US20150367426A1 - Wheel assembly, and apparatus and method for making same - Google Patents
Wheel assembly, and apparatus and method for making same Download PDFInfo
- Publication number
- US20150367426A1 US20150367426A1 US14/809,742 US201514809742A US2015367426A1 US 20150367426 A1 US20150367426 A1 US 20150367426A1 US 201514809742 A US201514809742 A US 201514809742A US 2015367426 A1 US2015367426 A1 US 2015367426A1
- Authority
- US
- United States
- Prior art keywords
- wheel
- flange surface
- wheel hub
- rotation
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C3/00—Milling particular work; Special milling operations; Machines therefor
- B23C3/13—Surface milling of plates, sheets or strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B1/00—Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C1/00—Milling machines not designed for particular work or special operations
- B23C1/08—Milling machines not designed for particular work or special operations with a plurality of vertical working-spindles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B5/00—Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
- B24B5/36—Single-purpose machines or devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B5/00—Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
- B24B5/36—Single-purpose machines or devices
- B24B5/44—Single-purpose machines or devices for grinding rims of vehicle wheels, e.g. for bicycles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B9/00—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
- B24B9/02—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
- B24B9/04—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of metal, e.g. skate blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B27/00—Hubs
- B60B27/0078—Hubs characterised by the fixation of bearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C2215/00—Details of workpieces
- B23C2215/08—Automotive parts
- B23C2215/085—Wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C2220/00—Details of milling processes
- B23C2220/08—Milling with the axis of the tool perpendicular to the workpiece axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B2310/00—Manufacturing methods
- B60B2310/20—Shaping
- B60B2310/232—Shaping by milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B2310/00—Manufacturing methods
- B60B2310/20—Shaping
- B60B2310/234—Shaping by grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B2320/00—Manufacturing or maintenance operations
- B60B2320/10—Assembling; disassembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49481—Wheel making
- Y10T29/49492—Land wheel
- Y10T29/49496—Disc type wheel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49481—Wheel making
- Y10T29/49492—Land wheel
- Y10T29/49538—Tire making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/304144—Means to trim edge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/30868—Work support
- Y10T409/309016—Work support with work holder or guide
- Y10T409/309072—Work support with work holder or guide including cutter limited to rotary motion
Definitions
- the present invention relates generally to an apparatus and a method for reducing lateral run-out of a wheel-hub assembly and, more specifically, a method and an apparatus for machining the rotor-mounting flange surface of the hub.
- a typical automotive vehicle is equipped with disc brake systems for the purpose of stopping the vehicle.
- These disc brake systems are located at the front axle wheel assemblies and/or at the rear wheel assembly.
- Each wheel assembly typically includes a wheel hub, a rotor and a bearing.
- the bearing may further engage a knuckle that in turn may be connected to the vehicle.
- the disc brake rotor is comprised of a circular metal disc having opposed braking surfaces that are clamped by the brake pads to exert a braking effect.
- the rotor is attached to a wheel hub.
- Performance of the braking system is related to the dimensional characteristics of the rotor and the wheel hub surface abutting the rotor. Any run-out variation in the wheel hub surface will cause lateral run-out or lateral deflection in the rotor. Lateral disc run-out refers to a lateral deviation of the planar surface of a rotor along a plane perpendicular to the longitudinal axis of rotation of the rotor. Because the rotor is designed to operate in a precise plane normal to the axis of the wheel, even slight run-out variations of the wheel hub is problematic.
- the radial run-out of the outer edges of the braking surfaces need to be controlled to ensure that the brake pads engage as much of the available rotor-braking surface as possible without overlapping the edges of the rotor. If run-out is not controlled it can cause premature failure of the brake lining due to uneven wear which requires premature replacement of the brake lining at an increased expense. Further, problems due to run-out include, brake judder, steering wheel “nibble” and pedal pulses felt by the user, and warped rotors which result in brake noise and uneven stopping. However, manufacturers have faced difficulties in achieving enhanced control over these tolerances due to the influence of several factors.
- One factor that frequently contributes to lateral run-out is variation in the processes that are used to machine the flange surface of the wheel hub.
- the outer and inner flange surfaces of the wheel hub may be individually machined causing uneven deviation of the planar surface of the wheel hub.
- Another factor that contributes to run-out is the stack-up of the individual components in a wheel assembly, i.e., their combined tolerances. While the tolerances of each part can be reduced when they are separately machined, when the parts are assembled, the combined tolerances stack up, causing run-out that is still relatively significant. Tolerance stacking may also be caused by variation in the turning processes that are used to machine the flange surface, when the wheel hub is individually machined, in an effort to make it flat with respect to the rotor. Further, the installation and press condition of the wheel bolts, the assembly process of the wheel assembly, and improperly pre-loaded bearings, can all cause misalignment of the hub surface with respect to the rotor and thus cause unacceptable run-out.
- Lateral run-out may also be caused by the insertion and/or press-fitting of the wheel bolts to the flange after the flange surface of the wheel hub has been finished or machined.
- the force causes the peripheral areas immediately around the wheel bolts to deform on the flange surface. Consequently, this deformation causes the surface of the flange to deform and deviate from the necessary planar surface of the wheel hub, causing lateral run-out.
- the process of pressing or assembling the hub to the bearing is another possible factor that causes lateral run out.
- additional run-out variation may be introduced to the rotor mounting face of the hub. Additionally, removal of the bearing and/or reassembling the bearing to the wheel hub after machining the wheel hub can re-introduce lateral run-out variation.
- the present invention provides an apparatus and a method for manufacturing a wheel hub to reduce lateral run-out.
- a wheel hub having a flange portion with an outer flange surface and an inner flange surface is provided.
- a plurality of wheel bolts are connected to the wheel hub, and the wheel hub is connected to a bearing.
- a grind wheel is then applied to the inner flange surface and outer flange surface to minimize run-out of the flange portion.
- the grind wheel includes a channel configured to allow clearance of the wheel bolts during rotation of the grind wheel.
- FIG. 1 is a perspective view of a portion of a wheel hub assembly engaged with a mill cutter.
- FIG. 2 is a perspective view of a wheel hub assembly including a knuckle.
- FIG. 3 is a perspective view of a portion of a wheel hub assembly engaged with a mill cutter.
- FIG. 4 is a perspective view of a portion of a wheel hub assembly engaged with a grind wheel.
- FIG. 5 is a perspective view of a portion of a wheel hub assembly engaged with a grind wheel.
- FIG. 6 is a cross-sectional view of a portion of a wheel hub assembly engaged with a grind wheel.
- FIGS. 1 and 2 illustrate a wheel hub assembly 1 .
- the assembly 1 may include a variety of components, including a wheel hub 4 , bearing 5 , and knuckle 16 .
- the wheel hub 4 may have a flange face 12 and a pilot portion 6 .
- the pilot portion 6 extends generally outward from the flange face 12 so as to allow a rotor to be guided and affixed to the wheel hub assembly as known to one of ordinary skill in the art.
- the knuckle 16 may have a generally circular bore 18 formed therein and a plurality of outwardly extending appendages or legs 20 that are capable of attachment to the vehicle through a plurality of apertures formed in the plurality of legs 20 , as is known in the art.
- the bearing 5 may be press-fit into the bore 18 of the knuckle 16 .
- the bearing 5 may be press-fit with or without a snap ring, or may be held in place with a nut, or secured by other methods known in the art.
- a portion of the bearing 5 may be bolted to the knuckle 16 or integrally formed with the knuckle 16 .
- an inner portion of the bearing 5 may be integrally formed with the wheel hub.
- a plurality of respective wheel bolts 3 may be attachable to the wheel hub 4 .
- the wheel bolts 3 are attached to the flange face 12 in a predetermined pattern, such as equidistantly spaced, and on the same pitch circle diameter.
- the wheel bolts 3 are oriented with the threaded ends extending outwardly so as to connect a rotor and an associated wheel onto the wheel hub 4 as commonly known in the skill of the art.
- the flange face 12 may have a relief channel 8 machined therein.
- the relief channel 8 may divide the flange face 12 into an outer flange surface 7 and an inner flange surface 9 .
- the relief channel 8 is turned into the flange face 12 so that the plurality of the wheel bolts 3 are positioned in the relief channel 8 .
- the wheel hub 4 may be positioned on the bearing 5 .
- the bearing 5 is not limited to being positioned as illustrated in the figures and may, for example, secure about and/or attach about the inside diameter of the wheel hub 4 , the outside diameter of the wheel hub 4 and/or therebetween.
- the bearing 5 may be any bearing type as known to one of ordinary skill in the art, including but not limited to a single row, a double row, a ball, a roller and/or the like.
- the bearing 5 may be integrated with the wheel hub 4 .
- the bearing 5 is used in the final wheel assembly 1 such that the bearing 5 is not detached from and/or reassembled with the wheel hub 4 .
- the bearing 5 is used in the wheel assembly 1 that is attachable and/or securable to and/or secured to, for example, a vehicle.
- the present invention provides an apparatus and a method for machining the flange face 12 after the bearing 5 is attached to and/or integrated with the wheel hub 4 .
- the wheel hub 4 may be secured to the bearing 5 so that the wheel hub 4 can rotate with respect to the bearing 5 .
- the wheel hub 4 and bearing 5 may rotate with respect to the knuckle 16 .
- the wheel hub 4 may be affixed or mounted onto the bearing 5 in a variety of wheel hub/bearing configurations as known to one of ordinary skill in the art.
- the wheel hub assembly 1 is machined to flatten the outer flange surface 7 and the inner flange surface 9 that will contact a rotor, and thus minimize any lateral run-out.
- the machining process flattens the inner flange surface 9 and the outer flange surface 7 such that surfaces 7 , 9 are parallel with respect to each other.
- the machining process finishes the flange surfaces 7 , 9 such that the flange surfaces 7 , 9 are co-planar.
- the use of grind wheel process accomplishes the machining of the flange face 12 . Both processes, however, may occur after the wheel bolts 3 and/or the bearing 5 are attached or secured to the wheel hub 4 .
- FIGS. 3 and 5 illustrate rotational directions for certain components of the wheel hub assembly and components used for the finishing thereof. It will be appreciated that the rotational direction of each component is not limited to the direction of rotation illustrated. Rather, each denoted components may rotate in any direction as required.
- FIG. 3 illustrates a milling process for the flange face 12 and wheel hub assembly 1 .
- the wheel hub 4 is situated on the bearing 5 , allowing the wheel hub 4 to rotate about an axis determined by the bearing 5 .
- the wheel hub 4 is positioned on the bearing 5 so as to allow the flange face 12 to engage an inner mill cutter 2 and an outer mill cutter 10 protruding from a machine, such as a lathe.
- the inner mill cutter 2 and the outer mill cutter 10 are stationary and each consists of a cutting end, but individually rotate about an axis determined by the tool and it's bearing. The cutting end of the inner mill cutter 2 engages the inner flange surface 9 of the flange face 12 .
- the cutting end of the outer mill cutter 10 engages the outer flange surface 7 of the flange face 12 .
- one of the mill cutters 2 , 10 may be used to machine the inner flange surface 9 and/or the outer flange surface 7 .
- the milling process may occur as the wheel hub 4 rotates on the bearing 5 in a clockwise motion.
- the mill cutters 2 , 10 move from a storage position and engage the flange surfaces 7 , 9 as described above.
- the outer mill cutter 10 and/or the inner mill cutter 2 moves radially in and out as the hub wheel 4 turns, milling and finishing the flange surfaces 7 , 9 . This process of finishing reduces lateral run-out.
- an alternate embodiment for refinishing the flange face 12 is a grinding process.
- the grinding process involves use of a grind wheel 11 .
- the grind wheel 11 may be constructed from an abrasive material that may be, for example, boron, diamond, or any other abrasive and immalleable material known to one of ordinary skill of the art.
- the grind wheel 11 is a singular cylindrical apparatus that may consist of an inner lip 13 and an outer lip 14 .
- the inner lip 13 has a shape that corresponds with the inner flange surface 9 .
- the outer lip 14 and the outer flange surface 7 have corresponding shapes.
- Located in between the inner lip 13 and outer lip 14 is a channel 15 .
- the channel 15 and the relief channel 8 also have corresponding shapes.
- the purpose of the channel 15 is to allow the wheel bolts 3 of the wheel hub 4 to pass or clear within the grind wheel 11 while the grind wheel 11 engages and finishes the flange surfaces 7 , 9 .
- the grind wheel 11 is described as having both an inner lip and outer lip, it will be appreciated that other configurations may be used.
- the grind wheel 11 may comprise a single lip configured to engage either the outer flange surface 7 or the inner flange surface 9 .
- the grind wheel 11 serves as a machining apparatus for the purpose of finishing the flange face 12 .
- the open face of grind wheel 11 is placed on the top of the wheel hub 4 so that the grind wheel 11 engages flange face 12 .
- the inner lip 13 is aligned along the inner flange surface 9 .
- the outer lip 14 is aligned along the outer flange surface 7 . This arrangement allows the outer lip 14 to cup the wheel bolts 3 so that the wheel bolts 3 terminate within the channel 15 of the grind wheel 11 .
- FIGS. 5 and 6 illustrate the grinding process of the present invention.
- the grind wheel 11 is placed on top of the wheel hub 4 as described above. As the wheel hub 4 rotates in a clockwise direction about the axis of the bearing 5 , the grind wheel 11 is rotated in the counterclockwise direction.
- the rotations of the wheel hub 4 and the grind wheel 11 are not limited to clockwise and counterclockwise rotations respectively, but, preferably are in opposite directions as known to one of ordinary skill of the art.
- the inner flange surface 9 and outer flange surface 7 are finished by the friction created against the inner lip 13 and outer lip 14 of the grind wheel.
- the grind wheel 11 rotates at a higher rate of speed than the wheel hub 11 and in an opposite direction with respect to the wheel hub 11 .
- the engagement of the grind wheel 11 upon the flange surfaces 7 , 9 causes a high degree of friction that removes material from the flange surfaces 7 , 9 and creates the flattening and finishing process of the flange face 12 , thereby reducing lateral run-out.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
- This application claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 61/208,102, filed on Feb. 20, 2009, which is hereby incorporated by reference in its entirety.
- The present invention relates generally to an apparatus and a method for reducing lateral run-out of a wheel-hub assembly and, more specifically, a method and an apparatus for machining the rotor-mounting flange surface of the hub.
- A typical automotive vehicle is equipped with disc brake systems for the purpose of stopping the vehicle. These disc brake systems are located at the front axle wheel assemblies and/or at the rear wheel assembly. Each wheel assembly typically includes a wheel hub, a rotor and a bearing. The bearing may further engage a knuckle that in turn may be connected to the vehicle. The disc brake rotor is comprised of a circular metal disc having opposed braking surfaces that are clamped by the brake pads to exert a braking effect. The rotor is attached to a wheel hub.
- Performance of the braking system is related to the dimensional characteristics of the rotor and the wheel hub surface abutting the rotor. Any run-out variation in the wheel hub surface will cause lateral run-out or lateral deflection in the rotor. Lateral disc run-out refers to a lateral deviation of the planar surface of a rotor along a plane perpendicular to the longitudinal axis of rotation of the rotor. Because the rotor is designed to operate in a precise plane normal to the axis of the wheel, even slight run-out variations of the wheel hub is problematic. Similarly, the radial run-out of the outer edges of the braking surfaces need to be controlled to ensure that the brake pads engage as much of the available rotor-braking surface as possible without overlapping the edges of the rotor. If run-out is not controlled it can cause premature failure of the brake lining due to uneven wear which requires premature replacement of the brake lining at an increased expense. Further, problems due to run-out include, brake judder, steering wheel “nibble” and pedal pulses felt by the user, and warped rotors which result in brake noise and uneven stopping. However, manufacturers have faced difficulties in achieving enhanced control over these tolerances due to the influence of several factors.
- One factor that frequently contributes to lateral run-out is variation in the processes that are used to machine the flange surface of the wheel hub. For example, the outer and inner flange surfaces of the wheel hub may be individually machined causing uneven deviation of the planar surface of the wheel hub.
- Another factor that contributes to run-out is the stack-up of the individual components in a wheel assembly, i.e., their combined tolerances. While the tolerances of each part can be reduced when they are separately machined, when the parts are assembled, the combined tolerances stack up, causing run-out that is still relatively significant. Tolerance stacking may also be caused by variation in the turning processes that are used to machine the flange surface, when the wheel hub is individually machined, in an effort to make it flat with respect to the rotor. Further, the installation and press condition of the wheel bolts, the assembly process of the wheel assembly, and improperly pre-loaded bearings, can all cause misalignment of the hub surface with respect to the rotor and thus cause unacceptable run-out.
- Lateral run-out may also be caused by the insertion and/or press-fitting of the wheel bolts to the flange after the flange surface of the wheel hub has been finished or machined. When the wheel bolts are press-fitted or tightened to the flange surface, the force causes the peripheral areas immediately around the wheel bolts to deform on the flange surface. Consequently, this deformation causes the surface of the flange to deform and deviate from the necessary planar surface of the wheel hub, causing lateral run-out.
- The process of pressing or assembling the hub to the bearing is another possible factor that causes lateral run out. When the bearing is assembled to the hub, additional run-out variation may be introduced to the rotor mounting face of the hub. Additionally, removal of the bearing and/or reassembling the bearing to the wheel hub after machining the wheel hub can re-introduce lateral run-out variation.
- Therefore, a need exists for an apparatus and a method for machining the wheel hub to eliminate the lateral run-out after the wheel bolts or bearing have been attached and to evenly machine the flange surface without significantly increasing the manufacturing cost of the assembly or increasing manufacturing difficulty.
- The present invention provides an apparatus and a method for manufacturing a wheel hub to reduce lateral run-out. Specifically, a wheel hub having a flange portion with an outer flange surface and an inner flange surface is provided. A plurality of wheel bolts are connected to the wheel hub, and the wheel hub is connected to a bearing. A grind wheel is then applied to the inner flange surface and outer flange surface to minimize run-out of the flange portion. The grind wheel includes a channel configured to allow clearance of the wheel bolts during rotation of the grind wheel.
- Objects and advantages together with the operation of the invention may be better understood by reference to the following detailed description taken in connection with the following illustrations, wherein:
-
FIG. 1 is a perspective view of a portion of a wheel hub assembly engaged with a mill cutter. -
FIG. 2 is a perspective view of a wheel hub assembly including a knuckle. -
FIG. 3 is a perspective view of a portion of a wheel hub assembly engaged with a mill cutter. -
FIG. 4 is a perspective view of a portion of a wheel hub assembly engaged with a grind wheel. -
FIG. 5 is a perspective view of a portion of a wheel hub assembly engaged with a grind wheel. -
FIG. 6 is a cross-sectional view of a portion of a wheel hub assembly engaged with a grind wheel. -
FIGS. 1 and 2 illustrate a wheel hub assembly 1. The assembly 1 may include a variety of components, including awheel hub 4, bearing 5, andknuckle 16. Thewheel hub 4 may have aflange face 12 and apilot portion 6. Thepilot portion 6 extends generally outward from theflange face 12 so as to allow a rotor to be guided and affixed to the wheel hub assembly as known to one of ordinary skill in the art. - The
knuckle 16 may have a generallycircular bore 18 formed therein and a plurality of outwardly extending appendages orlegs 20 that are capable of attachment to the vehicle through a plurality of apertures formed in the plurality oflegs 20, as is known in the art. - The
bearing 5 may be press-fit into thebore 18 of theknuckle 16. However, it should be understood that a variety of different knuckle/bearing attachment configurations may be utilized. For example, thebearing 5 may be press-fit with or without a snap ring, or may be held in place with a nut, or secured by other methods known in the art. Alternatively, a portion of thebearing 5 may be bolted to theknuckle 16 or integrally formed with theknuckle 16. Moreover, an inner portion of thebearing 5 may be integrally formed with the wheel hub. - A plurality of
respective wheel bolts 3 may be attachable to thewheel hub 4. In an embodiment, thewheel bolts 3 are attached to theflange face 12 in a predetermined pattern, such as equidistantly spaced, and on the same pitch circle diameter. Thewheel bolts 3 are oriented with the threaded ends extending outwardly so as to connect a rotor and an associated wheel onto thewheel hub 4 as commonly known in the skill of the art. Theflange face 12 may have arelief channel 8 machined therein. Therelief channel 8 may divide theflange face 12 into anouter flange surface 7 and aninner flange surface 9. In an embodiment, therelief channel 8 is turned into theflange face 12 so that the plurality of thewheel bolts 3 are positioned in therelief channel 8. - The
wheel hub 4 may be positioned on thebearing 5. Thebearing 5 is not limited to being positioned as illustrated in the figures and may, for example, secure about and/or attach about the inside diameter of thewheel hub 4, the outside diameter of thewheel hub 4 and/or therebetween. Thebearing 5 may be any bearing type as known to one of ordinary skill in the art, including but not limited to a single row, a double row, a ball, a roller and/or the like. Thebearing 5 may be integrated with thewheel hub 4. In an embodiment, thebearing 5 is used in the final wheel assembly 1 such that thebearing 5 is not detached from and/or reassembled with thewheel hub 4. To this end, thebearing 5 is used in the wheel assembly 1 that is attachable and/or securable to and/or secured to, for example, a vehicle. - Removal of the
bearing 5 after machining theflange face 12 may cause lateral run-out of thewheel hub 4. Advantageously, the present invention provides an apparatus and a method for machining theflange face 12 after thebearing 5 is attached to and/or integrated with thewheel hub 4. Thewheel hub 4 may be secured to thebearing 5 so that thewheel hub 4 can rotate with respect to thebearing 5. Alternatively, thewheel hub 4 andbearing 5 may rotate with respect to theknuckle 16. Thewheel hub 4 may be affixed or mounted onto thebearing 5 in a variety of wheel hub/bearing configurations as known to one of ordinary skill in the art. - In operation, the wheel hub assembly 1 is machined to flatten the
outer flange surface 7 and theinner flange surface 9 that will contact a rotor, and thus minimize any lateral run-out. The machining process flattens theinner flange surface 9 and theouter flange surface 7 such that surfaces 7, 9 are parallel with respect to each other. In an embodiment, the machining process finishes the flange surfaces 7, 9 such that the flange surfaces 7, 9 are co-planar. As is further discussed below, either the mill cutting process or alternatively, the use of grind wheel process accomplishes the machining of theflange face 12. Both processes, however, may occur after thewheel bolts 3 and/or thebearing 5 are attached or secured to thewheel hub 4. -
FIGS. 3 and 5 illustrate rotational directions for certain components of the wheel hub assembly and components used for the finishing thereof. It will be appreciated that the rotational direction of each component is not limited to the direction of rotation illustrated. Rather, each denoted components may rotate in any direction as required. -
FIG. 3 illustrates a milling process for theflange face 12 and wheel hub assembly 1. Thewheel hub 4 is situated on thebearing 5, allowing thewheel hub 4 to rotate about an axis determined by thebearing 5. Thewheel hub 4 is positioned on thebearing 5 so as to allow theflange face 12 to engage aninner mill cutter 2 and anouter mill cutter 10 protruding from a machine, such as a lathe. In one embodiment, theinner mill cutter 2 and theouter mill cutter 10 are stationary and each consists of a cutting end, but individually rotate about an axis determined by the tool and it's bearing. The cutting end of theinner mill cutter 2 engages theinner flange surface 9 of theflange face 12. The cutting end of theouter mill cutter 10 engages theouter flange surface 7 of theflange face 12. Alternatively, one of themill cutters inner flange surface 9 and/or theouter flange surface 7. - The milling process may occur as the
wheel hub 4 rotates on thebearing 5 in a clockwise motion. In a preferred embodiment, themill cutters outer mill cutter 10 and/or theinner mill cutter 2 moves radially in and out as thehub wheel 4 turns, milling and finishing the flange surfaces 7, 9. This process of finishing reduces lateral run-out. - As shown
FIG. 4-6 , an alternate embodiment for refinishing theflange face 12 is a grinding process. The grinding process involves use of agrind wheel 11. Thegrind wheel 11 may be constructed from an abrasive material that may be, for example, boron, diamond, or any other abrasive and immalleable material known to one of ordinary skill of the art. In an embodiment, thegrind wheel 11 is a singular cylindrical apparatus that may consist of aninner lip 13 and anouter lip 14. In one embodiment, theinner lip 13 has a shape that corresponds with theinner flange surface 9. Similarly, in an embodiment, theouter lip 14 and theouter flange surface 7 have corresponding shapes. Located in between theinner lip 13 andouter lip 14 is achannel 15. Thechannel 15 and therelief channel 8 also have corresponding shapes. As described below, the purpose of thechannel 15 is to allow thewheel bolts 3 of thewheel hub 4 to pass or clear within thegrind wheel 11 while thegrind wheel 11 engages and finishes the flange surfaces 7, 9. While thegrind wheel 11 is described as having both an inner lip and outer lip, it will be appreciated that other configurations may be used. For example, thegrind wheel 11 may comprise a single lip configured to engage either theouter flange surface 7 or theinner flange surface 9. - The
grind wheel 11 serves as a machining apparatus for the purpose of finishing theflange face 12. ReferencingFIG. 6 , the open face ofgrind wheel 11 is placed on the top of thewheel hub 4 so that thegrind wheel 11 engagesflange face 12. Theinner lip 13 is aligned along theinner flange surface 9. Theouter lip 14 is aligned along theouter flange surface 7. This arrangement allows theouter lip 14 to cup thewheel bolts 3 so that thewheel bolts 3 terminate within thechannel 15 of thegrind wheel 11. -
FIGS. 5 and 6 illustrate the grinding process of the present invention. Thegrind wheel 11 is placed on top of thewheel hub 4 as described above. As thewheel hub 4 rotates in a clockwise direction about the axis of thebearing 5, thegrind wheel 11 is rotated in the counterclockwise direction. The rotations of thewheel hub 4 and thegrind wheel 11 are not limited to clockwise and counterclockwise rotations respectively, but, preferably are in opposite directions as known to one of ordinary skill of the art. Theinner flange surface 9 andouter flange surface 7 are finished by the friction created against theinner lip 13 andouter lip 14 of the grind wheel. In an embodiment, thegrind wheel 11 rotates at a higher rate of speed than thewheel hub 11 and in an opposite direction with respect to thewheel hub 11. The engagement of thegrind wheel 11 upon the flange surfaces 7, 9 causes a high degree of friction that removes material from the flange surfaces 7, 9 and creates the flattening and finishing process of theflange face 12, thereby reducing lateral run-out. - Other objects and features of the present invention will become apparent when reviewed in light of detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims
Claims (29)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/809,742 US20150367426A1 (en) | 2009-02-20 | 2015-07-27 | Wheel assembly, and apparatus and method for making same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20810209P | 2009-02-20 | 2009-02-20 | |
US12/709,986 US9120195B2 (en) | 2009-02-20 | 2010-02-22 | Wheel assembly and method for making same |
US14/809,742 US20150367426A1 (en) | 2009-02-20 | 2015-07-27 | Wheel assembly, and apparatus and method for making same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/709,986 Continuation US9120195B2 (en) | 2009-02-20 | 2010-02-22 | Wheel assembly and method for making same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150367426A1 true US20150367426A1 (en) | 2015-12-24 |
Family
ID=42634240
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/709,986 Expired - Fee Related US9120195B2 (en) | 2009-02-20 | 2010-02-22 | Wheel assembly and method for making same |
US14/809,742 Abandoned US20150367426A1 (en) | 2009-02-20 | 2015-07-27 | Wheel assembly, and apparatus and method for making same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/709,986 Expired - Fee Related US9120195B2 (en) | 2009-02-20 | 2010-02-22 | Wheel assembly and method for making same |
Country Status (2)
Country | Link |
---|---|
US (2) | US9120195B2 (en) |
WO (1) | WO2010096765A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010096765A1 (en) * | 2009-02-20 | 2010-08-26 | Diversified Machine Inc. | Wheel assembly and method for making same |
US8801503B2 (en) | 2012-06-19 | 2014-08-12 | Gleason Cutting Tools Corporation | Grinding machine with multi-spindle grinding head |
US9440488B1 (en) * | 2016-02-08 | 2016-09-13 | Ahmed Y. A. Mothafar | Hubless wheel system for motor vehicles |
CN112517985A (en) * | 2020-06-09 | 2021-03-19 | 湖南思远智能装备有限公司 | Intelligent double-spindle end face milling machine for processing blade root flange face |
CN117415685B (en) * | 2023-11-16 | 2024-03-26 | 启东海大聚龙新材料科技有限公司 | Resin sliding bearing inner ring surface polishing equipment |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3526058A (en) * | 1967-06-28 | 1970-09-01 | Litton Industries Inc | Diamond roller dresser |
US4042346A (en) * | 1975-12-24 | 1977-08-16 | Norton Company | Diamond or cubic boron nitride grinding wheel with resin core |
US4918872A (en) * | 1984-05-14 | 1990-04-24 | Kanebo Limited | Surface grinding apparatus |
US4949511A (en) * | 1986-02-10 | 1990-08-21 | Toshiba Tungaloy Co., Ltd. | Super abrasive grinding tool element and grinding tool |
US5381630A (en) * | 1992-09-28 | 1995-01-17 | Kinner; James | Brake rotor grinding method and apparatus |
US5791976A (en) * | 1995-12-08 | 1998-08-11 | Tokyo Seimitsu Co., Ltd. | Surface machining method and apparatus |
US5885137A (en) * | 1997-06-27 | 1999-03-23 | Siemens Aktiengesellschaft | Chemical mechanical polishing pad conditioner |
US6004196A (en) * | 1998-02-27 | 1999-12-21 | Micron Technology, Inc. | Polishing pad refurbisher for in situ, real-time conditioning and cleaning of a polishing pad used in chemical-mechanical polishing of microelectronic substrates |
US6071180A (en) * | 1999-01-19 | 2000-06-06 | Ernst Thielenhaus Gmbh & Co. Kg | Method of surface grinding a flange surface of a wheel hub for an automotive vehicle |
US6139405A (en) * | 1999-01-19 | 2000-10-31 | Ernst Thielenhaus Gmbh & Co. Kg | Method of making a motor-vehicle brake-disk assembly |
US6212981B1 (en) * | 1999-05-28 | 2001-04-10 | Simpson Industries, Inc. | Knuckle hub fixture assembly and method of using |
US20010029153A1 (en) * | 1992-06-03 | 2001-10-11 | Hitachi Ltd. | Rolling mill equipped with on-line roll grinding system and grinding wheel |
US6415508B1 (en) * | 1999-06-09 | 2002-07-09 | The Timken Company | Hub assembly having minimum runout and process for producing the same |
US6880898B2 (en) * | 1999-02-17 | 2005-04-19 | Nsk Ltd. | Bearing unit for wheel and manufacturing method thereof |
US20050206221A1 (en) * | 1999-05-28 | 2005-09-22 | Daniel Brinker | Knuckle hub assembly and method for making same |
US7047645B2 (en) * | 2000-02-23 | 2006-05-23 | Nsk Ltd. | Bearing unit for wheel and method of manufacturing the same |
US7083504B2 (en) * | 2003-06-12 | 2006-08-01 | Koyo Seiko Co., Ltd. | Method of processing antifriction bearing unit for wheel |
US20060261667A1 (en) * | 2005-03-30 | 2006-11-23 | Nsk Ltd. | Bearing unit for supporting wheel and manufacturing method for the same |
US7270037B2 (en) * | 1996-09-04 | 2007-09-18 | Pro-Cut Licensing Company, Llc | Apparatus and method for automatically compensating for lateral runout |
US7337699B2 (en) * | 1996-09-04 | 2008-03-04 | Pro-Cut Licensing Company, Llc | Apparatus and method for automatically compensating for lateral runout |
US7681478B2 (en) * | 2003-07-24 | 2010-03-23 | Hunter Engineering Company | Method and apparatus for resurfacing brake rotors |
US8151434B2 (en) * | 2006-03-29 | 2012-04-10 | Jtekt Corporation | Method of grinding a brake disk mounting surface with an annular recess using an inclined grinding wheel |
US9120195B2 (en) * | 2009-02-20 | 2015-09-01 | Diversified Machine, Inc. | Wheel assembly and method for making same |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1605173A (en) | 1923-12-07 | 1926-11-02 | Niles Bement Pond Co | Work-holding means for car-wheel lathes |
US2891435A (en) | 1952-09-30 | 1959-06-23 | Ammco Tools Inc | Lathe |
US3044791A (en) | 1961-05-16 | 1962-07-17 | Budd Co | Clamp chuck for workpieces |
DE2931400C2 (en) | 1979-07-31 | 1981-10-01 | Mannesmann Kronprinz Ag, 5650 Solingen | Commercial vehicle wheel for single and twin arrangements |
GB2080745B (en) | 1980-07-29 | 1984-09-12 | Barlow Peter | Adapter for caravan hub |
IT1144712B (en) | 1981-05-18 | 1986-10-29 | Riv Officine Di Villar Perosa | SUPPORT COMPLEX FOR VEHICLE WHEELS |
US4699431A (en) | 1986-06-26 | 1987-10-13 | General Motors Corporation | Piloted wheel assembly |
JPS63101338U (en) | 1986-12-19 | 1988-07-01 | ||
JP2633255B2 (en) | 1987-07-23 | 1997-07-23 | 光洋精工株式会社 | Axle bearing device |
US4881842A (en) | 1988-10-17 | 1989-11-21 | General Motors Corporation | Wheel bearing assembly |
DE3900356A1 (en) | 1989-01-07 | 1990-07-12 | Bergische Achsen Kotz Soehne | Wheel bearing |
JP2803211B2 (en) | 1989-09-05 | 1998-09-24 | セイコーエプソン株式会社 | Semiconductor device bonding method and bonding apparatus |
FR2664084B1 (en) | 1990-06-27 | 1993-07-16 | Framatome Sa | METHOD AND DEVICE FOR DISMANTLING AN IRRADIATED COMPONENT OF A NUCLEAR REACTOR BY MACHINING ITS WALL. |
US5209701A (en) | 1990-12-07 | 1993-05-11 | Nikon Corporation | Hub unit bearing apparatus with improved pre-loading arrangement |
US5108156A (en) | 1991-06-10 | 1992-04-28 | Bell Chris R | Rotor and hub run-out shim for automotive wheel assembly |
US5090851A (en) * | 1991-08-15 | 1992-02-25 | White Joseph P | Cutting tool for milling machines |
US5257561A (en) | 1992-05-11 | 1993-11-02 | Illinois Tool Works Inc. | Tire holding fixture for tire processing machine |
US5398999A (en) | 1993-03-01 | 1995-03-21 | Kelsey-Hayes Company | Vehicle brake assembly and method of installation |
JP3183367B2 (en) | 1993-03-08 | 2001-07-09 | 豊和工業株式会社 | Finger chuck |
US5443316A (en) | 1993-06-24 | 1995-08-22 | The Budd Company | Live spindle hub with inboard bearing retention |
JP3091990B2 (en) | 1993-12-10 | 2000-09-25 | 光洋精工株式会社 | Fastening structure |
US5430926A (en) | 1994-01-03 | 1995-07-11 | Kelsey-Hayes Company | Method of producing a rotatable brake component and bearing assembly |
US5490720A (en) | 1994-01-27 | 1996-02-13 | Hayes Wheels International, Inc. | Vehicle wheel having a tinnerman nut clearance groove |
US5680801A (en) | 1995-11-02 | 1997-10-28 | General Electric Company | Machining damper and method of using same |
US5653153A (en) | 1996-02-09 | 1997-08-05 | Greenwald; Christopher L. | On-vehicle brake lathe and alignment device therefor |
US5884980A (en) | 1996-10-31 | 1999-03-23 | Robert Bosch Technologies Corporation | Vehicle brake and hub attachment system and method |
US5899305A (en) | 1997-05-21 | 1999-05-04 | Varga Brakes, Inc. | Method for fabricating brake disc |
US5937499A (en) | 1997-12-19 | 1999-08-17 | Varga Brakes, Inc. | Machining brake disc without moment load on bearing |
WO1998038436A1 (en) | 1997-02-27 | 1998-09-03 | Varga Brakes, Inc. | Method for producing vehicle hub, bearing, and brake disc assembly |
US5915502A (en) | 1997-02-27 | 1999-06-29 | Varga North America, Inc. | Brake disc assembly and a method for fabricating brake disc |
US6364426B1 (en) | 1998-08-05 | 2002-04-02 | Kelsey-Hayes Company | Vehicle wheel hub and bearing unit assembly and method for producing same |
US6158124A (en) | 1998-11-17 | 2000-12-12 | Varga Brakes, Inc. | Preloading & machining mounted brake disc |
US6485109B2 (en) | 1999-05-28 | 2002-11-26 | Simpson Industries, Inc. | Knuckle hub assembly and method for making same |
US6708589B2 (en) | 1999-05-28 | 2004-03-23 | Metaldyne Machining & Assembly Company, Inc. | Brake rotor assembly and method for making same |
US7024751B2 (en) | 2003-03-25 | 2006-04-11 | Metaldyne Company Llc | Housing and method of manufacturing said housing |
CN101482164B (en) | 2007-10-17 | 2014-06-25 | 金属达因有限责任公司 | Differential assembly and method for manufacturing same |
-
2010
- 2010-02-22 WO PCT/US2010/024924 patent/WO2010096765A1/en active Application Filing
- 2010-02-22 US US12/709,986 patent/US9120195B2/en not_active Expired - Fee Related
-
2015
- 2015-07-27 US US14/809,742 patent/US20150367426A1/en not_active Abandoned
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3526058A (en) * | 1967-06-28 | 1970-09-01 | Litton Industries Inc | Diamond roller dresser |
US4042346A (en) * | 1975-12-24 | 1977-08-16 | Norton Company | Diamond or cubic boron nitride grinding wheel with resin core |
US4918872A (en) * | 1984-05-14 | 1990-04-24 | Kanebo Limited | Surface grinding apparatus |
US4949511A (en) * | 1986-02-10 | 1990-08-21 | Toshiba Tungaloy Co., Ltd. | Super abrasive grinding tool element and grinding tool |
US20010029153A1 (en) * | 1992-06-03 | 2001-10-11 | Hitachi Ltd. | Rolling mill equipped with on-line roll grinding system and grinding wheel |
US5381630A (en) * | 1992-09-28 | 1995-01-17 | Kinner; James | Brake rotor grinding method and apparatus |
US5791976A (en) * | 1995-12-08 | 1998-08-11 | Tokyo Seimitsu Co., Ltd. | Surface machining method and apparatus |
US7337699B2 (en) * | 1996-09-04 | 2008-03-04 | Pro-Cut Licensing Company, Llc | Apparatus and method for automatically compensating for lateral runout |
US7270037B2 (en) * | 1996-09-04 | 2007-09-18 | Pro-Cut Licensing Company, Llc | Apparatus and method for automatically compensating for lateral runout |
US5885137A (en) * | 1997-06-27 | 1999-03-23 | Siemens Aktiengesellschaft | Chemical mechanical polishing pad conditioner |
US6004196A (en) * | 1998-02-27 | 1999-12-21 | Micron Technology, Inc. | Polishing pad refurbisher for in situ, real-time conditioning and cleaning of a polishing pad used in chemical-mechanical polishing of microelectronic substrates |
USRE39195E1 (en) * | 1998-02-27 | 2006-07-18 | Micron Technology, Inc. | Polishing pad refurbisher for in situ, real-time conditioning and cleaning of a polishing pad used in chemical-mechanical polishing of microelectronic substrates |
US6071180A (en) * | 1999-01-19 | 2000-06-06 | Ernst Thielenhaus Gmbh & Co. Kg | Method of surface grinding a flange surface of a wheel hub for an automotive vehicle |
US6139405A (en) * | 1999-01-19 | 2000-10-31 | Ernst Thielenhaus Gmbh & Co. Kg | Method of making a motor-vehicle brake-disk assembly |
US6880898B2 (en) * | 1999-02-17 | 2005-04-19 | Nsk Ltd. | Bearing unit for wheel and manufacturing method thereof |
US20080129106A1 (en) * | 1999-05-28 | 2008-06-05 | Daniel Brinker | Knuckle hub assembly and method for making same |
US20050206221A1 (en) * | 1999-05-28 | 2005-09-22 | Daniel Brinker | Knuckle hub assembly and method for making same |
US6212981B1 (en) * | 1999-05-28 | 2001-04-10 | Simpson Industries, Inc. | Knuckle hub fixture assembly and method of using |
US6702398B2 (en) * | 1999-06-09 | 2004-03-09 | The Timken Company | Hub assembly having minimum runout and process for producing the same |
US6415508B1 (en) * | 1999-06-09 | 2002-07-09 | The Timken Company | Hub assembly having minimum runout and process for producing the same |
US7047645B2 (en) * | 2000-02-23 | 2006-05-23 | Nsk Ltd. | Bearing unit for wheel and method of manufacturing the same |
US7083504B2 (en) * | 2003-06-12 | 2006-08-01 | Koyo Seiko Co., Ltd. | Method of processing antifriction bearing unit for wheel |
US7226344B2 (en) * | 2003-06-12 | 2007-06-05 | Koyo Seiko Co., Ltd. | Method of processing antifriction bearing unit for wheel |
US7681478B2 (en) * | 2003-07-24 | 2010-03-23 | Hunter Engineering Company | Method and apparatus for resurfacing brake rotors |
US20060261667A1 (en) * | 2005-03-30 | 2006-11-23 | Nsk Ltd. | Bearing unit for supporting wheel and manufacturing method for the same |
US7650696B2 (en) * | 2005-03-30 | 2010-01-26 | Nsk Ltd. | Manufacturing method for bearing unit for support wheel |
US8151434B2 (en) * | 2006-03-29 | 2012-04-10 | Jtekt Corporation | Method of grinding a brake disk mounting surface with an annular recess using an inclined grinding wheel |
US9120195B2 (en) * | 2009-02-20 | 2015-09-01 | Diversified Machine, Inc. | Wheel assembly and method for making same |
Non-Patent Citations (1)
Title |
---|
US RE39,195 E * |
Also Published As
Publication number | Publication date |
---|---|
US20100257737A1 (en) | 2010-10-14 |
US9120195B2 (en) | 2015-09-01 |
WO2010096765A1 (en) | 2010-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6364426B1 (en) | Vehicle wheel hub and bearing unit assembly and method for producing same | |
US20150367426A1 (en) | Wheel assembly, and apparatus and method for making same | |
EP2563639B1 (en) | Apparatus for final finishing a wheel hub of a knuckle assembly and related method | |
EP1200219B1 (en) | Process for producing a hub assembly having minimum runout | |
US6450584B2 (en) | Knuckle hub assembly and method for making same | |
US7650696B2 (en) | Manufacturing method for bearing unit for support wheel | |
US6708589B2 (en) | Brake rotor assembly and method for making same | |
EP1780100B1 (en) | A method of manufacturing a steering knuckle corner assembly | |
EP1652690A2 (en) | A wheel hub of corner assembly | |
US7716833B2 (en) | Knuckle hub assembly and method for making same | |
US20050231025A1 (en) | Wheel support rolling bearing unit and manufacturing method therefor | |
EP1923230B1 (en) | Rolling bearing unit for supporting wheel and method of producing the same | |
US20200254536A1 (en) | Wheel assembly and method for making same | |
US7117600B1 (en) | Process of manufacturing a corner assembly | |
CN111059175B (en) | Machining method of drum brake and drum brake | |
JP2006021605A (en) | Rolling bearing unit for supporting wheel and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DIVERSIFIED MACHINE, INC,, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VELDMAN, ROBERT;REEL/FRAME:036388/0374 Effective date: 20150820 |
|
AS | Assignment |
Owner name: PNC BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: SECURITY INTEREST;ASSIGNOR:DIVERSIFIED MACHINE, INC.;REEL/FRAME:044135/0831 Effective date: 20171115 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ALUDYNE NORTH AMERICA, INC. (F/K/A DIVERSIFIED MACHINE, INC.), MICHIGAN Free format text: RELEASE (REEL 044455 / FRAME 0773);ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:063083/0462 Effective date: 20230310 |