US20140109177A1 - Configuring and providing profiles that manage execution of mobile applications - Google Patents

Configuring and providing profiles that manage execution of mobile applications Download PDF

Info

Publication number
US20140109177A1
US20140109177A1 US14/041,923 US201314041923A US2014109177A1 US 20140109177 A1 US20140109177 A1 US 20140109177A1 US 201314041923 A US201314041923 A US 201314041923A US 2014109177 A1 US2014109177 A1 US 2014109177A1
Authority
US
United States
Prior art keywords
user
policy
application
mobile device
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/041,923
Other versions
US8719898B1 (en
Inventor
Gary Barton
Zhongmin Lang
Nitin Desai
James Robert Walker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citrix Systems Inc
Original Assignee
Citrix Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citrix Systems Inc filed Critical Citrix Systems Inc
Priority to US14/041,923 priority Critical patent/US8719898B1/en
Assigned to CITRIX SYSTEMS INC. reassignment CITRIX SYSTEMS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DESAI, NITIN, BARTON, GARY, LANG, ZHONGMIN, WALKER, JAMES
Priority to US14/242,011 priority patent/US9467474B2/en
Publication of US20140109177A1 publication Critical patent/US20140109177A1/en
Application granted granted Critical
Publication of US8719898B1 publication Critical patent/US8719898B1/en
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CITRIX SYSTEMS, INC.
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: CITRIX SYSTEMS, INC., TIBCO SOFTWARE INC.
Assigned to GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT reassignment GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT SECOND LIEN PATENT SECURITY AGREEMENT Assignors: CITRIX SYSTEMS, INC., TIBCO SOFTWARE INC.
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: CITRIX SYSTEMS, INC., TIBCO SOFTWARE INC.
Assigned to CLOUD SOFTWARE GROUP, INC. (F/K/A TIBCO SOFTWARE INC.), CITRIX SYSTEMS, INC. reassignment CLOUD SOFTWARE GROUP, INC. (F/K/A TIBCO SOFTWARE INC.) RELEASE AND REASSIGNMENT OF SECURITY INTEREST IN PATENT (REEL/FRAME 062113/0001) Assignors: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: CITRIX SYSTEMS, INC., CLOUD SOFTWARE GROUP, INC. (F/K/A TIBCO SOFTWARE INC.)
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CITRIX SYSTEMS, INC., CLOUD SOFTWARE GROUP, INC. (F/K/A TIBCO SOFTWARE INC.)
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/20Network architectures or network communication protocols for network security for managing network security; network security policies in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/604Tools and structures for managing or administering access control systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/629Protecting access to data via a platform, e.g. using keys or access control rules to features or functions of an application
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/88Detecting or preventing theft or loss
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/451Execution arrangements for user interfaces
    • G06F9/452Remote windowing, e.g. X-Window System, desktop virtualisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • H04L41/046Network management architectures or arrangements comprising network management agents or mobile agents therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0272Virtual private networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0815Network architectures or network communication protocols for network security for authentication of entities providing single-sign-on or federations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/20Network architectures or network communication protocols for network security for managing network security; network security policies in general
    • H04L63/205Network architectures or network communication protocols for network security for managing network security; network security policies in general involving negotiation or determination of the one or more network security mechanisms to be used, e.g. by negotiation between the client and the server or between peers or by selection according to the capabilities of the entities involved
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/34Network arrangements or protocols for supporting network services or applications involving the movement of software or configuration parameters 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/30Security of mobile devices; Security of mobile applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/30Security of mobile devices; Security of mobile applications
    • H04W12/37Managing security policies for mobile devices or for controlling mobile applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2143Clearing memory, e.g. to prevent the data from being stolen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0823Network architectures or network communication protocols for network security for authentication of entities using certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/63Location-dependent; Proximity-dependent

Definitions

  • aspects of the disclosure relate to computer hardware and software.
  • one or more aspects of the disclosure generally relate to computer hardware and software for providing an enterprise application store.
  • aspects of the disclosure provide more efficient, effective, functional, and convenient ways of controlling how mobile devices can be used, what resources mobile devices can access, and how the applications running on these devices can interact with other resources.
  • an enterprise application store may be implemented that can provide these and features.
  • Various aspects of the disclosure relate to configuring and providing one or more policies that can be used by a mobile to manage or constrain the execution of a mobile application (also referred herein as a managed application).
  • a mobile application also referred herein as a managed application.
  • some embodiments of this disclosure relate to systems, one or more apparatuses and one or more computing devices that are configured to perform various methods for configuring and providing the policies.
  • one or more computing devices may display a user interface that displays one or more policy settings for a managed application that is to be made available for download to a mobile device.
  • Each of the one or more policy settings may provide a constraint to be enforced by the mobile device prior to the managed application being provided access to at least one resource that is accessible through an access gateway.
  • the one or more computing devices may also receive input via the user interface that modifies the one or more policy settings, which can result in one or more modified policy settings.
  • the one or more computing devices may further produce a policy file for the managed application that includes the one or more modified policy settings and provide the policy file such that the policy is available for download to the mobile device.
  • the various settings that can be included in a policy are numerous and some examples and variations thereof are described in connection with the example embodiments discussed herein.
  • FIG. 1 depicts an illustrative computer system architecture that may be used in accordance with one or more aspects of the disclosure.
  • FIG. 2 depicts an illustrative remote-access system architecture that may be used in accordance with various aspects of the disclosure.
  • FIG. 3 depicts an illustrative virtualized (hypervisor) system architecture that may be used in accordance one or more aspects of the disclosure.
  • FIG. 4 depicts an illustrative cloud-based system architecture that may be used in accordance various aspects of the disclosure.
  • FIG. 5 depicts an illustrative enterprise mobility management system that may be used in accordance with one or more aspects of the disclosure.
  • FIG. 6 depicts another illustrative enterprise mobility management system that may be used in accordance with various aspects of the disclosure.
  • FIG. 7 illustrates an example method for configuring a policy for a managed application in accordance with one or more aspects of the disclosure.
  • FIG. 8 illustrates an example environment in which various policies may be configured in accordance with one or more aspects described herein.
  • FIG. 9 illustrates an example method for configuring and providing a policy that includes a setting to delete data in accordance with various aspects of the disclosure.
  • FIG. 10 illustrates an example method for configuring and providing a policy that includes one or more settings for managing execution of a managed application in accordance with one or more aspects of the disclosure.
  • FIG. 11 illustrates an example method for configuring and providing a policy that includes one or more settings related to user authentication and/or user identification in accordance with various aspects described herein.
  • FIGS. 12A-12J illustrate example user interfaces that can be used to configure one or more policies in accordance with various aspects described herein.
  • a user interface may be generated that allows an IT administrator or other operator to set, change and/or add to policy settings.
  • the policy settings can be formatted into a policy file, such as an Extensible Markup Language file (XML file), and be made available for download to a mobile device.
  • the mobile device based on the various settings included in the policy file, may perform various actions to enforce the security constraints that are represented by the policy.
  • the various settings that can be included in a policy are numerous and some examples and variations thereof are described in connection with the example embodiments discussed herein.
  • FIG. 1 illustrates one example of a system architecture and data processing device that may be used to implement one or more illustrative aspects described herein in a standalone and/or networked environment.
  • Various network nodes 103 , 105 , 107 , and 109 may be interconnected via a wide area network (WAN) 101 , such as the Internet.
  • WAN wide area network
  • Other networks may also or alternatively be used, including private intranets, corporate networks, LANs, metropolitan area networks (MAN) wireless networks, personal networks (PAN), and the like.
  • Network 101 is for illustration purposes and may be replaced with fewer or additional computer networks.
  • a local area network may have one or more of any known LAN topology and may use one or more of a variety of different protocols, such as Ethernet.
  • Devices 103 , 105 , 107 , 109 and other devices may be connected to one or more of the networks via twisted pair wires, coaxial cable, fiber optics, radio waves or other communication media.
  • network refers not only to systems in which remote storage devices are coupled together via one or more communication paths, but also to stand-alone devices that may be coupled, from time to time, to such systems that have storage capability. Consequently, the term “network” includes not only a “physical network” but also a “content network,” which is comprised of the data—attributable to a single entity—which resides across all physical networks.
  • the components may include data server 103 , web server 105 , and client computers 107 , 109 .
  • Data server 103 provides overall access, control and administration of databases and control software for performing one or more illustrative aspects describe herein.
  • Data server 103 may be connected to web server 105 through which users interact with and obtain data as requested.
  • data server 103 may act as a web server itself and be directly connected to the Internet.
  • Data server 103 may be connected to web server 105 through the network 101 (e.g., the Internet), via direct or indirect connection, or via some other network.
  • Users may interact with the data server 103 using remote computers 107 , 109 , e.g., using a web browser to connect to the data server 103 via one or more externally exposed web sites hosted by web server 105 .
  • Client computers 107 , 109 may be used in concert with data server 103 to access data stored therein, or may be used for other purposes.
  • a user may access web server 105 using an Internet browser, as is known in the art, or by executing a software application that communicates with web server 105 and/or data server 103 over a computer network (such as the Internet).
  • FIG. 1 illustrates just one example of a network architecture that may be used, and those of skill in the art will appreciate that the specific network architecture and data processing devices used may vary, and are secondary to the functionality that they provide, as further described herein. For example, services provided by web server 105 and data server 103 may be combined on a single server.
  • Each component 103 , 105 , 107 , 109 may be any type of known computer, server, or data processing device.
  • Data server 103 e.g., may include a processor 111 controlling overall operation of the rate server 103 .
  • Data server 103 may further include RAM 113 , ROM 115 , network interface 117 , input/output interfaces 119 (e.g., keyboard, mouse, display, printer, etc.), and memory 121 .
  • I/O 119 may include a variety of interface units and drives for reading, writing, displaying, and/or printing data or files.
  • Memory 121 may further store operating system software 123 for controlling overall operation of the data processing device 103 , control logic 125 for instructing data server 103 to perform aspects described herein, and other application software 127 providing secondary, support, and/or other functionality which may or might not be used in conjunction with aspects described herein.
  • the control logic may also be referred to herein as the data server software 125 .
  • Functionality of the data server software may refer to operations or decisions made automatically based on rules coded into the control logic, made manually by a user providing input into the system, and/or a combination of automatic processing based on user input (e.g., queries, data updates, etc.).
  • Memory 121 may also store data used in performance of one or more aspects described herein, including a first database 129 and a second database 131 .
  • the first database may include the second database (e.g., as a separate table, report, etc.). That is, the information can be stored in a single database, or separated into different logical, virtual, or physical databases, depending on system design.
  • Devices 105 , 107 , 109 may have similar or different architecture as described with respect to device 103 .
  • data processing device 103 may be spread across multiple data processing devices, for example, to distribute processing load across multiple computers, to segregate transactions based on geographic location, user access level, quality of service (QoS), etc.
  • QoS quality of service
  • One or more aspects may be embodied in computer-usable or readable data and/or computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices as described herein.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device.
  • the modules may be written in a source code programming language that is subsequently compiled for execution, or may be written in a scripting language such as (but not limited to) HTML or XML.
  • the computer executable instructions may be stored on a computer readable medium such as a nonvolatile storage device.
  • Any suitable computer readable storage media may be utilized, including hard disks, CD-ROMs, optical storage devices, magnetic storage devices, and/or any combination thereof.
  • various transmission (non-storage) media representing data or events as described herein may be transferred between a source and a destination in the form of electromagnetic waves traveling through signal-conducting media such as metal wires, optical fibers, and/or wireless transmission media (e.g., air and/or space).
  • signal-conducting media such as metal wires, optical fibers, and/or wireless transmission media (e.g., air and/or space).
  • signal-conducting media such as metal wires, optical fibers, and/or wireless transmission media (e.g., air and/or space).
  • Various aspects described herein may be embodied as a method, a data processing system, or a computer program product. Therefore, various functionalities may be embodied in whole or in part in software, firmware and/or hardware or hardware equivalents such as integrated circuits, field programmable gate arrays (F
  • FIG. 2 depicts an example system architecture including a generic computing device 201 in an illustrative computing environment 200 that may be used according to one or more illustrative aspects described herein.
  • Generic computing device 201 may be used as a server 206 a in a single-server or multi-server desktop virtualization system (e.g., a remote access or cloud system) configured to provide virtual machines for client access devices.
  • the generic computing device 201 may have a processor 203 for controlling overall operation of the server and its associated components, including random access memory (RAM) 205 , read-only memory (ROM) 207 , input/output (I/O) module 209 , and memory 215 .
  • RAM random access memory
  • ROM read-only memory
  • I/O input/output
  • I/O module 209 may include a mouse, keypad, touch screen, scanner, optical reader, and/or stylus (or other input device(s)) through which a user of generic computing device 201 may provide input, and may also include one or more of a speaker for providing audio output and a video display device for providing textual, audiovisual, and/or graphical output.
  • Software may be stored within memory 215 and/or other storage to provide instructions to processor 203 for configuring generic computing device 201 into a special purpose computing device in order to perform various functions as described herein.
  • memory 215 may store software used by the computing device 201 , such as an operating system 217 , application programs 219 , and an associated database 221 .
  • Computing device 201 may operate in a networked environment supporting connections to one or more remote computers, such as terminals 240 (also referred to as client devices).
  • the terminals 240 may be personal computers, mobile devices, laptop computers, tablets, or servers that include many or all of the elements described above with respect to the generic computing device 103 or 201 .
  • the network connections depicted in FIG. 2 include a local area network (LAN) 225 and a wide area network (WAN) 229 , but may also include other networks.
  • LAN local area network
  • WAN wide area network
  • computing device 201 may be connected to the LAN 225 through a network interface or adapter 223 .
  • computing device 201 When used in a WAN networking environment, computing device 201 may include a modem 227 or other wide area network interface for establishing communications over the WAN 229 , such as computer network 230 (e.g., the Internet). It will be appreciated that the network connections shown are illustrative and other means of establishing a communications link between the computers may be used.
  • Computing device 201 and/or terminals 240 may also be mobile terminals (e.g., mobile phones, smartphones, PDAs, notebooks, etc.) including various other components, such as a battery, speaker, and antennas (not shown).
  • aspects described herein may also be operational with numerous other general purpose or special purpose computing system environments or configurations.
  • Examples of other computing systems, environments, and/or configurations that may be suitable for use with aspects described herein include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
  • one or more client devices 240 may be in communication with one or more servers 206 a - 206 n (generally referred to herein as “server(s) 206 ”).
  • the computing environment 200 may include a network appliance installed between the server(s) 206 and client machine(s) 240 .
  • the network appliance may manage client/server connections, and in some cases can load balance client connections amongst a plurality of backend servers 206 .
  • the client machine(s) 240 may in some embodiments be referred to as a single client machine 240 or a single group of client machines 240
  • server(s) 206 may be referred to as a single server 206 or a single group of servers 206 .
  • a single client machine 240 communicates with more than one server 206
  • a single server 206 communicates with more than one client machine 240
  • a single client machine 240 communicates with a single server 206 .
  • a client machine 240 can, in some embodiments, be referenced by any one of the following non-exhaustive terms: client machine(s); client(s); client computer(s); client device(s); client computing device(s); local machine; remote machine; client node(s); endpoint(s); or endpoint node(s).
  • the server 206 in some embodiments, may be referenced by any one of the following non-exhaustive terms: server(s), local machine; remote machine; server farm(s), or host computing device(s).
  • the client machine 240 may be a virtual machine.
  • the virtual machine may be any virtual machine, while in some embodiments the virtual machine may be any virtual machine managed by a Type 1 or Type 2 hypervisor, for example, a hypervisor developed by Citrix Systems, IBM, VMware, or any other hypervisor.
  • the virtual machine may be managed by a hypervisor, while in aspects the virtual machine may be managed by a hypervisor executing on a server 206 or a hypervisor executing on a client 240 .
  • Some embodiments include a client device 240 that displays application output generated by an application remotely executing on a server 206 or other remotely located machine.
  • the client device 240 may execute a virtual machine receiver program or application to display the output in an application window, a browser, or other output window.
  • the application is a desktop, while in other examples the application is an application that generates or presents a desktop.
  • a desktop may include a graphical shell providing a user interface for an instance of an operating system in which local and/or remote applications can be integrated.
  • Applications as used herein, are programs that execute after an instance of an operating system (and, optionally, also the desktop) has been loaded.
  • the server 206 uses a remote presentation protocol or other program to send data to a thin-client or remote-display application executing on the client to present display output generated by an application executing on the server 206 .
  • the thin-client or remote-display protocol can be any one of the following non-exhaustive list of protocols: the Independent Computing Architecture (ICA) protocol developed by Citrix Systems, Inc. of Ft. Lauderdale, Fla.; or the Remote Desktop Protocol (RDP) manufactured by the Microsoft Corporation of Redmond, Wash.
  • ICA Independent Computing Architecture
  • RDP Remote Desktop Protocol
  • a remote computing environment may include more than one server 206 a - 206 n such that the servers 206 a - 206 n are logically grouped together into a server farm 206 , for example, in a cloud computing environment.
  • the server farm 206 may include servers 206 that are geographically dispersed while and logically grouped together, or servers 206 that are located proximate to each other while logically grouped together.
  • Geographically dispersed servers 206 a - 206 n within a server farm 206 can, in some embodiments, communicate using a WAN (wide), MAN (metropolitan), or LAN (local), where different geographic regions can be characterized as: different continents; different regions of a continent; different countries; different states; different cities; different campuses; different rooms; or any combination of the preceding geographical locations.
  • the server farm 206 may be administered as a single entity, while in other embodiments the server farm 206 can include multiple server farms.
  • a server farm may include servers 206 that execute a substantially similar type of operating system platform (e.g., WINDOWS, UNIX, LINUX, iOS, ANDROID, SYMBIAN, etc.)
  • server farm 206 may include a first group of one or more servers that execute a first type of operating system platform, and a second group of one or more servers that execute a second type of operating system platform.
  • Server 206 may be configured as any type of server, as needed, e.g., a file server, an application server, a web server, a proxy server, an appliance, a network appliance, a gateway, an application gateway, a gateway server, a virtualization server, a deployment server, a SSL VPN server, a firewall, a web server, an application server or as a master application server, a server executing an active directory, or a server executing an application acceleration program that provides firewall functionality, application functionality, or load balancing functionality.
  • Other server types may also be used.
  • Some embodiments include a first server 106 a that receives requests from a client machine 240 , forwards the request to a second server 106 b , and responds to the request generated by the client machine 240 with a response from the second server 106 b .
  • First server 106 a may acquire an enumeration of applications available to the client machine 240 and well as address information associated with an application server 206 hosting an application identified within the enumeration of applications.
  • First server 106 a can then present a response to the client's request using a web interface, and communicate directly with the client 240 to provide the client 240 with access to an identified application.
  • One or more clients 240 and/or one or more servers 206 may transmit data over network 230 , e.g., network 101 .
  • FIG. 2 shows a high-level architecture of an illustrative desktop virtualization system.
  • the desktop virtualization system may be single-server or multi-server system, or cloud system, including at least one virtualization server 206 configured to provide virtual desktops and/or virtual applications to one or more client access devices 240 .
  • a desktop refers to a graphical environment or space in which one or more applications may be hosted and/or executed.
  • a desktop may include a graphical shell providing a user interface for an instance of an operating system in which local and/or remote applications can be integrated.
  • Applications may include programs that execute after an instance of an operating system (and, optionally, also the desktop) has been loaded.
  • Each instance of the operating system may be physical (e.g., one operating system per device) or virtual (e.g., many instances of an OS running on a single device).
  • Each application may be executed on a local device, or executed on a remotely located device (e.g., remoted).
  • a computer device 301 may be configured as a virtualization server in a virtualization environment, for example, a single-server, multi-server, or cloud computing environment.
  • Virtualization server 301 illustrated in FIG. 3 can be deployed as and/or implemented by one or more embodiments of the server 206 illustrated in FIG. 2 or by other known computing devices.
  • Included in virtualization server 301 is a hardware layer that can include one or more physical disks 304 , one or more physical devices 306 , one or more physical processors 308 and one or more physical memories 316 .
  • firmware 312 can be stored within a memory element in the physical memory 316 and can be executed by one or more of the physical processors 308 .
  • Virtualization server 301 may further include an operating system 314 that may be stored in a memory element in the physical memory 316 and executed by one or more of the physical processors 308 . Still further, a hypervisor 302 may be stored in a memory element in the physical memory 316 and can be executed by one or more of the physical processors 308 .
  • Executing on one or more of the physical processors 308 may be one or more virtual machines 332 A-C (generally 332 ). Each virtual machine 332 may have a virtual disk 326 A-C and a virtual processor 328 A-C.
  • a first virtual machine 332 A may execute, using a virtual processor 328 A, a control program 320 that includes a tools stack 324 .
  • Control program 320 may be referred to as a control virtual machine, Dom0, Domain 0, or other virtual machine used for system administration and/or control.
  • one or more virtual machines 332 B-C can execute, using a virtual processor 328 B-C, a guest operating system 330 A-B.
  • Virtualization server 301 may include a hardware layer 310 with one or more pieces of hardware that communicate with the virtualization server 301 .
  • the hardware layer 310 can include one or more physical disks 304 , one or more physical devices 306 , one or more physical processors 308 , and one or more memory 216 .
  • Physical components 304 , 306 , 308 , and 316 may include, for example, any of the components described above.
  • Physical devices 306 may include, for example, a network interface card, a video card, a keyboard, a mouse, an input device, a monitor, a display device, speakers, an optical drive, a storage device, a universal serial bus connection, a printer, a scanner, a network element (e.g., router, firewall, network address translator, load balancer, virtual private network (VPN) gateway, Dynamic Host Configuration Protocol (DHCP) router, etc.), or any device connected to or communicating with virtualization server 301 .
  • Physical memory 316 in the hardware layer 310 may include any type of memory. Physical memory 316 may store data, and in some embodiments may store one or more programs, or set of executable instructions.
  • FIG. 3 illustrates an embodiment where firmware 312 is stored within the physical memory 316 of virtualization server 301 . Programs or executable instructions stored in the physical memory 316 can be executed by the one or more processors 308 of virtualization server 301 .
  • Virtualization server 301 may also include a hypervisor 302 .
  • hypervisor 302 may be a program executed by processors 308 on virtualization server 301 to create and manage any number of virtual machines 332 .
  • Hypervisor 302 may be referred to as a virtual machine monitor, or platform virtualization software.
  • hypervisor 302 can be any combination of executable instructions and hardware that monitors virtual machines executing on a computing machine.
  • Hypervisor 302 may be Type 2 hypervisor, where the hypervisor that executes within an operating system 314 executing on the virtualization server 301 . Virtual machines then execute at a level above the hypervisor.
  • the Type 2 hypervisor executes within the context of a user's operating system such that the Type 2 hypervisor interacts with the user's operating system.
  • one or more virtualization servers 201 in a virtualization environment may instead include a Type 1 hypervisor (not shown).
  • a Type 1 hypervisor may execute on the virtualization server 301 by directly accessing the hardware and resources within the hardware layer 310 . That is, while a Type 2 hypervisor 302 accesses system resources through a host operating system 314 , as shown, a Type 1 hypervisor may directly access all system resources without the host operating system 314 .
  • a Type 1 hypervisor may execute directly on one or more physical processors 308 of virtualization server 301 , and may include program data stored in the physical memory 316 .
  • Hypervisor 302 can provide virtual resources to operating systems 330 or control programs 320 executing on virtual machines 332 in any manner that simulates the operating systems 330 or control programs 320 having direct access to system resources.
  • System resources can include, but are not limited to, physical devices 306 , physical disks 304 , physical processors 308 , physical memory 316 and any other component included in virtualization server 301 hardware layer 310 .
  • Hypervisor 302 may be used to emulate virtual hardware, partition physical hardware, virtualize physical hardware, and/or execute virtual machines that provide access to computing environments. In still other embodiments, hypervisor 302 controls processor scheduling and memory partitioning for a virtual machine 332 executing on virtualization server 301 .
  • Hypervisor 302 may include those manufactured by VMWare, Inc., of Palo Alto, Calif.; the XEN hypervisor, an open source product whose development is overseen by the open source Xen.org community; HyperV, VirtualServer or virtual PC hypervisors provided by Microsoft, or others.
  • virtualization server 301 executes a hypervisor 302 that creates a virtual machine platform on which guest operating systems may execute.
  • the virtualization server 301 may be referred to as a host server.
  • An example of such a virtualization server is the XEN SERVER provided by Citrix Systems, Inc., of Fort Lauderdale, Fla.
  • Hypervisor 302 may create one or more virtual machines 332 B-C (generally 332 ) in which guest operating systems 330 execute.
  • hypervisor 302 may load a virtual machine image to create a virtual machine 332 .
  • the hypervisor 302 may executes a guest operating system 330 within virtual machine 332 .
  • virtual machine 332 may execute guest operating system 330 .
  • hypervisor 302 may control the execution of at least one virtual machine 332 .
  • hypervisor 302 may presents at least one virtual machine 332 with an abstraction of at least one hardware resource provided by the virtualization server 301 (e.g., any hardware resource available within the hardware layer 310 ).
  • hypervisor 302 may control the manner in which virtual machines 332 access physical processors 308 available in virtualization server 301 . Controlling access to physical processors 308 may include determining whether a virtual machine 332 should have access to a processor 308 , and how physical processor capabilities are presented to the virtual machine 332 .
  • virtualization server 301 may host or execute one or more virtual machines 332 .
  • a virtual machine 332 is a set of executable instructions that, when executed by a processor 308 , imitate the operation of a physical computer such that the virtual machine 332 can execute programs and processes much like a physical computing device. While FIG. 3 illustrates an embodiment where a virtualization server 301 hosts three virtual machines 332 , in other embodiments virtualization server 301 can host any number of virtual machines 332 .
  • Hypervisor 302 in some embodiments, provides each virtual machine 332 with a unique virtual view of the physical hardware, memory, processor and other system resources available to that virtual machine 332 .
  • the unique virtual view can be based on one or more of virtual machine permissions, application of a policy engine to one or more virtual machine identifiers, a user accessing a virtual machine, the applications executing on a virtual machine, networks accessed by a virtual machine, or any other desired criteria.
  • hypervisor 302 may create one or more unsecure virtual machines 332 and one or more secure virtual machines 332 . Unsecure virtual machines 332 may be prevented from accessing resources, hardware, memory locations, and programs that secure virtual machines 332 may be permitted to access.
  • hypervisor 302 may provide each virtual machine 332 with a substantially similar virtual view of the physical hardware, memory, processor and other system resources available to the virtual machines 332 .
  • Each virtual machine 332 may include a virtual disk 326 A-C (generally 326 ) and a virtual processor 328 A-C (generally 328 .)
  • the virtual disk 326 in some embodiments, is a virtualized view of one or more physical disks 304 of the virtualization server 301 , or a portion of one or more physical disks 304 of the virtualization server 301 .
  • the virtualized view of the physical disks 304 can be generated, provided and managed by the hypervisor 302 .
  • hypervisor 302 provides each virtual machine 332 with a unique view of the physical disks 304 .
  • the particular virtual disk 326 included in each virtual machine 332 can be unique when compared with the other virtual disks 326 .
  • a virtual processor 328 can be a virtualized view of one or more physical processors 308 of the virtualization server 301 .
  • the virtualized view of the physical processors 308 can be generated, provided and managed by hypervisor 302 .
  • virtual processor 328 has substantially all of the same characteristics of at least one physical processor 308 .
  • virtual processor 308 provides a modified view of physical processors 308 such that at least some of the characteristics of the virtual processor 328 are different than the characteristics of the corresponding physical processor 308 .
  • FIG. 4 illustrates an example of a cloud computing environment (or cloud system) 400 .
  • client computers 411 - 414 may communicate with a cloud management server 410 to access the computing resources (e.g., host servers 403 , storage resources 404 , and network resources 405 ) of the cloud system.
  • computing resources e.g., host servers 403 , storage resources 404 , and network resources 405 .
  • Management server 410 may be implemented on one or more physical servers.
  • the management server 410 may run, for example, CLOUDSTACK by Citrix Systems, Inc. of Ft. Lauderdale, Fla., or OPENSTACK, among others.
  • Management server 410 may manage various computing resources, including cloud hardware and software resources, for example, host computers 403 , data storage devices 404 , and networking devices 405 .
  • the cloud hardware and software resources may include private and/or public components.
  • a cloud may be configured as a private cloud to be used by one or more particular customers or client computers 411 - 414 and/or over a private network.
  • public clouds or hybrid public-private clouds may be used by other customers over an open or hybrid networks.
  • Management server 410 may be configured to provide user interfaces through which cloud operators and cloud customers may interact with the cloud system.
  • the management server 410 may provide a set of APIs and/or one or more cloud operator console applications (e.g., web-based on standalone applications) with user interfaces to allow cloud operators to manage the cloud resources, configure the virtualization layer, manage customer accounts, and perform other cloud administration tasks.
  • the management server 410 also may include a set of APIs and/or one or more customer console applications with user interfaces configured to receive cloud computing requests from end users via client computers 411 - 414 , for example, requests to create, modify, or destroy virtual machines within the cloud.
  • Client computers 411 - 414 may connect to management server 410 via the Internet or other communication network, and may request access to one or more of the computing resources managed by management server 410 .
  • the management server 410 may include a resource manager configured to select and provision physical resources in the hardware layer of the cloud system based on the client requests.
  • the management server 410 and additional components of the cloud system may be configured to provision, create, and manage virtual machines and their operating environments (e.g., hypervisors, storage resources, services offered by the network elements, etc.) for customers at client computers 411 - 414 , over a network (e.g., the Internet), providing customers with computational resources, data storage services, networking capabilities, and computer platform and application support.
  • Cloud systems also may be configured to provide various specific services, including security systems, development environments, user interfaces, and the like.
  • Certain clients 411 - 414 may be related, for example, different client computers creating virtual machines on behalf of the same end user, or different users affiliated with the same company or organization. In other examples, certain clients 411 - 414 may be unrelated, such as users affiliated with different companies or organizations. For unrelated clients, information on the virtual machines or storage of any one user may be hidden from other users.
  • zones 401 - 402 may refer to a collocated set of physical computing resources. Zones may be geographically separated from other zones in the overall cloud of computing resources. For example, zone 401 may be a first cloud datacenter located in California, and zone 402 may be a second cloud datacenter located in Florida. Management sever 410 may be located at one of the availability zones, or at a separate location. Each zone may include an internal network that interfaces with devices that are outside of the zone, such as the management server 410 , through a gateway. End users of the cloud (e.g., clients 411 - 414 ) might or might not be aware of the distinctions between zones.
  • an end user may request the creation of a virtual machine having a specified amount of memory, processing power, and network capabilities.
  • the management server 410 may respond to the user's request and may allocate the resources to create the virtual machine without the user knowing whether the virtual machine was created using resources from zone 401 or zone 402 .
  • the cloud system may allow end users to request that virtual machines (or other cloud resources) are allocated in a specific zone or on specific resources 403 - 405 within a zone.
  • each zone 401 - 402 may include an arrangement of various physical hardware components (or computing resources) 403 - 405 , for example, physical hosting resources (or processing resources), physical network resources, physical storage resources, switches, and additional hardware resources that may be used to provide cloud computing services to customers.
  • the physical hosting resources in a cloud zone 401 - 402 may include one or more computer servers 403 , such as the virtualization servers 301 described above, which may be configured to create and host virtual machine instances.
  • the physical network resources in a cloud zone 401 or 402 may include one or more network elements 405 (e.g., network service providers) comprising hardware and/or software configured to provide a network service to cloud customers, such as firewalls, network address translators, load balancers, virtual private network (VPN) gateways, Dynamic Host Configuration Protocol (DHCP) routers, and the like.
  • the storage resources in the cloud zone 401 - 402 may include storage disks (e.g., solid state drives (SSDs), magnetic hard disks, etc.) and other storage devices.
  • the example cloud computing environment shown in FIG. 4 also may include a virtualization layer (e.g., as shown in FIGS. 1-3 ) with additional hardware and/or software resources configured to create and manage virtual machines and provide other services to customers using the physical resources in the cloud.
  • the virtualization layer may include hypervisors, as described above in FIG. 3 , along with other components to provide network virtualizations, storage virtualizations, etc.
  • the virtualization layer may be as a separate layer from the physical resource layer, or may share some or all of the same hardware and/or software resources with the physical resource layer.
  • the virtualization layer may include a hypervisor installed in each of the virtualization servers 403 with the physical computing resources.
  • WINDOWS AZURE Microsoft Corporation of Redmond Wash.
  • AMAZON EC2 Amazon.com Inc. of Seattle, Wash.
  • IBM BLUE CLOUD IBM BLUE CLOUD
  • FIG. 5 represents an enterprise mobility technical architecture 500 for use in a BYOD environment.
  • the architecture enables a user of a mobile device 502 to both access enterprise or personal resources from a mobile device 502 and use the mobile device 502 for personal use.
  • the user may access such enterprise resources 504 or enterprise services 508 using a mobile device 502 that is purchased by the user or a mobile device 502 that is provided by the enterprise to user.
  • the user may utilize the mobile device 502 for business use only or for business and personal use.
  • the mobile device may run an iOS operating system, and Android operating system, or the like.
  • the enterprise may choose to implement policies to manage the mobile device 504 .
  • the policies may be implanted through a firewall or gateway in such a way that the mobile device may be identified, secured or security verified, and provided selective or full access to the enterprise resources.
  • the policies may be mobile device management policies, mobile application management policies, mobile data management policies, or some combination of mobile device, application, and data management policies.
  • a mobile device 504 that is managed through the application of mobile device management policies may be referred to as an enrolled device.
  • the operating system of the mobile device may be separated into a managed partition 510 and an unmanaged partition 512 .
  • the managed partition 510 may have policies applied to it to secure the applications running on and data stored in the managed partition.
  • the applications running on the managed partition may be secure applications.
  • all applications may execute in accordance with a set of one or more policy files received separate from the application, and which define one or more security parameters, features, resource restrictions, and/or other access controls that are enforced by the mobile device management system when that application is executing on the device.
  • each application By operating in accordance with their respective policy file(s), each application may be allowed or restricted from communications with one or more other applications and/or resources, thereby creating a virtual partition.
  • a partition may refer to a physically partitioned portion of memory (physical partition), a logically partitioned portion of memory (logical partition), and/or a virtual partition created as a result of enforcement of one or more policies and/or policy files across multiple apps as described herein (virtual partition).
  • physical partition a physically partitioned portion of memory
  • logical partition a logically partitioned portion of memory
  • virtual partition created as a result of enforcement of one or more policies and/or policy files across multiple apps as described herein
  • the secure applications may be email applications, web browsing applications, software-as-a-service (SaaS) access applications, Windows Application access applications, and the like.
  • the secure applications may be secure native applications 514 , secure remote applications 522 executed by a secure application launcher 518 , virtualization applications 526 executed by a secure application launcher 518 , and the like.
  • the secure native applications 514 may be wrapped by a secure application wrapper 520 .
  • the secure application wrapper 520 may include integrated policies that are executed on the mobile device 502 when the secure native application is executed on the device.
  • the secure application wrapper 520 may include meta-data that points the secure native application 514 running on the mobile device 502 to the resources hosted at the enterprise that the secure native application 514 may require to complete the task requested upon execution of the secure native application 514 .
  • the secure remote applications 522 executed by a secure application launcher 518 may be executed within the secure application launcher application 518 .
  • the virtualization applications 526 executed by a secure application launcher 518 may utilize resources on the mobile device 502 , at the enterprise resources 504 , and the like.
  • the resources used on the mobile device 502 by the virtualization applications 526 executed by a secure application launcher 518 may include user interaction resources, processing resources, and the like.
  • the user interaction resources may be used to collect and transmit keyboard input, mouse input, camera input, tactile input, audio input, visual input, gesture input, and the like.
  • the processing resources may be used to present a user interface, process data received from the enterprise resources 504 , and the like.
  • the resources used at the enterprise resources 504 by the virtualization applications 526 executed by a secure application launcher 518 may include user interface generation resources, processing resources, and the like.
  • the user interface generation resources may be used to assemble a user interface, modify a user interface, refresh a user interface, and the like.
  • the processing resources may be used to create information, read information, update information, delete information, and the like.
  • the virtualization application may record user interactions associated with a GUI and communicate them to a server application where the server application will use the user interaction data as an input to the application operating on the server.
  • an enterprise may elect to maintain the application on the server side as well as data, files, etc. associated with the application.
  • an enterprise may elect to “mobilize” some applications in accordance with the principles herein by securing them for deployment on the mobile device, this arrangement may also be elected for certain applications. For example, while some applications may be secured for use on the mobile device, others might not be prepared or appropriate for deployment on the mobile device so the enterprise may elect to provide the mobile user access to the unprepared applications through virtualization techniques.
  • the enterprise may have large complex applications with large and complex data sets (e.g., material resource planning applications) where it would be very difficult, or otherwise undesirable, to customize the application for the mobile device so the enterprise may elect to provide access to the application through virtualization techniques.
  • the enterprise may have an application that maintains highly secured data (e.g., human resources data, customer data, engineering data) that may be deemed by the enterprise as too sensitive for even the secured mobile environment so the enterprise may elect to use virtualization techniques to permit mobile access to such applications and data.
  • An enterprise may elect to provide both fully secured and fully functional applications on the mobile device as well as a virtualization application to allow access to applications that are deemed more properly operated on the server side.
  • the virtualization application may store some data, files, etc. on the mobile phone in one of the secure storage locations.
  • An enterprise for example, may elect to allow certain information to be stored on the phone while not permitting other information.
  • the mobile device may have a virtualization application that is designed to present GUI's and then record user interactions with the GUI.
  • the application may communicate the user interactions to the server side to be used by the server side application as user interactions with the application.
  • the application on the server side may transmit back to the mobile device a new GUI.
  • the new GUI may be a static page, a dynamic page, an animation, or the like, thereby providing access to remotely located resources.
  • the secure applications may access data stored in a secure data container 528 in the managed partition 510 of the mobile device.
  • the data secured in the secure data container may be accessed by the secure wrapped applications 514 , applications executed by a secure application launcher 522 , virtualization applications 526 executed by a secure application launcher 522 , and the like.
  • the data stored in the secure data container 528 may include files, databases, and the like.
  • the data stored in the secure data container 528 may include data restricted to a specific secure application 530 , shared among secure applications 532 , and the like. Data restricted to a secure application may include secure general data 534 and highly secure data 538 .
  • Secure general data may use a strong form of encryption such as AES 128-bit encryption or the like, while highly secure data 538 may use a very strong form of encryption such as AES 256-bit encryption.
  • Data stored in the secure data container 528 may be deleted from the device upon receipt of a command from the device manager 524 .
  • the secure applications may have a dual-mode option 540 .
  • the dual mode option 540 may present the user with an option to operate the secured application in an unsecured or unmanaged mode.
  • the secure applications may access data stored in an unsecured data container 542 on the unmanaged partition 512 of the mobile device 502 .
  • the data stored in an unsecured data container may be personal data 544 .
  • the data stored in an unsecured data container 542 may also be accessed by unsecured applications 548 that are running on the unmanaged partition 512 of the mobile device 502 .
  • the data stored in an unsecured data container 542 may remain on the mobile device 502 when the data stored in the secure data container 528 is deleted from the mobile device 502 .
  • An enterprise may want to delete from the mobile device selected or all data, files, and/or applications owned, licensed or controlled by the enterprise (enterprise data) while leaving or otherwise preserving personal data, files, and/or applications owned, licensed or controlled by the user (personal data). This operation may be referred to as a selective wipe. With the enterprise and personal data arranged in accordance to the aspects described herein, an enterprise may perform a selective wipe.
  • the mobile device may connect to enterprise resources 504 and enterprise services 508 at an enterprise, to the public Internet 548 , and the like.
  • the mobile device may connect to enterprise resources 504 and enterprise services 508 through virtual private network connections.
  • the virtual private network connections also referred to as microVPN or application-specific VPN, may be specific to particular applications 550 , particular devices, particular secured areas on the mobile device, and the like 552 .
  • each of the wrapped applications in the secured area of the phone may access enterprise resources through an application specific VPN such that access to the VPN would be granted based on attributes associated with the application, possibly in conjunction with user or device attribute information.
  • the virtual private network connections may carry Microsoft Exchange traffic, Microsoft Active Directory traffic, HTTP traffic, HTTPS traffic, application management traffic, and the like.
  • the virtual private network connections may support and enable single-sign-on authentication processes 554 .
  • the single-sign-on processes may allow a user to provide a single set of authentication credentials, which are then verified by an authentication service 558 .
  • the authentication service 558 may then grant to the user access to multiple enterprise resources 504 , without requiring the user to provide authentication credentials to each individual enterprise resource 504 .
  • the virtual private network connections may be established and managed by an access gateway 560 .
  • the access gateway 560 may include performance enhancement features that manage, accelerate, and improve the delivery of enterprise resources 504 to the mobile device 502 .
  • the access gateway may also re-route traffic from the mobile device 502 to the public Internet 548 , enabling the mobile device 502 to access publicly available and unsecured applications that run on the public Internet 548 .
  • the mobile device may connect to the access gateway via a transport network 562 .
  • the transport network 562 may be a wired network, wireless network, cloud network, local area network, metropolitan area network, wide area network, public network, private network, and the like.
  • the enterprise resources 504 may include email servers, file sharing servers, SaaS applications, Web application servers, Windows application servers, and the like.
  • Email servers may include Exchange servers, Lotus Notes servers, and the like.
  • File sharing servers may include ShareFile servers, and the like.
  • SaaS applications may include Salesforce, and the like.
  • Windows application servers may include any application server that is built to provide applications that are intended to run on a local Windows operating system, and the like.
  • the enterprise resources 504 may be premise-based resources, cloud based resources, and the like.
  • the enterprise resources 504 may be accessed by the mobile device 502 directly or through the access gateway 560 .
  • the enterprise resources 504 may be accessed by the mobile device 502 via a transport network 562 .
  • the transport network 562 may be a wired network, wireless network, cloud network, local area network, metropolitan area network, wide area network, public network, private network, and the like.
  • the enterprise services 508 may include authentication services 558 , threat detection services 564 , device manager services 524 , file sharing services 568 , policy manager services 570 , social integration services 572 , application controller services 574 , and the like.
  • Authentication services 558 may include user authentication services, device authentication services, application authentication services, data authentication services and the like.
  • Authentication services 558 may use certificates.
  • the certificates may be stored on the mobile device 502 , by the enterprise resources 504 , and the like.
  • the certificates stored on the mobile device 502 may be stored in an encrypted location on the mobile device, the certificate may be temporarily stored on the mobile device 502 for use at the time of authentication, and the like.
  • Threat detection services 564 may include intrusion detection services, unauthorized access attempt detection services, and the like.
  • Unauthorized access attempt detection services may include unauthorized attempts to access devices, applications, data, and the like.
  • Device management services 524 may include configuration, provisioning, security, support, monitoring, reporting, and decommissioning services.
  • File sharing services 568 may include file management services, file storage services, file collaboration services, and the like.
  • Policy manager services 570 may include device policy manager services, application policy manager services, data policy manager services, and the like.
  • Social integration services 572 may include contact integration services, collaboration services, integration with social networks such as Facebook, Twitter, and LinkedIn, and the like.
  • Application controller services 574 may include management services, provisioning services, deployment services, assignment services, revocation services, wrapping services, and the like.
  • the enterprise mobility technical architecture 500 may include an application store 578 .
  • the application store 578 may include unwrapped applications 580 , pre-wrapped applications 582 , and the like. Applications may be populated in the application store 578 from the application controller 574 .
  • the application store 578 may be accessed by the mobile device 502 through the access gateway 560 , through the public Internet 548 , or the like.
  • the application store may be provided with an intuitive and easy to use User Interface.
  • a software development kit 584 may provide a user the capability to secure applications selected by the user by wrapping the application as described previously in this description. An application that has been wrapped using the software development kit 584 may then be made available to the mobile device 502 by populating it in the application store 578 using the application controller 574 .
  • the enterprise mobility technical architecture 500 may include a management and analytics capability 588 .
  • the management and analytics capability 588 may provide information related to how resources are used, how often resources are used, and the like.
  • Resources may include devices, applications, data, and the like. How resources are used may include which devices download which applications, which applications access which data, and the like. How often resources are used may include how often an application has been downloaded, how many times a specific set of data has been accessed by an application, and the like.
  • FIG. 6 is another illustrative enterprise mobility management system 600 . Some of the components of the mobility management system 500 described above with reference to FIG. 5 have been omitted for the sake of simplicity.
  • the architecture of the system 600 depicted in FIG. 6 is similar in many respects to the architecture of the system 500 described above with reference to FIG. 5 and may include additional features not mentioned above.
  • the left hand side represents an enrolled mobile device 602 with a client agent 604 , which interacts with gateway server 606 (which includes access gateway and application controller functionality) to access various enterprise resources 608 and services 609 such as Exchange, Sharepoint, PKI Resources, Kerberos Resources, Certificate Issuance service, as shown on the right hand side above.
  • gateway server 606 which includes access gateway and application controller functionality
  • enterprise resources 608 and services 609 such as Exchange, Sharepoint, PKI Resources, Kerberos Resources, Certificate Issuance service, as shown on the right hand side above.
  • the mobile device 602 may also interact with an enterprise application store (StoreFront) for the selection and downloading of applications.
  • StoreFront enterprise application store
  • the client agent 604 acts as the UI (user interface) intermediary for Windows apps/desktops hosted in an Enterprise data center, which are accessed using the HDX/ICA display remoting protocol.
  • the client agent 604 also supports the installation and management of native applications on the mobile device 602 , such as native iOS or Android applications.
  • native applications on the mobile device 602 such as native iOS or Android applications.
  • the managed applications 610 email, browser, wrapped application, secure container to which a VPN, such as an application-specific policy-controller VPN can connect to
  • Client agent 604 and application management framework of this architecture act to provide policy driven management capabilities and features such as connectivity and SSO (single sign on) to enterprise resources/services 608 .
  • the client agent 604 handles primary user authentication to the enterprise, normally to access gateway (AG) with SSO to other gateway server components.
  • the client agent 604 obtains policies from gateway server 606 to control the behavior of the managed applications 610 on the mobile device 602 .
  • the Secure IPC links 612 between the native applications 610 and client agent 604 represent a management channel, which allows client agent to supply policies to be enforced by the application management framework 614 “wrapping” each application.
  • the IPC channel 612 also allows client agent 604 to supply credential and authentication information that enables connectivity and SSO to enterprise resources 608 .
  • the IPC channel 612 allows the application management framework 614 to invoke user interface functions implemented by client agent 604 , such as online and offline authentication.
  • Communications between the client agent 604 and gateway server 606 are essentially an extension of the management channel from the application management framework 614 wrapping each native managed application 610 .
  • the application management framework 614 requests policy information from client agent 604 , which in turn requests it from gateway server 606 .
  • the application management framework 614 requests authentication, and client agent 604 logs into the gateway services part of gateway server 606 (e.g., NetScaler access gateway).
  • Client agent 604 may also call supporting services on gateway server 606 , which may produce input material to derive encryption keys for the local data vaults 616 , or provide client certificates which may enable direct authentication to PKI protected resources, as more fully explained below.
  • the application management framework 614 “wraps” each managed application 610 . This may be incorporated via an explicit build step, or via a post-build processing step.
  • the application management framework 614 may “pair” with client agent 604 on first launch of an application 610 to initialize the Secure IPC channel and obtain the policy for that application.
  • the application management framework 614 may enforce relevant portions of the policy that apply locally, such as the client agent login dependencies and some of the containment policies that restrict how local OS services may be used, or how they may interact with the application 610 .
  • the application management framework 614 may use services provided by client agent 604 over the Secure IPC channel 612 to facilitate authentication and internal network access.
  • Key management for the private and shared data vaults 616 (containers) may be also managed by appropriate interactions between the managed applications 610 and client agent 604 .
  • Vaults 616 may be available only after online authentication, or may be made available after offline authentication if allowed by policy. First use of vaults 616 may require online authentication, and offline access may be limited to at most the policy refresh period before online authentication is again required.
  • Network access to internal resources may occur directly from individual managed applications 610 through access gateway 606 .
  • the application management framework 614 is responsible for orchestrating the network access on behalf of each application 610 .
  • Client agent 604 may facilitate these network connections by providing suitable time limited secondary credentials obtained following online authentication. Multiple modes of network connection may be used, such as reverse web proxy connections and end-to-end VPN-style tunnels 618 .
  • the Mail and Browser managed applications 610 have special status and may make use of facilities that might not be generally available to arbitrary wrapped applications.
  • the Mail application may use a special background network access mechanism that allows it to access Exchange over an extended period of time without requiring a full AG logon.
  • the Browser application may use multiple private data vaults to segregate different kinds of data.
  • gateway server 606 (including its gateway services) in some cases will not need to validate AD passwords. It can be left to the discretion of an enterprise whether an AD password is used as an authentication factor for some users in some situations. Different authentication methods may be used if a user is online or offline (i.e., connected or not connected to a network).
  • Step up authentication is a feature wherein gateway server 606 may identify managed native applications 610 that are allowed to have access to highly classified data requiring strong authentication, and ensure that access to these applications is only permitted after performing appropriate authentication, even if this means a re-authentication is required by the user after a prior weaker level of login.
  • the vaults 616 may be encrypted so that all on-device data including files, databases, and configurations are protected.
  • the keys may be stored on the server (gateway server 606 ), and for off-line vaults, a local copy of the keys may be protected by a user password or biometric validation.
  • a minimum of AES 256 encryption algorithm be utilized.
  • a logging feature may be included, wherein all security events happening inside an application 610 are logged and reported to the backend. Data wiping may be supported, such as if the application 610 detects tampering, associated encryption keys may be written over with random data, leaving no hint on the file system that user data was destroyed.
  • Screenshot protection is another feature, where an application may prevent any data from being stored in screenshots. For example, the key window's hidden property may be set to YES. This may cause whatever content is currently displayed on the screen to be hidden, resulting in a blank screenshot where any content would normally reside.
  • Local data transfer may be prevented, such as by preventing any data from being locally transferred outside the application container, e.g., by copying it or sending it to an external application.
  • a keyboard cache feature may operate to disable the autocorrect functionality for sensitive text fields.
  • SSL certificate validation may be operable so the application specifically validates the server SSL certificate instead of it being stored in the keychain.
  • An encryption key generation feature may be used such that the key used to encrypt data on the device is generated using a passphrase or biometric data supplied by the user (if offline access is required). It may be XORed with another key randomly generated and stored on the server side if offline access is not required.
  • Key Derivation functions may operate such that keys generated from the user password use KDFs (key derivation functions, notably PBKDF2) rather than creating a cryptographic hash of it. The latter makes a key susceptible to brute force or dictionary attacks.
  • one or more initialization vectors may be used in encryption methods.
  • An initialization vector will cause multiple copies of the same encrypted data to yield different cipher text output, preventing both replay and cryptanalytic attacks. This will also prevent an attacker from decrypting any data even with a stolen encryption key if the specific initialization vector used to encrypt the data is not known.
  • authentication then decryption may be used, wherein application data is decrypted only after the user has authenticated within the application.
  • Another feature may relate to sensitive data in memory, which may be kept in memory (and not in disk) only when it's needed. For example, login credentials may be wiped from memory after login, and encryption keys and other data inside objective-C instance variables are not stored, as they may be easily referenced. Instead, memory may be manually allocated for these.
  • An inactivity timeout may be implemented, wherein after a policy-defined period of inactivity, a user session is terminated.
  • Data leakage from the application management framework 614 may be prevented in other ways. For example, when an application 610 is put in the background, the memory may be cleared after a predetermined (configurable) time period. When backgrounded, a snapshot may be taken of the last displayed screen of the application to fasten the foregrounding process. The screenshot may contain confidential data and hence should be cleared.
  • OTP one time password
  • AD active directory
  • Another security feature relates to the use of an OTP (one time password) 620 without the use of an AD (active directory) 622 password for access to one or more applications.
  • OTP one time password
  • some users do not know (or are not permitted to know) their AD password, so these users may authenticate using an OTP 620 such as by using a hardware OTP system like SecurID (OTPs may be provided by different vendors also, such as Entrust or Gemalto).
  • OTPs SecurID
  • a text is sent to the user with an OTP 620 . In some cases, this may be implemented only for online use, with a prompt being a single field.
  • An offline password may be implemented for offline authentication for those applications 610 for which offline use is permitted via enterprise policy.
  • an enterprise may want an enterprise application to be accessed in this manner.
  • the client agent 604 may require the user to set a custom offline password and the AD password is not used.
  • Gateway server 606 may provide policies to control and enforce password standards with respect to the minimum length, character class composition, and age of passwords, such as described by the standard Windows Server password complexity requirements, although these requirements may be modified.
  • Another feature relates to the enablement of a client side certificate for certain applications 610 as secondary credentials (for the purpose of accessing PKI protected web resources via the application management framework micro VPN feature).
  • an application may utilize such a certificate.
  • certificate-based authentication using ActiveSync protocol may be supported, wherein a certificate from the client agent 604 may be retrieved by gateway server 606 and used in a keychain.
  • Each managed application may have one associated client certificate, identified by a label that is defined in gateway server 606 .
  • Gateway server 606 may interact with an Enterprise special purpose web service to support the issuance of client certificates to allow relevant managed applications to authenticate to internal PKI protected resources.
  • the client agent 604 and the application management framework 614 may be enhanced to support obtaining and using client certificates for authentication to internal PKI protected network resources. More than one certificate may be supported, such as to match various levels of security and/or separation requirements.
  • the certificates may be used by the Mail and Browser managed applications, and ultimately by arbitrary wrapped applications (provided those applications use web service style communication patterns where it is reasonable for the application management framework to mediate https requests).
  • Application management client certificate support on iOS may rely on importing a PKCS 12 BLOB (Binary Large Object) into the iOS keychain in each managed application for each period of use.
  • Application management framework client certificate support may use a HTTPS implementation with private in-memory key storage. The client certificate will never be present in the iOS keychain and will not be persisted except potentially in “online-only” data value that is strongly protected.
  • Mutual SSL may also be implemented to provide additional security by requiring that a mobile device 602 is authenticated to the enterprise, and vice versa.
  • Virtual smart cards for authentication to gateway server 606 may also be implemented.
  • the full support feature relates to an ability to do full Kerberos login to Active Directory (AD) 622 , using an AD password or trusted client certificate, and obtain Kerberos service tickets to respond to HTTP Negotiate authentication challenges.
  • the limited support feature relates to constrained delegation in AFEE, where AFEE supports invoking Kerberos protocol transition so it can obtain and use Kerberos service tickets (subject to constrained delegation) in response to HTTP Negotiate authentication challenges. This mechanism works in reverse web proxy (aka CVPN) mode, and when http (but not https) connections are proxied in VPN and MicroVPN mode.
  • CVPN reverse web proxy
  • Another feature relates to application container locking and wiping, which may automatically occur upon jail-break or rooting detections, and occur as a pushed command from administration console, and may include a remote wipe functionality even when an application 610 is not running.
  • a multi-site architecture or configuration of enterprise application store and an application controller may be supported that allows users to be service from one of several different locations in case of failure.
  • managed applications 610 may be allowed to access a certificate and private key via an API (example OpenSSL).
  • Trusted managed applications 610 of an enterprise may be allowed to perform specific Public Key operations with an application's client certificate and private key.
  • Various use cases may be identified and treated accordingly, such as when an application behaves like a browser and no certificate access is required, when an application reads a certificate for “who am I,” when an application uses the certificate to build a secure session token, and when an application uses private keys for digital signing of important data (e.g. transaction log) or for temporary data encryption.
  • MRM mobile resource management
  • An improved technique ensures that a wide range of policies, including application-specific policies and settings, can be composed, configured through an administrative interface, and delivered to the deployed applications, without requiring changes to control point software.
  • Enterprises may create (or adapt) their native mobile applications using tools and SDKs associated with the MRM solution they have chosen to deploy. Depending upon the tools or SDK version used to prepare such applications, one can expect that there will be a default set of policies that the MRM system provides automatically. These default policies can be further augmented by an application developer defining their own application specific policies and settings.
  • All policies and settings may be defined using a declarative syntax (metadata) that in some variations may include the various elements associated with each setting.
  • the metadata is provided in the form of an XML (Extensible Markup Language) document that defines individual elements listed for each setting.
  • an XML document may use the tags ⁇ policymetadata> and ⁇ /policymetadata>, respectively.
  • the collection of policy setting may be between section tags ⁇ policies> and ⁇ /policies>.
  • Each policy setting may include elements such as the following:
  • the various setting group or category identifiers that are available for each policy setting may defined using special ⁇ category> and ⁇ /category> tags, and the collection of setting group or category identifiers may be included between ⁇ categories> and ⁇ /categories> tags.
  • the collection of setting group identifiers and the collection of settings may be included between the ⁇ policymetadata> and ⁇ /policymetadata> tags.
  • an XML document that defines a policy may take the general form similar to the following nested arrangement of XML tags with comments in [ ]:
  • FIG. 7 illustrates an example method for configuring a policy for a managed application. Additionally, FIG. 7 illustrates a method that is performed by the processing circuitry of one or more computing devices—such as an access gateway, another server under control by an IT administrator of an enterprise (or other user), or another device acting as a control point—when operating in accordance with various software constructs.
  • computing devices such as an access gateway, another server under control by an IT administrator of an enterprise (or other user), or another device acting as a control point—when operating in accordance with various software constructs.
  • the one or more computing device may receive initial policy settings or other data for inclusion in a policy.
  • application preparation tools may assemble one or more policies (also referred herein interchangeably as policy metadata, setting descriptions, and the like) including, for example, a set of default MRM system-provided policies, which may also include one or more application-specific policies or settings provided by the application developer.
  • policies or settings may be packaged directly into the application bundle that will be uploaded to the computing device configured to perform the method of FIG. 7 (e.g., a control point, access gateway 560 of FIG. 5 , or the like).
  • the one or more computing devices may proceed to finalize configuration of the policy for the managed application, as illustrated in steps 703 - 709 of FIG. 7 .
  • the one or more computing devices may create or otherwise display a user interface (UI) to display various portions of the initial policy settings.
  • UI user interface
  • the one or more computing devices may read the initial policy settings or any other metadata associated with or packaged with the application and may dynamically compose an administrative user interface for all setting descriptions, policy metadata, etc. Further details related to the user interface will be discussed below in connection with FIGS. 12A-12J
  • the one or more computing device may receive input via the user interface to set, change, and/or add to one or more of the initial policy settings.
  • the IT administrator or other user that, for example, has admin privileges
  • the one or more computing devices may determine to produce one or more published versions of the policy.
  • the determination may be made responsive to input that is received via the user interface from the IT administrator (or other user). Such input may, for example, represent an acceptance of the policy for the managed application or a command to publish the policy.
  • the user interface may be configured to allow the IT administrator (or other user) to create multiple policies from the policy settings.
  • Each policy may, for example, be specific to a different user role associated with the enterprise (e.g., one policy for a sales employee; a different policy for a designer, etc.) or application group (e.g., a managed application may be assigned to an application group that provides various constraints or benefits to member applications, such as shared access to data stored in data containers, or the like).
  • the one or more computing devices may produce one or more policy files for the managed application.
  • a JSON JavaScript Object Notation
  • XML XML dictionary of key/value pairs representing each defined setting name (dictionary name) and its assigned value
  • the settings of the policy file represent the corporate policy that should be enforced in order to access resources that are accessible via the access gateway or to execute the managed application.
  • the user interface may be configured to allow the IT administrator (or other user) to create multiple policies from the policy settings. Accordingly, multiple policies may be produced with each policy being specific to a different user role associated with the enterprise (e.g., one policy for a sales employee; a different policy for a designer, etc.) or application group (e.g., a managed application may be assigned to an application group that provides various constraints or benefits to member applications, such as shared access to data stored in data containers, or the like).
  • the one or more computing devices may provide the managed application and the policy file available to be available for download by one or more mobile devices.
  • the managed applications and any associated policy can be made available to an enterprise's employees to peruse and choose to install.
  • the version of the application and the policy that is made available to each user can be based on their role within the organization.
  • such applications and policies can be pushed directly to mobile devices for users who have enrolled or registered their device with a corporate MDM server that provides such a push service.
  • distribution of the policy may be separate from distribution of the managed application.
  • an employee executes a managed application on the mobile device, they may be challenged to authenticate their corporate identity along with passwords and other factors as dictated by corporate policy.
  • the access manager components of the system may verify that the user is entitled to the application in question and download the JSON or XML policy file that represent the settings that have been established by the administrator for this user or mobile device when using this specific managed application.
  • Transmission of the policy and managed application to the mobile device may, in some variations, be performed using one or more application specific VPN tunnels, such as a MicroVPN (discussed above).
  • application specific VPN tunnels such as a MicroVPN (discussed above).
  • the policy file can be consulted by the application or MRM software embedded within the mobile device (e.g., by the client agent 604 of FIG. 6 ) whenever a policy decision is needed at run time.
  • the policy may be cached and periodically refreshed to ensure continued compliance with configured administrative settings produce a policy file for the managed application (e.g., an IT administrator may update a policy by performing a method similar to that illustrated in FIG. 7 to change, delete, or add to the policy).
  • one of the policy settings may dictate a required update frequency to the policy.
  • the MRM system may be configured to check if an updated version of the policy exists when, for example, the access gateway receives an indication that the managed application is executing on the mobile device (e.g., the access gateway receives a request to authenticate the user, mobile device or application; the access gateway receives a request to create an application specific VPN tunnel, the access gateway receives a request to access a resource that is accessible through the access gateway, or the like). If an update exists, the MRM system may transmit the updated version of the policy to the mobile device.
  • the access gateway receives an indication that the managed application is executing on the mobile device (e.g., the access gateway receives a request to authenticate the user, mobile device or application; the access gateway receives a request to create an application specific VPN tunnel, the access gateway receives a request to access a resource that is accessible through the access gateway, or the like). If an update exists, the MRM system may transmit the updated version of the policy to the mobile device.
  • transmission of an update to the policy may be performed without updating the managed application. Further, the user of the mobile device may be unaware of the update to the policy.
  • an enterprise may provide a user interface that is usable by an operator to view, create, and edit the policies, applications, and other data related to the same.
  • FIG. 12A-12J illustrate example user interfaces that can be used to configure one or more policies, settings or metadata.
  • the user interface may be executed by one or more computing devices, such as an access gateway another server under control by an IT administrator of an enterprise, or another device acting as a control point.
  • the user interface of FIGS. 12A-12J may be usable by an operator or other user with administrator privileges. Accordingly, the operator may be required to log in prior to viewing the user interface displayed in FIGS. 12A-12J .
  • FIG. 12A-12J as illustrated with an “administrator” being logged in, as indicated at display 1205 of FIG. 12A . While additional details for configuring a policy will be described throughout this disclosure (e.g., in connection with FIG. 7 ), the example user interfaces will be described, for example, to illustrate various settings that may comprise a policy and other data that an operator may view when an enterprise provides managed applications and policies to mobile devices.
  • an example dashboard interface 1210 is shown.
  • the dashboard 1210 may provide a quick snapshot of user activity over a specified period of time (e.g., the last 24 hours of user activity, as shown at 1205 ).
  • the dashboard 1210 displays the total number of users that have logged in via display 1215 ; the number of applications or resources that have been accessed by those total number of users via display 1225 ; and the current number of connected user sessions via display 1220 .
  • FIGS. 12B-12J illustrate different views of the user interface that provide options for viewing and editing the policies for the applications and resources.
  • the example embodiment organizes the options under “Apps & Docs” tab 1310 .
  • the policies may be for resources of various types and the user interface may be organized based on the various types. For example, as illustrated, the user interface of FIG. 12B is organized into a mobile application type 1320 , a document type 1365 , and a desktop application type 1375 .
  • These general resource types may be further divided into sub-type such as by operating system (e.g., mobile application type 1320 is illustrated as being sub-divided into applications for the Android operating system 1330 and iOS operating system 1335 ; and desktop application type 1375 is illustrated as being sub-divided into applications for the Windows operating system 1380 ); whether the resource provides a web-based service or a software as a service (SAAS) model (e.g., a type for web service and SaaS model applications 1340 ); whether the resource functions as a simple link to a website (e.g., a type for a web link application 1345 ); whether the resource is an application store or marketplace (e.g., a type for public application stores/marketplaces 1350 and a type for enterprise application stores/marketplaces 1360 ); whether the resource is being provided by a cloud service (e.g., a type for providing documents via a file share service 1370 ); and whether the resource has been disabled from being available to users (e.g., a
  • these types may not be specified in any policy file or metadata. Indeed, these types may be solely for the benefit of the administrator in navigating the user interface to find the resource policy file in which he or she intends to create/edit. However, in others, the type and sub-type may be specified in a policy file. For example, when the policy is first created, the administrator may specify the type and version number, which can be viewed after policy creation but not editable (e.g., settings 1520 and 1525 of FIG. 12D ).
  • the administrator may be presented with a listing of policies associated with that resource type.
  • the sub-type Android 1330 for the application type 1325 has been selected, and a number of icons are shown as being presented. Included in the icons is an icon for each policy that has been created (e.g., icon 1390 and icon 1395 ). While FIG. 12B illustrates these icons as being blank, they may include graphics and/or text within the icon's border or surrounding the icon. Also included in the icons is an icon for creating a new policy 1385 . While the remaining portion of FIGS. 12C-12J will be described in connection with configuring a policy for a mobile application of the Android operating system, different policy settings and displays may be used for the different resource types.
  • each policy may also be given a category setting.
  • the administrator may be able to filter the displayed icons by pull-down selector 1315 , which lists the various categories of the policies.
  • a summary window may appear that provides a few details from the policy file/metadata and a few additional selectable options.
  • the details may include a display name 1410 for the policy (which is editable at 1510 of FIG. 12D ), a description 1415 for the policy (which is editable at 1515 of FIG. 12D ), an internal or workflow name 1420 for the policy (which is editable at 1610 of FIG. 12E ), a single sign on (SSO) type 1425 for the policy; and a category 1430 for the policy (which is editable at 1545 of FIG. 12D ).
  • the additional selectable options may include an option 1435 to disable/enable the policy; an option 1440 to delete the policy; an option 1445 to edit the policy; and an option 1450 to push the policy to users' devices.
  • a mobile application details screen 1505 may be displayed in the user interface.
  • the details screen 1505 may present an opportunity for the administrator to view and edit various settings of the policy.
  • the mobile application details screen 1505 may first present the settings associated with the details group for the policy (e.g., setting group identifier 1502 for details settings).
  • the resource name that the policy is for may be defined (e.g., mobile application name setting 1510 ) and a short description of the resource may also be defined (e.g., description 1515 ).
  • the resource type and resource version may both be viewable (e.g., mobile application type 1520 and mobile application version 1525 ), and may have been defined when the policy was first created.
  • the resource/application that the policy is to be applied to may be analyzed to determine the default settings for the policy. For example, an application can be analyzed to determine the application programming interface (API) calls that it performs and various settings can be included in the policy based on those API calls. As a particular example, if the application makes a call to the mobile device's camera, various settings to block/allow access to the camera may be included in the policy. If no calls are made to the mobile device's camera, setting(s) to block/allow access to the camera may not be included in the policy.
  • API application programming interface
  • the policy may also define various version constraints on the resource.
  • FIG. 12D illustrates a policy setting for enforcing a minimum and maximum operating system version for a mobile application at minimum OS version 1530 and maximum OS version 1535 .
  • the policy may also exclude one or more devices from being able to access/install the resource (e.g., excluded devices setting 1540 ).
  • a category for the policy may be defined (e.g., category setting 1545 and one of the types enumerated by pull-down selector 1315 ).
  • the policy may include a user role setting to enforce a role a user must be assigned in order to access/install the resource (e.g., assigned role setting 1550 ).
  • the policy may also include a setting to enforce a requirement that the resource be installed on the mobile device (e.g., require application installation setting 1555 ). After viewing/editing the various policy settings on the mobile application details screen 1505 , the administrator may press the next button 1560 to save the settings of mobile application details screen 1505 to the policy file.
  • a setting to enforce a requirement that the resource be installed on the mobile device e.g., require application installation setting 1555 .
  • the user interface may display the settings associated with the workflow group for the policy (e.g., setting group 1602 for workflow settings), which is illustrated in FIG. 12E .
  • the settings that can be viewed/edited at mobile application workflow screen 1602 include a setting that distribution of the policy to a user's device requires approval (e.g., approval setting 1605 ), a setting specifying a workflow name for the policy (e.g., workflow name 1610 ), and a description of the workflow (e.g., description setting 1615 ).
  • the administrator may press next button 1620 to save the workflow settings of the mobile application details screen 1505 to the policy file.
  • Policy settings 1702 may include the remaining setting groups that are enumerated in the policy including, for example, a setting group for authentication settings (setting group 1705 for authentication settings, as illustrated in FIG. 12F ); a setting group for device security settings (setting group 1730 for device security settings, as illustrated in FIGS. 12F and 12G ); a setting group for network requirement settings (setting group 1810 for network requirement settings, as illustrated in FIG. 12G ); a setting group for miscellaneous access settings (setting group 1830 for miscellaneous network access settings, as illustrated in FIG.
  • a setting group for encryption settings (setting group 1905 for encryption settings, as illustrated in FIG. 12H ); a setting group for application interaction settings (setting group 2005 for mobile application interaction settings, as illustrated in FIG. 12I ); a setting group for application restriction settings (setting groups 2025 and 2125 for application restriction settings, as illustrated in FIGS. 12I and 12J ); and a group for network access settings (setting group 2105 for network access settings, as illustrated in FIG. 12J ).
  • a policy file may include various settings defined as part of an authentication settings group identifier (e.g., those illustrated in FIG. 12F as being part of setting group 1705 ).
  • Authentication group settings may include authentication setting 1710 , which may define what level of authentication is required, such as whether a networked log-on with the access gateway is required before accessing the application, whether offline access of the application is permitted, whether access of the application can only be performed when offline, or whether authentication is not required to access the application.
  • authentication setting 1710 may define what level of authentication is required, such as whether a networked log-on with the access gateway is required before accessing the application, whether offline access of the application is permitted, whether access of the application can only be performed when offline, or whether authentication is not required to access the application.
  • the policy may also specify a maximum offline period setting 1715 , which specifies a time period that, when exceeded by the mobile device, would cause the mobile device to challenge the user for the enterprise logon before allowing access to the application.
  • maximum offline period setting 1715 is set for 72 hours. In some embodiments, the minimum amount is 1 hour.
  • the user will be reminded that a networked log-on will be required at various times before the period expires (e.g., 30 minutes, 10 minutes, etc.), and, after expiration, the application remains locked until the user completes a successful network log-on.
  • setting 1715 may be ignored with no offline access allowed.
  • the policy may also specify a re-authentication period setting 1720 , which defines a period where when it is expired and the application is re-started, a user is challenged to re-authenticate. In some arrangements, if set to zero, the user is prompted for authentication each time app is started or activated. As illustrated, re-authentication period setting 1720 is set for 480 minutes (e.g., 8 hours). Accordingly, when the application is re-started after 8 hours from a previous authentication, the user will be required to re-authenticate (e.g., supply the log-on username and password).
  • re-authentication period setting 1720 defines a period where when it is expired and the application is re-started, a user is challenged to re-authenticate. In some arrangements, if set to zero, the user is prompted for authentication each time app is started or activated. As illustrated, re-authentication period setting 1720 is set for 480 minutes (e.g., 8 hours). Accordingly, when the application is re
  • the policy may also specify a domain name of the access gateway that the mobile device is to use when authenticating.
  • gateway domain name setting 1725 allows an administrator to specify a fully qualified domain name (FQDN) of an access gateway that will handle authentication.
  • a policy file may include various settings defined as part of a device security settings group identifier (e.g., those illustrated in FIGS. 12F and 12G as being part of setting group 1730 ).
  • Device security settings group 1730 may include a setting specifying whether to block jailbroken or rooted devices. For example, block jailbroken setting 1735 , if set to “on” the application is locked when the device is jailbroken or rooted. If setting 1735 is set to “off” the application can run even if the device is jailbroken or rooted.
  • the policy may also include a require device encryption setting 1740 . If require device encryption setting 1740 is set to “on” data stored on the mobile device will be encrypted (e.g., in accordance with the encryption settings group, as discussed below). If require device encryption setting 1740 is set to “off” the data stored on the mobile device is not encrypted.
  • the policy may also include a require device PIN (personal identification number) or password setting 1745 . If setting 1745 is set to “on” the user will be required to lock/unlock the mobile device using a PIN or password. If set to “off” the mobile phone will not be required to be locked via a PIN or password.
  • PIN personal identification number
  • password setting 1745 If setting 1745 is set to “on” the user will be required to lock/unlock the mobile device using a PIN or password. If set to “off” the mobile phone will not be required to be locked via a PIN or password.
  • the policy may also include a require device pattern screen lock setting 1805 . If setting 1805 is set to “on” the user will be required to lock/unlock the mobile device using a pattern screen lock mechanism. If set to “off” the mobile phone will not be required to be locked via a pattern screen lock mechanism.
  • a policy file may include various settings defined as part of a network requirements settings group identifier (e.g., those illustrated in FIG. 12G as being part of setting group 1810 ).
  • Network requirements setting group 1810 may include a require WiFi setting 1815 . If setting 1815 is set to “on” the application will be locked when the device is not connected to a WiFi network (e.g., 3G, 4G, LAN connection, etc.). If setting 1815 is set to “of” the application will be able to run even if the mobile device does not have an active WiFi connection.
  • a WiFi network e.g., 3G, 4G, LAN connection, etc.
  • the policy may also include a require internal network setting 1820 . If setting 1820 is set to “on” the application is allowed to run on the mobile device only when the mobile device is connected inside the enterprise network. If setting 1820 is set to “off” the application can run from an external network.
  • the policy may also include an internal WiFi network setting 1825 .
  • Setting 1825 may be defined by a comma separated list of allowed internal WiFi network identifiers (e.g., SSID). In some arrangements, this setting applies only when connected via an internal enterprise network. For example, when the mobile device is connected from inside the enterprise network, application access is blocked unless the device is connected via one of the listed network identifiers. If setting 1825 is empty, any internal WiFi network may be used. If logged on from an external network (or not logged on), this setting may not enforced.
  • a policy file may include various settings defined as part of a miscellaneous access settings group identifier (e.g., those illustrated in FIG. 12G as being part of setting group 1830 ).
  • Miscellaneous access setting group 1830 may include an update grace period setting 1835 .
  • Setting 1835 may define the grace period within which the application may continue to be used after the system has discovered that an update is available.
  • the policy may also include an authentication failure setting 1840 .
  • Setting 1840 may define a number of consecutive failed offline password challenges that will cause the application to become locked. Once locked, the application may only be unlocked through a successful network log-on. In some arrangements, if setting 1840 is set to zero, authentication failures will never cause the application to become locked.
  • the policy may also include an erase application data setting 1845 .
  • Setting 1845 may define whether application data should be deleted when the application is locked. If setting 1845 is set to “on” data maintained by the application may be erased when the application is locked. Erasing such data may effectively reset the application to its original installed state. If setting 1845 is set to “off” data maintained by the application is not erased when the app is locked.
  • An application can be locked for various reasons such as, for example: loss of application entitlement for the user; application subscription removed; user account removed by the enterprise, too many application authentication failures, the mobile device being jailbroken or rooted without policy permitting application access when the device is jailbroken/rooted, device placed in lock state by administrative action, and the like.
  • the policy may also include an active poll period setting 1850 .
  • Setting 1850 defines a poll period for reaching the application controller and providing the application controller with information about the lock/erase status of the mobile device and the enable/disable status of the application. After a successful poll, the interval may be restarted and a new poll will again be attempted upon expiration of the specified poll period.
  • a policy file may include various settings defined as part of an encryption settings group identifier (e.g., those illustrated in FIG. 12H as being part of setting group 1905 ).
  • Encryption settings group 1905 may include an encryption keys setting 1910 to allow how encryption keys are managed. For example, if setting 1910 is set to “online access only” data used to derive encryption keys cannot be persist on the device (e.g., be stored in a long-term storage). Instead, such data must be recovered from the enterprise each time the encryption keys are to be derived. If setting 1910 is set to “offline access permitted” data used to derive encryption keys can persist on the device. In some arrangements, if setting 1910 is set to “online access only” authentication setting 1710 is enforced to be set to “network logon.”
  • the policy may also include a private file encryption setting 1915 that specifies a security group which can access the application's private files. This allows for different applications assigned to the specified security group to derive the keys used to encrypt/decrypt the private files.
  • the policy may also include a private file encryption setting 1920 that specifies exclusions to databases/specific locations where private files/data will not be automatically encrypted.
  • the policy may also include an access limit setting 1925 that specifies access limits for public files.
  • the policy may also include a public file encryption setting 1930 that specifies a security group which can access the application's public files. This allows for different applications assigned to the specified security group to derive the keys used to encrypt/decrypt the public files.
  • the policy may also include a public file encryption setting 1935 that specifies exclusions to databases/specific locations where public files/data will not be automatically encrypted.
  • the policy may also include a public file migration setting 1940 that specifies the access permissions that public files are assigned.
  • a policy file may include various settings defined as part of an application interaction settings group identifier (e.g., those illustrated in FIG. 12I as being part of setting group 2005 ).
  • Application interaction setting group 2005 may include a security group setting 2010 that specifies a security group for the policy.
  • this setting when this setting is set to blank, all applications can exchange data with the application.
  • this application when this application is given one or more comma separated security group identifiers, only security groups matching one of the listed identifiers will be able to exchange data with the application.
  • the policy may also include a cut and copy setting 2015 that, for example, specifies whether the application is able to perform cut and copy operations (e.g., blocked or unrestricted), or whether the application is only able to cut and copy operations with applications in its security group (e.g., restricted).
  • cut and copy setting 2015 specifies whether the application is able to perform cut and copy operations (e.g., blocked or unrestricted), or whether the application is only able to cut and copy operations with applications in its security group (e.g., restricted).
  • cut and copy setting 2015 specifies whether the application is able to perform cut and copy operations (e.g., blocked or unrestricted), or whether the application is only able to cut and copy operations with applications in its security group (e.g., restricted).
  • the policy may also include a document exchange setting 2020 .
  • Setting 2020 in some variations, blocks, permits, or restricts document exchange operations for this application (e.g., by being set to blocked, unrestricted or restricted).
  • setting 2020 is set to “restricted” data can be exchanged only with other applications having the same security group as the application.
  • a policy file may include various settings defined as part of an application restriction settings group identifier (e.g., those illustrated in FIGS. 12I and 12J as being part of setting group 2025 and setting group 2125 ).
  • Application restriction settings group 2125 may include a disable diagnostic logging setting 2030 . If setting 2030 is set to “on” the application is unable to interact with the mobile device's diagnostic logging operations. If set to “off” the diagnostic logging operations are allowed to be performed for the application.
  • the policy may also include a block camera setting 2035 . If setting 2035 is set to “on” the application may be unable to access the mobile device's camera. If set to “off” the application may be able to access the mobile device's camera.
  • the policy may also include a block microphone record setting 2040 . If setting 2040 is set to “on” the application may be unable to record data via the mobile device's microphone. If set to “off” the application may be able to access/record from the mobile device's microphone.
  • the policy may also include a block location services setting 2045 . If setting 2045 is set to “on” the application may be unable to access the mobile device's location services (e.g., global positioning services (GPS)). If set to “off” the application may be able to access the mobile device's location services.
  • GPS global positioning services
  • the policy may also include a block short messaging service (SMS) setting 2050 . If setting 2050 is set to “on” the application may be unable to access the mobile device's SMS compose function. If set to “off” the application may be able to access the mobile device's SMS compose function.
  • SMS block short messaging service
  • the policy may also include a block screen capture setting 2130 . If setting 2130 is set to “on” the application may be unable to access the mobile device's screen capture function. If set to “off” the application may be able to access the mobile device's screen capture function.
  • the policy may also include a block device sensor setting 2135 . If setting 2135 is set to “on” the application may be unable to access the mobile device's sensors (e.g., acceleration, orientation sensors, and the like). If set to “off” the application may be able to access the mobile device's sensors.
  • setting 2135 is set to “on” the application may be unable to access the mobile device's sensors (e.g., acceleration, orientation sensors, and the like). If set to “off” the application may be able to access the mobile device's sensors.
  • a policy file may include various settings defined as part of a network access settings group identifier (e.g., those illustrated in FIG. 12J as being part of setting group 2105 ).
  • Network access settings group 2105 may include a network access setting 2110 .
  • Setting 2110 can have various values related to preventing, permitting or redirecting network activity that is attempted by/intended for the application. For example, if setting 2110 is set to “unrestricted” no restrictions are placed on the network access of the application. If setting 2110 is set to “blocked” all network access is blocked. If setting 2110 is set to “tunneled to the internal network” an application-specific VPN tunnel back to the access gateway may be required for all network access.
  • the policy may include a certificate label setting 2115 that allows for a particular certificate to be used for network access.
  • the policy may include an authentication support setting 2120 that specifies whether a user should be authenticated before allowing network access.
  • the administrator may press save button 2140 to save the policy settings to the policy file.
  • the above settings are meant to only be examples of the types of settings that could be included in a policy. Variations on the above settings or different settings not discussed above could be included in a policy.
  • additional types of policy settings not shown in FIGS. 12A-12J include, for example, a disable e-mail setting that blocks/allows access to the mobile device's e-mail functions; a disable paste setting that blocks/allows paste operations; a disable print setting that blocks/allows access to the mobile device's print functions; a disable cloud setting that blocks/allows access to the mobile device's cloud services; and one or more network traffic filters.
  • a traffic filter is an outbound traffic filter.
  • Some applications such as iOS applications, can dispatch uniform resource locator (URL) requests to other applications that have been registered to handle specific schemes (such as “https://”).
  • URL uniform resource locator
  • Such an outbound traffic filter setting may provide a mechanism for an application to pass requests for help to another application. This setting serves to filter the URLs that are passed from this application to other applications.
  • the value of the setting should be formatted as a comma separated list of patterns where each pattern may be preceded by a plus “+” or minus “ ⁇ ”.
  • Outbound URLs can be compared against the patterns in the order listed until a match is found. Once matched, the action taken may be dictated by the prefix.
  • a minus “ ⁇ ” prefix blocks the URL from being passed out to another application.
  • a plus “+” prefix permits the URL to be passed out to another application for handling. If neither “+” or “ ⁇ ” is provided with the pattern, a default action may be taken (e.g., allow is assumed).
  • the regular-expression “ ⁇ ” prefix may be used to require the pattern to occur at the beginning of the URL. In some embodiments, if an outbound URL does not match any pattern in the list, it will be blocked.
  • a similar filter setting could be constructed for an inbound network traffic filter.
  • the administrative control point for the policies can dynamically compose user interface for these settings, thereby decoupling the back end EMM server software from the specific knowledge of policies to be offered.
  • this data driven description of policy settings may simplify delivery of policy settings dynamically to an application at runtime without any middleware knowledge of the semantics of these settings.
  • FIG. 8 illustrates an example environment in which various policies may be configured.
  • the environment of FIG. 8 provide additional details not shown in FIGS. 5 and 6 and, specifically, show various aspects related to configuring policies for managed applications, as described herein (e.g., in connection with FIG. 7 and in connection with the below-described methods of the remaining figures).
  • a mobile device 810 may communicate, e.g., over the Internet or some other network, with MRM system 830 .
  • the MRM system 830 may include, for example, an authentication server 832 (e.g., that provides authentication services, such as those described in connection with FIG. 5 ), an application store 834 (e.g., application store 578 of FIG.
  • an authentication server 832 e.g., that provides authentication services, such as those described in connection with FIG. 5
  • an application store 834 e.g., application store 578 of FIG.
  • MRM system 830 may include an access gateway or other component.
  • MRM system 830 may include an access gateway or other component.
  • an application developer 840 may develop an application 812 that is to be managed by one or more policies.
  • the application developer may also produce initial policy metadata 846 .
  • the policy metadata 846 may define a set of policies for controlling data flow into and/or out of the managed application 812 .
  • the policy metadata may include a first set of policy metadata that is general to the MRM system 830 and a second set of policy metadata that is specific to the managed application 812 .
  • the application developer 840 (or multiple developers) may develop multiple mobile applications, each with metadata general to the MRM system 830 and with application-specific metadata.
  • the managed application 812 and policy metadata 846 may be received at the MRM system 830 (e.g., received from application developer 812 ) and provided to other otherwise received by the administrative UI generator 836 .
  • the administrative UI generator 836 may dynamically generate an administrative UI 850 .
  • An administrator such as an IT administrator, can then view the policy metadata 846 via a viewing component of UI 850 and customize the policy settings included in the policy metadata 846 , e.g., based on rules of the MRM system 830 and/or other considerations.
  • policy 856 which may be an XML file, and may include one or more settings different from policy metadata 846 (e.g., policy metadata 846 may include a setting not included in policy 856 , policy metadata 846 may not include a setting included in policy 856 , etc.).
  • the policy 856 may be in the form of a dictionary of policy names and values (e.g., key/values pairs), which may be included in an XML or JSON file, for example.
  • the managed application 812 may be made available to users via the application store 834 .
  • Users such as a user of the mobile device 810 , can log on to the MRM system 830 by, for example, submitting authentication requests 814 to the authentication server 832 (e.g., via a MicroVPN tunnel and an access gateway, as illustrated in FIG. 5 ) and receiving authentication responses 816 .
  • Authenticated users can view applications in the application store 834 and download them to their mobile devices. For example, the user of the mobile device 810 can download the managed application 812 from the application store 834 .
  • the user may also receive the policy 856 .
  • the application 812 based on software installed on the mobile device (e.g., the client agent as described in connection with FIG. 6 ) can then be executed in such a way as to constrain its operation on the mobile device 810 in accordance with the policy 856 .
  • the managed application 812 may be specially designed or adapted for use with the MRM system 830 or enterprise. In other words, the managed application can be considered to be not an application that general users can download for their own personal activities (e.g., news apps, Facebook app, etc.). In some examples, the managed application 812 may be designed especially for the MRM system 830 . In other examples, the application 812 may be a widely used application that is adapted specifically for use with the MRM system 830 . For example, the application 812 may be injected with additional code that enables the application to conform with the framework of the MRM system 830 . Such code can be compiled into the application 812 using an SDK. Alternatively, such code may be applied as a wrapper around the general-use application.
  • Such “wrapping” may provide one or more interfaces to adapt the application 812 specifically for use with the MRM system 830 .
  • the additional code may, for example, divert application programming interface (API) calls from the application 812 through the policy 856 , such that the policy 856 is applied to control the behavior of the application 812 on the mobile device 810 .
  • API application programming interface
  • the application developer(s) 840 can periodically provide updated versions of the policy metadata 846 . Such updates can be used to generate (via the administrative UI generator 836 ) an updated version of policy 856 . In some examples, the updated version of policy 856 can be pushed to the mobile device 810 to update the policy in use.
  • the policy 856 residing on the mobile device 810 may be refreshed periodically, or in response to certain events, such as starting the application 812 on the mobile device 810 , in response to a MicroVPN connection being created between the mobile device 810 and an access gateway of the MRM system 830 , or in accordance with a setting of policy 856 that directs mobile device 810 to request an update to the policy 856 .
  • the MRM system 830 has been shown and described as a server accessible via a network, such as the Internet, and may be implemented with both a server portion and a client portion that runs on the mobile device 810 .
  • a policy may include any type of setting that an IT administrator or application developer may wish to implement for a managed application In connection with the numerous different settings that an IT administrator or application developer may wish to implement for a managed application, a few additional embodiments and variations will be described in connection with FIGS. 9 through 11 .
  • an administrator may deploy a policy that restricts the availability of the data (stored within the container) to a specified time window and/or a geographic zone (e.g., as determined by a GPS chip of the mobile device) within which the mobile device must be currently located in order to access the data.
  • the policy can instruct deletion of data from the container or otherwise make them unavailable when the specified time period expires or if the mobile device is taken outside of the defined geographic zone.
  • a policy may specify how data associated with the mobile application is to be stored by the mobile device and/or how file system APIs called by the application are to be redirected and/or how data associated with the mobile application is to be processed by the mobile device.
  • One example method for configuring and providing a policy that includes one or more settings for managing execution of a managed application will be discussed below in connection with FIG. 10 .
  • a setting that specifies a token that can be used to authenticate a user when creating a MicroVPN connection specific to the managed application and that enables access by the mobile device/application to one or more resources that are accessible via an access gateway One example method for configuring and providing a policy that includes one or more settings related to user authentication and/or user identification will be discussed below in connection with FIG. 11 .
  • FIG. 9 illustrates an example method for configuring and providing a policy that includes a setting to delete data in accordance with various aspects of the disclosure. Additionally, FIG. 9 illustrates a method that is performed by the processing circuitry of one or more computing devices—such as an access gateway, another server under control by an IT administrator of an enterprise, or another device acting as a control point—when operating in accordance with various software constructs.
  • computing devices such as an access gateway, another server under control by an IT administrator of an enterprise, or another device acting as a control point—when operating in accordance with various software constructs.
  • the one or more computing device may receive initial policy settings or other data for inclusion in a policy. This step may proceed similar to step 701 of FIG. 7 .
  • the one or more computing devices may create a user interface (UI) to display various portions of the initial policy settings. This step may proceed similar to step 703 of FIG. 7 .
  • UI user interface
  • the one or more computing device may receive input via the user interface to set, change, and/or add to one or more settings related to providing a selective wipe on a mobile device (e.g., a selective wipe setting). Aspects of this step may proceed similar to step 705 of FIG. 7 .
  • An IT administrator may provide input specifying one or more conditions that, when not met by the mobile device, instruct deletion of data or instruct the mobile device to perform a selective wipe.
  • an IT administrator may provide input via the UI that specifies one or more temporal or geographic restrictions for data associated with the managed application.
  • one or more policy settings may be set, changed and/or added to restrict the availability of data to a specified time window and/or a geographic zone (e.g., as determined by a GPS chip of the mobile device) within which the mobile device must be currently located in order to access data.
  • An IT administrator may provide input specifying one or more conditions that, when met by the mobile device, instruct deletion of data or instruct the mobile device to perform a selective wipe.
  • one or more settings may be set, changed and/or added via the UI that specify one or more operating conditions of the mobile device.
  • Such operating conditions may include, for example, an attempt to jailbreak the mobile phone, install an application on a blacklist, a number of failed attempts to log-in to the mobile device, an attempt to uninstall the managed application, switch from a managed application to an unmanaged application, switch from the managed application being stored in a managed partition of the mobile device to an unmanaged partition, receive a message specifying that the user no longer is employed by the enterprise, or otherwise use the mobile device in a disallowed configuration.
  • Other operating conditions may include deleting data according to a specified schedule (e.g., daily, weekly) or when a secure container has or exceeds a threshold amount of stored data.
  • software on the device may monitor for the one or more operating conditions and when the operating conditions are met, may perform a selective wipe or delete data from the mobile device in accordance with the policy setting. Further details as to how the mobile device performs a selective wipe or deletes data is described below in connection with step 909 .
  • the IT administrator may also be able to set, change and/or add specific data that is to be deleted when performing the selective wipe.
  • a specific data container's identifier or resource name may be included in the policy setting so that any data stored in the data container (e.g., secure data container 528 of FIG. 5 , the private data vault or shared data vault of FIG. 6 , etc.).
  • the policy setting may also specify that a user's mobile device is deleted of all enterprise application(s) and corporate data when performing the selective wipe based on the policy setting.
  • the one or more computing devices may determine to produce one or more published versions of the policy. This step may proceed similar to step 707 of FIG. 7 .
  • the one or more computing devices may produce one or more policy files for the managed application that include the selective wipe setting. This step may proceed similar to step 709 of FIG. 7 .
  • the policy file produced by this step can be used by the mobile device to enforce the selective wipe settings. Accordingly, the policy can cause the mobile device or application to perform various actions based on any selective wipe setting included in the policy file. Generally, any of the above (or other) conditions described above in connection with step 905 may form the basis for actions that the mobile device or application is caused to perform.
  • the mobile device may, in response, perform a selective wipe as defined by the selective wipe setting.
  • a selective wipe may be performed by the mobile device as follows.
  • the mobile device may begin by monitoring the operating conditions of the mobile device (e.g., monitor for when the user discontinues employment, violates a corporate policy such as if they jailbreak their device or otherwise use it in a disallowed configuration, or the like). Based on any selective wipe setting included in the policy and the monitored conditions, the mobile device may determine to perform a selective wipe of data. For example, if a selective wipe setting specifies a number of failed attempts that result in performance of a selective wipe and the mobile device detects a sufficient number of consecutive failed attempts to enter a valid passcode (e.g., 5 or 10), the mobile device may determine to perform a selective wipe.
  • a selective wipe setting specifies a number of failed attempts that result in performance of a selective wipe and the mobile device detects a sufficient number of consecutive failed attempts to enter a valid passcode (e.g., 5 or 10)
  • any of the above (or other) conditions described above in connection with step 907 may form the basis of the determination of when the mobile device performs a selective wipe.
  • the mobile device may compare the monitored conditions to one or more policies and if the conditions match a condition specified in the policy that commands a selective wipe, the mobile device may determine to perform a selective wipe.
  • the mobile device may perform a check to determine whether it has the most up to date policies that form a basis for performing the selective wipe. For example, in some instances, the mobile device may be performing a polling mechanism in a background thread that periodically polls for updates to the policies installed on the mobile device. In others, the mobile device may, prior to performing the selective wipe, send a message to the access gateway that indicates a selective wipe is about to be performed. In addition to indicating that the selective wipe is about to be performed, the message may include an indication of the version number of the policy that formed the basis for determining to perform the selective wipe.
  • the access gateway may determine whether the mobile device has the most-up-to date policy settings (e.g., determine whether the policy should be updated or not) and, based on the determination, may respond with an acknowledgement that indicates the mobile device has the most up-to-date policy settings or respond with an update to the policy.
  • the mobile device may proceed with performing the selective wipe or re-determine whether the selective wipe should be performed based on the updated policy.
  • the mobile device may continue the selective wipe process by, for example, determining one or more secure containers for the selective wipe. For example, the mobile device may determine which secure containers contain the data of the one or more managed applications. This determination may be based on information specified by the policy.
  • the mobile device may delete or otherwise make inaccessible the data of the one or more secure containers in accordance with the policy.
  • a container may be configured to allow the client agent or mobile device to read from, write to, and/or delete information from the container's file system. Deleting data from the container can include deleting actual data stored in the container, deleting pointers to data stored in the container, deleting encryption keys used to decrypt data stored in the container, and the like.
  • the container can enable some or all of the enterprise data stored in its file system to be deleted without modifying other data stored on the mobile device outside of the container.
  • the mobile device may transmit a selective wipe acknowledgement to the enterprise.
  • Such an acknowledgement may provide an indication to the enterprise that the selective wipe was successful.
  • the acknowledgement may include a listing of applications and/or listing of secure containers that were affected/deleted by the selective wipe.
  • the acknowledgement may also include a version number of the policy that included the selective wipe settings so that a computing device (e.g., the access gateway) can confirm that the most up-to-date version of the selective wipe settings were used.
  • the enterprise e.g., access gateway
  • the enterprise may update its stored records accordingly.
  • the one or more computing devices may provide the managed application and the policy file to be available for download by one or more mobile devices. This step may proceed similar to step 711 of FIG. 7 .
  • FIG. 10 illustrates an example method for configuring and providing a policy that includes one or more settings related to application management of a managed application. Additionally, FIG. 10 illustrates a method that is performed by the processing circuitry of one or more computing devices—such as an access gateway, another server under control by an IT administrator of an enterprise, or another device acting as a control point—when operating in accordance with various software constructs.
  • computing devices such as an access gateway, another server under control by an IT administrator of an enterprise, or another device acting as a control point—when operating in accordance with various software constructs.
  • the one or more computing device may receive initial policy settings or other data for inclusion in a policy. This step may proceed similar to step 701 of FIG. 7 .
  • the one or more computing devices may create a user interface (UI) to display various portions of the initial policy settings. This step may proceed similar to step 703 of FIG. 7 .
  • UI user interface
  • the one or more computing device may receive input via the user interface to set, change, and/or add one or more settings related to application management of a managed application (e.g., an application management setting). Aspects of this step may proceed similar to step 705 of FIG. 7 .
  • the UI administrator may provide input to set, change, or add a setting that specifies how data associated with the mobile application is to be stored by the mobile device and/or how file system APIs called by the application are to be redirected and/or how data associated with the mobile application is to be processed by the mobile device.
  • the IT administrator may assign one or more secure containers to the mobile application.
  • the policy may include one or more identifiers or resource names for the assigned secure container(s).
  • the mobile device may have previously used a different application prior to using the managed application (e.g., a previous corporate e-mail application) and the previous application may not have enforced similar security settings that will be applied to the managed application (e.g., the previous corporate e-mail application did not encrypt the data of the inbox or the like).
  • one or more application management settings may be included in the policy so that legacy data will be processed when the application is configured in order to provide the user with access to the legacy data in accordance with the different security protocols being applied to the managed application.
  • An IT administrator may configure the policy so that, for example, it includes a location of the legacy data is defined within the policy and/or includes an indication that the mobile device is to transfer legacy data for the managed application when configuring the application.
  • the policy may also define an amount of legacy data to move to the secure containers (e.g., a maximum amount of raw data, a number of days of e-mails, all data, etc.).
  • the legacy data may be stored remotely, such as by an enterprise resource.
  • the IT administrator may also provide input that specifies encryption and/or decryption keys for use when a mobile device or application wants to read, write or otherwise access a secure container on the mobile device when the managed application is running.
  • a policy may link a specified encryption/decryption key to one or more secure containers by specifying one or more secure container identifiers or resource names.
  • encryption or decryption keys may be assigned based on a tuple of user, device, and application or application group, and the policy may include information identifying the tuple (e.g., an identifier of the user, identifier of the mobile device, and identifier of the application or application group).
  • the IT administrator may also provide input that specifies how and/or how often the encryption and decryption keys should be updated or refreshed.
  • the setting may include a time to live for each key so that when the time expires, the mobile device must retrieve new keys via the access gateway.
  • such settings may also specify that the new keys are retrieved via an application specific VPN, such as a MicroVPN tunnel.
  • the IT administrator may also provide input that specifies which application group the managed application belongs to.
  • Such an application management setting may include an identifier or resource name for a shared data vault that is accessible by other members of the application group.
  • the IT administrator may also provide input that specifies one or more secure data container that read or write operations from the managed application are to be redirected to when the mobile device executed the managed application.
  • one of the secure data containers may be a private secured data container that is accessible to only the managed application (e.g., the private app data vault of FIG. 6 ).
  • one or more of the secure data containers may be a shared data container (e.g., shared data vault of FIG. 6 ) that, for example, is accessible to applications of the same application group.
  • the one or more computing devices may determine to produce one or more published versions of the policy. This step may proceed similar to step 707 of FIG. 7 .
  • the one or more computing devices may produce one or more policy files for the managed application that include the application management setting(s). This step may proceed similar to step 709 of FIG. 7 .
  • the policy file produced by this step can be used by the mobile device to enforce the application management settings. Accordingly, the policy can cause the mobile device or application to perform various actions based on any application management setting included in the policy file. Generally, any of the above (or other) conditions described above in connection with step 1005 may form the basis for actions that the mobile device or application is caused to perform.
  • the mobile device may also configure one or more secure containers in accordance with the policy file. Based on the policy, the mobile device may determine whether the assigned containers have been properly created and configured on the mobile device. If a container does not already exist, a new empty vault is initialized, including a file system for the container (e.g., empty directory tree). An access manager for the container may also be configured.
  • a secure container can be a logical interface into which read or write operations are redirected and in which data is in an encrypted form. The access manager of a secure container may govern access to the file system by applications and other components of the mobile device.
  • a software component such as the client agent of the mobile device, may also be configured based on the policy.
  • an interception layer may also be configured to be aware of any of the secure containers specified by the policy.
  • the interception layer it may be configured with information linking the identifiers or resource identifiers for the secure containers to one or more API calls that will be issued by the application during execution and may be configured with the locations of the keys that will be used when encrypting/decrypting data to/from the application.
  • the interception layer may intercept such calls when the application is executing and redirect the calls to the appropriate secure container in accordance with the policy and, in some variations, without the application being aware of the interception.
  • the mobile device may perform such configuring of the legacy data accordingly. For example, the mobile device may retrieve, from the location where the legacy data is stored, and/or an amount of data in accordance with the policy. The mobile device may then encrypt the data in accordance with the policy (e.g., using the encryption protocols specified by the policy and using the keys specified by the policies). Some data may be encrypted using different keys based on which of the one or more secure containers they will be stored into. After encrypting the legacy data, the mobile device may store the now-encrypted legacy data into the specified secure container (as determined by the policy).
  • the policy specifies that legacy data for the managed application is to be configured for the application.
  • the policy may specify that some data is to be stored in one container (e.g., a private container), while other data is to be stored in a different container (e.g., a shared container). Accordingly, the data may be stored into the appropriate containers in their encrypted form. Such storage may be performed by updating or creating references to the location of the encrypted data in the secure container's file system. In some instances, after successfully processing the legacy data, any legacy data that remains on the mobile device in its unencrypted form may be deleted from the mobile device (such deletion may also be specified by the policy).
  • the one or more computing devices may provide the managed application and the policy file to be available for download by one or more mobile devices. This step may proceed similar to step 711 of FIG. 7 .
  • FIG. 11 illustrates an example method for configuring and providing a policy that includes one or more settings related to user authentication and/or user identification in accordance with various aspects described herein. Additionally, FIG. 11 illustrates a method that is performed by the processing circuitry of one or more computing devices—such as an access gateway, another server under control by an IT administrator of an enterprise, or another device acting as a control point—when operating in accordance with various software constructs.
  • computing devices such as an access gateway, another server under control by an IT administrator of an enterprise, or another device acting as a control point—when operating in accordance with various software constructs.
  • the one or more computing device may receive initial policy settings or other data for inclusion in a policy. This step may proceed similar to step 701 of FIG. 7 .
  • the one or more computing devices may create a user interface (UI) to display various portions of the initial policy settings. This step may proceed similar to step 703 of FIG. 7 .
  • UI user interface
  • the one or more computing device may receive input via the user interface to set, change, and/or add a setting related to user authentication or user identification (e.g., a user authorization setting or a user identification setting).
  • a setting may provide a condition for authorizing or identifying a user in connection with providing the access to one or more resources that are accessible through an access gateway. Aspects of this step may proceed similar to step 705 of FIG. 7 .
  • an IT administrator may set, change and/or add a setting that specifies (or includes) a ticket or token (these terms will be used interchangeably herein).
  • a ticket or token can be used by the mobile device in order to authenticate the user in a transparent manner. That is, one or more tickets are provided to the mobile device from the enterprise in an effort to avoid burdening the user to re-authenticate.
  • the mobile device may provide the ticket to the access gateway instead of reauthenticating (e.g., instead of requiring the user to input or otherwise provide his or her credentials, such as a username and/or password).
  • a ticket may be one-time use and/or time-based, and impose constraints and/or privileges to the application or user when accessing an enterprise resource. For example, a ticket may be specified as valid for a two-week period, or some other shorter or longer time period as the enterprise operator wishes (e.g., provide short-lived or longer-lived access). In some arrangements, access control is structured so that the level of security diminishes over time.
  • some applications which should have high security may be provided tickets that expire more quickly (e.g., after a predefined amount of time such as an hour, 15 minutes, etc.).
  • Other tickets associated with applications of lower security may expire at a later time (e.g., after a later predefined amount of time such as a day, etc.).
  • Other ticket-based techniques for imposing different levels of security based on time or other measure are suitable for use as well.
  • a ticket may be usable to provide authentication in connection with creating a VPN tunnel to enterprise resources.
  • a ticket may include data or be otherwise configured to authenticate a user, mobile device or application that is attempting to create a VPN tunnel to an enterprise resource that is accessible through an access gateway, such as a MicroVPN tunnel or other type of application-specific VPN tunnel.
  • the IT administrator may also provide input via the UI that specifies how a user is to log-on to the MRM system.
  • the policy may specify that the user can use single-sign on functionality for authentication with the access gateway and the conditions with which the user can continue using single sign on functionality (e.g., single sign on within particular geographic or mobile device location constraints, within particular time windows, constraints requiring an install of a particular application on the mobile device, or the like).
  • the user when a user executes a managed application on the mobile device, the user is typically challenged to authenticate their corporate identity along with passwords and other factors as dictated by corporate policy.
  • the policy may specify the constraints on the password and/or specify the types of identification information that is to be included when requesting to authenticate (e.g., authenticate with a password, username and mobile device identifier).
  • the policy may also specify (or include) one or more certificates that can be used to respond to certificate challenges that are received by the mobile device.
  • the IT administrator may also provide input via the UI to create a policy that is assigned to the user's role within the enterprise or specific to the application's assigned application group.
  • a single managed application may be associated with multiple policies, with each policy being assigned to a different user role (e.g., one policy for a sales employee; a different policy for a designer, etc.) or application group (e.g., a managed application may be assigned to multiple application groups where each provides various constraints or benefits to member applications, such as shared access to data stored in data containers, or the like, and each of the multiple application groups corresponds to a different user role).
  • a policy may also be assigned to a group of applications.
  • the group of applications could be, for example, a grouping of applications that apply to a particular industry (e.g., the policy is assigned to a group of applications that are related to the healthcare industry), apply to a particular organization (e.g., the policy is assigned to a group of applications that were created by the same application developer, or are provided by the same enterprise), and the like.
  • the UI may be configured to allow the IT administrator to provide input to create such assignments.
  • the one or more computing devices may determine to produce one or more published versions of the policy. This step may proceed similar to step 707 of FIG. 7 .
  • the one or more computing devices may produce one or more policy files for the managed application that include the user authentication or user identification setting(s). This step may proceed similar to step 709 of FIG. 7 .
  • the policy file produced by this step can be used by the mobile device to enforce the user authentication or user identification settings. Accordingly, the policy can cause the mobile device or application to perform various actions based on any user authentication or user identification setting included in the policy file. Generally, any of the above (or other) conditions described above in connection with step 1105 may form the basis for actions that the mobile device or application is caused to perform.
  • a ticket specified by the policy may be first loaded into the mobile device when the policy is downloaded to the mobile device.
  • the mobile device may transmit a message including the ticket when attempting to create an application-specific VPN tunnel. If such token/ticket has expired, then the user may be asked to proceed through a full authentication process again before allowing VPN access. If the ticket is not expired, the information included in the ticket may be used by a computing device (e.g., access gateway) to determine that the ticket is valid and the user is allowed to access resources that are accessible via the access gateway.
  • a VPN tunnel between the access gateway and mobile device may be constructed/initialized that enables the mobile device with access to at least one resource.
  • the VPN tunnel may be an application specific VPN, such as a MicroVPN.
  • Use of the user authorization or user identification settings may, in some embodiments, cause the mobile device to be able perform various actions without the application and/or the user being aware of the authorization or that the user identification was provided to the enterprise.
  • the creation of the application specific VPN tunnel may be done without user interaction and without the user's knowledge that the application specific VPN tunnel has been created/established.
  • certificates specified by the policy may be provided without the application or user being aware that such information was provided.
  • user log-ins, passwords, or other identifying information may be provided to the enterprise without the user or application being aware that such information was provided.
  • the one or more computing devices may provide the managed application and the policy file to be available for download by one or more mobile devices. This step may proceed similar to step 711 of FIG. 7 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioethics (AREA)
  • Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Information Transfer Between Computers (AREA)
  • Computer And Data Communications (AREA)

Abstract

Various aspects of the disclosure relate to configuring and providing policies that manage execution of mobile applications. In some embodiments, a user interface may be generated that allows an IT administrator or other operator to set, change and/or add to policy settings. The policy settings can be formatted into a policy file and be made available for download to a mobile device, such as via an application store or to be pushed to the mobile device as part of a data push service. The mobile device, based on the various settings included in the policy file, may perform various actions to enforce the security constraints that are represented by the policy. The various settings that can be included in a policy are numerous and some examples and variations thereof are described in connection with the example embodiments discussed herein.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of and claims priority to: U.S. Non-Provisional patent application Ser. No. 14/039,651, filed Sep. 27, 2013, and entitled “CONFIGURING AND PROVIDING PROFILES THAT MANAGE EXECUTION OF MOBILE APPLICATIONS,” which claims priority to U.S. Provisional Patent Application Ser. No. 61/863,194, filed Aug. 7, 2013, and entitled “CONFIGURING AND PROVIDING PROFILES THAT MANAGE EXECUTION OF MOBILE APPLICATIONS;” U.S. Provisional Patent Application Ser. No. 61/713,715, filed Oct. 16, 2012, and entitled “MANAGING DYNAMIC PROFILES AND SETTINGS FOR MOBILE APPLICATIONS;” and U.S. Provisional Patent Application Ser. No. 61/806,577, filed Mar. 29, 2013, and entitled “SYSTEMS AND METHODS FOR ENTERPRISE MOBILITY MANAGEMENT.”
  • Each of the above-mentioned patent applications is incorporated by reference herein in its entirety.
  • BACKGROUND
  • Aspects of the disclosure relate to computer hardware and software. In particular, one or more aspects of the disclosure generally relate to computer hardware and software for providing an enterprise application store.
  • Increasingly, corporations and other organizations are providing and/or otherwise enabling their employees and other associates with mobile devices, such as smart phones, tablet computers, and other mobile computing devices. As these devices continue to grow in popularity and provide an increasing number of functions, many organizations may wish to place certain controls on how these devices can be used, what resources these devices can access, and how the applications running on these devices can interact with other resources.
  • SUMMARY
  • Aspects of the disclosure provide more efficient, effective, functional, and convenient ways of controlling how mobile devices can be used, what resources mobile devices can access, and how the applications running on these devices can interact with other resources. In particular, in one or more embodiments discussed in greater detail below, an enterprise application store may be implemented that can provide these and features.
  • Various aspects of the disclosure relate to configuring and providing one or more policies that can be used by a mobile to manage or constrain the execution of a mobile application (also referred herein as a managed application). In particular, some embodiments of this disclosure relate to systems, one or more apparatuses and one or more computing devices that are configured to perform various methods for configuring and providing the policies. For example, one or more computing devices may display a user interface that displays one or more policy settings for a managed application that is to be made available for download to a mobile device. Each of the one or more policy settings may provide a constraint to be enforced by the mobile device prior to the managed application being provided access to at least one resource that is accessible through an access gateway. The one or more computing devices may also receive input via the user interface that modifies the one or more policy settings, which can result in one or more modified policy settings. The one or more computing devices may further produce a policy file for the managed application that includes the one or more modified policy settings and provide the policy file such that the policy is available for download to the mobile device. The various settings that can be included in a policy are numerous and some examples and variations thereof are described in connection with the example embodiments discussed herein.
  • These features, along with many others, are discussed in greater detail below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present disclosure is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
  • FIG. 1 depicts an illustrative computer system architecture that may be used in accordance with one or more aspects of the disclosure.
  • FIG. 2 depicts an illustrative remote-access system architecture that may be used in accordance with various aspects of the disclosure.
  • FIG. 3 depicts an illustrative virtualized (hypervisor) system architecture that may be used in accordance one or more aspects of the disclosure.
  • FIG. 4 depicts an illustrative cloud-based system architecture that may be used in accordance various aspects of the disclosure.
  • FIG. 5 depicts an illustrative enterprise mobility management system that may be used in accordance with one or more aspects of the disclosure.
  • FIG. 6 depicts another illustrative enterprise mobility management system that may be used in accordance with various aspects of the disclosure.
  • FIG. 7 illustrates an example method for configuring a policy for a managed application in accordance with one or more aspects of the disclosure.
  • FIG. 8 illustrates an example environment in which various policies may be configured in accordance with one or more aspects described herein.
  • FIG. 9 illustrates an example method for configuring and providing a policy that includes a setting to delete data in accordance with various aspects of the disclosure.
  • FIG. 10 illustrates an example method for configuring and providing a policy that includes one or more settings for managing execution of a managed application in accordance with one or more aspects of the disclosure.
  • FIG. 11 illustrates an example method for configuring and providing a policy that includes one or more settings related to user authentication and/or user identification in accordance with various aspects described herein.
  • FIGS. 12A-12J illustrate example user interfaces that can be used to configure one or more policies in accordance with various aspects described herein.
  • DETAILED DESCRIPTION
  • In the following description of the various embodiments, reference is made to the accompanying drawings identified above and which form a part hereof, and in which is shown by way of illustration various embodiments in which aspects described herein may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope described herein. Various aspects are capable of other embodiments and of being practiced or being carried out in various different ways.
  • As a general introduction to the subject matter described in more detail below, various aspects of the disclosure relate to configuring and providing policies that manage execution of mobile applications. In some embodiments, a user interface may be generated that allows an IT administrator or other operator to set, change and/or add to policy settings. The policy settings can be formatted into a policy file, such as an Extensible Markup Language file (XML file), and be made available for download to a mobile device. The mobile device, based on the various settings included in the policy file, may perform various actions to enforce the security constraints that are represented by the policy. The various settings that can be included in a policy are numerous and some examples and variations thereof are described in connection with the example embodiments discussed herein.
  • It is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. Rather, the phrases and terms used herein are to be given their broadest interpretation and meaning. The use of “including” and “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof. The use of the terms “mounted,” “connected,” “coupled,” “positioned,” “engaged” and similar terms, is meant to include both direct and indirect mounting, connecting, coupling, positioning and engaging.
  • Computing Architecture
  • Computer software, hardware, and networks may be utilized in a variety of different system environments, including standalone, networked, remote-access (aka, remote desktop), virtualized, and/or cloud-based environments, among others. FIG. 1 illustrates one example of a system architecture and data processing device that may be used to implement one or more illustrative aspects described herein in a standalone and/or networked environment. Various network nodes 103, 105, 107, and 109 may be interconnected via a wide area network (WAN) 101, such as the Internet. Other networks may also or alternatively be used, including private intranets, corporate networks, LANs, metropolitan area networks (MAN) wireless networks, personal networks (PAN), and the like. Network 101 is for illustration purposes and may be replaced with fewer or additional computer networks. A local area network (LAN) may have one or more of any known LAN topology and may use one or more of a variety of different protocols, such as Ethernet. Devices 103, 105, 107, 109 and other devices (not shown) may be connected to one or more of the networks via twisted pair wires, coaxial cable, fiber optics, radio waves or other communication media.
  • The term “network” as used herein and depicted in the drawings refers not only to systems in which remote storage devices are coupled together via one or more communication paths, but also to stand-alone devices that may be coupled, from time to time, to such systems that have storage capability. Consequently, the term “network” includes not only a “physical network” but also a “content network,” which is comprised of the data—attributable to a single entity—which resides across all physical networks.
  • The components may include data server 103, web server 105, and client computers 107, 109. Data server 103 provides overall access, control and administration of databases and control software for performing one or more illustrative aspects describe herein. Data server 103 may be connected to web server 105 through which users interact with and obtain data as requested. Alternatively, data server 103 may act as a web server itself and be directly connected to the Internet. Data server 103 may be connected to web server 105 through the network 101 (e.g., the Internet), via direct or indirect connection, or via some other network. Users may interact with the data server 103 using remote computers 107, 109, e.g., using a web browser to connect to the data server 103 via one or more externally exposed web sites hosted by web server 105. Client computers 107, 109 may be used in concert with data server 103 to access data stored therein, or may be used for other purposes. For example, from client device 107 a user may access web server 105 using an Internet browser, as is known in the art, or by executing a software application that communicates with web server 105 and/or data server 103 over a computer network (such as the Internet).
  • Servers and applications may be combined on the same physical machines, and retain separate virtual or logical addresses, or may reside on separate physical machines. FIG. 1 illustrates just one example of a network architecture that may be used, and those of skill in the art will appreciate that the specific network architecture and data processing devices used may vary, and are secondary to the functionality that they provide, as further described herein. For example, services provided by web server 105 and data server 103 may be combined on a single server.
  • Each component 103, 105, 107, 109 may be any type of known computer, server, or data processing device. Data server 103, e.g., may include a processor 111 controlling overall operation of the rate server 103. Data server 103 may further include RAM 113, ROM 115, network interface 117, input/output interfaces 119 (e.g., keyboard, mouse, display, printer, etc.), and memory 121. I/O 119 may include a variety of interface units and drives for reading, writing, displaying, and/or printing data or files. Memory 121 may further store operating system software 123 for controlling overall operation of the data processing device 103, control logic 125 for instructing data server 103 to perform aspects described herein, and other application software 127 providing secondary, support, and/or other functionality which may or might not be used in conjunction with aspects described herein. The control logic may also be referred to herein as the data server software 125. Functionality of the data server software may refer to operations or decisions made automatically based on rules coded into the control logic, made manually by a user providing input into the system, and/or a combination of automatic processing based on user input (e.g., queries, data updates, etc.).
  • Memory 121 may also store data used in performance of one or more aspects described herein, including a first database 129 and a second database 131. In some embodiments, the first database may include the second database (e.g., as a separate table, report, etc.). That is, the information can be stored in a single database, or separated into different logical, virtual, or physical databases, depending on system design. Devices 105, 107, 109 may have similar or different architecture as described with respect to device 103. Those of skill in the art will appreciate that the functionality of data processing device 103 (or device 105, 107, 109) as described herein may be spread across multiple data processing devices, for example, to distribute processing load across multiple computers, to segregate transactions based on geographic location, user access level, quality of service (QoS), etc.
  • One or more aspects may be embodied in computer-usable or readable data and/or computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices as described herein. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device. The modules may be written in a source code programming language that is subsequently compiled for execution, or may be written in a scripting language such as (but not limited to) HTML or XML. The computer executable instructions may be stored on a computer readable medium such as a nonvolatile storage device. Any suitable computer readable storage media may be utilized, including hard disks, CD-ROMs, optical storage devices, magnetic storage devices, and/or any combination thereof. In addition, various transmission (non-storage) media representing data or events as described herein may be transferred between a source and a destination in the form of electromagnetic waves traveling through signal-conducting media such as metal wires, optical fibers, and/or wireless transmission media (e.g., air and/or space). Various aspects described herein may be embodied as a method, a data processing system, or a computer program product. Therefore, various functionalities may be embodied in whole or in part in software, firmware and/or hardware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA), and the like. Particular data structures may be used to more effectively implement one or more aspects described herein, and such data structures are contemplated within the scope of computer executable instructions and computer-usable data described herein.
  • With further reference to FIG. 2, one or more aspects described herein may be implemented in a remote-access environment. FIG. 2 depicts an example system architecture including a generic computing device 201 in an illustrative computing environment 200 that may be used according to one or more illustrative aspects described herein. Generic computing device 201 may be used as a server 206 a in a single-server or multi-server desktop virtualization system (e.g., a remote access or cloud system) configured to provide virtual machines for client access devices. The generic computing device 201 may have a processor 203 for controlling overall operation of the server and its associated components, including random access memory (RAM) 205, read-only memory (ROM) 207, input/output (I/O) module 209, and memory 215.
  • I/O module 209 may include a mouse, keypad, touch screen, scanner, optical reader, and/or stylus (or other input device(s)) through which a user of generic computing device 201 may provide input, and may also include one or more of a speaker for providing audio output and a video display device for providing textual, audiovisual, and/or graphical output. Software may be stored within memory 215 and/or other storage to provide instructions to processor 203 for configuring generic computing device 201 into a special purpose computing device in order to perform various functions as described herein. For example, memory 215 may store software used by the computing device 201, such as an operating system 217, application programs 219, and an associated database 221.
  • Computing device 201 may operate in a networked environment supporting connections to one or more remote computers, such as terminals 240 (also referred to as client devices). The terminals 240 may be personal computers, mobile devices, laptop computers, tablets, or servers that include many or all of the elements described above with respect to the generic computing device 103 or 201. The network connections depicted in FIG. 2 include a local area network (LAN) 225 and a wide area network (WAN) 229, but may also include other networks. When used in a LAN networking environment, computing device 201 may be connected to the LAN 225 through a network interface or adapter 223. When used in a WAN networking environment, computing device 201 may include a modem 227 or other wide area network interface for establishing communications over the WAN 229, such as computer network 230 (e.g., the Internet). It will be appreciated that the network connections shown are illustrative and other means of establishing a communications link between the computers may be used. Computing device 201 and/or terminals 240 may also be mobile terminals (e.g., mobile phones, smartphones, PDAs, notebooks, etc.) including various other components, such as a battery, speaker, and antennas (not shown).
  • Aspects described herein may also be operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of other computing systems, environments, and/or configurations that may be suitable for use with aspects described herein include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
  • As shown in FIG. 2, one or more client devices 240 may be in communication with one or more servers 206 a-206 n (generally referred to herein as “server(s) 206”). In one embodiment, the computing environment 200 may include a network appliance installed between the server(s) 206 and client machine(s) 240. The network appliance may manage client/server connections, and in some cases can load balance client connections amongst a plurality of backend servers 206.
  • The client machine(s) 240 may in some embodiments be referred to as a single client machine 240 or a single group of client machines 240, while server(s) 206 may be referred to as a single server 206 or a single group of servers 206. In one embodiment a single client machine 240 communicates with more than one server 206, while in another embodiment a single server 206 communicates with more than one client machine 240. In yet another embodiment, a single client machine 240 communicates with a single server 206.
  • A client machine 240 can, in some embodiments, be referenced by any one of the following non-exhaustive terms: client machine(s); client(s); client computer(s); client device(s); client computing device(s); local machine; remote machine; client node(s); endpoint(s); or endpoint node(s). The server 206, in some embodiments, may be referenced by any one of the following non-exhaustive terms: server(s), local machine; remote machine; server farm(s), or host computing device(s).
  • In one embodiment, the client machine 240 may be a virtual machine. The virtual machine may be any virtual machine, while in some embodiments the virtual machine may be any virtual machine managed by a Type 1 or Type 2 hypervisor, for example, a hypervisor developed by Citrix Systems, IBM, VMware, or any other hypervisor. In some aspects, the virtual machine may be managed by a hypervisor, while in aspects the virtual machine may be managed by a hypervisor executing on a server 206 or a hypervisor executing on a client 240.
  • Some embodiments include a client device 240 that displays application output generated by an application remotely executing on a server 206 or other remotely located machine. In these embodiments, the client device 240 may execute a virtual machine receiver program or application to display the output in an application window, a browser, or other output window. In one example, the application is a desktop, while in other examples the application is an application that generates or presents a desktop. A desktop may include a graphical shell providing a user interface for an instance of an operating system in which local and/or remote applications can be integrated. Applications, as used herein, are programs that execute after an instance of an operating system (and, optionally, also the desktop) has been loaded.
  • The server 206, in some embodiments, uses a remote presentation protocol or other program to send data to a thin-client or remote-display application executing on the client to present display output generated by an application executing on the server 206. The thin-client or remote-display protocol can be any one of the following non-exhaustive list of protocols: the Independent Computing Architecture (ICA) protocol developed by Citrix Systems, Inc. of Ft. Lauderdale, Fla.; or the Remote Desktop Protocol (RDP) manufactured by the Microsoft Corporation of Redmond, Wash.
  • A remote computing environment may include more than one server 206 a-206 n such that the servers 206 a-206 n are logically grouped together into a server farm 206, for example, in a cloud computing environment. The server farm 206 may include servers 206 that are geographically dispersed while and logically grouped together, or servers 206 that are located proximate to each other while logically grouped together. Geographically dispersed servers 206 a-206 n within a server farm 206 can, in some embodiments, communicate using a WAN (wide), MAN (metropolitan), or LAN (local), where different geographic regions can be characterized as: different continents; different regions of a continent; different countries; different states; different cities; different campuses; different rooms; or any combination of the preceding geographical locations. In some embodiments the server farm 206 may be administered as a single entity, while in other embodiments the server farm 206 can include multiple server farms.
  • In some embodiments, a server farm may include servers 206 that execute a substantially similar type of operating system platform (e.g., WINDOWS, UNIX, LINUX, iOS, ANDROID, SYMBIAN, etc.) In other embodiments, server farm 206 may include a first group of one or more servers that execute a first type of operating system platform, and a second group of one or more servers that execute a second type of operating system platform.
  • Server 206 may be configured as any type of server, as needed, e.g., a file server, an application server, a web server, a proxy server, an appliance, a network appliance, a gateway, an application gateway, a gateway server, a virtualization server, a deployment server, a SSL VPN server, a firewall, a web server, an application server or as a master application server, a server executing an active directory, or a server executing an application acceleration program that provides firewall functionality, application functionality, or load balancing functionality. Other server types may also be used.
  • Some embodiments include a first server 106 a that receives requests from a client machine 240, forwards the request to a second server 106 b, and responds to the request generated by the client machine 240 with a response from the second server 106 b. First server 106 a may acquire an enumeration of applications available to the client machine 240 and well as address information associated with an application server 206 hosting an application identified within the enumeration of applications. First server 106 a can then present a response to the client's request using a web interface, and communicate directly with the client 240 to provide the client 240 with access to an identified application. One or more clients 240 and/or one or more servers 206 may transmit data over network 230, e.g., network 101.
  • FIG. 2 shows a high-level architecture of an illustrative desktop virtualization system. As shown, the desktop virtualization system may be single-server or multi-server system, or cloud system, including at least one virtualization server 206 configured to provide virtual desktops and/or virtual applications to one or more client access devices 240. As used herein, a desktop refers to a graphical environment or space in which one or more applications may be hosted and/or executed. A desktop may include a graphical shell providing a user interface for an instance of an operating system in which local and/or remote applications can be integrated. Applications may include programs that execute after an instance of an operating system (and, optionally, also the desktop) has been loaded. Each instance of the operating system may be physical (e.g., one operating system per device) or virtual (e.g., many instances of an OS running on a single device). Each application may be executed on a local device, or executed on a remotely located device (e.g., remoted).
  • With further reference to FIG. 3, a computer device 301 may be configured as a virtualization server in a virtualization environment, for example, a single-server, multi-server, or cloud computing environment. Virtualization server 301 illustrated in FIG. 3 can be deployed as and/or implemented by one or more embodiments of the server 206 illustrated in FIG. 2 or by other known computing devices. Included in virtualization server 301 is a hardware layer that can include one or more physical disks 304, one or more physical devices 306, one or more physical processors 308 and one or more physical memories 316. In some embodiments, firmware 312 can be stored within a memory element in the physical memory 316 and can be executed by one or more of the physical processors 308. Virtualization server 301 may further include an operating system 314 that may be stored in a memory element in the physical memory 316 and executed by one or more of the physical processors 308. Still further, a hypervisor 302 may be stored in a memory element in the physical memory 316 and can be executed by one or more of the physical processors 308.
  • Executing on one or more of the physical processors 308 may be one or more virtual machines 332A-C (generally 332). Each virtual machine 332 may have a virtual disk 326A-C and a virtual processor 328A-C. In some embodiments, a first virtual machine 332A may execute, using a virtual processor 328A, a control program 320 that includes a tools stack 324. Control program 320 may be referred to as a control virtual machine, Dom0, Domain 0, or other virtual machine used for system administration and/or control. In some embodiments, one or more virtual machines 332B-C can execute, using a virtual processor 328B-C, a guest operating system 330A-B.
  • Virtualization server 301 may include a hardware layer 310 with one or more pieces of hardware that communicate with the virtualization server 301. In some embodiments, the hardware layer 310 can include one or more physical disks 304, one or more physical devices 306, one or more physical processors 308, and one or more memory 216. Physical components 304, 306, 308, and 316 may include, for example, any of the components described above. Physical devices 306 may include, for example, a network interface card, a video card, a keyboard, a mouse, an input device, a monitor, a display device, speakers, an optical drive, a storage device, a universal serial bus connection, a printer, a scanner, a network element (e.g., router, firewall, network address translator, load balancer, virtual private network (VPN) gateway, Dynamic Host Configuration Protocol (DHCP) router, etc.), or any device connected to or communicating with virtualization server 301. Physical memory 316 in the hardware layer 310 may include any type of memory. Physical memory 316 may store data, and in some embodiments may store one or more programs, or set of executable instructions. FIG. 3 illustrates an embodiment where firmware 312 is stored within the physical memory 316 of virtualization server 301. Programs or executable instructions stored in the physical memory 316 can be executed by the one or more processors 308 of virtualization server 301.
  • Virtualization server 301 may also include a hypervisor 302. In some embodiments, hypervisor 302 may be a program executed by processors 308 on virtualization server 301 to create and manage any number of virtual machines 332. Hypervisor 302 may be referred to as a virtual machine monitor, or platform virtualization software. In some embodiments, hypervisor 302 can be any combination of executable instructions and hardware that monitors virtual machines executing on a computing machine. Hypervisor 302 may be Type 2 hypervisor, where the hypervisor that executes within an operating system 314 executing on the virtualization server 301. Virtual machines then execute at a level above the hypervisor. In some embodiments, the Type 2 hypervisor executes within the context of a user's operating system such that the Type 2 hypervisor interacts with the user's operating system. In other embodiments, one or more virtualization servers 201 in a virtualization environment may instead include a Type 1 hypervisor (not shown). A Type 1 hypervisor may execute on the virtualization server 301 by directly accessing the hardware and resources within the hardware layer 310. That is, while a Type 2 hypervisor 302 accesses system resources through a host operating system 314, as shown, a Type 1 hypervisor may directly access all system resources without the host operating system 314. A Type 1 hypervisor may execute directly on one or more physical processors 308 of virtualization server 301, and may include program data stored in the physical memory 316.
  • Hypervisor 302, in some embodiments, can provide virtual resources to operating systems 330 or control programs 320 executing on virtual machines 332 in any manner that simulates the operating systems 330 or control programs 320 having direct access to system resources. System resources can include, but are not limited to, physical devices 306, physical disks 304, physical processors 308, physical memory 316 and any other component included in virtualization server 301 hardware layer 310. Hypervisor 302 may be used to emulate virtual hardware, partition physical hardware, virtualize physical hardware, and/or execute virtual machines that provide access to computing environments. In still other embodiments, hypervisor 302 controls processor scheduling and memory partitioning for a virtual machine 332 executing on virtualization server 301. Hypervisor 302 may include those manufactured by VMWare, Inc., of Palo Alto, Calif.; the XEN hypervisor, an open source product whose development is overseen by the open source Xen.org community; HyperV, VirtualServer or virtual PC hypervisors provided by Microsoft, or others. In some embodiments, virtualization server 301 executes a hypervisor 302 that creates a virtual machine platform on which guest operating systems may execute. In these embodiments, the virtualization server 301 may be referred to as a host server. An example of such a virtualization server is the XEN SERVER provided by Citrix Systems, Inc., of Fort Lauderdale, Fla.
  • Hypervisor 302 may create one or more virtual machines 332B-C (generally 332) in which guest operating systems 330 execute. In some embodiments, hypervisor 302 may load a virtual machine image to create a virtual machine 332. In other embodiments, the hypervisor 302 may executes a guest operating system 330 within virtual machine 332. In still other embodiments, virtual machine 332 may execute guest operating system 330.
  • In addition to creating virtual machines 332, hypervisor 302 may control the execution of at least one virtual machine 332. In other embodiments, hypervisor 302 may presents at least one virtual machine 332 with an abstraction of at least one hardware resource provided by the virtualization server 301 (e.g., any hardware resource available within the hardware layer 310). In other embodiments, hypervisor 302 may control the manner in which virtual machines 332 access physical processors 308 available in virtualization server 301. Controlling access to physical processors 308 may include determining whether a virtual machine 332 should have access to a processor 308, and how physical processor capabilities are presented to the virtual machine 332.
  • As shown in FIG. 3, virtualization server 301 may host or execute one or more virtual machines 332. A virtual machine 332 is a set of executable instructions that, when executed by a processor 308, imitate the operation of a physical computer such that the virtual machine 332 can execute programs and processes much like a physical computing device. While FIG. 3 illustrates an embodiment where a virtualization server 301 hosts three virtual machines 332, in other embodiments virtualization server 301 can host any number of virtual machines 332. Hypervisor 302, in some embodiments, provides each virtual machine 332 with a unique virtual view of the physical hardware, memory, processor and other system resources available to that virtual machine 332. In some embodiments, the unique virtual view can be based on one or more of virtual machine permissions, application of a policy engine to one or more virtual machine identifiers, a user accessing a virtual machine, the applications executing on a virtual machine, networks accessed by a virtual machine, or any other desired criteria. For instance, hypervisor 302 may create one or more unsecure virtual machines 332 and one or more secure virtual machines 332. Unsecure virtual machines 332 may be prevented from accessing resources, hardware, memory locations, and programs that secure virtual machines 332 may be permitted to access. In other embodiments, hypervisor 302 may provide each virtual machine 332 with a substantially similar virtual view of the physical hardware, memory, processor and other system resources available to the virtual machines 332.
  • Each virtual machine 332 may include a virtual disk 326A-C (generally 326) and a virtual processor 328A-C (generally 328.) The virtual disk 326, in some embodiments, is a virtualized view of one or more physical disks 304 of the virtualization server 301, or a portion of one or more physical disks 304 of the virtualization server 301. The virtualized view of the physical disks 304 can be generated, provided and managed by the hypervisor 302. In some embodiments, hypervisor 302 provides each virtual machine 332 with a unique view of the physical disks 304. Thus, in these embodiments, the particular virtual disk 326 included in each virtual machine 332 can be unique when compared with the other virtual disks 326.
  • A virtual processor 328 can be a virtualized view of one or more physical processors 308 of the virtualization server 301. In some embodiments, the virtualized view of the physical processors 308 can be generated, provided and managed by hypervisor 302. In some embodiments, virtual processor 328 has substantially all of the same characteristics of at least one physical processor 308. In other embodiments, virtual processor 308 provides a modified view of physical processors 308 such that at least some of the characteristics of the virtual processor 328 are different than the characteristics of the corresponding physical processor 308.
  • With further reference to FIG. 4, some aspects described herein may be implemented in a cloud-based environment. FIG. 4 illustrates an example of a cloud computing environment (or cloud system) 400. As seen in FIG. 4, client computers 411-414 may communicate with a cloud management server 410 to access the computing resources (e.g., host servers 403, storage resources 404, and network resources 405) of the cloud system.
  • Management server 410 may be implemented on one or more physical servers. The management server 410 may run, for example, CLOUDSTACK by Citrix Systems, Inc. of Ft. Lauderdale, Fla., or OPENSTACK, among others. Management server 410 may manage various computing resources, including cloud hardware and software resources, for example, host computers 403, data storage devices 404, and networking devices 405. The cloud hardware and software resources may include private and/or public components. For example, a cloud may be configured as a private cloud to be used by one or more particular customers or client computers 411-414 and/or over a private network. In other embodiments, public clouds or hybrid public-private clouds may be used by other customers over an open or hybrid networks.
  • Management server 410 may be configured to provide user interfaces through which cloud operators and cloud customers may interact with the cloud system. For example, the management server 410 may provide a set of APIs and/or one or more cloud operator console applications (e.g., web-based on standalone applications) with user interfaces to allow cloud operators to manage the cloud resources, configure the virtualization layer, manage customer accounts, and perform other cloud administration tasks. The management server 410 also may include a set of APIs and/or one or more customer console applications with user interfaces configured to receive cloud computing requests from end users via client computers 411-414, for example, requests to create, modify, or destroy virtual machines within the cloud. Client computers 411-414 may connect to management server 410 via the Internet or other communication network, and may request access to one or more of the computing resources managed by management server 410. In response to client requests, the management server 410 may include a resource manager configured to select and provision physical resources in the hardware layer of the cloud system based on the client requests. For example, the management server 410 and additional components of the cloud system may be configured to provision, create, and manage virtual machines and their operating environments (e.g., hypervisors, storage resources, services offered by the network elements, etc.) for customers at client computers 411-414, over a network (e.g., the Internet), providing customers with computational resources, data storage services, networking capabilities, and computer platform and application support. Cloud systems also may be configured to provide various specific services, including security systems, development environments, user interfaces, and the like.
  • Certain clients 411-414 may be related, for example, different client computers creating virtual machines on behalf of the same end user, or different users affiliated with the same company or organization. In other examples, certain clients 411-414 may be unrelated, such as users affiliated with different companies or organizations. For unrelated clients, information on the virtual machines or storage of any one user may be hidden from other users.
  • Referring now to the physical hardware layer of a cloud computing environment, availability zones 401-402 (or zones) may refer to a collocated set of physical computing resources. Zones may be geographically separated from other zones in the overall cloud of computing resources. For example, zone 401 may be a first cloud datacenter located in California, and zone 402 may be a second cloud datacenter located in Florida. Management sever 410 may be located at one of the availability zones, or at a separate location. Each zone may include an internal network that interfaces with devices that are outside of the zone, such as the management server 410, through a gateway. End users of the cloud (e.g., clients 411-414) might or might not be aware of the distinctions between zones. For example, an end user may request the creation of a virtual machine having a specified amount of memory, processing power, and network capabilities. The management server 410 may respond to the user's request and may allocate the resources to create the virtual machine without the user knowing whether the virtual machine was created using resources from zone 401 or zone 402. In other examples, the cloud system may allow end users to request that virtual machines (or other cloud resources) are allocated in a specific zone or on specific resources 403-405 within a zone.
  • In this example, each zone 401-402 may include an arrangement of various physical hardware components (or computing resources) 403-405, for example, physical hosting resources (or processing resources), physical network resources, physical storage resources, switches, and additional hardware resources that may be used to provide cloud computing services to customers. The physical hosting resources in a cloud zone 401-402 may include one or more computer servers 403, such as the virtualization servers 301 described above, which may be configured to create and host virtual machine instances. The physical network resources in a cloud zone 401 or 402 may include one or more network elements 405 (e.g., network service providers) comprising hardware and/or software configured to provide a network service to cloud customers, such as firewalls, network address translators, load balancers, virtual private network (VPN) gateways, Dynamic Host Configuration Protocol (DHCP) routers, and the like. The storage resources in the cloud zone 401-402 may include storage disks (e.g., solid state drives (SSDs), magnetic hard disks, etc.) and other storage devices.
  • The example cloud computing environment shown in FIG. 4 also may include a virtualization layer (e.g., as shown in FIGS. 1-3) with additional hardware and/or software resources configured to create and manage virtual machines and provide other services to customers using the physical resources in the cloud. The virtualization layer may include hypervisors, as described above in FIG. 3, along with other components to provide network virtualizations, storage virtualizations, etc. The virtualization layer may be as a separate layer from the physical resource layer, or may share some or all of the same hardware and/or software resources with the physical resource layer. For example, the virtualization layer may include a hypervisor installed in each of the virtualization servers 403 with the physical computing resources. Known cloud systems may alternatively be used, e.g., WINDOWS AZURE (Microsoft Corporation of Redmond Wash.), AMAZON EC2 (Amazon.com Inc. of Seattle, Wash.), IBM BLUE CLOUD (IBM Corporation of Armonk, N.Y.), or others.
  • Enterprise Mobility Management Architecture
  • FIG. 5 represents an enterprise mobility technical architecture 500 for use in a BYOD environment. The architecture enables a user of a mobile device 502 to both access enterprise or personal resources from a mobile device 502 and use the mobile device 502 for personal use. The user may access such enterprise resources 504 or enterprise services 508 using a mobile device 502 that is purchased by the user or a mobile device 502 that is provided by the enterprise to user. The user may utilize the mobile device 502 for business use only or for business and personal use. The mobile device may run an iOS operating system, and Android operating system, or the like. The enterprise may choose to implement policies to manage the mobile device 504. The policies may be implanted through a firewall or gateway in such a way that the mobile device may be identified, secured or security verified, and provided selective or full access to the enterprise resources. The policies may be mobile device management policies, mobile application management policies, mobile data management policies, or some combination of mobile device, application, and data management policies. A mobile device 504 that is managed through the application of mobile device management policies may be referred to as an enrolled device.
  • In some embodiments, the operating system of the mobile device may be separated into a managed partition 510 and an unmanaged partition 512. The managed partition 510 may have policies applied to it to secure the applications running on and data stored in the managed partition. The applications running on the managed partition may be secure applications. In other embodiments, all applications may execute in accordance with a set of one or more policy files received separate from the application, and which define one or more security parameters, features, resource restrictions, and/or other access controls that are enforced by the mobile device management system when that application is executing on the device. By operating in accordance with their respective policy file(s), each application may be allowed or restricted from communications with one or more other applications and/or resources, thereby creating a virtual partition. Thus, as used herein, a partition may refer to a physically partitioned portion of memory (physical partition), a logically partitioned portion of memory (logical partition), and/or a virtual partition created as a result of enforcement of one or more policies and/or policy files across multiple apps as described herein (virtual partition). Stated differently, by enforcing policies on managed apps, those apps may be restricted to only be able to communicate with other managed apps and trusted enterprise resources, thereby creating a virtual partition that is impenetrable by unmanaged apps and devices.
  • The secure applications may be email applications, web browsing applications, software-as-a-service (SaaS) access applications, Windows Application access applications, and the like. The secure applications may be secure native applications 514, secure remote applications 522 executed by a secure application launcher 518, virtualization applications 526 executed by a secure application launcher 518, and the like. The secure native applications 514 may be wrapped by a secure application wrapper 520. The secure application wrapper 520 may include integrated policies that are executed on the mobile device 502 when the secure native application is executed on the device. The secure application wrapper 520 may include meta-data that points the secure native application 514 running on the mobile device 502 to the resources hosted at the enterprise that the secure native application 514 may require to complete the task requested upon execution of the secure native application 514. The secure remote applications 522 executed by a secure application launcher 518 may be executed within the secure application launcher application 518. The virtualization applications 526 executed by a secure application launcher 518 may utilize resources on the mobile device 502, at the enterprise resources 504, and the like. The resources used on the mobile device 502 by the virtualization applications 526 executed by a secure application launcher 518 may include user interaction resources, processing resources, and the like. The user interaction resources may be used to collect and transmit keyboard input, mouse input, camera input, tactile input, audio input, visual input, gesture input, and the like. The processing resources may be used to present a user interface, process data received from the enterprise resources 504, and the like. The resources used at the enterprise resources 504 by the virtualization applications 526 executed by a secure application launcher 518 may include user interface generation resources, processing resources, and the like. The user interface generation resources may be used to assemble a user interface, modify a user interface, refresh a user interface, and the like. The processing resources may be used to create information, read information, update information, delete information, and the like. For example, the virtualization application may record user interactions associated with a GUI and communicate them to a server application where the server application will use the user interaction data as an input to the application operating on the server. In this arrangement, an enterprise may elect to maintain the application on the server side as well as data, files, etc. associated with the application. While an enterprise may elect to “mobilize” some applications in accordance with the principles herein by securing them for deployment on the mobile device, this arrangement may also be elected for certain applications. For example, while some applications may be secured for use on the mobile device, others might not be prepared or appropriate for deployment on the mobile device so the enterprise may elect to provide the mobile user access to the unprepared applications through virtualization techniques. As another example, the enterprise may have large complex applications with large and complex data sets (e.g., material resource planning applications) where it would be very difficult, or otherwise undesirable, to customize the application for the mobile device so the enterprise may elect to provide access to the application through virtualization techniques. As yet another example, the enterprise may have an application that maintains highly secured data (e.g., human resources data, customer data, engineering data) that may be deemed by the enterprise as too sensitive for even the secured mobile environment so the enterprise may elect to use virtualization techniques to permit mobile access to such applications and data. An enterprise may elect to provide both fully secured and fully functional applications on the mobile device as well as a virtualization application to allow access to applications that are deemed more properly operated on the server side. In an embodiment, the virtualization application may store some data, files, etc. on the mobile phone in one of the secure storage locations. An enterprise, for example, may elect to allow certain information to be stored on the phone while not permitting other information.
  • In connection with the virtualization application, as described herein, the mobile device may have a virtualization application that is designed to present GUI's and then record user interactions with the GUI. The application may communicate the user interactions to the server side to be used by the server side application as user interactions with the application. In response, the application on the server side may transmit back to the mobile device a new GUI. For example, the new GUI may be a static page, a dynamic page, an animation, or the like, thereby providing access to remotely located resources.
  • The secure applications may access data stored in a secure data container 528 in the managed partition 510 of the mobile device. The data secured in the secure data container may be accessed by the secure wrapped applications 514, applications executed by a secure application launcher 522, virtualization applications 526 executed by a secure application launcher 522, and the like. The data stored in the secure data container 528 may include files, databases, and the like. The data stored in the secure data container 528 may include data restricted to a specific secure application 530, shared among secure applications 532, and the like. Data restricted to a secure application may include secure general data 534 and highly secure data 538. Secure general data may use a strong form of encryption such as AES 128-bit encryption or the like, while highly secure data 538 may use a very strong form of encryption such as AES 256-bit encryption. Data stored in the secure data container 528 may be deleted from the device upon receipt of a command from the device manager 524. The secure applications may have a dual-mode option 540. The dual mode option 540 may present the user with an option to operate the secured application in an unsecured or unmanaged mode. In an unsecured or unmanaged mode, the secure applications may access data stored in an unsecured data container 542 on the unmanaged partition 512 of the mobile device 502. The data stored in an unsecured data container may be personal data 544. The data stored in an unsecured data container 542 may also be accessed by unsecured applications 548 that are running on the unmanaged partition 512 of the mobile device 502. The data stored in an unsecured data container 542 may remain on the mobile device 502 when the data stored in the secure data container 528 is deleted from the mobile device 502. An enterprise may want to delete from the mobile device selected or all data, files, and/or applications owned, licensed or controlled by the enterprise (enterprise data) while leaving or otherwise preserving personal data, files, and/or applications owned, licensed or controlled by the user (personal data). This operation may be referred to as a selective wipe. With the enterprise and personal data arranged in accordance to the aspects described herein, an enterprise may perform a selective wipe.
  • The mobile device may connect to enterprise resources 504 and enterprise services 508 at an enterprise, to the public Internet 548, and the like. The mobile device may connect to enterprise resources 504 and enterprise services 508 through virtual private network connections. The virtual private network connections, also referred to as microVPN or application-specific VPN, may be specific to particular applications 550, particular devices, particular secured areas on the mobile device, and the like 552. For example, each of the wrapped applications in the secured area of the phone may access enterprise resources through an application specific VPN such that access to the VPN would be granted based on attributes associated with the application, possibly in conjunction with user or device attribute information. The virtual private network connections may carry Microsoft Exchange traffic, Microsoft Active Directory traffic, HTTP traffic, HTTPS traffic, application management traffic, and the like. The virtual private network connections may support and enable single-sign-on authentication processes 554. The single-sign-on processes may allow a user to provide a single set of authentication credentials, which are then verified by an authentication service 558. The authentication service 558 may then grant to the user access to multiple enterprise resources 504, without requiring the user to provide authentication credentials to each individual enterprise resource 504.
  • The virtual private network connections may be established and managed by an access gateway 560. The access gateway 560 may include performance enhancement features that manage, accelerate, and improve the delivery of enterprise resources 504 to the mobile device 502. The access gateway may also re-route traffic from the mobile device 502 to the public Internet 548, enabling the mobile device 502 to access publicly available and unsecured applications that run on the public Internet 548. The mobile device may connect to the access gateway via a transport network 562. The transport network 562 may be a wired network, wireless network, cloud network, local area network, metropolitan area network, wide area network, public network, private network, and the like.
  • The enterprise resources 504 may include email servers, file sharing servers, SaaS applications, Web application servers, Windows application servers, and the like. Email servers may include Exchange servers, Lotus Notes servers, and the like. File sharing servers may include ShareFile servers, and the like. SaaS applications may include Salesforce, and the like. Windows application servers may include any application server that is built to provide applications that are intended to run on a local Windows operating system, and the like. The enterprise resources 504 may be premise-based resources, cloud based resources, and the like. The enterprise resources 504 may be accessed by the mobile device 502 directly or through the access gateway 560. The enterprise resources 504 may be accessed by the mobile device 502 via a transport network 562. The transport network 562 may be a wired network, wireless network, cloud network, local area network, metropolitan area network, wide area network, public network, private network, and the like.
  • The enterprise services 508 may include authentication services 558, threat detection services 564, device manager services 524, file sharing services 568, policy manager services 570, social integration services 572, application controller services 574, and the like. Authentication services 558 may include user authentication services, device authentication services, application authentication services, data authentication services and the like. Authentication services 558 may use certificates. The certificates may be stored on the mobile device 502, by the enterprise resources 504, and the like. The certificates stored on the mobile device 502 may be stored in an encrypted location on the mobile device, the certificate may be temporarily stored on the mobile device 502 for use at the time of authentication, and the like. Threat detection services 564 may include intrusion detection services, unauthorized access attempt detection services, and the like. Unauthorized access attempt detection services may include unauthorized attempts to access devices, applications, data, and the like. Device management services 524 may include configuration, provisioning, security, support, monitoring, reporting, and decommissioning services. File sharing services 568 may include file management services, file storage services, file collaboration services, and the like. Policy manager services 570 may include device policy manager services, application policy manager services, data policy manager services, and the like. Social integration services 572 may include contact integration services, collaboration services, integration with social networks such as Facebook, Twitter, and LinkedIn, and the like. Application controller services 574 may include management services, provisioning services, deployment services, assignment services, revocation services, wrapping services, and the like.
  • The enterprise mobility technical architecture 500 may include an application store 578. The application store 578 may include unwrapped applications 580, pre-wrapped applications 582, and the like. Applications may be populated in the application store 578 from the application controller 574. The application store 578 may be accessed by the mobile device 502 through the access gateway 560, through the public Internet 548, or the like. The application store may be provided with an intuitive and easy to use User Interface.
  • A software development kit 584 may provide a user the capability to secure applications selected by the user by wrapping the application as described previously in this description. An application that has been wrapped using the software development kit 584 may then be made available to the mobile device 502 by populating it in the application store 578 using the application controller 574.
  • The enterprise mobility technical architecture 500 may include a management and analytics capability 588. The management and analytics capability 588 may provide information related to how resources are used, how often resources are used, and the like. Resources may include devices, applications, data, and the like. How resources are used may include which devices download which applications, which applications access which data, and the like. How often resources are used may include how often an application has been downloaded, how many times a specific set of data has been accessed by an application, and the like.
  • FIG. 6 is another illustrative enterprise mobility management system 600. Some of the components of the mobility management system 500 described above with reference to FIG. 5 have been omitted for the sake of simplicity. The architecture of the system 600 depicted in FIG. 6 is similar in many respects to the architecture of the system 500 described above with reference to FIG. 5 and may include additional features not mentioned above.
  • In this case, the left hand side represents an enrolled mobile device 602 with a client agent 604, which interacts with gateway server 606 (which includes access gateway and application controller functionality) to access various enterprise resources 608 and services 609 such as Exchange, Sharepoint, PKI Resources, Kerberos Resources, Certificate Issuance service, as shown on the right hand side above. Although not specifically shown, the mobile device 602 may also interact with an enterprise application store (StoreFront) for the selection and downloading of applications.
  • The client agent 604 acts as the UI (user interface) intermediary for Windows apps/desktops hosted in an Enterprise data center, which are accessed using the HDX/ICA display remoting protocol. The client agent 604 also supports the installation and management of native applications on the mobile device 602, such as native iOS or Android applications. For example, the managed applications 610 (mail, browser, wrapped application, secure container to which a VPN, such as an application-specific policy-controller VPN can connect to) shown in the figure above are all native applications that execute locally on the device. Client agent 604 and application management framework of this architecture act to provide policy driven management capabilities and features such as connectivity and SSO (single sign on) to enterprise resources/services 608. The client agent 604 handles primary user authentication to the enterprise, normally to access gateway (AG) with SSO to other gateway server components. The client agent 604 obtains policies from gateway server 606 to control the behavior of the managed applications 610 on the mobile device 602.
  • The Secure IPC links 612 between the native applications 610 and client agent 604 represent a management channel, which allows client agent to supply policies to be enforced by the application management framework 614 “wrapping” each application. The IPC channel 612 also allows client agent 604 to supply credential and authentication information that enables connectivity and SSO to enterprise resources 608. Finally the IPC channel 612 allows the application management framework 614 to invoke user interface functions implemented by client agent 604, such as online and offline authentication.
  • Communications between the client agent 604 and gateway server 606 are essentially an extension of the management channel from the application management framework 614 wrapping each native managed application 610. The application management framework 614 requests policy information from client agent 604, which in turn requests it from gateway server 606. The application management framework 614 requests authentication, and client agent 604 logs into the gateway services part of gateway server 606 (e.g., NetScaler access gateway). Client agent 604 may also call supporting services on gateway server 606, which may produce input material to derive encryption keys for the local data vaults 616, or provide client certificates which may enable direct authentication to PKI protected resources, as more fully explained below.
  • In more detail, the application management framework 614 “wraps” each managed application 610. This may be incorporated via an explicit build step, or via a post-build processing step. The application management framework 614 may “pair” with client agent 604 on first launch of an application 610 to initialize the Secure IPC channel and obtain the policy for that application. The application management framework 614 may enforce relevant portions of the policy that apply locally, such as the client agent login dependencies and some of the containment policies that restrict how local OS services may be used, or how they may interact with the application 610.
  • The application management framework 614 may use services provided by client agent 604 over the Secure IPC channel 612 to facilitate authentication and internal network access. Key management for the private and shared data vaults 616 (containers) may be also managed by appropriate interactions between the managed applications 610 and client agent 604. Vaults 616 may be available only after online authentication, or may be made available after offline authentication if allowed by policy. First use of vaults 616 may require online authentication, and offline access may be limited to at most the policy refresh period before online authentication is again required.
  • Network access to internal resources may occur directly from individual managed applications 610 through access gateway 606. The application management framework 614 is responsible for orchestrating the network access on behalf of each application 610. Client agent 604 may facilitate these network connections by providing suitable time limited secondary credentials obtained following online authentication. Multiple modes of network connection may be used, such as reverse web proxy connections and end-to-end VPN-style tunnels 618.
  • The Mail and Browser managed applications 610 have special status and may make use of facilities that might not be generally available to arbitrary wrapped applications. For example, the Mail application may use a special background network access mechanism that allows it to access Exchange over an extended period of time without requiring a full AG logon. The Browser application may use multiple private data vaults to segregate different kinds of data.
  • This architecture supports the incorporation of various other security features. For example, gateway server 606 (including its gateway services) in some cases will not need to validate AD passwords. It can be left to the discretion of an enterprise whether an AD password is used as an authentication factor for some users in some situations. Different authentication methods may be used if a user is online or offline (i.e., connected or not connected to a network).
  • Step up authentication is a feature wherein gateway server 606 may identify managed native applications 610 that are allowed to have access to highly classified data requiring strong authentication, and ensure that access to these applications is only permitted after performing appropriate authentication, even if this means a re-authentication is required by the user after a prior weaker level of login.
  • Another security feature of this solution is the encryption of the data vaults 616 (containers) on the mobile device 602. The vaults 616 may be encrypted so that all on-device data including files, databases, and configurations are protected. For on-line vaults, the keys may be stored on the server (gateway server 606), and for off-line vaults, a local copy of the keys may be protected by a user password or biometric validation. When data is stored locally on the device 602 in the secure container 616, it is preferred that a minimum of AES 256 encryption algorithm be utilized.
  • Other secure container features may also be implemented. For example, a logging feature may be included, wherein all security events happening inside an application 610 are logged and reported to the backend. Data wiping may be supported, such as if the application 610 detects tampering, associated encryption keys may be written over with random data, leaving no hint on the file system that user data was destroyed. Screenshot protection is another feature, where an application may prevent any data from being stored in screenshots. For example, the key window's hidden property may be set to YES. This may cause whatever content is currently displayed on the screen to be hidden, resulting in a blank screenshot where any content would normally reside.
  • Local data transfer may be prevented, such as by preventing any data from being locally transferred outside the application container, e.g., by copying it or sending it to an external application. A keyboard cache feature may operate to disable the autocorrect functionality for sensitive text fields. SSL certificate validation may be operable so the application specifically validates the server SSL certificate instead of it being stored in the keychain. An encryption key generation feature may be used such that the key used to encrypt data on the device is generated using a passphrase or biometric data supplied by the user (if offline access is required). It may be XORed with another key randomly generated and stored on the server side if offline access is not required. Key Derivation functions may operate such that keys generated from the user password use KDFs (key derivation functions, notably PBKDF2) rather than creating a cryptographic hash of it. The latter makes a key susceptible to brute force or dictionary attacks.
  • Further, one or more initialization vectors may be used in encryption methods. An initialization vector will cause multiple copies of the same encrypted data to yield different cipher text output, preventing both replay and cryptanalytic attacks. This will also prevent an attacker from decrypting any data even with a stolen encryption key if the specific initialization vector used to encrypt the data is not known. Further, authentication then decryption may be used, wherein application data is decrypted only after the user has authenticated within the application. Another feature may relate to sensitive data in memory, which may be kept in memory (and not in disk) only when it's needed. For example, login credentials may be wiped from memory after login, and encryption keys and other data inside objective-C instance variables are not stored, as they may be easily referenced. Instead, memory may be manually allocated for these.
  • An inactivity timeout may be implemented, wherein after a policy-defined period of inactivity, a user session is terminated.
  • Data leakage from the application management framework 614 may be prevented in other ways. For example, when an application 610 is put in the background, the memory may be cleared after a predetermined (configurable) time period. When backgrounded, a snapshot may be taken of the last displayed screen of the application to fasten the foregrounding process. The screenshot may contain confidential data and hence should be cleared.
  • Another security feature relates to the use of an OTP (one time password) 620 without the use of an AD (active directory) 622 password for access to one or more applications. In some cases, some users do not know (or are not permitted to know) their AD password, so these users may authenticate using an OTP 620 such as by using a hardware OTP system like SecurID (OTPs may be provided by different vendors also, such as Entrust or Gemalto). In some cases, after a user authenticates with a user ID, a text is sent to the user with an OTP 620. In some cases, this may be implemented only for online use, with a prompt being a single field.
  • An offline password may be implemented for offline authentication for those applications 610 for which offline use is permitted via enterprise policy. For example, an enterprise may want an enterprise application to be accessed in this manner. In this case, the client agent 604 may require the user to set a custom offline password and the AD password is not used. Gateway server 606 may provide policies to control and enforce password standards with respect to the minimum length, character class composition, and age of passwords, such as described by the standard Windows Server password complexity requirements, although these requirements may be modified.
  • Another feature relates to the enablement of a client side certificate for certain applications 610 as secondary credentials (for the purpose of accessing PKI protected web resources via the application management framework micro VPN feature). For example, an application may utilize such a certificate. In this case, certificate-based authentication using ActiveSync protocol may be supported, wherein a certificate from the client agent 604 may be retrieved by gateway server 606 and used in a keychain. Each managed application may have one associated client certificate, identified by a label that is defined in gateway server 606.
  • Gateway server 606 may interact with an Enterprise special purpose web service to support the issuance of client certificates to allow relevant managed applications to authenticate to internal PKI protected resources.
  • The client agent 604 and the application management framework 614 may be enhanced to support obtaining and using client certificates for authentication to internal PKI protected network resources. More than one certificate may be supported, such as to match various levels of security and/or separation requirements. The certificates may be used by the Mail and Browser managed applications, and ultimately by arbitrary wrapped applications (provided those applications use web service style communication patterns where it is reasonable for the application management framework to mediate https requests).
  • Application management client certificate support on iOS may rely on importing a PKCS 12 BLOB (Binary Large Object) into the iOS keychain in each managed application for each period of use. Application management framework client certificate support may use a HTTPS implementation with private in-memory key storage. The client certificate will never be present in the iOS keychain and will not be persisted except potentially in “online-only” data value that is strongly protected.
  • Mutual SSL may also be implemented to provide additional security by requiring that a mobile device 602 is authenticated to the enterprise, and vice versa. Virtual smart cards for authentication to gateway server 606 may also be implemented.
  • Both limited and full Kerberos support may be additional features. The full support feature relates to an ability to do full Kerberos login to Active Directory (AD) 622, using an AD password or trusted client certificate, and obtain Kerberos service tickets to respond to HTTP Negotiate authentication challenges. The limited support feature relates to constrained delegation in AFEE, where AFEE supports invoking Kerberos protocol transition so it can obtain and use Kerberos service tickets (subject to constrained delegation) in response to HTTP Negotiate authentication challenges. This mechanism works in reverse web proxy (aka CVPN) mode, and when http (but not https) connections are proxied in VPN and MicroVPN mode.
  • Another feature relates to application container locking and wiping, which may automatically occur upon jail-break or rooting detections, and occur as a pushed command from administration console, and may include a remote wipe functionality even when an application 610 is not running.
  • A multi-site architecture or configuration of enterprise application store and an application controller may be supported that allows users to be service from one of several different locations in case of failure.
  • In some cases, managed applications 610 may be allowed to access a certificate and private key via an API (example OpenSSL). Trusted managed applications 610 of an enterprise may be allowed to perform specific Public Key operations with an application's client certificate and private key. Various use cases may be identified and treated accordingly, such as when an application behaves like a browser and no certificate access is required, when an application reads a certificate for “who am I,” when an application uses the certificate to build a secure session token, and when an application uses private keys for digital signing of important data (e.g. transaction log) or for temporary data encryption.
  • Illustrative Embodiment(S)
  • Many mobile resource management (MRM) solutions (also referred to herein as EMM, MDM and MAM, each of which may include MRM) may face the challenge of managing applications and their associated policies via a common control point managed by corporate information technology (IT) administrators. The actual policies that are available for any particular managed mobile application can vary greatly. Factors such as the particular MRM solution software version, the specific version of MRM tools or SDK used to prepare the application, and the application logic itself can all influence which policies and settings are available for IT administrators to configure and control.
  • Applications themselves can be developed and deployed quickly and updated frequently. As such, it is recognized that efficiencies can be gained by decoupling the policies from the underlying control point in such a way that the policy settings themselves as well as the administrative user interface (U/I) for configuring them need not be hardwired into the control point server software. Without this decoupling, the control point software would need to be upgraded every time a new application policy setting was needed.
  • An improved technique ensures that a wide range of policies, including application-specific policies and settings, can be composed, configured through an administrative interface, and delivered to the deployed applications, without requiring changes to control point software.
  • Enterprises may create (or adapt) their native mobile applications using tools and SDKs associated with the MRM solution they have chosen to deploy. Depending upon the tools or SDK version used to prepare such applications, one can expect that there will be a default set of policies that the MRM system provides automatically. These default policies can be further augmented by an application developer defining their own application specific policies and settings.
  • All policies and settings may be defined using a declarative syntax (metadata) that in some variations may include the various elements associated with each setting. In an example, the metadata is provided in the form of an XML (Extensible Markup Language) document that defines individual elements listed for each setting. For example, to define the beginning and end of a policy file, an XML document may use the tags <policymetadata> and </policymetadata>, respectively. The collection of policy setting may be between section tags <policies> and </policies>. Each policy setting may include elements such as the following:
      • a. Setting identifier, e.g., using special policy setting tags <policy> and </policy>, where the tags mentioned in the following elements are included between;
      • b. Setting group or category identifier, e.g., included between <policycategory> and </policycategory> tags;
      • c. Setting name, e.g., included between <policyname> and </policyname> tags;
      • d. Setting type (Boolean, integer, string, multistring, enum, uniform resource identifier (URI), etc), e.g., included between <policytype> and </policytype>tags;
      • e. Range of possible settings values (if needed dependent on setting type);
      • f. Default setting value, e.g., included between <policydefault> and </policydefault> tags;
      • g. Setting friendly name string (default language plus resource ID for localized name), e.g., included between <policystrings> and </policystrings> tags;
      • h. Setting units and other user interface (U/I) display strings (default language plus references to resource ID for localized strings), e.g., included between <policystrings> and </policystrings> tags;
      • i. Explanation and extended help text strings (default language plus references to resource ID for localized strings), e.g., included between <policystrings> and </policystrings> tags;
  • The various setting group or category identifiers that are available for each policy setting may defined using special <category> and </category> tags, and the collection of setting group or category identifiers may be included between <categories> and </categories> tags. The collection of setting group identifiers and the collection of settings may be included between the <policymetadata> and </policymetadata> tags. Accordingly, an XML document that defines a policy may take the general form similar to the following nested arrangement of XML tags with comments in [ ]:
  • <policymetadata>
     [tag to define version number of policy]
    <versionnumber>1.1</versionnumber>
    <categories>
    <category>
    [example definition for a setting group identifier provided below]
    <categoryid>Access_Auth</categoryid>
    <catlabel res_id=“ACCESS_AUTH ”>Authentication</catlabel>
    </category>
    [additional definitions for setting group identifiers]
    </categories>
    <policies>
    <policy>
    [example definition for a setting provided below]
    <policyname>ReauthenticationPeriod</policyname>
    <policytype>integer</policytype>
    <policycategory>Access_Auth</policycategory>
    <policydefault>480</policydefault>
    <policystrings>
     <title res_id=“REATUH_PERIOD_TITLE”>Reauthentication period
    (minutes)</title>
     <units res_id=“REATUH_PERIOD_UNITS”>minutes</units>
     <description res_id=“REATUH_PERIOD_DESC”>Defines the period
    before a user is challenged to authenticate again. If set to zero, the user is
    prompted for authentication each time app is started or activated. Default value is
    480 minutes (8 hours).</description>
    </policystrings>
    </policy>
    [additional definitions for settings]
    </policies>
    </policymetadata>
  • FIG. 7 illustrates an example method for configuring a policy for a managed application. Additionally, FIG. 7 illustrates a method that is performed by the processing circuitry of one or more computing devices—such as an access gateway, another server under control by an IT administrator of an enterprise (or other user), or another device acting as a control point—when operating in accordance with various software constructs.
  • At step 701, the one or more computing device may receive initial policy settings or other data for inclusion in a policy. For example, application preparation tools may assemble one or more policies (also referred herein interchangeably as policy metadata, setting descriptions, and the like) including, for example, a set of default MRM system-provided policies, which may also include one or more application-specific policies or settings provided by the application developer. Such policies or settings may be packaged directly into the application bundle that will be uploaded to the computing device configured to perform the method of FIG. 7 (e.g., a control point, access gateway 560 of FIG. 5, or the like).
  • When a managed application is uploaded (e.g, for the purpose of publishing the application for enterprise users to consume), the one or more computing devices may proceed to finalize configuration of the policy for the managed application, as illustrated in steps 703-709 of FIG. 7.
  • At step 703, the one or more computing devices may create or otherwise display a user interface (UI) to display various portions of the initial policy settings. For example, upon uploading of the managed application, the one or more computing devices may read the initial policy settings or any other metadata associated with or packaged with the application and may dynamically compose an administrative user interface for all setting descriptions, policy metadata, etc. Further details related to the user interface will be discussed below in connection with FIGS. 12A-12J
  • At step 705, the one or more computing device may receive input via the user interface to set, change, and/or add to one or more of the initial policy settings. For example, the IT administrator (or other user that, for example, has admin privileges) may interact with the various controls of the user interface to perform various actions to set or change a policy including, for example: choosing, modifying, entering, or creating settings that are appropriate for the managed application; or leaving preexisting settings set to the current or default value.
  • At step 707, the one or more computing devices may determine to produce one or more published versions of the policy. In some variations, the determination may be made responsive to input that is received via the user interface from the IT administrator (or other user). Such input may, for example, represent an acceptance of the policy for the managed application or a command to publish the policy.
  • Additionally, the user interface may be configured to allow the IT administrator (or other user) to create multiple policies from the policy settings. Each policy may, for example, be specific to a different user role associated with the enterprise (e.g., one policy for a sales employee; a different policy for a designer, etc.) or application group (e.g., a managed application may be assigned to an application group that provides various constraints or benefits to member applications, such as shared access to data stored in data containers, or the like).
  • At step 709, the one or more computing devices may produce one or more policy files for the managed application. For example, after the IT administrator (or other user) approves the policy for publishing/distribution to one or more mobile devices, a JSON (JavaScript Object Notation) or XML dictionary of key/value pairs representing each defined setting name (dictionary name) and its assigned value may be produced. In some environments, the settings of the policy file represent the corporate policy that should be enforced in order to access resources that are accessible via the access gateway or to execute the managed application.
  • As discussed above, the user interface may be configured to allow the IT administrator (or other user) to create multiple policies from the policy settings. Accordingly, multiple policies may be produced with each policy being specific to a different user role associated with the enterprise (e.g., one policy for a sales employee; a different policy for a designer, etc.) or application group (e.g., a managed application may be assigned to an application group that provides various constraints or benefits to member applications, such as shared access to data stored in data containers, or the like).
  • At step 711, the one or more computing devices may provide the managed application and the policy file available to be available for download by one or more mobile devices. For example, once uploaded and configured, the managed applications and any associated policy can be made available to an enterprise's employees to peruse and choose to install. In some instances the version of the application and the policy that is made available to each user can be based on their role within the organization. Alternatively, such applications and policies can be pushed directly to mobile devices for users who have enrolled or registered their device with a corporate MDM server that provides such a push service.
  • Further, in some instances, distribution of the policy may be separate from distribution of the managed application. For example, when an employee executes a managed application on the mobile device, they may be challenged to authenticate their corporate identity along with passwords and other factors as dictated by corporate policy. After having authenticated the user and/or device, the access manager components of the system may verify that the user is entitled to the application in question and download the JSON or XML policy file that represent the settings that have been established by the administrator for this user or mobile device when using this specific managed application.
  • Transmission of the policy and managed application to the mobile device may, in some variations, be performed using one or more application specific VPN tunnels, such as a MicroVPN (discussed above).
  • After distribution to the user's devices and to enforce the various settings in the policy, the policy file can be consulted by the application or MRM software embedded within the mobile device (e.g., by the client agent 604 of FIG. 6) whenever a policy decision is needed at run time. In some embodiments, the policy may be cached and periodically refreshed to ensure continued compliance with configured administrative settings produce a policy file for the managed application (e.g., an IT administrator may update a policy by performing a method similar to that illustrated in FIG. 7 to change, delete, or add to the policy). Indeed, in some variations, one of the policy settings may dictate a required update frequency to the policy. Alternatively, the MRM system may be configured to check if an updated version of the policy exists when, for example, the access gateway receives an indication that the managed application is executing on the mobile device (e.g., the access gateway receives a request to authenticate the user, mobile device or application; the access gateway receives a request to create an application specific VPN tunnel, the access gateway receives a request to access a resource that is accessible through the access gateway, or the like). If an update exists, the MRM system may transmit the updated version of the policy to the mobile device.
  • In some variations, transmission of an update to the policy may be performed without updating the managed application. Further, the user of the mobile device may be unaware of the update to the policy.
  • As new versions of the EMM toolkit or SDK become available and as new applications are developed and adapted to this system, the available set of policies needed by a current application mix that is installed on a mobile device can grow dramatically. However, no change in control point software is needed to offer administrative control over the new settings surfaced by these newly deployed applications.
  • To configure one or more policies, the settings included in a policy or other metadata, an enterprise may provide a user interface that is usable by an operator to view, create, and edit the policies, applications, and other data related to the same. FIG. 12A-12J illustrate example user interfaces that can be used to configure one or more policies, settings or metadata. In some embodiments, the user interface may be executed by one or more computing devices, such as an access gateway another server under control by an IT administrator of an enterprise, or another device acting as a control point. In particular, the user interface of FIGS. 12A-12J may be usable by an operator or other user with administrator privileges. Accordingly, the operator may be required to log in prior to viewing the user interface displayed in FIGS. 12A-12J. FIGS. 12A-12J as illustrated with an “administrator” being logged in, as indicated at display 1205 of FIG. 12A. While additional details for configuring a policy will be described throughout this disclosure (e.g., in connection with FIG. 7), the example user interfaces will be described, for example, to illustrate various settings that may comprise a policy and other data that an operator may view when an enterprise provides managed applications and policies to mobile devices.
  • As illustrated in FIG. 12A, an example dashboard interface 1210 is shown. The dashboard 1210 may provide a quick snapshot of user activity over a specified period of time (e.g., the last 24 hours of user activity, as shown at 1205). In the illustrated embodiment, the dashboard 1210 displays the total number of users that have logged in via display 1215; the number of applications or resources that have been accessed by those total number of users via display 1225; and the current number of connected user sessions via display 1220.
  • FIGS. 12B-12J illustrate different views of the user interface that provide options for viewing and editing the policies for the applications and resources. The example embodiment organizes the options under “Apps & Docs” tab 1310. The policies may be for resources of various types and the user interface may be organized based on the various types. For example, as illustrated, the user interface of FIG. 12B is organized into a mobile application type 1320, a document type 1365, and a desktop application type 1375. These general resource types may be further divided into sub-type such as by operating system (e.g., mobile application type 1320 is illustrated as being sub-divided into applications for the Android operating system 1330 and iOS operating system 1335; and desktop application type 1375 is illustrated as being sub-divided into applications for the Windows operating system 1380); whether the resource provides a web-based service or a software as a service (SAAS) model (e.g., a type for web service and SaaS model applications 1340); whether the resource functions as a simple link to a website (e.g., a type for a web link application 1345); whether the resource is an application store or marketplace (e.g., a type for public application stores/marketplaces 1350 and a type for enterprise application stores/marketplaces 1360); whether the resource is being provided by a cloud service (e.g., a type for providing documents via a file share service 1370); and whether the resource has been disabled from being available to users (e.g., a type for disabled applications 1355). In some embodiments, these types may not be specified in any policy file or metadata. Indeed, these types may be solely for the benefit of the administrator in navigating the user interface to find the resource policy file in which he or she intends to create/edit. However, in others, the type and sub-type may be specified in a policy file. For example, when the policy is first created, the administrator may specify the type and version number, which can be viewed after policy creation but not editable (e.g., settings 1520 and 1525 of FIG. 12D).
  • After choosing one of the resource types or sub-types, the administrator may be presented with a listing of policies associated with that resource type. As further illustrated in FIG. 12B, the sub-type Android 1330 for the application type 1325 has been selected, and a number of icons are shown as being presented. Included in the icons is an icon for each policy that has been created (e.g., icon 1390 and icon 1395). While FIG. 12B illustrates these icons as being blank, they may include graphics and/or text within the icon's border or surrounding the icon. Also included in the icons is an icon for creating a new policy 1385. While the remaining portion of FIGS. 12C-12J will be described in connection with configuring a policy for a mobile application of the Android operating system, different policy settings and displays may be used for the different resource types.
  • As will be described in connection with FIG. 12C, each policy may also be given a category setting. The administrator may be able to filter the displayed icons by pull-down selector 1315, which lists the various categories of the policies.
  • When an administrator selects an icon (e.g., via a “single-click”), a summary window may appear that provides a few details from the policy file/metadata and a few additional selectable options. For example, when icon 1405 of FIG. 12C is selected, the details may include a display name 1410 for the policy (which is editable at 1510 of FIG. 12D), a description 1415 for the policy (which is editable at 1515 of FIG. 12D), an internal or workflow name 1420 for the policy (which is editable at 1610 of FIG. 12E), a single sign on (SSO) type 1425 for the policy; and a category 1430 for the policy (which is editable at 1545 of FIG. 12D). The additional selectable options may include an option 1435 to disable/enable the policy; an option 1440 to delete the policy; an option 1445 to edit the policy; and an option 1450 to push the policy to users' devices.
  • If the administrator selects to edit the policy via option 1445, a mobile application details screen 1505 may be displayed in the user interface. The details screen 1505 may present an opportunity for the administrator to view and edit various settings of the policy.
  • When it is initially viewed, the mobile application details screen 1505 may first present the settings associated with the details group for the policy (e.g., setting group identifier 1502 for details settings). For example, the resource name that the policy is for may be defined (e.g., mobile application name setting 1510) and a short description of the resource may also be defined (e.g., description 1515). The resource type and resource version may both be viewable (e.g., mobile application type 1520 and mobile application version 1525), and may have been defined when the policy was first created.
  • When the policy is first created, the resource/application that the policy is to be applied to may be analyzed to determine the default settings for the policy. For example, an application can be analyzed to determine the application programming interface (API) calls that it performs and various settings can be included in the policy based on those API calls. As a particular example, if the application makes a call to the mobile device's camera, various settings to block/allow access to the camera may be included in the policy. If no calls are made to the mobile device's camera, setting(s) to block/allow access to the camera may not be included in the policy.
  • The policy may also define various version constraints on the resource. For example, FIG. 12D illustrates a policy setting for enforcing a minimum and maximum operating system version for a mobile application at minimum OS version 1530 and maximum OS version 1535. The policy may also exclude one or more devices from being able to access/install the resource (e.g., excluded devices setting 1540). A category for the policy may be defined (e.g., category setting 1545 and one of the types enumerated by pull-down selector 1315). The policy may include a user role setting to enforce a role a user must be assigned in order to access/install the resource (e.g., assigned role setting 1550). The policy may also include a setting to enforce a requirement that the resource be installed on the mobile device (e.g., require application installation setting 1555). After viewing/editing the various policy settings on the mobile application details screen 1505, the administrator may press the next button 1560 to save the settings of mobile application details screen 1505 to the policy file.
  • After pressing next button 1505, the user interface may display the settings associated with the workflow group for the policy (e.g., setting group 1602 for workflow settings), which is illustrated in FIG. 12E. The settings that can be viewed/edited at mobile application workflow screen 1602 include a setting that distribution of the policy to a user's device requires approval (e.g., approval setting 1605), a setting specifying a workflow name for the policy (e.g., workflow name 1610), and a description of the workflow (e.g., description setting 1615). After viewing/editing the mobile application workflow settings, the administrator may press next button 1620 to save the workflow settings of the mobile application details screen 1505 to the policy file.
  • After pressing next button 1620, the user interface may display the remaining policy settings (e.g., policy settings 1702), which are illustrated in FIGS. 12F-12J. Policy settings 1702 may include the remaining setting groups that are enumerated in the policy including, for example, a setting group for authentication settings (setting group 1705 for authentication settings, as illustrated in FIG. 12F); a setting group for device security settings (setting group 1730 for device security settings, as illustrated in FIGS. 12F and 12G); a setting group for network requirement settings (setting group 1810 for network requirement settings, as illustrated in FIG. 12G); a setting group for miscellaneous access settings (setting group 1830 for miscellaneous network access settings, as illustrated in FIG. 12G); a setting group for encryption settings (setting group 1905 for encryption settings, as illustrated in FIG. 12H); a setting group for application interaction settings (setting group 2005 for mobile application interaction settings, as illustrated in FIG. 12I); a setting group for application restriction settings (setting groups 2025 and 2125 for application restriction settings, as illustrated in FIGS. 12I and 12J); and a group for network access settings (setting group 2105 for network access settings, as illustrated in FIG. 12J).
  • As illustrated in FIG. 12F, a policy file may include various settings defined as part of an authentication settings group identifier (e.g., those illustrated in FIG. 12F as being part of setting group 1705).
  • Authentication group settings may include authentication setting 1710, which may define what level of authentication is required, such as whether a networked log-on with the access gateway is required before accessing the application, whether offline access of the application is permitted, whether access of the application can only be performed when offline, or whether authentication is not required to access the application.
  • The policy may also specify a maximum offline period setting 1715, which specifies a time period that, when exceeded by the mobile device, would cause the mobile device to challenge the user for the enterprise logon before allowing access to the application. As illustrated, maximum offline period setting 1715 is set for 72 hours. In some embodiments, the minimum amount is 1 hour. Additionally, in some arrangements where authentication setting 1710 is set to requiring a networked-log on, the user will be reminded that a networked log-on will be required at various times before the period expires (e.g., 30 minutes, 10 minutes, etc.), and, after expiration, the application remains locked until the user completes a successful network log-on. Alternatively, if the authentication setting 1710 is set to requiring a networked log-on, setting 1715 may be ignored with no offline access allowed.
  • The policy may also specify a re-authentication period setting 1720, which defines a period where when it is expired and the application is re-started, a user is challenged to re-authenticate. In some arrangements, if set to zero, the user is prompted for authentication each time app is started or activated. As illustrated, re-authentication period setting 1720 is set for 480 minutes (e.g., 8 hours). Accordingly, when the application is re-started after 8 hours from a previous authentication, the user will be required to re-authenticate (e.g., supply the log-on username and password).
  • The policy may also specify a domain name of the access gateway that the mobile device is to use when authenticating. As illustrated, gateway domain name setting 1725 allows an administrator to specify a fully qualified domain name (FQDN) of an access gateway that will handle authentication.
  • As illustrated in FIGS. 12F and 12G, a policy file may include various settings defined as part of a device security settings group identifier (e.g., those illustrated in FIGS. 12F and 12G as being part of setting group 1730).
  • Device security settings group 1730 may include a setting specifying whether to block jailbroken or rooted devices. For example, block jailbroken setting 1735, if set to “on” the application is locked when the device is jailbroken or rooted. If setting 1735 is set to “off” the application can run even if the device is jailbroken or rooted.
  • The policy may also include a require device encryption setting 1740. If require device encryption setting 1740 is set to “on” data stored on the mobile device will be encrypted (e.g., in accordance with the encryption settings group, as discussed below). If require device encryption setting 1740 is set to “off” the data stored on the mobile device is not encrypted.
  • The policy may also include a require device PIN (personal identification number) or password setting 1745. If setting 1745 is set to “on” the user will be required to lock/unlock the mobile device using a PIN or password. If set to “off” the mobile phone will not be required to be locked via a PIN or password.
  • The policy may also include a require device pattern screen lock setting 1805. If setting 1805 is set to “on” the user will be required to lock/unlock the mobile device using a pattern screen lock mechanism. If set to “off” the mobile phone will not be required to be locked via a pattern screen lock mechanism.
  • As illustrated in FIG. 12G, a policy file may include various settings defined as part of a network requirements settings group identifier (e.g., those illustrated in FIG. 12G as being part of setting group 1810).
  • Network requirements setting group 1810 may include a require WiFi setting 1815. If setting 1815 is set to “on” the application will be locked when the device is not connected to a WiFi network (e.g., 3G, 4G, LAN connection, etc.). If setting 1815 is set to “of” the application will be able to run even if the mobile device does not have an active WiFi connection.
  • The policy may also include a require internal network setting 1820. If setting 1820 is set to “on” the application is allowed to run on the mobile device only when the mobile device is connected inside the enterprise network. If setting 1820 is set to “off” the application can run from an external network.
  • The policy may also include an internal WiFi network setting 1825. Setting 1825 may be defined by a comma separated list of allowed internal WiFi network identifiers (e.g., SSID). In some arrangements, this setting applies only when connected via an internal enterprise network. For example, when the mobile device is connected from inside the enterprise network, application access is blocked unless the device is connected via one of the listed network identifiers. If setting 1825 is empty, any internal WiFi network may be used. If logged on from an external network (or not logged on), this setting may not enforced.
  • As illustrated in FIG. 12G, a policy file may include various settings defined as part of a miscellaneous access settings group identifier (e.g., those illustrated in FIG. 12G as being part of setting group 1830).
  • Miscellaneous access setting group 1830 may include an update grace period setting 1835. Setting 1835 may define the grace period within which the application may continue to be used after the system has discovered that an update is available.
  • The policy may also include an authentication failure setting 1840. Setting 1840 may define a number of consecutive failed offline password challenges that will cause the application to become locked. Once locked, the application may only be unlocked through a successful network log-on. In some arrangements, if setting 1840 is set to zero, authentication failures will never cause the application to become locked.
  • The policy may also include an erase application data setting 1845. Setting 1845 may define whether application data should be deleted when the application is locked. If setting 1845 is set to “on” data maintained by the application may be erased when the application is locked. Erasing such data may effectively reset the application to its original installed state. If setting 1845 is set to “off” data maintained by the application is not erased when the app is locked. An application can be locked for various reasons such as, for example: loss of application entitlement for the user; application subscription removed; user account removed by the enterprise, too many application authentication failures, the mobile device being jailbroken or rooted without policy permitting application access when the device is jailbroken/rooted, device placed in lock state by administrative action, and the like.
  • The policy may also include an active poll period setting 1850. Setting 1850 defines a poll period for reaching the application controller and providing the application controller with information about the lock/erase status of the mobile device and the enable/disable status of the application. After a successful poll, the interval may be restarted and a new poll will again be attempted upon expiration of the specified poll period.
  • As illustrated in FIG. 12H, a policy file may include various settings defined as part of an encryption settings group identifier (e.g., those illustrated in FIG. 12H as being part of setting group 1905).
  • Encryption settings group 1905 may include an encryption keys setting 1910 to allow how encryption keys are managed. For example, if setting 1910 is set to “online access only” data used to derive encryption keys cannot be persist on the device (e.g., be stored in a long-term storage). Instead, such data must be recovered from the enterprise each time the encryption keys are to be derived. If setting 1910 is set to “offline access permitted” data used to derive encryption keys can persist on the device. In some arrangements, if setting 1910 is set to “online access only” authentication setting 1710 is enforced to be set to “network logon.”
  • The policy may also include a private file encryption setting 1915 that specifies a security group which can access the application's private files. This allows for different applications assigned to the specified security group to derive the keys used to encrypt/decrypt the private files.
  • The policy may also include a private file encryption setting 1920 that specifies exclusions to databases/specific locations where private files/data will not be automatically encrypted.
  • The policy may also include an access limit setting 1925 that specifies access limits for public files.
  • The policy may also include a public file encryption setting 1930 that specifies a security group which can access the application's public files. This allows for different applications assigned to the specified security group to derive the keys used to encrypt/decrypt the public files.
  • The policy may also include a public file encryption setting 1935 that specifies exclusions to databases/specific locations where public files/data will not be automatically encrypted.
  • The policy may also include a public file migration setting 1940 that specifies the access permissions that public files are assigned.
  • As illustrated in FIG. 12I, a policy file may include various settings defined as part of an application interaction settings group identifier (e.g., those illustrated in FIG. 12I as being part of setting group 2005).
  • Application interaction setting group 2005 may include a security group setting 2010 that specifies a security group for the policy. In some arrangements, when this setting is set to blank, all applications can exchange data with the application. In some embodiments, when this application is given one or more comma separated security group identifiers, only security groups matching one of the listed identifiers will be able to exchange data with the application.
  • The policy may also include a cut and copy setting 2015 that, for example, specifies whether the application is able to perform cut and copy operations (e.g., blocked or unrestricted), or whether the application is only able to cut and copy operations with applications in its security group (e.g., restricted). When setting 2015 is set to “restricted” cut or copied data is placed in a private clipboard that is only available to applications having the same security group as the application. A similar setting could be included in a policy related to paste operations.
  • The policy may also include a document exchange setting 2020. Setting 2020, in some variations, blocks, permits, or restricts document exchange operations for this application (e.g., by being set to blocked, unrestricted or restricted). When setting 2020 is set to “restricted” data can be exchanged only with other applications having the same security group as the application.
  • As illustrated in FIGS. 12I and 12J, a policy file may include various settings defined as part of an application restriction settings group identifier (e.g., those illustrated in FIGS. 12I and 12J as being part of setting group 2025 and setting group 2125).
  • Application restriction settings group 2125 may include a disable diagnostic logging setting 2030. If setting 2030 is set to “on” the application is unable to interact with the mobile device's diagnostic logging operations. If set to “off” the diagnostic logging operations are allowed to be performed for the application.
  • The policy may also include a block camera setting 2035. If setting 2035 is set to “on” the application may be unable to access the mobile device's camera. If set to “off” the application may be able to access the mobile device's camera.
  • The policy may also include a block microphone record setting 2040. If setting 2040 is set to “on” the application may be unable to record data via the mobile device's microphone. If set to “off” the application may be able to access/record from the mobile device's microphone.
  • The policy may also include a block location services setting 2045. If setting 2045 is set to “on” the application may be unable to access the mobile device's location services (e.g., global positioning services (GPS)). If set to “off” the application may be able to access the mobile device's location services.
  • The policy may also include a block short messaging service (SMS) setting 2050. If setting 2050 is set to “on” the application may be unable to access the mobile device's SMS compose function. If set to “off” the application may be able to access the mobile device's SMS compose function.
  • The policy may also include a block screen capture setting 2130. If setting 2130 is set to “on” the application may be unable to access the mobile device's screen capture function. If set to “off” the application may be able to access the mobile device's screen capture function.
  • The policy may also include a block device sensor setting 2135. If setting 2135 is set to “on” the application may be unable to access the mobile device's sensors (e.g., acceleration, orientation sensors, and the like). If set to “off” the application may be able to access the mobile device's sensors.
  • As illustrated in FIG. 12J, a policy file may include various settings defined as part of a network access settings group identifier (e.g., those illustrated in FIG. 12J as being part of setting group 2105).
  • Network access settings group 2105 may include a network access setting 2110. Setting 2110 can have various values related to preventing, permitting or redirecting network activity that is attempted by/intended for the application. For example, if setting 2110 is set to “unrestricted” no restrictions are placed on the network access of the application. If setting 2110 is set to “blocked” all network access is blocked. If setting 2110 is set to “tunneled to the internal network” an application-specific VPN tunnel back to the access gateway may be required for all network access.
  • The policy may include a certificate label setting 2115 that allows for a particular certificate to be used for network access.
  • The policy may include an authentication support setting 2120 that specifies whether a user should be authenticated before allowing network access.
  • After viewing/editing the various policy settings, the administrator may press save button 2140 to save the policy settings to the policy file.
  • The above settings are meant to only be examples of the types of settings that could be included in a policy. Variations on the above settings or different settings not discussed above could be included in a policy.
  • For example, additional types of policy settings not shown in FIGS. 12A-12J include, for example, a disable e-mail setting that blocks/allows access to the mobile device's e-mail functions; a disable paste setting that blocks/allows paste operations; a disable print setting that blocks/allows access to the mobile device's print functions; a disable cloud setting that blocks/allows access to the mobile device's cloud services; and one or more network traffic filters.
  • One example of a traffic filter is an outbound traffic filter. Some applications, such as iOS applications, can dispatch uniform resource locator (URL) requests to other applications that have been registered to handle specific schemes (such as “https://”). Such an outbound traffic filter setting may provide a mechanism for an application to pass requests for help to another application. This setting serves to filter the URLs that are passed from this application to other applications. In some arrangements, the value of the setting should be formatted as a comma separated list of patterns where each pattern may be preceded by a plus “+” or minus “−”. Outbound URLs can be compared against the patterns in the order listed until a match is found. Once matched, the action taken may be dictated by the prefix. A minus “−” prefix blocks the URL from being passed out to another application. A plus “+” prefix permits the URL to be passed out to another application for handling. If neither “+” or “−” is provided with the pattern, a default action may be taken (e.g., allow is assumed). A pair of values separated by “=” may indicate a substitution where occurrences of the first string are replaced with the second. The regular-expression “̂” prefix may be used to require the pattern to occur at the beginning of the URL. In some embodiments, if an outbound URL does not match any pattern in the list, it will be blocked. A similar filter setting could be constructed for an inbound network traffic filter.
  • By relying on a comprehensive metadata description of all policies and settings associated with managed applications that, in some instances, may be embedded within the application bundle itself, the administrative control point for the policies can dynamically compose user interface for these settings, thereby decoupling the back end EMM server software from the specific knowledge of policies to be offered.
  • Further, this data driven description of policy settings may simplify delivery of policy settings dynamically to an application at runtime without any middleware knowledge of the semantics of these settings.
  • FIG. 8 illustrates an example environment in which various policies may be configured. The environment of FIG. 8 provide additional details not shown in FIGS. 5 and 6 and, specifically, show various aspects related to configuring policies for managed applications, as described herein (e.g., in connection with FIG. 7 and in connection with the below-described methods of the remaining figures). As shown, a mobile device 810 may communicate, e.g., over the Internet or some other network, with MRM system 830. The MRM system 830 may include, for example, an authentication server 832 (e.g., that provides authentication services, such as those described in connection with FIG. 5), an application store 834 (e.g., application store 578 of FIG. 5), and an administrative user interface generator 836, or any of the other components described above in connection with FIGS. 3 through 6 (e.g., MRM system 830 may include an access gateway or other component). Such other components are omitted from FIG. 8 for simplicity.
  • In some embodiments, an application developer 840 may develop an application 812 that is to be managed by one or more policies. The application developer may also produce initial policy metadata 846. The policy metadata 846 may define a set of policies for controlling data flow into and/or out of the managed application 812. In some instances, the policy metadata may include a first set of policy metadata that is general to the MRM system 830 and a second set of policy metadata that is specific to the managed application 812. The application developer 840 (or multiple developers) may develop multiple mobile applications, each with metadata general to the MRM system 830 and with application-specific metadata.
  • The managed application 812 and policy metadata 846 may be received at the MRM system 830 (e.g., received from application developer 812) and provided to other otherwise received by the administrative UI generator 836. Upon receiving the managed application 812 and policy metadata 846, the administrative UI generator 836 may dynamically generate an administrative UI 850. An administrator, such as an IT administrator, can then view the policy metadata 846 via a viewing component of UI 850 and customize the policy settings included in the policy metadata 846, e.g., based on rules of the MRM system 830 and/or other considerations. Subsequent to the administrator's customizations is policy 856, which may be an XML file, and may include one or more settings different from policy metadata 846 (e.g., policy metadata 846 may include a setting not included in policy 856, policy metadata 846 may not include a setting included in policy 856, etc.). In an example, the policy 856 may be in the form of a dictionary of policy names and values (e.g., key/values pairs), which may be included in an XML or JSON file, for example.
  • With the settings of the policy 856 established, the managed application 812 may be made available to users via the application store 834. Users, such as a user of the mobile device 810, can log on to the MRM system 830 by, for example, submitting authentication requests 814 to the authentication server 832 (e.g., via a MicroVPN tunnel and an access gateway, as illustrated in FIG. 5) and receiving authentication responses 816. Authenticated users can view applications in the application store 834 and download them to their mobile devices. For example, the user of the mobile device 810 can download the managed application 812 from the application store 834.
  • In some variations, when the user downloads the managed application 812, the user may also receive the policy 856. The application 812, based on software installed on the mobile device (e.g., the client agent as described in connection with FIG. 6) can then be executed in such a way as to constrain its operation on the mobile device 810 in accordance with the policy 856.
  • Additionally, the managed application 812 may be specially designed or adapted for use with the MRM system 830 or enterprise. In other words, the managed application can be considered to be not an application that general users can download for their own personal activities (e.g., news apps, Facebook app, etc.). In some examples, the managed application 812 may be designed especially for the MRM system 830. In other examples, the application 812 may be a widely used application that is adapted specifically for use with the MRM system 830. For example, the application 812 may be injected with additional code that enables the application to conform with the framework of the MRM system 830. Such code can be compiled into the application 812 using an SDK. Alternatively, such code may be applied as a wrapper around the general-use application. Such “wrapping” may provide one or more interfaces to adapt the application 812 specifically for use with the MRM system 830. In general, the additional code may, for example, divert application programming interface (API) calls from the application 812 through the policy 856, such that the policy 856 is applied to control the behavior of the application 812 on the mobile device 810.
  • The application developer(s) 840 can periodically provide updated versions of the policy metadata 846. Such updates can be used to generate (via the administrative UI generator 836) an updated version of policy 856. In some examples, the updated version of policy 856 can be pushed to the mobile device 810 to update the policy in use.
  • In some examples, the policy 856 residing on the mobile device 810 may be refreshed periodically, or in response to certain events, such as starting the application 812 on the mobile device 810, in response to a MicroVPN connection being created between the mobile device 810 and an access gateway of the MRM system 830, or in accordance with a setting of policy 856 that directs mobile device 810 to request an update to the policy 856.
  • Having described certain embodiments, numerous alternative embodiments or variations can be made. For example, the MRM system 830 has been shown and described as a server accessible via a network, such as the Internet, and may be implemented with both a server portion and a client portion that runs on the mobile device 810.
  • A policy may include any type of setting that an IT administrator or application developer may wish to implement for a managed application In connection with the numerous different settings that an IT administrator or application developer may wish to implement for a managed application, a few additional embodiments and variations will be described in connection with FIGS. 9 through 11.
  • For example, temporal and geographic restrictions on data access may be useful in some variations. Accordingly, an administrator may deploy a policy that restricts the availability of the data (stored within the container) to a specified time window and/or a geographic zone (e.g., as determined by a GPS chip of the mobile device) within which the mobile device must be currently located in order to access the data. Further, the policy can instruct deletion of data from the container or otherwise make them unavailable when the specified time period expires or if the mobile device is taken outside of the defined geographic zone. One example method for configuring and providing a policy that includes a setting to delete data will be discussed below in connection with FIG. 9.
  • As another example, it may be important to include settings that constrain or otherwise affect how the application is to be executed. For example, a policy may specify how data associated with the mobile application is to be stored by the mobile device and/or how file system APIs called by the application are to be redirected and/or how data associated with the mobile application is to be processed by the mobile device. One example method for configuring and providing a policy that includes one or more settings for managing execution of a managed application will be discussed below in connection with FIG. 10.
  • As another example, it may be important to include settings that are specific to a user's role in the enterprise, such as what department he or she is employed within the enterprise (e.g., sales, engineering, etc.). It may also be important to include settings related to authenticating a user when the mobile application is executing (e.g., a setting that specifies a token that can be used to authenticate a user when creating a MicroVPN connection specific to the managed application and that enables access by the mobile device/application to one or more resources that are accessible via an access gateway). One example method for configuring and providing a policy that includes one or more settings related to user authentication and/or user identification will be discussed below in connection with FIG. 11.
  • FIG. 9 illustrates an example method for configuring and providing a policy that includes a setting to delete data in accordance with various aspects of the disclosure. Additionally, FIG. 9 illustrates a method that is performed by the processing circuitry of one or more computing devices—such as an access gateway, another server under control by an IT administrator of an enterprise, or another device acting as a control point—when operating in accordance with various software constructs.
  • At step 901, the one or more computing device may receive initial policy settings or other data for inclusion in a policy. This step may proceed similar to step 701 of FIG. 7.
  • At step 903, the one or more computing devices may create a user interface (UI) to display various portions of the initial policy settings. This step may proceed similar to step 703 of FIG. 7.
  • At step 905, the one or more computing device may receive input via the user interface to set, change, and/or add to one or more settings related to providing a selective wipe on a mobile device (e.g., a selective wipe setting). Aspects of this step may proceed similar to step 705 of FIG. 7.
  • An IT administrator may provide input specifying one or more conditions that, when not met by the mobile device, instruct deletion of data or instruct the mobile device to perform a selective wipe. For example, an IT administrator may provide input via the UI that specifies one or more temporal or geographic restrictions for data associated with the managed application. Accordingly, one or more policy settings may be set, changed and/or added to restrict the availability of data to a specified time window and/or a geographic zone (e.g., as determined by a GPS chip of the mobile device) within which the mobile device must be currently located in order to access data.
  • An IT administrator may provide input specifying one or more conditions that, when met by the mobile device, instruct deletion of data or instruct the mobile device to perform a selective wipe. For example, one or more settings may be set, changed and/or added via the UI that specify one or more operating conditions of the mobile device. Such operating conditions may include, for example, an attempt to jailbreak the mobile phone, install an application on a blacklist, a number of failed attempts to log-in to the mobile device, an attempt to uninstall the managed application, switch from a managed application to an unmanaged application, switch from the managed application being stored in a managed partition of the mobile device to an unmanaged partition, receive a message specifying that the user no longer is employed by the enterprise, or otherwise use the mobile device in a disallowed configuration. Other operating conditions may include deleting data according to a specified schedule (e.g., daily, weekly) or when a secure container has or exceeds a threshold amount of stored data. As the device is operated, software on the device may monitor for the one or more operating conditions and when the operating conditions are met, may perform a selective wipe or delete data from the mobile device in accordance with the policy setting. Further details as to how the mobile device performs a selective wipe or deletes data is described below in connection with step 909.
  • The IT administrator may also be able to set, change and/or add specific data that is to be deleted when performing the selective wipe. For example, a specific data container's identifier or resource name may be included in the policy setting so that any data stored in the data container (e.g., secure data container 528 of FIG. 5, the private data vault or shared data vault of FIG. 6, etc.). The policy setting may also specify that a user's mobile device is deleted of all enterprise application(s) and corporate data when performing the selective wipe based on the policy setting.
  • At step 907, the one or more computing devices may determine to produce one or more published versions of the policy. This step may proceed similar to step 707 of FIG. 7.
  • At step 909, the one or more computing devices may produce one or more policy files for the managed application that include the selective wipe setting. This step may proceed similar to step 709 of FIG. 7.
  • The policy file produced by this step can be used by the mobile device to enforce the selective wipe settings. Accordingly, the policy can cause the mobile device or application to perform various actions based on any selective wipe setting included in the policy file. Generally, any of the above (or other) conditions described above in connection with step 905 may form the basis for actions that the mobile device or application is caused to perform.
  • For example, if the mobile device does not meet the conditions of a selective wipe setting (or does meet conditions, depending on what type of constraint the setting applies), the mobile device may, in response, perform a selective wipe as defined by the selective wipe setting.
  • As one example, a selective wipe may be performed by the mobile device as follows. The mobile device may begin by monitoring the operating conditions of the mobile device (e.g., monitor for when the user discontinues employment, violates a corporate policy such as if they jailbreak their device or otherwise use it in a disallowed configuration, or the like). Based on any selective wipe setting included in the policy and the monitored conditions, the mobile device may determine to perform a selective wipe of data. For example, if a selective wipe setting specifies a number of failed attempts that result in performance of a selective wipe and the mobile device detects a sufficient number of consecutive failed attempts to enter a valid passcode (e.g., 5 or 10), the mobile device may determine to perform a selective wipe.
  • Generally, any of the above (or other) conditions described above in connection with step 907 may form the basis of the determination of when the mobile device performs a selective wipe. To enforce the policy, the mobile device may compare the monitored conditions to one or more policies and if the conditions match a condition specified in the policy that commands a selective wipe, the mobile device may determine to perform a selective wipe.
  • In some embodiments, the mobile device may perform a check to determine whether it has the most up to date policies that form a basis for performing the selective wipe. For example, in some instances, the mobile device may be performing a polling mechanism in a background thread that periodically polls for updates to the policies installed on the mobile device. In others, the mobile device may, prior to performing the selective wipe, send a message to the access gateway that indicates a selective wipe is about to be performed. In addition to indicating that the selective wipe is about to be performed, the message may include an indication of the version number of the policy that formed the basis for determining to perform the selective wipe. Responsive to receiving the message, the access gateway may determine whether the mobile device has the most-up-to date policy settings (e.g., determine whether the policy should be updated or not) and, based on the determination, may respond with an acknowledgement that indicates the mobile device has the most up-to-date policy settings or respond with an update to the policy. After receiving the message or update, the mobile device may proceed with performing the selective wipe or re-determine whether the selective wipe should be performed based on the updated policy.
  • The mobile device may continue the selective wipe process by, for example, determining one or more secure containers for the selective wipe. For example, the mobile device may determine which secure containers contain the data of the one or more managed applications. This determination may be based on information specified by the policy.
  • After determining to perform the selective wipe and determining which containers to delete from, the mobile device may delete or otherwise make inaccessible the data of the one or more secure containers in accordance with the policy. For example, a container may be configured to allow the client agent or mobile device to read from, write to, and/or delete information from the container's file system. Deleting data from the container can include deleting actual data stored in the container, deleting pointers to data stored in the container, deleting encryption keys used to decrypt data stored in the container, and the like. The container can enable some or all of the enterprise data stored in its file system to be deleted without modifying other data stored on the mobile device outside of the container.
  • After performing the selective wipe, the mobile device may transmit a selective wipe acknowledgement to the enterprise. Such an acknowledgement may provide an indication to the enterprise that the selective wipe was successful. The acknowledgement may include a listing of applications and/or listing of secure containers that were affected/deleted by the selective wipe. The acknowledgement may also include a version number of the policy that included the selective wipe settings so that a computing device (e.g., the access gateway) can confirm that the most up-to-date version of the selective wipe settings were used. Upon receipt, the enterprise (e.g., access gateway) may update its stored records accordingly.
  • At step 911, the one or more computing devices may provide the managed application and the policy file to be available for download by one or more mobile devices. This step may proceed similar to step 711 of FIG. 7.
  • FIG. 10 illustrates an example method for configuring and providing a policy that includes one or more settings related to application management of a managed application. Additionally, FIG. 10 illustrates a method that is performed by the processing circuitry of one or more computing devices—such as an access gateway, another server under control by an IT administrator of an enterprise, or another device acting as a control point—when operating in accordance with various software constructs.
  • At step 1001, the one or more computing device may receive initial policy settings or other data for inclusion in a policy. This step may proceed similar to step 701 of FIG. 7.
  • At step 1003, the one or more computing devices may create a user interface (UI) to display various portions of the initial policy settings. This step may proceed similar to step 703 of FIG. 7.
  • At step 1005, the one or more computing device may receive input via the user interface to set, change, and/or add one or more settings related to application management of a managed application (e.g., an application management setting). Aspects of this step may proceed similar to step 705 of FIG. 7.
  • In some arrangements, the UI administrator may provide input to set, change, or add a setting that specifies how data associated with the mobile application is to be stored by the mobile device and/or how file system APIs called by the application are to be redirected and/or how data associated with the mobile application is to be processed by the mobile device.
  • For example, the IT administrator may assign one or more secure containers to the mobile application. Accordingly, the policy may include one or more identifiers or resource names for the assigned secure container(s).
  • As another example, in some instances, the mobile device may have previously used a different application prior to using the managed application (e.g., a previous corporate e-mail application) and the previous application may not have enforced similar security settings that will be applied to the managed application (e.g., the previous corporate e-mail application did not encrypt the data of the inbox or the like). Accordingly, one or more application management settings may be included in the policy so that legacy data will be processed when the application is configured in order to provide the user with access to the legacy data in accordance with the different security protocols being applied to the managed application.
  • An IT administrator may configure the policy so that, for example, it includes a location of the legacy data is defined within the policy and/or includes an indication that the mobile device is to transfer legacy data for the managed application when configuring the application. The policy may also define an amount of legacy data to move to the secure containers (e.g., a maximum amount of raw data, a number of days of e-mails, all data, etc.). In some arrangements, the legacy data may be stored remotely, such as by an enterprise resource.
  • The IT administrator may also provide input that specifies encryption and/or decryption keys for use when a mobile device or application wants to read, write or otherwise access a secure container on the mobile device when the managed application is running. Such a policy may link a specified encryption/decryption key to one or more secure containers by specifying one or more secure container identifiers or resource names. For example, encryption or decryption keys may be assigned based on a tuple of user, device, and application or application group, and the policy may include information identifying the tuple (e.g., an identifier of the user, identifier of the mobile device, and identifier of the application or application group).
  • The IT administrator may also provide input that specifies how and/or how often the encryption and decryption keys should be updated or refreshed. For example, the setting may include a time to live for each key so that when the time expires, the mobile device must retrieve new keys via the access gateway. In some arrangements, such settings may also specify that the new keys are retrieved via an application specific VPN, such as a MicroVPN tunnel.
  • The IT administrator may also provide input that specifies which application group the managed application belongs to. Such an application management setting may include an identifier or resource name for a shared data vault that is accessible by other members of the application group.
  • The IT administrator may also provide input that specifies one or more secure data container that read or write operations from the managed application are to be redirected to when the mobile device executed the managed application. In some arrangements, one of the secure data containers may be a private secured data container that is accessible to only the managed application (e.g., the private app data vault of FIG. 6). In others, one or more of the secure data containers may be a shared data container (e.g., shared data vault of FIG. 6) that, for example, is accessible to applications of the same application group.
  • At step 1007, the one or more computing devices may determine to produce one or more published versions of the policy. This step may proceed similar to step 707 of FIG. 7.
  • At step 1009, the one or more computing devices may produce one or more policy files for the managed application that include the application management setting(s). This step may proceed similar to step 709 of FIG. 7.
  • The policy file produced by this step can be used by the mobile device to enforce the application management settings. Accordingly, the policy can cause the mobile device or application to perform various actions based on any application management setting included in the policy file. Generally, any of the above (or other) conditions described above in connection with step 1005 may form the basis for actions that the mobile device or application is caused to perform.
  • For example, when the mobile device configures the managed application, the mobile device may also configure one or more secure containers in accordance with the policy file. Based on the policy, the mobile device may determine whether the assigned containers have been properly created and configured on the mobile device. If a container does not already exist, a new empty vault is initialized, including a file system for the container (e.g., empty directory tree). An access manager for the container may also be configured. In some embodiments, a secure container can be a logical interface into which read or write operations are redirected and in which data is in an encrypted form. The access manager of a secure container may govern access to the file system by applications and other components of the mobile device.
  • A software component, such as the client agent of the mobile device, may also be configured based on the policy. For example, an interception layer may also be configured to be aware of any of the secure containers specified by the policy. To configure the interception layer, it may be configured with information linking the identifiers or resource identifiers for the secure containers to one or more API calls that will be issued by the application during execution and may be configured with the locations of the keys that will be used when encrypting/decrypting data to/from the application. In such a way, the interception layer may intercept such calls when the application is executing and redirect the calls to the appropriate secure container in accordance with the policy and, in some variations, without the application being aware of the interception.
  • If the policy specifies that legacy data for the managed application is to be configured for the application, the mobile device may perform such configuring of the legacy data accordingly. For example, the mobile device may retrieve, from the location where the legacy data is stored, and/or an amount of data in accordance with the policy. The mobile device may then encrypt the data in accordance with the policy (e.g., using the encryption protocols specified by the policy and using the keys specified by the policies). Some data may be encrypted using different keys based on which of the one or more secure containers they will be stored into. After encrypting the legacy data, the mobile device may store the now-encrypted legacy data into the specified secure container (as determined by the policy). In some instances, the policy may specify that some data is to be stored in one container (e.g., a private container), while other data is to be stored in a different container (e.g., a shared container). Accordingly, the data may be stored into the appropriate containers in their encrypted form. Such storage may be performed by updating or creating references to the location of the encrypted data in the secure container's file system. In some instances, after successfully processing the legacy data, any legacy data that remains on the mobile device in its unencrypted form may be deleted from the mobile device (such deletion may also be specified by the policy).
  • At step 1011, the one or more computing devices may provide the managed application and the policy file to be available for download by one or more mobile devices. This step may proceed similar to step 711 of FIG. 7.
  • FIG. 11 illustrates an example method for configuring and providing a policy that includes one or more settings related to user authentication and/or user identification in accordance with various aspects described herein. Additionally, FIG. 11 illustrates a method that is performed by the processing circuitry of one or more computing devices—such as an access gateway, another server under control by an IT administrator of an enterprise, or another device acting as a control point—when operating in accordance with various software constructs.
  • At step 1101, the one or more computing device may receive initial policy settings or other data for inclusion in a policy. This step may proceed similar to step 701 of FIG. 7.
  • At step 1103, the one or more computing devices may create a user interface (UI) to display various portions of the initial policy settings. This step may proceed similar to step 703 of FIG. 7.
  • At step 1105, the one or more computing device may receive input via the user interface to set, change, and/or add a setting related to user authentication or user identification (e.g., a user authorization setting or a user identification setting). In some arrangements, such a setting may provide a condition for authorizing or identifying a user in connection with providing the access to one or more resources that are accessible through an access gateway. Aspects of this step may proceed similar to step 705 of FIG. 7.
  • In some arrangements, an IT administrator may set, change and/or add a setting that specifies (or includes) a ticket or token (these terms will be used interchangeably herein). Such tokens can be used by the mobile device in order to authenticate the user in a transparent manner. That is, one or more tickets are provided to the mobile device from the enterprise in an effort to avoid burdening the user to re-authenticate. When attempting to access an enterprise resource or initiating a secure connection to the enterprise resource, the mobile device may provide the ticket to the access gateway instead of reauthenticating (e.g., instead of requiring the user to input or otherwise provide his or her credentials, such as a username and/or password).
  • Such tickets, however, may expire and the IT administrator may specify the expiration time or expirations conditions of the ticket. If such tickets expire, operations that required tickets instead now require that the user re-authenticate. In some variations, a ticket may be one-time use and/or time-based, and impose constraints and/or privileges to the application or user when accessing an enterprise resource. For example, a ticket may be specified as valid for a two-week period, or some other shorter or longer time period as the enterprise operator wishes (e.g., provide short-lived or longer-lived access). In some arrangements, access control is structured so that the level of security diminishes over time. For instance, some applications which should have high security may be provided tickets that expire more quickly (e.g., after a predefined amount of time such as an hour, 15 minutes, etc.). Other tickets associated with applications of lower security may expire at a later time (e.g., after a later predefined amount of time such as a day, etc.). Other ticket-based techniques for imposing different levels of security based on time or other measure (e.g., number of logins) are suitable for use as well.
  • As one example of a ticket's use, a ticket may be usable to provide authentication in connection with creating a VPN tunnel to enterprise resources. For example, a ticket may include data or be otherwise configured to authenticate a user, mobile device or application that is attempting to create a VPN tunnel to an enterprise resource that is accessible through an access gateway, such as a MicroVPN tunnel or other type of application-specific VPN tunnel.
  • The IT administrator may also provide input via the UI that specifies how a user is to log-on to the MRM system. For example, the policy may specify that the user can use single-sign on functionality for authentication with the access gateway and the conditions with which the user can continue using single sign on functionality (e.g., single sign on within particular geographic or mobile device location constraints, within particular time windows, constraints requiring an install of a particular application on the mobile device, or the like).
  • As discussed above, when a user executes a managed application on the mobile device, the user is typically challenged to authenticate their corporate identity along with passwords and other factors as dictated by corporate policy. The policy may specify the constraints on the password and/or specify the types of identification information that is to be included when requesting to authenticate (e.g., authenticate with a password, username and mobile device identifier).
  • The policy may also specify (or include) one or more certificates that can be used to respond to certificate challenges that are received by the mobile device.
  • The IT administrator may also provide input via the UI to create a policy that is assigned to the user's role within the enterprise or specific to the application's assigned application group. In such a way a single managed application may be associated with multiple policies, with each policy being assigned to a different user role (e.g., one policy for a sales employee; a different policy for a designer, etc.) or application group (e.g., a managed application may be assigned to multiple application groups where each provides various constraints or benefits to member applications, such as shared access to data stored in data containers, or the like, and each of the multiple application groups corresponds to a different user role).
  • A policy may also be assigned to a group of applications. The group of applications could be, for example, a grouping of applications that apply to a particular industry (e.g., the policy is assigned to a group of applications that are related to the healthcare industry), apply to a particular organization (e.g., the policy is assigned to a group of applications that were created by the same application developer, or are provided by the same enterprise), and the like. The UI may be configured to allow the IT administrator to provide input to create such assignments.
  • At step 1107, the one or more computing devices may determine to produce one or more published versions of the policy. This step may proceed similar to step 707 of FIG. 7.
  • At step 1109, the one or more computing devices may produce one or more policy files for the managed application that include the user authentication or user identification setting(s). This step may proceed similar to step 709 of FIG. 7.
  • The policy file produced by this step can be used by the mobile device to enforce the user authentication or user identification settings. Accordingly, the policy can cause the mobile device or application to perform various actions based on any user authentication or user identification setting included in the policy file. Generally, any of the above (or other) conditions described above in connection with step 1105 may form the basis for actions that the mobile device or application is caused to perform.
  • For example, a ticket specified by the policy may be first loaded into the mobile device when the policy is downloaded to the mobile device. The mobile device may transmit a message including the ticket when attempting to create an application-specific VPN tunnel. If such token/ticket has expired, then the user may be asked to proceed through a full authentication process again before allowing VPN access. If the ticket is not expired, the information included in the ticket may be used by a computing device (e.g., access gateway) to determine that the ticket is valid and the user is allowed to access resources that are accessible via the access gateway. After using the ticket to authenticate the user, a VPN tunnel between the access gateway and mobile device may be constructed/initialized that enables the mobile device with access to at least one resource. The VPN tunnel may be an application specific VPN, such as a MicroVPN.
  • Use of the user authorization or user identification settings may, in some embodiments, cause the mobile device to be able perform various actions without the application and/or the user being aware of the authorization or that the user identification was provided to the enterprise. For example, the creation of the application specific VPN tunnel may be done without user interaction and without the user's knowledge that the application specific VPN tunnel has been created/established. As another example, certificates specified by the policy may be provided without the application or user being aware that such information was provided. As yet another example, user log-ins, passwords, or other identifying information may be provided to the enterprise without the user or application being aware that such information was provided.
  • At step 1111, the one or more computing devices may provide the managed application and the policy file to be available for download by one or more mobile devices. This step may proceed similar to step 711 of FIG. 7.
  • Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in any claim is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are described as some example implementations of the following claims.

Claims (20)

We claim:
1. A method, comprising:
displaying, by one or more computing devices, a user interface that displays one or more policy settings for a managed application that is to be made available for download to a mobile device, wherein each of the one or more policy settings provides a constraint to be enforced by the mobile device prior to the managed application being provided access to at least one resource that is accessible through an access gateway;
receiving input via the user interface that creates or modifies a user authorization or user identification setting of the one or more policy settings, wherein the user authorization or user identification setting specifies a condition for authorizing or identifying a user in connection with the managed application being provided access to said at least one resource;
producing a policy file for the managed application that includes the user authorization or user identification setting; and
providing the policy file such that the policy is available for download to the mobile device.
2. The method of claim 1, wherein the policy file is an Extensible Markup Language (XML) file or a JavaScript Object Notation (JSON) file, and wherein the policy file includes one or more key/value pairs organized as a dictionary, wherein one key/value pair of the one or more key/value pairs corresponds to the user authorization or user identification setting.
3. The method of claim 1, wherein the user authorization or user identification setting includes a setting group or category identifier; a setting dictionary name; a setting type; a range of possible setting values; a default setting value; a setting friendly name string; a setting unit display string; and a help text string.
4. The method of claim 1, wherein the user authorization or user identification setting includes data specifying a ticket that is configured to provide authorization to create an application specific virtual private network (VPN) tunnel with the access gateway without requiring the user to provide credentials, an expiration period for the ticket, a manner in which the user is to log-on, or a certificate that is usable by the mobile device when responding to certificate challenges; and
wherein the user interface is configured to accept input specifying a ticket that is configured to provide authorization to create an application specific virtual private network (VPN) tunnel with the access gateway without requiring the user to provide credentials, an expiration period for the ticket, a manner in which the user is to log-on, or a certificate that is usable by the mobile device when responding to certificate challenges.
5. The method of claim 1, wherein the user authorization or user identification setting includes data specifying one or more conditions that must be satisfied by the mobile device in order for the mobile device to provide the user with single-sign on (SSO) functionality for authenticating the user with the access gateway.
6. The method of claim 5, wherein the one or more conditions includes a location of the mobile device or an install of another application on the mobile device.
7. The method of claim 1, further comprising:
receiving additional input specifying one or more additional policy settings, wherein said one or more additional policy settings includes an additional user authorization or user identification setting that specifies a constraint different from the one or more constraints that are specified by the user authorization or user identification setting;
producing an additional policy file for the managed application that includes the one or more additional policy settings, wherein the additional policy file is assigned to a first user role; and
providing said additional policy file for download in accordance with a requesting user that is assigned the first user role;
wherein the policy file is assigned to a second user role different from the first user role.
8. The method of claim 1, wherein the providing the policy file includes publishing the policy file to an application store that also publishes the managed application.
9. The method of claim 1, wherein providing the policy file includes pushing the policy file to the mobile device based on the mobile device being registered with a push service.
10. An apparatus, comprising:
at least one processor; and
memory storing executable instructions configured to, when executed by the at least one processor, cause the apparatus to:
display a user interface that displays one or more policy settings for a managed application that is to be made available for download to a mobile device, wherein each of the one or more policy settings provides a constraint to be enforced by the mobile device prior to the managed application being provided access to at least one resource that is accessible through an access gateway;
receive input via the user interface that creates or modifies a user authorization or user identification setting of the one or more policy settings, wherein the user authorization or user identification setting specifies a condition for authorizing or identifying a user in connection with the managed application being provided access to said at least one resource;
produce a policy file for the managed application that includes the user authorization or user identification setting; and
provide the policy file such that the policy is available for download to the mobile device.
11. The apparatus of claim 10, wherein the policy file is an Extensible Markup Language (XML) file or a JavaScript Object Notation (JSON) file, and wherein the policy file includes one or more key/value pairs organized as a dictionary, wherein one key/value pair of the one or more key/value pairs corresponds to the user authorization or user identification setting.
12. The apparatus of claim 10, wherein the user authorization or user identification setting includes a setting group or category identifier; a setting dictionary name; a setting type; a range of possible setting values; a default setting value; a setting friendly name string; a setting unit display string; and a help text string.
13. The apparatus of claim 10, wherein the user authorization or user identification setting includes data specifying a ticket that is configured to provide authorization to create an application specific virtual private network (VPN) tunnel with the access gateway without requiring the user to provide credentials, an expiration period for the ticket, a manner in which the user is to log-on, or a certificate that is usable by the mobile device when responding to certificate challenges; and
wherein the user interface is configured to accept input specifying a ticket that is configured to provide authorization to create an application specific virtual private network (VPN) tunnel with the access gateway without requiring the user to provide credentials, an expiration period for the ticket, a manner in which the user is to log-on, or a certificate that is usable by the mobile device when responding to certificate challenges.
14. The apparatus of claim 10, wherein the user authorization or user identification setting includes data specifying one or more conditions that must be satisfied by the mobile device in order for the mobile device to provide the user with single-sign on (SSO) functionality for authenticating the user with the access gateway.
15. The apparatus of claim 14, wherein the one or more conditions includes a location of the mobile device or an install of another application on the mobile device.
16. The apparatus of claim 10, wherein the providing the policy file includes publishing the policy file to an application store that also publishes the managed application.
17. The apparatus of claim 10, wherein providing the policy file includes pushing the policy file to the mobile device based on the mobile device being registered with a push service.
18. One or more non-transitory computer-readable media storing instructions configured to, when executed, cause at least one computing device to:
display a user interface that displays one or more policy settings for a managed application that is to be made available for download to a mobile device, wherein each of the one or more policy settings provides a constraint to be enforced by the mobile device prior to the managed application being provided access to at least one resource that is accessible through an access gateway;
receive input via the user interface that creates or modifies a user authorization or user identification setting of the one or more policy settings, wherein the user authorization or user identification setting specifies a condition for authorizing or identifying a user in connection with the managed application being provided access to said at least one resource;
produce a policy file for the managed application that includes the user authorization or user identification setting; and
provide the policy file such that the policy is available for download to the mobile device.
19. The one or more non-transitory computer-readable media of claim 18, wherein the policy file is an Extensible Markup Language (XML) file or a JavaScript Object Notation (JSON) file, and wherein the policy file includes one or more key/value pairs organized as a dictionary, wherein one key/value pair of the one or more key/value pairs corresponds to the user authorization or user identification setting.
20. The one or more non-transitory computer-readable media of claim 18, wherein the user authorization or user identification setting includes data specifying a ticket that is configured to provide authorization to create an application specific virtual private network (VPN) tunnel with the access gateway without requiring the user to provide credentials, an expiration period for the ticket, a manner in which the user is to log-on, or a certificate that is usable by the mobile device when responding to certificate challenges; and
wherein the user interface is configured to accept input specifying a ticket that is configured to provide authorization to create an application specific virtual private network (VPN) tunnel with the access gateway without requiring the user to provide credentials, an expiration period for the ticket, a manner in which the user is to log-on, or a certificate that is usable by the mobile device when responding to certificate challenges.
US14/041,923 2012-10-15 2013-09-30 Configuring and providing profiles that manage execution of mobile applications Active US8719898B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/041,923 US8719898B1 (en) 2012-10-15 2013-09-30 Configuring and providing profiles that manage execution of mobile applications
US14/242,011 US9467474B2 (en) 2012-10-15 2014-04-01 Conjuring and providing profiles that manage execution of mobile applications

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261713715P 2012-10-15 2012-10-15
US201361806577P 2013-03-29 2013-03-29
US201361863194P 2013-08-07 2013-08-07
US14/039,651 US20140109176A1 (en) 2012-10-15 2013-09-27 Configuring and providing profiles that manage execution of mobile applications
US14/041,923 US8719898B1 (en) 2012-10-15 2013-09-30 Configuring and providing profiles that manage execution of mobile applications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/039,651 Continuation US20140109176A1 (en) 2012-10-15 2013-09-27 Configuring and providing profiles that manage execution of mobile applications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/242,011 Continuation US9467474B2 (en) 2012-10-15 2014-04-01 Conjuring and providing profiles that manage execution of mobile applications

Publications (2)

Publication Number Publication Date
US20140109177A1 true US20140109177A1 (en) 2014-04-17
US8719898B1 US8719898B1 (en) 2014-05-06

Family

ID=49448303

Family Applications (6)

Application Number Title Priority Date Filing Date
US14/039,651 Abandoned US20140109176A1 (en) 2012-10-15 2013-09-27 Configuring and providing profiles that manage execution of mobile applications
US14/041,946 Active US8904477B2 (en) 2012-10-15 2013-09-30 Configuring and providing profiles that manage execution of mobile applications
US14/041,923 Active US8719898B1 (en) 2012-10-15 2013-09-30 Configuring and providing profiles that manage execution of mobile applications
US14/041,935 Active US8887230B2 (en) 2012-10-15 2013-09-30 Configuring and providing profiles that manage execution of mobile applications
US14/242,011 Active 2033-12-12 US9467474B2 (en) 2012-10-15 2014-04-01 Conjuring and providing profiles that manage execution of mobile applications
US14/508,245 Active 2033-10-31 US9654508B2 (en) 2012-10-15 2014-10-07 Configuring and providing profiles that manage execution of mobile applications

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/039,651 Abandoned US20140109176A1 (en) 2012-10-15 2013-09-27 Configuring and providing profiles that manage execution of mobile applications
US14/041,946 Active US8904477B2 (en) 2012-10-15 2013-09-30 Configuring and providing profiles that manage execution of mobile applications

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/041,935 Active US8887230B2 (en) 2012-10-15 2013-09-30 Configuring and providing profiles that manage execution of mobile applications
US14/242,011 Active 2033-12-12 US9467474B2 (en) 2012-10-15 2014-04-01 Conjuring and providing profiles that manage execution of mobile applications
US14/508,245 Active 2033-10-31 US9654508B2 (en) 2012-10-15 2014-10-07 Configuring and providing profiles that manage execution of mobile applications

Country Status (3)

Country Link
US (6) US20140109176A1 (en)
EP (1) EP2907076A1 (en)
WO (1) WO2014062395A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130054962A1 (en) * 2011-08-31 2013-02-28 Deepak Chawla Policy configuration for mobile device applications
US8918841B2 (en) 2011-08-31 2014-12-23 At&T Intellectual Property I, L.P. Hardware interface access control for mobile applications
CN104966311A (en) * 2015-06-10 2015-10-07 江苏中威科技软件系统有限公司 Vector graph storage method used for handwriting signing system
US20150326562A1 (en) * 2014-05-06 2015-11-12 Okta, Inc. Facilitating single sign-on to software applications
CN106911625A (en) * 2015-12-22 2017-06-30 国民技术股份有限公司 A kind of text handling method of safe input method, device and system
WO2017139651A1 (en) * 2016-02-10 2017-08-17 Vignet Incorporated Publishing customized application modules
CN107679112A (en) * 2017-09-15 2018-02-09 浙江大学 A kind of weighted feature knowledge of Design-Oriented knowledge push is applicable probability match method
US9935850B1 (en) * 2014-11-18 2018-04-03 Berryville Holdings, LLC Systems and methods for implementing an on-demand computing network environment
US9948679B2 (en) 2015-08-21 2018-04-17 Cisco Technology, Inc. Object-relation user interface for viewing security configurations of network security devices
CN109002707A (en) * 2018-08-31 2018-12-14 国鼎网络空间安全技术有限公司 The device and method of Android application configuration and data sharing based on virtual container
US10182055B2 (en) 2016-06-06 2019-01-15 Cisco Technology, Inc. Security policy efficacy visualization
CN109995473A (en) * 2018-12-17 2019-07-09 芜湖智久机器人有限公司 TCP communication data packets and its packaging method, check system, method of calibration
US10470040B2 (en) 2017-08-27 2019-11-05 Okta, Inc. Secure single sign-on to software applications
US10587729B1 (en) 2016-10-28 2020-03-10 Vignet Incorporated System and method for rules engine that dynamically adapts application behavior
US10775974B2 (en) 2018-08-10 2020-09-15 Vignet Incorporated User responsive dynamic architecture
US10803411B1 (en) 2017-04-17 2020-10-13 Microstrategy Incorporated Enterprise platform deployment
US10819586B2 (en) * 2018-10-17 2020-10-27 Servicenow, Inc. Functional discovery and mapping of serverless resources
US20210112412A1 (en) * 2018-06-22 2021-04-15 Vivo Mobile Communication Co., Ltd. Network access method, terminal, and network side network element
US11068574B2 (en) * 2016-09-08 2021-07-20 Vmware, Inc. Phone factor authentication
US11158423B2 (en) 2018-10-26 2021-10-26 Vignet Incorporated Adapted digital therapeutic plans based on biomarkers
US11184223B2 (en) * 2018-07-31 2021-11-23 Microsoft Technology Licensing, Llc Implementation of compliance settings by a mobile device for compliance with a configuration scenario
US11238979B1 (en) 2019-02-01 2022-02-01 Vignet Incorporated Digital biomarkers for health research, digital therapeautics, and precision medicine
US11244104B1 (en) 2016-09-29 2022-02-08 Vignet Incorporated Context-aware surveys and sensor data collection for health research
US11252196B2 (en) * 2016-10-24 2022-02-15 Nec Corporation Method for managing data traffic within a network
US11705230B1 (en) 2021-11-30 2023-07-18 Vignet Incorporated Assessing health risks using genetic, epigenetic, and phenotypic data sources
US11714658B2 (en) 2019-08-30 2023-08-01 Microstrategy Incorporated Automated idle environment shutdown
US11755372B2 (en) 2019-08-30 2023-09-12 Microstrategy Incorporated Environment monitoring and management
US11763919B1 (en) 2020-10-13 2023-09-19 Vignet Incorporated Platform to increase patient engagement in clinical trials through surveys presented on mobile devices
US11811832B2 (en) 2018-07-17 2023-11-07 Microsoft Technology Licensing, Llc Queryless device configuration determination-based techniques for mobile device management
US11901083B1 (en) 2021-11-30 2024-02-13 Vignet Incorporated Using genetic and phenotypic data sets for drug discovery clinical trials
WO2024211553A1 (en) * 2023-04-05 2024-10-10 Providence St. Joseph Health Using a hidden webview under the control of a mobile app to maintain an authenticated session between the mobile app and a backend resource

Families Citing this family (300)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8776038B2 (en) 2008-08-07 2014-07-08 Code Systems Corporation Method and system for configuration of virtualized software applications
US8434093B2 (en) 2008-08-07 2013-04-30 Code Systems Corporation Method and system for virtualization of software applications
US8954958B2 (en) 2010-01-11 2015-02-10 Code Systems Corporation Method of configuring a virtual application
US9104517B2 (en) 2010-01-27 2015-08-11 Code Systems Corporation System for downloading and executing a virtual application
US8959183B2 (en) 2010-01-27 2015-02-17 Code Systems Corporation System for downloading and executing a virtual application
US9229748B2 (en) 2010-01-29 2016-01-05 Code Systems Corporation Method and system for improving startup performance and interoperability of a virtual application
US8473743B2 (en) 2010-04-07 2013-06-25 Apple Inc. Mobile device management
US8763009B2 (en) 2010-04-17 2014-06-24 Code Systems Corporation Method of hosting a first application in a second application
US8782106B2 (en) 2010-07-02 2014-07-15 Code Systems Corporation Method and system for managing execution of virtual applications
US8732697B2 (en) 2010-08-04 2014-05-20 Premkumar Jonnala System, method and apparatus for managing applications on a device
US8955152B1 (en) * 2010-09-07 2015-02-10 Symantec Corporation Systems and methods to manage an application
US9021015B2 (en) 2010-10-18 2015-04-28 Code Systems Corporation Method and system for publishing virtual applications to a web server
US9209976B2 (en) 2010-10-29 2015-12-08 Code Systems Corporation Method and system for restricting execution of virtual applications to a managed process environment
US9092482B2 (en) 2013-03-14 2015-07-28 Palantir Technologies, Inc. Fair scheduling for mixed-query loads
US20140280723A1 (en) * 2013-03-13 2014-09-18 Keertikiran Gokul System, method and apparatus for managing services and applications
US9407492B2 (en) 2011-08-24 2016-08-02 Location Labs, Inc. System and method for enabling control of mobile device functional components
US9740883B2 (en) * 2011-08-24 2017-08-22 Location Labs, Inc. System and method for enabling control of mobile device functional components
US8874935B2 (en) 2011-08-30 2014-10-28 Microsoft Corporation Sector map-based rapid data encryption policy compliance
EP2756438B1 (en) 2011-09-13 2020-11-11 Facebook, Inc. Software cryptoprocessor
US9280377B2 (en) 2013-03-29 2016-03-08 Citrix Systems, Inc. Application with multiple operation modes
US9215225B2 (en) 2013-03-29 2015-12-15 Citrix Systems, Inc. Mobile device locking with context
US9043480B2 (en) 2011-10-11 2015-05-26 Citrix Systems, Inc. Policy-based application management
US8886925B2 (en) 2011-10-11 2014-11-11 Citrix Systems, Inc. Protecting enterprise data through policy-based encryption of message attachments
US20140032733A1 (en) 2011-10-11 2014-01-30 Citrix Systems, Inc. Policy-Based Application Management
US9819753B2 (en) 2011-12-02 2017-11-14 Location Labs, Inc. System and method for logging and reporting mobile device activity information
KR101361265B1 (en) * 2012-05-08 2014-02-12 (주)카카오 Method of alerting of mobile terminal using a plarality of alert modes and mobile terminal thereof
US9489531B2 (en) 2012-05-13 2016-11-08 Location Labs, Inc. System and method for controlling access to electronic devices
US9355228B2 (en) 2012-07-13 2016-05-31 Angel Secure Networks, Inc. System and method for policy driven protection of remote computing environments
JP5972121B2 (en) * 2012-09-07 2016-08-17 キヤノン株式会社 Application management system, management apparatus, application execution terminal, application management method, application execution terminal control method, and program
US9774658B2 (en) 2012-10-12 2017-09-26 Citrix Systems, Inc. Orchestration framework for connected devices
US8726343B1 (en) 2012-10-12 2014-05-13 Citrix Systems, Inc. Managing dynamic policies and settings in an orchestration framework for connected devices
US9516022B2 (en) 2012-10-14 2016-12-06 Getgo, Inc. Automated meeting room
US20140109176A1 (en) 2012-10-15 2014-04-17 Citrix Systems, Inc. Configuring and providing profiles that manage execution of mobile applications
US8910239B2 (en) 2012-10-15 2014-12-09 Citrix Systems, Inc. Providing virtualized private network tunnels
CN104854561B (en) 2012-10-16 2018-05-11 思杰系统有限公司 Application program for application management framework encapsulates
US20140108793A1 (en) 2012-10-16 2014-04-17 Citrix Systems, Inc. Controlling mobile device access to secure data
US9606774B2 (en) 2012-10-16 2017-03-28 Citrix Systems, Inc. Wrapping an application with field-programmable business logic
US9971585B2 (en) 2012-10-16 2018-05-15 Citrix Systems, Inc. Wrapping unmanaged applications on a mobile device
US9591452B2 (en) 2012-11-28 2017-03-07 Location Labs, Inc. System and method for enabling mobile device applications and functional components
US9554190B2 (en) 2012-12-20 2017-01-24 Location Labs, Inc. System and method for controlling communication device use
US9754392B2 (en) 2013-03-04 2017-09-05 Microsoft Technology Licensing, Llc Generating data-mapped visualization of data
US20140258511A1 (en) * 2013-03-11 2014-09-11 Bluebox Security Inc. Methods and Apparatus for Reestablishing Secure Network Communications
US9344487B2 (en) * 2013-03-14 2016-05-17 Alcatel Lucent Method for networking cPaaS components for application on-boarding
US10560324B2 (en) 2013-03-15 2020-02-11 Location Labs, Inc. System and method for enabling user device control
US9307386B2 (en) 2013-03-22 2016-04-05 Global Tel*Link Corporation Multifunction wireless device
US9369449B2 (en) 2013-03-29 2016-06-14 Citrix Systems, Inc. Providing an enterprise application store
US9985850B2 (en) 2013-03-29 2018-05-29 Citrix Systems, Inc. Providing mobile device management functionalities
US8850049B1 (en) 2013-03-29 2014-09-30 Citrix Systems, Inc. Providing mobile device management functionalities for a managed browser
US9355223B2 (en) * 2013-03-29 2016-05-31 Citrix Systems, Inc. Providing a managed browser
US10284627B2 (en) 2013-03-29 2019-05-07 Citrix Systems, Inc. Data management for an application with multiple operation modes
US9946528B2 (en) * 2013-06-10 2018-04-17 Bmc Software, Inc. System and method for automated customization of applications
US9244939B2 (en) * 2013-06-27 2016-01-26 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Managing I/O operations in a shared file system
US10122714B2 (en) 2013-08-01 2018-11-06 Bitglass, Inc. Secure user credential access system
US9553867B2 (en) 2013-08-01 2017-01-24 Bitglass, Inc. Secure application access system
JP6351225B2 (en) * 2013-09-02 2018-07-04 キヤノン株式会社 Image processing apparatus, information processing system, control method therefor, and program for information processing apparatus and image processing apparatus
US9137237B2 (en) 2013-09-03 2015-09-15 Microsoft Technology Licensing, Llc Automatically generating certification documents
US9477603B2 (en) 2013-09-05 2016-10-25 Facebook, Inc. System and method for partitioning of memory units into non-conflicting sets
US9674225B2 (en) 2013-09-20 2017-06-06 Open Text Sa Ulc System and method for updating downloaded applications using managed container
EP2851833B1 (en) 2013-09-20 2017-07-12 Open Text S.A. Application Gateway Architecture with Multi-Level Security Policy and Rule Promulgations
US9471798B2 (en) 2013-09-20 2016-10-18 Oracle International Corporation Authorization policy objects sharable across applications, persistence model, and application-level decision-combining algorithm
US9253212B2 (en) * 2013-09-24 2016-02-02 Microsoft Technology Licensing, Llc Automated production of certification controls by translating framework controls
US9983894B2 (en) 2013-09-25 2018-05-29 Facebook, Inc. Method and system for providing secure system execution on hardware supporting secure application execution
JP6223099B2 (en) * 2013-10-01 2017-11-01 キヤノン株式会社 Image processing apparatus, control method therefor, and program
US10049048B1 (en) 2013-10-01 2018-08-14 Facebook, Inc. Method and system for using processor enclaves and cache partitioning to assist a software cryptoprocessor
CA2927859A1 (en) * 2013-10-24 2015-04-30 Internet Infrastructure Services Corporation Methods of dynamically securing electronic devices and other communications through environmental and system measurements leveraging tailored trustworthy spaces
KR102252136B1 (en) * 2013-10-25 2021-05-13 더 리젠츠 오브 더 유니버시티 오브 미시건 Controlling unregulated aggregation of mobile app usage
US9590972B2 (en) * 2013-10-31 2017-03-07 Aruba Networks, Inc. Application authentication using network authentication information
US10798449B2 (en) * 2014-01-07 2020-10-06 Sony Corporation Information processing apparatus and information processing method for validating an application
US9501315B2 (en) 2014-01-10 2016-11-22 Citrix Systems, Inc. Management of unmanaged user accounts and tasks in a multi-account mobile application
US20150213265A1 (en) * 2014-01-27 2015-07-30 Smartronix, Inc. Remote enterprise security compliance reporting tool
US9747450B2 (en) 2014-02-10 2017-08-29 Facebook, Inc. Attestation using a combined measurement and its constituent measurements
US9734092B2 (en) 2014-03-19 2017-08-15 Facebook, Inc. Secure support for I/O in software cryptoprocessor
US10615967B2 (en) 2014-03-20 2020-04-07 Microsoft Technology Licensing, Llc Rapid data protection for storage devices
USD769322S1 (en) * 2014-03-24 2016-10-18 Microsoft Corporation Display screen with icons
US9792458B2 (en) * 2014-05-05 2017-10-17 Ims Health Incorporated Platform to build secure mobile collaborative applications using dynamic presentation and data configurations
US9531677B1 (en) * 2014-05-07 2016-12-27 Skyport Systems, Inc. Method and system for managing network access
US9692788B2 (en) 2014-05-29 2017-06-27 Blackberry Limited Method and system for domain creation and bootstrapping
US10148805B2 (en) 2014-05-30 2018-12-04 Location Labs, Inc. System and method for mobile device control delegation
EP3161695A1 (en) * 2014-06-27 2017-05-03 Promeditec S.r.l. System for remote monitoring and supervision of data
US9672338B1 (en) * 2014-07-07 2017-06-06 Mobile Iron, Inc. Managing applications across multiple management domains
US9661126B2 (en) 2014-07-11 2017-05-23 Location Labs, Inc. Driving distraction reduction system and method
US10171503B1 (en) * 2014-07-15 2019-01-01 F5 Networks, Inc. Methods for scaling infrastructure in a mobile application environment and devices thereof
US9749458B2 (en) 2014-08-11 2017-08-29 Location Labs, Inc. Driving without distraction support system
US9825945B2 (en) 2014-09-09 2017-11-21 Microsoft Technology Licensing, Llc Preserving data protection with policy
US10261672B1 (en) * 2014-09-16 2019-04-16 Amazon Technologies, Inc. Contextual launch interfaces
US9853812B2 (en) 2014-09-17 2017-12-26 Microsoft Technology Licensing, Llc Secure key management for roaming protected content
US20160087993A1 (en) * 2014-09-19 2016-03-24 Microsoft Corporation Selectively Managing Datasets
EP2999249A1 (en) * 2014-09-22 2016-03-23 Gemalto Sa Method for detecting dynamically that secure elements are eligible to an OTA campaign and corresponding OTA server
US9323556B2 (en) 2014-09-30 2016-04-26 Amazon Technologies, Inc. Programmatic event detection and message generation for requests to execute program code
US9600312B2 (en) * 2014-09-30 2017-03-21 Amazon Technologies, Inc. Threading as a service
US9830193B1 (en) 2014-09-30 2017-11-28 Amazon Technologies, Inc. Automatic management of low latency computational capacity
US10048974B1 (en) 2014-09-30 2018-08-14 Amazon Technologies, Inc. Message-based computation request scheduling
US9146764B1 (en) 2014-09-30 2015-09-29 Amazon Technologies, Inc. Processing event messages for user requests to execute program code
US9678773B1 (en) 2014-09-30 2017-06-13 Amazon Technologies, Inc. Low latency computational capacity provisioning
US9715402B2 (en) 2014-09-30 2017-07-25 Amazon Technologies, Inc. Dynamic code deployment and versioning
WO2016056236A1 (en) * 2014-10-08 2016-04-14 日本電気株式会社 Information processing device, information processing method, and recording medium
US9900295B2 (en) 2014-11-05 2018-02-20 Microsoft Technology Licensing, Llc Roaming content wipe actions across devices
US9736126B2 (en) * 2014-12-04 2017-08-15 International Business Machines Corporation Authenticating mobile applications using policy files
US9413626B2 (en) 2014-12-05 2016-08-09 Amazon Technologies, Inc. Automatic management of resource sizing
US9667653B2 (en) * 2014-12-15 2017-05-30 International Business Machines Corporation Context-aware network service policy management
US10152383B2 (en) 2014-12-17 2018-12-11 Airwatch Llc Expedited device backup, wipe, and enrollment
US9680705B2 (en) * 2014-12-26 2017-06-13 Halogen Software Inc. Competency based device access
US20160191645A1 (en) * 2014-12-30 2016-06-30 Citrix Systems, Inc. Containerizing Web Applications for Managed Execution
JP6507643B2 (en) * 2015-01-05 2019-05-08 富士通株式会社 Application providing method, application providing server and application providing program
US9635055B2 (en) * 2015-01-28 2017-04-25 defend7, Inc. Encryption levels for secure application containers
US9733967B2 (en) 2015-02-04 2017-08-15 Amazon Technologies, Inc. Security protocols for low latency execution of program code
US9588790B1 (en) 2015-02-04 2017-03-07 Amazon Technologies, Inc. Stateful virtual compute system
US10075475B2 (en) * 2015-02-06 2018-09-11 Honeywell International Inc. Apparatus and method for dynamic customization of cyber-security risk item rules
US10075474B2 (en) 2015-02-06 2018-09-11 Honeywell International Inc. Notification subsystem for generating consolidated, filtered, and relevant security risk-based notifications
US10021119B2 (en) 2015-02-06 2018-07-10 Honeywell International Inc. Apparatus and method for automatic handling of cyber-security risk events
US10021125B2 (en) 2015-02-06 2018-07-10 Honeywell International Inc. Infrastructure monitoring tool for collecting industrial process control and automation system risk data
AU2016218305B2 (en) * 2015-02-11 2020-03-12 Honeywell International Inc. Apparatus and method for dynamic customization of cyber-security risk item rules
US10298608B2 (en) 2015-02-11 2019-05-21 Honeywell International Inc. Apparatus and method for tying cyber-security risk analysis to common risk methodologies and risk levels
US9665743B2 (en) * 2015-02-26 2017-05-30 Whitecanyon Software, Inc. Selective storage device wiping system and method
US10476947B1 (en) 2015-03-02 2019-11-12 F5 Networks, Inc Methods for managing web applications and devices thereof
US20160292154A1 (en) * 2015-03-31 2016-10-06 Mckesson Corporation Methods and Apparatuses for Providing Document Workflow Management
US9369537B1 (en) 2015-03-31 2016-06-14 Lock2Learn, LLC Systems and methods for regulating device usage
EP3079059A1 (en) * 2015-04-07 2016-10-12 Huawei Technologies Co., Ltd. Method and apparatus for a mobile device based cluster computing infrastructure
US9930103B2 (en) 2015-04-08 2018-03-27 Amazon Technologies, Inc. Endpoint management system providing an application programming interface proxy service
US9785476B2 (en) 2015-04-08 2017-10-10 Amazon Technologies, Inc. Endpoint management system and virtual compute system
USD792422S1 (en) * 2015-04-12 2017-07-18 Adp, Llc Display screen with graphical user interface
US10142371B2 (en) 2015-04-24 2018-11-27 Oracle International Corporation Authorization policy customization and authorization policy lockdown
US11245725B2 (en) * 2015-04-24 2022-02-08 Matthew B. TREVATHAN Dynamically updating policy controls for mobile devices and applications
US10104086B2 (en) 2015-04-24 2018-10-16 Oracle International Corporation Techniques for fine grained protection of resources in an access management environment
US10171437B2 (en) 2015-04-24 2019-01-01 Oracle International Corporation Techniques for security artifacts management
US9756041B2 (en) * 2015-04-30 2017-09-05 Rockwell Automation Technologies, Inc. Offline access control for an application
US11350254B1 (en) * 2015-05-05 2022-05-31 F5, Inc. Methods for enforcing compliance policies and devices thereof
US9800604B2 (en) 2015-05-06 2017-10-24 Honeywell International Inc. Apparatus and method for assigning cyber-security risk consequences in industrial process control environments
US9407624B1 (en) 2015-05-14 2016-08-02 Delphian Systems, LLC User-selectable security modes for interconnected devices
EP3101614A1 (en) * 2015-06-04 2016-12-07 Lg Electronics Inc. Fundraising through group of participants using mobile device
US10331321B2 (en) 2015-06-07 2019-06-25 Apple Inc. Multiple device configuration application
US9736166B2 (en) * 2015-06-08 2017-08-15 Microsoft Technology Licensing, Llc System and method for using per-application profiles in a computing device
JP6228573B2 (en) * 2015-06-26 2017-11-08 株式会社オプティム Application providing server, application setting terminal, application providing system, application providing method, and application providing server program.
US9843572B2 (en) * 2015-06-29 2017-12-12 Airwatch Llc Distributing an authentication key to an application installation
US9853820B2 (en) 2015-06-30 2017-12-26 Microsoft Technology Licensing, Llc Intelligent deletion of revoked data
USD778288S1 (en) * 2015-07-01 2017-02-07 Microsoft Corporation Display screen with graphical user interface
USD789944S1 (en) * 2015-07-01 2017-06-20 Microsoft Corporation Display screen with graphical user interface
US10395042B2 (en) 2015-07-02 2019-08-27 Oracle International Corporation Data encryption service
US10127403B2 (en) * 2015-07-30 2018-11-13 Samsung Electronics Co., Ltd. Computing system with privacy control mechanism and method of operation thereof
US10025810B2 (en) 2015-07-31 2018-07-17 Vmware, Inc. Policy composition language
US9900325B2 (en) * 2015-10-09 2018-02-20 Microsoft Technology Licensing, Llc Passive encryption of organization data
US9910697B2 (en) 2015-10-13 2018-03-06 Palantir Technologies Inc. Fault-tolerant and highly-available configuration of distributed services
JP6714337B2 (en) * 2015-10-16 2020-06-24 キヤノン株式会社 Information processing device, information processing method, and program
US9967287B2 (en) * 2015-10-27 2018-05-08 Airwatch Llc Detection of offline attempts to circumvent security policies
US10346802B2 (en) 2015-10-28 2019-07-09 Open Text GXS ULC Trading partner relationship graph for information exchange platform
BR112016030854A2 (en) 2015-10-30 2017-11-07 Intuit Inc globally scalable solution
US11593075B2 (en) * 2015-11-03 2023-02-28 Open Text Sa Ulc Streamlined fast and efficient application building and customization systems and methods
US11006278B2 (en) * 2015-11-19 2021-05-11 Airwatch Llc Managing network resource permissions for applications using an application catalog
US9888022B2 (en) 2015-12-01 2018-02-06 International Business Machines Corporation Providing application-specific threat metrics
US9571457B1 (en) * 2015-12-15 2017-02-14 International Business Machines Corporation Dynamically defined virtual private network tunnels in hybrid cloud environments
US10142293B2 (en) 2015-12-15 2018-11-27 International Business Machines Corporation Dynamically defined virtual private network tunnels in hybrid cloud environments
US10754701B1 (en) 2015-12-16 2020-08-25 Amazon Technologies, Inc. Executing user-defined code in response to determining that resources expected to be utilized comply with resource restrictions
US9811434B1 (en) 2015-12-16 2017-11-07 Amazon Technologies, Inc. Predictive management of on-demand code execution
US10235176B2 (en) 2015-12-17 2019-03-19 The Charles Stark Draper Laboratory, Inc. Techniques for metadata processing
US10936713B2 (en) * 2015-12-17 2021-03-02 The Charles Stark Draper Laboratory, Inc. Techniques for metadata processing
US10067801B1 (en) 2015-12-21 2018-09-04 Amazon Technologies, Inc. Acquisition and maintenance of compute capacity
US9910713B2 (en) 2015-12-21 2018-03-06 Amazon Technologies, Inc. Code execution request routing
US11757946B1 (en) 2015-12-22 2023-09-12 F5, Inc. Methods for analyzing network traffic and enforcing network policies and devices thereof
US10817593B1 (en) * 2015-12-29 2020-10-27 Wells Fargo Bank, N.A. User information gathering and distribution system
US10009380B2 (en) 2016-01-08 2018-06-26 Secureworks Corp. Systems and methods for security configuration
US10116625B2 (en) * 2016-01-08 2018-10-30 Secureworks, Corp. Systems and methods for secure containerization
US10135855B2 (en) 2016-01-19 2018-11-20 Honeywell International Inc. Near-real-time export of cyber-security risk information
US11178150B1 (en) 2016-01-20 2021-11-16 F5 Networks, Inc. Methods for enforcing access control list based on managed application and devices thereof
CN107026791B (en) 2016-01-29 2021-02-12 华为技术有限公司 Virtual private network VPN service optimization method and device
US10778683B2 (en) 2016-01-29 2020-09-15 Docusign, Inc. Cloud-based coordination of customer premise service appliances
US11290425B2 (en) * 2016-02-01 2022-03-29 Airwatch Llc Configuring network security based on device management characteristics
US11388037B2 (en) 2016-02-25 2022-07-12 Open Text Sa Ulc Systems and methods for providing managed services
US10530762B2 (en) * 2016-03-09 2020-01-07 Google Llc Electing whether to unify passcodes
US10171506B2 (en) * 2016-03-21 2019-01-01 Fortinet, Inc. Network security management via social media network
US10891145B2 (en) 2016-03-30 2021-01-12 Amazon Technologies, Inc. Processing pre-existing data sets at an on demand code execution environment
US11132213B1 (en) 2016-03-30 2021-09-28 Amazon Technologies, Inc. Dependency-based process of pre-existing data sets at an on demand code execution environment
US10938814B2 (en) * 2016-05-09 2021-03-02 Aetna Inc. Unified authentication software development kit
US10291636B2 (en) * 2016-05-23 2019-05-14 International Business Machines Corporation Modifying a user session lifecycle in a cloud broker environment
US10595202B2 (en) * 2016-05-23 2020-03-17 Citrix Systems, Inc. Dynamic access to hosted applications
US10567302B2 (en) 2016-06-01 2020-02-18 At&T Intellectual Property I, L.P. Enterprise business mobile dashboard
US10581917B2 (en) 2016-06-14 2020-03-03 Motorola Solutions, Inc. Systems and methods for enforcing device policies
US10282229B2 (en) 2016-06-28 2019-05-07 Amazon Technologies, Inc. Asynchronous task management in an on-demand network code execution environment
US10102040B2 (en) 2016-06-29 2018-10-16 Amazon Technologies, Inc Adjusting variable limit on concurrent code executions
US10171445B2 (en) * 2016-06-30 2019-01-01 International Business Machines Corporation Secure virtualized servers
US10277708B2 (en) 2016-06-30 2019-04-30 Amazon Technologies, Inc. On-demand network code execution with cross-account aliases
US10530803B1 (en) * 2016-07-05 2020-01-07 Wells Fargo Bank, N.A. Secure online transactions
US10241985B2 (en) * 2016-08-02 2019-03-26 Open Text Sa Ulc Systems and methods for intelligent document-centric orchestration through information exchange platform
US10607002B2 (en) 2016-08-30 2020-03-31 Microsoft Technology Licensing, Llc Isolating an application running inside a native container application
US10884787B1 (en) 2016-09-23 2021-01-05 Amazon Technologies, Inc. Execution guarantees in an on-demand network code execution system
US11119813B1 (en) 2016-09-30 2021-09-14 Amazon Technologies, Inc. Mapreduce implementation using an on-demand network code execution system
US11398906B2 (en) 2016-11-10 2022-07-26 Brickell Cryptology Llc Confirming receipt of audit records for audited use of a cryptographic key
US10855465B2 (en) 2016-11-10 2020-12-01 Ernest Brickell Audited use of a cryptographic key
US10498712B2 (en) * 2016-11-10 2019-12-03 Ernest Brickell Balancing public and personal security needs
US11405201B2 (en) 2016-11-10 2022-08-02 Brickell Cryptology Llc Secure transfer of protected application storage keys with change of trusted computing base
USD838774S1 (en) * 2016-11-18 2019-01-22 International Business Machines Corporation Training card
US10761827B2 (en) * 2016-11-30 2020-09-01 Vmware, Inc. WIN32 software distribution architecture
US20180176256A1 (en) * 2016-12-16 2018-06-21 Futurewei Technologies, Inc. Temporal Control and Access Control of Emails
US10924459B2 (en) * 2016-12-16 2021-02-16 Futurewei Technologies, Inc. Location control and access control of emails
US10528746B2 (en) * 2016-12-27 2020-01-07 Intel Corporation System, apparatus and method for trusted channel creation using execute-only code
US10721624B2 (en) 2017-02-17 2020-07-21 Global Tel*Link Corporation Security system for inmate wireless devices
US10936331B2 (en) * 2017-02-23 2021-03-02 International Business Machines Corporation Running a kernel-dependent application in a container
US10331624B2 (en) 2017-03-03 2019-06-25 Transitive Innovation, Llc Automated data classification system
US20180253218A1 (en) * 2017-03-03 2018-09-06 Transitive Innovation, Llc System and method for controlling the retention of data on computing devices according to user settings
US20210209254A1 (en) * 2017-03-24 2021-07-08 Technologie Intelligente Llc Rule-based control of communication devices
US11880493B2 (en) 2017-03-27 2024-01-23 Global Tel*Link Corporation Wearable devices in a controlled environment
US11080041B1 (en) * 2017-03-30 2021-08-03 Amazon Technologies, Inc. Operating system management for virtual workspaces
US9892242B1 (en) 2017-04-28 2018-02-13 Global Tel*Link Corporation Unified enterprise management of wireless devices in a controlled environment
US10454761B2 (en) * 2017-05-01 2019-10-22 Vmware, Inc. Migration of managed devices to utilize management platform features
US10652245B2 (en) 2017-05-04 2020-05-12 Ernest Brickell External accessibility for network devices
US11343237B1 (en) 2017-05-12 2022-05-24 F5, Inc. Methods for managing a federated identity environment using security and access control data and devices thereof
FR3066668A1 (en) * 2017-05-19 2018-11-23 Orange METHOD FOR MANAGING RESPONSE
US10735423B2 (en) * 2017-05-25 2020-08-04 Michael Boodaei User authentication and authorization system for a mobile application
US10657239B2 (en) * 2017-05-25 2020-05-19 Oracle International Corporation Limiting access to application features in cloud applications
US10887130B2 (en) 2017-06-15 2021-01-05 At&T Intellectual Property I, L.P. Dynamic intelligent analytics VPN instantiation and/or aggregation employing secured access to the cloud network device
US10353699B1 (en) 2017-06-26 2019-07-16 Palantir Technologies Inc. Systems and methods for managing states of deployment
US10909228B2 (en) 2017-07-19 2021-02-02 Box, Inc. Server-side authentication policy determination for mobile applications
US11128464B1 (en) * 2017-08-24 2021-09-21 Amazon Technologies, Inc. Identity token for accessing computing resources
US11120108B2 (en) * 2017-09-30 2021-09-14 Oracle International Corporation Managing security artifacts for multilayered applications
US10922307B2 (en) * 2017-12-11 2021-02-16 NextWorld, LLC Automated transaction engine
US10564946B1 (en) 2017-12-13 2020-02-18 Amazon Technologies, Inc. Dependency handling in an on-demand network code execution system
US20190215380A1 (en) * 2018-01-09 2019-07-11 Vmware, Inc. Data driven user interfaces for device management
US10841342B2 (en) * 2018-01-09 2020-11-17 Vmware, Inc. Data driven user interfaces for device management
US10893023B2 (en) * 2018-01-12 2021-01-12 Vmware, Inc. Per-application VPN in container based environments
EP3746921B1 (en) 2018-02-02 2023-12-27 Dover Microsystems, Inc. Systems and methods for policy linking and/or loading for secure initialization
KR102453740B1 (en) 2018-02-02 2022-10-12 더 차레스 스타크 드레이퍼 래보레이토리, 인코포레이티드 Systems and methods for policy enforcement processing
US10831898B1 (en) 2018-02-05 2020-11-10 Amazon Technologies, Inc. Detecting privilege escalations in code including cross-service calls
US10353678B1 (en) 2018-02-05 2019-07-16 Amazon Technologies, Inc. Detecting code characteristic alterations due to cross-service calls
US10733085B1 (en) 2018-02-05 2020-08-04 Amazon Technologies, Inc. Detecting impedance mismatches due to cross-service calls
US10725752B1 (en) 2018-02-13 2020-07-28 Amazon Technologies, Inc. Dependency handling in an on-demand network code execution system
US10812276B2 (en) * 2018-02-23 2020-10-20 International Business Machines Corporation Secure trust based distribution of digital certificates
US10776091B1 (en) 2018-02-26 2020-09-15 Amazon Technologies, Inc. Logging endpoint in an on-demand code execution system
US11797398B2 (en) 2018-04-30 2023-10-24 Dover Microsystems, Inc. Systems and methods for checking safety properties
US10558454B2 (en) 2018-06-04 2020-02-11 Palantir Technologies Inc. Constraint-based upgrade and deployment
US10956543B2 (en) * 2018-06-18 2021-03-23 Oracle International Corporation System and method for protecting online resources against guided username guessing attacks
US10853115B2 (en) 2018-06-25 2020-12-01 Amazon Technologies, Inc. Execution of auxiliary functions in an on-demand network code execution system
US10649749B1 (en) 2018-06-26 2020-05-12 Amazon Technologies, Inc. Cross-environment application of tracing information for improved code execution
US11146569B1 (en) 2018-06-28 2021-10-12 Amazon Technologies, Inc. Escalation-resistant secure network services using request-scoped authentication information
US10949237B2 (en) 2018-06-29 2021-03-16 Amazon Technologies, Inc. Operating system customization in an on-demand network code execution system
GB2575667A (en) * 2018-07-19 2020-01-22 British Telecomm Dynamic data encryption
EP3811561B8 (en) 2018-07-19 2022-02-16 British Telecommunications public limited company Dynamic data encryption
US11099870B1 (en) 2018-07-25 2021-08-24 Amazon Technologies, Inc. Reducing execution times in an on-demand network code execution system using saved machine states
CN108920725B (en) * 2018-08-02 2020-08-04 网宿科技股份有限公司 Object storage method and object storage gateway
US11153267B2 (en) * 2018-09-13 2021-10-19 Charter Communications Operating, Llc Using dynamic host control protocol (DHCP) and a special file format to convey quality of service (QOS) and service information to customer equipment
US11243953B2 (en) 2018-09-27 2022-02-08 Amazon Technologies, Inc. Mapreduce implementation in an on-demand network code execution system and stream data processing system
US11099917B2 (en) 2018-09-27 2021-08-24 Amazon Technologies, Inc. Efficient state maintenance for execution environments in an on-demand code execution system
US10862998B2 (en) * 2018-11-06 2020-12-08 Citrtix Systems, Inc. Systems and methods for managing downloads from an embedded browser
EP3877874A1 (en) 2018-11-06 2021-09-15 Dover Microsystems, Inc. Systems and methods for stalling host processor
US10943018B2 (en) * 2018-11-08 2021-03-09 Citrix Systems, Inc. Systems and methods for screenshot mediation based on policy
US12124566B2 (en) 2018-11-12 2024-10-22 Dover Microsystems, Inc. Systems and methods for metadata encoding
US11943093B1 (en) 2018-11-20 2024-03-26 Amazon Technologies, Inc. Network connection recovery after virtual machine transition in an on-demand network code execution system
CN109787957B (en) * 2018-12-13 2023-02-10 平安普惠企业管理有限公司 Configuration method of configuration file and related device
US10884812B2 (en) 2018-12-13 2021-01-05 Amazon Technologies, Inc. Performance-based hardware emulation in an on-demand network code execution system
US11841956B2 (en) 2018-12-18 2023-12-12 Dover Microsystems, Inc. Systems and methods for data lifecycle protection
US11165871B2 (en) 2019-02-01 2021-11-02 Citrix Systems, Inc. Computer system providing context-based Software as a Service (SaaS) application session switching and related methods
US11010188B1 (en) 2019-02-05 2021-05-18 Amazon Technologies, Inc. Simulated data object storage using on-demand computation of data objects
RU2746105C2 (en) 2019-02-07 2021-04-07 Акционерное общество "Лаборатория Касперского" System and method of gateway configuration for automated systems protection
RU2724796C1 (en) * 2019-02-07 2020-06-25 Акционерное общество "Лаборатория Касперского" System and method of protecting automated systems using gateway
US11016784B2 (en) 2019-03-08 2021-05-25 Palantir Technologies Inc. Systems and methods for automated deployment and adaptation of configuration files at computing devices
US11861386B1 (en) 2019-03-22 2024-01-02 Amazon Technologies, Inc. Application gateways in an on-demand network code execution system
US10862975B1 (en) 2019-06-04 2020-12-08 Citrix Systems, Inc. Computing system providing direct routing for desktop as a service (DaaS) sessions to a private network and related methods
US11119809B1 (en) 2019-06-20 2021-09-14 Amazon Technologies, Inc. Virtualization-based transaction handling in an on-demand network code execution system
US11190609B2 (en) 2019-06-28 2021-11-30 Amazon Technologies, Inc. Connection pooling for scalable network services
US11115404B2 (en) 2019-06-28 2021-09-07 Amazon Technologies, Inc. Facilitating service connections in serverless code executions
US11159528B2 (en) 2019-06-28 2021-10-26 Amazon Technologies, Inc. Authentication to network-services using hosted authentication information
US11080411B2 (en) * 2019-07-28 2021-08-03 Bank Of America Corporation Elastic virtual information access ecosystem
US11784976B1 (en) 2019-09-27 2023-10-10 Aviatrix Systems, Inc. System and method for secure data transfer
US11394761B1 (en) 2019-09-27 2022-07-19 Amazon Technologies, Inc. Execution of user-submitted code on a stream of data
US11023416B2 (en) 2019-09-27 2021-06-01 Amazon Technologies, Inc. Data access control system for object storage service based on owner-defined code
US11416628B2 (en) 2019-09-27 2022-08-16 Amazon Technologies, Inc. User-specific data manipulation system for object storage service based on user-submitted code
US11055112B2 (en) 2019-09-27 2021-07-06 Amazon Technologies, Inc. Inserting executions of owner-specified code into input/output path of object storage service
US11656892B1 (en) 2019-09-27 2023-05-23 Amazon Technologies, Inc. Sequential execution of user-submitted code and native functions
US11360948B2 (en) 2019-09-27 2022-06-14 Amazon Technologies, Inc. Inserting owner-specified data processing pipelines into input/output path of object storage service
US11263220B2 (en) 2019-09-27 2022-03-01 Amazon Technologies, Inc. On-demand execution of object transformation code in output path of object storage service
US10908927B1 (en) 2019-09-27 2021-02-02 Amazon Technologies, Inc. On-demand execution of object filter code in output path of object storage service
US11106477B2 (en) 2019-09-27 2021-08-31 Amazon Technologies, Inc. Execution of owner-specified code during input/output path to object storage service
US11550944B2 (en) 2019-09-27 2023-01-10 Amazon Technologies, Inc. Code execution environment customization system for object storage service
US11023311B2 (en) 2019-09-27 2021-06-01 Amazon Technologies, Inc. On-demand code execution in input path of data uploaded to storage service in multiple data portions
US10996961B2 (en) 2019-09-27 2021-05-04 Amazon Technologies, Inc. On-demand indexing of data in input path of object storage service
US11250007B1 (en) 2019-09-27 2022-02-15 Amazon Technologies, Inc. On-demand execution of object combination code in output path of object storage service
US11386230B2 (en) 2019-09-27 2022-07-12 Amazon Technologies, Inc. On-demand code obfuscation of data in input path of object storage service
US12079197B2 (en) 2019-10-18 2024-09-03 Dover Microsystems, Inc. Systems and methods for updating metadata
US10942795B1 (en) 2019-11-27 2021-03-09 Amazon Technologies, Inc. Serverless call distribution to utilize reserved capacity without inhibiting scaling
US11119826B2 (en) 2019-11-27 2021-09-14 Amazon Technologies, Inc. Serverless call distribution to implement spillover while avoiding cold starts
CN111209061B (en) * 2019-12-27 2024-04-30 广东德诚科教有限公司 User information filling method, device, computer equipment and storage medium
US11588819B1 (en) * 2020-01-30 2023-02-21 Aviatrix Systems, Inc. System and methods for controlling accessing and storing objects between on-prem data center and cloud
US11523282B2 (en) * 2020-02-05 2022-12-06 Lookout Inc. Use of geolocation to improve security while protecting privacy
US11714682B1 (en) 2020-03-03 2023-08-01 Amazon Technologies, Inc. Reclaiming computing resources in an on-demand code execution system
US11188391B1 (en) 2020-03-11 2021-11-30 Amazon Technologies, Inc. Allocating resources to on-demand code executions under scarcity conditions
US11775640B1 (en) 2020-03-30 2023-10-03 Amazon Technologies, Inc. Resource utilization-based malicious task detection in an on-demand code execution system
JP2022547368A (en) 2020-08-01 2022-11-14 シトリックス・システムズ・インコーポレイテッド desktop service system
US20220060513A1 (en) * 2020-08-21 2022-02-24 Oracle Intenational Corporation Centralized request processing and security zone policy enforcement in a cloud infrastructure system
US11936522B2 (en) * 2020-10-14 2024-03-19 Connectify, Inc. Selecting and operating an optimal virtual private network among multiple virtual private networks
US20220159029A1 (en) * 2020-11-13 2022-05-19 Cyberark Software Ltd. Detection of security risks based on secretless connection data
US11593270B1 (en) 2020-11-25 2023-02-28 Amazon Technologies, Inc. Fast distributed caching using erasure coded object parts
US11550713B1 (en) 2020-11-25 2023-01-10 Amazon Technologies, Inc. Garbage collection in distributed systems using life cycled storage roots
US11755727B2 (en) 2020-12-04 2023-09-12 Bank Of America Corporation Self-defending computing device
US12124576B2 (en) 2020-12-23 2024-10-22 Dover Microsystems, Inc. Systems and methods for policy violation processing
CN113037621B (en) * 2021-03-12 2022-08-02 云知声智能科技股份有限公司 Edge gateway, edge gateway dynamic policy service implementation method, device and system
US11909723B2 (en) * 2021-06-15 2024-02-20 Microsoft Technology Licensing, Llc Mobile VPN autostart through app-only management
US11388210B1 (en) 2021-06-30 2022-07-12 Amazon Technologies, Inc. Streaming analytics using a serverless compute system
US20230012787A1 (en) * 2021-07-19 2023-01-19 Citrix Systems, Inc. Accessing internal network resources using application custom tab
US12056474B2 (en) * 2021-08-06 2024-08-06 Airship Group, Inc. In-application user interface messaging
US11968280B1 (en) 2021-11-24 2024-04-23 Amazon Technologies, Inc. Controlling ingestion of streaming data to serverless function executions
US12015603B2 (en) 2021-12-10 2024-06-18 Amazon Technologies, Inc. Multi-tenant mode for serverless code execution
US12124833B2 (en) * 2022-05-13 2024-10-22 Micron Technology, Inc. Techniques for managing offline identity upgrades

Family Cites Families (513)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263438A (en) 1994-11-23 1996-10-11 Xerox Corp Distribution and use control system of digital work and access control method to digital work
US5898830A (en) 1996-10-17 1999-04-27 Network Engineering Software Firewall providing enhanced network security and user transparency
US5805803A (en) 1997-05-13 1998-09-08 Digital Equipment Corporation Secure web tunnel
US6249866B1 (en) 1997-09-16 2001-06-19 Microsoft Corporation Encrypting file system and method
US6151606A (en) 1998-01-16 2000-11-21 Visto Corporation System and method for using a workspace data manager to access, manipulate and synchronize network data
US6154172A (en) 1998-03-31 2000-11-28 Piccionelli; Gregory A. System and process for limiting distribution of information on a communication network based on geographic location
US6219694B1 (en) 1998-05-29 2001-04-17 Research In Motion Limited System and method for pushing information from a host system to a mobile data communication device having a shared electronic address
US6480096B1 (en) 1998-07-08 2002-11-12 Motorola, Inc. Method and apparatus for theft deterrence and secure data retrieval in a communication device
US6158010A (en) 1998-10-28 2000-12-05 Crosslogix, Inc. System and method for maintaining security in a distributed computer network
US7140005B2 (en) 1998-12-21 2006-11-21 Intel Corporation Method and apparatus to test an instruction sequence
US7130831B2 (en) 1999-02-08 2006-10-31 Copyright Clearance Center, Inc. Limited-use browser and security system
US6609198B1 (en) 1999-08-05 2003-08-19 Sun Microsystems, Inc. Log-on service providing credential level change without loss of session continuity
US6356933B2 (en) 1999-09-07 2002-03-12 Citrix Systems, Inc. Methods and apparatus for efficiently transmitting interactive application data between a client and a server using markup language
GB2354350B (en) 1999-09-17 2004-03-24 Mitel Corp Policy representations and mechanisms for the control of software
US20030236861A1 (en) 2000-03-03 2003-12-25 Johnson Scott C. Network content delivery system with peer to peer processing components
JP4348818B2 (en) 2000-03-10 2009-10-21 ソニー株式会社 Data distribution system and method, and data recording medium
US6859879B2 (en) 2000-05-26 2005-02-22 International Business Machine Corporation Method and system for secure pervasive access
US7065652B1 (en) 2000-06-21 2006-06-20 Aladdin Knowledge Systems, Ltd. System for obfuscating computer code upon disassembly
GB2366691B (en) 2000-08-31 2002-11-06 F Secure Oyj Wireless device management
US7689510B2 (en) 2000-09-07 2010-03-30 Sonic Solutions Methods and system for use in network management of content
US6883098B1 (en) 2000-09-20 2005-04-19 International Business Machines Corporation Method and computer system for controlling access by applications to this and other computer systems
US20020112047A1 (en) 2000-12-05 2002-08-15 Rakesh Kushwaha System and method for wireless data terminal management using general packet radio service network
US20080214300A1 (en) 2000-12-07 2008-09-04 Igt Methods for electronic data security and program authentication
US7904468B2 (en) 2008-02-27 2011-03-08 Research In Motion Limited Method and software for facilitating interaction with a personal information manager application at a wireless communication device
WO2002057943A1 (en) 2001-01-18 2002-07-25 Yahoo! Inc. Method and system for managing digital content, including streaming media
US6732278B2 (en) 2001-02-12 2004-05-04 Baird, Iii Leemon C. Apparatus and method for authenticating access to a network resource
US7437429B2 (en) 2001-02-13 2008-10-14 Microsoft Corporation System and method for providing transparent access to distributed authoring and versioning files including encrypted files
US7502861B1 (en) 2001-02-16 2009-03-10 Swsoft Holding, Ltd. System and method for providing services for offline servers using the same network address
US20020120607A1 (en) 2001-02-28 2002-08-29 Lumenati, Inc. File sharing system for serving content from a computer
US20030028597A1 (en) 2001-03-14 2003-02-06 Matti Salmi Separation of instant messaging user and client identities
US7302571B2 (en) 2001-04-12 2007-11-27 The Regents Of The University Of Michigan Method and system to maintain portable computer data secure and authentication token for use therein
US20050198379A1 (en) 2001-06-13 2005-09-08 Citrix Systems, Inc. Automatically reconnecting a client across reliable and persistent communication sessions
JP3861625B2 (en) 2001-06-13 2006-12-20 ソニー株式会社 Data transfer system, data transfer device, recording device, and data transfer method
US6621766B2 (en) 2001-08-01 2003-09-16 Fossil, Inc. Flexible timepiece in multiple environments
US8218829B2 (en) 2001-08-20 2012-07-10 Polycom, Inc. System and method for using biometrics technology in conferencing
WO2003019973A2 (en) 2001-08-29 2003-03-06 Research In Motion Limited System and method for addressing a mobile device in an ip-based wireless network
US8560709B1 (en) 2004-02-25 2013-10-15 F5 Networks, Inc. System and method for dynamic policy based access over a virtual private network
US7143443B2 (en) 2001-10-01 2006-11-28 Ntt Docomo, Inc. Secure sharing of personal devices among different users
US7631084B2 (en) 2001-11-02 2009-12-08 Juniper Networks, Inc. Method and system for providing secure access to private networks with client redirection
US7159120B2 (en) 2001-11-19 2007-01-02 Good Technology, Inc. Method and system for protecting data within portable electronic devices
US20030103075A1 (en) 2001-12-03 2003-06-05 Rosselot Robert Charles System and method for control of conference facilities and equipment
US7950066B1 (en) 2001-12-21 2011-05-24 Guardian Data Storage, Llc Method and system for restricting use of a clipboard application
WO2003060671A2 (en) 2002-01-04 2003-07-24 Lab 7 Networks, Inc. Communication security system
US7873985B2 (en) 2002-01-08 2011-01-18 Verizon Services Corp. IP based security applications using location, port and/or device identifier information
JP2003202929A (en) 2002-01-08 2003-07-18 Ntt Docomo Inc Distribution method and distribution system
JP2005515664A (en) 2002-01-08 2005-05-26 セブン ネットワークス, インコーポレイテッド Secure transmission for mobile communication networks
US20030188193A1 (en) 2002-03-28 2003-10-02 International Business Machines Corporation Single sign on for kerberos authentication
JP2003296210A (en) 2002-04-03 2003-10-17 Japan Research Institute Ltd Method and device for generating profile setting file
US6950825B2 (en) 2002-05-30 2005-09-27 International Business Machines Corporation Fine grained role-based access to system resources
EP1525522A2 (en) 2002-06-06 2005-04-27 Green Border Technologies Method and system for implementing a secure application execution environment using derived user accounts for internet content
US6946715B2 (en) 2003-02-19 2005-09-20 Micron Technology, Inc. CMOS image sensor and method of fabrication
EP2375336B1 (en) 2002-08-09 2013-06-26 Good Technology Corporation System and method for preventing access to data on a compromised remote device
US7665125B2 (en) 2002-09-23 2010-02-16 Heard Robert W System and method for distribution of security policies for mobile devices
US7437752B2 (en) 2002-09-23 2008-10-14 Credant Technologies, Inc. Client architecture for portable device with security policies
US7665118B2 (en) * 2002-09-23 2010-02-16 Credant Technologies, Inc. Server, computer memory, and method to support security policy maintenance and distribution
US7536562B2 (en) 2002-10-17 2009-05-19 Research In Motion Limited System and method of security function activation for a mobile electronic device
FR2847752B1 (en) 2002-11-27 2006-01-13 At & T Corp METHOD AND SYSTEM FOR MANAGING THE EXCHANGE OF FILES ATTACHED TO E-MAIL
US7254831B2 (en) 2002-12-04 2007-08-07 Microsoft Corporation Sharing a sign-in among software applications having secured features
US8332464B2 (en) 2002-12-13 2012-12-11 Anxebusiness Corp. System and method for remote network access
US9237514B2 (en) 2003-02-28 2016-01-12 Apple Inc. System and method for filtering access points presented to a user and locking onto an access point
US7353533B2 (en) * 2002-12-18 2008-04-01 Novell, Inc. Administration of protection of data accessible by a mobile device
US7526800B2 (en) * 2003-02-28 2009-04-28 Novell, Inc. Administration of protection of data accessible by a mobile device
US7917468B2 (en) 2005-08-01 2011-03-29 Seven Networks, Inc. Linking of personal information management data
EP1586998A4 (en) 2003-01-20 2008-07-30 Fujitsu Ltd Copy prevention apparatus, copy prevention method, and program for causing computer to execute the method
JP3928561B2 (en) 2003-01-23 2007-06-13 ソニー株式会社 Content distribution system, information processing apparatus or information processing method, and computer program
US8020192B2 (en) 2003-02-28 2011-09-13 Michael Wright Administration of protection of data accessible by a mobile device
US9197668B2 (en) 2003-02-28 2015-11-24 Novell, Inc. Access control to files based on source information
US7779408B1 (en) 2003-03-24 2010-08-17 Sprint Spectrum L.P. Method and system for downloading and managing portable applications on a mobile device
WO2004107646A1 (en) 2003-05-14 2004-12-09 Threatguard, Inc. System and method for application-level virtual private network
US7543051B2 (en) 2003-05-30 2009-06-02 Borland Software Corporation Method of non-intrusive analysis of secure and non-secure web application traffic in real-time
AU2003903501A0 (en) * 2003-07-07 2003-07-24 Commonwealth Scientific And Industrial Research Organisation A method of forming a reflective authentication device
US20050027862A1 (en) 2003-07-18 2005-02-03 Nguyen Tien Le System and methods of cooperatively load-balancing clustered servers
US7089594B2 (en) 2003-07-21 2006-08-08 July Systems, Inc. Application rights management in a mobile environment
US7574707B2 (en) 2003-07-28 2009-08-11 Sap Ag Install-run-remove mechanism
US7349913B2 (en) 2003-08-21 2008-03-25 Microsoft Corporation Storage platform for organizing, searching, and sharing data
SE527561C2 (en) 2003-09-12 2006-04-11 Secured Email Goeteborg Ab Electronic mail transmission method in internet environment, involves storing seed for key generation provided from sender's terminal, in receiver's terminal
US20050076085A1 (en) 2003-09-18 2005-04-07 Vulcan Portals Inc. Method and system for managing email attachments for an electronic device
US7492472B2 (en) 2003-10-30 2009-02-17 Xerox Corporation Multimedia communications/collaboration hub
US8483227B2 (en) 2003-11-20 2013-07-09 International Business Machines Corporation Controlling bandwidth reservations method and apparatus
US7415498B2 (en) 2003-12-10 2008-08-19 International Business Machines Corporation Time limited collaborative community role delegation policy
WO2005064882A2 (en) 2003-12-29 2005-07-14 Telefonaktiebolaget Lm Ericsson (Publ) Apparatuses and method for single sign-on access to a service network through an access network
US20050172241A1 (en) 2004-01-08 2005-08-04 International Business Machines Corporation System and method for improved direct system clipboard
US7269605B1 (en) 2004-02-13 2007-09-11 Avidian Technologies Personal information manager data synchronization and augmentation
JP4665406B2 (en) 2004-02-23 2011-04-06 日本電気株式会社 Access control management method, access control management system, and terminal device with access control management function
US7720461B2 (en) 2004-02-26 2010-05-18 Research In Motion Limited Mobile communications device with security features
US20050193222A1 (en) 2004-03-01 2005-09-01 Greene William S. Providing secure data and policy exchange between domains in a multi-domain grid by use of a service ecosystem facilitating uses such as supply-chain integration with RIFD tagged items and barcodes
US7599991B2 (en) 2004-03-10 2009-10-06 Microsoft Corporation Rules interface for implementing message rules on a mobile computing device
US7549048B2 (en) * 2004-03-19 2009-06-16 Microsoft Corporation Efficient and secure authentication of computing systems
US7509672B1 (en) 2004-04-01 2009-03-24 Compuware Corporation Cross-platform single sign-on data sharing
JP4465387B2 (en) 2004-04-30 2010-05-19 リサーチ イン モーション リミテッド System and method for processing data transmission
US7487353B2 (en) 2004-05-20 2009-02-03 International Business Machines Corporation System, method and program for protecting communication
US7492946B2 (en) 2004-05-24 2009-02-17 Michael James Elder System, method and computer program for an integrated digital workflow for processing a paper form
US7631360B2 (en) 2004-06-12 2009-12-08 Microsoft Corporation Hardware protection
US20060080432A1 (en) 2004-09-03 2006-04-13 Spataro Jared M Systems and methods for collaboration
EP1817686A4 (en) 2004-09-13 2007-12-05 Research In Motion Ltd Enabling category-based filtering
US8839090B2 (en) 2004-09-16 2014-09-16 International Business Machines Corporation System and method to capture and manage input values for automatic form fill
US8463946B2 (en) 2004-09-17 2013-06-11 Caterpillar Inc. Method for automatic radio operational mode selection
DE102004045147A1 (en) 2004-09-17 2006-03-23 Fujitsu Ltd., Kawasaki A setting information distribution apparatus, method, program and medium, authentication setting transfer apparatus, method, program and medium, and setting information receiving program
US7949706B2 (en) 2004-09-24 2011-05-24 At&T Intellectual Property I, L.P. Automatic electronic publishing
US7984192B2 (en) 2004-09-27 2011-07-19 Citrix Systems, Inc. System and method for assigning unique identifiers to each remote display protocol session established via an intermediary device
JP2006094258A (en) 2004-09-27 2006-04-06 Nippon Telegr & Teleph Corp <Ntt> Terminal device, its policy forcing method, and its program
US7721328B2 (en) 2004-10-01 2010-05-18 Salesforce.Com Inc. Application identity design
US7496954B1 (en) 2004-11-22 2009-02-24 Sprint Communications Company L.P. Single sign-on system and method
US20060085826A1 (en) 2004-10-18 2006-04-20 Funk James M Aggregated program guide for download and view video on demand service
US20090228714A1 (en) 2004-11-18 2009-09-10 Biogy, Inc. Secure mobile device with online vault
US20060112428A1 (en) 2004-11-23 2006-05-25 Nokia Corporation Device having a locking feature and a method, means and software for utilizing the feature
US8478849B2 (en) 2004-12-07 2013-07-02 Pure Networks LLC. Network administration tool
US7900201B1 (en) 2004-12-21 2011-03-01 Zenprise, Inc. Automated remedying of problems in software application deployments
US20060141985A1 (en) 2004-12-23 2006-06-29 Motorola, Inc. Dynamic management for interface access permissions
US7562226B2 (en) 2005-01-14 2009-07-14 Citrix Systems, Inc. System and method for permission-based access using a shared account
US7788535B2 (en) 2005-01-28 2010-08-31 Nxp B.V. Means and method for debugging
US20060185004A1 (en) 2005-02-11 2006-08-17 Samsung Electronics Co., Ltd. Method and system for single sign-on in a network
EP1866789B8 (en) 2005-02-28 2020-04-15 McAfee, LLC Mobile data security system and methods
US7844958B2 (en) 2005-03-11 2010-11-30 Aptana, Inc. System and method for creating target byte code
US8214887B2 (en) 2005-03-20 2012-07-03 Actividentity (Australia) Pty Ltd. Method and system for providing user access to a secure application
US7697737B2 (en) 2005-03-25 2010-04-13 Northrop Grumman Systems Corporation Method and system for providing fingerprint enabled wireless add-on for personal identification number (PIN) accessible smartcards
US7472375B2 (en) 2005-03-29 2008-12-30 Intel Corporation Creating managed code from native code
US7571475B2 (en) 2005-04-05 2009-08-04 Cisco Technology, Inc. Method and electronic device for triggering zeroization in an electronic device
US7631297B2 (en) 2005-04-05 2009-12-08 International Business Machines Corporation Autonomic computing: management agent utilizing action policy for operation
US7490352B2 (en) 2005-04-07 2009-02-10 Microsoft Corporation Systems and methods for verifying trust of executable files
US20060248577A1 (en) 2005-04-29 2006-11-02 International Business Machines Corporation Using SSO processes to manage security credentials in a provisioning management system
US20070056043A1 (en) 2005-05-19 2007-03-08 Richard Onyon Remote cell phone auto destruct
US20070024646A1 (en) 2005-05-23 2007-02-01 Kalle Saarinen Portable electronic apparatus and associated method
US7970386B2 (en) 2005-06-03 2011-06-28 Good Technology, Inc. System and method for monitoring and maintaining a wireless device
FR2886801B1 (en) 2005-06-07 2007-08-03 Alcatel Sa NETWORK EQUIPMENT FOR PROVIDING MULTI-MODE MOBILE DATA TERMINALS NECESSARY FOR THE AUTOMATIC SELECTION OF RADIO ACCESS NETWORK INTERFACES DURING SERVICE SESSIONS
US7565689B2 (en) * 2005-06-08 2009-07-21 Research In Motion Limited Virtual private network for real-time data
US8495244B2 (en) 2005-06-29 2013-07-23 Jumpstart Wireless Corporation System and method for dynamic automatic communication path selection, distributed device synchronization and task delegation
US7529923B2 (en) 2005-06-30 2009-05-05 Intel Corporation Operating system mode transfer
WO2007029116A2 (en) 2005-07-01 2007-03-15 0733660 B.C. Ltd. Dba E-Mail2, Inc. Electronic mail messaging system
US20070011749A1 (en) 2005-07-11 2007-01-11 Simdesk Technologies Secure clipboard function
US20070016771A1 (en) 2005-07-11 2007-01-18 Simdesk Technologies, Inc. Maintaining security for file copy operations
US20070016907A1 (en) 2005-07-12 2007-01-18 Fabio Benedetti Method, system and computer program for automatic provisioning of resources to scheduled jobs
US9614964B2 (en) 2005-08-19 2017-04-04 Nextstep, Inc. Consumer electronic registration, control and support concierge device and method
US9864628B2 (en) 2005-08-23 2018-01-09 Blackberry Limited Method and system for transferring an application state from a first electronic device to a second electronic device
US20070049297A1 (en) 2005-08-29 2007-03-01 Janakiraman Gopalan System and method for locating mobile devices through a direct-connection protocol
US20070283324A1 (en) 2005-08-30 2007-12-06 Geisinger Nile J System and method for creating programs that comprise several execution layers
US7779458B1 (en) 2005-09-20 2010-08-17 Rockwell Collins, Inc. Situation aware mobile location ad hoc firewall
US20070072598A1 (en) 2005-09-23 2007-03-29 Coleman David T Controlling wireless communication devices with media recording capabilities
US20070074033A1 (en) 2005-09-29 2007-03-29 Research In Motion Limited Account management in a system and method for providing code signing services
US7870493B2 (en) 2005-10-03 2011-01-11 Microsoft Corporation Distributed clipboard
US8037421B2 (en) 2005-10-11 2011-10-11 Research In Motion Limited System and method for organizing application indicators on an electronic device
US7437755B2 (en) 2005-10-26 2008-10-14 Cisco Technology, Inc. Unified network and physical premises access control server
US20070100938A1 (en) 2005-10-27 2007-05-03 Bagley Elizabeth V Participant-centered orchestration/timing of presentations in collaborative environments
WO2007053848A1 (en) * 2005-11-01 2007-05-10 Mobile Armor, Llc Centralized dynamic security control for a mobile device network
CN101356812A (en) 2005-11-08 2009-01-28 夏普株式会社 Communication apparatus, communication method, communication system, program, and computer readable recording medium
US20070109983A1 (en) 2005-11-11 2007-05-17 Computer Associates Think, Inc. Method and System for Managing Access to a Wireless Network
US20070248085A1 (en) 2005-11-12 2007-10-25 Cranite Systems Method and apparatus for managing hardware address resolution
US8045958B2 (en) 2005-11-21 2011-10-25 Research In Motion Limited System and method for application program operation on a wireless device
US20070136471A1 (en) 2005-12-12 2007-06-14 Ip3 Networks Systems and methods for negotiating and enforcing access to network resources
GB2433794B (en) * 2005-12-21 2010-08-18 Advanced Risc Mach Ltd Interrupt controller utiilising programmable priority values
CN101351804A (en) 2005-12-26 2009-01-21 皇家飞利浦电子股份有限公司 Method and apparatus for managing entitlement
US7716240B2 (en) 2005-12-29 2010-05-11 Nextlabs, Inc. Techniques and system to deploy policies intelligently
US8621549B2 (en) 2005-12-29 2013-12-31 Nextlabs, Inc. Enforcing control policies in an information management system
EP1967026A2 (en) 2005-12-30 2008-09-10 Telecom Italia S.p.A. Method for customizing the operation of a telephonic terminal
US20070204166A1 (en) 2006-01-04 2007-08-30 Tome Agustin J Trusted host platform
US20070174429A1 (en) 2006-01-24 2007-07-26 Citrix Systems, Inc. Methods and servers for establishing a connection between a client system and a virtual machine hosting a requested computing environment
WO2007089503A2 (en) 2006-01-26 2007-08-09 Imprivata, Inc. Systems and methods for multi-factor authentication
US8132242B1 (en) * 2006-02-13 2012-03-06 Juniper Networks, Inc. Automated authentication of software applications using a limited-use token
US7664865B2 (en) 2006-02-15 2010-02-16 Microsoft Corporation Securely hosting a webbrowser control in a managed code environment
US8676973B2 (en) 2006-03-07 2014-03-18 Novell Intellectual Property Holdings, Inc. Light-weight multi-user browser
US7725922B2 (en) 2006-03-21 2010-05-25 Novell, Inc. System and method for using sandboxes in a managed shell
US20070226225A1 (en) 2006-03-22 2007-09-27 Yiu Timothy C Mobile collaboration and communication system
US20070226034A1 (en) 2006-03-23 2007-09-27 Kyocera Wireless Corp. Wireless communication device meeting scheduler
US7774323B2 (en) 2006-03-27 2010-08-10 Sap Portals Israel Ltd. Method and apparatus for delivering managed applications to remote locations
US8413209B2 (en) 2006-03-27 2013-04-02 Telecom Italia S.P.A. System for enforcing security policies on mobile communications devices
WO2007113709A1 (en) 2006-03-30 2007-10-11 Koninklijke Philips Electronics N.V. Method and apparatus for assigning an application to a security restriction
US9112897B2 (en) 2006-03-30 2015-08-18 Advanced Network Technology Laboratories Pte Ltd. System and method for securing a network session
WO2007117582A2 (en) 2006-04-06 2007-10-18 Smobile Systems Inc. Malware detection system and method for mobile platforms
US8151323B2 (en) 2006-04-12 2012-04-03 Citrix Systems, Inc. Systems and methods for providing levels of access and action control via an SSL VPN appliance
US8181010B1 (en) 2006-04-17 2012-05-15 Oracle America, Inc. Distributed authentication user interface system
US20070261099A1 (en) 2006-05-02 2007-11-08 Broussard Scott J Confidential content reporting system and method with electronic mail verification functionality
US8700772B2 (en) 2006-05-03 2014-04-15 Cloud Systems, Inc. System and method for automating the management, routing, and control of multiple devices and inter-device connections
US8085891B2 (en) 2006-05-29 2011-12-27 Research In Motion Limited System and method for management of mobile device communication
US20080046580A1 (en) 2006-06-29 2008-02-21 Nokia Corporation Account creation system and call processing system
US20080027982A1 (en) 2006-07-27 2008-01-31 Ebay Inc. Indefinite caching expiration techniques
JP2008033751A (en) 2006-07-31 2008-02-14 Ziosoft Inc Update method and update system
US8272048B2 (en) 2006-08-04 2012-09-18 Apple Inc. Restriction of program process capabilities
US8341747B2 (en) 2006-08-08 2012-12-25 International Business Machines Corporation Method to provide a secure virtual machine launcher
US8234704B2 (en) 2006-08-14 2012-07-31 Quantum Security, Inc. Physical access control and security monitoring system utilizing a normalized data format
WO2008021514A2 (en) 2006-08-17 2008-02-21 Neustar, Inc. System and method for managing domain policy for interconnected communication networks
US8903365B2 (en) 2006-08-18 2014-12-02 Ca, Inc. Mobile device management
US20080047006A1 (en) 2006-08-21 2008-02-21 Pantech Co., Ltd. Method for registering rights issuer and domain authority in digital rights management and method for implementing secure content exchange functions using the same
US8010995B2 (en) 2006-09-08 2011-08-30 International Business Machines Corporation Methods, systems, and computer program products for implementing inter-process integrity serialization
US8245285B1 (en) 2006-09-22 2012-08-14 Oracle America, Inc. Transport-level web application security on a resource-constrained device
US8327427B2 (en) 2006-09-25 2012-12-04 Rockstar Consortium Us Lp System and method for transparent single sign-on
JP4959282B2 (en) 2006-10-13 2012-06-20 中国電力株式会社 Application operation control system and application operation control method
US9135444B2 (en) 2006-10-19 2015-09-15 Novell, Inc. Trusted platform module (TPM) assisted data center management
US8259568B2 (en) * 2006-10-23 2012-09-04 Mcafee, Inc. System and method for controlling mobile device access to a network
CN101170401B (en) 2006-10-27 2011-02-02 鸿富锦精密工业(深圳)有限公司 Email encryption/decryption system and its method
US8126128B1 (en) 2006-11-01 2012-02-28 At&T Intellectual Property I, Lp Life cycle management of user-selected applications on wireless communications devices
US8095786B1 (en) 2006-11-09 2012-01-10 Juniper Networks, Inc. Application-specific network-layer virtual private network connections
US8281299B2 (en) 2006-11-10 2012-10-02 Purdue Research Foundation Map-closure: a general purpose mechanism for nonstandard interpretation
US8365258B2 (en) 2006-11-16 2013-01-29 Phonefactor, Inc. Multi factor authentication
US20080141335A1 (en) 2006-12-08 2008-06-12 Novell, Inc. Provisioning software with policy-appropriate capabilities
US9124650B2 (en) 2006-12-13 2015-09-01 Quickplay Media Inc. Digital rights management in a mobile environment
JP5070835B2 (en) 2006-12-26 2012-11-14 日本電気株式会社 Function limiting method for portable terminal and portable terminal
US8869189B2 (en) 2006-12-29 2014-10-21 Echostar Technologies L.L.C. Controlling access to content and/or services
CA2578472C (en) 2007-01-12 2013-01-15 Truecontext Corporation Methods and system for orchestrating services and data sharing on mobile devices
JP5133973B2 (en) 2007-01-18 2013-01-30 パナソニック株式会社 Obfuscation support device, obfuscation support method, program, and integrated circuit
CA2676289C (en) * 2007-01-19 2018-01-02 Research In Motion Limited Selectively wiping a remote device
US8214451B2 (en) 2007-01-19 2012-07-03 Alcatel Lucent Network service version management
US8909702B2 (en) 2007-01-29 2014-12-09 Fuji Xerox Co., Ltd. System and method for coordination of devices in a presentation environment
US7644377B1 (en) 2007-01-31 2010-01-05 Hewlett-Packard Development Company, L.P. Generating a configuration of a system that satisfies constraints contained in models
US8132233B2 (en) 2007-02-05 2012-03-06 Hewlett-Packard Development Company, L.P. Dynamic network access control method and apparatus
US8250045B2 (en) 2007-02-07 2012-08-21 International Business Machines Corporation Non-invasive usage tracking, access control, policy enforcement, audit logging, and user action automation on software applications
US8074227B2 (en) 2007-02-08 2011-12-06 Microsoft Corporation Utilizing a first managed process to host at least a second managed process
US8095517B2 (en) 2007-02-08 2012-01-10 Blue Coat Systems, Inc. Method and system for policy-based protection of application data
US7761523B2 (en) 2007-02-09 2010-07-20 Research In Motion Limited Schedulable e-mail filters
US8126506B2 (en) 2007-02-14 2012-02-28 Nuance Communications, Inc. System and method for securely managing data stored on mobile devices, such as enterprise mobility data
US8689334B2 (en) 2007-02-28 2014-04-01 Alcatel Lucent Security protection for a customer programmable platform
US20080229117A1 (en) 2007-03-07 2008-09-18 Shin Kang G Apparatus for preventing digital piracy
JP4973246B2 (en) 2007-03-09 2012-07-11 日本電気株式会社 Access right management system, server, and access right management program
WO2008114256A2 (en) 2007-03-22 2008-09-25 Neocleus Ltd. Trusted local single sign-on
CN101281461B (en) 2007-04-04 2012-07-04 国际商业机器公司 Method and device for transfer applying dependent system environment
WO2008134702A2 (en) 2007-04-30 2008-11-06 Handipoints, Inc. Systems and methods of managing tasks assigned to an individual
US10019570B2 (en) 2007-06-14 2018-07-10 Microsoft Technology Licensing, Llc Protection and communication abstractions for web browsers
US20080313257A1 (en) 2007-06-15 2008-12-18 Allen James D Method and Apparatus for Policy-Based Transfer of an Application Environment
US8463253B2 (en) 2007-06-21 2013-06-11 Verizon Patent And Licensing Inc. Flexible lifestyle portable communications device
US8027518B2 (en) 2007-06-25 2011-09-27 Microsoft Corporation Automatic configuration of devices based on biometric data
US20090006232A1 (en) 2007-06-29 2009-01-01 Gallagher Ken A Secure computer and internet transaction software and hardware and uses thereof
US9270682B2 (en) 2007-07-27 2016-02-23 Blackberry Limited Administration of policies for wireless devices in a wireless communication system
US8005922B2 (en) 2007-07-27 2011-08-23 Research In Motion Limited Remote control in a wireless communication system
US7895409B2 (en) 2007-07-30 2011-02-22 Hewlett-Packard Development Company, L.P. Application inspection tool for determining a security partition
US8060074B2 (en) 2007-07-30 2011-11-15 Mobile Iron, Inc. Virtual instance architecture for mobile device management systems
EP2188730A4 (en) * 2007-08-08 2014-09-17 Innopath Software Inc Managing and enforcing policies on mobile devices
US20090049425A1 (en) 2007-08-14 2009-02-19 Aladdin Knowledge Systems Ltd. Code Obfuscation By Reference Linking
US8306509B2 (en) 2007-08-31 2012-11-06 At&T Mobility Ii Llc Enhanced messaging with language translation feature
US20090077638A1 (en) 2007-09-17 2009-03-19 Novell, Inc. Setting and synching preferred credentials in a disparate credential store environment
US8554176B2 (en) 2007-09-18 2013-10-08 Qualcomm Incorporated Method and apparatus for creating a remotely activated secure backup service for mobile handsets
US8001278B2 (en) 2007-09-28 2011-08-16 Intel Corporation Network packet payload compression
KR100946824B1 (en) 2007-10-31 2010-03-09 (주)피엑스디 Digital broadcast widget system and method of displying widget
HUE036213T2 (en) 2007-11-02 2018-06-28 Qualcomm Inc Configurable system event and resource arbitration management
US8659427B2 (en) 2007-11-09 2014-02-25 Proxense, Llc Proximity-sensor supporting multiple application services
US20090228963A1 (en) 2007-11-26 2009-09-10 Nortel Networks Limited Context-based network security
US8601562B2 (en) 2007-12-10 2013-12-03 Courion Corporation Policy enforcement using ESSO
US8060596B1 (en) 2007-12-26 2011-11-15 Symantec Corporation Methods and systems for normalizing data loss prevention categorization information
US8453198B2 (en) 2007-12-27 2013-05-28 Hewlett-Packard Development Company, L.P. Policy based, delegated limited network access management
US8538376B2 (en) 2007-12-28 2013-09-17 Apple Inc. Event-based modes for electronic devices
US20090171906A1 (en) 2008-01-02 2009-07-02 Research In Motion Limited System and method for providing information relating to an email being provided to an electronic device
US20090199277A1 (en) 2008-01-31 2009-08-06 Norman James M Credential arrangement in single-sign-on environment
US20090199178A1 (en) 2008-02-01 2009-08-06 Microsoft Corporation Virtual Application Management
AU2009214668A1 (en) 2008-02-15 2009-08-20 Citrix Systems, Inc. Systems and methods for secure handling of secure attention sequences
US20090222880A1 (en) 2008-03-03 2009-09-03 Tresys Technology, Llc Configurable access control security for virtualization
US8078713B1 (en) 2008-03-05 2011-12-13 Full Armor Corporation Delivering policy settings with virtualized applications
US8607304B2 (en) 2008-03-07 2013-12-10 At&T Mobility Ii Llc System and method for policy-enabled mobile service gateway
US20130254660A1 (en) 2008-03-13 2013-09-26 Robb Fujioka Tablet computer
US9747141B2 (en) 2008-03-25 2017-08-29 Qualcomm Incorporated Apparatus and methods for widget intercommunication in a wireless communication environment
US8418238B2 (en) 2008-03-30 2013-04-09 Symplified, Inc. System, method, and apparatus for managing access to resources across a network
US9576157B2 (en) 2008-04-02 2017-02-21 Yougetitback Limited Method for mitigating the unauthorized use of a device
US7966652B2 (en) 2008-04-07 2011-06-21 Safemashups Inc. Mashauth: using mashssl for efficient delegated authentication
CN101572678B (en) 2008-04-30 2012-09-19 北京明朝万达科技有限公司 Mail attachment transparent privacy control method
WO2009135301A1 (en) * 2008-05-07 2009-11-12 Chalk Media Service Corp. Method for enabling bandwidth management for mobile content delivery
US8549657B2 (en) 2008-05-12 2013-10-01 Microsoft Corporation Owner privacy in a shared mobile device
JP5326363B2 (en) 2008-05-30 2013-10-30 株式会社リコー Image forming apparatus, authentication control method, and program
US8924469B2 (en) 2008-06-05 2014-12-30 Headwater Partners I Llc Enterprise access control and accounting allocation for access networks
US8630192B2 (en) 2009-01-28 2014-01-14 Headwater Partners I Llc Verifiable and accurate service usage monitoring for intermediate networking devices
US8406748B2 (en) 2009-01-28 2013-03-26 Headwater Partners I Llc Adaptive ambient services
US8832777B2 (en) 2009-03-02 2014-09-09 Headwater Partners I Llc Adapting network policies based on device service processor configuration
US9069599B2 (en) 2008-06-19 2015-06-30 Servicemesh, Inc. System and method for a cloud computing abstraction layer with security zone facilities
US8204196B2 (en) 2008-06-25 2012-06-19 International Business Machines Corporation Notification to absent teleconference invitees
WO2010011467A1 (en) 2008-06-29 2010-01-28 Oceans' Edge, Inc. Mobile telephone firewall and compliance enforcement system and method
WO2010001324A2 (en) 2008-06-30 2010-01-07 Mominis Ltd Method of generating and distributing a computer application
US8156442B2 (en) 2008-06-30 2012-04-10 Nokia Corporation Life recorder and sharing
GB2462442A (en) 2008-08-06 2010-02-10 Zybert Computing Ltd A remote server centrally controls access to data stored in a data container in an encrypted form
US8862672B2 (en) 2008-08-25 2014-10-14 Microsoft Corporation Content sharing and instant messaging
CN101662765B (en) 2008-08-29 2013-08-07 深圳富泰宏精密工业有限公司 Encryption system and method of short message of mobile telephone
US8365183B2 (en) 2008-09-02 2013-01-29 Ca, Inc. System and method for dynamic resource provisioning for job placement
US8238256B2 (en) 2008-09-08 2012-08-07 Nugent Raymond M System and method for cloud computing
US8763102B2 (en) 2008-09-19 2014-06-24 Hewlett-Packard Development Company, L.P. Single sign on infrastructure
US20100083358A1 (en) 2008-09-29 2010-04-01 Perfios Software Solutions Pvt. Ltd Secure Data Aggregation While Maintaining Privacy
US8528059B1 (en) 2008-10-06 2013-09-03 Goldman, Sachs & Co. Apparatuses, methods and systems for a secure resource access and placement platform
US20120137364A1 (en) 2008-10-07 2012-05-31 Mocana Corporation Remote attestation of a mobile device
US9026918B2 (en) 2008-10-16 2015-05-05 Accenture Global Services Limited Enabling a user device to access enterprise data
US9836702B2 (en) 2008-10-16 2017-12-05 International Business Machines Corporation Digital rights management (DRM)-enabled policy management for an identity provider in a federated environment
WO2010054258A1 (en) * 2008-11-06 2010-05-14 Trust Digital System and method for mediating connections between policy source servers, corporate repositories, and mobile devices
US20100150341A1 (en) 2008-12-17 2010-06-17 David Dodgson Storage security using cryptographic splitting
US20100146582A1 (en) 2008-12-04 2010-06-10 Dell Products L.P. Encryption management in an information handling system
US20100146523A1 (en) 2008-12-05 2010-06-10 Tripod Ventures Inc./ Entreprises Tripod Inc. Browser environment application and local file server application system
US8931033B2 (en) 2008-12-12 2015-01-06 Microsoft Corporation Integrating policies from a plurality of disparate management agents
US8245223B2 (en) 2008-12-23 2012-08-14 Microsoft Corporation Networked deployment of multi-application customizations
US8505078B2 (en) 2008-12-28 2013-08-06 Qualcomm Incorporated Apparatus and methods for providing authorized device access
US8272030B1 (en) * 2009-01-21 2012-09-18 Sprint Communications Company L.P. Dynamic security management for mobile communications device
US8856909B1 (en) 2009-01-23 2014-10-07 Juniper Networks, Inc. IF-MAP provisioning of resources and services
US20120005724A1 (en) 2009-02-09 2012-01-05 Imera Systems, Inc. Method and system for protecting private enterprise resources in a cloud computing environment
US20100228961A1 (en) 2009-03-03 2010-09-09 Erf Wireless, Inc. Hierarchical secure networks
US20100228825A1 (en) 2009-03-06 2010-09-09 Microsoft Corporation Smart meeting room
US20100235216A1 (en) 2009-03-16 2010-09-16 Microsoft Corporation Integration of pre-meeting and post-meeting experience into a meeting lifecycle
CA2692741C (en) 2009-03-31 2014-04-08 Research In Motion Limited Remote application storage
CN101854340B (en) 2009-04-03 2015-04-01 瞻博网络公司 Behavior based communication analysis carried out based on access control information
AU2010234204A1 (en) 2009-04-09 2011-11-10 Aegis Mobility, Inc. Context based data mediation
US8660530B2 (en) 2009-05-01 2014-02-25 Apple Inc. Remotely receiving and communicating commands to a mobile device for execution by the mobile device
US8666367B2 (en) 2009-05-01 2014-03-04 Apple Inc. Remotely locating and commanding a mobile device
US8419806B2 (en) 2009-05-05 2013-04-16 Absolute Software Corporation Discriminating data protection system
US8695058B2 (en) 2009-05-20 2014-04-08 Mobile Iron, Inc. Selective management of mobile device data in an enterprise environment
US20100299152A1 (en) 2009-05-20 2010-11-25 Mobile Iron, Inc. Selective Management of Mobile Devices in an Enterprise Environment
US9858925B2 (en) 2009-06-05 2018-01-02 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
US9183534B2 (en) 2009-06-12 2015-11-10 Apple Inc. Devices with profile-based operating mode controls
US9141412B2 (en) 2009-06-16 2015-09-22 Microsoft Technology Licensing, Llc Terminal services application virtualization for compatibility
US8254957B2 (en) 2009-06-16 2012-08-28 Intel Corporation Context-based limitation of mobile device operation
US9621516B2 (en) 2009-06-24 2017-04-11 Vmware, Inc. Firewall configured with dynamic membership sets representing machine attributes
US20100332401A1 (en) 2009-06-30 2010-12-30 Anand Prahlad Performing data storage operations with a cloud storage environment, including automatically selecting among multiple cloud storage sites
US9386447B2 (en) 2009-07-21 2016-07-05 Scott Ferrill Tibbitts Method and system for controlling a mobile communication device
US8281381B2 (en) 2009-08-03 2012-10-02 Novell, Inc. Techniques for environment single sign on
US8392386B2 (en) 2009-08-05 2013-03-05 International Business Machines Corporation Tracking file contents
WO2011018827A1 (en) 2009-08-13 2011-02-17 株式会社日立製作所 System and method for evaluating adequacy of applications in execution environments
WO2011026530A1 (en) 2009-09-07 2011-03-10 Tomtom International B.V. Navigation apparatus and method of supporting hands-free voice communication
US8200626B1 (en) 2009-09-18 2012-06-12 Sprint Communications Company L.P. Mobile device file management
US8972878B2 (en) 2009-09-21 2015-03-03 Avaya Inc. Screen icon manipulation by context and frequency of Use
JP4527802B2 (en) 2009-10-19 2010-08-18 日本電気株式会社 Computer system
US8145199B2 (en) 2009-10-31 2012-03-27 BT Patent LLC Controlling mobile device functions
US8544076B2 (en) 2009-11-11 2013-09-24 Blackberry Limited Using a trusted token and push for validating the request for single sign on
US8595284B2 (en) 2009-12-14 2013-11-26 Samsung Electronics Co., Ltd Web application script migration
US8499304B2 (en) 2009-12-15 2013-07-30 At&T Mobility Ii Llc Multiple mode mobile device
US9244533B2 (en) 2009-12-17 2016-01-26 Microsoft Technology Licensing, Llc Camera navigation for presentations
US8495746B2 (en) 2009-12-18 2013-07-23 Verizon Patent And Licensing Inc. Apparatuses, methods and systems of an application security management platform
US8533780B2 (en) 2009-12-22 2013-09-10 Cisco Technology, Inc. Dynamic content-based routing
WO2011091056A1 (en) 2010-01-19 2011-07-28 Servicemesh, Inc. System and method for a cloud computing abstraction layer
US20110208797A1 (en) 2010-02-22 2011-08-25 Full Armor Corporation Geolocation-Based Management of Virtual Applications
US8607325B2 (en) 2010-02-22 2013-12-10 Avaya Inc. Enterprise level security system
US8468455B2 (en) 2010-02-24 2013-06-18 Novell, Inc. System and method for providing virtual desktop extensions on a client desktop
WO2011109778A1 (en) 2010-03-05 2011-09-09 Brass Monkey, Inc. System and method for connecting network sockets between applications
US9355282B2 (en) 2010-03-24 2016-05-31 Red Hat, Inc. Using multiple display servers to protect data
US8433901B2 (en) 2010-04-07 2013-04-30 Apple Inc. System and method for wiping encrypted data on a device having file-level content protection
US20110252459A1 (en) 2010-04-12 2011-10-13 Walsh Robert E Multiple Server Access Management
US20110314534A1 (en) 2010-04-14 2011-12-22 Lee James Secured Execution Environments and Methods
US9584624B2 (en) 2010-04-15 2017-02-28 Blackberry Limited Method and system for transmitting an application to a device
US8555377B2 (en) 2010-04-29 2013-10-08 High Cloud Security Secure virtual machine
US8805968B2 (en) 2010-05-03 2014-08-12 Panzura, Inc. Accessing cached data from a peer cloud controller in a distributed filesystem
US8935384B2 (en) 2010-05-06 2015-01-13 Mcafee Inc. Distributed data revocation using data commands
US9282097B2 (en) 2010-05-07 2016-03-08 Citrix Systems, Inc. Systems and methods for providing single sign on access to enterprise SAAS and cloud hosted applications
US9461996B2 (en) 2010-05-07 2016-10-04 Citrix Systems, Inc. Systems and methods for providing a single click access to enterprise, SAAS and cloud hosted application
US9288137B2 (en) 2010-05-09 2016-03-15 Citrix Systems, Inc. Systems and methods for allocation of classes of service to network connections corresponding to virtual channels
WO2011146711A1 (en) 2010-05-21 2011-11-24 Hsbc Technologies Inc. Account opening computer system architecture and process for implementing same
JP2011248683A (en) 2010-05-27 2011-12-08 Canon Inc Cloud computing system, server computer, method for connecting device and program
US8127350B2 (en) 2010-06-30 2012-02-28 Juniper Networks, Inc. Multi-service VPN network client for mobile device
US8458787B2 (en) 2010-06-30 2013-06-04 Juniper Networks, Inc. VPN network client for mobile device having dynamically translated user home page
US10142292B2 (en) 2010-06-30 2018-11-27 Pulse Secure Llc Dual-mode multi-service VPN network client for mobile device
US8549617B2 (en) 2010-06-30 2013-10-01 Juniper Networks, Inc. Multi-service VPN network client for mobile device having integrated acceleration
US8429674B2 (en) 2010-07-20 2013-04-23 Apple Inc. Maintaining data states upon forced exit
US8474017B2 (en) 2010-07-23 2013-06-25 Verizon Patent And Licensing Inc. Identity management and single sign-on in a heterogeneous composite service scenario
JP5732767B2 (en) 2010-07-26 2015-06-10 富士通株式会社 PROCESSING DEVICE, PROCESSING METHOD, PROCESSING PROGRAM, COMPUTER-READABLE RECORDING MEDIUM CONTAINING THE PROGRAM
EP2599027B1 (en) 2010-07-28 2017-07-19 Nextlabs, Inc. Protecting documents using policies and encryption
US8880580B2 (en) 2010-07-28 2014-11-04 Admiemobile Llc Systems and methods for establishing and maintaining virtual computing clouds
US8539245B2 (en) 2010-08-06 2013-09-17 Intel Corporation Apparatus and method for accessing a secure partition in non-volatile storage by a host system enabled after the system exits a first instance of a secure mode
US9936333B2 (en) 2010-08-10 2018-04-03 Microsoft Technology Licensing, Llc Location and contextual-based mobile application promotion and delivery
US8539561B2 (en) 2010-08-24 2013-09-17 International Business Machines Corporation Systems and methods to control device endpoint behavior using personae and policies
US8739157B2 (en) 2010-08-26 2014-05-27 Adobe Systems Incorporated System and method for managing cloud deployment configuration of an application
US9421460B2 (en) 2010-08-31 2016-08-23 Sony Interactive Entertainment Inc. Offline Progress of console game via portable device
US20120066691A1 (en) 2010-09-14 2012-03-15 Paul Keith Branton Private application clipboard
US9582673B2 (en) 2010-09-27 2017-02-28 Microsoft Technology Licensing, Llc Separation of duties checks from entitlement sets
US8958780B2 (en) 2010-10-07 2015-02-17 Blackberry Limited Provisioning based on application and device capability
JP5620781B2 (en) 2010-10-14 2014-11-05 キヤノン株式会社 Information processing apparatus, control method thereof, and program
WO2012064870A2 (en) 2010-11-09 2012-05-18 Openpeak Inc. Communication devices, networks, services and accompanying methods
CN103314635B (en) 2010-11-15 2017-01-18 黑莓有限公司 Controlling data transfer on mobile devices
US8359016B2 (en) 2010-11-19 2013-01-22 Mobile Iron, Inc. Management of mobile applications
US8869307B2 (en) 2010-11-19 2014-10-21 Mobile Iron, Inc. Mobile posture-based policy, remediation and access control for enterprise resources
KR20120057734A (en) 2010-11-22 2012-06-07 삼성전자주식회사 Server, device accessing server and control method
US9219744B2 (en) 2010-12-08 2015-12-22 At&T Intellectual Property I, L.P. Mobile botnet mitigation
US8918834B1 (en) 2010-12-17 2014-12-23 Amazon Technologies, Inc. Creating custom policies in a remote-computing environment
US8650620B2 (en) 2010-12-20 2014-02-11 At&T Intellectual Property I, L.P. Methods and apparatus to control privileges of mobile device applications
AU2011202840B2 (en) 2010-12-21 2014-04-17 Lg Electronics Inc. Mobile terminal and method of controlling a mode switching therein
US8856950B2 (en) 2010-12-21 2014-10-07 Lg Electronics Inc. Mobile terminal and method of managing information therein including first operating system acting in first mode and second operating system acting in second mode
AU2011202838B2 (en) 2010-12-21 2014-04-10 Lg Electronics Inc. Mobile terminal and method of controlling a mode screen display therein
AU2011202837B2 (en) 2010-12-21 2013-08-22 Lg Electronics Inc. Mobile terminal and method of controlling a mode switching therein
US9110743B2 (en) 2010-12-21 2015-08-18 Microsoft Technology Licensing, Llc Extensible system action for sharing while remaining in context
AU2011202832B2 (en) 2010-12-21 2013-01-24 Lg Electronics Inc. Mobile terminal and method of controlling a mode switching therein
US9178981B2 (en) 2010-12-22 2015-11-03 Lg Electronics Inc. Mobile terminal and method of sharing information therein
EP2469404B1 (en) 2010-12-22 2018-04-18 Lg Electronics Inc. Mobile terminal and method of displaying information in accordance with a plurality of modes of use
US8931037B2 (en) 2010-12-27 2015-01-06 Microsoft Corporation Policy-based access to virtualized applications
CN103270466B (en) 2010-12-27 2016-08-10 微软技术许可有限责任公司 Via timer related tasks being coordinated and selectively operated power management
JP5017462B2 (en) 2010-12-27 2012-09-05 株式会社東芝 Information processing apparatus and removable media management method
US20120174237A1 (en) 2010-12-31 2012-07-05 Openpeak Inc. Location aware self-locking system and method for a mobile device
US20120179909A1 (en) 2011-01-06 2012-07-12 Pitney Bowes Inc. Systems and methods for providing individual electronic document secure storage, retrieval and use
EP2663954B1 (en) 2011-01-10 2019-05-01 International Business Machines Corporation System and method for extending cloud services into the customer premise
US8898793B2 (en) 2011-01-14 2014-11-25 Nokia Corporation Method and apparatus for adjusting context-based factors for selecting a security policy
US20120198570A1 (en) 2011-02-01 2012-08-02 Bank Of America Corporation Geo-Enabled Access Control
US8806569B2 (en) 2011-02-07 2014-08-12 Tufin Software Technologies Ltd. Method and system for analyzing security ruleset by generating a logically equivalent security rule-set
US10003672B2 (en) 2011-02-09 2018-06-19 Cisco Technology, Inc. Apparatus, systems and methods for deployment of interactive desktop applications on distributed infrastructures
US8549656B2 (en) 2011-02-11 2013-10-01 Mocana Corporation Securing and managing apps on a device
US20120209949A1 (en) 2011-02-14 2012-08-16 Alexandros Deliyannis Methods and apparatus to monitor media content
US9544396B2 (en) 2011-02-23 2017-01-10 Lookout, Inc. Remote application installation and control for a mobile device
KR20120096983A (en) 2011-02-24 2012-09-03 삼성전자주식회사 Malware detection method and mobile terminal therefor
RU2533059C2 (en) 2011-02-28 2014-11-20 Сименс Энтерпрайз Коммьюникейшнз Гмбх Унд Ко. Кг Device and method of dynamic durability support service assignment to mobile devices
US20120233130A1 (en) 2011-03-11 2012-09-13 Nagarajan Vedachalam System and method for archiving emails
US20120238206A1 (en) 2011-03-14 2012-09-20 Research In Motion Limited Communications device providing near field communication (nfc) secure element disabling features related methods
US8548443B2 (en) 2011-03-16 2013-10-01 Dell Products L.P. System and method for selectively restricting portable information handling system features
US9119017B2 (en) 2011-03-18 2015-08-25 Zscaler, Inc. Cloud based mobile device security and policy enforcement
US8955142B2 (en) 2011-03-21 2015-02-10 Mocana Corporation Secure execution of unsecured apps on a device
US8769305B2 (en) 2011-03-21 2014-07-01 Moncana Corporation Secure execution of unsecured apps on a device
WO2012128682A1 (en) 2011-03-22 2012-09-27 Telefonaktiebolaget L M Ericsson (Publ) Methods for exchanging user profile, profile mediator device, agents, computer programs and computer program products
US20120246191A1 (en) 2011-03-24 2012-09-27 True Xiong World-Wide Video Context Sharing
US20120250106A1 (en) 2011-03-30 2012-10-04 Infosys Technologies Ltd. Method, device and system for updating an application on a mobile device
US20120254768A1 (en) 2011-03-31 2012-10-04 Google Inc. Customizing mobile applications
US8458802B2 (en) * 2011-04-02 2013-06-04 Intel Corporation Method and device for managing digital usage rights of documents
WO2012138804A2 (en) 2011-04-04 2012-10-11 Nextlabs, Inc. Protecting information using policies and encryption
EP2523107B1 (en) 2011-04-19 2018-11-07 LG Electronics Inc. Mobile terminal and system for managing applications using the same
KR20120118819A (en) 2011-04-19 2012-10-29 엘지전자 주식회사 Mobile terminal and system for managing applications using the same
US9817677B2 (en) 2011-04-22 2017-11-14 Microsoft Technologies Licensing, LLC Rule based data driven validation
US10187494B2 (en) 2011-04-26 2019-01-22 Acumera, Inc. Gateway device application development system
US9094400B2 (en) * 2011-04-27 2015-07-28 International Business Machines Corporation Authentication in virtual private networks
WO2012146985A2 (en) 2011-04-28 2012-11-01 Approxy Inc. Ltd. Adaptive cloud-based application streaming
US8738772B2 (en) 2011-05-02 2014-05-27 Mitel Networks Corporation Regulating use of a mobile computing device for a user at a selected location
US8683556B2 (en) 2011-05-04 2014-03-25 Apple Inc. Electronic devices having adaptive security profiles and methods for selecting the same
US8839395B2 (en) 2011-05-13 2014-09-16 Cch Incorporated Single sign-on between applications
US9037723B2 (en) 2011-05-31 2015-05-19 Red Hat, Inc. Triggering workload movement based on policy stack having multiple selectable inputs
WO2012167094A1 (en) 2011-06-01 2012-12-06 Security First Corp. Systems and methods for secure distributed storage
US8578443B2 (en) 2011-06-01 2013-11-05 Mobileasap, Inc. Real-time mobile application management
US9201634B2 (en) 2011-06-09 2015-12-01 Samsung Electronics Co., Ltd Method and system for controlling user experience with an application on a client device
US20120324568A1 (en) 2011-06-14 2012-12-20 Lookout, Inc., A California Corporation Mobile web protection
US10333711B2 (en) 2011-06-17 2019-06-25 Microsoft Technology Licensing, Llc Controlling access to protected objects
US20120331527A1 (en) 2011-06-22 2012-12-27 TerraWi, Inc. Multi-layer, geolocation-based network resource access and permissions
US8843998B2 (en) 2011-06-27 2014-09-23 Cliqr Technologies, Inc. Apparatus, systems and methods for secure and selective access to services in hybrid public-private infrastructures
KR101801577B1 (en) 2011-06-28 2017-11-27 엘지전자 주식회사 Mobile terminal and Method for controlling display thereof
KR101819506B1 (en) 2011-06-28 2018-01-17 엘지전자 주식회사 Mobile terminal and Method for controlling display thereof
US9071518B2 (en) 2011-07-01 2015-06-30 Fiberlink Communications Corporation Rules based actions for mobile device management
KR101844289B1 (en) 2011-07-06 2018-04-02 삼성전자 주식회사 Method and apparatus for managing security of mobile terminal based on location information in mobile communication system
US20130014267A1 (en) 2011-07-07 2013-01-10 Farrugia Augustin J Computer protocol generation and obfuscation
CN103782571A (en) 2011-07-07 2014-05-07 思科技术公司 System and method for providing a message and an event based video services control plane
US8756665B2 (en) 2011-07-08 2014-06-17 International Business Machines Corporation Authenticating a rich client from within an existing browser session
US9369307B2 (en) 2011-07-12 2016-06-14 Bank Of America Corporation Optimized service integration
US8719919B2 (en) 2011-07-12 2014-05-06 Bank Of America Corporation Service mediation framework
US9015320B2 (en) 2011-07-12 2015-04-21 Bank Of America Corporation Dynamic provisioning of service requests
US20130024928A1 (en) 2011-07-22 2013-01-24 Robert James Burke Secure network communications for meters
US9942385B2 (en) 2011-08-04 2018-04-10 International Business Machines Corporation System and method for preventing and/or limiting use of a mobile device
US9171139B2 (en) 2011-08-05 2015-10-27 Vmware, Inc. Lock screens to access work environments on a personal mobile device
US9065826B2 (en) 2011-08-08 2015-06-23 Microsoft Technology Licensing, Llc Identifying application reputation based on resource accesses
US8738868B2 (en) 2011-08-23 2014-05-27 Vmware, Inc. Cooperative memory resource management for virtualized computing devices
KR20130023656A (en) 2011-08-29 2013-03-08 주식회사 팬택 Portable multifunction device and method for controlling permission of application
US8898459B2 (en) 2011-08-31 2014-11-25 At&T Intellectual Property I, L.P. Policy configuration for mobile device applications
US20130059284A1 (en) 2011-09-07 2013-03-07 Teegee, Llc Interactive electronic toy and learning device system
CN104185844B (en) 2011-09-09 2018-06-05 石器公司 Key sharing method and device based on Remote Desktop Protocol
US10063430B2 (en) 2011-09-09 2018-08-28 Cloudon Ltd. Systems and methods for workspace interaction with cloud-based applications
US9652738B2 (en) 2011-09-14 2017-05-16 Avaya Inc. System and method for a communication session identifier
US10165007B2 (en) 2011-09-15 2018-12-25 Microsoft Technology Licensing, Llc Securing data usage in computing devices
US8825863B2 (en) 2011-09-20 2014-09-02 International Business Machines Corporation Virtual machine placement within a server farm
US8554179B2 (en) 2011-09-23 2013-10-08 Blackberry Limited Managing mobile device applications
WO2013044359A1 (en) 2011-09-30 2013-04-04 Tutela Technologies Ltd. A system for regulating wireless device operations in wireless networks
US8806639B2 (en) 2011-09-30 2014-08-12 Avaya Inc. Contextual virtual machines for application quarantine and assessment method and system
US8682973B2 (en) 2011-10-05 2014-03-25 Microsoft Corporation Multi-user and multi-device collaboration
US9131147B2 (en) 2011-10-07 2015-09-08 Fuji Xerox Co., Ltd. System and method for detecting and acting on multiple people crowding a small display for information sharing
US8402011B1 (en) 2011-10-10 2013-03-19 Google Inc. System and method for managing user web browsing information
US8695060B2 (en) 2011-10-10 2014-04-08 Openpeak Inc. System and method for creating secure applications
US20140040979A1 (en) 2011-10-11 2014-02-06 Citrix Systems, Inc. Policy-Based Application Management
US8239918B1 (en) 2011-10-11 2012-08-07 Google Inc. Application marketplace administrative controls
US20140032733A1 (en) 2011-10-11 2014-01-30 Citrix Systems, Inc. Policy-Based Application Management
US9043480B2 (en) 2011-10-11 2015-05-26 Citrix Systems, Inc. Policy-based application management
US8886925B2 (en) * 2011-10-11 2014-11-11 Citrix Systems, Inc. Protecting enterprise data through policy-based encryption of message attachments
US8971842B2 (en) 2011-10-12 2015-03-03 Verizon Patent And Licensing Inc. Enterprise mobile application store
US20130097660A1 (en) 2011-10-17 2013-04-18 Mcafee, Inc. System and method for whitelisting applications in a mobile network environment
US8789179B2 (en) 2011-10-28 2014-07-22 Novell, Inc. Cloud protection techniques
US9106650B2 (en) 2011-11-09 2015-08-11 Microsoft Technology Licensing, Llc User-driven access control
US8990558B2 (en) 2011-11-09 2015-03-24 Safer Point Ltd Securing information in a cloud computing system
US10291658B2 (en) 2011-11-09 2019-05-14 Microsoft Technology Licensing, Llc Techniques to apply and share remote policies on mobile devices
WO2013070126A1 (en) 2011-11-10 2013-05-16 Telefonaktiebolaget L M Ericsson (Publ) Policy controlled preload and consumption of software application
US8688768B2 (en) 2011-11-18 2014-04-01 Ca, Inc. System and method for hand-offs in cloud environments
US8893261B2 (en) 2011-11-22 2014-11-18 Vmware, Inc. Method and system for VPN isolation using network namespaces
US9143943B2 (en) 2011-11-29 2015-09-22 Dell Products L.P. Mode sensitive networking
US8667579B2 (en) 2011-11-29 2014-03-04 Genband Us Llc Methods, systems, and computer readable media for bridging user authentication, authorization, and access between web-based and telecom domains
US20130144934A1 (en) 2011-12-01 2013-06-06 Microsoft Corporation Web Content Targeting Based on Client Application Availability
US9100854B2 (en) 2011-12-06 2015-08-04 T-Mobile Usa, Inc. Quality of service application controller and user equipment application profiler
US8935375B2 (en) 2011-12-12 2015-01-13 Microsoft Corporation Increasing availability of stateful applications
US20130171967A1 (en) 2012-01-04 2013-07-04 Ayman S. Ashour Providing Secure Execution of Mobile Device Workflows
US8863297B2 (en) 2012-01-06 2014-10-14 Mobile Iron, Inc. Secure virtual file management system
US9507630B2 (en) 2012-02-09 2016-11-29 Cisco Technology, Inc. Application context transfer for distributed computing resources
US8793344B2 (en) 2012-02-17 2014-07-29 Oracle International Corporation System and method for generating a response plan for a hypothetical event
US9037897B2 (en) 2012-02-17 2015-05-19 International Business Machines Corporation Elastic cloud-driven task execution
US8918881B2 (en) 2012-02-24 2014-12-23 Appthority, Inc. Off-device anti-malware protection for mobile devices
US9323563B2 (en) 2012-02-28 2016-04-26 Red Hat Israel, Ltd. Determining virtual machine migration in view of a migration rule
US9529993B2 (en) 2012-03-02 2016-12-27 International Business Machines Corporation Policy-driven approach to managing privileged/shared identity in an enterprise
US20130237152A1 (en) 2012-03-09 2013-09-12 Kulveer Taggar Methods and systems for hardware and software related to a near field communications task launcher
US9027076B2 (en) 2012-03-23 2015-05-05 Lockheed Martin Corporation Method and apparatus for context aware mobile security
CA2786095A1 (en) 2012-03-26 2013-09-26 Quickmobile Inc. System and method for a user to dynamically update a mobile application from a generic or first application within a class of applications to create a specific or second application with said class of applications
US9319286B2 (en) 2012-03-30 2016-04-19 Cognizant Business Services Limited Apparatus and methods for managing applications in multi-cloud environments
US20130263208A1 (en) 2012-04-02 2013-10-03 Narsimha Reddy Challa Managing virtual machines in a cloud computing system
US20130268676A1 (en) 2012-04-06 2013-10-10 Telefonaktiebolaget L M Ericsson (Publ) Application programming interface routing system and method of operating the same
US20130283335A1 (en) 2012-04-19 2013-10-24 AppSense, Inc. Systems and methods for applying policy wrappers to computer applications
US9253209B2 (en) 2012-04-26 2016-02-02 International Business Machines Corporation Policy-based dynamic information flow control on mobile devices
US9626526B2 (en) 2012-04-30 2017-04-18 Ca, Inc. Trusted public infrastructure grid cloud
US9112918B2 (en) 2012-04-30 2015-08-18 Verizon Patent And Licensing Inc. Multi-mode user device and network-based control and monitoring
US20130297604A1 (en) 2012-05-01 2013-11-07 Research In Motion Limited Electronic device and method for classification of communication data objects
US8990948B2 (en) 2012-05-01 2015-03-24 Taasera, Inc. Systems and methods for orchestrating runtime operational integrity
US9405723B2 (en) 2012-05-02 2016-08-02 Kony, Inc. Mobile application management systems and methods thereof
US8990901B2 (en) 2012-05-05 2015-03-24 Citrix Systems, Inc. Systems and methods for network filtering in VPN
US9215553B2 (en) 2012-05-11 2015-12-15 Rowles Holdings, Llc Automatic determination of and reaction to mobile user routine behavior based on geographical and repetitive pattern analysis
US20130311597A1 (en) 2012-05-16 2013-11-21 Apple Inc. Locally backed cloud-based storage
US8849904B2 (en) 2012-05-17 2014-09-30 Cloudflare, Inc. Incorporating web applications into web pages at the network level
US9300570B2 (en) 2012-05-22 2016-03-29 Harris Corporation Multi-tunnel virtual private network
KR101874081B1 (en) 2012-06-07 2018-07-03 에스케이테크엑스 주식회사 Cloud Service Supporting Method And System based on a Enhanced Security
US20130347130A1 (en) 2012-06-08 2013-12-26 Bluebox Methods and apparatus for dynamically providing modified versions of electronic device applications
US20140007215A1 (en) 2012-06-15 2014-01-02 Lockheed Martin Corporation Mobile applications platform
US9792585B2 (en) 2012-06-21 2017-10-17 Google Inc. Mobile application management
US9240977B2 (en) 2012-07-11 2016-01-19 Netiq Corporation Techniques for protecting mobile applications
US9053304B2 (en) 2012-07-13 2015-06-09 Securekey Technologies Inc. Methods and systems for using derived credentials to authenticate a device across multiple platforms
US9032506B2 (en) 2012-08-09 2015-05-12 Cisco Technology, Inc. Multiple application containerization in a single container
US20140047413A1 (en) 2012-08-09 2014-02-13 Modit, Inc. Developing, Modifying, and Using Applications
US9087191B2 (en) 2012-08-24 2015-07-21 Vmware, Inc. Method and system for facilitating isolated workspace for applications
US9507949B2 (en) 2012-09-28 2016-11-29 Intel Corporation Device and methods for management and access of distributed data sources
US8726343B1 (en) 2012-10-12 2014-05-13 Citrix Systems, Inc. Managing dynamic policies and settings in an orchestration framework for connected devices
US20140109176A1 (en) * 2012-10-15 2014-04-17 Citrix Systems, Inc. Configuring and providing profiles that manage execution of mobile applications
CN104854561B (en) 2012-10-16 2018-05-11 思杰系统有限公司 Application program for application management framework encapsulates
US9355253B2 (en) 2012-10-18 2016-05-31 Broadcom Corporation Set top box architecture with application based security definitions
US8875304B2 (en) 2012-11-08 2014-10-28 International Business Machines Corporation Application and data removal system
US20140149599A1 (en) 2012-11-29 2014-05-29 Ricoh Co., Ltd. Unified Application Programming Interface for Communicating with Devices and Their Clouds
US9326145B2 (en) 2012-12-16 2016-04-26 Aruba Networks, Inc. System and method for application usage controls through policy enforcement
US8910262B2 (en) 2012-12-21 2014-12-09 Cellco Partnership Supporting multiple messaging services on mobile devices in a single user experience
US9535674B2 (en) 2012-12-21 2017-01-03 Bmc Software, Inc. Application wrapping system and method
US9374369B2 (en) 2012-12-28 2016-06-21 Lookout, Inc. Multi-factor authentication and comprehensive login system for client-server networks
US8850049B1 (en) 2013-03-29 2014-09-30 Citrix Systems, Inc. Providing mobile device management functionalities for a managed browser
US10284627B2 (en) 2013-03-29 2019-05-07 Citrix Systems, Inc. Data management for an application with multiple operation modes
US9355223B2 (en) 2013-03-29 2016-05-31 Citrix Systems, Inc. Providing a managed browser
US9369449B2 (en) 2013-03-29 2016-06-14 Citrix Systems, Inc. Providing an enterprise application store
TWI499932B (en) 2013-07-17 2015-09-11 Ind Tech Res Inst Method for application management, corresponding system, and user device
US9356895B2 (en) 2014-05-07 2016-05-31 Mitake Information Corporation Message transmission system and method for a structure of a plurality of organizations

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8898459B2 (en) * 2011-08-31 2014-11-25 At&T Intellectual Property I, L.P. Policy configuration for mobile device applications
US8918841B2 (en) 2011-08-31 2014-12-23 At&T Intellectual Property I, L.P. Hardware interface access control for mobile applications
US20130054962A1 (en) * 2011-08-31 2013-02-28 Deepak Chawla Policy configuration for mobile device applications
US9548976B2 (en) * 2014-05-06 2017-01-17 Okta, Inc. Facilitating single sign-on to software applications
US20150326562A1 (en) * 2014-05-06 2015-11-12 Okta, Inc. Facilitating single sign-on to software applications
WO2015171517A1 (en) * 2014-05-06 2015-11-12 Okta, Inc. Facilitating single sign-on to software applications
US10476761B1 (en) 2014-11-18 2019-11-12 Berryville Holdings, LLC Systems and methods for implementing an on-demand computing network environment
US10897409B1 (en) 2014-11-18 2021-01-19 Berryville Holdings, LLC Systems and methods for implementing an on-demand computing network environment
US11381477B1 (en) 2014-11-18 2022-07-05 Cyber Ip Holdings, Llc Systems and methods for implementing an on-demand computing network environment
US12047256B1 (en) 2014-11-18 2024-07-23 Cyber Ip Holdings, Llc Systems and methods for implementing an on-demand computing network environment
US9935850B1 (en) * 2014-11-18 2018-04-03 Berryville Holdings, LLC Systems and methods for implementing an on-demand computing network environment
CN104966311A (en) * 2015-06-10 2015-10-07 江苏中威科技软件系统有限公司 Vector graph storage method used for handwriting signing system
US9948679B2 (en) 2015-08-21 2018-04-17 Cisco Technology, Inc. Object-relation user interface for viewing security configurations of network security devices
CN106911625A (en) * 2015-12-22 2017-06-30 国民技术股份有限公司 A kind of text handling method of safe input method, device and system
US11474800B2 (en) 2016-02-10 2022-10-18 Vignet Incorporated Creating customized applications for health monitoring
US11954470B2 (en) 2016-02-10 2024-04-09 Vignet Incorporated On-demand decentralized collection of clinical data from digital devices of remote patients
US20180121187A1 (en) * 2016-02-10 2018-05-03 Vignet Incorporated Publishing customized application modules
US11467813B2 (en) 2016-02-10 2022-10-11 Vignet Incorporated Precision data collection for digital health monitoring
US10705816B2 (en) * 2016-02-10 2020-07-07 Vignet Incorporated Publishing customized application modules
US9858063B2 (en) 2016-02-10 2018-01-02 Vignet Incorporated Publishing customized application modules
US11340878B2 (en) 2016-02-10 2022-05-24 Vignet Incorporated Interative gallery of user-selectable digital health programs
US11321062B2 (en) 2016-02-10 2022-05-03 Vignet Incorporated Precision data collection for health monitoring
WO2017139651A1 (en) * 2016-02-10 2017-08-17 Vignet Incorporated Publishing customized application modules
US10915306B2 (en) 2016-02-10 2021-02-09 Vignet Incorporated Publishing customized application modules
US11314492B2 (en) 2016-02-10 2022-04-26 Vignet Incorporated Precision health monitoring with digital devices
US10182055B2 (en) 2016-06-06 2019-01-15 Cisco Technology, Inc. Security policy efficacy visualization
US11068574B2 (en) * 2016-09-08 2021-07-20 Vmware, Inc. Phone factor authentication
US11507737B1 (en) 2016-09-29 2022-11-22 Vignet Incorporated Increasing survey completion rates and data quality for health monitoring programs
US11244104B1 (en) 2016-09-29 2022-02-08 Vignet Incorporated Context-aware surveys and sensor data collection for health research
US11675971B1 (en) 2016-09-29 2023-06-13 Vignet Incorporated Context-aware surveys and sensor data collection for health research
US11501060B1 (en) 2016-09-29 2022-11-15 Vignet Incorporated Increasing effectiveness of surveys for digital health monitoring
US11252196B2 (en) * 2016-10-24 2022-02-15 Nec Corporation Method for managing data traffic within a network
US11321082B2 (en) 2016-10-28 2022-05-03 Vignet Incorporated Patient engagement in digital health programs
US11487531B2 (en) 2016-10-28 2022-11-01 Vignet Incorporated Customizing applications for health monitoring using rules and program data
US10587729B1 (en) 2016-10-28 2020-03-10 Vignet Incorporated System and method for rules engine that dynamically adapts application behavior
US10803411B1 (en) 2017-04-17 2020-10-13 Microstrategy Incorporated Enterprise platform deployment
US10470040B2 (en) 2017-08-27 2019-11-05 Okta, Inc. Secure single sign-on to software applications
CN107679112A (en) * 2017-09-15 2018-02-09 浙江大学 A kind of weighted feature knowledge of Design-Oriented knowledge push is applicable probability match method
US20210112412A1 (en) * 2018-06-22 2021-04-15 Vivo Mobile Communication Co., Ltd. Network access method, terminal, and network side network element
US11811832B2 (en) 2018-07-17 2023-11-07 Microsoft Technology Licensing, Llc Queryless device configuration determination-based techniques for mobile device management
US11750444B2 (en) 2018-07-31 2023-09-05 Microsoft Technology Licensing, Llc Implementation of compliance settings by a mobile device for compliance with a configuration scenario
US11184223B2 (en) * 2018-07-31 2021-11-23 Microsoft Technology Licensing, Llc Implementation of compliance settings by a mobile device for compliance with a configuration scenario
US11409417B1 (en) 2018-08-10 2022-08-09 Vignet Incorporated Dynamic engagement of patients in clinical and digital health research
US10775974B2 (en) 2018-08-10 2020-09-15 Vignet Incorporated User responsive dynamic architecture
US11520466B1 (en) 2018-08-10 2022-12-06 Vignet Incorporated Efficient distribution of digital health programs for research studies
CN109002707A (en) * 2018-08-31 2018-12-14 国鼎网络空间安全技术有限公司 The device and method of Android application configuration and data sharing based on virtual container
US11611489B2 (en) 2018-10-17 2023-03-21 Servicenow, Inc. Functional discovery and mapping of serverless resources
US10819586B2 (en) * 2018-10-17 2020-10-27 Servicenow, Inc. Functional discovery and mapping of serverless resources
US11158423B2 (en) 2018-10-26 2021-10-26 Vignet Incorporated Adapted digital therapeutic plans based on biomarkers
CN109995473A (en) * 2018-12-17 2019-07-09 芜湖智久机器人有限公司 TCP communication data packets and its packaging method, check system, method of calibration
US11238979B1 (en) 2019-02-01 2022-02-01 Vignet Incorporated Digital biomarkers for health research, digital therapeautics, and precision medicine
US11923079B1 (en) 2019-02-01 2024-03-05 Vignet Incorporated Creating and testing digital bio-markers based on genetic and phenotypic data for therapeutic interventions and clinical trials
US11714658B2 (en) 2019-08-30 2023-08-01 Microstrategy Incorporated Automated idle environment shutdown
US11755372B2 (en) 2019-08-30 2023-09-12 Microstrategy Incorporated Environment monitoring and management
US11763919B1 (en) 2020-10-13 2023-09-19 Vignet Incorporated Platform to increase patient engagement in clinical trials through surveys presented on mobile devices
US11901083B1 (en) 2021-11-30 2024-02-13 Vignet Incorporated Using genetic and phenotypic data sets for drug discovery clinical trials
US11705230B1 (en) 2021-11-30 2023-07-18 Vignet Incorporated Assessing health risks using genetic, epigenetic, and phenotypic data sources
WO2024211553A1 (en) * 2023-04-05 2024-10-10 Providence St. Joseph Health Using a hidden webview under the control of a mobile app to maintain an authenticated session between the mobile app and a backend resource

Also Published As

Publication number Publication date
EP2907076A1 (en) 2015-08-19
US20150095975A1 (en) 2015-04-02
US9467474B2 (en) 2016-10-11
US20140108649A1 (en) 2014-04-17
US20140215555A1 (en) 2014-07-31
US9654508B2 (en) 2017-05-16
US20140109176A1 (en) 2014-04-17
WO2014062395A1 (en) 2014-04-24
US8719898B1 (en) 2014-05-06
US8904477B2 (en) 2014-12-02
US20140109178A1 (en) 2014-04-17
US8887230B2 (en) 2014-11-11

Similar Documents

Publication Publication Date Title
US9654508B2 (en) Configuring and providing profiles that manage execution of mobile applications
US11057212B2 (en) Policy based authentication
US9973489B2 (en) Providing virtualized private network tunnels
US11627120B2 (en) Dynamic crypto key management for mobility in a cloud environment
US9602474B2 (en) Controlling mobile device access to secure data
US8931078B2 (en) Providing virtualized private network tunnels
EP2979213B1 (en) Providing an enterprise application store
EP3364629B1 (en) Providing virtualized private network tunnels
US11388199B2 (en) Processing policy variance requests in an enterprise computing environment
EP4260181A1 (en) Native application integration for enhanced remote desktop experiences
US20220038282A1 (en) Secure Token Transfer between Untrusted Entities

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITRIX SYSTEMS INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARTON, GARY;LANG, ZHONGMIN;DESAI, NITIN;AND OTHERS;SIGNING DATES FROM 20130924 TO 20130927;REEL/FRAME:031326/0102

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:CITRIX SYSTEMS, INC.;REEL/FRAME:062079/0001

Effective date: 20220930

AS Assignment

Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW YORK

Free format text: SECOND LIEN PATENT SECURITY AGREEMENT;ASSIGNORS:TIBCO SOFTWARE INC.;CITRIX SYSTEMS, INC.;REEL/FRAME:062113/0001

Effective date: 20220930

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT, DELAWARE

Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:TIBCO SOFTWARE INC.;CITRIX SYSTEMS, INC.;REEL/FRAME:062113/0470

Effective date: 20220930

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:TIBCO SOFTWARE INC.;CITRIX SYSTEMS, INC.;REEL/FRAME:062112/0262

Effective date: 20220930

AS Assignment

Owner name: CLOUD SOFTWARE GROUP, INC. (F/K/A TIBCO SOFTWARE INC.), FLORIDA

Free format text: RELEASE AND REASSIGNMENT OF SECURITY INTEREST IN PATENT (REEL/FRAME 062113/0001);ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:063339/0525

Effective date: 20230410

Owner name: CITRIX SYSTEMS, INC., FLORIDA

Free format text: RELEASE AND REASSIGNMENT OF SECURITY INTEREST IN PATENT (REEL/FRAME 062113/0001);ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:063339/0525

Effective date: 20230410

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT, DELAWARE

Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:CLOUD SOFTWARE GROUP, INC. (F/K/A TIBCO SOFTWARE INC.);CITRIX SYSTEMS, INC.;REEL/FRAME:063340/0164

Effective date: 20230410

AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNORS:CLOUD SOFTWARE GROUP, INC. (F/K/A TIBCO SOFTWARE INC.);CITRIX SYSTEMS, INC.;REEL/FRAME:067662/0568

Effective date: 20240522