered amine based compound examples include TINUVIN 765, TINUVIN 111FDL, TINUVIN 123, TINUVIN 144, TINUVIN 152, TINUVIN 292 and TINUVIN 5100 (all of which are trade names) which are commercially available from BASF Corporation.
- the hindered amine based compound is added to the adhesive as a light stabilizer and may be used, for example, in combination with a benzotriazole based compound, a benzoate based compound, a benzotriazole based compound and the like.
- the adhesive for laminated sheets according to the present invention can further contain other components as long as the objective adhesive can be obtained.
- the other components may be added, together with the acrylic polyol and the isocyanate compound, in the synthesis of the urethane resin, or may be added after synthesizing the urethane resin by reacting the acrylic polyol with the isocyanate compound.
- the “other component” examples include a catalyst, a tackifier resin, a pigment, a plasticizer, a flame retardant, a wax and the like.
- Examples of the “catalyst” include a metal catalyst, a non-metal catalyst and the like.
- metal catalyst examples include a tin catalyst (trimethyltin laurate, trimethyltin hydroxide, stannous octoate, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin maleate, etc.) and a lead based catalyst (lead oleate, lead naphthenate, lead octoate, etc.), and examples of the other metal catalyst include naphthenic acid metal salt such as cobalt naphthenate, bismuth octoate, sodium persulfate, potassium persulfate and the like.
- the “non-metal catalyst” is preferably an amine based catalyst, and more preferably a tertiary amine based catalyst.
- the amine based catalyst include 1,2-dimethylimidazole, triethylenediamine, tetraethylenediamine, tetramethylhexylenediamine, diazabicycloalkenes, dialkylaminoalkylamines and the like.
- tackifier resin examples include a styrene based resin, a terpene based resin, aliphatic petroleum resin, an aromatic petroleum resin, a rosin ester, an acrylic resin, a polyester resin (excluding polyesterpolyol) and the like.
- pigment examples include titanium oxide, carbon black and the like.
- plasticizer examples include dioctyl phthalate, dibutyl phthalate, diisononyl adipate, dioctyl adipate, mineral spirit and the like.
- flame retardant examples include a halogen based flame retardant, a phosphorous based flame retardant, an antimony based flame retardant, a metal hydroxide based flame retardant and the like.
- the “wax” is preferably a wax such as a paraffin wax and a microcrystalline wax.
- Viscosity of the adhesive for laminated sheets according to the present invention is measured by using a rotational viscometer (Model BM, manufactured by TOKIMEC Inc.).
- a rotational viscometer Model BM, manufactured by TOKIMEC Inc.
- solution viscosity at the solid content of 40% is 4,000 mPa ⁇ s or more
- coatability of the adhesive may deteriorate.
- a solvent is further added so as to decrease the viscosity, coating is performed at low solid component concentration, and thus productivity of the adhesive for laminated sheets may deteriorate.
- the adhesive for laminated sheets of the present invention can be produced by mixing the above-mentioned urethane resin, and an ultraviolet absorber, an antioxidant, a light stabilizer and/or other components which may be optionally added.
- an ultraviolet absorber an antioxidant, a light stabilizer and/or other components which may be optionally added.
- the adhesive according to the present invention can be produced without requiring a special mixing method and a special mixing order.
- the obtained adhesive can maintain excellent hydrolysis resistance at high temperature over a long term, and is also excellent in curing rate and initial adhesion to a film after aging, and is also excellent in overall balance.
- a laminated sheet is produced by laminating a plurality of adherends using the adhesive of the present invention, and the obtained laminated sheet is used for the production of various outdoor materials.
- Examples of the outdoor material of the present invention include wall protecting materials, roofing materials, solar battery modules, window materials, outdoor flooring materials, illumination protection materials, automobile members, and signboards. These outdoor materials include, as an adherend, a laminated sheet obtained by laminating a plurality of films with each other.
- Examples of the film include a film obtained by depositing metal on a plastic film (metal deposited film) and a film with no metal deposited thereon (plastic film).
- an adhesive for producing solar battery modules among the adhesive for laminated sheets, to have a particularly high level of adhesion to a film after aging and of curing rate, and further have long-term hydrolysis resistance at high temperature.
- the adhesive for laminated sheets of the present invention is excellent in long-term hydrolysis resistance at high temperature, and thus the adhesive is suitable as an adhesive for solar battery back sheets.
- the adhesive of the present invention is applied to a film.
- the application can be performed by various methods such as gravure coating, wire bar coating, air knife coating, die coating, lip coating and comma coating methods.
- Plural films coated with the adhesive of the present invention are laminated with each other to complete the solar battery back sheet.
- FIGS. 1 to 3 An embodiment of the solar battery back sheet of the present invention is shown in each of FIGS. 1 to 3 , but the present invention is not limited to these embodiments.
- FIG. 1 is a sectional view of a solar battery back sheet as an embodiment of laminated sheets of the present invention.
- the solar battery back sheet 10 is formed of two films and an adhesive for laminated sheets 13 interposed therebetween, and the two films 11 and 12 are laminated each other using the adhesive for laminated sheets 13 .
- the films 11 and 12 may be made of either the same or different material.
- the two films 11 and 12 are laminated each other, or three or more films may be laminated one another.
- FIG. 2 Another embodiment of the laminated sheet (solar battery back sheet) according to the present invention is shown in FIG. 2 .
- a thin film 11 a is formed between the film 11 and the outdoor urethane adhesive 13 .
- FIG. 2 shows an embodiment in which a metal thin film 11 a is formed on the surface of the film 11 when the film 11 is a plastic film.
- the metal thin film 11 a can be formed on the surface of the plastic film 11 by vapor deposition, and the solar battery back sheet of FIG. 2 can be obtained by laminating the metal thin film 11 , on which surface the metal thin film 11 a is formed, with the film 12 by interposing the adhesive for laminated sheets 13 therebetween.
- Examples of the metal to be deposited on the plastic film include aluminum, steel, copper and the like. It is possible to impart barrier properties to the plastic film by subjecting the film to vapor deposition. Silicon oxide or aluminum oxide is used as a vapor deposition material.
- the plastic film 11 as a base material may be either transparent, or white- or black-colored.
- a plastic film made of polyvinyl chloride, polyester, a fluororesin or an acrylic resin is used as the film 12 .
- a polyethylene terephthalate film or a polybutylene terephthalate film is preferably used.
- the films 11 and 12 may be either transparent or colored.
- the deposited thin film 11 a of the film 11 and the film 12 are laminated each other using the adhesive 13 according to the present invention, and the films 11 and 12 are often laminated each other by a dry lamination method.
- FIG. 3 shows a sectional view of an example of a solar battery module as an embodiment of the outdoor material of the present invention.
- a solar battery module 1 by laying a glass plate 40 , a sealing material 20 such as an ethylene-vinyl acetate resin (EVA), plural solar battery cells 30 which are commonly connected with each other so as to generate a desired voltage, and a back sheet 10 over one another, and then fixing these members 10 , 20 , 30 and 40 using a spacer 50 .
- a sealing material 20 such as an ethylene-vinyl acetate resin (EVA)
- EVA ethylene-vinyl acetate resin
- the back sheet 10 is a laminate of the plurality of the films 11 and 12 , it is required for the urethane adhesive 13 to cause no peeling of the films 11 and 12 even though the back sheet 10 is exposed outdoors over a long term.
- the solar battery cell 30 is often produced by using silicon, and is sometimes produced by using an organic resin containing a dye.
- the solar battery module 1 becomes an organic (dye sensitized) solar battery module. Since colorability is required of the organic (dye sensitized) solar battery, a transparent film is often used as the film 11 and the film 12 which compose the solar battery back sheet 10 . Therefore, it is required for the adhesive for solar battery back sheets 13 to cause very little change in color difference even though the adhesive is exposed outdoors over a long term, and to have excellent weatherability.
- the adhesive 13 is not peeled from the film 11 .
- An adhesive for laminated sheets comprising a urethane resin obtainable by mixing an acrylic polyol with an isocyanate compound, wherein
- the acrylic polyol is a polyol having a glass transition temperature of from ⁇ 20 to 20° C., which polyol is obtainable by polymerizing a polymerizable monomer;
- the polymerizable monomer includes a monomer having a hydroxyl group and the other monomer, and the other monomer includes acrylonitrile;
- the isocyanate compound includes both an isocyanate compound having no aromatic ring and an isocyanate compound having an aromatic ring.
- Methyl methacrylate (MMA) manufactured by Wako Pure Chemical Industries, Ltd.
- EA Ethyl acrylate
- Glycidyl methacrylate manufactured by Wako Pure Chemical Industries, Ltd.
- HEMA 2-Hydroxyethyl methacrylate
- Styrene (St) manufactured by Wako Pure Chemical Industries, Ltd.
- AIBN 2,2-Azobisisobutyronitrile
- n-Dodecylmercaptan (nDM) manufactured by NOF CORPORATION
- Tgs of (A1) to (A′10) were calculated by the above-mentioned equation (i) using a glass transition temperature of a homopolymer of a “polymerizable monomer” as a raw material of each polymer.
- the document value was used as Tg of each homopolymer such as methyl methacrylate.
- the acrylic polyols correspond to (A1) to (A6) shown in Table 1.
- the acrylic polyol′ corresponds to (A′7) to (A′9) shown in Table 2.
- the acrylic polymer (having no hydroxyl group) corresponds to the acrylic polymer (A′10) in Table 2.
- IPDI isophorone diisocyanate
- MDI (4,4′-Diphenylmethane diisocyanate (MDI): MILLIONATE MT (trade name) manufactured by Nippon Polyurethane Industry Co., Ltd.)
- a urethane resin is obtained by reacting the acrylic polyol with the isocyanate compound.
- Example 1 the adhesive for laminated sheets of Example 1 was applied to a transparent polyethylene terephthalate (PET) sheet (O300EW36 (trade name) manufactured by Mitsubishi Polyester Film Corporation) so that the weight of the solid component becomes 10 g/m 2 , and then dried at 80° C. for 10 minutes to obtain an adhesive-coated PET sheet 1 .
- PET polyethylene terephthalate
- a 50 ⁇ m thick surface-treated transparent polyolefin film (50 ⁇ m thick linear low-density polyethylene film LL-XUMN #30 (trade name) manufactured FUTAMURA CHEMICAL CO., LTD.) was laid on the adhesive-coated surface of the adhesive-coated PET sheet 1 so that the surface-treated surface was brought into contact with the adhesive-coated surface, and then both films were pressed using a planar press machine (ASF-5 (trade name) manufactured by SHINTO Metal Industries Corporation) under a pressing pressure (or closing pressure) of 1.0 MPa at 50° C. for 30 minutes. Both films were aged at 50° C. for 3 days to obtain a 1 mm thick film laminate 2 composed of polyolefin film/adhesive/PET sheet.
- ASF-5 trade name
- SHINTO Metal Industries Corporation SHINTO Metal Industries Corporation
- polyethylene films (LL-XUMN #30) were laid on a polyolefin (polyethylene) film of the film laminate 2 and, after laying a 1 mm thick spacer on a planar press machine (ASF-5 (trade name) manufactured by SHINTO Metal Industries Corporation), twenty polyolefin (polyethylene) films were integrated with each other by hot pressing under a pressing pressure (or closing pressure) of 1.0 MPa at 150° C. for 3 minutes to obtain a 1 mm thick film laminate 3 composed of polyolefin film/adhesive/PET sheet.
- ASF-5 planar press machine
- the adhesives for solar battery back sheets were evaluated by the following methods. The evaluation results are shown in Tables 3 to 6.
- the film laminate 2 was cut out into pieces of 15 mm in width. Using a tensile strength testing machine (TENSILON RTM-250 (trade name) manufactured by ORIENTEC Co., Ltd.), a peel test was carried out under a room temperature environment at a tensile speed of 100 mm/min and 180°. The evaluation criteria were as shown below.
- Peel strength was 1 N/15 mm or more but less than 6 N/15 mm.
- the film laminate 2 was cut out into an A5 size and evaluation was performed using a high pressure cooker (manufactured by Yamato Scientific Co., Ltd. under the trade name of autoclave SP300 (trade name)). After continuously keeping a wet heat state at 121° C. under 1.4 MPa for 100 hours, presence or absence of floating and peeling were visually observed.
- the evaluation criteria were as follows.
- a film laminate 2 was put in a thermo-hygrostat and maintained in a wet heat state in an atmosphere at 85° C. and 85% RH for 3,000 hours. Then, a peel test similar to the measurement of initial adhesion to a film after aging was performed, and hydrolysis resistance was evaluated.
- Peel strength was 1 (N/15 mm) or more but less than 6 (N/15 mm).
- Peel strength was 1 (N/15 mm) or more but less than 6 (N/15 mm).
- a film laminate 3 was put in a thermo-hygrostat and maintained in a wet heat state in an atmosphere at 85° C. and 85% RH for 1,000 hours. Then, a peel test similar to the measurement of initial adhesion to a film after aging was performed, and hydrolysis resistance was evaluated.
- Peel strength was 0 (N/15 mm) or more but less than 5 (N/15 mm).
- the adhesives for laminated sheets of Examples 1 to 16 were excellent in adhesion to a film after aging, curing rate (appearance after pressure cooker test), hydrolysis resistance (at high temperature and for a long time), and adhesion (1 mm thick film sheet) and hydrolysis resistance (1 mm thick polyolefin film). Therefore, the adhesives for laminated sheets, having these various performances, could sufficiently fulfill a role as adhesives for solar battery back sheets which are to be exposed to a severe environment.
- the present invention provides an adhesive for laminated sheets.
- the adhesive for laminated sheets according to the present invention is suited as an adhesive for solar battery back sheets since it is excellent in curing rate and initial adhesion to a film after aging, and is also excellent in long-term hydrolysis resistance at high temperature, resulting in remarkably enhanced durability against a severe environment.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Laminated Bodies (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
An adhesive for laminated sheets comprising a urethane resin obtainable by mixing an acrylic polyol with an isocyanate compound. The acrylic polyol is obtained by polymerizing a mixture including a first monomer having a hydroxyl group and acrylonitrile. The isocyanate compound includes both an isocyanate compound having no aromatic ring and an isocyanate compound having an aromatic ring. Also cured reaction products of the adhesive and films laminated using the adhesive.
Description
- The present invention relates to an adhesive for laminated sheets. The present invention also relates to a laminated sheet obtainable by using the adhesive, and an outdoor material obtainable by using the laminated sheet.
- Outdoor materials such as wall protecting materials, roofing materials, solar battery panel materials, window materials, outdoor flooring materials, illumination protection materials, automobile members, and signboards comprise, as a constituent material, a laminate obtained by laminating a plurality of films to each other using an adhesive. Examples of the film composing the laminate include metal foils made of metals such as aluminum, copper, and steel; metal plates and metal deposited films; and films made of plastics such as polypropylene, polyvinyl chloride, polyester, fluororesin, and acrylic resin.
- As shown in
FIG. 1 , a laminatedsheet 10 is a laminate of a plurality offilms films - Since the laminate is exposed outdoors over a long term, excellent durability is required of the adhesive for laminated sheets. It is required for adhesives for laminated sheets, particularly adhesives for solar battery applications, which convert sunlight into electricity, to have a higher level of durability than a conventional adhesive for laminated sheets.
- As shown in
FIG. 3 , in the case of solar battery applications, the laminatedsheet 10 referred to as a back sheet is included in asolar battery module 1, together with a sealingmaterial 20, asolar battery cell 30, and aglass plate 40. - Since the
solar battery module 1 is exposed outdoors over a long term, sufficient durability against sunlight is required under conditions of high temperature and high humidity. Particularly, when theadhesive 13 has poor performance, thefilm 11 can become peeled from thefilm 12, and thus the appearance of thesheet 10 deteriorates. Therefore, it is required that the adhesive for laminated sheets for the production of the solar battery module does not undergo peeling of the film even if the adhesive is exposed to high temperature over a long term. -
Patent Documents 1 to 3 disclose, as examples of adhesives for laminated sheets, urethane based adhesives for producing solar battery protection sheets. -
Patent Document 1 discloses that a urethane adhesive for laminated sheets synthesized from an acrylic polyol is suited as an adhesive for solar battery back sheets (seeClaim 1 and the paragraph number 0048). - Patent Document 2 discloses a protective sheet for solar battery modules in which an acrylic urethane resin is formed on a base material sheet (see Patent Document 2,
Claim 1, and FIGS. 1 to 3). - Patent Document 3 describes mixing an isocyanate curing agent with an acrylic polyol to produce adhesives (see Table 1, Table 2); a solar battery back sheet is produced by using these adhesives (see paragraph 0107).
-
Patent Documents 1 to 3 teach that poor appearance of a solar battery module can be prevented by producing a solar battery back sheet using an adhesive which is excellent in hydrolysis resistance and laminate strength. However, it is hard to say that the adhesive sufficiently meets the high requirements of consumers. Furthermore, durability required of an adhesive for solar battery back sheets is getting higher year by year, and it is required for an adhesive for back sheets to have high adhesion. Since the solar battery module is mainly used outdoors, high adhesion at high temperature is required. - It is necessary that an adhesive for solar battery back sheets has sufficient adhesion even at high temperature and can maintain adhesion even when exposed outdoors over a long time, and also has an acceptable curing rate and has higher adhesion (particularly adhesion after aging) to a film base material. When a solar battery back sheet is produced by using the adhesives of
Patent Documents 1 to 3, plural films composing the back sheet (laminated sheet) may be peeled under severe outdoor environments (at high temperature over a long period). - When heat between the
back sheet 10 and the sealing agent 20 (seeFIG. 3 ) excessively increases, thefilm 11 of theback sheet 10 and thesealing agent 20 are integrated with each other to form a relatively thick laminate (thesealing agent 20, thefilm 11 and the adhesive 13); thefilm 11 and the adhesive 13 (or the film 12) may sometimes cause interfacial peeling due to the influence of film thickening or heating history. - Patent Document 1: JP 2011-105819 A
- Patent Document 2: JP 2010-238815 A
- Patent Document 3: JP 2010-263193 A
- The present invention has been made so as to solve such a problem and an object thereof is to provide an adhesive for laminated sheets, which is excellent in curing rate and initial adhesion to a film after aging in the case of producing a laminate (laminated sheet), and is also excellent in hydrolysis resistance over a long term at high temperature; and, an outdoor material obtainable by using the laminated sheet.
- The present inventors have intensively studied and found, surprisingly, that it is possible to obtain an adhesive for laminated sheets, which is excellent in curing rate and initial adhesion to a film after aging in producing a laminated sheet, and is also excellent in hydrolysis resistance over a long term at high temperature, by using a specific polyol and a specific isocyanate as raw materials of a urethane resin. Thus, the present invention has been completed.
- Namely, the present invention provides, in an aspect, an adhesive for laminated sheets, comprising a urethane resin obtainable by mixing an acrylic polyol with an isocyanate compound, wherein the acrylic polyol is a polyol having a glass transition temperature of from −20 to 20° C., which polyol is obtainable by polymerizing a polymerizable monomer; the polymerizable monomer includes a monomer having a hydroxyl group and the other monomer, and the other monomer includes acrylonitrile; and the isocyanate compound includes both an isocyanate compound having no aromatic ring and an isocyanate compound having an aromatic ring.
- The present invention provides, in an embodiment, the adhesive for laminated sheets, wherein the isocyanate compound having no aromatic ring is at least one selected from an aliphatic isocyanate compound and an alicyclic isocyanate compound.
- The present invention provides, in a preferred embodiment, the adhesive for laminated sheets, wherein the other monomer further includes a (meth)acrylic acid ester.
- The present invention provides, in a more preferred embodiment, the adhesive for laminated sheets, wherein the acrylic polyol has a hydroxyl value of from 0.5 to 45 mgKOH/g.
- The present invention provides, in the most preferred embodiment, the adhesive for laminated sheets, wherein an equivalent ratio of an isocyanate group derived from the isocyanate having an aromatic ring to a hydroxyl group derived from the acrylic polyol is 0.5 or more.
- The present invention provides, in another aspect, a laminated sheet obtainable by using the above adhesive for laminated sheets.
- The present invention provides, as a preferred aspect, an outdoor material obtainable by using the laminated sheet.
- The adhesive for laminated sheets according to the present invention comprises a urethane resin obtainable by mixing an acrylic polyol with the isocyanate compounds defined below; the acrylic polyol is a polyol having a glass transition temperature of from −20 to 20° C., which polyol is obtainable by polymerizing a monomer having a hydroxyl group and at least one other monomer, wherein the at least one other monomer includes acrylonitrile; and said isocyanate compounds include both an isocyanate compound having no aromatic ring and an isocyanate compound having an aromatic ring. Therefore, the adhesive for laminated sheets is excellent in curing rate and initial adhesion to a film after aging in producing a laminated sheet, is also excellent in hydrolysis resistance over a long period at high temperature and is excellent in overall balance. The adhesive of the present invention is preferably used in outdoor materials, and is particularly useful as an adhesive for solar battery protection sheets.
- The adhesive for laminated sheets according to the present invention is preferably used as an adhesive for solar battery protection sheets exposed to severe environment, particularly as an adhesive for solar battery back sheets, since initial adhesion after aging and long-term hydrolysis resistance at high temperature may be further improved when the isocyanate compound having no aromatic ring contains at least one selected from an aliphatic isocyanate compound and an alicyclic isocyanate compound.
- The adhesive according to the present invention can show improved initial adhesion to a film after aging when the other monomer further includes a (meth)acrylic acid ester.
- In the adhesive for laminated sheets according to the present invention, when the acrylic polyol has a hydroxyl value of from 0.5 to 45 mgKOH/g, initial adhesion to a film after aging is more improved and also hydrolysis resistance is improved. In particular, when a solar battery back sheet is produced by laminating a plurality of films using the adhesive of the present invention, the films and the adhesive become much less likely to cause interfacial peeling.
- In the adhesive for laminated sheets according to the present invention, when an equivalence ratio of isocyanate groups derived from the isocyanate having an aromatic ring to hydroxyl groups derived from the acrylic polyol is 0.5 or more, heat resistance is more improved and long-term hydrolysis resistance at high temperature is more improved.
- The laminated sheet according to the present invention is obtainable by using the above adhesive, and is therefore excellent in productivity and also can prevent peeling of the film from the adhesive when exposed outdoors over a long term from the beginning of lamination.
- The outdoor material according to the present invention is obtainable by using the above laminated sheet, and is therefore excellent in productivity, and is less likely to suffer poor appearance and is also excellent in durability.
-
FIG. 1 is a sectional view of an embodiment of the laminated sheet of the present invention. -
FIG. 2 is a sectional view of another embodiment of the laminated sheet of the present invention. -
FIG. 3 is a sectional view of an embodiment of the outdoor material (for example, a solar battery module) of the present invention. - The adhesive for solar battery back sheets according to the present invention includes a urethane resin obtainable by mixing an acrylic polyol with an isocyanate compound.
- The urethane resin according to the present invention is a polymer obtainable by mixing and reacting the acrylic polyol with the isocyanate compound, and has a urethane bond. hydroxyl group of the acrylic polyol reacts with an isocyanate group.
- The acrylic polyol is obtainable by the addition polymerization of a polymerizable monomer, and the polymerizable monomer includes a “monomer having a hydroxyl group” and the “other monomer”. The “monomer having a hydroxyl group” is a radical polymerizable monomer having a hydroxyl group and an ethylenic double bond, and is not particularly limited as long as the objective adhesive for laminated sheets of the present invention can be obtained.
- The monomer having a hydroxyl group includes for example, hydroxyalkyl (meth)acrylate, and the hydroxyalkyl (meth)acrylate may be used alone, or two or more hydroxyalkyl (meth)acrylates may be used in combination. The hydroxyalkyl (meth)acrylate may also be used in combination with a monomer having a hydroxyl group, other than the hydroxyalkyl (meth) acrylate.
- Examples of the “hydroxyalkyl (meth)acrylate” include, but are not limited to, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl acrylate and the like.
- Examples of the “polymerizable monomer having a hydroxyl group, other than the hydroxylalkyl (meth)acrylate” include polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate and the like.
- The “other monomer” is a “radical polymerizable monomer having an ethylenic double bond” other than the monomer having a hydroxyl group and contains acrylonitrile, and is not particularly limited as long as the objective adhesive for laminated sheets of the present invention can be obtained. The other monomer may further include a (meth) acrylic ester. The other monomer may further include a radical polymerizable monomer having an ethylenic double bond, other than acrylonitrile and (meth)acrylic ester.
- The “(meth)acrylic ester” is obtainable, for example, by the condensation reaction of (meth)acrylic acid with a monoalcohol, and has an ester bond. Even if it has an ester bond, a monomer having a hydroxyl group is not included in the (meth)acrylic ester. Specific examples thereof include (meth)acrylic acid alkyl esters such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth)acrylate, dicyclopentyl (meth)acrylate, and isobornyl (meth)acrylate; glycidyl (meth)acrylate and the like. Both linear alkyl group and cyclic alkyl group are included in this “alkyl group”.
- In the present invention, it is preferred to include at least one monomer selected from methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and cyclohexyl (meth)acrylate, and it is more preferred to include at least monomer selected from methyl (meth)acrylate, ethyl (meth)acrylate, and butyl (meth)acrylate.
- Examples of the “radical polymerizable monomers having an ethylenic double bond, other than acrylonitrile and (meth)acrylic ester” include, but are not limited to, (meth)acrylic acid, styrene, vinyltoluene and the like.
- The “acrylonitrile” is a compound represented by the general formula: CH2═CH—CN, and is also called acrylic nitrile, acrylic acid nitrile, or vinyl cyanide.
- The acrylonitrile is preferably contained in the amount of from 1 to 40 parts by weight, more preferably from 5 to 35 parts by weight, and particularly preferably from 5 to 25 parts by weight, based on 100 parts by weight of the polymerizable monomers. When the amount of the acrylonitrile is within the above range, it is possible to obtain an adhesive for solar battery back sheets, which shows an excellent balance of coat-ability, initial adhesion to a film after aging, and adhesion at high temperature.
- In the present description, acrylic acid and methacrylic acid are collectively referred to as “(meth)acrylic acid”, and “acrylic ester and methacrylic ester” are collectively referred to as “(meth)acrylic ester” or “(meth)acrylate”.
- As long as the objective adhesive for laminated sheets of the present invention can be obtained, there is no particular limitation on the polymerization method of the polymerizable monomer. For example, the above-mentioned polymerizable monomer can be radically polymerized by a conventional solution polymerization method in an organic solvent using an appropriate catalyst. Herein, there is no particular limitation on the organic solvent as long as it can be used to polymerize the polymerizable monomer, and it does not substantially exert an adverse influence on the properties of the adhesive after the polymerization reaction. Examples of such solvent include aromatic solvents such as toluene and xylene; ester based solvents such as ethyl acetate and butyl acetate; and combinations thereof.
- The polymerization reaction conditions such as reaction temperature, reaction time, type of organic solvents, type and concentration of monomers, stirring rate, as well as the type and concentration of polymerization initiators in the polymerization of the polymerizable monomers can be appropriately selected according to characteristics and so on of the objective adhesive.
- The “polymerization initiator” is preferably a compound which can accelerate the polymerization of the polymerizable monomer when added in a small amount and can be used in an organic solvent. Examples of the polymerization initiator include ammonium persulfate, t-butyl peroxybenzoate, 2,2-azobisisobutyronitrile (AIBN), and 2,2-azobis(2,4-dimethylvarelonitrile).
- A chain transfer agent can be appropriately used for the polymerization in the present invention so as to adjust the molecular weight. It is possible to use, as the “chain transfer agent”, compounds well-known to those skilled in the art. Examples thereof include mercaptans such as n-dodecylmercaptan (nDM), laurylmethylmercaptan, and mercaptoethanol.
- As mentioned above, the acrylic polyol is obtainable by polymerizing the polymerizable monomer. From the viewpoint of coat-ability of the adhesive, the weight average molecular weight (Mw) of the acrylic polyol is preferably 200,000 or less, and more preferably from 5,000 to 100,000. The weight average molecular weight (Mw) is a value measured by gel permeation chromatography (GPC) in terms of polystyrene standard. Specifically, the value can be measured using the following GPC apparatus and measuring method. HCL-8220GPC manufactured by TOSOH CORPORATION is used as a GPC apparatus, and RI is used as a detector. Two TSKgel SuperMultipore HZ-M manufactured by TOSOH CORPORATION are used as a GPC column. A sample is dissolved in tetrahydrofuran and the obtained solution is allowed to flow at a flow rate of 0.35 ml/minute and at a column temperature of 40° C., and then the Mw is determined by conversion of an observed molecular weight based on a calibration curve which is obtained by using polystyrene having a monodisperse molecular weight as a standard reference material.
- A glass transition temperature (Tg) of the acrylic polyol can be set by adjusting a mass fraction of a monomer to be used. The glass transition temperature (Tg) of the acrylic polyol can be determined based on a glass transition temperature of a homopolymer obtainable from each monomer and a mass fraction of the homopolymer used in the acrylic polyol using the following calculation formula (i). It is preferred to determine a composition of the monomer using the glass transition temperature determined by the calculation:
-
1/Tg=W1/Tg1+W2/Tg2+ . . . +Wn/Tgn (i): - where Tg in the above formula (i) denotes the glass transition temperature of the acrylic polyol, each of W1, W2, . . . , Wn denotes a mass fraction of each monomer, and each of Tg1, Tg2, . . . , and Tgn denotes a glass transition temperature of a homopolymer of each corresponding monomer.
- A value disclosed in a document can be used as a Tg of the homopolymer. It is possible to refer, for example, to the following documents: Acrylic Ester Catalog of Mitsubishi Rayon Co., Ltd. (1997 Version), edited by Kyozo Kitaoka; “Shin Kobunshi Bunko 7, Guide to Synthetic Resin for Coating Material”, Kobunshi Kankokai, published in 1997, pp. 168-169; and, “POLYMER HANDBOOK”, 3rd Edition, pp. 209-277, John Wiley & Sons, Inc. published in 1989.
- In the present specification, the glass transition temperatures of homopolymers of the following monomers are as follows.
- Methyl methacrylate: 105° C.
n-Butyl acrylate: −54° C.
Ethyl acrylate: −20° C.
2-Hydroxyethyl methacrylate: 55° C.
2-Hydroxyethyl acrylate: −15° C.
Glycidyl methacrylate: 41° C. - In the present invention, the glass transition temperature of the acrylic polyol is preferably from −20° C. to 20° C., more preferably −15° C. to 20° C., and particularly preferably −10° C. to 15° C., from the viewpoint of the initial adhesion to a film after aging. When the glass transition temperature is lower than −20° C., the adhesive may cause decrease in cohesive force, resulting in deterioration of hydrolysis resistance. When the glass transition temperature is higher than 20° C., the initial adhesion to a film after aging may decrease since the adhesive may become too hard.
- The hydroxyl value of the acrylic polyol is preferably from 0.5 to 45 mgKOH/g, more preferably from 1 to 40 mgKOH/g, and particularly preferably from 5 to 35 mgKOH/g. When the hydroxyl value of the acrylic polyol is within the above range, it is possible to obtain the adhesive which after aging, is excellent in initial adhesion, adhesion at high temperature, and hydrolysis resistance. Particularly, when a solar battery back sheet is produced by laminating a plurality of films using the adhesive of the present invention, the film becomes much less likely to peel from the adhesive.
- In the present description, the hydroxyl value is a number of mg of potassium hydroxide required to neutralize acetic acid combined with hydroxyl groups when 1 g of a resin is acetylated. In the present invention, the hydroxyl value is specifically calculated by the following formula (ii).
-
Hydroxyl value=[(weight of (meth)acrylate having a hydroxyl group)/(molecular weight of (meth)acrylate having a hydroxyl group)]×(mole number of hydroxyl groups contained in 1 mol of (meth)acrylate monomer having a hydroxyl group)×(formula weight of KOH×1,000)/(weight of the acrylic polyol) (ii): - In the present invention, the isocyanate compound includes not only a monomer, but also all of a biuret form, an isocyanate form, a polyhydric alcohol adduct and an allophanate form, and mainly, it is roughly classified into an “isocyanate having no aromatic ring” and an “isocyanate having, an aromatic ring”. In addition, for example, trimethylolpropane (TMP) is included in the polyhydric alcohol, but the polyhydric alcohol is not limited only to the TMP.
- Examples of the isocyanate having no aromatic ring include an “aliphatic isocyanate” and an “alicyclic isocyanate”.
- The aliphatic isocyanate refers to a compound which has a chain-like (or linear) hydrocarbon chain in which isocyanate groups are directly combined to the hydrocarbon chain, and also has no cyclic hydrocarbon chain.
- The alicyclic isocyanate is a compound which has a cyclic hydrocarbon chain and may have a chain-like hydrocarbon chain. The isocyanate group may be either directly combined with the cyclic hydrocarbon chain, or may be directly combined with the chain-like hydrocarbon chain which may be present.
- Examples of the aliphatic isocyanate include 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, 1,6-diisocyanatohexane (HDI), 1,6-diisocyanato-2,2,4-trimethylhexane, methyl 2,6-diisocyanatohexanoate (lysine diisocyanate) and the like.
- Examples of the alicyclic isocyanate include 5-isocyanato-1-isocyanatomethyl-1,3,3-trimethylcyclohexane (isophorone diisocyanate), 1,3-bis(isocyanatomethyl)cyclohexane (hydrogenated xylylene diisocyanate), bis(4-isocyanatocyclohexyl)methane (hydrogenated diphenylmethane diisocyanate), 1,4-diisocyanatocyclohexane and the like.
- It is sufficient for the isocyanate having an aromatic ring (hereinafter referred to as an aromatic isocyanate) to have an aromatic ring, and it is not necessary that the isocyanate groups are directly combined with the aromatic ring. The aromatic ring may be an aromatic ring in which two or more benzene rings are fused.
- Examples of the aromatic isocyanate include 4,4′-diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, m-phenylene diisocyanate, tolylene diisocyanate (TDI), xylene diisocyanate (XDI) and the like. These isocyanate compounds can be used alone or in combination.
- Since xylylene diisocyanate (OCN—CH2—C6H4—CH2—NCO) has an aromatic ring, it corresponds to the aromatic isocyanate even though the isocyanate groups are not directly combined with the aromatic ring.
- In the present invention, the isocyanate compound is not particularly limited as long as the objective urethane adhesive of the present invention can be obtained, and is particularly preferably HDI as the aliphatic isocyanate, isophorone diisocyanate as the alicyclic isocyanate, and 4,4′-diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI) and xylene diisocyanate (XDI) as the aromatic isocyanate, from the viewpoint of improving the initial adhesion to a film after aging, the curing time, and the hydrolysis resistance.
- Among these isocyanates, HDI is more preferably an isocyanurate form, isophorone diisocyanate is more preferably an isocyanurate form, and TDI is more preferably an adduct with trimethylolpropane.
- The urethane resin according to the present invention is obtainable by reacting the acrylic polyol with the isocyanate compound. In the reaction, a known method can be used and the reaction can be usually performed by mixing the acrylic polyol with the isocyanate compound. There is no particular limitation on the mixing method as long as the urethane resin according to the present invention can be obtained.
- In the present invention, an equivalence ratio of the isocyanate group based on the isocyanate having an aromatic ring to the hydroxyl group based on the acrylic polyol is preferably 0.5 or more, particularly preferably from 0.5 to 2.5, and most preferably from 0.5 to 2.0. When the equivalence ratio is 0.5 or more, the adhesive exhibits more improved curing rate, is excellent in heat resistance and shows improved hydrolysis resistance at high temperature.
- The adhesive for laminated sheets of the present invention may contain an ultraviolet absorber for the purpose of improving long-term weatherability. It is possible to use, as the ultraviolet absorber, a hydroxyphenyltriazine based compound and other commercially available ultraviolet absorbers. The “hydroxyphenyltriazine based compound” is one type of a triazine derivative in which a hydroxyphenyl derivative is combined with a carbon atom of the triazine derivative, and examples thereof include TINUVIN 400, TINUVIN 405, TINUVIN 479, TINUVIN 477 and TINUVIN 460 (all of which are trade names) which are available from BASF Corporation.
- The adhesive for laminated sheets may further contain a hindered phenol based compound. The “hindered phenol based compound” is commonly referred to as a hindered phenol based compound, and there is no particular limitation as long as the objective adhesive for laminated sheets according to the present invention can be obtained.
- Commercially available products can be used as the hindered phenol based compound. The hindered phenol based compound is, for example, commercially available from BASF Corporation. Examples thereof include IRGANOX1010, IRGANOX1035, IRGANOX1076, IRGANOX1135, IRGANOX1330 and IRGANOX1520 (all of which are trade names). The hindered phenol based compound is added to the adhesive as an antioxidant and may be used, for example, in combination with a phosphite based antioxidant, a thioether based antioxidant, an amine based antioxidant and the like.
- The adhesive for laminated sheets according to the present invention may further contain a hindered amine based compound. The “hindered amine based compound” is commonly referred to as a hindered amine based compound, and there is no particular limitation as long as the objective adhesive according to the present invention can be obtained.
- Commercially available products can be used as the hindered amine based compound. Examples of the hindered amine based compound include TINUVIN 765, TINUVIN 111FDL, TINUVIN 123, TINUVIN 144, TINUVIN 152, TINUVIN 292 and TINUVIN 5100 (all of which are trade names) which are commercially available from BASF Corporation. The hindered amine based compound is added to the adhesive as a light stabilizer and may be used, for example, in combination with a benzotriazole based compound, a benzoate based compound, a benzotriazole based compound and the like.
- The adhesive for laminated sheets according to the present invention can further contain other components as long as the objective adhesive can be obtained.
- There is no particular limitation on timing of the addition of the “other components” to the adhesive as long as the objective adhesive according to the present invention can be obtained. For example, the other components may be added, together with the acrylic polyol and the isocyanate compound, in the synthesis of the urethane resin, or may be added after synthesizing the urethane resin by reacting the acrylic polyol with the isocyanate compound.
- Examples of the “other component” include a catalyst, a tackifier resin, a pigment, a plasticizer, a flame retardant, a wax and the like.
- Examples of the “catalyst” include a metal catalyst, a non-metal catalyst and the like.
- Examples of the “metal catalyst” include a tin catalyst (trimethyltin laurate, trimethyltin hydroxide, stannous octoate, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin maleate, etc.) and a lead based catalyst (lead oleate, lead naphthenate, lead octoate, etc.), and examples of the other metal catalyst include naphthenic acid metal salt such as cobalt naphthenate, bismuth octoate, sodium persulfate, potassium persulfate and the like.
- The “non-metal catalyst” is preferably an amine based catalyst, and more preferably a tertiary amine based catalyst. Examples of the amine based catalyst include 1,2-dimethylimidazole, triethylenediamine, tetraethylenediamine, tetramethylhexylenediamine, diazabicycloalkenes, dialkylaminoalkylamines and the like.
- Examples of the “tackifier resin” include a styrene based resin, a terpene based resin, aliphatic petroleum resin, an aromatic petroleum resin, a rosin ester, an acrylic resin, a polyester resin (excluding polyesterpolyol) and the like.
- Examples of the “pigment” include titanium oxide, carbon black and the like.
- Examples of the “plasticizer” include dioctyl phthalate, dibutyl phthalate, diisononyl adipate, dioctyl adipate, mineral spirit and the like.
- Examples of the “flame retardant” include a halogen based flame retardant, a phosphorous based flame retardant, an antimony based flame retardant, a metal hydroxide based flame retardant and the like.
- The “wax” is preferably a wax such as a paraffin wax and a microcrystalline wax.
- Viscosity of the adhesive for laminated sheets according to the present invention is measured by using a rotational viscometer (Model BM, manufactured by TOKIMEC Inc.). When solution viscosity at the solid content of 40% is 4,000 mPa·s or more, coatability of the adhesive may deteriorate. If a solvent is further added so as to decrease the viscosity, coating is performed at low solid component concentration, and thus productivity of the adhesive for laminated sheets may deteriorate.
- The adhesive for laminated sheets of the present invention can be produced by mixing the above-mentioned urethane resin, and an ultraviolet absorber, an antioxidant, a light stabilizer and/or other components which may be optionally added. There is no particular limitation on the mixing method as long as the objective adhesive for laminated sheets of the present invention can be obtained. There is also no particular limitation on the order of mixing the components. The adhesive according to the present invention can be produced without requiring a special mixing method and a special mixing order. The obtained adhesive can maintain excellent hydrolysis resistance at high temperature over a long term, and is also excellent in curing rate and initial adhesion to a film after aging, and is also excellent in overall balance.
- Therefore, a laminated sheet is produced by laminating a plurality of adherends using the adhesive of the present invention, and the obtained laminated sheet is used for the production of various outdoor materials.
- Examples of the outdoor material of the present invention include wall protecting materials, roofing materials, solar battery modules, window materials, outdoor flooring materials, illumination protection materials, automobile members, and signboards. These outdoor materials include, as an adherend, a laminated sheet obtained by laminating a plurality of films with each other. Examples of the film include a film obtained by depositing metal on a plastic film (metal deposited film) and a film with no metal deposited thereon (plastic film).
- It is required for an adhesive for producing solar battery modules, among the adhesive for laminated sheets, to have a particularly high level of adhesion to a film after aging and of curing rate, and further have long-term hydrolysis resistance at high temperature. The adhesive for laminated sheets of the present invention is excellent in long-term hydrolysis resistance at high temperature, and thus the adhesive is suitable as an adhesive for solar battery back sheets.
- In the case of producing a solar battery back sheet, the adhesive of the present invention is applied to a film. The application can be performed by various methods such as gravure coating, wire bar coating, air knife coating, die coating, lip coating and comma coating methods. Plural films coated with the adhesive of the present invention are laminated with each other to complete the solar battery back sheet.
- An embodiment of the solar battery back sheet of the present invention is shown in each of
FIGS. 1 to 3 , but the present invention is not limited to these embodiments. -
FIG. 1 is a sectional view of a solar battery back sheet as an embodiment of laminated sheets of the present invention. The solar battery backsheet 10 is formed of two films and an adhesive forlaminated sheets 13 interposed therebetween, and the twofilms laminated sheets 13. Thefilms FIG. 1 , the twofilms - Another embodiment of the laminated sheet (solar battery back sheet) according to the present invention is shown in
FIG. 2 . InFIG. 2 , athin film 11 a is formed between thefilm 11 and theoutdoor urethane adhesive 13. For example,FIG. 2 shows an embodiment in which a metalthin film 11 a is formed on the surface of thefilm 11 when thefilm 11 is a plastic film. The metalthin film 11 a can be formed on the surface of theplastic film 11 by vapor deposition, and the solar battery back sheet ofFIG. 2 can be obtained by laminating the metalthin film 11, on which surface the metalthin film 11 a is formed, with thefilm 12 by interposing the adhesive forlaminated sheets 13 therebetween. - Examples of the metal to be deposited on the plastic film include aluminum, steel, copper and the like. It is possible to impart barrier properties to the plastic film by subjecting the film to vapor deposition. Silicon oxide or aluminum oxide is used as a vapor deposition material. The
plastic film 11 as a base material may be either transparent, or white- or black-colored. - A plastic film made of polyvinyl chloride, polyester, a fluororesin or an acrylic resin is used as the
film 12. In order to impart heat resistance, weatherability, rigidity, insulating properties and the like, a polyethylene terephthalate film or a polybutylene terephthalate film is preferably used. Thefilms - The deposited
thin film 11 a of thefilm 11 and thefilm 12 are laminated each other using the adhesive 13 according to the present invention, and thefilms -
FIG. 3 shows a sectional view of an example of a solar battery module as an embodiment of the outdoor material of the present invention. InFIG. 3 , it is possible to obtain asolar battery module 1 by laying aglass plate 40, a sealingmaterial 20 such as an ethylene-vinyl acetate resin (EVA), pluralsolar battery cells 30 which are commonly connected with each other so as to generate a desired voltage, and aback sheet 10 over one another, and then fixing thesemembers spacer 50. - As mentioned above, since the
back sheet 10 is a laminate of the plurality of thefilms urethane adhesive 13 to cause no peeling of thefilms back sheet 10 is exposed outdoors over a long term. - The
solar battery cell 30 is often produced by using silicon, and is sometimes produced by using an organic resin containing a dye. In that case, thesolar battery module 1 becomes an organic (dye sensitized) solar battery module. Since colorability is required of the organic (dye sensitized) solar battery, a transparent film is often used as thefilm 11 and thefilm 12 which compose the solar battery backsheet 10. Therefore, it is required for the adhesive for solar battery backsheets 13 to cause very little change in color difference even though the adhesive is exposed outdoors over a long term, and to have excellent weatherability. - In the present invention, even when the sealing
material 20 and theback sheet 10 are integrated with each other, the adhesive 13 is not peeled from thefilm 11. - Main embodiments of the present invention will be shown below.
- 1. An adhesive for laminated sheets, comprising a urethane resin obtainable by mixing an acrylic polyol with an isocyanate compound, wherein
- the acrylic polyol is a polyol having a glass transition temperature of from −20 to 20° C., which polyol is obtainable by polymerizing a polymerizable monomer;
- the polymerizable monomer includes a monomer having a hydroxyl group and the other monomer, and the other monomer includes acrylonitrile; and
- the isocyanate compound includes both an isocyanate compound having no aromatic ring and an isocyanate compound having an aromatic ring.
- 2. The adhesive for laminated sheets according to the above 1, wherein the isocyanate compound having no aromatic ring is at least one selected from an aliphatic isocyanate compound and an alicyclic isocyanate compound.
3. The adhesive for laminated sheets according to the above 1 or 2, wherein the other monomer further includes a (meth)acrylic acid ester.
4. The adhesive for laminated sheets according to any one of the above 1 to 3, wherein the acrylic polyol has a hydroxyl value of from 0.5 to 45 mgKOH/g.
5. The adhesive for laminated sheets according to any one of the above 1 to 4, wherein an equivalent ratio of an isocyanate group derived from the isocyanate having an aromatic ring to a hydroxyl group derived from the acrylic polyol is 0.5 or more.
6. A laminated sheet obtainable by using the adhesive for laminated sheets according to any one of the above 1 to 5.
7. An outdoor material obtainable by using the laminated sheet according to the above 6. - The present invention will be described below by way of Examples and Comparative Examples, and these Examples are merely for illustrative purposes and are not meant to be limiting on the present invention.
- In a four-necked flask equipped with a stirring blade, a thermometer and a reflux condenser, 100 g of ethyl acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was charged and refluxed at about 80° C. In the flask, 1 g of 2,2-azobisisobutyronitrile as a polymerization initiator was added and a mixture of monomers in each amount shown in Table 1 was continuously added dropwise over 1 hour and 30 minutes. After heating for 2 hours, a solution of an acrylic polyol having a non-volatile content (solid content) of 50.0% by weight was obtained.
- Composition of polymerizable monomer components of the acrylic polyol (polymer 1), and physical properties of the obtained
acrylic polymer 1 are shown in Table 1. - In the same manner as in Synthetic Example 1, except that the composition of the monomers used in the synthesis of the acrylic polyol (A1) was changed as shown in Tables 1 to 2, an acrylic polyol (A2) to an acrylic polyol (A′9) and an acrylic polymer (A′10) were obtained. Physical properties of the obtained polymers are shown in Tables 1 to 2.
- The polymerizable monomers and other components in Table 1 are shown below.
- Methyl methacrylate (MMA): manufactured by Wako Pure Chemical Industries, Ltd.
- Butyl acrylate (BA): manufactured by Wako Pure Chemical Industries, Ltd.
- Ethyl acrylate (EA): manufactured by Wako Pure Chemical Industries, Ltd.
- Glycidyl methacrylate (GMA): manufactured by Wako Pure Chemical Industries, Ltd.
- Acrylonitrile (AN): manufactured by Wako Pure Chemical Industries, Ltd.
- 2-Hydroxyethyl methacrylate (HEMA): manufactured by Wako Pure Chemical Industries, Ltd.
- 2-Hydroxyethyl acrylate (HEA): manufactured by Wako Pure Chemical Industries, Ltd.
- Styrene (St): manufactured by Wako Pure Chemical Industries, Ltd.
- 2,2-Azobisisobutyronitrile (AIBN): manufactured by Otsuka Chemical Co., Ltd.
- n-Dodecylmercaptan (nDM): manufactured by NOF CORPORATION
-
TABLE 1 Synthetic Examples of acrylic polyol 1 2 3 4 5 6 St 2 3 2 0 0 0 MMA 19 22 44 39 39 39 BA 67 56 42 45 41 50 EA 0 0 0 0 0 0 GMA 0 2 0 0 0 0 AN 10 15 10 10 10 10 HEMA 2 2 0 6 10 1 HEA 0 0 2 0 0 0 AIBN 1 1 1 1 1 1 Tg (° C.) of −18 −4 16 11 16 5 acrylic polyol Hydroxyl value 8.6 8.6 9.7 25.9 43.1 4.3 (mgKOH/g) Weight average 40,000 41,000 36,000 35,000 40,000 42,000 molecular weight Polymer A1 A2 A3 A4 A5 A6 -
TABLE 2 Synthetic Examples of acrylic polyol 7 8 9 10 St 2 0 0 3 MMA 3 35 44 22 BA 73 0 54 58 EA 0 57 0 0 GMA 0 0 0 2 AN 20 6 0 15 HEMA 2 2 2 0 HEA 0 0 0 0 AIBN 1 1 1 1 Tg (° C.) of −24 22 −9 −6 acrylic polyol Hydroxyl value 8.6 8.6 8.6 0 (mgKOH/g) Weight average 45,000 42,000 43,000 40,000 molecular weight Polymer A′7 A′8 A′9 A′10 - Tgs of (A1) to (A′10) were calculated by the above-mentioned equation (i) using a glass transition temperature of a homopolymer of a “polymerizable monomer” as a raw material of each polymer.
- The document value was used as Tg of each homopolymer such as methyl methacrylate.
- Raw materials of adhesives for laminated sheets used in Examples and Comparative Examples are shown below.
- The acrylic polyols correspond to (A1) to (A6) shown in Table 1.
- The acrylic polyol′ corresponds to (A′7) to (A′9) shown in Table 2.
- The acrylic polymer (having no hydroxyl group) corresponds to the acrylic polymer (A′10) in Table 2.
- (Isocyanurate form of 1,6-diisocyanatohexane (HDI): Sumidur N3300 (trade name) manufactured by Sumitomo Bayer Urethane Co., Ltd.)
- (Isocyanurate form of isophorone diisocyanate (IPDI): VESTANAT T1890/100 (trade name) manufactured by EVONIK Industries)
- (4,4′-Diphenylmethane diisocyanate (MDI): MILLIONATE MT (trade name) manufactured by Nippon Polyurethane Industry Co., Ltd.)
- (Adduct form of trimethylolpropane to tolylene diisocyanate (TDI): Desmodur L75 (trade name) manufactured by Sumitomo Bayer Urethane Co., Ltd.)
- (Xylylene diisocyanate (XDI): Takenato 500 (trade name) manufactured by Mitsui Chemicals, Incorporated.)
- Stannous octoate (U-28 (trade name) manufactured by NITTO KASEI KOGYO K.K.)
- Bismuth octoate (PUCAT 25 (trade name) manufactured by NIHON KAGAKU SANGYO CO., LTD.)
- 1,2-Dimethylimidazole (TOYOCAT DMI (trade name) manufactured by TOSOH CORPORATION)
- A urethane resin is obtained by reacting the acrylic polyol with the isocyanate compound.
- The below-mentioned adhesives for laminated sheets of Examples 1 to 16 and Comparative Examples 1 to 6 were produced by mixing the above-mentioned components. Detailed compositions of the adhesives are shown in Tables 3 to 6, and the production process is performed in accordance with the process of Example 1. The obtained adhesives for laminated sheets were evaluated by the following tests.
- As shown in Table 3, 95.3 g of the acrylic polyol (A1) [190.6 g of an ethyl acetate solution of the acrylic polyol (A1) (solid content: 50.0% by weight)] and 0.048 g of (C1) were weighed and mixed, and then 2.8 g of (B1) and 1.9 g of (B3) were added to the mixture. Furthermore, ethyl acetate was added to the mixture to prepare an adhesive solution having a solids content of 30% by weight. Using this solution thus prepared as an adhesive for laminated sheets, the following tests were carried out.
- First, the adhesive for laminated sheets of Example 1 was applied to a transparent polyethylene terephthalate (PET) sheet (O300EW36 (trade name) manufactured by Mitsubishi Polyester Film Corporation) so that the weight of the solid component becomes 10 g/m2, and then dried at 80° C. for 10 minutes to obtain an adhesive-coated
PET sheet 1. - Then, a 50 μm thick surface-treated transparent polyolefin film (50 μm thick linear low-density polyethylene film LL-XUMN #30 (trade name) manufactured FUTAMURA CHEMICAL CO., LTD.) was laid on the adhesive-coated surface of the adhesive-coated
PET sheet 1 so that the surface-treated surface was brought into contact with the adhesive-coated surface, and then both films were pressed using a planar press machine (ASF-5 (trade name) manufactured by SHINTO Metal Industries Corporation) under a pressing pressure (or closing pressure) of 1.0 MPa at 50° C. for 30 minutes. Both films were aged at 50° C. for 3 days to obtain a 1 mm thick film laminate 2 composed of polyolefin film/adhesive/PET sheet. - Twenty polyolefin (polyethylene) films (LL-XUMN #30) were laid on a polyolefin (polyethylene) film of the film laminate 2 and, after laying a 1 mm thick spacer on a planar press machine (ASF-5 (trade name) manufactured by SHINTO Metal Industries Corporation), twenty polyolefin (polyethylene) films were integrated with each other by hot pressing under a pressing pressure (or closing pressure) of 1.0 MPa at 150° C. for 3 minutes to obtain a 1 mm thick film laminate 3 composed of polyolefin film/adhesive/PET sheet.
- The adhesives for solar battery back sheets were evaluated by the following methods. The evaluation results are shown in Tables 3 to 6.
- 1. Evaluation of Initial Adhesion to Film after Aging
- The film laminate 2 was cut out into pieces of 15 mm in width. Using a tensile strength testing machine (TENSILON RTM-250 (trade name) manufactured by ORIENTEC Co., Ltd.), a peel test was carried out under a room temperature environment at a tensile speed of 100 mm/min and 180°. The evaluation criteria were as shown below.
- A: Peel strength was 10 N/15 mm or more.
- B: Peel strength was 6 N/15 mm or more but less than 10 N/15 mm.
- C: Peel strength was 1 N/15 mm or more but less than 6 N/15 mm.
- 2. Evaluation of Curing Rate (Appearance after Pressure Cooker (PCT) Test)
- With respect to a film laminate 2 aged at 50° C. for 3 days, a curing rate was evaluated by an acceleration test using pressurized steam.
- The film laminate 2 was cut out into an A5 size and evaluation was performed using a high pressure cooker (manufactured by Yamato Scientific Co., Ltd. under the trade name of autoclave SP300 (trade name)). After continuously keeping a wet heat state at 121° C. under 1.4 MPa for 100 hours, presence or absence of floating and peeling were visually observed. The evaluation criteria were as follows.
- A: Neither lifting nor peeling of film was observed.
- D: Both lifting and peeling of film were observed
- A film laminate 2 was put in a thermo-hygrostat and maintained in a wet heat state in an atmosphere at 85° C. and 85% RH for 3,000 hours. Then, a peel test similar to the measurement of initial adhesion to a film after aging was performed, and hydrolysis resistance was evaluated.
- A: Peel strength was 10 (N/15 mm) or more, or material fracture occurred.
- B: Peel strength was 6 (N/15 mm) or more but less than 10 (N/15 mm).
- C: Peel strength was 1 (N/15 mm) or more but less than 6 (N/15 mm).
- With respect to a film laminate 3, a peel test similar to the measurement of initial adhesion to a film after aging was performed, and adhesion was evaluated.
- A: Peel strength was 10 (N/15 mm) or more.
- B: Peel strength was 6 (N/15 mm) or more but less than 10 (N/15 mm).
- C: Peel strength was 1 (N/15 mm) or more but less than 6 (N/15 mm).
- A film laminate 3 was put in a thermo-hygrostat and maintained in a wet heat state in an atmosphere at 85° C. and 85% RH for 1,000 hours. Then, a peel test similar to the measurement of initial adhesion to a film after aging was performed, and hydrolysis resistance was evaluated.
- A: Peel strength was 10 (N/15 mm) or more, or material fracture occurred.
- B: Peel strength was 5 (N/15 mm) or more but less than 10 (N/15 mm).
- C: Peel strength was 0 (N/15 mm) or more but less than 5 (N/15 mm).
- D: Delamination (a laminated sheet was not formed).
-
TABLE 3 Examples 1 2 3 4 5 6 Acrylic polyol (A) A1 95.3 (having solid A2 95.3 95.3 content of A3 94.8 50%)*1 A4 87.1 A5 80.4 A6 A′7 A′8 A′9 A′10 Isocyanate B1 2.8 2.8 2.8 3.2 7.8 11.9 compound (B) B2 B3 1.9 1.9 1.9 2.0 5.1 7.7 B4 B5 Equivalent ratio (1.0 + 0 + 1.0)/1 (1.0 + 0 + 1.0)/1 (1.0 + 0 + 1.0)/1 (1.0 + 0 + 1.0)/1 (1.0 + 0 + 1.0)/1 (1.0 + 0 + 1.0)/1 NCO/OH*2 Curing catalyst C1 0.048 0.048 0.047 0.044 0.040 (C) C2 C3 Initial adhesion after A A A A B B aging Appearance after PCT A A A A A A test Hydrolysis resistance B A A A B B Adhesion B A A A A A (1 mm thick PE) Hydrolysis resistance B B B A B A (1 mm thick PE) *1Mass based on 100% solids content was shown. *2Numerical value of NCO indicates each equivalent ratio of B1 (aliphatic isocyanate), B2 (alicyclic isocyanate) and B3 to B5 (polyisocyanate having an aromatic ring) from the left side. -
TABLE 4 Examples 7 8 9 10 11 Acrylic polyol (A) A1 (having solid A2 94.7 95.0 96.2 95.5 content of A3 50%)*1 A4 A5 A6 97.6 A′7 A′8 A′9 A′10 Isocyanate B1 1.5 1.4 2.9 0.9 compound (B) B2 3.5 1.8 B3 0.9 1.8 1.8 0.9 3.6 B4 B5 Equivalent ratio (1.0 + 0 + 1.0)/1 (0 + 1.0 + 1.0)/1 (0.5 + 0.5 + 1.0)/1 (1.0 + 0 + 0.5)/1 (0.3 + 0 + 2.0)/1 NCO/OH*2 Curing catalyst C1 0.049 0.047 0.143 0.048 0.024 (C) C2 C3 Initial adhesion after A A A B A aging Appearance after PCT A A A A A test Hydrolysis resistance A A A B A Adhesion A A A B A (1 mm thick PE) Hydrolysis resistance B B B B A (1 mm thick PE) *1Mass based on 100% solids content was shown. *2Numerical value of NCO indicates each equivalent ratio of B1 (aliphatic isocyanate), B2 (alicyclic isocyanate) and B3 to B5 (polyisocyanate having an aromatic ring) from the left side. -
TABLE 5 Examples 12 13 14 15 16 Acrylic polyol (A) A1 (having solid A2 93.8 95.8 93.7 95.3 95.3 content of A3 50%)*1 A4 A5 A6 A′7 A′8 A′9 A′10 Isocyanate B1 2.8 2.9 2.8 2.8 2.8 compound (B) B2 B3 1.8 1.9 1.9 B4 3.4 1.7 B5 1.3 Equivalent ratio (1.0 + 0 + 1.0)/1 (1.0 + 0 + 1.0)/1 (1.0 + 1.0 + 0.5)/1 (1.0 + 0 + 1.0)/1 (1.0 + 0 + 1.0)/1 NCO/OH*2 Curing catalyst C1 0.047 0.048 0.047 (C) C2 0.191 C3 0.381 Initial adhesion after A A A A A aging Appearance after PCT A A A A A test Hydrolysis resistance A A A A A Adhesion A A A A A (1 mm thick PE) Hydrolysis resistance B B B B B (1 mm thick PE) *1Mass based on 100% solids content was shown. *2Numerical value of NCO indicates each equivalent ratio of B1 (aliphatic isocyanate), B2 (alicyclic isocyanate) and B3 to B5 (polyisocyanate having an aromatic ring) from the left side. -
TABLE 6 Comparative Examples 1 2 3 4 5 6 Acrylic polyol (A) A1 (having solid A2 95.7 97.2 content of A3 50%)*1 A4 A5 A6 A′7 95.3 A′8 95.3 A′9 95.3 A′10 95.3 Isocyanate B1 2.8 2.8 2.8 2.8 4.3 compound (B) B2 B3 1.9 1.9 1.9 1.9 2.8 B4 B5 Equivalent ratio (1.0 + 0 + 1.0)/1 (1.0 + 0 + 1.0)/1 (1.0 + 0 + 1.0)/1 — (1.5 + 0 + 0)/1 (0 + 0 + 1.5)/1 NCO/OH*2 Curing catalyst C1 0.048 0.048 0.048 0.048 0.144 0.049 (C) C2 C3 Initial adhesion after B C B C B C aging Appearance after PCT A D D D D A test Hydrolysis resistance B C C C C C Adhesion C A C C B A (1 mm thick PE) Hydrolysis resistance D B D D C D (1 mm thick PE) *1Mass based on 100% solids content was shown. *2Numerical value of NCO indicates each equivalent ratio of B1 (aliphatic isocyanate), B2 (alicyclic isocyanate) and B3 to B5 (polyisocyanate having an aromatic ring) from the left side. - As shown in Tables 3 to 5, the adhesives for laminated sheets of Examples 1 to 16 were excellent in adhesion to a film after aging, curing rate (appearance after pressure cooker test), hydrolysis resistance (at high temperature and for a long time), and adhesion (1 mm thick film sheet) and hydrolysis resistance (1 mm thick polyolefin film). Therefore, the adhesives for laminated sheets, having these various performances, could sufficiently fulfill a role as adhesives for solar battery back sheets which are to be exposed to a severe environment.
- To the contrary, the adhesives of Comparative Examples were inferior in at least one evaluated performance when compared with the adhesives for laminated sheets of the Examples, as shown in Table 6.
- In the adhesive of Comparative Example 1, adhesion (1 mm thick film sheet) and hydrolysis resistance (1 mm thick film sheet) deteriorated, since the acrylic polyol (A′7) had too low glass transition temperature.
- In the adhesive of Comparative Example 2, adhesion to a film after aging deteriorated and appearance after a pressure cooker test became poor, since the acrylic polyol (A′8) had too high a glass transition temperature.
- In the adhesive of Comparative Example 3, since the polymerizable monomer did not contain acrylonitrile in synthesizing the acrylic polyol (A′9), a cohesive force of the adhesive decreased and thus adhesion and hydrolysis resistance (1 mm thick film) deteriorated.
- In the adhesive of Comparative Example 4, since the acrylic resin having no hydroxyl group (A′10) in place of the acrylic polyol was simply mixed with the isocyanate compound, the adhesive did not have a urethane bond and did not undergo curing. As is apparent from Table 6, the adhesive of Comparative Example 4 was drastically inferior in adhesion and hydrolysis resistance when compared with other Comparative Examples.
- In the adhesive of Comparative Example 5, since an aromatic isocyanate was not used and only an aliphatic isocyanate was added, appearance after a pressure cooker test was inferior due to low curing rate, and also hydrolysis resistance was also inferior.
- In the adhesive of Comparative Example 6, since neither an aliphatic isocyanate nor an alicyclic isocyanate was used and only an aliphatic isocyanate was used, initial adhesion to a film after aging, and hydrolysis resistance were inferior.
- The present invention provides an adhesive for laminated sheets. The adhesive for laminated sheets according to the present invention is suited as an adhesive for solar battery back sheets since it is excellent in curing rate and initial adhesion to a film after aging, and is also excellent in long-term hydrolysis resistance at high temperature, resulting in remarkably enhanced durability against a severe environment.
- 1: Solar battery module, 10: Back sheet, 11: Film, 11 a: Deposited thin film, 12: Film, 13: Adhesive layer, 20: Sealing material (EVA), 30: Solar battery cell, 40: Glass plate, 50: Spacer
Claims (18)
1. An adhesive for laminated sheets, comprising a urethane resin obtained by mixing an acrylic polyol with an isocyanate compound, wherein
the acrylic polyol is a polyol having a glass transition temperature of from −20 to 20° C., which polyol is obtained by polymerizing a mixture comprising a first monomer having a hydroxyl group and acrylonitrile; and
the isocyanate compound includes both an isocyanate compound having no aromatic ring selected from an aliphatic isocyanate compound and an alicyclic isocyanate compound and an isocyanate compound having an aromatic ring
wherein an equivalent ratio of an isocyanate group derived from the isocyanate having an aromatic ring to a hydroxyl group derived from the acrylic polyol is 0.5 or more.
2. The adhesive for laminated sheets according to claim 1 , wherein the polyol is obtained by polymerizing a mixture comprising a first monomer having a hydroxyl group, a different second monomer and acrylonitrile.
3. The adhesive for laminated sheets according to claim 1 , wherein the polyol is obtained by polymerizing a mixture comprising a first monomer having a hydroxyl group, a different second monomer having an ethylenic double bond and acrylonitrile.
4. (canceled)
5. The adhesive for laminated sheets according to claim 1 , wherein the acrylic polyol has a hydroxyl value of from 0.5 to 45 mgKOH/g.
6. The adhesive for laminated sheets according to claim 1 , wherein the second monomer includes a (meth)acrylic acid ester.
7. (canceled)
8. Cured reaction products of the adhesive of claim 1 .
9. A laminated sheet comprising a first film bonded to a second film by the adhesive of claim 1 .
10. The laminated sheet of claim 9 wherein at least one of the first film or second film is a metal film.
11. A solar battery backsheet comprising a first film bonded to a second film by the adhesive of claim 1 .
12. An outdoor material including a laminated sheet comprising the adhesive for laminated sheets according to claim 1 .
13. The adhesive for laminated sheets according to claim 1 , wherein an equivalent ratio of an isocyanate group derived from the isocyanate having an aromatic ring to a hydroxyl group derived from the acrylic polyol is 1.5:1 to 2.5:1.
14. The adhesive for laminated sheets according to claim 1 , wherein the acrylic polyol is obtained by polymerizing a mixture comprising a first monomer having a hydroxyl group and 1 to 40 parts by weight of acrylonitrile based on 100 parts by weight of the mixture.
15. The adhesive for laminated sheets according to claim 1 , wherein the isocyanate is selected from 1,6-diisocyanatohexane (HDI), isophorone diisocyanate, tolylene diisocyanate (TDI) and combinations thereof.
16. The adhesive for laminated sheets according to claim 1 , wherein the isocyanate is selected from 1,6-diisocyanatohexane (HDI) in isocyanurate form, isophorone diisocyanate in isocyanurate form, tolylene diisocyanate (TDI) as an adduct with trimethylolpropane and combinations thereof.
17. The adhesive for laminated sheets according to claim 1 , wherein the isocyanate compound includes both an alicyclic isocyanate compound and an isocyanate compound having an aromatic ring.
18. The adhesive for laminated sheets according to claim 1 , wherein the isocyanate compound includes an aliphatic isocyanate compound, an alicyclic isocyanate compound and an isocyanate compound having an aromatic ring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/198,528 US20160312092A1 (en) | 2011-11-25 | 2016-06-30 | Adhesive for Laminated Sheets |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-257268 | 2011-11-25 | ||
JP2011257268A JP5889611B2 (en) | 2011-11-25 | 2011-11-25 | Adhesive for solar battery backsheet |
JP2012097638A JP5841893B2 (en) | 2012-04-23 | 2012-04-23 | Adhesive for laminated sheet |
JP2012-097638 | 2012-04-23 | ||
PCT/JP2012/080799 WO2013077457A2 (en) | 2011-11-25 | 2012-11-21 | Adhesive for solar battery back sheets |
PCT/JP2013/062304 WO2013161972A1 (en) | 2012-04-23 | 2013-04-19 | Adhesive for laminated sheets |
US14/286,025 US20140251432A1 (en) | 2011-11-25 | 2014-05-23 | Adhesive for solar battery back sheets |
US14/518,029 US9732260B2 (en) | 2012-04-23 | 2014-10-20 | Adhesive for laminated sheets |
US15/198,528 US20160312092A1 (en) | 2011-11-25 | 2016-06-30 | Adhesive for Laminated Sheets |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/518,029 Continuation US9732260B2 (en) | 2011-11-25 | 2014-10-20 | Adhesive for laminated sheets |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160312092A1 true US20160312092A1 (en) | 2016-10-27 |
Family
ID=48444530
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/518,029 Expired - Fee Related US9732260B2 (en) | 2011-11-25 | 2014-10-20 | Adhesive for laminated sheets |
US15/198,528 Abandoned US20160312092A1 (en) | 2011-11-25 | 2016-06-30 | Adhesive for Laminated Sheets |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/518,029 Expired - Fee Related US9732260B2 (en) | 2011-11-25 | 2014-10-20 | Adhesive for laminated sheets |
Country Status (7)
Country | Link |
---|---|
US (2) | US9732260B2 (en) |
EP (1) | EP2841481B1 (en) |
JP (1) | JP5841893B2 (en) |
KR (1) | KR102108585B1 (en) |
CN (1) | CN104245876B (en) |
TW (1) | TWI550050B (en) |
WO (1) | WO2013161972A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11795325B2 (en) | 2017-11-28 | 2023-10-24 | Denso Corporation | Curable resin composition and electrical component using the same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5841893B2 (en) * | 2012-04-23 | 2016-01-13 | ヘンケルジャパン株式会社 | Adhesive for laminated sheet |
JP6194190B2 (en) * | 2013-05-16 | 2017-09-06 | ヘンケルジャパン株式会社 | Adhesive for solar cell protection sheet |
EP3119827B1 (en) * | 2014-03-17 | 2020-05-06 | Henkel AG & Co. KGaA | Polyurethane adhesive containing epoxide groups |
JP6565487B2 (en) * | 2014-08-27 | 2019-08-28 | 三菱ケミカル株式会社 | Adhesive composition, adhesive and adhesive sheet |
JP6491864B2 (en) * | 2014-12-05 | 2019-03-27 | ヘンケルジャパン株式会社 | Adhesive for laminated sheet |
TWI521037B (en) * | 2015-04-10 | 2016-02-11 | 博威電子股份有限公司 | Optical adhesive composition, optical adhesive film and optical laminate |
JP6561638B2 (en) * | 2015-07-09 | 2019-08-21 | 住友電気工業株式会社 | Flexible printed wiring board, concentrating solar power generation module, and concentrating solar power generation panel |
TW201708294A (en) * | 2015-07-17 | 2017-03-01 | Mitsui Chemicals Inc | Hard polyurethane resin composition, hard polyurethane resin, molded article, and fiber-reinforced plastic |
TW202039762A (en) * | 2019-03-05 | 2020-11-01 | 日商Dic股份有限公司 | Adhesive, adhesive for packaging material for battery, laminate, packaging material for battery, container for battery, and battery |
KR102560656B1 (en) * | 2020-12-21 | 2023-07-26 | 주식회사 포스코 | Adhesive coating composition for electrical steel sheet, electrical steel sheet laminate, and method for manufacturing the electrical steel sheet product |
KR102538122B1 (en) * | 2020-12-21 | 2023-05-26 | 주식회사 포스코 | Adhesive coating composition for electrical steel sheet, electrical steel sheet laminate, and method for manufacturing the electrical steel sheet product |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150034157A1 (en) * | 2012-04-23 | 2015-02-05 | Henkel Ag & Co. Kgaa | Adhesive for laminated sheets |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3047926C2 (en) * | 1980-12-19 | 1985-05-15 | Th. Goldschmidt Ag, 4300 Essen | Curable adhesive |
EP0068454A1 (en) * | 1981-07-01 | 1983-01-05 | Takeda Chemical Industries, Ltd. | Composition for polyurethane resins and production of the resins |
DE3563632D1 (en) * | 1984-02-13 | 1988-08-11 | Takeda Chemical Industries Ltd | Method of adhesion and composition therefor |
US4731415A (en) * | 1985-04-10 | 1988-03-15 | Takeda Chemical Industries, Ltd. | Polyisocyanates and resin compositions thereof |
US7829615B2 (en) * | 2003-06-09 | 2010-11-09 | Henkel Ag & Co. Kgaa | Reactive hot melt adhesives |
JP4883749B2 (en) * | 2005-02-08 | 2012-02-22 | 日東電工株式会社 | Optical member pressure-sensitive adhesive composition, optical member pressure-sensitive adhesive layer and production method thereof, optical member with pressure-sensitive adhesive, and image display device |
JP2008540709A (en) * | 2005-05-02 | 2008-11-20 | サイテック サーフェース スペシャリティーズ、エス.エイ. | Radiation curable urethane (meth) acrylate polymers and adhesives formulated with them |
US20080031451A1 (en) * | 2005-11-14 | 2008-02-07 | Jean-Francois Poirier | Method and system for security of data transmissions |
EP2354200B1 (en) * | 2008-10-01 | 2015-03-04 | DIC Corporation | Primer and laminate including resin film formed from the primer |
JP2010238815A (en) | 2009-03-30 | 2010-10-21 | Lintec Corp | Protective sheet for solar cell module, and solar cell module |
JP2010263193A (en) | 2009-04-08 | 2010-11-18 | Nippon Shokubai Co Ltd | Backsheet for solar cell module |
JP5423332B2 (en) | 2009-11-16 | 2014-02-19 | 東洋インキScホールディングス株式会社 | Adhesive composition for laminated sheet |
KR101450985B1 (en) * | 2010-02-08 | 2014-10-15 | 아사히 가세이 케미칼즈 가부시키가이샤 | Block polyisocyanate composition and coating composition containing same |
JP2012046723A (en) * | 2010-07-30 | 2012-03-08 | Nitto Denko Corp | Application tape |
JP2012116880A (en) * | 2010-11-29 | 2012-06-21 | Henkel Japan Ltd | Urethane adhesive for outdoor use |
JP5889611B2 (en) * | 2011-11-25 | 2016-03-22 | ヘンケルジャパン株式会社 | Adhesive for solar battery backsheet |
JP6016528B2 (en) * | 2012-08-24 | 2016-10-26 | 東洋アルミニウム株式会社 | Solar cell back surface protection sheet |
-
2012
- 2012-04-23 JP JP2012097638A patent/JP5841893B2/en not_active Expired - Fee Related
-
2013
- 2013-04-10 TW TW102112591A patent/TWI550050B/en not_active IP Right Cessation
- 2013-04-19 WO PCT/JP2013/062304 patent/WO2013161972A1/en active Application Filing
- 2013-04-19 CN CN201380020905.9A patent/CN104245876B/en not_active Expired - Fee Related
- 2013-04-19 KR KR1020147029295A patent/KR102108585B1/en active IP Right Grant
- 2013-04-19 EP EP13722863.1A patent/EP2841481B1/en not_active Not-in-force
-
2014
- 2014-10-20 US US14/518,029 patent/US9732260B2/en not_active Expired - Fee Related
-
2016
- 2016-06-30 US US15/198,528 patent/US20160312092A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150034157A1 (en) * | 2012-04-23 | 2015-02-05 | Henkel Ag & Co. Kgaa | Adhesive for laminated sheets |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11795325B2 (en) | 2017-11-28 | 2023-10-24 | Denso Corporation | Curable resin composition and electrical component using the same |
Also Published As
Publication number | Publication date |
---|---|
CN104245876A (en) | 2014-12-24 |
TW201343839A (en) | 2013-11-01 |
US9732260B2 (en) | 2017-08-15 |
KR20150003206A (en) | 2015-01-08 |
JP2013224374A (en) | 2013-10-31 |
KR102108585B1 (en) | 2020-05-07 |
WO2013161972A1 (en) | 2013-10-31 |
JP5841893B2 (en) | 2016-01-13 |
US20150034157A1 (en) | 2015-02-05 |
EP2841481B1 (en) | 2016-04-06 |
EP2841481A1 (en) | 2015-03-04 |
CN104245876B (en) | 2016-04-06 |
TWI550050B (en) | 2016-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9732260B2 (en) | Adhesive for laminated sheets | |
US20150159063A1 (en) | Adhesive for laminated sheets | |
US20140251432A1 (en) | Adhesive for solar battery back sheets | |
EP2671930A1 (en) | Adhesive for solar cell back sheet | |
US20160064585A1 (en) | Adhesive for Solar Battery Protective Sheets | |
JP6001331B2 (en) | Adhesive for laminated sheet | |
JP6001332B2 (en) | Adhesive for laminated sheet | |
JP5546706B1 (en) | Adhesive for solar battery backsheet | |
JP5546705B1 (en) | Adhesive for solar battery backsheet | |
JP5406409B2 (en) | Adhesive for solar battery backsheet | |
JP2013251530A (en) | Adhesive for solar cell back sheet | |
JP2013251531A (en) | Adhesive for solar cell back sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HENKEL AG & CO. KGAA, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMADA, YASUSHI;ITO, SHOKO;KAMAI, NORIYOSHI;AND OTHERS;SIGNING DATES FROM 20160907 TO 20160909;REEL/FRAME:039998/0556 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |