US20130281913A1 - Biophotonic compositions and methods for providing biophotonic treatment - Google Patents
Biophotonic compositions and methods for providing biophotonic treatment Download PDFInfo
- Publication number
- US20130281913A1 US20130281913A1 US13/830,488 US201313830488A US2013281913A1 US 20130281913 A1 US20130281913 A1 US 20130281913A1 US 201313830488 A US201313830488 A US 201313830488A US 2013281913 A1 US2013281913 A1 US 2013281913A1
- Authority
- US
- United States
- Prior art keywords
- chromophore
- biophotonic composition
- composition
- biophotonic
- skin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 580
- 238000000034 method Methods 0.000 title claims abstract description 117
- 238000011282 treatment Methods 0.000 title claims description 113
- 238000002386 leaching Methods 0.000 claims abstract description 72
- 206010000496 acne Diseases 0.000 claims abstract description 67
- 208000002874 Acne Vulgaris Diseases 0.000 claims abstract description 58
- 230000029663 wound healing Effects 0.000 claims abstract description 25
- 230000001737 promoting effect Effects 0.000 claims abstract description 19
- 208000017520 skin disease Diseases 0.000 claims abstract description 19
- 230000003716 rejuvenation Effects 0.000 claims abstract description 13
- 208000027418 Wounds and injury Diseases 0.000 claims description 85
- 206010052428 Wound Diseases 0.000 claims description 82
- -1 Rose Bengal Chemical compound 0.000 claims description 66
- 239000003349 gelling agent Substances 0.000 claims description 61
- 238000000862 absorption spectrum Methods 0.000 claims description 52
- 239000003795 chemical substances by application Substances 0.000 claims description 52
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical group [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 claims description 46
- 239000001301 oxygen Substances 0.000 claims description 41
- 229910052760 oxygen Inorganic materials 0.000 claims description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 38
- 229920002125 Sokalan® Polymers 0.000 claims description 36
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 claims description 35
- 239000012528 membrane Substances 0.000 claims description 33
- 238000000295 emission spectrum Methods 0.000 claims description 32
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical group OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 31
- 229960002143 fluorescein Drugs 0.000 claims description 28
- 238000012546 transfer Methods 0.000 claims description 26
- 238000005286 illumination Methods 0.000 claims description 23
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 19
- 230000003902 lesion Effects 0.000 claims description 17
- AQLJVWUFPCUVLO-UHFFFAOYSA-N urea hydrogen peroxide Chemical compound OO.NC(N)=O AQLJVWUFPCUVLO-UHFFFAOYSA-N 0.000 claims description 17
- 229920002674 hyaluronan Polymers 0.000 claims description 16
- 231100000241 scar Toxicity 0.000 claims description 16
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 claims description 15
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 13
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 12
- 229960003160 hyaluronic acid Drugs 0.000 claims description 12
- OOYIOIOOWUGAHD-UHFFFAOYSA-L disodium;2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-3-oxospiro[2-benzofuran-1,9'-xanthene]-3',6'-diolate Chemical compound [Na+].[Na+].O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(Br)=C([O-])C(Br)=C1OC1=C(Br)C([O-])=C(Br)C=C21 OOYIOIOOWUGAHD-UHFFFAOYSA-L 0.000 claims description 11
- 229940078916 carbamide peroxide Drugs 0.000 claims description 9
- GVKCHTBDSMQENH-UHFFFAOYSA-L phloxine B Chemical compound [Na+].[Na+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 GVKCHTBDSMQENH-UHFFFAOYSA-L 0.000 claims description 9
- 239000004342 Benzoyl peroxide Substances 0.000 claims description 7
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 7
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 7
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 claims description 7
- 150000002632 lipids Chemical class 0.000 claims description 7
- 239000002537 cosmetic Substances 0.000 claims description 6
- 235000011187 glycerol Nutrition 0.000 claims description 6
- 235000012732 erythrosine Nutrition 0.000 claims description 5
- 239000004174 erythrosine Substances 0.000 claims description 5
- 229940011411 erythrosine Drugs 0.000 claims description 5
- 229920001477 hydrophilic polymer Polymers 0.000 claims description 5
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 claims description 3
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 claims description 3
- MTDHILKWIRSIHB-UHFFFAOYSA-N (5-azaniumyl-3,4,6-trihydroxyoxan-2-yl)methyl sulfate Chemical compound NC1C(O)OC(COS(O)(=O)=O)C(O)C1O MTDHILKWIRSIHB-UHFFFAOYSA-N 0.000 claims description 2
- 208000005888 Periodontal Pocket Diseases 0.000 claims description 2
- 229930002868 chlorophyll a Natural products 0.000 claims description 2
- 229930002869 chlorophyll b Natural products 0.000 claims description 2
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 claims description 2
- 229960002849 glucosamine sulfate Drugs 0.000 claims description 2
- 208000028169 periodontal disease Diseases 0.000 claims description 2
- 235000019805 chlorophyllin Nutrition 0.000 claims 1
- 229940099898 chlorophyllin Drugs 0.000 claims 1
- 230000000699 topical effect Effects 0.000 abstract description 44
- 238000001126 phototherapy Methods 0.000 abstract description 11
- 210000003491 skin Anatomy 0.000 description 149
- 210000001519 tissue Anatomy 0.000 description 108
- 239000000499 gel Substances 0.000 description 44
- 108010035532 Collagen Proteins 0.000 description 39
- 102000008186 Collagen Human genes 0.000 description 39
- 229920001436 collagen Polymers 0.000 description 39
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 36
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 30
- 230000015572 biosynthetic process Effects 0.000 description 29
- 210000004379 membrane Anatomy 0.000 description 29
- 239000004599 antimicrobial Substances 0.000 description 21
- 230000003213 activating effect Effects 0.000 description 19
- 230000009467 reduction Effects 0.000 description 19
- 239000004202 carbamide Substances 0.000 description 18
- 235000013877 carbamide Nutrition 0.000 description 18
- 230000035876 healing Effects 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 17
- 230000002757 inflammatory effect Effects 0.000 description 17
- 238000002560 therapeutic procedure Methods 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 229920000642 polymer Polymers 0.000 description 15
- 208000025865 Ulcer Diseases 0.000 description 14
- 210000004207 dermis Anatomy 0.000 description 14
- 206010040954 Skin wrinkling Diseases 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 230000037303 wrinkles Effects 0.000 description 13
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- 208000004210 Pressure Ulcer Diseases 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 235000018102 proteins Nutrition 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical group OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 10
- 231100000397 ulcer Toxicity 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 208000009056 telangiectasis Diseases 0.000 description 9
- 208000032544 Cicatrix Diseases 0.000 description 8
- 206010033733 Papule Diseases 0.000 description 8
- 208000038016 acute inflammation Diseases 0.000 description 8
- 230000006022 acute inflammation Effects 0.000 description 8
- 230000006378 damage Effects 0.000 description 8
- 239000000975 dye Substances 0.000 description 8
- 208000014674 injury Diseases 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 210000002510 keratinocyte Anatomy 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 230000037387 scars Effects 0.000 description 8
- 230000009885 systemic effect Effects 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 7
- 229960001631 carbomer Drugs 0.000 description 7
- 230000001684 chronic effect Effects 0.000 description 7
- 210000002615 epidermis Anatomy 0.000 description 7
- 210000002744 extracellular matrix Anatomy 0.000 description 7
- 230000001815 facial effect Effects 0.000 description 7
- 210000002950 fibroblast Anatomy 0.000 description 7
- 239000003102 growth factor Substances 0.000 description 7
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical class [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 7
- 150000002978 peroxides Chemical class 0.000 description 7
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 6
- 206010065687 Bone loss Diseases 0.000 description 6
- 206010011985 Decubitus ulcer Diseases 0.000 description 6
- 201000004624 Dermatitis Diseases 0.000 description 6
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 6
- 208000002193 Pain Diseases 0.000 description 6
- 208000003251 Pruritus Diseases 0.000 description 6
- 206010037888 Rash pustular Diseases 0.000 description 6
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 229960002442 glucosamine Drugs 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 230000036407 pain Effects 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 208000029561 pustule Diseases 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 210000002374 sebum Anatomy 0.000 description 6
- 230000028327 secretion Effects 0.000 description 6
- 230000009759 skin aging Effects 0.000 description 6
- 230000036555 skin type Effects 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000002195 synergetic effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 206010015150 Erythema Diseases 0.000 description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 5
- HLUCICHZHWJHLL-UHFFFAOYSA-N Haematein Natural products C12=CC=C(O)C(O)=C2OCC2(O)C1=C1C=C(O)C(=O)C=C1C2 HLUCICHZHWJHLL-UHFFFAOYSA-N 0.000 description 5
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Natural products C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 206010054107 Nodule Diseases 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- RZUBARUFLYGOGC-MTHOTQAESA-L acid fuchsin Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=C(N)C(C)=CC(C(=C\2C=C(C(=[NH2+])C=C/2)S([O-])(=O)=O)\C=2C=C(C(N)=CC=2)S([O-])(=O)=O)=C1 RZUBARUFLYGOGC-MTHOTQAESA-L 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 210000002469 basement membrane Anatomy 0.000 description 5
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 5
- FFUMCSDSJNSMQH-HEXQVDJKSA-K chromoxane cyanin R Chemical compound [Na+].[Na+].[Na+].C1=C(C([O-])=O)C(=O)C(C)=C\C1=C(C=1C(=CC=CC=1)S([O-])(=O)=O)\C1=CC(C)=C(O)C(C([O-])=O)=C1 FFUMCSDSJNSMQH-HEXQVDJKSA-K 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- ZXJXZNDDNMQXFV-UHFFFAOYSA-M crystal violet Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1[C+](C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 ZXJXZNDDNMQXFV-UHFFFAOYSA-M 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229960000907 methylthioninium chloride Drugs 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 210000004877 mucosa Anatomy 0.000 description 5
- SHXOKQKTZJXHHR-UHFFFAOYSA-N n,n-diethyl-5-iminobenzo[a]phenoxazin-9-amine;hydrochloride Chemical compound [Cl-].C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=[NH2+])C2=C1 SHXOKQKTZJXHHR-UHFFFAOYSA-N 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 229960004063 propylene glycol Drugs 0.000 description 5
- INCIMLINXXICKS-UHFFFAOYSA-M pyronin Y Chemical compound [Cl-].C1=CC(=[N+](C)C)C=C2OC3=CC(N(C)C)=CC=C3C=C21 INCIMLINXXICKS-UHFFFAOYSA-M 0.000 description 5
- 238000006862 quantum yield reaction Methods 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 239000003642 reactive oxygen metabolite Substances 0.000 description 5
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical class OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 206010013786 Dry skin Diseases 0.000 description 4
- 101000990915 Homo sapiens Stromelysin-1 Proteins 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 102100030416 Stromelysin-1 Human genes 0.000 description 4
- 206010043189 Telangiectasia Diseases 0.000 description 4
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 description 4
- YJVBLROMQZEFPA-UHFFFAOYSA-L acid red 26 Chemical compound [Na+].[Na+].CC1=CC(C)=CC=C1N=NC1=C(O)C(S([O-])(=O)=O)=CC2=CC(S([O-])(=O)=O)=CC=C12 YJVBLROMQZEFPA-UHFFFAOYSA-L 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- HFVAFDPGUJEFBQ-UHFFFAOYSA-M alizarin red S Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C=C(S([O-])(=O)=O)C(O)=C2O HFVAFDPGUJEFBQ-UHFFFAOYSA-M 0.000 description 4
- 235000012733 azorubine Nutrition 0.000 description 4
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 4
- DBZJJPROPLPMSN-UHFFFAOYSA-N bromoeosin Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C(O)C(Br)=C1OC1=C(Br)C(O)=C(Br)C=C21 DBZJJPROPLPMSN-UHFFFAOYSA-N 0.000 description 4
- 235000012730 carminic acid Nutrition 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 230000037336 dry skin Effects 0.000 description 4
- UKZQEOHHLOYJLY-UHFFFAOYSA-M ethyl eosin Chemical compound [K+].CCOC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 UKZQEOHHLOYJLY-UHFFFAOYSA-M 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229940099552 hyaluronan Drugs 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- CTIQLGJVGNGFEW-UHFFFAOYSA-L naphthol yellow S Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C([O-])=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1 CTIQLGJVGNGFEW-UHFFFAOYSA-L 0.000 description 4
- 229930014626 natural product Natural products 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- HSXUHWZMNJHFRV-QIKYXUGXSA-L orange G Chemical compound [Na+].[Na+].OC1=CC=C2C=C(S([O-])(=O)=O)C=C(S([O-])(=O)=O)C2=C1\N=N\C1=CC=CC=C1 HSXUHWZMNJHFRV-QIKYXUGXSA-L 0.000 description 4
- 208000033808 peripheral neuropathy Diseases 0.000 description 4
- 229940068196 placebo Drugs 0.000 description 4
- 239000000902 placebo Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 235000019238 ponceau 6R Nutrition 0.000 description 4
- BBNQQADTFFCFGB-UHFFFAOYSA-N purpurin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC(O)=C3C(=O)C2=C1 BBNQQADTFFCFGB-UHFFFAOYSA-N 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 230000001603 reducing effect Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 210000004927 skin cell Anatomy 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 235000012756 tartrazine Nutrition 0.000 description 4
- 239000004149 tartrazine Substances 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 230000036269 ulceration Effects 0.000 description 4
- 238000001429 visible spectrum Methods 0.000 description 4
- AXDJCCTWPBKUKL-UHFFFAOYSA-N 4-[(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]aniline;hydron;chloride Chemical compound Cl.C1=CC(=N)C(C)=CC1=C(C=1C=CC(N)=CC=1)C1=CC=C(N)C=C1 AXDJCCTWPBKUKL-UHFFFAOYSA-N 0.000 description 3
- OSDLLIBGSJNGJE-UHFFFAOYSA-N 4-chloro-3,5-dimethylphenol Chemical compound CC1=CC(O)=CC(C)=C1Cl OSDLLIBGSJNGJE-UHFFFAOYSA-N 0.000 description 3
- RGCKGOZRHPZPFP-UHFFFAOYSA-N Alizarin Natural products C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 3
- AOMZHDJXSYHPKS-DROYEMJCSA-L Amido Black 10B Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC2=CC(S([O-])(=O)=O)=C(\N=N\C=3C=CC=CC=3)C(O)=C2C(N)=C1\N=N\C1=CC=C(N(=O)=O)C=C1 AOMZHDJXSYHPKS-DROYEMJCSA-L 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- MCZVRBLCRZWFJH-UHFFFAOYSA-N Bismark brown Y Chemical compound Cl.Cl.NC1=CC(N)=CC=C1N=NC1=CC=CC(N=NC=2C(=CC(N)=CC=2)N)=C1 MCZVRBLCRZWFJH-UHFFFAOYSA-N 0.000 description 3
- 108010017377 Collagen Type VII Proteins 0.000 description 3
- 102000004510 Collagen Type VII Human genes 0.000 description 3
- ZWYHVBGOBINPHN-AVRYKWKFSA-L Congo corinth Chemical compound [Na+].[Na+].Nc1c(cc(c2ccccc12)S([O-])(=O)=O)\N=N\c1ccc(cc1)-c1ccc(cc1)\N=N\c1cc(c2ccccc2c1[O-])S(O)(=O)=O ZWYHVBGOBINPHN-AVRYKWKFSA-L 0.000 description 3
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 3
- 208000008960 Diabetic foot Diseases 0.000 description 3
- 206010014970 Ephelides Diseases 0.000 description 3
- 206010063560 Excessive granulation tissue Diseases 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 108010085895 Laminin Proteins 0.000 description 3
- 208000003351 Melanosis Diseases 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 206010037867 Rash macular Diseases 0.000 description 3
- 208000002847 Surgical Wound Diseases 0.000 description 3
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 3
- 229930003268 Vitamin C Natural products 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- DGOBMKYRQHEFGQ-UHFFFAOYSA-L acid green 5 Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 DGOBMKYRQHEFGQ-UHFFFAOYSA-L 0.000 description 3
- FUGCXLNGEHFIOA-UHFFFAOYSA-L acid red 44 Chemical compound [Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=CC2=C1 FUGCXLNGEHFIOA-UHFFFAOYSA-L 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 230000033115 angiogenesis Effects 0.000 description 3
- MMRNCQMFQXTUGO-UHFFFAOYSA-N anthracene blue SWR Chemical compound OC1=CC(O)=C2C(=O)C3=C(O)C(O)=CC(O)=C3C(=O)C2=C1O MMRNCQMFQXTUGO-UHFFFAOYSA-N 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 3
- 229930002875 chlorophyll Natural products 0.000 description 3
- 235000019804 chlorophyll Nutrition 0.000 description 3
- 239000003636 conditioned culture medium Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 201000010251 cutis laxa Diseases 0.000 description 3
- 208000031513 cyst Diseases 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 3
- QGAYMQGSQUXCQO-UHFFFAOYSA-L eosin b Chemical compound [Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC([N+]([O-])=O)=C([O-])C(Br)=C1OC1=C2C=C([N+]([O-])=O)C([O-])=C1Br QGAYMQGSQUXCQO-UHFFFAOYSA-L 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 210000001126 granulation tissue Anatomy 0.000 description 3
- 210000004209 hair Anatomy 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 108010028309 kalinin Proteins 0.000 description 3
- CXORMDKZEUMQHX-UHFFFAOYSA-N kermesic acid Chemical compound O=C1C2=C(O)C(O)=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C CXORMDKZEUMQHX-UHFFFAOYSA-N 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 3
- MCPLVIGCWWTHFH-UHFFFAOYSA-L methyl blue Chemical compound [Na+].[Na+].C1=CC(S(=O)(=O)[O-])=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[NH+]C=2C=CC(=CC=2)S([O-])(=O)=O)C=2C=CC(NC=3C=CC(=CC=3)S([O-])(=O)=O)=CC=2)C=C1 MCPLVIGCWWTHFH-UHFFFAOYSA-L 0.000 description 3
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 3
- 201000001119 neuropathy Diseases 0.000 description 3
- 230000007823 neuropathy Effects 0.000 description 3
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- IFSXZLJQEKGQAF-UHFFFAOYSA-M nuclear fast red Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C(O)=C(S([O-])(=O)=O)C(O)=C2N IFSXZLJQEKGQAF-UHFFFAOYSA-M 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 210000004279 orbit Anatomy 0.000 description 3
- 230000003239 periodontal effect Effects 0.000 description 3
- 238000002428 photodynamic therapy Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical group OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- AZJPTIGZZTZIDR-UHFFFAOYSA-L rose bengal Chemical compound [K+].[K+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 AZJPTIGZZTZIDR-UHFFFAOYSA-L 0.000 description 3
- 238000007665 sagging Methods 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 210000004243 sweat Anatomy 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- UJMBCXLDXJUMFB-GLCFPVLVSA-K tartrazine Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=NN(C=2C=CC(=CC=2)S([O-])(=O)=O)C(=O)C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 UJMBCXLDXJUMFB-GLCFPVLVSA-K 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- JADVWWSKYZXRGX-UHFFFAOYSA-M thioflavine T Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C1=[N+](C)C2=CC=C(C)C=C2S1 JADVWWSKYZXRGX-UHFFFAOYSA-M 0.000 description 3
- 230000000451 tissue damage Effects 0.000 description 3
- 231100000827 tissue damage Toxicity 0.000 description 3
- 230000017423 tissue regeneration Effects 0.000 description 3
- 230000008733 trauma Effects 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 235000019154 vitamin C Nutrition 0.000 description 3
- 239000011718 vitamin C Substances 0.000 description 3
- XOSXWYQMOYSSKB-LDKJGXKFSA-L water blue Chemical compound CC1=CC(/C(\C(C=C2)=CC=C2NC(C=C2)=CC=C2S([O-])(=O)=O)=C(\C=C2)/C=C/C\2=N\C(C=C2)=CC=C2S([O-])(=O)=O)=CC(S(O)(=O)=O)=C1N.[Na+].[Na+] XOSXWYQMOYSSKB-LDKJGXKFSA-L 0.000 description 3
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 2
- LDVVMCZRFWMZSG-OLQVQODUSA-N (3ar,7as)-2-(trichloromethylsulfanyl)-3a,4,7,7a-tetrahydroisoindole-1,3-dione Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)Cl)C(=O)[C@H]21 LDVVMCZRFWMZSG-OLQVQODUSA-N 0.000 description 2
- PVPBBTJXIKFICP-UHFFFAOYSA-N (7-aminophenothiazin-3-ylidene)azanium;chloride Chemical compound [Cl-].C1=CC(=[NH2+])C=C2SC3=CC(N)=CC=C3N=C21 PVPBBTJXIKFICP-UHFFFAOYSA-N 0.000 description 2
- FFRBMBIXVSCUFS-UHFFFAOYSA-N 2,4-dinitro-1-naphthol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1 FFRBMBIXVSCUFS-UHFFFAOYSA-N 0.000 description 2
- NKTOLZVEWDHZMU-UHFFFAOYSA-N 2,5-xylenol Chemical compound CC1=CC=C(C)C(O)=C1 NKTOLZVEWDHZMU-UHFFFAOYSA-N 0.000 description 2
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 2
- NCKMMSIFQUPKCK-UHFFFAOYSA-N 2-benzyl-4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1CC1=CC=CC=C1 NCKMMSIFQUPKCK-UHFFFAOYSA-N 0.000 description 2
- DHVLDKHFGIVEIP-UHFFFAOYSA-N 2-bromo-2-(bromomethyl)pentanedinitrile Chemical compound BrCC(Br)(C#N)CCC#N DHVLDKHFGIVEIP-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- YCOXTKKNXUZSKD-UHFFFAOYSA-N 3,4-xylenol Chemical compound CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 2
- KKAJSJJFBSOMGS-UHFFFAOYSA-N 3,6-diamino-10-methylacridinium chloride Chemical compound [Cl-].C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 KKAJSJJFBSOMGS-UHFFFAOYSA-N 0.000 description 2
- KFZXVMNBUMVKLN-UHFFFAOYSA-N 4-chloro-5-methyl-2-propan-2-ylphenol Chemical compound CC(C)C1=CC(Cl)=C(C)C=C1O KFZXVMNBUMVKLN-UHFFFAOYSA-N 0.000 description 2
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 2
- REPMZEQSQQAHJR-UHFFFAOYSA-N 7-(diethylamino)-3,4-dioxo-10H-phenoxazine-1-carboxamide hydrochloride Chemical compound [Cl-].OC(=[NH2+])C1=CC(=O)C(=O)C2=C1NC1=CC=C(N(CC)CC)C=C1O2 REPMZEQSQQAHJR-UHFFFAOYSA-N 0.000 description 2
- AQSOTOUQTVJNMY-UHFFFAOYSA-N 7-(dimethylamino)-4-hydroxy-3-oxophenoxazin-10-ium-1-carboxylic acid;chloride Chemical compound [Cl-].OC(=O)C1=CC(=O)C(O)=C2OC3=CC(N(C)C)=CC=C3[NH+]=C21 AQSOTOUQTVJNMY-UHFFFAOYSA-N 0.000 description 2
- QFIIYGZAUXVPSZ-UHFFFAOYSA-N 8-(2,4-dihydroxy-6-methylanilino)-2-(2,4-dihydroxy-6-methylphenyl)imino-7-hydroxy-1,9-dimethyldibenzofuran-3-one Chemical compound CC1=CC(=CC(=C1NC2=C(C3=C(C=C2O)OC4=CC(=O)C(=NC5=C(C=C(C=C5C)O)O)C(=C43)C)C)O)O QFIIYGZAUXVPSZ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- VVAVKBBTPWYADW-UHFFFAOYSA-L Biebrich scarlet Chemical compound [Na+].[Na+].OC1=CC=C2C=CC=CC2=C1N=NC(C(=C1)S([O-])(=O)=O)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 VVAVKBBTPWYADW-UHFFFAOYSA-L 0.000 description 2
- 102100022525 Bone morphogenetic protein 6 Human genes 0.000 description 2
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 2
- 102100031168 CCN family member 2 Human genes 0.000 description 2
- JUQPZRLQQYSMEQ-UHFFFAOYSA-N CI Basic red 9 Chemical compound [Cl-].C1=CC(N)=CC=C1C(C=1C=CC(N)=CC=1)=C1C=CC(=[NH2+])C=C1 JUQPZRLQQYSMEQ-UHFFFAOYSA-N 0.000 description 2
- 235000005979 Citrus limon Nutrition 0.000 description 2
- 244000131522 Citrus pyriformis Species 0.000 description 2
- 208000034656 Contusions Diseases 0.000 description 2
- 235000015655 Crocus sativus Nutrition 0.000 description 2
- 244000124209 Crocus sativus Species 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 2
- 206010012442 Dermatitis contact Diseases 0.000 description 2
- MDNWOSOZYLHTCG-UHFFFAOYSA-N Dichlorophen Chemical compound OC1=CC=C(Cl)C=C1CC1=CC(Cl)=CC=C1O MDNWOSOZYLHTCG-UHFFFAOYSA-N 0.000 description 2
- 208000019872 Drug Eruptions Diseases 0.000 description 2
- 102000016942 Elastin Human genes 0.000 description 2
- 108010014258 Elastin Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 208000035874 Excoriation Diseases 0.000 description 2
- RZSYLLSAWYUBPE-UHFFFAOYSA-L Fast green FCF Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC(O)=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 RZSYLLSAWYUBPE-UHFFFAOYSA-L 0.000 description 2
- 102000009123 Fibrin Human genes 0.000 description 2
- 108010073385 Fibrin Proteins 0.000 description 2
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- 229920002683 Glycosaminoglycan Polymers 0.000 description 2
- 206010018852 Haematoma Diseases 0.000 description 2
- 101000899390 Homo sapiens Bone morphogenetic protein 6 Proteins 0.000 description 2
- 101000777550 Homo sapiens CCN family member 2 Proteins 0.000 description 2
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 2
- 101001013150 Homo sapiens Interstitial collagenase Proteins 0.000 description 2
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 2
- 101000659879 Homo sapiens Thrombospondin-1 Proteins 0.000 description 2
- 102100032999 Integrin beta-3 Human genes 0.000 description 2
- 208000034693 Laceration Diseases 0.000 description 2
- LUWJPTVQOMUZLW-UHFFFAOYSA-N Luxol fast blue MBS Chemical compound [Cu++].Cc1ccccc1N\C(N)=N\c1ccccc1C.Cc1ccccc1N\C(N)=N\c1ccccc1C.OS(=O)(=O)c1cccc2c3nc(nc4nc([n-]c5[n-]c(nc6nc(n3)c3ccccc63)c3c(cccc53)S(O)(=O)=O)c3ccccc43)c12 LUWJPTVQOMUZLW-UHFFFAOYSA-N 0.000 description 2
- 206010025421 Macule Diseases 0.000 description 2
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 description 2
- 239000004368 Modified starch Substances 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 2
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- NPGIHFRTRXVWOY-UHFFFAOYSA-N Oil red O Chemical compound Cc1ccc(C)c(c1)N=Nc1cc(C)c(cc1C)N=Nc1c(O)ccc2ccccc12 NPGIHFRTRXVWOY-UHFFFAOYSA-N 0.000 description 2
- 208000009344 Penetrating Wounds Diseases 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 206010039580 Scar Diseases 0.000 description 2
- YIQKLZYTHXTDDT-UHFFFAOYSA-H Sirius red F3B Chemical compound C1=CC(=CC=C1N=NC2=CC(=C(C=C2)N=NC3=C(C=C4C=C(C=CC4=C3[O-])NC(=O)NC5=CC6=CC(=C(C(=C6C=C5)[O-])N=NC7=C(C=C(C=C7)N=NC8=CC=C(C=C8)S(=O)(=O)[O-])S(=O)(=O)[O-])S(=O)(=O)O)S(=O)(=O)O)S(=O)(=O)[O-])S(=O)(=O)[O-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+] YIQKLZYTHXTDDT-UHFFFAOYSA-H 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- 206010040880 Skin irritation Diseases 0.000 description 2
- FHNINJWBTRXEBC-UHFFFAOYSA-N Sudan III Chemical compound OC1=CC=C2C=CC=CC2=C1N=NC(C=C1)=CC=C1N=NC1=CC=CC=C1 FHNINJWBTRXEBC-UHFFFAOYSA-N 0.000 description 2
- 102100036034 Thrombospondin-1 Human genes 0.000 description 2
- 238000001792 White test Methods 0.000 description 2
- KNNFENIIZCXFDO-UHFFFAOYSA-N [7-(dimethylamino)-3,4-dioxo-10H-phenoxazine-1-carbonyl]azanium chloride Chemical compound [Cl-].OC(=[NH2+])C1=CC(=O)C(=O)C2=C1NC1=CC=C(N(C)C)C=C1O2 KNNFENIIZCXFDO-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- GXEAXHYQKZAJGB-UHFFFAOYSA-L acid red 29 Chemical compound [Na+].[Na+].OC1=C2C(O)=CC(S([O-])(=O)=O)=CC2=CC(S([O-])(=O)=O)=C1N=NC1=CC=CC=C1 GXEAXHYQKZAJGB-UHFFFAOYSA-L 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- PBTFWNIEMRWXLI-UHFFFAOYSA-L alcian yellow Chemical compound [Cl-].[Cl-].CN(C)C(=[N+](C)C)SCC1=C(C)C=C2SC(C3=CC=C(C=C3)N=NC3=CC=C(C=C3)C3=NC=4C=C(C(=CC=4S3)C)CSC(N(C)C)=[N+](C)C)=NC2=C1 PBTFWNIEMRWXLI-UHFFFAOYSA-L 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- MACGOVWEZWQBMW-UHFFFAOYSA-L alizarin cyanin BBS Chemical compound [Na+].[Na+].O=C1C2=C(O)C(O)=C(S([O-])(=O)=O)C(O)=C2C(=O)C2=C1C(O)=C(S([O-])(=O)=O)C(O)=C2O MACGOVWEZWQBMW-UHFFFAOYSA-L 0.000 description 2
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 2
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 2
- WLDHEUZGFKACJH-UHFFFAOYSA-K amaranth Chemical compound [Na+].[Na+].[Na+].C12=CC=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(O)=C1N=NC1=CC=C(S([O-])(=O)=O)C2=CC=CC=C12 WLDHEUZGFKACJH-UHFFFAOYSA-K 0.000 description 2
- 230000002491 angiogenic effect Effects 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- KSCQDDRPFHTIRL-UHFFFAOYSA-N auramine O Chemical compound [H+].[Cl-].C1=CC(N(C)C)=CC=C1C(=N)C1=CC=C(N(C)C)C=C1 KSCQDDRPFHTIRL-UHFFFAOYSA-N 0.000 description 2
- LUERODMRBLNCFK-UHFFFAOYSA-M azocarmine G Chemical compound [Na+].C1=CC(S(=O)(=O)[O-])=CC=C1NC(C1=CC(=CC=C1C1=NC2=CC=CC=C22)S([O-])(=O)=O)=CC1=[N+]2C1=CC=CC=C1 LUERODMRBLNCFK-UHFFFAOYSA-M 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- FUWUEFKEXZQKKA-UHFFFAOYSA-N beta-thujaplicin Chemical compound CC(C)C=1C=CC=C(O)C(=O)C=1 FUWUEFKEXZQKKA-UHFFFAOYSA-N 0.000 description 2
- 239000000227 bioadhesive Substances 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- XVBRCOKDZVQYAY-UHFFFAOYSA-N bronidox Chemical compound [O-][N+](=O)C1(Br)COCOC1 XVBRCOKDZVQYAY-UHFFFAOYSA-N 0.000 description 2
- CRPUJAZIXJMDBK-UHFFFAOYSA-N camphene Chemical compound C1CC2C(=C)C(C)(C)C1C2 CRPUJAZIXJMDBK-UHFFFAOYSA-N 0.000 description 2
- 239000004106 carminic acid Substances 0.000 description 2
- DGQLVPJVXFOQEV-JNVSTXMASA-N carminic acid Chemical compound OC1=C2C(=O)C=3C(C)=C(C(O)=O)C(O)=CC=3C(=O)C2=C(O)C(O)=C1[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O DGQLVPJVXFOQEV-JNVSTXMASA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- XWOVYFGIWQEHHR-UHFFFAOYSA-K chrome violet CG Chemical compound [Na+].[Na+].[Na+].C1=C(C([O-])=O)C(O)=CC=C1C(C=1C=C(C(O)=CC=1)C([O-])=O)=C1C=C(C([O-])=O)C(=O)C=C1 XWOVYFGIWQEHHR-UHFFFAOYSA-K 0.000 description 2
- GJWSUKYXUMVMGX-UHFFFAOYSA-N citronellic acid Chemical compound OC(=O)CC(C)CCC=C(C)C GJWSUKYXUMVMGX-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 230000009519 contusion Effects 0.000 description 2
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 238000001804 debridement Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- SOROIESOUPGGFO-UHFFFAOYSA-N diazolidinylurea Chemical compound OCNC(=O)N(CO)C1N(CO)C(=O)N(CO)C1=O SOROIESOUPGGFO-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- JMWHLOJMXZVRMC-UHFFFAOYSA-L disodium;4,7-dichloro-2',4',5',7'-tetraiodo-3-oxospiro[2-benzofuran-1,9'-xanthene]-3',6'-diolate Chemical compound [Na+].[Na+].O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C([O-])C(I)=C1OC1=C(I)C([O-])=C(I)C=C21 JMWHLOJMXZVRMC-UHFFFAOYSA-L 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229920002549 elastin Polymers 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- ZBQZBWKNGDEDOA-UHFFFAOYSA-N eosin B Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC([N+]([O-])=O)=C(O)C(Br)=C1OC1=C2C=C([N+]([O-])=O)C(O)=C1Br ZBQZBWKNGDEDOA-UHFFFAOYSA-N 0.000 description 2
- 231100000321 erythema Toxicity 0.000 description 2
- JVICFMRAVNKDOE-UHFFFAOYSA-M ethyl violet Chemical compound [Cl-].C1=CC(N(CC)CC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC)=C1C=CC(=[N+](CC)CC)C=C1 JVICFMRAVNKDOE-UHFFFAOYSA-M 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 235000019240 fast green FCF Nutrition 0.000 description 2
- FPVGTPBMTFTMRT-NSKUCRDLSA-L fast yellow Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C(N)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 FPVGTPBMTFTMRT-NSKUCRDLSA-L 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229950003499 fibrin Drugs 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 230000003325 follicular Effects 0.000 description 2
- HKIOYBQGHSTUDB-UHFFFAOYSA-N folpet Chemical compound C1=CC=C2C(=O)N(SC(Cl)(Cl)Cl)C(=O)C2=C1 HKIOYBQGHSTUDB-UHFFFAOYSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- PHLYOKFVXIVOJC-UHFFFAOYSA-N gallein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(O)=C1OC1=C(O)C(O)=CC=C21 PHLYOKFVXIVOJC-UHFFFAOYSA-N 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 210000003780 hair follicle Anatomy 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 235000003642 hunger Nutrition 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 230000001969 hypertrophic effect Effects 0.000 description 2
- ZCTXEAQXZGPWFG-UHFFFAOYSA-N imidurea Chemical compound O=C1NC(=O)N(CO)C1NC(=O)NCNC(=O)NC1C(=O)NC(=O)N1CO ZCTXEAQXZGPWFG-UHFFFAOYSA-N 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- 230000007803 itching Effects 0.000 description 2
- 210000002414 leg Anatomy 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 229940041616 menthol Drugs 0.000 description 2
- SQFDQLBYJKFDDO-UHFFFAOYSA-K merbromin Chemical compound [Na+].[Na+].C=12C=C(Br)C(=O)C=C2OC=2C([Hg]O)=C([O-])C(Br)=CC=2C=1C1=CC=CC=C1C([O-])=O SQFDQLBYJKFDDO-UHFFFAOYSA-K 0.000 description 2
- DWCZIOOZPIDHAB-UHFFFAOYSA-L methyl green Chemical compound [Cl-].[Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)[N+](C)(C)C)=C1C=CC(=[N+](C)C)C=C1 DWCZIOOZPIDHAB-UHFFFAOYSA-L 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 235000019426 modified starch Nutrition 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 230000001338 necrotic effect Effects 0.000 description 2
- IPSIPYMEZZPCPY-UHFFFAOYSA-N new fuchsin Chemical compound [Cl-].C1=CC(=[NH2+])C(C)=CC1=C(C=1C=C(C)C(N)=CC=1)C1=CC=C(N)C(C)=C1 IPSIPYMEZZPCPY-UHFFFAOYSA-N 0.000 description 2
- NTPMRTUYLKDNSS-UHFFFAOYSA-N night blue Chemical compound [Cl-].C1=CC(N(CC)CC)=CC=C1C(C=1C2=CC=CC=C2C(NC=2C=CC=CC=2)=CC=1)=C1C=CC(=[N+](CC)CC)C=C1 NTPMRTUYLKDNSS-UHFFFAOYSA-N 0.000 description 2
- 231100001079 no serious adverse effect Toxicity 0.000 description 2
- 230000037311 normal skin Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 235000010292 orthophenyl phenol Nutrition 0.000 description 2
- 206010033675 panniculitis Diseases 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 201000001245 periodontitis Diseases 0.000 description 2
- 125000002081 peroxide group Chemical group 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- ZYIBVBKZZZDFOY-UHFFFAOYSA-N phloxine O Chemical compound O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(Br)=C(O)C(Br)=C1OC1=C(Br)C(O)=C(Br)C=C21 ZYIBVBKZZZDFOY-UHFFFAOYSA-N 0.000 description 2
- 230000002186 photoactivation Effects 0.000 description 2
- 239000003504 photosensitizing agent Substances 0.000 description 2
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920000223 polyglycerol Polymers 0.000 description 2
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000037333 procollagen synthesis Effects 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- DASFNRASQHZIIW-XOTKKQSBSA-M protochlorophyll a Chemical compound [Mg+2].N1=C2C3=C([N-]4)C(CCC(=O)OC\C=C(/C)CCCC(C)CCCC(C)CCCC(C)C)=C(C)C4=CC(C(=C4C=C)C)=NC4=CC(C(C)=C4CC)=NC4=CC1=C(C)C2=C([O-])C3C(=O)OC DASFNRASQHZIIW-XOTKKQSBSA-M 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000002165 resonance energy transfer Methods 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 229940081623 rose bengal Drugs 0.000 description 2
- 229930187593 rose bengal Natural products 0.000 description 2
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 2
- 229940006123 rose bengal at Drugs 0.000 description 2
- 235000013974 saffron Nutrition 0.000 description 2
- 239000004248 saffron Substances 0.000 description 2
- OARRHUQTFTUEOS-UHFFFAOYSA-N safranin Chemical compound [Cl-].C=12C=C(N)C(C)=CC2=NC2=CC(C)=C(N)C=C2[N+]=1C1=CC=CC=C1 OARRHUQTFTUEOS-UHFFFAOYSA-N 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000036573 scar formation Effects 0.000 description 2
- RCTGMCJBQGBLKT-PAMTUDGESA-N scarlet red Chemical compound CC1=CC=CC=C1\N=N\C(C=C1C)=CC=C1\N=N\C1=C(O)C=CC2=CC=CC=C12 RCTGMCJBQGBLKT-PAMTUDGESA-N 0.000 description 2
- 230000037390 scarring Effects 0.000 description 2
- 238000007390 skin biopsy Methods 0.000 description 2
- 230000036556 skin irritation Effects 0.000 description 2
- 231100000475 skin irritation Toxicity 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- 230000037351 starvation Effects 0.000 description 2
- 210000004304 subcutaneous tissue Anatomy 0.000 description 2
- 229960000943 tartrazine Drugs 0.000 description 2
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 2
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- ICUTUKXCWQYESQ-UHFFFAOYSA-N triclocarban Chemical compound C1=CC(Cl)=CC=C1NC(=O)NC1=CC=C(Cl)C(Cl)=C1 ICUTUKXCWQYESQ-UHFFFAOYSA-N 0.000 description 2
- 229960003500 triclosan Drugs 0.000 description 2
- SWGJCIMEBVHMTA-UHFFFAOYSA-K trisodium;6-oxido-4-sulfo-5-[(4-sulfonatonaphthalen-1-yl)diazenyl]naphthalene-2-sulfonate Chemical compound [Na+].[Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=C(S([O-])(=O)=O)C2=C1 SWGJCIMEBVHMTA-UHFFFAOYSA-K 0.000 description 2
- MDYOLVRUBBJPFM-UHFFFAOYSA-N tropolone Chemical compound OC1=CC=CC=CC1=O MDYOLVRUBBJPFM-UHFFFAOYSA-N 0.000 description 2
- AODQPPLFAXTBJS-UHFFFAOYSA-M victoria blue 4R Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)N(C)C)=C(C=C1)C2=CC=CC=C2C1=[N+](C)C1=CC=CC=C1 AODQPPLFAXTBJS-UHFFFAOYSA-M 0.000 description 2
- LLWJPGAKXJBKKA-UHFFFAOYSA-N victoria blue B Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)N(C)C)=C(C=C1)C2=CC=CC=C2C1=[NH+]C1=CC=CC=C1 LLWJPGAKXJBKKA-UHFFFAOYSA-N 0.000 description 2
- FQTLCLSUCSAZDY-UHFFFAOYSA-N (+) E(S) nerolidol Natural products CC(C)=CCCC(C)=CCCC(C)(O)C=C FQTLCLSUCSAZDY-UHFFFAOYSA-N 0.000 description 1
- WZUVPPKBWHMQCE-XJKSGUPXSA-N (+)-haematoxylin Chemical compound C12=CC(O)=C(O)C=C2C[C@]2(O)[C@H]1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-XJKSGUPXSA-N 0.000 description 1
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical class CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- CRDAMVZIKSXKFV-FBXUGWQNSA-N (2-cis,6-cis)-farnesol Chemical compound CC(C)=CCC\C(C)=C/CC\C(C)=C/CO CRDAMVZIKSXKFV-FBXUGWQNSA-N 0.000 description 1
- 239000000260 (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol Substances 0.000 description 1
- WCDDVEOXEIYWFB-VXORFPGASA-N (2s,3s,4r,5r,6r)-3-[(2s,3r,5s,6r)-3-acetamido-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1C[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O)[C@H](O)[C@H]1O WCDDVEOXEIYWFB-VXORFPGASA-N 0.000 description 1
- CVCQAQVBOPNTFI-AAONGDSNSA-N (3r,4r,5s,6r)-3-amino-6-(hydroxymethyl)oxane-2,4,5-triol;sulfuric acid Chemical compound OS(O)(=O)=O.N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O.N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O CVCQAQVBOPNTFI-AAONGDSNSA-N 0.000 description 1
- QBZIEGUIYWGBMY-FUZXWUMZSA-N (5Z)-5-hydroxyimino-6-oxonaphthalene-2-sulfonic acid iron Chemical compound [Fe].O\N=C1/C(=O)C=Cc2cc(ccc12)S(O)(=O)=O.O\N=C1/C(=O)C=Cc2cc(ccc12)S(O)(=O)=O.O\N=C1/C(=O)C=Cc2cc(ccc12)S(O)(=O)=O QBZIEGUIYWGBMY-FUZXWUMZSA-N 0.000 description 1
- IOOQHEFLQLMYPZ-GNQFORKWSA-M (7R,8Z)-bacteriochlorophyll b Chemical compound O=C([C@@H](C1=C2N3[Mg]N45)C(=O)OC)C2=C(C)\C3=C\C(\C(\[C@H]/2C)=C/C)=N\C\2=C/C4=C(C(C)=O)C(C)=C5\C=C/2[C@@H](C)[C@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)C1=N\2 IOOQHEFLQLMYPZ-GNQFORKWSA-M 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 description 1
- DCSCXTJOXBUFGB-JGVFFNPUSA-N (R)-(+)-Verbenone Natural products CC1=CC(=O)[C@@H]2C(C)(C)[C@H]1C2 DCSCXTJOXBUFGB-JGVFFNPUSA-N 0.000 description 1
- DCSCXTJOXBUFGB-SFYZADRCSA-N (R)-(+)-verbenone Chemical compound CC1=CC(=O)[C@H]2C(C)(C)[C@@H]1C2 DCSCXTJOXBUFGB-SFYZADRCSA-N 0.000 description 1
- 150000005207 1,3-dihydroxybenzenes Chemical class 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- QDGIEIGBQXURRS-UHFFFAOYSA-N 1-(3-chlorophenyl)-3-(3,4-dichlorophenyl)urea Chemical compound ClC1=CC=CC(NC(=O)NC=2C=C(Cl)C(Cl)=CC=2)=C1 QDGIEIGBQXURRS-UHFFFAOYSA-N 0.000 description 1
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Chemical compound CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 description 1
- 239000001074 1-methoxy-4-[(E)-prop-1-enyl]benzene Substances 0.000 description 1
- 125000004804 1-methylmethylene group Chemical group [H]C([H])([H])C([H])([*:2])[*:1] 0.000 description 1
- IBLKWZIFZMJLFL-UHFFFAOYSA-N 1-phenoxypropan-2-ol Chemical compound CC(O)COC1=CC=CC=C1 IBLKWZIFZMJLFL-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- WVXRAFOPTSTNLL-NKWVEPMBSA-N 2',3'-dideoxyadenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1CC[C@@H](CO)O1 WVXRAFOPTSTNLL-NKWVEPMBSA-N 0.000 description 1
- YNBZQSXWRWAXMV-UHFFFAOYSA-N 2',7'-dibromo-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C(O)C=C1OC1=C2C=C(Br)C(O)=C1 YNBZQSXWRWAXMV-UHFFFAOYSA-N 0.000 description 1
- VFNKZQNIXUFLBC-UHFFFAOYSA-N 2',7'-dichlorofluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Cl)=C(O)C=C1OC1=C2C=C(Cl)C(O)=C1 VFNKZQNIXUFLBC-UHFFFAOYSA-N 0.000 description 1
- BKUSIKGSPSFQAC-RRKCRQDMSA-N 2'-deoxyinosine-5'-diphosphate Chemical compound O1[C@H](CO[P@@](O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(NC=NC2=O)=C2N=C1 BKUSIKGSPSFQAC-RRKCRQDMSA-N 0.000 description 1
- IYOLBFFHPZOQGW-UHFFFAOYSA-N 2,4-dichloro-3,5-dimethylphenol Chemical compound CC1=CC(O)=C(Cl)C(C)=C1Cl IYOLBFFHPZOQGW-UHFFFAOYSA-N 0.000 description 1
- KUFFULVDNCHOFZ-UHFFFAOYSA-N 2,4-xylenol Chemical compound CC1=CC=C(O)C(C)=C1 KUFFULVDNCHOFZ-UHFFFAOYSA-N 0.000 description 1
- CFSOXRGHLCXRNB-UHFFFAOYSA-N 2-(3-phenylpropyl)benzene-1,3-diol Chemical compound OC1=CC=CC(O)=C1CCCC1=CC=CC=C1 CFSOXRGHLCXRNB-UHFFFAOYSA-N 0.000 description 1
- CEQFOVLGLXCDCX-UHFFFAOYSA-N 2-[[4-(dimethylamino)phenyl]diazenyl]benzoic acid Chemical compound C1=CC(N(C)C)=CC=C1N=NC1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-UHFFFAOYSA-N 0.000 description 1
- UGIJCMNGQCUTPI-UHFFFAOYSA-N 2-aminoethyl prop-2-enoate Chemical compound NCCOC(=O)C=C UGIJCMNGQCUTPI-UHFFFAOYSA-N 0.000 description 1
- WPMBXQJYQZTSGS-UHFFFAOYSA-N 2-benzyl-4-chlorobenzene-1,3-diol Chemical compound OC1=CC=C(Cl)C(O)=C1CC1=CC=CC=C1 WPMBXQJYQZTSGS-UHFFFAOYSA-N 0.000 description 1
- RKDMDAVSHRCXQZ-UHFFFAOYSA-N 2-benzylbenzene-1,3-diol Chemical compound OC1=CC=CC(O)=C1CC1=CC=CC=C1 RKDMDAVSHRCXQZ-UHFFFAOYSA-N 0.000 description 1
- KSDMMSMHJOPTSY-UHFFFAOYSA-N 2-bromo-3-(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC=CC(O)=C1Br KSDMMSMHJOPTSY-UHFFFAOYSA-N 0.000 description 1
- COVGKJSMQVFLDP-UHFFFAOYSA-N 2-bromo-3-hexylphenol Chemical compound CCCCCCC1=CC=CC(O)=C1Br COVGKJSMQVFLDP-UHFFFAOYSA-N 0.000 description 1
- TYBHZVUFOINFDV-UHFFFAOYSA-N 2-bromo-6-[(3-bromo-5-chloro-2-hydroxyphenyl)methyl]-4-chlorophenol Chemical compound OC1=C(Br)C=C(Cl)C=C1CC1=CC(Cl)=CC(Br)=C1O TYBHZVUFOINFDV-UHFFFAOYSA-N 0.000 description 1
- VADKRMSMGWJZCF-UHFFFAOYSA-N 2-bromophenol Chemical compound OC1=CC=CC=C1Br VADKRMSMGWJZCF-UHFFFAOYSA-N 0.000 description 1
- BRYHBLAGEXUHSL-UHFFFAOYSA-N 2-butan-2-yl-4-chloro-5-methylphenol Chemical compound CCC(C)C1=CC(Cl)=C(C)C=C1O BRYHBLAGEXUHSL-UHFFFAOYSA-N 0.000 description 1
- COSYXLHTXXMVGM-UHFFFAOYSA-N 2-butyl-4-chlorophenol Chemical compound CCCCC1=CC(Cl)=CC=C1O COSYXLHTXXMVGM-UHFFFAOYSA-N 0.000 description 1
- FZLKMKSAXYZVJW-UHFFFAOYSA-N 2-chloro-3-(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC=CC(O)=C1Cl FZLKMKSAXYZVJW-UHFFFAOYSA-N 0.000 description 1
- UNRRZPJVYQDQPL-UHFFFAOYSA-N 2-chloro-3-ethylphenol Chemical compound CCC1=CC=CC(O)=C1Cl UNRRZPJVYQDQPL-UHFFFAOYSA-N 0.000 description 1
- NVIHKOLBNJOVTD-UHFFFAOYSA-N 2-chloro-3-heptylphenol Chemical compound CCCCCCCC1=CC=CC(O)=C1Cl NVIHKOLBNJOVTD-UHFFFAOYSA-N 0.000 description 1
- PFEPQLAKIAJJRQ-UHFFFAOYSA-N 2-chloro-3-hexylphenol Chemical compound CCCCCCC1=CC=CC(O)=C1Cl PFEPQLAKIAJJRQ-UHFFFAOYSA-N 0.000 description 1
- KHWKJUTXTSNBKW-UHFFFAOYSA-N 2-chloro-3-propylphenol Chemical compound CCCC1=CC=CC(O)=C1Cl KHWKJUTXTSNBKW-UHFFFAOYSA-N 0.000 description 1
- HKHXLHGVIHQKMK-UHFFFAOYSA-N 2-chloro-m-cresol Chemical compound CC1=CC=CC(O)=C1Cl HKHXLHGVIHQKMK-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- DWVXFVWWARTDCQ-UHFFFAOYSA-N 2-ethylbenzene-1,3-diol Chemical compound CCC1=C(O)C=CC=C1O DWVXFVWWARTDCQ-UHFFFAOYSA-N 0.000 description 1
- GOUWRHHYANYVLG-UHFFFAOYSA-N 2-heptylbenzene-1,3-diol Chemical compound CCCCCCCC1=C(O)C=CC=C1O GOUWRHHYANYVLG-UHFFFAOYSA-N 0.000 description 1
- NCTHQZTWNVDWGT-UHFFFAOYSA-N 2-hexylbenzene-1,3-diol Chemical compound CCCCCCC1=C(O)C=CC=C1O NCTHQZTWNVDWGT-UHFFFAOYSA-N 0.000 description 1
- 229940100555 2-methyl-4-isothiazolin-3-one Drugs 0.000 description 1
- ZTMADXFOCUXMJE-UHFFFAOYSA-N 2-methylbenzene-1,3-diol Chemical compound CC1=C(O)C=CC=C1O ZTMADXFOCUXMJE-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 229940044120 2-n-octyl-4-isothiazolin-3-one Drugs 0.000 description 1
- IEIHCSFJLQYKGJ-UHFFFAOYSA-N 2-nonylbenzene-1,3-diol Chemical compound CCCCCCCCCC1=C(O)C=CC=C1O IEIHCSFJLQYKGJ-UHFFFAOYSA-N 0.000 description 1
- HHSCZZZCAYSVRK-UHFFFAOYSA-N 2-octylbenzene-1,3-diol Chemical compound CCCCCCCCC1=C(O)C=CC=C1O HHSCZZZCAYSVRK-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- UPXZHXVOMCGZDS-UHFFFAOYSA-N 2-phenylbenzene-1,3-diol Chemical compound OC1=CC=CC(O)=C1C1=CC=CC=C1 UPXZHXVOMCGZDS-UHFFFAOYSA-N 0.000 description 1
- 229940061334 2-phenylphenol Drugs 0.000 description 1
- XDCMHOFEBFTMNL-UHFFFAOYSA-N 2-propylbenzene-1,3-diol Chemical compound CCCC1=C(O)C=CC=C1O XDCMHOFEBFTMNL-UHFFFAOYSA-N 0.000 description 1
- OALHHIHQOFIMEF-UHFFFAOYSA-N 3',6'-dihydroxy-2',4',5',7'-tetraiodo-3h-spiro[2-benzofuran-1,9'-xanthene]-3-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 OALHHIHQOFIMEF-UHFFFAOYSA-N 0.000 description 1
- YUOSDRMYPOJFCP-UHFFFAOYSA-N 3',6'-dihydroxy-2',7'-diiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C=C1OC1=C2C=C(I)C(O)=C1 YUOSDRMYPOJFCP-UHFFFAOYSA-N 0.000 description 1
- DSVUBXQDJGJGIC-UHFFFAOYSA-N 3',6'-dihydroxy-4',5'-diiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(I)=C1OC1=C(I)C(O)=CC=C21 DSVUBXQDJGJGIC-UHFFFAOYSA-N 0.000 description 1
- HDJBTCAJIMNXEW-UHFFFAOYSA-N 3-(1-methylpyrrolidin-2-yl)pyridine;hydrochloride Chemical group Cl.CN1CCCC1C1=CC=CN=C1 HDJBTCAJIMNXEW-UHFFFAOYSA-N 0.000 description 1
- OAOFCENSKJNHQG-UHFFFAOYSA-N 3-butyl-2-chlorophenol Chemical compound CCCCC1=CC=CC(O)=C1Cl OAOFCENSKJNHQG-UHFFFAOYSA-N 0.000 description 1
- WMKZAKWDJDKLIW-UHFFFAOYSA-N 3-iodoprop-1-enyl n-butylcarbamate Chemical compound CCCCNC(=O)OC=CCI WMKZAKWDJDKLIW-UHFFFAOYSA-N 0.000 description 1
- TZZGHGKTHXIOMN-UHFFFAOYSA-N 3-trimethoxysilyl-n-(3-trimethoxysilylpropyl)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCCC[Si](OC)(OC)OC TZZGHGKTHXIOMN-UHFFFAOYSA-N 0.000 description 1
- ZDTNHRWWURISAA-UHFFFAOYSA-N 4',5'-dibromo-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(Br)=C1OC1=C(Br)C(O)=CC=C21 ZDTNHRWWURISAA-UHFFFAOYSA-N 0.000 description 1
- WLHLYHWMNUCWEV-UHFFFAOYSA-N 4',5'-dichloro-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(Cl)=C1OC1=C(Cl)C(O)=CC=C21 WLHLYHWMNUCWEV-UHFFFAOYSA-N 0.000 description 1
- PQSXNIMHIHYFEE-UHFFFAOYSA-N 4-(1-phenylethyl)benzene-1,3-diol Chemical compound C=1C=C(O)C=C(O)C=1C(C)C1=CC=CC=C1 PQSXNIMHIHYFEE-UHFFFAOYSA-N 0.000 description 1
- IJALWSVNUBBQRA-UHFFFAOYSA-N 4-Isopropyl-3-methylphenol Chemical compound CC(C)C1=CC=C(O)C=C1C IJALWSVNUBBQRA-UHFFFAOYSA-N 0.000 description 1
- KLSLBUSXWBJMEC-UHFFFAOYSA-N 4-Propylphenol Chemical compound CCCC1=CC=C(O)C=C1 KLSLBUSXWBJMEC-UHFFFAOYSA-N 0.000 description 1
- BDBMLMBYCXNVMC-UHFFFAOYSA-O 4-[(2e)-2-[(2e,4e,6z)-7-[1,1-dimethyl-3-(4-sulfobutyl)benzo[e]indol-3-ium-2-yl]hepta-2,4,6-trienylidene]-1,1-dimethylbenzo[e]indol-3-yl]butane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS(O)(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C BDBMLMBYCXNVMC-UHFFFAOYSA-O 0.000 description 1
- ATVXBMXBDVUKPM-UHFFFAOYSA-N 4-bromo-2-butylphenol Chemical compound CCCCC1=CC(Br)=CC=C1O ATVXBMXBDVUKPM-UHFFFAOYSA-N 0.000 description 1
- QQVRKOIEEIGPMK-UHFFFAOYSA-N 4-bromo-2-cyclohexylphenol Chemical compound OC1=CC=C(Br)C=C1C1CCCCC1 QQVRKOIEEIGPMK-UHFFFAOYSA-N 0.000 description 1
- MAAADQMBQYSOOG-UHFFFAOYSA-N 4-bromo-2-ethylphenol Chemical compound CCC1=CC(Br)=CC=C1O MAAADQMBQYSOOG-UHFFFAOYSA-N 0.000 description 1
- NBJOEVNMBJIEBA-UHFFFAOYSA-N 4-bromo-2-hexylphenol Chemical compound CCCCCCC1=CC(Br)=CC=C1O NBJOEVNMBJIEBA-UHFFFAOYSA-N 0.000 description 1
- IWJGMJHAIUBWKT-UHFFFAOYSA-N 4-bromo-2-methylphenol Chemical compound CC1=CC(Br)=CC=C1O IWJGMJHAIUBWKT-UHFFFAOYSA-N 0.000 description 1
- IBNNFYOOPXNGIL-UHFFFAOYSA-N 4-bromo-2-pentan-2-ylphenol Chemical compound CCCC(C)C1=CC(Br)=CC=C1O IBNNFYOOPXNGIL-UHFFFAOYSA-N 0.000 description 1
- AEHYMMFSHCSYAA-UHFFFAOYSA-N 4-bromo-2-propylphenol Chemical compound CCCC1=CC(Br)=CC=C1O AEHYMMFSHCSYAA-UHFFFAOYSA-N 0.000 description 1
- RCMXKDPMOKHQKG-UHFFFAOYSA-N 4-bromophenol;4-chloro-3-methylphenol Chemical compound OC1=CC=C(Br)C=C1.CC1=CC(O)=CC=C1Cl RCMXKDPMOKHQKG-UHFFFAOYSA-N 0.000 description 1
- CGINIQPUMSCPLD-UHFFFAOYSA-N 4-chloro-2-(2-phenylethyl)phenol Chemical compound OC1=CC=C(Cl)C=C1CCC1=CC=CC=C1 CGINIQPUMSCPLD-UHFFFAOYSA-N 0.000 description 1
- GKCCTCWZNGMJKG-UHFFFAOYSA-N 4-chloro-2-[(5-chloro-2-hydroxyphenyl)methylsulfanylmethyl]phenol Chemical compound OC1=CC=C(Cl)C=C1CSCC1=CC(Cl)=CC=C1O GKCCTCWZNGMJKG-UHFFFAOYSA-N 0.000 description 1
- XRUHXAQEOJDPEG-UHFFFAOYSA-N 4-chloro-2-cyclohexylphenol Chemical compound OC1=CC=C(Cl)C=C1C1CCCCC1 XRUHXAQEOJDPEG-UHFFFAOYSA-N 0.000 description 1
- WBQFGBDPSGGESL-UHFFFAOYSA-N 4-chloro-2-ethyl-3,5-dimethylphenol Chemical compound CCC1=C(C)C(Cl)=C(C)C=C1O WBQFGBDPSGGESL-UHFFFAOYSA-N 0.000 description 1
- LKPNWNSJHHGYLU-UHFFFAOYSA-N 4-chloro-2-ethyl-3-methyl-6-propan-2-ylphenol Chemical compound CCC1=C(C)C(Cl)=CC(C(C)C)=C1O LKPNWNSJHHGYLU-UHFFFAOYSA-N 0.000 description 1
- ZSTDEWVWZHPUCW-UHFFFAOYSA-N 4-chloro-2-ethyl-5-methylphenol Chemical compound CCC1=CC(Cl)=C(C)C=C1O ZSTDEWVWZHPUCW-UHFFFAOYSA-N 0.000 description 1
- QCEDDUSMBLCRNH-UHFFFAOYSA-N 4-chloro-2-ethylphenol Chemical compound CCC1=CC(Cl)=CC=C1O QCEDDUSMBLCRNH-UHFFFAOYSA-N 0.000 description 1
- LAMKHMJVAKQLOO-UHFFFAOYSA-N 4-chloro-2-heptylphenol Chemical compound CCCCCCCC1=CC(Cl)=CC=C1O LAMKHMJVAKQLOO-UHFFFAOYSA-N 0.000 description 1
- UUBASQRIVIRMIQ-UHFFFAOYSA-N 4-chloro-2-hexylphenol Chemical compound CCCCCCC1=CC(Cl)=CC=C1O UUBASQRIVIRMIQ-UHFFFAOYSA-N 0.000 description 1
- RHPUJHQBPORFGV-UHFFFAOYSA-N 4-chloro-2-methylphenol Chemical compound CC1=CC(Cl)=CC=C1O RHPUJHQBPORFGV-UHFFFAOYSA-N 0.000 description 1
- URMPKLJKRAGZEY-UHFFFAOYSA-N 4-chloro-2-methylphenol;4-chloro-3-methylphenol Chemical compound CC1=CC(Cl)=CC=C1O.CC1=CC(O)=CC=C1Cl URMPKLJKRAGZEY-UHFFFAOYSA-N 0.000 description 1
- LGIGBKMDIHECCC-UHFFFAOYSA-N 4-chloro-2-pentan-2-ylphenol Chemical compound CCCC(C)C1=CC(Cl)=CC=C1O LGIGBKMDIHECCC-UHFFFAOYSA-N 0.000 description 1
- GLXDMSOEJKXENG-UHFFFAOYSA-N 4-chloro-2-propylphenol Chemical compound CCCC1=CC(Cl)=CC=C1O GLXDMSOEJKXENG-UHFFFAOYSA-N 0.000 description 1
- HFHNPIHVXJLWNW-UHFFFAOYSA-N 4-chloro-3,5-dimethyl-2-pentan-2-ylphenol Chemical compound CCCC(C)C1=C(C)C(Cl)=C(C)C=C1O HFHNPIHVXJLWNW-UHFFFAOYSA-N 0.000 description 1
- QFVWWVICQQINNI-UHFFFAOYSA-N 4-chloro-3,5-dimethyl-2-propan-2-ylphenol Chemical compound CC(C)C1=C(C)C(Cl)=C(C)C=C1O QFVWWVICQQINNI-UHFFFAOYSA-N 0.000 description 1
- YHAQKIKKAJAFTP-UHFFFAOYSA-N 4-chloro-3,5-dimethylphenol;4-chloro-3-methylphenol Chemical compound CC1=CC(O)=CC=C1Cl.CC1=CC(O)=CC(C)=C1Cl YHAQKIKKAJAFTP-UHFFFAOYSA-N 0.000 description 1
- FDFTZPSQIKUAMS-UHFFFAOYSA-N 4-chloro-3-methyl-2-(2-phenylethyl)phenol Chemical compound CC1=C(Cl)C=CC(O)=C1CCC1=CC=CC=C1 FDFTZPSQIKUAMS-UHFFFAOYSA-N 0.000 description 1
- JPQXQTCNMSTQQH-UHFFFAOYSA-N 4-chloro-5-methyl-2-octan-2-ylphenol Chemical compound CCCCCCC(C)C1=CC(Cl)=C(C)C=C1O JPQXQTCNMSTQQH-UHFFFAOYSA-N 0.000 description 1
- PBDKPFIVQQUKMK-UHFFFAOYSA-N 4-chloro-5-methyl-2-propylphenol Chemical compound CCCC1=CC(Cl)=C(C)C=C1O PBDKPFIVQQUKMK-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- MNVMYTVDDOXZLS-UHFFFAOYSA-N 4-methoxyguaiacol Natural products COC1=CC=C(O)C(OC)=C1 MNVMYTVDDOXZLS-UHFFFAOYSA-N 0.000 description 1
- CYYZDBDROVLTJU-UHFFFAOYSA-N 4-n-Butylphenol Chemical compound CCCCC1=CC=C(O)C=C1 CYYZDBDROVLTJU-UHFFFAOYSA-N 0.000 description 1
- CSHZYWUPJWVTMQ-UHFFFAOYSA-N 4-n-Butylresorcinol Chemical compound CCCCC1=CC=C(O)C=C1O CSHZYWUPJWVTMQ-UHFFFAOYSA-N 0.000 description 1
- KNDDEFBFJLKPFE-UHFFFAOYSA-N 4-n-Heptylphenol Chemical compound CCCCCCCC1=CC=C(O)C=C1 KNDDEFBFJLKPFE-UHFFFAOYSA-N 0.000 description 1
- SZWBRVPZWJYIHI-UHFFFAOYSA-N 4-n-Hexylphenol Chemical compound CCCCCCC1=CC=C(O)C=C1 SZWBRVPZWJYIHI-UHFFFAOYSA-N 0.000 description 1
- ZNPSUQQXTRRSBM-UHFFFAOYSA-N 4-n-Pentylphenol Chemical compound CCCCCC1=CC=C(O)C=C1 ZNPSUQQXTRRSBM-UHFFFAOYSA-N 0.000 description 1
- UZDMJPAQQFSMMV-UHFFFAOYSA-N 4-oxo-4-(2-prop-2-enoyloxyethoxy)butanoic acid Chemical compound OC(=O)CCC(=O)OCCOC(=O)C=C UZDMJPAQQFSMMV-UHFFFAOYSA-N 0.000 description 1
- HJANTALXTYZKRB-UHFFFAOYSA-N 5,5-bis(hydroxymethyl)-1,3-dimethylimidazolidine-2,4-dione Chemical compound CN1C(=O)N(C)C(CO)(CO)C1=O HJANTALXTYZKRB-UHFFFAOYSA-N 0.000 description 1
- 229940046305 5-bromo-5-nitro-1,3-dioxane Drugs 0.000 description 1
- QYYMDNHUJFIDDQ-UHFFFAOYSA-N 5-chloro-2-methyl-1,2-thiazol-3-one;2-methyl-1,2-thiazol-3-one Chemical compound CN1SC=CC1=O.CN1SC(Cl)=CC1=O QYYMDNHUJFIDDQ-UHFFFAOYSA-N 0.000 description 1
- 229940100484 5-chloro-2-methyl-4-isothiazolin-3-one Drugs 0.000 description 1
- VDBJCDWTNCKRTF-UHFFFAOYSA-N 6'-hydroxyspiro[2-benzofuran-3,9'-9ah-xanthene]-1,3'-dione Chemical compound O1C(=O)C2=CC=CC=C2C21C1C=CC(=O)C=C1OC1=CC(O)=CC=C21 VDBJCDWTNCKRTF-UHFFFAOYSA-N 0.000 description 1
- KVAWWXSLBDVXHJ-UHFFFAOYSA-N 6-bromo-5-chloro-3h-1,3-benzoxazol-2-one Chemical compound C1=C(Br)C(Cl)=CC2=C1OC(=O)N2 KVAWWXSLBDVXHJ-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- ALJHHTHBYJROOG-UHFFFAOYSA-N 7-(dimethylamino)phenothiazin-3-one Chemical compound C1=CC(=O)C=C2SC3=CC(N(C)C)=CC=C3N=C21 ALJHHTHBYJROOG-UHFFFAOYSA-N 0.000 description 1
- NGZUCVGMNQGGNA-UHFFFAOYSA-N 7-[5-(2-acetamidoethyl)-2-hydroxyphenyl]-3,5,6,8-tetrahydroxy-9,10-dioxoanthracene-1,2-dicarboxylic acid 7-[5-(2-amino-2-carboxyethyl)-2-hydroxyphenyl]-3,5,6,8-tetrahydroxy-9,10-dioxoanthracene-1,2-dicarboxylic acid 3,5,6,8-tetrahydroxy-7-[2-hydroxy-5-(2-hydroxyethyl)phenyl]-9,10-dioxoanthracene-1,2-dicarboxylic acid 3,6,8-trihydroxy-1-methyl-9,10-dioxoanthracene-2-carboxylic acid Chemical compound Cc1c(C(O)=O)c(O)cc2C(=O)c3cc(O)cc(O)c3C(=O)c12.OCCc1ccc(O)c(c1)-c1c(O)c(O)c2C(=O)c3cc(O)c(C(O)=O)c(C(O)=O)c3C(=O)c2c1O.CC(=O)NCCc1ccc(O)c(c1)-c1c(O)c(O)c2C(=O)c3cc(O)c(C(O)=O)c(C(O)=O)c3C(=O)c2c1O.NC(Cc1ccc(O)c(c1)-c1c(O)c(O)c2C(=O)c3cc(O)c(C(O)=O)c(C(O)=O)c3C(=O)c2c1O)C(O)=O NGZUCVGMNQGGNA-UHFFFAOYSA-N 0.000 description 1
- RHAXKFFKGZJUOE-UHFFFAOYSA-N 7-acetyl-6-ethyl-3,5,8-trihydroxy-9,10-dioxoanthracene-1,2-dicarboxylic acid Chemical compound O=C1C2=CC(O)=C(C(O)=O)C(C(O)=O)=C2C(=O)C2=C1C(O)=C(CC)C(C(C)=O)=C2O RHAXKFFKGZJUOE-UHFFFAOYSA-N 0.000 description 1
- DDGMDTGNGDOUPX-UHFFFAOYSA-N 7-methyliminophenothiazin-3-amine;hydrochloride Chemical compound [Cl-].C1=C(N)C=C2SC3=CC(=[NH+]C)C=CC3=NC2=C1 DDGMDTGNGDOUPX-UHFFFAOYSA-N 0.000 description 1
- CKLBXIYTBHXJEH-UHFFFAOYSA-J 75881-23-1 Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cu+2].[N-]1C(N=C2C3=CC=C(CSC(N(C)C)=[N+](C)C)C=C3C(N=C3C4=CC=C(CSC(N(C)C)=[N+](C)C)C=C4C(=N4)[N-]3)=N2)=C(C=C(CSC(N(C)C)=[N+](C)C)C=C2)C2=C1N=C1C2=CC(CSC(N(C)C)=[N+](C)C)=CC=C2C4=N1 CKLBXIYTBHXJEH-UHFFFAOYSA-J 0.000 description 1
- 102100021407 ATP-dependent RNA helicase DDX18 Human genes 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 208000003911 Acne Keloid Diseases 0.000 description 1
- 206010000501 Acne conglobata Diseases 0.000 description 1
- 206010000502 Acne cosmetica Diseases 0.000 description 1
- 206010000503 Acne cystic Diseases 0.000 description 1
- 206010049141 Acne fulminans Diseases 0.000 description 1
- 206010000518 Acne varioliformis Diseases 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 1
- CEZCCHQBSQPRMU-LLIZZRELSA-L Allura red AC Chemical compound [Na+].[Na+].COC1=CC(S([O-])(=O)=O)=C(C)C=C1\N=N\C1=C(O)C=CC2=CC(S([O-])(=O)=O)=CC=C12 CEZCCHQBSQPRMU-LLIZZRELSA-L 0.000 description 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 1
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical class [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 102100022987 Angiogenin Human genes 0.000 description 1
- 108010070075 Bacteriochlorophyll A Proteins 0.000 description 1
- 239000004857 Balsam Substances 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- MOZDKDIOPSPTBH-UHFFFAOYSA-N Benzyl parahydroxybenzoate Chemical compound C1=CC(O)=CC=C1C(=O)OCC1=CC=CC=C1 MOZDKDIOPSPTBH-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 1
- 102100034871 C-C motif chemokine 8 Human genes 0.000 description 1
- 101710155833 C-C motif chemokine 8 Proteins 0.000 description 1
- 102100039396 C-X-C motif chemokine 16 Human genes 0.000 description 1
- 102100036150 C-X-C motif chemokine 5 Human genes 0.000 description 1
- COXVTLYNGOIATD-HVMBLDELSA-N CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O Chemical compound CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O COXVTLYNGOIATD-HVMBLDELSA-N 0.000 description 1
- 239000005745 Captan Substances 0.000 description 1
- YSVBPNGJESBVRM-ZPZFBZIMSA-L Carmoisine Chemical compound [Na+].[Na+].C1=CC=C2C(/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)O)=CC=C(S([O-])(=O)=O)C2=C1 YSVBPNGJESBVRM-ZPZFBZIMSA-L 0.000 description 1
- 102100028003 Catenin alpha-1 Human genes 0.000 description 1
- 235000009024 Ceanothus sanguineus Nutrition 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 208000001348 Chloracne Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 229930008398 Citronellate Natural products 0.000 description 1
- 208000003322 Coinfection Diseases 0.000 description 1
- 102000004266 Collagen Type IV Human genes 0.000 description 1
- 108010042086 Collagen Type IV Proteins 0.000 description 1
- 102100031519 Collagen alpha-1(VI) chain Human genes 0.000 description 1
- 102100024335 Collagen alpha-1(VII) chain Human genes 0.000 description 1
- IQFVPQOLBLOTPF-UHFFFAOYSA-L Congo Red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(N=NC3=CC=C(C=C3)C3=CC=C(C=C3)N=NC3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- SEBIKDIMAPSUBY-ARYZWOCPSA-N Crocin Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H](O)[C@@H]1O)O)OC(=O)C(C)=CC=CC(C)=C\C=C\C=C(/C)\C=C\C=C(C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1)O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SEBIKDIMAPSUBY-ARYZWOCPSA-N 0.000 description 1
- SEBIKDIMAPSUBY-JAUCNNNOSA-N Crocin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C(=O)OC1OC(COC2OC(CO)C(O)C(O)C2O)C(O)C(O)C1O)C=CC=C(/C)C(=O)OC3OC(COC4OC(CO)C(O)C(O)C4O)C(O)C(O)C3O SEBIKDIMAPSUBY-JAUCNNNOSA-N 0.000 description 1
- 244000163122 Curcuma domestica Species 0.000 description 1
- 240000004784 Cymbopogon citratus Species 0.000 description 1
- 235000017897 Cymbopogon citratus Nutrition 0.000 description 1
- 244000166675 Cymbopogon nardus Species 0.000 description 1
- 235000018791 Cymbopogon nardus Nutrition 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Polymers OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 235000012040 Dahlia pinnata Nutrition 0.000 description 1
- 244000033273 Dahlia variabilis Species 0.000 description 1
- 206010065701 Dermatillomania Diseases 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 206010012456 Dermatitis exfoliative generalised Diseases 0.000 description 1
- 206010051651 Dermatitis papillaris capillitii Diseases 0.000 description 1
- 206010056340 Diabetic ulcer Diseases 0.000 description 1
- PHMNXPYGVPEQSJ-UHFFFAOYSA-N Dimethoxane Chemical compound CC1CC(OC(C)=O)OC(C)O1 PHMNXPYGVPEQSJ-UHFFFAOYSA-N 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 206010014201 Eczema nummular Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 206010015218 Erythema multiforme Diseases 0.000 description 1
- 206010015226 Erythema nodosum Diseases 0.000 description 1
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 239000004214 Fast Green FCF Substances 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- 240000006927 Foeniculum vulgare Species 0.000 description 1
- 235000004204 Foeniculum vulgare Nutrition 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- 240000001238 Gaultheria procumbens Species 0.000 description 1
- 235000007297 Gaultheria procumbens Nutrition 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- 241000208152 Geranium Species 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 201000005708 Granuloma Annulare Diseases 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- OKNJKIKBMQYONP-ZTFPKQFBSA-N Hoffman's violet Chemical compound CCNC(C=C1)=CC=C1/C(\C(C=C1)=CC(C)=C1NCC)=C(\C=C1)/C=C/C\1=N/CC.Cl OKNJKIKBMQYONP-ZTFPKQFBSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000889133 Homo sapiens C-X-C motif chemokine 16 Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101100441523 Homo sapiens CXCL5 gene Proteins 0.000 description 1
- 101000859063 Homo sapiens Catenin alpha-1 Proteins 0.000 description 1
- 101000941581 Homo sapiens Collagen alpha-1(VI) chain Proteins 0.000 description 1
- 101000909498 Homo sapiens Collagen alpha-1(VII) chain Proteins 0.000 description 1
- 101001078133 Homo sapiens Integrin alpha-2 Proteins 0.000 description 1
- 101000972489 Homo sapiens Laminin subunit alpha-1 Proteins 0.000 description 1
- 101000990912 Homo sapiens Matrilysin Proteins 0.000 description 1
- 101000990908 Homo sapiens Neutrophil collagenase Proteins 0.000 description 1
- 101000577874 Homo sapiens Stromelysin-2 Proteins 0.000 description 1
- 101000622304 Homo sapiens Vascular cell adhesion protein 1 Proteins 0.000 description 1
- 101000860430 Homo sapiens Versican core protein Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- 108090000320 Hyaluronan Synthases Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 108050009363 Hyaluronidases Proteins 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 241000257303 Hymenoptera Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 244000018716 Impatiens biflora Species 0.000 description 1
- 206010021531 Impetigo Diseases 0.000 description 1
- 208000006877 Insect Bites and Stings Diseases 0.000 description 1
- 102100025305 Integrin alpha-2 Human genes 0.000 description 1
- 102000005755 Intercellular Signaling Peptides and Proteins Human genes 0.000 description 1
- 108010070716 Intercellular Signaling Peptides and Proteins Proteins 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- XPJVKCRENWUEJH-UHFFFAOYSA-N Isobutylparaben Chemical compound CC(C)COC(=O)C1=CC=C(O)C=C1 XPJVKCRENWUEJH-UHFFFAOYSA-N 0.000 description 1
- CMHMMKSPYOOVGI-UHFFFAOYSA-N Isopropylparaben Chemical compound CC(C)OC(=O)C1=CC=C(O)C=C1 CMHMMKSPYOOVGI-UHFFFAOYSA-N 0.000 description 1
- 208000002260 Keloid Diseases 0.000 description 1
- 208000001126 Keratosis Diseases 0.000 description 1
- 241001446187 Kermes Species 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- 150000000996 L-ascorbic acids Chemical class 0.000 description 1
- 229930192967 Laccaic acid Natural products 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- 102000010445 Lactoferrin Human genes 0.000 description 1
- 102100022746 Laminin subunit alpha-1 Human genes 0.000 description 1
- 102100034710 Laminin subunit gamma-1 Human genes 0.000 description 1
- 244000165082 Lavanda vera Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 240000003553 Leptospermum scoparium Species 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 235000015459 Lycium barbarum Nutrition 0.000 description 1
- 235000014837 Malpighia glabra Nutrition 0.000 description 1
- 240000003394 Malpighia glabra Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102100030417 Matrilysin Human genes 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- WWKGVZASJYXZKN-UHFFFAOYSA-N Methyl violet 2B Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(N)=CC=1)=C1C=CC(=[N+](C)C)C=C1 WWKGVZASJYXZKN-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 206010027626 Milia Diseases 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 240000009023 Myrrhis odorata Species 0.000 description 1
- 235000007265 Myrrhis odorata Nutrition 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- FQTLCLSUCSAZDY-ATGUSINASA-N Nerolidol Chemical compound CC(C)=CCC\C(C)=C\CC[C@](C)(O)C=C FQTLCLSUCSAZDY-ATGUSINASA-N 0.000 description 1
- 201000009053 Neurodermatitis Diseases 0.000 description 1
- 102100030411 Neutrophil collagenase Human genes 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 235000010676 Ocimum basilicum Nutrition 0.000 description 1
- 240000007926 Ocimum gratissimum Species 0.000 description 1
- 239000004218 Orcein Substances 0.000 description 1
- WYNCHZVNFNFDNH-UHFFFAOYSA-N Oxazolidine Chemical compound C1COCN1 WYNCHZVNFNFDNH-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010033372 Pain and discomfort Diseases 0.000 description 1
- 241001459566 Papulosa Species 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 241000721454 Pemphigus Species 0.000 description 1
- 208000009675 Perioral Dermatitis Diseases 0.000 description 1
- 230000010748 Photoabsorption Effects 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 235000012550 Pimpinella anisum Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920001311 Poly(hydroxyethyl acrylate) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002413 Polyhexanide Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004237 Ponceau 6R Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- PXRCIOIWVGAZEP-UHFFFAOYSA-N Primaeres Camphenhydrat Natural products C1CC2C(O)(C)C(C)(C)C1C2 PXRCIOIWVGAZEP-UHFFFAOYSA-N 0.000 description 1
- 241000245063 Primula Species 0.000 description 1
- 235000000497 Primula Nutrition 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- 208000001818 Pseudofolliculitis barbae Diseases 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010037549 Purpura Diseases 0.000 description 1
- 241001672981 Purpura Species 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 208000003493 Rhinophyma Diseases 0.000 description 1
- 244000178231 Rosmarinus officinalis Species 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 240000000513 Santalum album Species 0.000 description 1
- 235000008632 Santalum album Nutrition 0.000 description 1
- 206010039793 Seborrhoeic dermatitis Diseases 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 206010040030 Sensory loss Diseases 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 206010040943 Skin Ulcer Diseases 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- KSQXVLVXUFHGJQ-UHFFFAOYSA-M Sodium ortho-phenylphenate Chemical compound [Na+].[O-]C1=CC=CC=C1C1=CC=CC=C1 KSQXVLVXUFHGJQ-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-NQAPHZHOSA-N Sorbitol Polymers OCC(O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-NQAPHZHOSA-N 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 102100028848 Stromelysin-2 Human genes 0.000 description 1
- YCUVUDODLRLVIC-UHFFFAOYSA-N Sudan black B Chemical compound C1=CC(=C23)NC(C)(C)NC2=CC=CC3=C1N=NC(C1=CC=CC=C11)=CC=C1N=NC1=CC=CC=C1 YCUVUDODLRLVIC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 206010042496 Sunburn Diseases 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 1
- 244000223014 Syzygium aromaticum Species 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 108010076830 Thionins Proteins 0.000 description 1
- 239000005844 Thymol Substances 0.000 description 1
- 235000007303 Thymus vulgaris Nutrition 0.000 description 1
- 240000002657 Thymus vulgaris Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 241000159243 Toxicodendron radicans Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 108010057266 Type A Botulinum Toxins Proteins 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 240000001717 Vaccinium macrocarpon Species 0.000 description 1
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 1
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 1
- 208000000558 Varicose Ulcer Diseases 0.000 description 1
- 208000009443 Vascular Malformations Diseases 0.000 description 1
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 description 1
- 235000018718 Verbena officinalis Nutrition 0.000 description 1
- 240000001519 Verbena officinalis Species 0.000 description 1
- 102100028437 Versican core protein Human genes 0.000 description 1
- 241000256856 Vespidae Species 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 206010048222 Xerosis Diseases 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- GMCVSEFMPYGLOB-UHFFFAOYSA-N [6-amino-2,4,5,7-tetrabromo-9-(2-methoxycarbonylphenyl)xanthen-3-ylidene]azanium;chloride Chemical compound [Cl-].COC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=[NH2+])C(Br)=C2OC2=C(Br)C(N)=C(Br)C=C21 GMCVSEFMPYGLOB-UHFFFAOYSA-N 0.000 description 1
- JRMSLDWZFJZLAS-UHFFFAOYSA-M [7-(dimethylamino)-1,9-dimethylphenothiazin-3-ylidene]-dimethylazanium;chloride Chemical compound [Cl-].CC1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC(C)=C3N=C21 JRMSLDWZFJZLAS-UHFFFAOYSA-M 0.000 description 1
- PGLXYLYDLCVKEE-UHFFFAOYSA-N [Al].[Al].[Al].[Zr] Chemical compound [Al].[Al].[Al].[Zr] PGLXYLYDLCVKEE-UHFFFAOYSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- ZXGIHDNEIWPDFW-UHFFFAOYSA-M acid red 4 Chemical compound [Na+].COC1=CC=CC=C1N=NC1=CC(S([O-])(=O)=O)=C(C=CC=C2)C2=C1O ZXGIHDNEIWPDFW-UHFFFAOYSA-M 0.000 description 1
- 210000001193 acne keloid Anatomy 0.000 description 1
- DPKHZNPWBDQZCN-UHFFFAOYSA-N acridine orange free base Chemical compound C1=CC(N(C)C)=CC2=NC3=CC(N(C)C)=CC=C3C=C21 DPKHZNPWBDQZCN-UHFFFAOYSA-N 0.000 description 1
- 229940023020 acriflavine Drugs 0.000 description 1
- 208000009621 actinic keratosis Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229960000458 allantoin Drugs 0.000 description 1
- 235000012741 allura red AC Nutrition 0.000 description 1
- 239000004191 allura red AC Substances 0.000 description 1
- 229940086737 allyl sucrose Drugs 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- TUFYVOCKVJOUIR-UHFFFAOYSA-N alpha-Thujaplicin Natural products CC(C)C=1C=CC=CC(=O)C=1O TUFYVOCKVJOUIR-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- AIPNSHNRCQOTRI-UHFFFAOYSA-N aluminon Chemical compound [NH4+].[NH4+].[NH4+].C1=C(C([O-])=O)C(O)=CC=C1C(C=1C=C(C(O)=CC=1)C([O-])=O)=C1C=C(C([O-])=O)C(=O)C=C1 AIPNSHNRCQOTRI-UHFFFAOYSA-N 0.000 description 1
- 235000012735 amaranth Nutrition 0.000 description 1
- 239000004178 amaranth Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000002266 amputation Methods 0.000 description 1
- CKGWFZQGEQJZIL-UHFFFAOYSA-N amylmetacresol Chemical compound CCCCCC1=CC=C(C)C=C1O CKGWFZQGEQJZIL-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 108010072788 angiogenin Proteins 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 210000002403 aortic endothelial cell Anatomy 0.000 description 1
- 208000002399 aphthous stomatitis Diseases 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- QZKHGYGBYOUFGK-UHFFFAOYSA-L azocarmine B Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC(S(=O)(=O)[O-])=CC=C1NC(C1=CC(=CC=C1C1=NC2=CC=CC=C22)S([O-])(=O)=O)=CC1=[N+]2C1=CC=CC=C1 QZKHGYGBYOUFGK-UHFFFAOYSA-L 0.000 description 1
- 239000004176 azorubin Substances 0.000 description 1
- TVWOWDDBXAFQDG-DQRAZIAOSA-N azorubine Chemical compound C1=CC=C2C(\N=N/C3=C(C4=CC=CC=C4C(=C3)S(O)(=O)=O)O)=CC=C(S(O)(=O)=O)C2=C1 TVWOWDDBXAFQDG-DQRAZIAOSA-N 0.000 description 1
- PGWTYMLATMNCCZ-UHFFFAOYSA-M azure A Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 PGWTYMLATMNCCZ-UHFFFAOYSA-M 0.000 description 1
- KFZNPGQYVZZSNV-UHFFFAOYSA-M azure B Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(NC)=CC=C3N=C21 KFZNPGQYVZZSNV-UHFFFAOYSA-M 0.000 description 1
- DSJXIQQMORJERS-AGGZHOMASA-M bacteriochlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC([C@H](CC)[C@H]3C)=[N+]4C3=CC3=C(C(C)=O)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 DSJXIQQMORJERS-AGGZHOMASA-M 0.000 description 1
- 108010010589 bacteriochlorophyll b Proteins 0.000 description 1
- 108010010609 bacteriochlorophyll c Proteins 0.000 description 1
- 108010010601 bacteriochlorophyll d Proteins 0.000 description 1
- 229940052223 basic fuchsin Drugs 0.000 description 1
- 208000003373 basosquamous carcinoma Diseases 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229940034794 benzylparaben Drugs 0.000 description 1
- YBHILYKTIRIUTE-UHFFFAOYSA-N berberine Chemical compound C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 YBHILYKTIRIUTE-UHFFFAOYSA-N 0.000 description 1
- 229940093265 berberine Drugs 0.000 description 1
- QISXPYZVZJBNDM-UHFFFAOYSA-N berberine Natural products COc1ccc2C=C3N(Cc2c1OC)C=Cc4cc5OCOc5cc34 QISXPYZVZJBNDM-UHFFFAOYSA-N 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- VVAVKBBTPWYADW-RVTJCSDESA-L biebrich scarlet Chemical compound [Na+].[Na+].OC1=CC=C2C=CC=CC2=C1\N=N\C(C(=C1)S([O-])(=O)=O)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 VVAVKBBTPWYADW-RVTJCSDESA-L 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 229940089093 botox Drugs 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 229960003168 bronopol Drugs 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 229940067596 butylparaben Drugs 0.000 description 1
- 229930006739 camphene Natural products 0.000 description 1
- ZYPYEBYNXWUCEA-UHFFFAOYSA-N camphenilone Natural products C1CC2C(=O)C(C)(C)C1C2 ZYPYEBYNXWUCEA-UHFFFAOYSA-N 0.000 description 1
- 229940117949 captan Drugs 0.000 description 1
- 229940114118 carminic acid Drugs 0.000 description 1
- 229940031019 carmoisine Drugs 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- HNNSUZPWERIYIL-UHFFFAOYSA-N chembl1730100 Chemical compound O1CC2(O)CC3=CC(O)=C(O)C=C3C2=C2C1=C(O)C(=O)C=C2 HNNSUZPWERIYIL-UHFFFAOYSA-N 0.000 description 1
- PSWOBQSIXLVPDV-CXUHLZMHSA-N chembl2105120 Chemical compound C1=C(O)C(OC)=CC(\C=N\NC(=O)C=2C=CN=CC=2)=C1 PSWOBQSIXLVPDV-CXUHLZMHSA-N 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- VXIVSQZSERGHQP-UHFFFAOYSA-N chloroacetamide Chemical compound NC(=O)CCl VXIVSQZSERGHQP-UHFFFAOYSA-N 0.000 description 1
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- DHNRXBZYEKSXIM-UHFFFAOYSA-N chloromethylisothiazolinone Chemical compound CN1SC(Cl)=CC1=O DHNRXBZYEKSXIM-UHFFFAOYSA-N 0.000 description 1
- 229940031956 chlorothymol Drugs 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 229960005233 cineole Drugs 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940080423 cochineal Drugs 0.000 description 1
- 230000037319 collagen production Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- IQFVPQOLBLOTPF-HKXUKFGYSA-L congo red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(/N=N/C3=CC=C(C=C3)C3=CC=C(C=C3)/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-HKXUKFGYSA-L 0.000 description 1
- 208000010247 contact dermatitis Diseases 0.000 description 1
- 210000000555 contractile cell Anatomy 0.000 description 1
- 208000006111 contracture Diseases 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 235000004634 cranberry Nutrition 0.000 description 1
- SEBIKDIMAPSUBY-RTJKDTQDSA-N crocin-1 Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H](O)[C@@H]1O)O)OC(=O)C(/C)=C/C=C/C(/C)=C/C=C/C=C(\C)/C=C/C=C(\C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1)O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SEBIKDIMAPSUBY-RTJKDTQDSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 235000003373 curcuma longa Nutrition 0.000 description 1
- 235000012754 curcumin Nutrition 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 229940109262 curcumin Drugs 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000035618 desquamation Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 229960001083 diazolidinylurea Drugs 0.000 description 1
- 229960004698 dichlorobenzyl alcohol Drugs 0.000 description 1
- 229960003887 dichlorophen Drugs 0.000 description 1
- VADJQOXWNSPOQA-UHFFFAOYSA-L dichlorozinc;3-n,3-n,6-n,6-n-tetramethylacridine-3,6-diamine;hydrochloride Chemical compound Cl.[Cl-].[Cl-].[Zn+2].C1=CC(N(C)C)=CC2=NC3=CC(N(C)C)=CC=C3C=C21 VADJQOXWNSPOQA-UHFFFAOYSA-L 0.000 description 1
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- XVLXYDXJEKLXHN-UHFFFAOYSA-M dioc6 Chemical compound [I-].O1C2=CC=CC=C2[N+](CCCCCC)=C1C=CC=C1N(CCCCCC)C2=CC=CC=C2O1 XVLXYDXJEKLXHN-UHFFFAOYSA-M 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- AOMZHDJXSYHPKS-UHFFFAOYSA-L disodium 4-amino-5-hydroxy-3-[(4-nitrophenyl)diazenyl]-6-phenyldiazenylnaphthalene-2,7-disulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC2=CC(S([O-])(=O)=O)=C(N=NC=3C=CC=CC=3)C(O)=C2C(N)=C1N=NC1=CC=C([N+]([O-])=O)C=C1 AOMZHDJXSYHPKS-UHFFFAOYSA-L 0.000 description 1
- YSVBPNGJESBVRM-UHFFFAOYSA-L disodium;4-[(1-oxido-4-sulfonaphthalen-2-yl)diazenyl]naphthalene-1-sulfonate Chemical compound [Na+].[Na+].C1=CC=C2C(N=NC3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)O)=CC=C(S([O-])(=O)=O)C2=C1 YSVBPNGJESBVRM-UHFFFAOYSA-L 0.000 description 1
- XOSXWYQMOYSSKB-UHFFFAOYSA-M disodium;4-[4-[(4-amino-3-methyl-5-sulfophenyl)-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzenesulfonate Chemical compound [Na+].[Na+].OS(=O)(=O)C1=C(N)C(C)=CC(C(=C2C=CC(C=C2)=[NH+]C=2C=CC(=CC=2)S([O-])(=O)=O)C=2C=CC(NC=3C=CC(=CC=3)S([O-])(=O)=O)=CC=2)=C1 XOSXWYQMOYSSKB-UHFFFAOYSA-M 0.000 description 1
- MCPLVIGCWWTHFH-UHFFFAOYSA-M disodium;4-[4-[[4-(4-sulfoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzenesulfonate Chemical compound [Na+].[Na+].C1=CC(S(=O)(=O)O)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[NH+]C=2C=CC(=CC=2)S([O-])(=O)=O)C=2C=CC(NC=3C=CC(=CC=3)S([O-])(=O)=O)=CC=2)C=C1 MCPLVIGCWWTHFH-UHFFFAOYSA-M 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- WSDISUOETYTPRL-UHFFFAOYSA-N dmdm hydantoin Chemical compound CC1(C)N(CO)C(=O)N(CO)C1=O WSDISUOETYTPRL-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008846 dynamic interplay Effects 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229960001483 eosin Drugs 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- IDAQSADEMXDTKN-UHFFFAOYSA-L ethyl green Chemical compound [Cl-].[Br-].C1=CC([N+](C)(C)CC)=CC=C1C(C=1C=CC(=CC=1)N(C)C)=C1C=CC(=[N+](C)C)C=C1 IDAQSADEMXDTKN-UHFFFAOYSA-L 0.000 description 1
- 229960001617 ethyl hydroxybenzoate Drugs 0.000 description 1
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 1
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 229960003699 evans blue Drugs 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 210000001097 facial muscle Anatomy 0.000 description 1
- 229930002886 farnesol Natural products 0.000 description 1
- 229940043259 farnesol Drugs 0.000 description 1
- QMMMCTXNYMSXLI-UHFFFAOYSA-N fast blue B Chemical compound C1=C([N+]#N)C(OC)=CC(C=2C=C(OC)C([N+]#N)=CC=2)=C1 QMMMCTXNYMSXLI-UHFFFAOYSA-N 0.000 description 1
- GPPKNJIWDULNQH-UHFFFAOYSA-J fast blue salt B Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Zn+2].C1=C([N+]#N)C(OC)=CC(C=2C=C(OC)C([N+]#N)=CC=2)=C1 GPPKNJIWDULNQH-UHFFFAOYSA-J 0.000 description 1
- AXKAZKNOUOFMLN-UHFFFAOYSA-M fast red B Chemical compound COC1=CC([N+]([O-])=O)=CC=C1[N+]#N.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1S([O-])(=O)=O AXKAZKNOUOFMLN-UHFFFAOYSA-M 0.000 description 1
- 235000019233 fast yellow AB Nutrition 0.000 description 1
- 235000007144 ferric diphosphate Nutrition 0.000 description 1
- 239000011706 ferric diphosphate Substances 0.000 description 1
- CADNYOZXMIKYPR-UHFFFAOYSA-B ferric pyrophosphate Chemical compound [Fe+3].[Fe+3].[Fe+3].[Fe+3].[O-]P([O-])(=O)OP([O-])([O-])=O.[O-]P([O-])(=O)OP([O-])([O-])=O.[O-]P([O-])(=O)OP([O-])([O-])=O CADNYOZXMIKYPR-UHFFFAOYSA-B 0.000 description 1
- 229940036404 ferric pyrophosphate Drugs 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 description 1
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 description 1
- 229940114124 ferulic acid Drugs 0.000 description 1
- 235000001785 ferulic acid Nutrition 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 102000034240 fibrous proteins Human genes 0.000 description 1
- 108091005899 fibrous proteins Proteins 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229960001235 gentian violet Drugs 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 150000002303 glucose derivatives Polymers 0.000 description 1
- 150000002304 glucoses Polymers 0.000 description 1
- 125000002791 glucosyl group Polymers C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 229940074046 glyceryl laurate Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000000527 greater trochanter Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 239000003722 gum benzoin Substances 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 239000013003 healing agent Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 210000000301 hemidesmosome Anatomy 0.000 description 1
- ACGUYXCXAPNIKK-UHFFFAOYSA-N hexachlorophene Chemical compound OC1=C(Cl)C=C(Cl)C(Cl)=C1CC1=C(O)C(Cl)=CC(Cl)=C1Cl ACGUYXCXAPNIKK-UHFFFAOYSA-N 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 231100000171 higher toxicity Toxicity 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 231100000652 hormesis Toxicity 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 229940014041 hyaluronate Drugs 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 206010021198 ichthyosis Diseases 0.000 description 1
- 201000002597 ichthyosis vulgaris Diseases 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 229960004657 indocyanine green Drugs 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 208000005005 intertrigo Diseases 0.000 description 1
- JORABGDXCIBAFL-UHFFFAOYSA-M iodonitrotetrazolium chloride Chemical compound [Cl-].C1=CC([N+](=O)[O-])=CC=C1N1[N+](C=2C=CC(I)=CC=2)=NC(C=2C=CC=CC=2)=N1 JORABGDXCIBAFL-UHFFFAOYSA-M 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- WFKAJVHLWXSISD-UHFFFAOYSA-N isobutyramide Chemical compound CC(C)C(N)=O WFKAJVHLWXSISD-UHFFFAOYSA-N 0.000 description 1
- 229940113094 isopropylparaben Drugs 0.000 description 1
- 210000001117 keloid Anatomy 0.000 description 1
- 230000001530 keratinolytic effect Effects 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 108010057670 laminin 1 Proteins 0.000 description 1
- 108010090909 laminin gamma 1 Proteins 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 229940107698 malachite green Drugs 0.000 description 1
- 230000036244 malformation Effects 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- AEUKDPKXTPNBNY-XEYRWQBLSA-N mcp 2 Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)C1=CC=CC=C1 AEUKDPKXTPNBNY-XEYRWQBLSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229960002782 merbromin Drugs 0.000 description 1
- 229940008716 mercurochrome Drugs 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940051142 metanil yellow Drugs 0.000 description 1
- QDBPSMVYZMGGGG-UHFFFAOYSA-N methyl 2-(3-amino-4,5-dibromo-6-iminoxanthen-9-yl)benzoate Chemical compound COC(=O)C1=CC=CC=C1C1=C2C=CC(=N)C(Br)=C2OC2=C(Br)C(N)=CC=C21 QDBPSMVYZMGGGG-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- CEQFOVLGLXCDCX-WUKNDPDISA-N methyl red Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-WUKNDPDISA-N 0.000 description 1
- ASHGTJPOSUFTGB-UHFFFAOYSA-N methyl resorcinol Natural products COC1=CC=CC(O)=C1 ASHGTJPOSUFTGB-UHFFFAOYSA-N 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical compound CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 108700019599 monomethylolglycine Proteins 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 210000000651 myofibroblast Anatomy 0.000 description 1
- JMXROTHPANUTOJ-UHFFFAOYSA-H naphthol green b Chemical compound [Na+].[Na+].[Na+].[Fe+3].C1=C(S([O-])(=O)=O)C=CC2=C(N=O)C([O-])=CC=C21.C1=C(S([O-])(=O)=O)C=CC2=C(N=O)C([O-])=CC=C21.C1=C(S([O-])(=O)=O)C=CC2=C(N=O)C([O-])=CC=C21 JMXROTHPANUTOJ-UHFFFAOYSA-H 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- WASNIKZYIWZQIP-AWEZNQCLSA-N nerolidol Natural products CC(=CCCC(=CCC[C@@H](O)C=C)C)C WASNIKZYIWZQIP-AWEZNQCLSA-N 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 1
- FSVCQIDHPKZJSO-UHFFFAOYSA-L nitro blue tetrazolium dichloride Chemical compound [Cl-].[Cl-].COC1=CC(C=2C=C(OC)C(=CC=2)[N+]=2N(N=C(N=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)[N+]([O-])=O)=CC=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=C([N+]([O-])=O)C=C1 FSVCQIDHPKZJSO-UHFFFAOYSA-L 0.000 description 1
- JPXMTWWFLBLUCD-UHFFFAOYSA-N nitro blue tetrazolium(2+) Chemical compound COC1=CC(C=2C=C(OC)C(=CC=2)[N+]=2N(N=C(N=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)[N+]([O-])=O)=CC=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=C([N+]([O-])=O)C=C1 JPXMTWWFLBLUCD-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- JPMIIZHYYWMHDT-UHFFFAOYSA-N octhilinone Chemical compound CCCCCCCCN1SC=CC1=O JPMIIZHYYWMHDT-UHFFFAOYSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 235000019248 orcein Nutrition 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 1
- NRZWYNLTFLDQQX-UHFFFAOYSA-N p-tert-Amylphenol Chemical compound CCC(C)(C)C1=CC=C(O)C=C1 NRZWYNLTFLDQQX-UHFFFAOYSA-N 0.000 description 1
- WOTPFVNWMLFMFW-ISLYRVAYSA-N para red Chemical compound OC1=CC=C2C=CC=CC2=C1\N=N\C1=CC=C(N(=O)=O)C=C1 WOTPFVNWMLFMFW-ISLYRVAYSA-N 0.000 description 1
- RUVINXPYWBROJD-UHFFFAOYSA-N para-methoxyphenyl Natural products COC1=CC=C(C=CC)C=C1 RUVINXPYWBROJD-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000004261 periodontium Anatomy 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 229940106026 phenoxyisopropanol Drugs 0.000 description 1
- NTGBUUXKGAZMSE-UHFFFAOYSA-N phenyl n-[4-[4-(4-methoxyphenyl)piperazin-1-yl]phenyl]carbamate Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(NC(=O)OC=3C=CC=CC=3)=CC=2)CC1 NTGBUUXKGAZMSE-UHFFFAOYSA-N 0.000 description 1
- 229940106025 phenylethyl resorcinol Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000906 photoactive agent Substances 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229950001046 piroctone Drugs 0.000 description 1
- BTSZTGGZJQFALU-UHFFFAOYSA-N piroctone olamine Chemical compound NCCO.CC(C)(C)CC(C)CC1=CC(C)=CC(=O)N1O BTSZTGGZJQFALU-UHFFFAOYSA-N 0.000 description 1
- 206010035114 pityriasis rosea Diseases 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 229920000765 poly(2-oxazolines) Polymers 0.000 description 1
- 229920003213 poly(N-isopropyl acrylamide) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 235000012731 ponceau 4R Nutrition 0.000 description 1
- 239000004175 ponceau 4R Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- WYOHGPUPVHHUGO-UHFFFAOYSA-K potassium;oxygen(2-);titanium(4+);phosphate Chemical compound [O-2].[K+].[Ti+4].[O-]P([O-])([O-])=O WYOHGPUPVHHUGO-UHFFFAOYSA-K 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001023 pro-angiogenic effect Effects 0.000 description 1
- 230000035752 proliferative phase Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- CXZRDVVUVDYSCQ-UHFFFAOYSA-M pyronin B Chemical compound [Cl-].C1=CC(=[N+](CC)CC)C=C2OC3=CC(N(CC)CC)=CC=C3C=C21 CXZRDVVUVDYSCQ-UHFFFAOYSA-M 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- ARIWANIATODDMH-UHFFFAOYSA-N rac-1-monolauroylglycerol Chemical compound CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 229960003471 retinol Drugs 0.000 description 1
- 235000020944 retinol Nutrition 0.000 description 1
- 239000011607 retinol Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- MYFATKRONKHHQL-UHFFFAOYSA-N rhodamine 123 Chemical compound [Cl-].COC(=O)C1=CC=CC=C1C1=C2C=CC(=[NH2+])C=C2OC2=CC(N)=CC=C21 MYFATKRONKHHQL-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 201000004700 rosacea Diseases 0.000 description 1
- 229960003138 rose bengal sodium Drugs 0.000 description 1
- SOUHUMACVWVDME-UHFFFAOYSA-N safranin O Chemical compound [Cl-].C12=CC(N)=CC=C2N=C2C=CC(N)=CC2=[N+]1C1=CC=CC=C1 SOUHUMACVWVDME-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 229960005369 scarlet red Drugs 0.000 description 1
- 210000001732 sebaceous gland Anatomy 0.000 description 1
- 208000008742 seborrheic dermatitis Diseases 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 230000008417 skin turnover Effects 0.000 description 1
- 231100000019 skin ulcer Toxicity 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 229940101011 sodium hydroxymethylglycinate Drugs 0.000 description 1
- 235000010268 sodium methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 235000010294 sodium orthophenyl phenol Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 239000011755 sodium-L-ascorbate Substances 0.000 description 1
- 235000019187 sodium-L-ascorbate Nutrition 0.000 description 1
- CITBNDNUEPMTFC-UHFFFAOYSA-M sodium;2-(hydroxymethylamino)acetate Chemical compound [Na+].OCNCC([O-])=O CITBNDNUEPMTFC-UHFFFAOYSA-M 0.000 description 1
- PESXGULMKCKJCC-UHFFFAOYSA-M sodium;4-methoxycarbonylphenolate Chemical compound [Na+].COC(=O)C1=CC=C([O-])C=C1 PESXGULMKCKJCC-UHFFFAOYSA-M 0.000 description 1
- IXMINYBUNCWGER-UHFFFAOYSA-M sodium;4-propoxycarbonylphenolate Chemical compound [Na+].CCCOC(=O)C1=CC=C([O-])C=C1 IXMINYBUNCWGER-UHFFFAOYSA-M 0.000 description 1
- KVMUSGMZFRRCAS-UHFFFAOYSA-N sodium;5-oxo-1-(4-sulfophenyl)-4-[(4-sulfophenyl)diazenyl]-4h-pyrazole-3-carboxylic acid Chemical compound [Na+].OC(=O)C1=NN(C=2C=CC(=CC=2)S(O)(=O)=O)C(=O)C1N=NC1=CC=C(S(O)(=O)=O)C=C1 KVMUSGMZFRRCAS-UHFFFAOYSA-N 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 229940033816 solvent red 27 Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000009221 stress response pathway Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- YCUVUDODLRLVIC-VPHDGDOJSA-N sudan black b Chemical compound C1=CC(=C23)NC(C)(C)NC2=CC=CC3=C1\N=N\C(C1=CC=CC=C11)=CC=C1\N=N\C1=CC=CC=C1 YCUVUDODLRLVIC-VPHDGDOJSA-N 0.000 description 1
- 229940099373 sudan iii Drugs 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000011885 synergistic combination Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- JHYAVWJELFKHLM-UHFFFAOYSA-H tetrasodium;2-hydroxypropane-1,2,3-tricarboxylate;iron(2+) Chemical compound [Na+].[Na+].[Na+].[Na+].[Fe+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O JHYAVWJELFKHLM-UHFFFAOYSA-H 0.000 description 1
- 229960000790 thymol Drugs 0.000 description 1
- 239000001585 thymus vulgaris Substances 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 229950003937 tolonium Drugs 0.000 description 1
- 229940025703 topical product Drugs 0.000 description 1
- CRDAMVZIKSXKFV-UHFFFAOYSA-N trans-Farnesol Natural products CC(C)=CCCC(C)=CCCC(C)=CCO CRDAMVZIKSXKFV-UHFFFAOYSA-N 0.000 description 1
- RUVINXPYWBROJD-ONEGZZNKSA-N trans-anethole Chemical compound COC1=CC=C(\C=C\C)C=C1 RUVINXPYWBROJD-ONEGZZNKSA-N 0.000 description 1
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229960001325 triclocarban Drugs 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 201000011531 vascular cancer Diseases 0.000 description 1
- 206010055031 vascular neoplasm Diseases 0.000 description 1
- DCSCXTJOXBUFGB-UHFFFAOYSA-N verbenone Natural products CC1=CC(=O)C2C(C)(C)C1C2 DCSCXTJOXBUFGB-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XOSXWYQMOYSSKB-UHFFFAOYSA-L water blue Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=C(N)C(C)=CC(C(=C2C=CC(C=C2)=NC=2C=CC(=CC=2)S([O-])(=O)=O)C=2C=CC(NC=3C=CC(=CC=3)S(O)(=O)=O)=CC=2)=C1 XOSXWYQMOYSSKB-UHFFFAOYSA-L 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000001018 xanthene dye Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229930007845 β-thujaplicin Natural products 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/4973—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
- A61K8/498—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom having 6-membered rings or their condensed derivatives, e.g. coumarin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/81—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- A61K8/8141—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- A61K8/8147—Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0042—Photocleavage of drugs in vivo, e.g. cleavage of photolabile linkers in vivo by UV radiation for releasing the pharmacologically-active agent from the administered agent; photothrombosis or photoocclusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/042—Gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/22—Peroxides; Oxygen; Ozone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0616—Skin treatment other than tanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/062—Photodynamic therapy, i.e. excitation of an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/02—Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/10—Anti-acne agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/02—Preparations for care of the skin for chemically bleaching or whitening the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/08—Anti-ageing preparations
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/20—Chemical, physico-chemical or functional or structural properties of the composition as a whole
- A61K2800/26—Optical properties
- A61K2800/262—Transparent; Translucent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/42—Colour properties
- A61K2800/43—Pigments; Dyes
- A61K2800/434—Luminescent, Fluorescent; Optical brighteners; Photosensitizers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/59—Mixtures
- A61K2800/592—Mixtures of compounds complementing their respective functions
- A61K2800/5922—At least two compounds being classified in the same subclass of A61K8/18
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/81—Preparation or application process involves irradiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0645—Applicators worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0645—Applicators worn by the patient
- A61N2005/0647—Applicators worn by the patient the applicator adapted to be worn on the head
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0662—Visible light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0662—Visible light
- A61N2005/0663—Coloured light
Definitions
- Phototherapy has recently been recognized as having wide range of applications in both the medical, cosmetic and dental fields for use in surgeries, therapies and examinations. For example, phototherapy has been developed to treat cancers and tumors with lessened invasiveness. Phototherapy has also been used to disinfect target sites as an antimicrobial treatment. Phototherapy has also been found to promote wound healing.
- Photodynamic therapy is a type of phototherapy which involves a step of systemic administration or uptake of a photosensitive agent into the diseased or injured tissue, which step is followed by site-specific application of activating light (photodynamic therapy).
- Such regimens are often associated with undesired side-effects, including systemic or localized toxicity due to the direct contact of the photosensitive agents with the tissues.
- such existing regimens often demonstrate low therapeutic efficacy due to, for example, the poor uptake of the photosensitive agents into the target tissues. Therefore, it is an object of the present disclosure to provide new and improved compositions and methods useful in phototherapy.
- the biophotonic compositions of the present disclosure may contain a gelling agent that provides a barrier such that the chromophore(s) or photosensitive agent(s) and other components of the topical biophotonic compositions are not in substantial contact with the target tissues, and/or do not penetrate the target tissues.
- the biophotonic compositions of the present disclosure may contain a gelling agent, which provides a barrier rendering the compositions substantially resistant to leaching. The use of such biophotonic topical compositions in phototherapy would therefore not involve substantial direct contact of the target tissues with a photosensitizing agent or chromophore, which may be potentially toxic to or may cause undesired side effects at the tissues.
- a topical biophotonic composition comprising at least a first chromophore and a gelling agent, wherein the biophotonic composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue.
- the biophotonic composition is substantially resistant to leaching such that less than 15% of total chromophore amount leaches out of the biophotonic composition into tissue when in contact with the tissue for at least about, 5 minutes, about 10 minutes, about 15 minutes, about 20 minutes, about 25 minutes or about 30 minutes.
- the treatment time can be up to about 5 minutes, about 10 minutes, about 15 minutes, about 20 minutes, about 25 minutes, about 30 minutes.
- a topical biophotonic composition comprising at least a first chromophore and a gelling agent, wherein the first chromophore is photoactive in the composition, and wherein the composition is substantially resistant to leaching such that less than 15% of total chromophore amount can leach out into tissue during a treatment time in which the composition is topically applied onto tissue.
- the treatment time may comprise the total length of time that the composition is in contact with tissues, or if different, the time of light illumination of the composition.
- a topical biophotonic composition comprising at least a first chromophore and a gelling agent, wherein the biophotonic composition is a gel or a semi-solid and is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue when in contact with tissue for at least about 5 minutes.
- a topical biophotonic composition comprising at least a first chromophore and a gelling agent, wherein the biophotonic composition is substantially translucent and is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue when in contact with tissue for at least about 5 minutes.
- substantially translucent is meant having a transmission of more than about 20%.
- a biophotonic composition comprising a first chromophore, wherein the composition is encapsulated in a membrane which limits leaching of the first chromophore such that less than 15% of the total chromophore amount leaches out into tissue when in contact with the tissue for at least about 5 minutes.
- the biophotonic composition may also comprise a carrier medium which may be a liquid, a gel or a semi-solid.
- the biophotonic topical composition allows less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1%, or essentially none of said chromophore content to leach out of the biophotonic composition.
- the biophotonic topical composition further comprises a second chromophore.
- the first chromophore of the biophotonic topical composition has an emission spectrum that overlaps at least 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70% with an absorption spectrum of the second chromophore, when present.
- the first chromophore of the biophotonic topical composition has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second chromophore when present.
- the gelling agent comprises a hygroscopic substance.
- the gelling agent may also be a hydrophilic polymer, a hydrated polymer or a lipid.
- the gelling agent comprises one or more of glycerin, glycols such as propylene glycol, polyacrylic acid polymers, hyaluronic acid, glucosamine sulphate or gelatin.
- the gelling agent is a high molecular weight, cross-linked polyacrylic acid polymer having a viscosity in the range of about 20,000-80,000, 20,000-100,000, 25,000-90,000, 30,000-80,000, 30,000-70,000, 30,000-60,000, 25,000-40,000 cP.
- the cross-linked polyacrylic acid polymer is a carbomer selected from the group consisting of, but not limited to, Carbopol® 71G NF, 971P NF, 974P NF, 980 NF, 981 NF, 5984 EP, ETD 2020NF, Ultrez 10 NF, 934 NF, 934P NF, 940 NF, 941 NF, or 1342 NF.
- the biophotonic composition is substantially translucent and/or transparent.
- the biophotonic composition has a translucency of at least 70% at 460 nm. In other embodiments, the composition has a translucency of at least 20%, 30%, 40%, 50%, 60%, 70%, 75%, 85%, 90%, 95% or 100% at 460 nm.
- the biophotonic composition is a gel or a semi-solid.
- the biophotonic composition is encapsulated in a transparent, impermeable membrane, or a breathable membrane which allows permeation of gases but not liquids.
- the membrane may comprise a lipid.
- the biophotonic composition further comprises an oxygen-generating agent.
- the oxygen-generating agent comprises hydrogen peroxide, carbamide peroxide, benzoyl peroxide, or water.
- At least one of the chromophores for example, the first chromophore, photobleaches during illumination with light. In certain embodiments, at least one of the chromophores, for example, the first chromophore emits fluorescence upon illumination with light.
- illumination of the biophotonic topical composition with light causes a transfer of energy from the first chromophore to the second chromophore.
- the second chromophore emits fluorescence and/or generates reactive oxygen species after absorbing energy from the first chromophore.
- the biophotonic composition does not generate a substantial amount of heat following illumination with light. In some embodiments, the energy emitted by the biophotonic composition does not cause tissue damage.
- the first chromophore of the biophotonic topical composition absorbs light at a wavelength of 200-600 nm, or 400-800 nm.
- the first chromophore absorbs light at a wavelength in the range of the visible spectrum.
- the biophotonic composition comprises a second chromophore, which absorbs light at a wavelength in the range of the visible spectrum.
- the second chromophore has an absorption wavelength that is relatively longer than that of the first chromophore, for example, 10-100 nm, 20-80 nm, 25-70 nm, or 30-60 nm longer.
- the first chromophore of the biophotonic topical composition is present in an amount of 0.01-40% per weight of the composition, and the second chromophore, when present, is present in an amount of 0.001-40% per weight of the composition.
- the total weight per weight of chromophore or combination of chromophores may be in the amount of about 0.001-40.05% per weight of the composition.
- the biophotonic composition may be applied to or impregnated into a material such as a pad, a dressing, a woven or non-woven fabric or the like.
- the impregnated material may be used as a mask (e.g. a face mask) or a dressing.
- the biophotonic composition further comprises at least one waveguide within or adjacent to the composition.
- the waveguide can be a particle, a fibre or a fibrillar network made of a material which can transmit and/or emit light.
- the composition does not comprise silica.
- the first or second chromophore is a fluorescent chromophore (‘fluorophore’).
- the first or second chromophore is a fluorescent xanthene.
- the first or second chromophore is selected from Eosin Y, Erythrosin B, Fluorescein, Rose Bengal and Phloxin B.
- the biophotonic composition comprises at least two of Eosin Y, Erythrosin B, Fluorescein, Rose Bengal and Phloxin B.
- the first chromophore is Eosin Y. In other embodiments, the first chromophore is Fluorescein. In other embodiments, the first chromophore is Rose Bengal. In some embodiments, the biophotonic composition comprises Eosin and Fluorescein. In other embodiments, the biophotonic composition comprises Eosin and Rose Bengal. In other embodiments, the biophotonic composition comprises Fluorescein and Rose Bengal. In other embodiments, the biophotonic composition comprises Fluorescein and Rose Bengal.
- a method for providing biophotonic therapy to a wound comprising: applying a biophotonic composition to a wound, wherein the biophotonic composition comprises at least at least a first chromophore and a gelling agent; and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into tissue.
- the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during a treatment time in which the composition is topically applied onto tissue.
- the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- the method promotes wound healing.
- the wound as described herein includes for example chronic or acute wounds, such as diabetic foot ulcers, pressure ulcers, venous ulcers or amputations.
- the method promotes reduction of scar tissue formation.
- a method for biophotonic treatment of acne comprising: applying a biophotonic composition to a target skin tissue, wherein the biophotonic composition comprises at least a first chromophore and a gelling agent; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into tissue.
- the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during a treatment time in which the composition is topically applied onto tissue.
- the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- the treatment can be applied to the skin tissue, such as on the face, once, twice, three times, four times, five times or six times a week, daily, or at any other frequency.
- the total treatment time can be one week, two weeks, three weeks, four weeks, five weeks, six weeks, seven weeks, eight weeks, nine weeks, ten weeks, eleven weeks, twelve weeks, or any other length of time deemed appropriate.
- the face may be split into separate areas (cheeks, forehead), and each area treated separately.
- the composition may be applied topically to a first portion, and that portion illuminated with light, and the biophotonic composition then removed. Then the composition is applied to a second portion, illuminated and removed. Finally, the composition is applied to a third portion, illuminated and removed.
- the treatment can be applied in or on the wound once, twice, three times, four times, five times or six times a week, daily, or at any other frequency.
- the total treatment time can be one week, two weeks, three weeks, four weeks, five weeks, six weeks, seven weeks, eight weeks, nine weeks, ten weeks, eleven weeks, twelve weeks, or any other length of time deemed appropriate.
- the disclosed methods for treating acne or wounds may further include, for example, administering a systemic or topical drug before, during or after the biophotonic treatment.
- the drug may be an antibiotic, a hormone treatment, or any other pharmaceutical preparation which may help to treat acne or wounds.
- the combination of a systemic treatment together with a topical biophotonic treatment can reduce the duration of systemic treatment time.
- a method for biophotonic treatment of a skin disorder comprising: applying a biophotonic composition to a target skin tissue, wherein the biophotonic composition comprises at least first chromophore and a gelling agent; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into tissue.
- the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during a treatment time in which the composition is topically applied onto tissue.
- the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- the present disclosure provides a method for promoting skin rejuvenation, comprising: topically applying a biophotonic composition to a target skin tissue, wherein the biophotonic composition comprises at least a first chromophore and a gelling agent; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into tissue.
- the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during a treatment time in which the composition is topically applied onto tissue.
- the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- the present disclosure provides a method for cosmetic skin treatment, comprising: topically applying a biophotonic composition to a target skin tissue, wherein the biophotonic composition comprises at least a first chromophore and gelling agent; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into tissue.
- the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during a treatment time in which the composition is topically applied onto tissue.
- the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- the present disclosure provides a method for treatment of periodontal disease, comprising: topically applying a biophotonic composition to a periodontal pocket, wherein the biophotonic composition comprises at least a first chromophore and a gelling agent; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into periodontal tissue.
- the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into periodontal tissue during a treatment time in which the composition is topically applied onto periodontal tissue.
- the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- the biophotonic composition is illuminated for any time period per treatment in which the biophotonic composition is activated, for example 1 to 30 minutes.
- the distance of the light source from the biophotonic composition can be any distance which can deliver an appropriate light power density to the biophotonic composition and/or the skin tissue, for example 5, 10, 15 or 20 cm.
- the biophotonic composition is applied topically at any suitable thickness. Typically, the biophotonic composition is applied topically to skin or wounds at a thickness of at least about 2 mm, about 2 mm to about 10 mm.
- the method of the present disclosure comprises a step of illuminating the biophotonic composition for a period of at least 30 seconds, 2 minutes, 3 minutes, 5 minutes, 7 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, or 30 minutes. In some embodiments, the biophotonic composition is illuminated for a period of at least 3 minutes.
- the biophotonic composition is removed from the site of a treatment following application of light. Accordingly, the biophotonic composition is removed from the site of treatment within at least 30 seconds, 2 minutes, 3 minutes, 5 minutes, 7 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes or 30 minutes after application. In some embodiments, the biophotonic composition is illuminated for a period of at least 3 minutes. In some embodiments, the biophotonic composition is removed after a period of at least 3 minutes post application of the biophotonic composition to treatment site.
- the biophotonic composition is kept in place for up to one, two or three weeks, and illuminated with light which may include ambient light at various intervals.
- the composition may be covered up in between exposure to light.
- the biophotonic composition may be soaked in a dressing and placed inside or over a wound and be left in place for an extended period of time (e.g. more than one day).
- FIG. 1 depicts absorption of light in the various layers of the skin (Samson et al. Evidence Report/Technology Assessment 2004, 111, pages 1-97).
- FIG. 2 illustrates the Stokes' shift
- FIG. 3 illustrates the absorption and emission spectra of donor and acceptor chromophores. The spectral overlap between the absorption spectrum of the acceptor chromophore and the emission spectrum of the donor chromophore is also shown.
- FIG. 4 is a schematic of a Jablonski diagram that illustrates the coupled transitions involved between a donor emission and acceptor absorbance.
- FIG. 5 depicts the experimental setup of an in vitro release test for evaluating leaching of the chromophore(s) of the biophotonic compositions (Example 6).
- FIGS. 6 a and 6 b are absorbance and emission spectra, respectively, of a composition according to certain embodiments of the present disclosure which includes Eosin and Fluorescein in a gel (Example 1).
- FIGS. 7 a and 7 b are absorbance and emission spectra, respectively, of a composition according to certain embodiments of the present disclosure which includes Eosin and Fluorescein in an aqueous solution (Example 2).
- FIGS. 8 a and 8 b are absorbance and emission spectra, respectively, of a composition according to certain embodiments of the present disclosure which includes Eosin, Fluorescein and Rose Bengal in a gel (Example 3).
- FIGS. 9 a and 9 b are absorbance and emission spectra, respectively, of a composition according to certain embodiments of the present disclosure which includes Eosin and Fluorescein in an aqueous solution (Example 4).
- FIG. 10 illustrates a summary of inflammatory lesion count and absolute changes by hemiface (Example 5).
- FIG. 11 shows the effect of a biophotonic composition of the disclosure on Ki67 expression (Example 10).
- FIG. 12 shows that emitted fluorescence from chromophore in a composition increases rapidly with increasing composition but slows down to a plateau with further concentration increase for Eosin Y (top) and Fluorescein (bottom) (Example 13).
- FIG. 13 shows that Eosin and Rose Bengal act in a synergistic manner (Example 14).
- FIG. 14 is an emission spectrum showing the intensity over time of the light being emitted from the biophotonic composition tested in Example 5.
- FIG. 15 is an emission spectrum showing the intensity over time of the light being emitted from the biophotonic composition tested in Example 7.
- Phototherapy regimens have been developed to promote wound healing, rejuvenate facial skins and treat various skin disorders.
- these methods require direct application of a photosensitive agent (or chromophore) to the target skin and/or uptake of the photosensitive agent (or chromophore) into the skin cells.
- the direct contact of the photosensitive agent with the tissue can lead to undesired side-effects, including cellular damage/destruction and systemic or localized toxicity to the patient.
- many existing phototherapy regimens often demonstrate low therapeutic efficacy due to, for example, the poor update of the photosensitive agents into the skin cells the target site. For this reason, may regimens require a wait time of between about one and 72 hours to allow the internalization of the photosensitizer.
- the present disclosure provides biophotonic compositions including a photoactive exogenous chromophore and methods useful for promoting wound healing, cosmetic treatment of skin such as skin rejuvenation, treating acne and treating other skin disorders, treating acute inflammation, which are distinguished from conventional photodynamic therapy.
- Biophotonic therapy using these compositions does not rely on internalization of the chromophore into cells or substantial contact with the cells or target tissues. Therefore, the undesired side effects caused by direct contact may be reduced, minimized, or prevented. At most, the chromophore has surface contact with the tissue to which the composition is applied.
- the term “about” in the context of a given value or range refers to a value or range that is within 20%, preferably within 10%, and more preferably within 5% of the given value or range.
- Biophotonic means the generation, manipulation, detection and application of photons in a biologically relevant context. In other words, biophotonic compositions exert their physiological effects primarily due to the generation and manipulation of photons. “Biophotonic composition” is a composition as described herein that may be activated by light to produce photons for biologically relevant applications.
- Topical composition means a composition to be applied to body surfaces, such as the skin, mucous membranes, vagina, oral cavity, internal surgical wound sites, and the like.
- a topical composition may be in the form of, including, but not limited to, a cream, gel, ointment, lotion, levigate, solution, paste, putty, bioadhesive, salve, milk, impregnated material such as a pad, sheet, fabric or fibres, dressings, spray, suspension, foam, or the like.
- chromophore means a chemical compound, when contacted by light irradiation, is capable of absorbing the light. The chromophore readily undergoes photoexcitation and can then transfer its energy to other molecules or emit it as light.
- Photobleaching means the photochemical destruction of a chromophore.
- Leaching means the release of one or more components of a biophotonic composition (e.g., the chromophore(s)) from the composition to the surrounding environment such as for example the wound site or into the tissue being treated with the composition).
- a biophotonic composition e.g., the chromophore(s)
- actinic light is intended to mean light energy emitted from a specific light source (e.g., lamp, LED, or laser) and capable of being absorbed by matter (e.g. the chromophore or photoactivator defined above). In a preferred embodiment, the actinic light is visible light.
- a specific light source e.g., lamp, LED, or laser
- matter e.g. the chromophore or photoactivator defined above.
- the actinic light is visible light.
- a “hygroscopic” substance is a substance capable of taking up water, for example, by absorption or adsorption even at relative humidity as low as 50%, at room temperature (e.g. about 25° C.).
- “Impermeable membrane” means that the material contained within the membrane is sufficiently or substantially impermeable to the surrounding environment such that the migration of such material out of the membrane, and/or the migration of the environmental components (such as water) into the membrane, is so low as to having substantially no adverse impact on the function or activity of the materials retained within the membrane.
- the impermeable membrane may be ‘breathable’ in that gas flow through the membrane is permitted whilst the flow of liquid is not permitted.
- the impermeable membrane may also selectively allow the migration of some of the materials through the membrane but not others.
- wound means an injury to any tissue, including for example, acute, subacute, delayed or difficult to heal wounds, and chronic wounds. Examples of wounds may include both open and closed wounds. Wounds include, for example, burns, incisions, excisions, lesions, lacerations, abrasions, puncture or penetrating wounds, surgical wounds, contusions, hematomas, crushing injuries, ulcers (such as for example pressure, venous, pressure or diabetic), wounds caused by periodontitis (inflammation of the periodontium).
- “Skin rejuvenation” means a process of reducing, diminishing, retarding or reversing one or more signs of skin aging.
- common signs of skin aging include, but are not limited to, appearance of fine lines or wrinkles, thin and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, or a blotchy complexion.
- one or more of the above signs of aging may be reduced, diminished, retarded or even reversed by the compositions and methods of the present disclosure.
- Biophotonic compositions are compositions that are, in a broad sense, activated by light (e.g., photons) of specific wavelength. These compositions contain at least one exogenous chromophore which is activated by light and accelerates the dispersion of light energy, which leads to light carrying on a therapeutic effect on its own, and/or to the photochemical activation of other agents contained in the composition (e.g., acceleration in the breakdown process of peroxide (an oxygen-releasing agent) when such compound is present in the composition or at the treatment site, leading to the formation of oxygen radicals, such as singlet oxygen).
- light e.g., photons
- These compositions contain at least one exogenous chromophore which is activated by light and accelerates the dispersion of light energy, which leads to light carrying on a therapeutic effect on its own, and/or to the photochemical activation of other agents contained in the composition (e.g., acceleration in the breakdown process of peroxide (an oxygen-releasing agent) when such compound is present in
- the present disclosure provides biophotonic compositions comprising at least a first chromophore and a gelling agent, wherein the composition is substantially resistant to leaching such that a low chromophore amount leaches out of the biophotonic composition into tissue during treatment.
- the present disclosure provides a first composition and a second composition, wherein the first composition comprises an oxygen-releasing agent and the second composition comprises one or more chromophores, which, when mixed with the first composition and subsequently activated by light, disperses the light energy, leading to the photochemical activation of the oxygen-releasing agent contained in the mixture, which may lead to the formation of oxygen radicals, such as singlet oxygen.
- a chromophore When a chromophore absorbs a photon of a certain wavelength, it becomes excited. This is an unstable condition and the molecule tries to return to the ground state, giving away the excess energy. For some chromophores, it is favorable to emit the excess energy as light when transforming back to the ground state. This process is called fluorescence. The peak wavelength of the emitted fluorescence is shifted towards longer wavelengths compared to the absorption wavelengths due to loss of energy in the conversion process. This is called the Stokes' shift and is illustrated in FIG. 2 . In the proper environment (e.g., in a biophotonic composition) much of this energy is transferred to the other components of the composition or to the treatment site directly.
- fluorescent light emitted by photoactivated chromophores may have therapeutic properties due to its femto-, pico- or nano-second emission properties which may be recognized by biological cells and tissues, leading to favorable biomodulation. Furthermore, the emitted fluorescent light has a longer wavelength and hence a deeper penetration into the tissue than the activating light. Irradiating tissue with such a broad range of wavelengths, including in some embodiments the activating light which passes through the composition, may have different and complementary effects on the cells and tissues.
- the generation of oxygen species by photoactivated chromophores has been observed by the inventors to cause micro-bubbling within the composition which can have a physical impact on the tissue to which it is applied, for example by dislodging biofilm and debridement of necrotic tissue or providing a pressure stimulation.
- the biofilm can also be pre-treated with an oxygen-releasing agent to weaken the biofilm before treating with the composition of the present disclosure.
- the biophotonic compositions of the present disclosure are substantially transparent/translucent and/or have high light transmittance in order to permit light dissipation into and through the composition. In this way, the area of tissue under the composition can be treated both with the fluorescent light emitted by the composition and the light irradiating the composition to activate it.
- the % transmittance of the biophotonic composition can be measured in the range of wavelengths from 250 nm to 800 nm using, for example, a Perkin-Elmer Lambda 9500 series UV-visible spectrophotometer. In some embodiments, transmittance of the compositions disclosed herein is measured at 460 nm.
- Transmittance values can be normalized to a thickness of 100 ⁇ m (or any thickness) according to:
- t 1 actual specimen thickness
- t 2 thickness to which transmittance measurements can be normalized.
- the biophotonic composition has a transparency or translucency that exceeds 15%, 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, or 85% at 460 nm.
- the transparency exceeds 70% at 460 nm, 86% at 460 nm, 87% at 460 nm, 88% at 460 nm, 89% at 460 nm, 90% at 460 nm, 91% at 460 nm, 92% at 460 nm, 93% at 460 nm, 94% at 460 nm, 95% at 460 nm, 96% at 460 nm, 97% at 460 nm, 98% at 460 nm or 99% at 460 nm.
- compositions of the present disclosure are for topical uses. These compositions may be described based on the components making up the composition. Additionally or alternatively, the compositions of the present disclosure have functional and structural properties and these properties may also be used to define and describe the compositions. Individual components of the composition of the present disclosure are detailed as below.
- biophotonic topical compositions of the present disclosure comprise one or more chromophores, which can be considered exogenous, e.g., are not naturally present in skin or tissue.
- Suitable chromophores can be fluorescent dyes (or stains), although other dye groups or dyes (biological and histological dyes, food colorings, carotenoids, naturally occurring fluorescent and other dyes) can also be used.
- Suitable photoactivators can be those that are Generally Regarded As Safe (GRAS). Photoactivators which are not well tolerated by the skin or other tissues can be included in the biophotonic composition in an encapsulated form.
- the biophotonic topical composition of the present disclosure comprises a first chromophore which undergoes partial or complete photobleaching upon application of light.
- photobleaching is meant a photochemical destruction of the chromophore which can generally be visualized as a loss of color.
- the first chromophore absorbs at a wavelength in the range of the visible spectrum, such as at a wavelength of about 380-800 nm, 380-700, or 380-600 nm. In other embodiments, the first chromophore absorbs at a wavelength of about 200-800 nm, 200-700 nm, 200-600 nm or 200-500 nm. In one embodiment, the first chromophore absorbs at a wavelength of about 200-600 nm.
- the first chromophore absorbs light at a wavelength of about 200-300 nm, 250-350 nm, 300-400 nm, 350-450 nm, 400-500 nm, 400-600 nm, 450-650 nm, 600-700 nm, 650-750 nm or 700-800 nm.
- a particular chromophore's absorption and/or emission wavelength (or spectrum) corresponds to the wavelengths (or spectrum) measured in a biophotonic composition of the present disclosure.
- the biophotonic compositions disclosed herein may include at least one additional chromophore.
- Combining chromophores may increase photo-absorption by the combined dye molecules and enhance absorption and photo-biomodulation selectivity. This creates multiple possibilities of generating new photosensitive, and/or selective chromophores mixtures.
- resonance energy transfer is a photophysical process through which an excited ‘donor’ chromophore (also referred to herein as first chromophore) transfers its excitation energy to an ‘acceptor’ chromophore (also referred to herein as second chromophore).
- donor chromophore also referred to herein as first chromophore
- acceptor chromophore also referred to herein as second chromophore
- the efficiency and directedness of resonance energy transfer depends on the spectral features of donor and acceptor chromophores. In particular, the flow of energy between chromophores is dependent on a spectral overlap reflecting the relative positioning and shapes of the absorption and emission spectra. For energy transfer to occur the emission spectrum of the donor chromophore overlap with the absorption spectrum of the acceptor chromophore ( FIG. 3 ).
- FIG. 4 is a Jablonski diagram that illustrates the coupled transitions involved between a donor emission and acceptor absorbance.
- the donor chromophore should have good abilities to absorb photons and emit photons. Furthermore, it is thought that the more overlap there is between the donor chromospheres' emission spectra and the acceptor chromophore's absorption spectra, the better a donor chromophore can transfer energy to the acceptor chromophore.
- the biophotonic topical composition of the present disclosure further comprises a second chromophore.
- the first chromophore has an emission spectrum that overlaps at least about 80%, 50%, 40%, 30%, 20%, 10% with an absorption spectrum of the second chromophore. In one embodiment, the first chromophore has an emission spectrum that overlaps at least about 20% with an absorption spectrum of the second chromophore.
- the first chromophore has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second chromophore.
- % spectral overlap means the % overlap of a donor chromophore's emission wavelength range with an acceptor chromophore's absorption wavelength rage, measured at spectral full width quarter maximum (FWQM).
- FIG. 3 shows the normalized absorption and emission spectra of donor and acceptor chromophores.
- the spectral FWQM of the acceptor chromophore's absorption spectrum is from about 60 nm (515 nm to about 575 nm).
- the overlap of the donor chromophore's spectrum with the absorption spectrum of the acceptor chromophore is about 40 nm (from 515 nm to about 555 nm).
- the second chromophore absorbs at a wavelength in the range of the visible spectrum. In certain embodiments, the second chromophore has an absorption wavelength that is relatively longer than that of the first chromophore within the range of about 50-250, 25-150 or 10-100 nm.
- the application of light to the compositions of the present disclosure can result in a cascade of energy transfer between the chromophores.
- a cascade of energy transfer provides photons that penetrate the epidermis, dermis and/or mucosa at the target tissue, including, such as, a site of wound, or a tissue afflicted with acne or a skin disorder.
- such a cascade of energy transfer is not accompanied by concomitant generation of heat.
- the cascade of energy transfer does not result in tissue damage.
- the biophotonic topical composition comprises a first and a second chromophore
- the first chromophore is present in an amount of about 0.01-40% per weight of the composition
- the second chromophore is present in an amount of about 0.001-40% per weight of the composition.
- the total weight per weight of chromophore or combination of chromophores may be in the amount of about 0.01-40.001% per weight of the composition.
- the first chromophore is present in an amount of about 0.01-1%, 0.01-2%, 0.05-1%, 0.05-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition.
- the second chromophore is present in an amount of about 0.001-1%, 0.001-2%, 0.001-0.01%, 0.01-0.1%, 0.1-1.0%, 1-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition.
- the total weight per weight of chromophore or combination of chromophores may be in the amount of about 0.01-1%, 0.01-2%, 0.05-2%, 0.5-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the composition.
- the chromophore or chromophores are selected such that their emitted fluorescent light, on photoactivation, is within one or more of the green, yellow, orange, red and infrared portions of the electromagnetic spectrum, for example having a peak wavelength within the range of about 490 nm to about 800 nm.
- the emitted fluorescent light has a power density of between 0.005 to about 10 mW/cm 2 , about 0.5 to about 5 mW/cm 2 .
- Suitable chromophores that may be used in the biophotonic topical compositions of the present disclosure include, but are not limited to the following:
- chlorophyll dyes include but are not limited to chlorophyll a; chlorophyll b; oil soluble chlorophyll; bacteriochlorophyll a; bacteriochlorophyll b; bacteriochlorophyll c; bacteriochlorophyll d; protochlorophyll; protochlorophyll a; amphiphilic chlorophyll derivative 1; and amphiphilic chlorophyll derivative 2.
- Exemplary xanthene dyes include but are not limited to Eosin B (4′,5′-dibromo,2′,7′-dinitr-o-fluorescein, dianion); eosin Y; eosin Y (2′,4′,5′,7′-tetrabromo-fluoresc-ein, dianion); eosin (2′,4′,5′,7′-tetrabromo-fluorescein, dianion); eosin (2′,4′,5′,7′-tetrabromo-fluorescein, dianion) methyl ester; eosin (2′,4′,5′,7′-tetrabromo-fluorescein, monoanion) p-isopropylbenzyl ester; eosin derivative (2′,7′-dibromo-fluorescein, dianion); eosin derivative (4
- Exemplary methylene blue derivatives include but are not limited to 1-methyl methylene blue; 1,9-dimethyl methylene blue; methylene blue; methylene blue (16 .mu.M); methylene blue (14 .mu.M); methylene violet; bromomethylene violet; 4-iodomethylene violet; 1,9-dimethyl-3-dimethyl-amino-7-diethyl-a-mino-phenothiazine; and 1,9-dimethyl-3-diethylamino-7-dibutyl-amino-phenot-hiazine.
- Exemplary azo (or diazo-) dyes include but are not limited to methyl violet, neutral red, para red (pigment red 1), amaranth (Azorubine S), Carmoisine (azorubine, food red 3, acid red 14), allura red AC (FD&C 40), tartrazine (FD&C Yellow 5), orange G (acid orange 10), Ponceau 4R (food red 7), methyl red (acid red 2), and murexide-ammonium purpurate.
- the one or more chromophores of the biophotonic composition disclosed herein can be independently selected from any of Acid black 1, Acid blue 22, Acid blue 93, Acid fuchsin, Acid green, Acid green 1, Acid green 5, Acid magenta, Acid orange 10, Acid red 26, Acid red 29, Acid red 44, Acid red 51, Acid red 66, Acid red 87, Acid red 91, Acid red 92, Acid red 94, Acid red 101, Acid red 103, Acid roseine, Acid rubin, Acid violet 19, Acid yellow 1, Acid yellow 9, Acid yellow 23, Acid yellow 24, Acid yellow 36, Acid yellow 73, Acid yellow S, Acridine orange, Acriflavine, Alcian blue, Alcian yellow, Alcohol soluble eosin, Alizarin, Alizarin blue 2RC, Alizarin carmine, Alizarin cyanin BBS, Alizarol cyanin R, Alizarin red S, Alizarin purpurin, Aluminon, Amido black 10B, Amidoschwarz, Aniline blue WS, Anthrac
- Phycoerythrincyanin PEC
- Phthalocyanines Picric acid, Ponceau 2R, Ponceau 6R, Ponceau B, Ponceau de Xylidine, Ponceau S, Primula, Purpurin, Pyronin B, Pyronin G, Pyronin Y, Rhodamine B, Rosanilin, Rose bengal, Saffron, Safranin O, Scarlet R, Scarlet red, Scharlach R, Shellac, Sirius red F3B, Solochrome cyanin R, Soluble blue, Solvent black 3, Solvent blue 38, Solvent red 23, Solvent red 24, Solvent red 27, Solvent red 45, Solvent yellow 94, Spirit soluble eosin, Sudan III, Sudan IV, Sudan black B, Sulfur yellow S, Swiss blue, Tartrazine, Thioflavine S, Thioflavine T, Thionin, Toluidine blue, Toluyline red, Tropaeolin G, Trypaflavine, Trypan blue, Uran
- the composition of the present disclosure includes any of the chromophores listed above, or a combination thereof, so as to provide a biophotonic impact at the application site. This is a distinct application of these agents and differs from the use of chromophores as simple stains or as a catalyst for photo-polymerization.
- the composition includes Eosin Y as a first chromophore and any one or more of Rose Bengal, Erythrosin, Phloxine B as a second chromophore. It is believed that these combinations have a synergistic effect as Eosin Y can transfer energy to Rose Bengal, Erythrosin or Phloxine B when activated. This transferred energy is then emitted as fluoresence or by production of reactive oxygen species. This absorbed and re-emitted light is thought to be transmitted throughout the composition, and also to be transmitted into the site of treatment.
- the composition includes the following synergistic combinations: Eosin Y and Fluorescein; Fluorescein and Rose Bengal; Erythrosine in combination with Eosin Y, Rose Bengal or Fluorescein; Phloxine B in combination with one or more of Eosin Y, Rose Bengal, Fluorescein and Erythrosine.
- synergistic chromophore combinations are also possible.
- chromophores which cannot normally be activated by an activating light can be activated through energy transfer from chromophores which are activated by the activating light.
- an activating light such as a blue light from an LED
- Rose Bengal can generate a high yield of singlet oxygen when photoactivated in the presence of molecular oxygen, however it has a low quantum yield in terms of emitted fluorescent light.
- Rose Bengal has a peak absorption around 540 nm and so is normally activated by green light.
- Eosin Y has a high quantum yield and can be activated by blue light.
- the blue light photoactivates Eosin Y which transfers some of its energy to Rose Bengal as well as emitting some energy as fluorescence.
- biophotonic topical compositions that comprise at least a first chromophore and a gelling agent, wherein the gelling agent provides a barrier such that the chromophore(s) of the biophotonic topical compositions are substantially not in contact with the target tissue.
- leaching means the release of one or more components of a biophotonic composition (e.g., the chromophore(s)) from the composition to the surrounding environment such as for example the wound site or into the tissue being treated with the composition). Therefore, the gelling agent present in the biophotonic compositions of the present disclosure renders the compositions substantially resistant to leaching such that the chromophore(s) or photosensitive agent(s) of the biophotonic topical compositions are not in substantial contact with the target tissue.
- a biophotonic composition e.g., the chromophore(s)
- the biophotonic topical composition allows less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1%, or essentially none of said chromophore content to leach out of the biophotonic composition.
- the biophotonic composition limits leaching of the first chromophore such that less than 15% of total chromophore amount can leach out into tissue during a treatment time in which the composition is topically applied onto tissue and illuminated with light. In some embodiments, the biophotonic composition limits leaching of the first chromophore such that less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of total chromophore amount can leach out into tissue during a treatment time in which the composition is topically applied onto tissue and illuminated with light. In some embodiments, the treatment time is at least about 5 minutes, at least about 10 minutes, at least about 15 minutes, at least about 20 minutes, at least about 25 minutes or at least about 30 minutes.
- the extent of chromophore leaching out of the biophotonic composition and into the surrounding environment may be assessed using various methods known in the art, including but not limited to, the tests described in the Examples.
- leaching is determined by placing the biophotonic composition in contact with an aqueous solution through a porous membrane for a period of time corresponding to a desired treatment time. The extent of chromophore leaching can then be assessed visually, for example, by noting a color change of the aqueous solution, or quantitatively, for example, by using a spectrophotometer to measure the absorption of the solution.
- a biophotonic composition of the present disclosure allows less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount to leach out of the biophotonic composition as through a porous membrane into an aqueous solution when the biophotonic composition is placed in contact with the aqueous solution through the porous membrane for a time corresponding to a desired treatment time.
- the time corresponding to a treatment time is at least about 5 minutes, at least about 10 minutes, 15 minutes, 20 minutes, 25 minutes or 30 minutes.
- staining is determined by visually assessing whether the biophotonic composition colorizes white test paper saturated with 70% by volume ethanol/30% by volume water solution placed in contact with the biophotonic composition for a period of time corresponding to a desired treatment time.
- a biophotonic composition of the present disclosure does not visually colorize white test paper saturated with a 70% by volume ethanol/30% by volume water solution placed in contact with the biophotonic composition under atmospheric pressure for a time corresponding to a desired treatment time.
- the time corresponding to a treatment time is at least about 5 minutes, at least about 10 minutes, 15 minutes, 20 minutes, 25 minutes or 30 minutes.
- a gelling agent for use according to the present disclosure may comprise any ingredient suitable for use in a topical biophotonic formulation as described herein.
- the gelling agent according to various embodiments of the present disclosure may include, but not limited to, polyalkylene oxides, particularly polyethylene glycol and poly(ethylene oxide)-poly(propylene oxide) copolymers, including block and random copolymers; polyols such as glycerol, polyglycerol (particularly highly branched polyglycerol), propylene glycol and trimethylene glycol substituted with one or more polyalkylene oxides, e.g., mono-, di- and tri-polyoxyethylated glycerol, mono- and di-polyoxy-ethylated propylene glycol, and mono- and di-polyoxyethylated trimethylene glycol; polyoxyethylated sorbitol, polyoxyethylated glucose; acrylic acid polymers and analogs and copolymers thereof, such as poly
- the gelling agent according to certain embodiments of the present disclosure may include a polymer selected from any of synthetic or semi-synthetic polymeric materials, polyacrylate copolymers, cellulose derivatives and polymethyl vinyl ether/maleic anhydride copolymers.
- the hydrophilic polymer comprises a polymer that is a high molecular weight (i.e., molar masses of more than about 5,000, and in some instances, more than about 10,000, or 100,000, or 1,000,000) and/or cross-linked polyacrylic acid polymer.
- the polymer is a polyacrylic acid polymer and has a viscosity in the range of about 15,000-100,000, 15,000-90,000, 15,000-80,000, 20,000-80,000, 20,000-70,000, 20,000-40,000 cP.
- the polymer is a high molecular weight, and/or cross-linked polyacrylic acid polymer, where the polyacrylic acid polymer has a viscosity in the range of about 15,000-80,000 cP.
- the gelling agent comprises a carbomer.
- Carbomers are synthetic high molecular weight polymer of acrylic acid that are crosslinked with either allylsucrose or allylethers of pentaerythritol having a molecular weight of about 3 ⁇ 10 6 .
- the gelation mechanism depends on neutralization of the carboxylic acid moiety to form a soluble salt.
- the polymer is hydrophilic and produces sparkling clear gels when neutralized.
- Carbomer gels possess good thermal stability in that gel viscosity and yield value are essentially unaffected by temperature. As a topical product, carbomer gels possess optimum rheological properties.
- Aqueous solution of Carbopol® is acidic in nature due to the presence of free carboxylic acid residues. Neutralization of this solution cross-links and gelatinizes the polymer to form a viscous integral structure of desired viscosity.
- Carbomers are available as fine white powders which disperse in water to form acidic colloidal suspensions (a 1% dispersion has approx. pH 3) of low viscosity. Neutralization of these suspensions using a base, for example sodium, potassium or ammonium hydroxides, low molecular weight amines and alkanolamines, results in the formation of translucent gels. Nicotine salts such as nicotine chloride form stable water-soluble complexes with carbomers at about pH 3.5 and are stabilized at an optimal pH of about 5.6.
- the carbomer is Carbopol.
- Carbopol Such polymers are commercially available from B.F. Goodrich or Lubrizol under the designation Carbopol® 71G NF, 420, 430, 475, 488, 493, 910, 934, 934P, 940, 971PNF, 974P NF, 980 NF, 981 NF and the like.
- Carbopols are versatile controlled-release polymers, as described by Brock (Pharmacotherapy, 14:430-7 (1994)) and Dunani (Pharmaceutical Res.
- the carbomer belongs to a family of carbomers which are synthetic, high molecular weight, non-linear polymers of acrylic acid, crosslinked with polyalkenyl polyether.
- the carbomer is Carbopol® 974P NF, 980 NF, 5984 EP, ETD 2020NF, Ultrez 10 NF, 934 NF, 934P NF or 940 NF.
- the carbomer is Carbopol® 980 NF, ETD 2020 NF, Ultrez 10 NF, Ultrez 21 or 1382 Polymer, 1342 NF, 940 NF.
- the gelling agent comprises a hygroscopic material.
- the hygroscopic material may include, but is not limited to, glucosamine, glycosaminoglycan, poly(vinyl alcohol), poly(2-hydroxyethylmethylacrylate), polyethylene oxide, collagen, chitosan, alginate, a poly(acrylonitrile)-based hydrogel, poly(ethylene glycol)/poly(acrylic acid) interpenetrating polymer network hydrogel, polyethylene oxide-polybutylene terephthalate, hyaluronic acid, high-molecular-weight polyacrylic acid, poly(hydroxy ethylmethacrylate), poly(ethylene glycol), tetraethylene glycol diacrylate, polyethylene glycol methacrylate, and poly(methyl acrylate-co-hydroxyethyl acrylate).
- the one or more gelling agents can be selected according to their ability to prevent leaching.
- gelling agents which can increase the viscosity of the biophotonic composition can be selected.
- the viscosity of the biophotonic composition is 15,000-100,000, 15,000-90,000, 15,000-80,000, 20,000-80,000, 20,000-70,000, 20,000-40,000 cP.
- a composition with sufficiently high viscosity parameters can prevent or limit the leaching of chromophores from the composition.
- Gelling agents which include lipids or other coating agents which can coat the chromophores can also be used to limit or prevent leaching.
- gelling agents which are hygroscopic and/or hydrophilic may be used for their water attracting properties, which may also prevent or limit leaching of the chromophore.
- Viscosity of the biophotonic compositions of the present disclosure may be measured using a cone/plate viscometer (Wells-Brookfield). A CP-51 cone may be used and viscosity is measured at a speed of 2 rpm and making sure that the torque is >10%. Spindle must rotate at least 5 times before a viscosity reading is taken.
- the biophotonic composition of the present disclosure may be further encapsulated, e.g, in a membrane.
- a membrane may be transparent, and/or substantially, or fully impermeable.
- the membrane may be impermeable to liquid but permeable to gases such as air.
- the composition may form a membrane that encapsulates the chromophore(s) of the biophotonic topical composition, where the membrane may be substantially impermeable to liquid and/or gas.
- the biophotonic composition is a liquid encapsulated by a membrane, wherein the membrane is sufficiently resistant to chromophore leaching such that less than 15% of the total chromophore amount leaches out of the encapsulated composition.
- the membrane may be formed of one or more lipidic agents.
- compositions of the present disclosure may optionally further comprise one or more additional components, such as oxygen-releasing agents.
- additional components such as oxygen-releasing agents.
- the biophotonic topical composition of the present disclosure may optionally comprise oxygen-releasing agents as a source of oxygen.
- oxygen-releasing agents are oxygen-releasing agents that contain the peroxy group (R—O—O—R), which is a chainlike structure containing two oxygen atoms, each of which is bonded to the other and a radical or some element.
- a biophotonic composition of the present disclosure comprising an oxygen-releasing agent
- the chromophore(s) When a biophotonic composition of the present disclosure comprising an oxygen-releasing agent is illuminated with light, the chromophore(s) are excited to a higher energy state. When the chromophore(s)' electrons return to a lower energy state, they emit photons with a lower energy level, thus causing the emission of light of a longer wavelength (Stokes' shift). In the proper environment, some of this energy release is transferred to oxygen or the reactive hydrogen peroxide and causes the formation of oxygen radicals, such as singlet oxygen. The singlet oxygen and other reactive oxygen species generated by the activation of the biophotonic composition are thought to operate in a hormetic fashion.
- a health beneficial effect that is brought about by the low exposure to a normally toxic stimuli (e.g. reactive oxygen), by stimulating and modulating stress response pathways in cells of the targeted tissues.
- a normally toxic stimuli e.g. reactive oxygen
- Endogenous response to exogenous generated free radicals is modulated in increased defense capacity against the exogenous free radicals and induces acceleration of healing and regenerative processes.
- activation of the composition can also produce an antibacterial effect.
- the extreme sensitivity of bacteria to exposure to free radicals makes the composition of the present disclosure a de facto bactericidal composition.
- the generation of oxygen species by the composition in some embodiments is accompanied by the micro-bubbling which can contribute to debridement or dislodging of biofilm at the site of application. This can allow for the improved penetration of the activating and/or fluorescence light to the treatment site for example to deactivate bacterial colonies leading to their reduction in number.
- Suitable oxygen-releasing agents that may be included in the composition include, but are not limited to:
- Hydrogen peroxide (H 2 O 2 ) is the starting material to prepare organic peroxides.
- H 2 O 2 is a powerful oxygen-releasing agent, and the unique property of hydrogen peroxide is that it breaks down into water and oxygen and does not form any persistent, toxic residual compound.
- Hydrogen peroxide for use in this composition can be used in a gel, for example with 6% hydrogen peroxide.
- a suitable range of concentration over which hydrogen peroxide can be used in the present composition is from about 0.1% to about 6%.
- Urea hydrogen peroxide (also known as urea peroxide, carbamide peroxide or percarbamide) is soluble in water and contains approximately 35% hydrogen peroxide.
- Carbamide peroxide for use in this composition can be used as a gel, for example with 16% carbamide peroxide that represents 5.6% hydrogen peroxide, or 12% carbamide peroxide.
- a suitable range of concentration over which urea peroxide can be used in the present composition is from about 0.3% to about 16%.
- Urea peroxide breaks down to urea and hydrogen peroxide in a slow-release fashion that can be accelerated with heat or photochemical reactions.
- the released urea [carbamide, (NH 2 )CO 2 )]
- Benzoyl peroxide consists of two benzoyl groups (benzoic acid with the H of the carboxylic acid removed) joined by a peroxide group. It is found in treatments for acne, in concentrations varying from 2.5% to 10%. The released peroxide groups are effective at killing bacteria. Benzoyl peroxide also promotes skin turnover and clearing of pores, which further contributes to decreasing bacterial counts and reduce acne. Benzoyl peroxide breaks down to benzoic acid and oxygen upon contact with skin, neither of which is toxic. A suitable range of concentration over which benzoyl peroxide can be used in the present composition is from about 2.5% to about 5%.
- oxygen-releasing agents that that are preferably used in the materials or methods of this disclosure include, but are not limited to hydrogen peroxide, carbamide peroxide, or benzoyl peroxide. Inclusion of other forms of peroxides (e.g. organic or inorganic peroxides) should be avoided due to their increased toxicity and their unpredictable reaction with the photodynamic energy transfer.
- Oxygen-releasing agents can be provided in powder, liquid or gel form. Alternatively, the oxygen-releasing agents may also be applied to the tissue site separately to the composition. Alternatively, the composition may include an amount of oxygen-releasing agent, which is augmented by the separate application of oxygen-releasing agents to the treatment site.
- additional components may optionally be included, or used in combination with the biophotonic compositions as described herein.
- additional components include, but are not limited to, healing factors, growth factors, antimicrobials, wrinkle fillers (e.g. botox, hyaluronic acid or polylactic acid), collagens, anti-virals, anti-fungals, antibiotics, drugs, and/or agents that promote collagen synthesis.
- healing factors, growth factors, antimicrobials, wrinkle fillers e.g. botox, hyaluronic acid or polylactic acid
- collagens e.g. botox, hyaluronic acid or polylactic acid
- anti-virals e.g. botox, hyaluronic acid or polylactic acid
- collagens e.g. botox, hyaluronic acid or polylactic acid
- anti-virals e.g. botox, hyaluronic acid or polylactic acid
- collagens e.g. botox, hyaluronic
- Healing factors comprise compounds that promote or enhance the healing or regenerative process of the tissues on the application site of the composition.
- During the photoactivation of the composition of the present disclosure there is an increase of the absorption of molecules at the treatment site by the skin, wound or the mucosa. An augmentation in the blood flow at the site of treatment is observed for an extent period of time.
- An increase in the lymphatic drainage and a possible change in the osmotic equilibrium due to the dynamic interaction of the free radical cascades can be enhanced or even fortified with the inclusion of healing factors.
- Suitable healing factors include, but are not limited to:
- Hyaluronic acid is a non-sulfated glycosaminoglycan, distributed widely throughout connective, epithelial and neural tissues. It is one of the primary components of the extracellular matrix, and contributes significantly to cell proliferation and migration.
- Hyaluronan is a major component of the skin, where it is involved in tissue repair. While it is abundant in extracellular matrices, it contributes to tissues hydrodynamics, movement and proliferation of cells and participates in a wide number of cell surface receptor interactions, notably those including primary receptor CD44.
- the hyaluronidases enzymes degrade hyaluronan.
- hyaluronidase-like enzymes there are at least seven types of hyaluronidase-like enzymes in humans, several of which are tumor suppressors.
- the degradation products of hyaluronic acid, the oligosaccharides and the very-low molecular weight hyaluronic acid exhibit pro-angiogenic properties.
- hyaluronan fragments but not the native high molecular mass of hyaluronan, can induce inflammatory responses in macrophages and dendritic cells in tissue injury.
- Hyaluronic acid is well suited to biological applications targeting the skin. Due to its high biocompatibility, it is used to stimulate tissue regeneration.
- hyaluronic acid appearing in the early stages of healing to physically create room for white blood cells that mediate the immune response. It is used in the synthesis of biological scaffolds for wound healing applications and in wrinkle treatment.
- a suitable range of concentration over which hyaluronic acid can be used in the present composition is from about 0.001% to about 3%.
- Glucosamine is one of the most abundant monosaccharides in human tissues and a precursor in the biological synthesis of glycosilated proteins and lipids. It is commonly used in the treatment of osteoarthritis. The common form of glucosamine used is its sulfate salt. Glucosamine shows a number of effects including an anti-inflammatory activity, stimulation of the synthesis of proteoglycans and the synthesis of proteolytic enzymes. A suitable range of concentration over which glucosamine can be used in the present composition is from about 0.01% to about 3%.
- Allantoin is a diureide of glyosilic acid. It has keratolytic effect, increases the water content of the extracellular matrix, enhances the desquamation of the upper layers of dead (apoptotic) skin cells, and promotes skin proliferation and wound healing.
- saffron can act as both a chromophore and a healing factor.
- Other healing agents can also be included such as growth factors.
- Antimicrobials kill microbes or inhibit their growth or accumulation.
- Exemplary antimicrobials (or antimicrobial agent) are recited in U.S. Patent Application Publications 20040009227 and 20110081530.
- Suitable antimicrobials for use in the methods of the present disclosure include, but not limited to, phenolic and chlorinated phenolic and chlorinated phenolic compounds, resorcinol and its derivatives, bisphenolic compounds, benzoic esters (parabens), halogenated carbonilides, polymeric antimicrobial agents, thazolines, trichloromethylthioimides, natural antimicrobial agents (also referred to as “natural essential oils”), metal salts, and broad-spectrum antibiotics.
- phenolic and chlorinated phenolic antimicrobial agents that can be used in the disclosure include, but are not limited to: phenol; 2-methyl phenol; 3-methyl phenol; 4-methyl phenol; 4-ethyl phenol; 2,4-dimethyl phenol; 2,5-dimethyl phenol; 3,4-dimethyl phenol; 2,6-dimethyl phenol; 4-n-propyl phenol; 4-n-butyl phenol; 4-n-amyl phenol; 4-tert-amyl phenol; 4-n-hexyl phenol; 4-n-heptyl phenol; mono- and poly-alkyl and aromatic halophenols; p-chlorophenyl; methyl p-chlorophenol; ethyl p-chlorophenol; n-propyl p-chlorophenol; n-butyl p-chlorophenol; n-amyl p-chlorophenol; sec-amyl p-chlorophenol; n
- Resorcinol and its derivatives can also be used as antimicrobial agents.
- Specific resorcinol derivatives include, but are not limited to: methyl resorcinol; ethyl resorcinol; n-propyl resorcinol; n-butyl resorcinol; n-amyl resorcinol; n-hexyl resorcinol; n-heptyl resorcinol; n-octyl resorcinol; n-nonyl resorcinol; phenyl resorcinol; benzyl resorcinol; phenylethyl resorcinol; phenylpropyl resorcinol; p-chlorobenzyl resorcinol; 5-chloro-2,4-dihydroxydiphenyl methane; 4′-chloro-2,4-dihydroxydiphen
- bisphenolic antimicrobial agents that can be used in the disclosure include, but are not limited to: 2,2′-methylene bis-(4-chlorophenol); 2,4,4′trichloro-2′-hydroxy-diphenyl ether, which is sold by Ciba Geigy, Florham Park, N.J. under the tradename Triclosan®; 2,2′-methylene bis-(3,4,6-trichlorophenol); 2,2′-methylene bis-(4-chloro-6-bromophenol); bis-(2-hydroxy-3,5-dichlorop-henyl) sulphide; and bis-(2-hydroxy-5-chlorobenzyl)sulphide.
- benzoie esters that can be used in the disclosure include, but are not limited to: methylparaben; propylparaben; butylparaben; ethylparaben; isopropylparaben; isobutylparaben; benzylparaben; sodium methylparaben; and sodium propylparaben.
- halogenated carbanilides that can be used in the disclosure include, but are not limited to: 3,4,4′-trichlorocarbanilides, such as 3-(4-chlorophenyl)-1-(3,4-dichlorphenyl)urea sold under the tradename Triclocarban® by Ciba-Geigy, Florham Park, N.J.; 3-trifluoromethyl-4,4′-dichlorocarbanilide; and 3,3′,4-trichlorocarbanilide.
- 3,4,4′-trichlorocarbanilides such as 3-(4-chlorophenyl)-1-(3,4-dichlorphenyl)urea sold under the tradename Triclocarban® by Ciba-Geigy, Florham Park, N.J.
- Triclocarban® 3-trifluoromethyl-4,4′-dichlorocarbanilide
- 3,3′,4-trichlorocarbanilide 3,3′,4-trichlor
- polymeric antimicrobial agents that can be used in the disclosure include, but are not limited to: polyhexamethylene biguanide hydrochloride; and poly(iminoimidocarbonyl iminoimidocarbonyl iminohexamethylene hydrochloride), which is sold under the tradename Vantocil® IB.
- thazolines that can be used in the disclosure include, but are not limited to that sold under the tradename Micro-Check®; and 2-n-octyl-4-isothiazolin-3-one, which is sold under the tradename Vinyzene® IT-3000 DIDP.
- trichloromethylthioimides that can be used in the disclosure include, but are not limited to: N-(trichloromethylthio)phthalimide, which is sold under the tradename Fungitrol®; and N-trichloromethylthio-4-cyclohexene-1,2-dicarboximide, which is sold under the tradename Vancide®.
- Specific natural antimicrobial agents that can be used in the disclosure include, but are not limited to, oils of: anise; lemon; orange; rosemary; wintergreen; thyme; lavender; cloves; hops; tea tree; citronella; wheat; barley; lemongrass; cedar leaf; cedarwood; cinnamon; fleagrass; geranium; sandalwood; violet; cranberry; eucalyptus; vervain; peppermint; gum benzoin; basil; fennel; fir; balsam; menthol; ocmea origanuin; hydastis; carradensis; Berberidaceac daceae; Ratanhiae longa ; and Curcuma longa .
- Also included in this class of natural antimicrobial agents are the key chemical components of the plant oils which have been found to provide antimicrobial benefit. These chemicals include, but are not limited to: anethol; catechole; camphene; thymol; eugenol; eucalyptol; ferulic acid; farnesol; hinokitiol; tropolone; limonene; menthol; methyl salicylate; carvacol; terpineol; verbenone; berberine; ratanhiae extract; caryophellene oxide; citronellic acid; curcumin; nerolidol; and geraniol.
- anethol catechole; camphene; thymol; eugenol; eucalyptol; ferulic acid; farnesol; hinokitiol; tropolone; limonene; menthol; methyl salicylate; carvacol; terpineo
- metal salts that can be used in the disclosure include, but are not limited to, salts of metals in groups 3a-5a, 3b-7b, and 8 of the periodic table.
- metal salts include, but are not limited to, salts of: aluminum; zirconium; zinc; silver; gold; copper; lanthanum; tin; mercury; bismuth; selenium; strontium; scandium; yttrium; cerium; praseodymiun; neodymium; promethum; samarium; europium; gadolinium; terbium; dysprosium; holmium; erbium; thalium; ytterbium; lutetium; and mixtures thereof.
- An example of the metal-ion based antimicrobial agent is sold under the tradename HealthShield®, and is manufactured by HealthShield Technology, Wakefield, Mass. [give other examples here e.g. smith and nephew]
- Specific broad-spectrum antimicrobial agents that can be used in the disclosure include, but are not limited to, those that are recited in other categories of antimicrobial agents herein.
- Additional antimicrobial agents that can be used in the methods of the disclosure include, but are not limited to: pyrithiones, and in particular pyrithione-including zinc complexes such as that sold under the tradename Octopirox®; dimethyldimethylol hydantoin, which is sold under the tradename Glydant®; methylchloroisothiazolinone/methylisothiazolinone, which is sold under the tradename Kathon CG®; sodium sulfite; sodium bisulfite; imidazolidinyl urea, which is sold under the tradename Germall 115®; diazolidinyl urea, which is sold under the tradename Germall 11®; benzyl alcohol v2-bromo-2-nitropropane-1,3-diol, which is sold under the tradename Bronopol®; formalin or formaldehyde; iodopropenyl butylcarbamate, which is sold under the tradename Polyphase P
- Additional antimicrobial agents that can be used in the methods of the disclosure include those disclosed by U.S. Pat. Nos. 3,141,321; 4,402,959; 4,430,381; 4,533,435; 4,625,026; 4,736,467; 4,855,139; 5,069,907; 5,091,102; 5,639,464; 5,853,883; 5,854,147; 5,894,042; and 5,919,554, and U.S. Pat. Appl. Publ. Nos. 20040009227 and 20110081530.
- Collagen is a fibrous protein produced in dermal fibroblast cells and forming 70% of the dermis. Collagen is responsible for the smoothing and firming of the skin. Therefore, when the synthesis of collagen is reduced, skin aging will occur, and so the firming and smoothing of the skin will be rapidly reduced. As a result, the skin will be flaccid and wrinkled. On the other hand, when metabolism of collagen is activated by the stimulation of collagen synthesis in the skin, the components of dermal matrices will be increased, leading to effects, such as wrinkle improvement, firmness improvement and skin strengthening. Thus, collagens and agents that promote collagen synthesis may also be useful in the present disclosure. Agents that promote collagen synthesis (i.e., pro-collagen synthesis agents) include amino acids, peptides, proteins, lipids, small chemical molecules, natural products and extracts from natural products.
- pro-collagen synthesis agents include amino acids, peptides, proteins, lipids, small chemical molecules, natural products and extracts from natural products.
- vitamin C examples include an ascorbic acid derivative such as L-ascorbic acid or sodium L-ascorbate, an ascorbic acid preparation obtained by coating ascorbic acid with an emulsifier or the like, and a mixture containing two or more of those vitamin Cs at an arbitrary rate.
- natural products containing vitamin C such as acerola and lemon may also be used.
- iron preparation examples include: an inorganic iron such as ferrous sulfate, sodium ferrous citrate, or ferric pyrophosphate; an organic iron such as heme iron, ferritin iron, or lactoferrin iron; and a mixture containing two or more of those irons at an arbitrary rate.
- inorganic iron such as ferrous sulfate, sodium ferrous citrate, or ferric pyrophosphate
- organic iron such as heme iron, ferritin iron, or lactoferrin iron
- natural products containing iron such as spinach or liver may also be used.
- examples of the collagen include: an extract obtained by treating bone, skin, or the like of a mammal such as bovine or swine with an acid or alkaline; a peptide obtained by hydrolyzing the extract with a protease such as pepsine, trypsin, or chymotrypsin; and a mixture containing two or more of those collagens at an arbitrary rate.
- Collagens extracted from plant sources may also be used.
- pro-collagen synthesis agents are described, for example, in U.S. Pat. Nos. 7,598,291, 7,722,904, 6,203,805, 5,529,769, etc, and U.S. Patent Application Publications 20060247313, 20080108681, 20110130459, 20090325885, 20110086060, etc.
- biophotonic compositions of the present disclosure have numerous uses. Without being bound by theory, the biophotonic compositions of the present disclosure may promote wound healing or tissue repair. The biophotonic compositions of the present disclosure may also be used to treat a skin disorder. The biophotonic compositions of the present disclosure may also be used to treat acne. The biophotonic compositions of the present disclosure may also be used for skin rejuvenation. The biophotonic compositions of the present disclosure may also be used for treating acute inflammation. Therefore, it is an objective of the present disclosure to provide a method for providing biophotonic therapy to a wound, where the method promotes wound healing. It is also an objective of the present disclosure to provide a method for providing biophotonic therapy to a skin tissue afflicted with acne, wherein the method is used to treat acne.
- the present disclosure provides a method for providing a biophotonic therapy to a wound, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a site of a wound, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the chromophore(s) of the biophotonic composition.
- the present disclosure provides a method for providing biophotonic therapy to a wound, comprising: topically applying a biophotonic composition comprising a first chromophore; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it limits leaching of the chromophore into the tissue during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the wound or tissue during treatment.
- the present disclosure provides a method for treating a wound or providing biophotonic therapy to a wound, comprising: topically applying a biophotonic composition comprising a first chromophore and a gelling agent to a site of a wound; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent blocks substantial leaching of the chromophores into the site of a wound during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the wound or tissue during treatment.
- the present disclosure provides a method for promoting skin rejuvenation.
- the present disclosure provides a method for providing skin rejuvenation, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to the skin, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the chromophore(s) of the biophotonic composition.
- the present disclosure provides a method for promoting skin rejuvenation comprising: topically applying a biophotonic composition comprising a first chromophore to skin; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it limits leaching of the chromophore into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the wound or tissue during treatment.
- the present disclosure provides a method for promoting skin rejuvenation, comprising: topically applying a biophotonic composition comprising a first chromophore and a gelling agent to skin; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it blocks substantial leaching of the chromophores into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the skin during treatment.
- the present disclosure to provide a method for providing biophotonic therapy to a target skin tissue afflicted with a skin disorder.
- the present disclosure provides a method for providing a biophotonic therapy to a target skin tissue, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a target skin tissue, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the chromophore(s) of the biophotonic composition.
- the present disclosure provides a method for treating a skin disorder, comprising: topically applying a biophotonic composition to a target skin tissue afflicted with the skin disorder, wherein the biophotonic composition comprises a first chromophore; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it limits leaching of the chromophore into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the skin during treatment.
- the present disclosure provides a method for treating a skin disorder, comprising: topically applying a biophotonic composition comprising a first chromophore and a gelling agent to skin afflicted with the skin disorder; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it blocks substantial leaching of the chromophores into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the skin during treatment.
- the present disclosure to provide a method for providing biophotonic therapy to a target skin tissue afflicted with acne.
- the present disclosure provides a method for providing a biophotonic therapy to a target skin tissue afflicted with acne, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a target skin tissue, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the chromophore(s) of the biophotonic composition.
- the present disclosure provides a method for treating acne, comprising: topically applying a biophotonic composition to a target skin tissue afflicted with acne, wherein the biophotonic composition comprises a first chromophore; illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it limits leaching of the chromophore into tissue during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the tissue during treatment.
- the present disclosure provides a method for treating acne, comprising: topically applying a biophotonic composition comprising a first chromophore to skin afflicted with acne; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it blocks substantial leaching of the chromophores into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the wound or tissue during treatment.
- the present disclosure provides a method for treating acute inflammation, comprising: topically applying a biophotonic composition to a target skin tissue with acute inflammation, wherein the biophotonic composition comprises a first chromophore; illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it limits leaching of the chromophore into tissue during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the tissue during treatment.
- the present disclosure provides a method for treating acute inflammation, comprising: topically applying a biophotonic composition comprising a first chromophore to skin afflicted with acute inflammation; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it blocks substantial leaching of the chromophores into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the wound or tissue during treatment.
- the biophotonic compositions suitable for use in the methods of the present disclosure may be selected from any of the embodiments of the biophotonic compositions described above.
- the biophotonic compositions useful in the method of the present disclosure may comprise a first chromophore that undergoes at least partial photobleaching upon application of light.
- the first chromophore may absorb at a wavelength of about 200-800 nm, 200-700 nm, 200-600 nm or 200-500 nm.
- the first chromophore absorbs at a wavelength of about 200-600 nm.
- the first chromophore absorbs light at a wavelength of about 200-300 nm, 250-350 nm, 300-400 nm, 350-450 nm, 400-500 nm, 450-650 nm, 600-700 nm, 650-750 nm or 700-800 nm.
- suitable biophotonic compositions for the methods of the present disclosure may further comprise at least one additional chromophore (e.g., a second chromophore).
- the absorption spectrum of the second chromophore overlaps at least about 80%, 50%, 40%, 30%, or 20% with the emission spectrum of the first chromophore.
- the first chromophore has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second chromophore.
- Illumination of the biophotonic composition with light may cause a transfer of energy from the first chromophore to the second chromophore. Subsequently, the second chromophore may emit energy as fluorescence and/or generate reactive oxygen species.
- energy transfer caused by the application of light is not accompanied by concomitant generation of heat, or does not result in tissue damage.
- the biophotonic compositions useful for the present methods comprise a gelling agent.
- the gelling agent may include, but is not limited to, lipids such as glycerin, glycols such as propylene glycol, hyaluronic acid, glucosamine sulfate, cellulose derivatives (hydroxypropyl methylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methylcellulose and the like), noncellulose polysaccharides (galactomannans, guar gum, carob gum, gum arabic, sterculia gum, agar, alginates and the like) and acrylic acid polymers.
- the first chromophore is present in an amount of about 0.01-40% per weight of the composition, and the second chromophore is present in an amount of about 0.001-40% per weight of the composition.
- the first chromophore is present in an amount of about 0.01-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition.
- the second chromophore is present in an amount of about 0.001-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition.
- the total weight per weight of chromophore or combination of chromophores may be in the amount of about 0.01-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the composition.
- any source of actinic light can be used. Any type of halogen, LED or plasma arc lamp or laser may be suitable.
- the primary characteristic of suitable sources of actinic light will be that they emit light in a wavelength (or wavelengths) appropriate for activating the one or more photoactivators present in the composition.
- an argon laser is used.
- a potassium-titanyl phosphate (KTP) laser e.g. a GreenLightTM laser
- sunlight may be used.
- a LED photocuring device is the source of the actinic light.
- the source of the actinic light is a source of light having a wavelength between about 200 to 800 nm.
- the source of the actinic light is a source of visible light having a wavelength between about 400 and 600 nm.
- the source of actinic light should have a suitable power density.
- Suitable power density for non-collimated light sources are in the range from about 1 mW/cm 2 to about 200 mW/cm 2 .
- Suitable power density for laser light sources are in the range from about 0.5 mW/cm 2 to about 0.8 mW/cm 2 .
- the light has an energy at the subject's skin, wound or mucosa surface of between about 1 mW/cm 2 and about 500 mW/cm 2 , 1-300 mW/cm 2 , or 1-200 mW/cm 2 , wherein the energy applied depends at least on the condition being treated, the wavelength of the light, the distance of the subject's skin from the light source, and the thickness of the biophotonic composition.
- the light at the subject's skin is between about 1-40 mW/cm 2 , or 20-60 mW/cm 2 , or 40-80 mW/cm 2 , or 60-100 mW/cm 2 , or 80-120 mW/cm 2 , or 100-140 mW/cm 2 , or 120-160 mW/cm 2 , or 140-180 mW/cm 2 , or 160-200 mW/cm 2 , or 110-240 mW/cm 2 , or 110-150 mW/cm 2 , or 190-240 mW/cm 2 .
- a mobile device can be used to activate embodiments of the biophotonic composition of the present disclosure, wherein the mobile device can emit light having an emission spectra which overlaps an absorption spectra of the chromophore in the biophotonic composition.
- the mobile device can have a display screen through which the light is emitted and/or the mobile device can emit light from a flashlight which can photoactivate the biophotonic composition.
- a display screen on a television or a computer monitor can be used to activate the biophotonic composition, wherein the display screen can emit light having an emission spectra which overlaps an absorption spectra of a photoactive agent in the photoactivatable composition.
- the first and/or the second chromophore can be photoactivated by ambient light which may originate from the sun or other light sources. Ambient light can be considered to be a general illumination that comes from all directions in a room that has no visible source. In certain embodiments, the first and/or the second chromophore (when present) can be photoactivated by light in the visible range of the electromagnetic spectrum. Exposure times to ambient light may be longer than that to direct light.
- different sources of light can be used to activate the biophotonic compositions, such as a combination of ambient light and direct LED light.
- the duration of the exposure to actinic light required will be dependent on the surface of the treated area, the type of lesion, trauma or injury that is being treated, the power density, wavelength and bandwidth of the light source, the thickness of the biophotonic composition, and the treatment distance from the light source.
- the illumination of the treated area by fluorescence may take place within seconds or even fragment of seconds, but a prolonged exposure period is beneficial to exploit the synergistic effects of the absorbed, reflected and reemitted light on the composition of the present disclosure and its interaction with the tissue being treated.
- the time of exposure to actinic light of the tissue, skin or wound on which the biophotonic composition has been applied is a period between 1 minute and 5 minutes.
- the time of exposure to actinic light of the tissue, skin or wound on which the biophotonic composition has been applied is a period between 1 minute and 5 minutes.
- the biophotonic composition is illuminated for a period between 1 minute and 3 minutes.
- light is applied for a period of 1-30 seconds, 15-45 seconds, 30-60 seconds, 0.75-1.5 minutes, 1-2 minutes, 1.5-2.5 minutes, 2-3 minutes, 2.5-3.5 minutes, 3-4 minutes, 3.5-4.5 minutes, 4-5 minutes, 5-10 minutes, 10-15 minutes, 15-20 minutes, 20-25 minutes, or 20-30 minutes.
- the source of actinic light is in continuous motion over the treated area for the appropriate time of exposure.
- multiple applications of the biophotonic composition and actinic light are performed.
- the tissue, skin or wound is exposed to actinic light at least two, three, four, five or six times.
- a fresh application of the biophotonic composition is applied before exposure to actinic light.
- the biophotonic composition may be optionally removed from the site of treatment following application of light.
- the biophotonic composition is left on the treatment site for more than 30 minutes, more than one hour, more than 2 hours, more than 3 hours. It can be illuminated with ambient light.
- the composition can be covered with a transparent or translucent cover such as a polymer film, or an opaque cover which can be removed before illumination.
- the biophotonic compositions and methods of the present disclosure may be used to treat wounds and promote wound healing.
- Wounds that may be treated by the biophotonic compositions and methods of the present disclosure include, for example, injuries to the skin and subcutaneous tissue initiated in different ways (e.g., pressure ulcers from extended bed rest, wounds induced by trauma, wounds induced by conditions such as periodontitis) and with varying characteristics.
- the present disclosure provides biophotonic compositions and methods for treating and/or promoting the healing of, for example, burns, incisions, excisions, lacerations, abrasions, puncture or penetrating wounds, surgical wounds, contusions, hematomas, crushing injuries, sores and ulcers.
- Biophotonic compositions and methods of the present disclosure may be used to treat and/or promote the healing of chronic cutaneous ulcers or wounds, which are wounds that have failed to proceed through an orderly and timely series of events to produce a durable structural, functional, and cosmetic closure.
- chronic wounds can be classified into three categories based on their etiology: pressure ulcers, neuropathic (diabetic foot) ulcers and vascular (venous or arterial) ulcers.
- the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing, Grade I-IV ulcers.
- the application provides compositions suitable for use with Grade II ulcers in particular. Ulcers may be classified into one of four grades depending on the depth of the wound: i) Grade I: wounds limited to the epithelium; ii) Grade II: wounds extending into the dermis; iii) Grade III: wounds extending into the subcutaneous tissue; and iv) Grade IV (or full-thickness wounds): wounds wherein bones are exposed (e.g., a bony pressure point such as the greater trochanter or the sacrum).
- the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of a diabetic ulcer.
- Diabetic patients are prone to foot and other ulcerations due to both neurologic and vascular complications.
- Peripheral neuropathy can cause altered or complete loss of sensation in the foot and/or leg.
- Diabetic patients with advanced neuropathy lose all ability for sharp-dull discrimination. Any cuts or trauma to the foot may go completely unnoticed for days or weeks in a patient with neuropathy.
- a patient with advanced neuropathy loses the ability to sense a sustained pressure insult, as a result, tissue ischemia and necrosis may occur leading to for example, plantar ulcerations.
- Microvascular disease is one of the significant complications for diabetics which may also lead to ulcerations.
- compositions and methods of treating a chronic wound are provided here in, where the chronic wound is characterized by diabetic foot ulcers and/or ulcerations due to neurologic and/or vascular complications of diabetes.
- the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of a pressure ulcer.
- Pressure ulcer includes bed sores, decubitus ulcers and ischial tuberosity ulcers and can cause considerable pain and discomfort to a patient.
- a pressure ulcer can occur as a result of a prolonged pressure applied to the skin.
- pressure can be exerted on the skin of a patient due to the weight or mass of an individual.
- a pressure ulcer can develop when blood supply to an area of the skin is obstructed or cut off for more than two or three hours. The affected skin area can turns red, becomes painful and can become necrotic. If untreated, the skin breaks open and can become infected.
- An ulcer sore is therefore a skin ulcer that occurs in an area of the skin that is under pressure from e.g. lying in bed, sitting in a wheelchair, and/or wearing a cast for a prolonged period of time.
- Pressure ulcer can occur when a person is bedridden, unconscious, unable to sense pain, or immobile.
- Pressure ulcer often occur in boney prominences of the body such as the buttocks area (on the sacrum or iliac crest), or on the heels of foot.
- the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of acute wounds.
- Additional types of wound that can be treated by the biophotonic compositions and methods of the present disclosure include those disclosed by U.S. Pat. Appl. Publ. No. 20090220450, which is incorporated herein by reference.
- Wound healing in adult tissues is a complicated reparative process.
- the healing process for skin involves the recruitment of a variety of specialized cells to the site of the wound, extracellular matrix and basement membrane deposition, angiogenesis, selective protease activity and re-epithelialization.
- inflammatory phase which typically occurs from the moment a wound occurs until the first two to five days, platelets aggregate to deposit granules, promoting the deposit of fibrin and stimulating the release of growth factors.
- Leukocytes migrate to the wound site and begin to digest and transport debris away from the wound.
- monocytes are also converted to macrophages, which release growth factors for stimulating angiogenesis and the production of fibroblasts.
- Fibroblasts which are key cell types in this phase, proliferate and synthesize collagen to fill the wound and provide a strong matrix on which epithelial cells grow. As fibroblasts produce collagen, vascularization extends from nearby vessels, resulting in granulation tissue. Granulation tissue typically grows from the base of the wound. Epithelialization involves the migration of epithelial cells from the wound surfaces to seal the wound. Epithelial cells are driven by the need to contact cells of like type and are guided by a network of fibrin strands that function as a grid over which these cells migrate. Contractile cells called myofibroblasts appear in wounds, and aid in wound closure. These cells exhibit collagen synthesis and contractility, and are common in granulating wounds.
- the final phase of wound healing which can take place from three weeks up to several years, collagen in the scar undergoes repeated degradation and re-synthesis. During this phase, the tensile strength of the newly formed skin increases.
- Scarring is a consequence of the healing process in most adult animal and human tissues.
- Scar tissue is not identical to the tissue which it replaces, as it is usually of inferior functional quality.
- the types of scars include, but are not limited to, atrophic, hypertrophic and keloidal scars, as well as scar contractures.
- Atrophic scars are flat and depressed below the surrounding skin as a valley or hole.
- Hypertrophic scars are elevated scars that remain within the boundaries of the original lesion, and often contain excessive collagen arranged in an abnormal pattern.
- Keloidal scars are elevated scars that spread beyond the margins of the original wound and invade the surrounding normal skin in a way that is site specific, and often contain whorls of collagen arranged in an abnormal fashion.
- normal skin consists of collagen fibers arranged in a basket-weave pattern, which contributes to both the strength and elasticity of the dermis.
- an approach is needed that not only stimulates collagen production, but also does so in a way that reduces scar formation.
- the biophotonic compositions and methods of the present disclosure promote the wound healing by promoting the formation of substantially uniform epithelialization; promoting collagen synthesis; promoting controlled contraction; and/or by reducing the formation of scar tissue.
- the biophotonic compositions and methods of the present disclosure may promote wound healing by promoting the formation of substantially uniform epithelialization.
- the biophotonic compositions and methods of the present disclosure promote collagen synthesis.
- the biophotonic compositions and methods of the present disclosure promote controlled contraction.
- the biophotonic compositions and methods of the present disclosure promote wound healing, for example, by reducing the formation of scar tissue or by speeding up the wound closure process.
- the biophotonic compositions and methods of the present disclosure promote wound healing, for example, by reducing inflammation.
- the biophotonic composition can be used following wound closure to optimize scar revision.
- the biophotonic composition may be applied at regular intervals such as once a week, or at an interval deemed appropriate by the physician.
- the biophotonic composition may be soaked into a woven or non-woven material or a sponge and applied as a wound dressing.
- a light source such as LEDs or waveguides, may be provided within or adjacent the wound dressing or the composition to illuminate the composition.
- the waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymethylmethacrylate.
- Adjunct therapies which may be topical or systemic such as antibiotic treatment may also be used.
- Negative pressure assisted wound closure can also be used to assist wound closure and/or to remove the composition.
- biophotonic compositions and methods of the present disclosure may be used to treat acne.
- acne means a disorder of the skin caused by inflammation of skin glands or hair follicles.
- the biophotonic compositions and methods of the disclosure can be used to treat acne at early pre-emergent stages or later stages where lesions from acne are visible. Mild, moderate and severe acne can be treated with embodiments of the biophotonic compositions and methods.
- Early pre-emergent stages of acne usually begin with an excessive secretion of sebum or dermal oil from the sebaceous glands located in the pilosebaceous apparatus. Sebum reaches the skin surface through the duct of the hair follicle.
- biophotonic compositions and methods of the present disclosure can be used to treat one or more of skin irritation, pitting, development of scars, comedones, inflammatory papules, cysts, hyperkeratinazation, and thickening and hardening of sebum associated with acne.
- the composition may be soaked into or applied to a woven or non-woven material or a sponge and applied as a mask to body parts such as the face, body, arms, legs etc.
- a light source such as LEDs or waveguides, may be provided within or adjacent the mask or the composition to illuminate the composition.
- the waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymethylmethacrylate.
- the biophotonic compositions and methods of the present disclosure may be used to treat various types of acne.
- Some types of acne include, for example, acne vulgaris, cystic acne, acne atrophica, bromide acne, chlorine acne, acne conglobata, acne cosmetica, acne detergicans, epidemic acne, acne estivalis, acne fulminans, halogen acne, acne indurata, iodide acne, acne keloid, acne mechanica, acne papulosa, pomade acne, premenstrual acne, acne pustulosa, acne scorbutica, acne scrofulosorum, acne urticata, acne varioliformis, acne venenata, propionic acne, acne excoriee, gram negative acne, steroid acne, and nodulocystic acne.
- the dermis is the second layer of skin, containing the structural elements of the skin, the connective tissue.
- connective tissue There are various types of connective tissue with different functions. Elastin fibers give the skin its elasticity, and collagen gives the skin its strength.
- the junction between the dermis and the epidermis is an important structure.
- the dermal-epidermal junction interlocks forming finger-like epidermal ridges.
- the cells of the epidermis receive their nutrients from the blood vessels in the dermis.
- the epidermal ridges increase the surface area of the epidermis that is exposed to these blood vessels and the needed nutrients.
- the aging of skin comes with significant physiological changes to the skin.
- the generation of new skin cells slows down, and the epidermal ridges of the dermal-epidermal junction flatten out. While the number of elastin fibers increases, their structure and coherence decrease. Also the amount of collagen and the thickness of the dermis decrease with the ageing of the skin.
- Collagen is a major component of the skin's extracellular matrix, providing a structural framework. During the aging process, the decrease of collagen synthesis and insolubilization of collagen fibers contribute to a thinning of the dermis and loss of the skin's biomechanical properties.
- the physiological changes to the skin result in noticeable aging symptoms often referred to as chronological-, intrinsic- and photo-ageing.
- the skin becomes drier, roughness and scaling increase, the appearance becomes duller, and most obviously fine lines and wrinkles appear.
- Other symptoms or signs of skin aging include, but are not limited to, thinning and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, a blotchy complexion.
- the dermal-epidermal junction is a basement membrane that separates the keratinocytes in the epidermis from the extracellular matrix, which lies below in the dermis.
- This membrane consists of two layers: the basal lamina in contact with the keratinocytes, and the underlying reticular lamina in contact with the extracellular matrix.
- the basal lamina is rich in collagen type IV and laminin, molecules that play a role in providing a structural network and bioadhesive properties for cell attachment.
- Laminin is a glycoprotein that only exists in basement membranes. It is composed of three polypeptide chains (alpha, beta and gamma) arranged in the shape of an asymmetric cross and held together by disulfide bonds. The three chains exist as different subtypes which result in twelve different isoforms for laminin, including Laminin-1 and Laminin-5
- the dermis is anchored to hemidesmosomes, specific junction points located on the keratinocytes, which consist of a-integrins and other proteins, at the basal membrane keratinocytes by type VII collagen fibrils.
- Laminins, and particularly Laminin-5 constitute the real anchor point between hemidesmosomal transmembrane proteins in basal keratinocytes and type VII collagen.
- Laminin-5 synthesis and type VII collagen expression have been proven to decrease in aged skin. This causes a loss of contact between dermis and epidermis, and results in the skin losing elasticity and becoming saggy.
- compositions and methods of the present disclosure promote skin rejuvenation.
- the compositions and methods of the present disclosure promote collagen synthesis.
- the compositions and methods of the present disclosure may reduce, diminish, retard or even reverse one or more signs of skin aging including, but not limited to, appearance of fine lines or wrinkles, thin and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, or a blotchy complexion.
- the compositions and methods of the present disclosure may induce a reduction in pore size, enhance sculpturing of skin subsections, and/or enhance skin translucence.
- the biophotonic compositions and methods of the present disclosure may be used to treat skin disorders that include, but are not limited to, erythema, telangiectasia, actinic telangiectasia, psoriasis, skin cancer, pemphigus, sunburn, dermatitis, eczema, rashes, impetigo, lichen simplex chronicus, rhinophyma, perioral dermatitis, pseudofolliculitis barbae, drug eruptions, erythema multiforme, erythema nodosum, granuloma annulare, actinic keratosis, purpura, alopecia areata, aphthous stomatitis, drug eruptions, dry skin, chapping, xerosis, ichthyosis vulgaris, fungal infections, parasitic infection, herpes simplex, intertrigo, keloids, keratoses, milia, moluscum conta
- Dermatitis includes contact dermatitis, atopic dermatitis, seborrheic dermatitis, nummular dermatitis, generalized exfoliative dermatitis, and statis dermatitis.
- Skin cancers include melanoma, basal cell carcinoma, and squamous cell carcinoma.
- Some skin disorders present various symptoms including redness, flushing, burning, scaling, pimples, papules, pustules, comedones, macules, nodules, vesicles, blisters, telangiectasia, spider veins, sores, surface irritations or pain, itching, inflammation, red, purple, or blue patches or discolorations, moles, and/or tumors.
- biophotonic compositions and methods of the present disclosure can be used to treat redness, flushing, burning, scaling, pimples, papules, pustules, comedones, macules, nodules, vesicles, blisters, telangiectasia, spider veins, sores, surface irritations or pain, itching, acute inflammation, red, purple, or blue patches or discolorations, moles, and/or tumors.
- Acute inflammation can present itself as pain, heat, redness, swelling and loss of function. It includes those seen in allergic reactions such as insect bites e.g.; mosquito, bees, wasps, poison ivy, post-ablative treatment.
- the composition may be soaked into or applied to a woven or non-woven material or a sponge and applied as a mask to body parts to treat skin disorders.
- a light source such as LEDs or waveguides, may be provided within or adjacent the mask or the composition to illuminate the composition.
- the waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymethylmethacrylate.
- kits for preparing and/or applying any of the compositions of the present disclosure may include a biophotonic topical composition comprising at least a first chromophore in a gelling agent.
- the composition may include an oxygen-releasing agent present in amount about 0.01%-40%, 0.01%-1.0%, 0.5%-10.0%, 5%-15%, 10%-20%, 15%-25%, 20%-30%, 15.0%-25%, 20%-30%, 25%-35%, or 30%-40% by weight to weight of the composition.
- the chromophore may be present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition.
- the first chromophore may be present in an amount of about 0.01-40% per weight of the composition
- a second chromophore may be present in an amount of about 0.01-40% per weight of the composition.
- the first chromophore is present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition.
- the second chromophore is present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition.
- the amount of chromophore or combination of chromophores may be in the amount of about 0.05-40.05% per weight of the composition.
- the amount of chromophore or combination of chromophores may be in the amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the composition.
- the kit includes more than one composition, for example, a first and a second composition.
- the first composition may include the oxygen-releasing agent and the second composition may include the first chromophore in the gelling agent.
- the first chromophore may have an emission wavelength between about 400 nm and about 570 nm.
- the oxygen-releasing agent may be present in the first composition in an amount of about 0.01%-1.0%, 0.5%-10.0%, 5%-15%, 10%-20%, 15%-25%, 20%-30%, 15.0%-25%, 20%-30%, 25%-35%, 30%-40% or 35%-45% by weight to weight of the first composition.
- the chromophore may be present in the second composition in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the second composition.
- the first chromophore may be present in an amount of about 0.01-40% per weight of the second composition
- a second chromophore may be present in an amount of about 0.0001-40% per weight of the second composition.
- the first chromophore is present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the second composition.
- the second chromophore is present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the second composition.
- the amount of chromophore or combination of chromophores may be in the amount of about 0.05-40.05% per weight of the second composition.
- the amount of chromophore or combination of chromophores may be in the amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the second chromophore.
- the first composition may comprise the first chromophore in a liquid or as a powder
- the second composition may comprise a gelling composition for thickening the first composition.
- the oxygen-releasing agent may be contained in the second composition or in a third composition in the kit.
- the kit includes containers comprising the compositions of the present disclosure.
- the kit includes a first container comprising a first composition that includes the oxygen-releasing agent, and a second container comprising a second composition that includes at least one chromophore.
- the containers may be light impermeable, air-tight and/or leak resistant. Exemplary containers include, but are not limited to, syringes, vials, or pouches.
- the first and second compositions may be included within the same container but separated from one another until a user mixes the compositions.
- the container may be a dual-chamber syringe where the contents of the chambers mix on expulsion of the compositions from the chambers.
- the pouch may include two chambers separated by a frangible membrane.
- one component may be contained in a syringe and injectable into a container comprising the second component.
- the biophotonic composition may also be provided in a container comprising one or more chambers for holding one or more components of the biophotonic composition, and an outlet in communication with the one or more chambers for discharging the biophotonic composition from the container.
- discharging the biophotonic compositions causes the components of the composition to mix to form a biophotonic composition which has less than 15% leaching properties.
- the kit comprises a systemic or topical drug for augmenting the treatment of the composition.
- the kit may include a systemic or topical antibiotic or hormone treatment for acne treatment or wound healing.
- the kit may comprise a further component which is a dressing.
- the dressing may be a porous or semi-porous structure for receiving the biophotonic composition.
- the dressing may comprise woven or non-woven fibrous materials.
- the kit may further comprise a light source such as a portable light with a wavelength appropriate to activate the chromophore in the biophotonic composition.
- a light source such as a portable light with a wavelength appropriate to activate the chromophore in the biophotonic composition.
- the portable light may be battery operated or re-chargeable.
- the kit may further comprise one or more waveguides.
- a flexstation 384 II spectrometer was used with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance and emission spectra are shown in FIGS. 8 a and 8 b which indicate an energy transfer between the chromophores in the chromophore combination.
- a flexstation 384 II spectrometer was used with the following parameters: mode fluorescence, excitation 460 nm, emission spectra 465-750 nm. The absorbance and emission spectra are shown in FIGS. 9 a and 9 b which indicate an energy transfer between the chromophores in the chromophore combination, in the absence of an oxygen-releasing agent.
- a randomized, split-face clinical trial of 12 weeks was performed on 90 patients (ages 14-30) having moderate to severe facial acne.
- Moderate facial acne was defined as having “an Investigator's Global Assessment (IGA) of 3 with 20-40 inflammatory lesions and no more than 1 nodule”.
- Severe facial acne was defined as having “an IGA of 4 with more than 40 inflammatory lesions with the presence of more than 2 nodules and/or presence of sever erythema and inflammatory scarring type lesion”.
- IGA Investigator's Global Assessment
- Severe facial acne was defined as having “an IGA of 4 with more than 40 inflammatory lesions with the presence of more than 2 nodules and/or presence of sever erythema and inflammatory scarring type lesion”.
- a biophotonic composition comprising Eosin Y and an oxygen-releasing agent, and exposed to light from an LED source (peak wavelength range 400-470 nm) for about 5 minutes.
- FIG. 14 is an emission spectrum showing the intensity over time of the light being emitted from the biophotonic composition.
- FIG. 5 depicts an experimental setup of an in vitro release test for evaluating leaching of the chromophore(s) or other components (e.g., oxygen releasing agents) from the biophotonic compositions of the present disclosure.
- a 2 mm thick layer of the biophotonic composition is applied on the surface of a 3 cm diameter polycarbonate (PC) membrane with pore size of 3 p.m.
- PC polycarbonate
- the membrane is in direct contact with phosphate saline buffer (PBS) or PBS containing 4% bovine serum albumin (PBS/BSA) contained in a closed compartment (i.e., the receptor compartment).
- PBS phosphate saline buffer
- PBS/BSA bovine serum albumin
- the biophotonic composition is then illuminated with an activating light for an appropriate period of time (e.g., 5 min) at an appropriate distance (e.g. 5 cm from the light source).
- Samples (100 ⁇ l ⁇ 2) are then taken from the receptor compartment at different time points (e.g., at 5, 10, 20, and 30 min), and evaluated for concentration of the chromophore(s) or any other components of the biophotonic composition using spectrophotometry or any other suitable method.
- a wavelength of 517 nm may be used.
- concentration of the chromophore may then be calculated based on the chromophore standards of known concentration prepared in PBS or PBS/BSA and measured at the same time.
- peroxide i.e., an indicator of the oxygen releasing agents
- peroxide test sticks e.g. Quantofix Peroxide 25, Sigma Aldrich.
- Table 9 summarizes leaching data for different biophotonic compositions according to the present disclosure.
- the amount of hydrogen peroxide found in the receptor compartment was very low for all compositions in Table 9.
- the detection method of chromophore by spectrophotometry can measure the chromophore concentration from 0.2 ⁇ g/ml.
- the release of chromophores increased overtime but was less than 15% even after 30 minutes incubation which is longer than a treatment time according to embodiments of the present disclosure.
- a human skin model was developed to assess the angiogenic potential of the biophotonic composition of the present disclosure. Briefly, a biophotonic composition a biophotonic composition comprising Eosin Y and Erythrosine was placed on top of a human skin model containing fibroblasts and keratinocytes. The skin model and the composition were separated by a nylon mesh of 20 micron pore size. The composition was then irradiated with blue light (‘activating light’) for 5 minutes at a distance of 5 cm from the light source. The activating light consisted of light emitted from an LED lamp having an average peak wavelength of about 400-470 nm, and a power intensity measured at 10 cm of 7.7 J/cm 2 to 11.5 J/cm 2 .
- activating light consisted of light emitted from an LED lamp having an average peak wavelength of about 400-470 nm, and a power intensity measured at 10 cm of 7.7 J/cm 2 to 11.5 J/cm 2 .
- the biophotonic composition Upon illumination with the activating light, the biophotonic composition emitted fluorescent light ( FIG. 4 ). Since the biophotonic composition was in limited contact with the cells, the fibroblasts and keratinocytes were exposed mainly to the activating light and the fluorescent light emitted from the biophotonic composition. Conditioned media from the treated human 3D skin model were then applied to human aortic endothelial cells previously plated in matrigel. The formation of tubes by endothelial cells was observed and monitored by microscopy after 24 hours.
- FIG. 15 is an emission spectrum showing the intensity over time of the light being emitted from the biophotonic composition.
- Wounded and unwounded 3D human skin models were used to assess the potential of a biophotonic composition of the present disclosure to trigger distinct protein secretion and gene expression profiles. Briefly, a biophotonic composition comprising Eosin and Erythrosine were placed on top of wounded and unwounded 3D human skin models cultured under different conditions (with growth factors, 50% growth factors and no growth factors). The skin models and the composition were separated by a nylon mesh of 20 micron pore size. Each skin model-composition combination was then irradiated with blue light (‘activating light’) for 5 minutes at a distance of 5 cm from the light source.
- activating light blue light
- the activating light consisted of light emitted from an LED lamp having an average peak wavelength of about 440-470 nm, a power density of 60-150 mW/cm2 at 5 cm, and a total intensity after 5 minutes of about 18-39 J/cm2.
- the controls consisted of 3D skin models not illuminated with light.
- the effect of the light treatment on unwounded skin models has a much lower impact at the cellular level than on wounded skin insert, which suggests an effect at the cellular effect level of the light treatment. It seems to accelerate the inflammatory phase of the wound healing process. Due to the lack of other cell types such as macrophages in the 3D skin model, the anti-inflammatory feed-back is absent and may explain the delay in wound closure. Cytoxicity was not observed in the light treatments.
- A “light alone”—light, according to an embodiment of the present disclosure, comprising light from an LED source having an average peak wavelength of about 400-490 nm at a power density of less than 150 mW/cm 2 for 5 minutes; and a placebo formulation
- B “light+gel”—light as in (A) plus biophotonic gel according to an embodiment of the present disclosure
- C “gel alone”—biophotonic gel as in (B) and a sham light (white LED light); and
- D 0.1% retinoic based cream.
- Skin biopsies were obtained before treatment and 12 weeks after treatment from the treatment site. Histological samples of the skin biopsies were graded by an independent and experienced pathologist blinded to the treatment assignment. The results are presented in Table 8 below and show that the light treatment with and without the biophotonic gel, according to embodiments of the present disclosure, showed a 287% and 400% increase from the baseline, respectively, in collagen clusters as viewed through Gomori Trichome staining, in the treated areas of skin. There were no serious adverse events. There was no reported or observed photosensitivity, inflammation or pain.
- a caudally based rectangular flap was elevated in the back of Wistar rats.
- a silicone sheet was inserted beneath the skin flap to prevent adhesion and reperfusion of the flap from the underlying tissues.
- a biophotonic gel according to an embodiment of the present disclosure (including chromophores and hydroscopic agents) was applied onto the dorsal flap in a thin monolayer (2 mm) and exposed to a light, for 5 minutes, from a LED light source having a peak wavelength of about 440-470 nm and a bandwidth of about 18-23 nm. The biophotonic gel was removed and skin specimens were collected from different areas in the flap for histological analyses nine days post-treatment.
- the treatment group was associated with a significant (P ⁇ 0.05) decrease in the coagulative necrosis in the epidermis and an increase of the fibrillar stroma (dermis) as compared to the control group.
- compositions of the present disclosure including a carbamide gel do not stain white paper.
- a composition containing Eosin and another hydrophilic polymer (starch) in combination with silica particles did stain the paper.
- a 3 mm thick layer of a biophotonic composition according to an embodiment of the present disclosure comprising a fluorescent chromophore in a gel according to an embodiment of the present disclosure was applied on the skin of hands of volunteers with different skin types and illuminated for 5 minutes with a blue LED light having a power density of about 50 to 150 mW/cm 2 at a distance of 5 cm from the light.
- a thermometer probe was placed within the composition, at the surface of the skin, and the temperature was monitored in real-time during illumination of the composition. The skin temperature with no composition but the same light illumination was also measured for the same volunteers.
- the fluorescence spectra of biophotonic compositions with different concentrations of chromophores were investigated using a spectrophotometer and an activating blue light. Exemplary fluorescence spectra of Eosin Y and Fluorescein are presented in FIG. 12 . It was found that emitted fluorescence from the chromophore increases rapidly with increasing concentration but slows down to a plateau with further concentration increase. Activating light passing through the composition decreases with increasing chromophore composition as more is absorbed by the chromophores. Therefore, the concentration of chromophores in biophotonic compositions of the present disclosure can be selected according to a required ratio and level of activating light and fluorescence treating the tissue based on this example. In some embodiments, it will be after the zone of rapid increase, i.e. between 0.5 and 1 mg/mL for Eosin Y ( FIG. 12 ).
- concentration can be selected according to required activating light and fluorescence. In some embodiments, it will be after zone of rapid increase, i.e. between 0.5 and 1 mg/mL for Eosin Y ( FIG. 12 ).
- Rose Bengal is known to have a high quantum yield in terms of oxygen production in the presence of oxygen-releasing agents when photoactivated by green light.
- Eosin Y is known to have a high quantum yield in terms of emitted fluorescent light when photoactivated and can be at least partially activated by blue light when in a gel.
- Photoactivated Eosin Y does not have a high quantum yield in terms of oxygen production in the presence of oxygen-releasing agents.
- FIG. 13 left panel, shows a photograph of the composition when viewed under a light microscope ( ⁇ 250) before exposure to an activating light. Very few bubbles were seen in both compositions. Following illumination with blue light a dramatic increase in bubbles was seen with the composition comprising a combination of Eosin Y and Rose Bengal, but not with the composition comprising Rose Bengal alone. This suggests that there is a transfer of energy from Eosin Y to Rose Bengal leading to the form oxygen species.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Dermatology (AREA)
- Birds (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Emergency Medicine (AREA)
- Inorganic Chemistry (AREA)
- Gerontology & Geriatric Medicine (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Materials Engineering (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Cosmetics (AREA)
- Radiation-Therapy Devices (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
The present disclosure provides biophotonic topical compositions and methods useful in phototherapy. In particular, the biophotonic topical compositions of the present disclosure are substantially resistant to leaching such that very low amounts of chromophore(s) present in the biophotonic composition leach out of the composition. The biophotonic compositions and the methods of the present disclosure are useful for promoting wound healing and skin rejuvenation, as well as treating acne and various skin disorders.
Description
- This application claims the benefit of U.S. Provisional Application Nos. 61/636,480, filed Apr. 20, 2012; 61/701,502, filed Sep. 14, 2012; 61/636,574 filed on Apr. 20, 2012; 61/701,510, filed on Sep. 14, 2012; 61/636,577, filed on Apr. 20, 2012; 61/701,513, filed on Sep. 14, 2012; and 61/766,611, filed on Feb. 19, 2013; which applications are hereby incorporated by reference in their entireties.
- Phototherapy has recently been recognized as having wide range of applications in both the medical, cosmetic and dental fields for use in surgeries, therapies and examinations. For example, phototherapy has been developed to treat cancers and tumors with lessened invasiveness. Phototherapy has also been used to disinfect target sites as an antimicrobial treatment. Phototherapy has also been found to promote wound healing.
- Photodynamic therapy is a type of phototherapy which involves a step of systemic administration or uptake of a photosensitive agent into the diseased or injured tissue, which step is followed by site-specific application of activating light (photodynamic therapy). Such regimens, however, are often associated with undesired side-effects, including systemic or localized toxicity due to the direct contact of the photosensitive agents with the tissues. Moreover, such existing regimens often demonstrate low therapeutic efficacy due to, for example, the poor uptake of the photosensitive agents into the target tissues. Therefore, it is an object of the present disclosure to provide new and improved compositions and methods useful in phototherapy.
- The present disclosure provides topical biophotonic compositions and methods useful in phototherapy. In particular, the biophotonic compositions of the present disclosure may contain a gelling agent that provides a barrier such that the chromophore(s) or photosensitive agent(s) and other components of the topical biophotonic compositions are not in substantial contact with the target tissues, and/or do not penetrate the target tissues. Put another way, the biophotonic compositions of the present disclosure may contain a gelling agent, which provides a barrier rendering the compositions substantially resistant to leaching. The use of such biophotonic topical compositions in phototherapy would therefore not involve substantial direct contact of the target tissues with a photosensitizing agent or chromophore, which may be potentially toxic to or may cause undesired side effects at the tissues.
- In some aspects, there is provided a topical biophotonic composition comprising at least a first chromophore and a gelling agent, wherein the biophotonic composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue. In some embodiments, the biophotonic composition is substantially resistant to leaching such that less than 15% of total chromophore amount leaches out of the biophotonic composition into tissue when in contact with the tissue for at least about, 5 minutes, about 10 minutes, about 15 minutes, about 20 minutes, about 25 minutes or about 30 minutes. In some embodiments, less than 15% of total chromophore amount leaches out of the biophotonic composition during a treatment time. The treatment time can be up to about 5 minutes, about 10 minutes, about 15 minutes, about 20 minutes, about 25 minutes, about 30 minutes.
- In some aspects, there is provided a topical biophotonic composition comprising at least a first chromophore and a gelling agent, wherein the first chromophore is photoactive in the composition, and wherein the composition is substantially resistant to leaching such that less than 15% of total chromophore amount can leach out into tissue during a treatment time in which the composition is topically applied onto tissue. The treatment time may comprise the total length of time that the composition is in contact with tissues, or if different, the time of light illumination of the composition.
- In some aspects, there is provided a topical biophotonic composition comprising at least a first chromophore and a gelling agent, wherein the biophotonic composition is a gel or a semi-solid and is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue when in contact with tissue for at least about 5 minutes.
- In some aspects, there is provided a topical biophotonic composition comprising at least a first chromophore and a gelling agent, wherein the biophotonic composition is substantially translucent and is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue when in contact with tissue for at least about 5 minutes. By substantially translucent is meant having a transmission of more than about 20%.
- In another aspect, there is provided a biophotonic composition comprising a first chromophore, wherein the composition is encapsulated in a membrane which limits leaching of the first chromophore such that less than 15% of the total chromophore amount leaches out into tissue when in contact with the tissue for at least about 5 minutes. The biophotonic composition may also comprise a carrier medium which may be a liquid, a gel or a semi-solid.
- In certain embodiments of any of the foregoing or following, the biophotonic topical composition allows less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1%, or essentially none of said chromophore content to leach out of the biophotonic composition.
- In certain embodiments of any of the foregoing or following, the biophotonic topical composition further comprises a second chromophore. In certain embodiments of any of the foregoing or following, the first chromophore of the biophotonic topical composition has an emission spectrum that overlaps at least 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70% with an absorption spectrum of the second chromophore, when present. In some embodiments, the first chromophore of the biophotonic topical composition has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second chromophore when present.
- In certain embodiments of any of the foregoing or following, the gelling agent comprises a hygroscopic substance. In addition or in the alternative, the gelling agent may also be a hydrophilic polymer, a hydrated polymer or a lipid. In certain embodiments, the gelling agent comprises one or more of glycerin, glycols such as propylene glycol, polyacrylic acid polymers, hyaluronic acid, glucosamine sulphate or gelatin.
- In certain embodiments of any of the foregoing or following, the gelling agent is a high molecular weight, cross-linked polyacrylic acid polymer having a viscosity in the range of about 20,000-80,000, 20,000-100,000, 25,000-90,000, 30,000-80,000, 30,000-70,000, 30,000-60,000, 25,000-40,000 cP. In certain embodiments, the cross-linked polyacrylic acid polymer is a carbomer selected from the group consisting of, but not limited to, Carbopol® 71G NF, 971P NF, 974P NF, 980 NF, 981 NF, 5984 EP, ETD 2020NF, Ultrez 10 NF, 934 NF, 934P NF, 940 NF, 941 NF, or 1342 NF.
- In certain embodiments of any of the foregoing or following, the biophotonic composition is substantially translucent and/or transparent. In certain embodiment, the biophotonic composition has a translucency of at least 70% at 460 nm. In other embodiments, the composition has a translucency of at least 20%, 30%, 40%, 50%, 60%, 70%, 75%, 85%, 90%, 95% or 100% at 460 nm.
- In certain embodiments of any of the foregoing or following, the biophotonic composition is a gel or a semi-solid.
- In certain embodiments of any of the foregoing or following, the biophotonic composition is encapsulated in a transparent, impermeable membrane, or a breathable membrane which allows permeation of gases but not liquids. The membrane may comprise a lipid.
- In certain embodiments of any of the foregoing or following, the biophotonic composition further comprises an oxygen-generating agent. In some embodiments, the oxygen-generating agent comprises hydrogen peroxide, carbamide peroxide, benzoyl peroxide, or water.
- In certain embodiments of any of the foregoing or following, at least one of the chromophores, for example, the first chromophore, photobleaches during illumination with light. In certain embodiments, at least one of the chromophores, for example, the first chromophore emits fluorescence upon illumination with light.
- In certain embodiments of any of the foregoing or following, illumination of the biophotonic topical composition with light causes a transfer of energy from the first chromophore to the second chromophore. In some embodiments, the second chromophore emits fluorescence and/or generates reactive oxygen species after absorbing energy from the first chromophore.
- In certain embodiments of any of the foregoing or following, the biophotonic composition does not generate a substantial amount of heat following illumination with light. In some embodiments, the energy emitted by the biophotonic composition does not cause tissue damage.
- In certain embodiments of any of the foregoing or following, the first chromophore of the biophotonic topical composition absorbs light at a wavelength of 200-600 nm, or 400-800 nm.
- In certain embodiments of any of the foregoing or following, the first chromophore absorbs light at a wavelength in the range of the visible spectrum.
- In certain embodiments of any of the foregoing or following, the biophotonic composition comprises a second chromophore, which absorbs light at a wavelength in the range of the visible spectrum. In some embodiments, the second chromophore has an absorption wavelength that is relatively longer than that of the first chromophore, for example, 10-100 nm, 20-80 nm, 25-70 nm, or 30-60 nm longer.
- In certain embodiments of any of the foregoing or following, the first chromophore of the biophotonic topical composition is present in an amount of 0.01-40% per weight of the composition, and the second chromophore, when present, is present in an amount of 0.001-40% per weight of the composition. In certain embodiments, the total weight per weight of chromophore or combination of chromophores may be in the amount of about 0.001-40.05% per weight of the composition.
- In certain embodiments of any of the foregoing or following, the biophotonic composition may be applied to or impregnated into a material such as a pad, a dressing, a woven or non-woven fabric or the like. The impregnated material may be used as a mask (e.g. a face mask) or a dressing.
- In certain embodiments of any of the foregoing or following, the biophotonic composition further comprises at least one waveguide within or adjacent to the composition. The waveguide can be a particle, a fibre or a fibrillar network made of a material which can transmit and/or emit light.
- In certain embodiments of any of the foregoing or following, the composition does not comprise silica.
- In certain embodiments of any of the foregoing or following, the first or second chromophore is a fluorescent chromophore (‘fluorophore’).
- In certain embodiments of any of the foregoing or following, the first or second chromophore is a fluorescent xanthene. In some embodiments, the first or second chromophore is selected from Eosin Y, Erythrosin B, Fluorescein, Rose Bengal and Phloxin B. In certain embodiments, the biophotonic composition comprises at least two of Eosin Y, Erythrosin B, Fluorescein, Rose Bengal and Phloxin B.
- In certain embodiments of any of the foregoing or following, the first chromophore is Eosin Y. In other embodiments, the first chromophore is Fluorescein. In other embodiments, the first chromophore is Rose Bengal. In some embodiments, the biophotonic composition comprises Eosin and Fluorescein. In other embodiments, the biophotonic composition comprises Eosin and Rose Bengal. In other embodiments, the biophotonic composition comprises Fluorescein and Rose Bengal. In other embodiments, the biophotonic composition comprises Fluorescein and Rose Bengal.
- In another aspect, there is provided a method for providing biophotonic therapy to a wound, comprising: applying a biophotonic composition to a wound, wherein the biophotonic composition comprises at least at least a first chromophore and a gelling agent; and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into tissue. In certain embodiments, the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during a treatment time in which the composition is topically applied onto tissue. In some embodiments, the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- In some embodiments of the method for providing biophotonic therapy to a wound, the method promotes wound healing. In certain embodiments of the method, the wound as described herein includes for example chronic or acute wounds, such as diabetic foot ulcers, pressure ulcers, venous ulcers or amputations. In some embodiments of the method for providing biophotonic therapy to a wound, the method promotes reduction of scar tissue formation.
- In yet another aspect, there is provided a method for biophotonic treatment of acne comprising: applying a biophotonic composition to a target skin tissue, wherein the biophotonic composition comprises at least a first chromophore and a gelling agent; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into tissue. In certain embodiments, the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during a treatment time in which the composition is topically applied onto tissue. In some embodiments, the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- In certain embodiments of the method for biophotonic treatment acne, the treatment can be applied to the skin tissue, such as on the face, once, twice, three times, four times, five times or six times a week, daily, or at any other frequency. The total treatment time can be one week, two weeks, three weeks, four weeks, five weeks, six weeks, seven weeks, eight weeks, nine weeks, ten weeks, eleven weeks, twelve weeks, or any other length of time deemed appropriate. In certain embodiments, the face may be split into separate areas (cheeks, forehead), and each area treated separately. For example, the composition may be applied topically to a first portion, and that portion illuminated with light, and the biophotonic composition then removed. Then the composition is applied to a second portion, illuminated and removed. Finally, the composition is applied to a third portion, illuminated and removed.
- In certain embodiments of the method for biophotonic treatment of wounds, the treatment can be applied in or on the wound once, twice, three times, four times, five times or six times a week, daily, or at any other frequency. The total treatment time can be one week, two weeks, three weeks, four weeks, five weeks, six weeks, seven weeks, eight weeks, nine weeks, ten weeks, eleven weeks, twelve weeks, or any other length of time deemed appropriate.
- The disclosed methods for treating acne or wounds may further include, for example, administering a systemic or topical drug before, during or after the biophotonic treatment. The drug may be an antibiotic, a hormone treatment, or any other pharmaceutical preparation which may help to treat acne or wounds. The combination of a systemic treatment together with a topical biophotonic treatment can reduce the duration of systemic treatment time.
- In yet another aspect, there is provided a method for biophotonic treatment of a skin disorder comprising: applying a biophotonic composition to a target skin tissue, wherein the biophotonic composition comprises at least first chromophore and a gelling agent; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into tissue. In certain embodiments, the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during a treatment time in which the composition is topically applied onto tissue. In some embodiments, the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- In yet another aspect, the present disclosure provides a method for promoting skin rejuvenation, comprising: topically applying a biophotonic composition to a target skin tissue, wherein the biophotonic composition comprises at least a first chromophore and a gelling agent; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into tissue. In certain embodiments, the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during a treatment time in which the composition is topically applied onto tissue. In some embodiments, the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- In yet another aspect, the present disclosure provides a method for cosmetic skin treatment, comprising: topically applying a biophotonic composition to a target skin tissue, wherein the biophotonic composition comprises at least a first chromophore and gelling agent; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into tissue. In certain embodiments, the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during a treatment time in which the composition is topically applied onto tissue. In some embodiments, the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- In yet another aspect, the present disclosure provides a method for treatment of periodontal disease, comprising: topically applying a biophotonic composition to a periodontal pocket, wherein the biophotonic composition comprises at least a first chromophore and a gelling agent; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the composition into periodontal tissue. In certain embodiments, the composition is substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into periodontal tissue during a treatment time in which the composition is topically applied onto periodontal tissue. In some embodiments, the biophotonic is substantially resistant to leaching such that less than about 15% of total chromophore content leaches out of the biophotonic composition during a treatment time of at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 25 minutes or at least 30 minutes.
- In certain embodiments of any method of the present disclosure, the biophotonic composition is illuminated for any time period per treatment in which the biophotonic composition is activated, for example 1 to 30 minutes. The distance of the light source from the biophotonic composition can be any distance which can deliver an appropriate light power density to the biophotonic composition and/or the skin tissue, for example 5, 10, 15 or 20 cm. The biophotonic composition is applied topically at any suitable thickness. Typically, the biophotonic composition is applied topically to skin or wounds at a thickness of at least about 2 mm, about 2 mm to about 10 mm.
- In certain embodiments, the method of the present disclosure comprises a step of illuminating the biophotonic composition for a period of at least 30 seconds, 2 minutes, 3 minutes, 5 minutes, 7 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, or 30 minutes. In some embodiments, the biophotonic composition is illuminated for a period of at least 3 minutes.
- In certain embodiments of the methods of the present disclosure, the biophotonic composition is removed from the site of a treatment following application of light. Accordingly, the biophotonic composition is removed from the site of treatment within at least 30 seconds, 2 minutes, 3 minutes, 5 minutes, 7 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes or 30 minutes after application. In some embodiments, the biophotonic composition is illuminated for a period of at least 3 minutes. In some embodiments, the biophotonic composition is removed after a period of at least 3 minutes post application of the biophotonic composition to treatment site.
- In certain other embodiments, the biophotonic composition is kept in place for up to one, two or three weeks, and illuminated with light which may include ambient light at various intervals. In this case, the composition may be covered up in between exposure to light. For example, the biophotonic composition may be soaked in a dressing and placed inside or over a wound and be left in place for an extended period of time (e.g. more than one day).
-
FIG. 1 depicts absorption of light in the various layers of the skin (Samson et al. Evidence Report/Technology Assessment 2004, 111, pages 1-97). -
FIG. 2 illustrates the Stokes' shift. -
FIG. 3 illustrates the absorption and emission spectra of donor and acceptor chromophores. The spectral overlap between the absorption spectrum of the acceptor chromophore and the emission spectrum of the donor chromophore is also shown. -
FIG. 4 is a schematic of a Jablonski diagram that illustrates the coupled transitions involved between a donor emission and acceptor absorbance. -
FIG. 5 depicts the experimental setup of an in vitro release test for evaluating leaching of the chromophore(s) of the biophotonic compositions (Example 6). -
FIGS. 6 a and 6 b are absorbance and emission spectra, respectively, of a composition according to certain embodiments of the present disclosure which includes Eosin and Fluorescein in a gel (Example 1). -
FIGS. 7 a and 7 b are absorbance and emission spectra, respectively, of a composition according to certain embodiments of the present disclosure which includes Eosin and Fluorescein in an aqueous solution (Example 2). -
FIGS. 8 a and 8 b are absorbance and emission spectra, respectively, of a composition according to certain embodiments of the present disclosure which includes Eosin, Fluorescein and Rose Bengal in a gel (Example 3). -
FIGS. 9 a and 9 b are absorbance and emission spectra, respectively, of a composition according to certain embodiments of the present disclosure which includes Eosin and Fluorescein in an aqueous solution (Example 4). -
FIG. 10 illustrates a summary of inflammatory lesion count and absolute changes by hemiface (Example 5). -
FIG. 11 shows the effect of a biophotonic composition of the disclosure on Ki67 expression (Example 10). -
FIG. 12 shows that emitted fluorescence from chromophore in a composition increases rapidly with increasing composition but slows down to a plateau with further concentration increase for Eosin Y (top) and Fluorescein (bottom) (Example 13). -
FIG. 13 shows that Eosin and Rose Bengal act in a synergistic manner (Example 14). -
FIG. 14 is an emission spectrum showing the intensity over time of the light being emitted from the biophotonic composition tested in Example 5. -
FIG. 15 is an emission spectrum showing the intensity over time of the light being emitted from the biophotonic composition tested in Example 7. - Phototherapy regimens have been developed to promote wound healing, rejuvenate facial skins and treat various skin disorders. However, these methods require direct application of a photosensitive agent (or chromophore) to the target skin and/or uptake of the photosensitive agent (or chromophore) into the skin cells. As mentioned above, the direct contact of the photosensitive agent with the tissue can lead to undesired side-effects, including cellular damage/destruction and systemic or localized toxicity to the patient. Moreover, many existing phototherapy regimens often demonstrate low therapeutic efficacy due to, for example, the poor update of the photosensitive agents into the skin cells the target site. For this reason, may regimens require a wait time of between about one and 72 hours to allow the internalization of the photosensitizer.
- The present disclosure provides biophotonic compositions including a photoactive exogenous chromophore and methods useful for promoting wound healing, cosmetic treatment of skin such as skin rejuvenation, treating acne and treating other skin disorders, treating acute inflammation, which are distinguished from conventional photodynamic therapy. Biophotonic therapy using these compositions does not rely on internalization of the chromophore into cells or substantial contact with the cells or target tissues. Therefore, the undesired side effects caused by direct contact may be reduced, minimized, or prevented. At most, the chromophore has surface contact with the tissue to which the composition is applied.
- Before continuing to describe the present disclosure in further detail, it is to be understood that this disclosure is not limited to specific compositions or process steps, as such may vary. It must be noted that, as used in this specification and the appended claims, the singular form “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise.
- As used herein, the term “about” in the context of a given value or range refers to a value or range that is within 20%, preferably within 10%, and more preferably within 5% of the given value or range.
- It is convenient to point out here that “and/or” where used herein is to be taken as specific disclosure of each of the two specified features or components with or without the other. For example “A and/or B” is to be taken as specific disclosure of each of (i) A, (ii) B and (iii) A and B, just as if each is set out individually herein.
- “Biophotonic” means the generation, manipulation, detection and application of photons in a biologically relevant context. In other words, biophotonic compositions exert their physiological effects primarily due to the generation and manipulation of photons. “Biophotonic composition” is a composition as described herein that may be activated by light to produce photons for biologically relevant applications.
- “Topical composition” means a composition to be applied to body surfaces, such as the skin, mucous membranes, vagina, oral cavity, internal surgical wound sites, and the like. A topical composition may be in the form of, including, but not limited to, a cream, gel, ointment, lotion, levigate, solution, paste, putty, bioadhesive, salve, milk, impregnated material such as a pad, sheet, fabric or fibres, dressings, spray, suspension, foam, or the like.
- Terms “chromophore”, “photoactivating agent” and “photoactivator” are used herein interchangeably. A chromophore means a chemical compound, when contacted by light irradiation, is capable of absorbing the light. The chromophore readily undergoes photoexcitation and can then transfer its energy to other molecules or emit it as light.
- “Photobleaching” means the photochemical destruction of a chromophore.
- “Leaching” means the release of one or more components of a biophotonic composition (e.g., the chromophore(s)) from the composition to the surrounding environment such as for example the wound site or into the tissue being treated with the composition).
- The term “actinic light” is intended to mean light energy emitted from a specific light source (e.g., lamp, LED, or laser) and capable of being absorbed by matter (e.g. the chromophore or photoactivator defined above). In a preferred embodiment, the actinic light is visible light.
- As used herein, a “hygroscopic” substance is a substance capable of taking up water, for example, by absorption or adsorption even at relative humidity as low as 50%, at room temperature (e.g. about 25° C.).
- “Impermeable membrane” means that the material contained within the membrane is sufficiently or substantially impermeable to the surrounding environment such that the migration of such material out of the membrane, and/or the migration of the environmental components (such as water) into the membrane, is so low as to having substantially no adverse impact on the function or activity of the materials retained within the membrane. The impermeable membrane may be ‘breathable’ in that gas flow through the membrane is permitted whilst the flow of liquid is not permitted. The impermeable membrane may also selectively allow the migration of some of the materials through the membrane but not others.
- “Wound” means an injury to any tissue, including for example, acute, subacute, delayed or difficult to heal wounds, and chronic wounds. Examples of wounds may include both open and closed wounds. Wounds include, for example, burns, incisions, excisions, lesions, lacerations, abrasions, puncture or penetrating wounds, surgical wounds, contusions, hematomas, crushing injuries, ulcers (such as for example pressure, venous, pressure or diabetic), wounds caused by periodontitis (inflammation of the periodontium).
- “Skin rejuvenation” means a process of reducing, diminishing, retarding or reversing one or more signs of skin aging. For instance, common signs of skin aging include, but are not limited to, appearance of fine lines or wrinkles, thin and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, or a blotchy complexion. According to the present disclosure, one or more of the above signs of aging may be reduced, diminished, retarded or even reversed by the compositions and methods of the present disclosure.
- The present disclosure provides biophotonic compositions. Biophotonic compositions are compositions that are, in a broad sense, activated by light (e.g., photons) of specific wavelength. These compositions contain at least one exogenous chromophore which is activated by light and accelerates the dispersion of light energy, which leads to light carrying on a therapeutic effect on its own, and/or to the photochemical activation of other agents contained in the composition (e.g., acceleration in the breakdown process of peroxide (an oxygen-releasing agent) when such compound is present in the composition or at the treatment site, leading to the formation of oxygen radicals, such as singlet oxygen).
- In some aspects, the present disclosure provides biophotonic compositions comprising at least a first chromophore and a gelling agent, wherein the composition is substantially resistant to leaching such that a low chromophore amount leaches out of the biophotonic composition into tissue during treatment. In other aspects, the present disclosure provides a first composition and a second composition, wherein the first composition comprises an oxygen-releasing agent and the second composition comprises one or more chromophores, which, when mixed with the first composition and subsequently activated by light, disperses the light energy, leading to the photochemical activation of the oxygen-releasing agent contained in the mixture, which may lead to the formation of oxygen radicals, such as singlet oxygen.
- When a chromophore absorbs a photon of a certain wavelength, it becomes excited. This is an unstable condition and the molecule tries to return to the ground state, giving away the excess energy. For some chromophores, it is favorable to emit the excess energy as light when transforming back to the ground state. This process is called fluorescence. The peak wavelength of the emitted fluorescence is shifted towards longer wavelengths compared to the absorption wavelengths due to loss of energy in the conversion process. This is called the Stokes' shift and is illustrated in
FIG. 2 . In the proper environment (e.g., in a biophotonic composition) much of this energy is transferred to the other components of the composition or to the treatment site directly. - Without being bound to theory, it is thought that fluorescent light emitted by photoactivated chromophores may have therapeutic properties due to its femto-, pico- or nano-second emission properties which may be recognized by biological cells and tissues, leading to favorable biomodulation. Furthermore, the emitted fluorescent light has a longer wavelength and hence a deeper penetration into the tissue than the activating light. Irradiating tissue with such a broad range of wavelengths, including in some embodiments the activating light which passes through the composition, may have different and complementary effects on the cells and tissues. Moreover, the generation of oxygen species by photoactivated chromophores has been observed by the inventors to cause micro-bubbling within the composition which can have a physical impact on the tissue to which it is applied, for example by dislodging biofilm and debridement of necrotic tissue or providing a pressure stimulation. The biofilm can also be pre-treated with an oxygen-releasing agent to weaken the biofilm before treating with the composition of the present disclosure.
- The biophotonic compositions of the present disclosure are substantially transparent/translucent and/or have high light transmittance in order to permit light dissipation into and through the composition. In this way, the area of tissue under the composition can be treated both with the fluorescent light emitted by the composition and the light irradiating the composition to activate it. The % transmittance of the biophotonic composition can be measured in the range of wavelengths from 250 nm to 800 nm using, for example, a Perkin-Elmer Lambda 9500 series UV-visible spectrophotometer. In some embodiments, transmittance of the compositions disclosed herein is measured at 460 nm.
- As transmittance is dependent upon thickness, the thickness of each sample can be measured with calipers prior to loading in the spectrophotometer. Transmittance values can be normalized to a thickness of 100 μm (or any thickness) according to:
-
- where t1=actual specimen thickness, t2=thickness to which transmittance measurements can be normalized.
- In some embodiments, the biophotonic composition has a transparency or translucency that exceeds 15%, 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, or 85% at 460 nm. In some embodiments, the transparency exceeds 70% at 460 nm, 86% at 460 nm, 87% at 460 nm, 88% at 460 nm, 89% at 460 nm, 90% at 460 nm, 91% at 460 nm, 92% at 460 nm, 93% at 460 nm, 94% at 460 nm, 95% at 460 nm, 96% at 460 nm, 97% at 460 nm, 98% at 460 nm or 99% at 460 nm.
- The biophotonic compositions of the present disclosure are for topical uses. These compositions may be described based on the components making up the composition. Additionally or alternatively, the compositions of the present disclosure have functional and structural properties and these properties may also be used to define and describe the compositions. Individual components of the composition of the present disclosure are detailed as below.
- (a) Chromophores
- The biophotonic topical compositions of the present disclosure comprise one or more chromophores, which can be considered exogenous, e.g., are not naturally present in skin or tissue.
- Suitable chromophores can be fluorescent dyes (or stains), although other dye groups or dyes (biological and histological dyes, food colorings, carotenoids, naturally occurring fluorescent and other dyes) can also be used. Suitable photoactivators can be those that are Generally Regarded As Safe (GRAS). Photoactivators which are not well tolerated by the skin or other tissues can be included in the biophotonic composition in an encapsulated form.
- In certain embodiments, the biophotonic topical composition of the present disclosure comprises a first chromophore which undergoes partial or complete photobleaching upon application of light. By photobleaching is meant a photochemical destruction of the chromophore which can generally be visualized as a loss of color.
- In some embodiments, the first chromophore absorbs at a wavelength in the range of the visible spectrum, such as at a wavelength of about 380-800 nm, 380-700, or 380-600 nm. In other embodiments, the first chromophore absorbs at a wavelength of about 200-800 nm, 200-700 nm, 200-600 nm or 200-500 nm. In one embodiment, the first chromophore absorbs at a wavelength of about 200-600 nm. In some embodiments, the first chromophore absorbs light at a wavelength of about 200-300 nm, 250-350 nm, 300-400 nm, 350-450 nm, 400-500 nm, 400-600 nm, 450-650 nm, 600-700 nm, 650-750 nm or 700-800 nm.
- It will be appreciated to those skilled in the art that optical properties of a particular chromophore may vary depending on the chromophore's surrounding medium. Therefore, as used herein, a particular chromophore's absorption and/or emission wavelength (or spectrum) corresponds to the wavelengths (or spectrum) measured in a biophotonic composition of the present disclosure.
- The biophotonic compositions disclosed herein may include at least one additional chromophore. Combining chromophores may increase photo-absorption by the combined dye molecules and enhance absorption and photo-biomodulation selectivity. This creates multiple possibilities of generating new photosensitive, and/or selective chromophores mixtures.
- When such multi-chromophore compositions are illuminated with light, energy transfer can occur between the chromophores. This process, known as resonance energy transfer, is a photophysical process through which an excited ‘donor’ chromophore (also referred to herein as first chromophore) transfers its excitation energy to an ‘acceptor’ chromophore (also referred to herein as second chromophore). The efficiency and directedness of resonance energy transfer depends on the spectral features of donor and acceptor chromophores. In particular, the flow of energy between chromophores is dependent on a spectral overlap reflecting the relative positioning and shapes of the absorption and emission spectra. For energy transfer to occur the emission spectrum of the donor chromophore overlap with the absorption spectrum of the acceptor chromophore (
FIG. 3 ). - Energy transfer manifests itself through decrease or quenching of the donor emission and a reduction of excited state lifetime accompanied also by an increase in acceptor emission intensity.
FIG. 4 is a Jablonski diagram that illustrates the coupled transitions involved between a donor emission and acceptor absorbance. - To enhance the energy transfer efficiency, the donor chromophore should have good abilities to absorb photons and emit photons. Furthermore, it is thought that the more overlap there is between the donor chromospheres' emission spectra and the acceptor chromophore's absorption spectra, the better a donor chromophore can transfer energy to the acceptor chromophore.
- In certain embodiments, the biophotonic topical composition of the present disclosure further comprises a second chromophore. In some embodiments, the first chromophore has an emission spectrum that overlaps at least about 80%, 50%, 40%, 30%, 20%, 10% with an absorption spectrum of the second chromophore. In one embodiment, the first chromophore has an emission spectrum that overlaps at least about 20% with an absorption spectrum of the second chromophore. In some embodiments, the first chromophore has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second chromophore.
- % spectral overlap, as used herein, means the % overlap of a donor chromophore's emission wavelength range with an acceptor chromophore's absorption wavelength rage, measured at spectral full width quarter maximum (FWQM). For example,
FIG. 3 shows the normalized absorption and emission spectra of donor and acceptor chromophores. The spectral FWQM of the acceptor chromophore's absorption spectrum is from about 60 nm (515 nm to about 575 nm). The overlap of the donor chromophore's spectrum with the absorption spectrum of the acceptor chromophore is about 40 nm (from 515 nm to about 555 nm). Thus, the % overlap can be calculated as 40 nm/60 nm×100=66.6%. - In some embodiments, the second chromophore absorbs at a wavelength in the range of the visible spectrum. In certain embodiments, the second chromophore has an absorption wavelength that is relatively longer than that of the first chromophore within the range of about 50-250, 25-150 or 10-100 nm.
- As discussed above, the application of light to the compositions of the present disclosure can result in a cascade of energy transfer between the chromophores. In certain embodiments, such a cascade of energy transfer provides photons that penetrate the epidermis, dermis and/or mucosa at the target tissue, including, such as, a site of wound, or a tissue afflicted with acne or a skin disorder. In some embodiments, such a cascade of energy transfer is not accompanied by concomitant generation of heat. In some other embodiments, the cascade of energy transfer does not result in tissue damage.
- Optionally, when the biophotonic topical composition comprises a first and a second chromophore, the first chromophore is present in an amount of about 0.01-40% per weight of the composition, and the second chromophore is present in an amount of about 0.001-40% per weight of the composition. In certain embodiments, the total weight per weight of chromophore or combination of chromophores may be in the amount of about 0.01-40.001% per weight of the composition. In certain embodiments, the first chromophore is present in an amount of about 0.01-1%, 0.01-2%, 0.05-1%, 0.05-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition. In certain embodiments, the second chromophore is present in an amount of about 0.001-1%, 0.001-2%, 0.001-0.01%, 0.01-0.1%, 0.1-1.0%, 1-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition. In certain embodiments, the total weight per weight of chromophore or combination of chromophores may be in the amount of about 0.01-1%, 0.01-2%, 0.05-2%, 0.5-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the composition.
- In some embodiments, the chromophore or chromophores are selected such that their emitted fluorescent light, on photoactivation, is within one or more of the green, yellow, orange, red and infrared portions of the electromagnetic spectrum, for example having a peak wavelength within the range of about 490 nm to about 800 nm. In certain embodiments, the emitted fluorescent light has a power density of between 0.005 to about 10 mW/cm2, about 0.5 to about 5 mW/cm2.
- Suitable chromophores that may be used in the biophotonic topical compositions of the present disclosure include, but are not limited to the following:
- Chlorophyll Dyes
- Exemplary chlorophyll dyes include but are not limited to chlorophyll a; chlorophyll b; oil soluble chlorophyll; bacteriochlorophyll a; bacteriochlorophyll b; bacteriochlorophyll c; bacteriochlorophyll d; protochlorophyll; protochlorophyll a;
amphiphilic chlorophyll derivative 1; andamphiphilic chlorophyll derivative 2. - Xanthene Derivatives
- Exemplary xanthene dyes include but are not limited to Eosin B (4′,5′-dibromo,2′,7′-dinitr-o-fluorescein, dianion); eosin Y; eosin Y (2′,4′,5′,7′-tetrabromo-fluoresc-ein, dianion); eosin (2′,4′,5′,7′-tetrabromo-fluorescein, dianion); eosin (2′,4′,5′,7′-tetrabromo-fluorescein, dianion) methyl ester; eosin (2′,4′,5′,7′-tetrabromo-fluorescein, monoanion) p-isopropylbenzyl ester; eosin derivative (2′,7′-dibromo-fluorescein, dianion); eosin derivative (4′,5′-dibromo-fluorescein, dianion); eosin derivative (2′,7′-dichloro-fluorescein, dianion); eosin derivative (4′,5′-dichloro-fluorescein, dianion); eosin derivative (2′,7′-diiodo-fluorescein, dianion); eosin derivative (4′,5′-diiodo-fluorescein, dianion); eosin derivative (tribromo-fluorescein, dianion); eosin derivative (2′,4′,5′,7′-tetrachlor-o-fluorescein, dianion); eosin; eosin dicetylpyridinium chloride ion pair; erythrosin B (2′,4′,5′,7′-tetraiodo-fluorescein, dianion); erythrosin; erythrosin dianion; erythiosin B; fluorescein; fluorescein dianion; phloxin B (2′,4′,5′,7′-tetrabromo-3,4,5,6-tetrachloro-fluorescein, dianion); phloxin B (tetrachloro-tetrabromo-fluorescein); phloxine B; rose bengal (3,4,5,6-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein, dianion); pyronin G, pyronin J, pyronin Y; Rhodamine dyes such as rhodamines include 4,5-dibromo-rhodamine methyl ester; 4,5-dibromo-rhodamine n-butyl ester; rhodamine 101 methyl ester; rhodamine 123; rhodamine 6G; rhodamine 6G hexyl ester; tetrabromo-rhodamine 123; and tetramethyl-rhodamine ethyl ester.
- Methylene Blue Dyes
- Exemplary methylene blue derivatives include but are not limited to 1-methyl methylene blue; 1,9-dimethyl methylene blue; methylene blue; methylene blue (16 .mu.M); methylene blue (14 .mu.M); methylene violet; bromomethylene violet; 4-iodomethylene violet; 1,9-dimethyl-3-dimethyl-amino-7-diethyl-a-mino-phenothiazine; and 1,9-dimethyl-3-diethylamino-7-dibutyl-amino-phenot-hiazine.
- Azo Dyes
- Exemplary azo (or diazo-) dyes include but are not limited to methyl violet, neutral red, para red (pigment red 1), amaranth (Azorubine S), Carmoisine (azorubine,
food red 3, acid red 14), allura red AC (FD&C 40), tartrazine (FD&C Yellow 5), orange G (acid orange 10), Ponceau 4R (food red 7), methyl red (acid red 2), and murexide-ammonium purpurate. - In some aspects of the disclosure, the one or more chromophores of the biophotonic composition disclosed herein can be independently selected from any of Acid black 1, Acid blue 22, Acid blue 93, Acid fuchsin, Acid green, Acid green 1, Acid green 5, Acid magenta, Acid orange 10, Acid red 26, Acid red 29, Acid red 44, Acid red 51, Acid red 66, Acid red 87, Acid red 91, Acid red 92, Acid red 94, Acid red 101, Acid red 103, Acid roseine, Acid rubin, Acid violet 19, Acid yellow 1, Acid yellow 9, Acid yellow 23, Acid yellow 24, Acid yellow 36, Acid yellow 73, Acid yellow S, Acridine orange, Acriflavine, Alcian blue, Alcian yellow, Alcohol soluble eosin, Alizarin, Alizarin blue 2RC, Alizarin carmine, Alizarin cyanin BBS, Alizarol cyanin R, Alizarin red S, Alizarin purpurin, Aluminon, Amido black 10B, Amidoschwarz, Aniline blue WS, Anthracene blue SWR, Auramine O, Azocannine B, Azocarmine G, Azoic diazo 5, Azoic diazo 48, Azure A, Azure B, Azure C, Basic blue 8, Basic blue 9, Basic blue 12, Basic blue 15, Basic blue 17, Basic blue 20, Basic blue 26, Basic brown 1, Basic fuchsin, Basic green 4, Basic orange 14, Basic red 2 (Saffranin O), Basic red 5, Basic red 9, Basic violet 2, Basic violet 3, Basic violet 4, Basic violet 10, Basic violet 14, Basic yellow 1, Basic yellow 2, Biebrich scarlet, Bismarck brown Y, Brilliant crystal scarlet 6R, Calcium red, Carmine, Carminic acid (acid red 4), Celestine blue B, China blue, Cochineal, Coelestine blue, Chrome violet CG, Chromotrope 2R, Chromoxane cyanin R, Congo corinth, Congo red, Cotton blue, Cotton red, Croceine scarlet, Crocin, Crystal ponceau 6R, Crystal violet, Dahlia, Diamond green B, DiOC6, Direct blue 14, Direct blue 58, Direct red, Direct red 10, Direct red 28, Direct red 80, Direct yellow 7, Eosin B, Eosin Bluish, Eosin, Eosin Y, Eosin yellowish, Eosinol, Erie garnet B, Eriochrome cyanin R, Erythrosin B, Ethyl eosin, Ethyl green, Ethyl violet, Evans blue, Fast blue B, Fast green FCF, Fast red B, Fast yellow, Fluorescein, Food green 3, Gallein, Gallamine blue, Gallocyanin, Gentian violet, Haematein, Haematine, Haematoxylin, Helio fast rubin BBL, Helvetia blue, Hematein, Hematine, Hematoxylin, Hoffman's violet, Imperial red, Indocyanin green, Ingrain blue, Ingrain blue 1, Ingrain yellow 1, INT, Kermes, Kermesic acid, Kernechtrot, Lac, Laccaic acid, Lauth's violet, Light green, Lissamine green SF, Luxol fast blue, Magenta 0, Magenta I, Magenta II, Magenta III, Malachite green, Manchester brown, Martius yellow, Merbromin, Mercurochrome, Metanil yellow, Methylene azure A, Methylene azure B, Methylene azure C, Methylene blue, Methyl blue, Methyl green, Methyl violet, Methyl violet 2B, Methyl violet 10B, Mordant blue 3, Mordant blue 10, Mordant blue 14, Mordant blue 23, Mordant blue 32, Mordant blue 45, Mordant red 3, Mordant red 11, Mordant violet 25, Mordant violet 39 Naphthol blue black, Naphthol green B, Naphthol yellow S, Natural black 1, Natural red, Natural red 3, Natural red 4, Natural red 8, Natural red 16, Natural red 25, Natural red 28, Natural yellow 6, NBT, Neutral red, New fuchsin, Niagara blue 3B, Night blue, Nile blue, Nile blue A, Nile blue oxazone, Nile blue sulphate, Nile red, Nitro BT, Nitro blue tetrazolium, Nuclear fast red, Oil red O, Orange G, Orcein, Pararosanilin, Phloxine B, phycobilins, Phycocyanins, Phycoerythrins. Phycoerythrincyanin (PEC), Phthalocyanines, Picric acid, Ponceau 2R, Ponceau 6R, Ponceau B, Ponceau de Xylidine, Ponceau S, Primula, Purpurin, Pyronin B, Pyronin G, Pyronin Y, Rhodamine B, Rosanilin, Rose bengal, Saffron, Safranin O, Scarlet R, Scarlet red, Scharlach R, Shellac, Sirius red F3B, Solochrome cyanin R, Soluble blue, Solvent black 3, Solvent blue 38, Solvent red 23, Solvent red 24, Solvent red 27, Solvent red 45, Solvent yellow 94, Spirit soluble eosin, Sudan III, Sudan IV, Sudan black B, Sulfur yellow S, Swiss blue, Tartrazine, Thioflavine S, Thioflavine T, Thionin, Toluidine blue, Toluyline red, Tropaeolin G, Trypaflavine, Trypan blue, Uranin, Victoria blue 4R, Victoria blue B, Victoria green B, Water blue I, Water soluble eosin, Xylidine ponceau, or Yellowish eosin.
- In certain embodiments, the composition of the present disclosure includes any of the chromophores listed above, or a combination thereof, so as to provide a biophotonic impact at the application site. This is a distinct application of these agents and differs from the use of chromophores as simple stains or as a catalyst for photo-polymerization.
- In some embodiments, the composition includes Eosin Y as a first chromophore and any one or more of Rose Bengal, Erythrosin, Phloxine B as a second chromophore. It is believed that these combinations have a synergistic effect as Eosin Y can transfer energy to Rose Bengal, Erythrosin or Phloxine B when activated. This transferred energy is then emitted as fluoresence or by production of reactive oxygen species. This absorbed and re-emitted light is thought to be transmitted throughout the composition, and also to be transmitted into the site of treatment.
- In further embodiments, the composition includes the following synergistic combinations: Eosin Y and Fluorescein; Fluorescein and Rose Bengal; Erythrosine in combination with Eosin Y, Rose Bengal or Fluorescein; Phloxine B in combination with one or more of Eosin Y, Rose Bengal, Fluorescein and Erythrosine. Other synergistic chromophore combinations are also possible.
- By means of synergistic effects of the chromophore combinations in the composition, chromophores which cannot normally be activated by an activating light (such as a blue light from an LED) can be activated through energy transfer from chromophores which are activated by the activating light. In this way, the different properties of photoactivated chromophores can be harnessed and tailored according to the cosmetic or the medical therapy required.
- For example, Rose Bengal can generate a high yield of singlet oxygen when photoactivated in the presence of molecular oxygen, however it has a low quantum yield in terms of emitted fluorescent light. Rose Bengal has a peak absorption around 540 nm and so is normally activated by green light. Eosin Y has a high quantum yield and can be activated by blue light. By combining Rose Bengal with Eosin Y, one obtains a composition which can emit therapeutic fluorescent light and generate singlet oxygen when activated by blue light. In this case, the blue light photoactivates Eosin Y which transfers some of its energy to Rose Bengal as well as emitting some energy as fluorescence.
- (b) Gelling Agent
- The present disclosure provides biophotonic topical compositions that comprise at least a first chromophore and a gelling agent, wherein the gelling agent provides a barrier such that the chromophore(s) of the biophotonic topical compositions are substantially not in contact with the target tissue.
- As used herein, “leaching” means the release of one or more components of a biophotonic composition (e.g., the chromophore(s)) from the composition to the surrounding environment such as for example the wound site or into the tissue being treated with the composition). Therefore, the gelling agent present in the biophotonic compositions of the present disclosure renders the compositions substantially resistant to leaching such that the chromophore(s) or photosensitive agent(s) of the biophotonic topical compositions are not in substantial contact with the target tissue.
- In certain embodiments, the biophotonic topical composition allows less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1%, or essentially none of said chromophore content to leach out of the biophotonic composition.
- In some embodiments, the biophotonic composition limits leaching of the first chromophore such that less than 15% of total chromophore amount can leach out into tissue during a treatment time in which the composition is topically applied onto tissue and illuminated with light. In some embodiments, the biophotonic composition limits leaching of the first chromophore such that less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of total chromophore amount can leach out into tissue during a treatment time in which the composition is topically applied onto tissue and illuminated with light. In some embodiments, the treatment time is at least about 5 minutes, at least about 10 minutes, at least about 15 minutes, at least about 20 minutes, at least about 25 minutes or at least about 30 minutes.
- The extent of chromophore leaching out of the biophotonic composition and into the surrounding environment may be assessed using various methods known in the art, including but not limited to, the tests described in the Examples.
- In some embodiments, leaching is determined by placing the biophotonic composition in contact with an aqueous solution through a porous membrane for a period of time corresponding to a desired treatment time. The extent of chromophore leaching can then be assessed visually, for example, by noting a color change of the aqueous solution, or quantitatively, for example, by using a spectrophotometer to measure the absorption of the solution. In some embodiments, a biophotonic composition of the present disclosure allows less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount to leach out of the biophotonic composition as through a porous membrane into an aqueous solution when the biophotonic composition is placed in contact with the aqueous solution through the porous membrane for a time corresponding to a desired treatment time. In certain embodiments, the time corresponding to a treatment time is at least about 5 minutes, at least about 10 minutes, 15 minutes, 20 minutes, 25 minutes or 30 minutes.
- In some embodiments, staining is determined by visually assessing whether the biophotonic composition colorizes white test paper saturated with 70% by volume ethanol/30% by volume water solution placed in contact with the biophotonic composition for a period of time corresponding to a desired treatment time. In some embodiments, a biophotonic composition of the present disclosure does not visually colorize white test paper saturated with a 70% by volume ethanol/30% by volume water solution placed in contact with the biophotonic composition under atmospheric pressure for a time corresponding to a desired treatment time. In certain embodiments, the time corresponding to a treatment time is at least about 5 minutes, at least about 10 minutes, 15 minutes, 20 minutes, 25 minutes or 30 minutes.
- A gelling agent for use according to the present disclosure may comprise any ingredient suitable for use in a topical biophotonic formulation as described herein. The gelling agent according to various embodiments of the present disclosure may include, but not limited to, polyalkylene oxides, particularly polyethylene glycol and poly(ethylene oxide)-poly(propylene oxide) copolymers, including block and random copolymers; polyols such as glycerol, polyglycerol (particularly highly branched polyglycerol), propylene glycol and trimethylene glycol substituted with one or more polyalkylene oxides, e.g., mono-, di- and tri-polyoxyethylated glycerol, mono- and di-polyoxy-ethylated propylene glycol, and mono- and di-polyoxyethylated trimethylene glycol; polyoxyethylated sorbitol, polyoxyethylated glucose; acrylic acid polymers and analogs and copolymers thereof, such as polyacrylic acid per se, polymethacrylic acid, poly(hydroxyethylmethacrylate), poly(hydroxyethylacrylate), poly(methylalkylsulfoxide methacrylate), poly(methylalkylsulfoxide acrylate) and copolymers of any of the foregoing, and/or with additional acrylate species such as aminoethyl acrylate and mono-2-(acryloxy)-ethyl succinate; polymaleic acid; poly(acrylamides) such as polyacrylamide per se, poly(methacrylamide), poly(dimethylacrylamide), and poly(N-isopropyl-acrylamide); poly(olefinic alcohol)s such as poly(vinyl alcohol); poly(N-vinyl lactams) such as poly(vinyl pyrrolidone), poly(N-vinyl caprolactam), and copolymers thereof, polyoxazolines, including poly(methyloxazoline) and poly(ethyloxazoline); and polyvinylamines.
- The gelling agent according to certain embodiments of the present disclosure may include a polymer selected from any of synthetic or semi-synthetic polymeric materials, polyacrylate copolymers, cellulose derivatives and polymethyl vinyl ether/maleic anhydride copolymers. In some embodiments, the hydrophilic polymer comprises a polymer that is a high molecular weight (i.e., molar masses of more than about 5,000, and in some instances, more than about 10,000, or 100,000, or 1,000,000) and/or cross-linked polyacrylic acid polymer. In some embodiments, the polymer is a polyacrylic acid polymer and has a viscosity in the range of about 15,000-100,000, 15,000-90,000, 15,000-80,000, 20,000-80,000, 20,000-70,000, 20,000-40,000 cP. In certain embodiment, the polymer is a high molecular weight, and/or cross-linked polyacrylic acid polymer, where the polyacrylic acid polymer has a viscosity in the range of about 15,000-80,000 cP.
- In some embodiments, the gelling agent comprises a carbomer. Carbomers are synthetic high molecular weight polymer of acrylic acid that are crosslinked with either allylsucrose or allylethers of pentaerythritol having a molecular weight of about 3×106. The gelation mechanism depends on neutralization of the carboxylic acid moiety to form a soluble salt. The polymer is hydrophilic and produces sparkling clear gels when neutralized. Carbomer gels possess good thermal stability in that gel viscosity and yield value are essentially unaffected by temperature. As a topical product, carbomer gels possess optimum rheological properties. The inherent pseudoplastic flow permits immediate recovery of viscosity when shear is terminated and the high yield value and quick break make it ideal for dispensing. Aqueous solution of Carbopol® is acidic in nature due to the presence of free carboxylic acid residues. Neutralization of this solution cross-links and gelatinizes the polymer to form a viscous integral structure of desired viscosity.
- Carbomers are available as fine white powders which disperse in water to form acidic colloidal suspensions (a 1% dispersion has approx. pH 3) of low viscosity. Neutralization of these suspensions using a base, for example sodium, potassium or ammonium hydroxides, low molecular weight amines and alkanolamines, results in the formation of translucent gels. Nicotine salts such as nicotine chloride form stable water-soluble complexes with carbomers at about pH 3.5 and are stabilized at an optimal pH of about 5.6.
- In some embodiments of the disclosure, the carbomer is Carbopol. Such polymers are commercially available from B.F. Goodrich or Lubrizol under the designation Carbopol® 71G NF, 420, 430, 475, 488, 493, 910, 934, 934P, 940, 971PNF, 974P NF, 980 NF, 981 NF and the like. Carbopols are versatile controlled-release polymers, as described by Brock (Pharmacotherapy, 14:430-7 (1994)) and Dunani (Pharmaceutical Res. (Supp.) 8:S-135 (1991)), and belong to a family of carbomers which are synthetic, high molecular weight, non-linear polymers of acrylic acid, crosslinked with polyalkenyl polyether. In some embodiments, the carbomer is Carbopol® 974P NF, 980 NF, 5984 EP, ETD 2020NF,
Ultrez 10 NF, 934 NF, 934P NF or 940 NF. In certain embodiments, the carbomer is Carbopol® 980 NF, ETD 2020 NF,Ultrez 10 NF, Ultrez 21 or 1382 Polymer, 1342 NF, 940 NF. - In certain embodiments, the gelling agent comprises a hygroscopic material. The hygroscopic material may include, but is not limited to, glucosamine, glycosaminoglycan, poly(vinyl alcohol), poly(2-hydroxyethylmethylacrylate), polyethylene oxide, collagen, chitosan, alginate, a poly(acrylonitrile)-based hydrogel, poly(ethylene glycol)/poly(acrylic acid) interpenetrating polymer network hydrogel, polyethylene oxide-polybutylene terephthalate, hyaluronic acid, high-molecular-weight polyacrylic acid, poly(hydroxy ethylmethacrylate), poly(ethylene glycol), tetraethylene glycol diacrylate, polyethylene glycol methacrylate, and poly(methyl acrylate-co-hydroxyethyl acrylate).
- The one or more gelling agents can be selected according to their ability to prevent leaching. For example, gelling agents which can increase the viscosity of the biophotonic composition can be selected. In some embodiments, the viscosity of the biophotonic composition is 15,000-100,000, 15,000-90,000, 15,000-80,000, 20,000-80,000, 20,000-70,000, 20,000-40,000 cP. A composition with sufficiently high viscosity parameters can prevent or limit the leaching of chromophores from the composition. Gelling agents which include lipids or other coating agents which can coat the chromophores can also be used to limit or prevent leaching. Alternatively or in addition to the aforesaid, gelling agents which are hygroscopic and/or hydrophilic may be used for their water attracting properties, which may also prevent or limit leaching of the chromophore.
- Viscosity of the biophotonic compositions of the present disclosure may be measured using a cone/plate viscometer (Wells-Brookfield). A CP-51 cone may be used and viscosity is measured at a speed of 2 rpm and making sure that the torque is >10%. Spindle must rotate at least 5 times before a viscosity reading is taken.
- The biophotonic composition of the present disclosure may be further encapsulated, e.g, in a membrane. Such a membrane may be transparent, and/or substantially, or fully impermeable. The membrane may be impermeable to liquid but permeable to gases such as air. In certain embodiments, the composition may form a membrane that encapsulates the chromophore(s) of the biophotonic topical composition, where the membrane may be substantially impermeable to liquid and/or gas. In certain embodiments, the biophotonic composition is a liquid encapsulated by a membrane, wherein the membrane is sufficiently resistant to chromophore leaching such that less than 15% of the total chromophore amount leaches out of the encapsulated composition. The membrane may be formed of one or more lipidic agents.
- (c) Oxygen-Releasing Agents
- According to certain embodiments, the compositions of the present disclosure may optionally further comprise one or more additional components, such as oxygen-releasing agents. For instance, the biophotonic topical composition of the present disclosure may optionally comprise oxygen-releasing agents as a source of oxygen. Peroxide compounds are oxygen-releasing agents that contain the peroxy group (R—O—O—R), which is a chainlike structure containing two oxygen atoms, each of which is bonded to the other and a radical or some element.
- When a biophotonic composition of the present disclosure comprising an oxygen-releasing agent is illuminated with light, the chromophore(s) are excited to a higher energy state. When the chromophore(s)' electrons return to a lower energy state, they emit photons with a lower energy level, thus causing the emission of light of a longer wavelength (Stokes' shift). In the proper environment, some of this energy release is transferred to oxygen or the reactive hydrogen peroxide and causes the formation of oxygen radicals, such as singlet oxygen. The singlet oxygen and other reactive oxygen species generated by the activation of the biophotonic composition are thought to operate in a hormetic fashion. That is, a health beneficial effect that is brought about by the low exposure to a normally toxic stimuli (e.g. reactive oxygen), by stimulating and modulating stress response pathways in cells of the targeted tissues. Endogenous response to exogenous generated free radicals (reactive oxygen species) is modulated in increased defense capacity against the exogenous free radicals and induces acceleration of healing and regenerative processes. Furthermore, activation of the composition can also produce an antibacterial effect. The extreme sensitivity of bacteria to exposure to free radicals makes the composition of the present disclosure a de facto bactericidal composition.
- As stated above, the generation of oxygen species by the composition in some embodiments is accompanied by the micro-bubbling which can contribute to debridement or dislodging of biofilm at the site of application. This can allow for the improved penetration of the activating and/or fluorescence light to the treatment site for example to deactivate bacterial colonies leading to their reduction in number.
- Suitable oxygen-releasing agents that may be included in the composition include, but are not limited to:
- Hydrogen peroxide (H2O2) is the starting material to prepare organic peroxides. H2O2 is a powerful oxygen-releasing agent, and the unique property of hydrogen peroxide is that it breaks down into water and oxygen and does not form any persistent, toxic residual compound. Hydrogen peroxide for use in this composition can be used in a gel, for example with 6% hydrogen peroxide. A suitable range of concentration over which hydrogen peroxide can be used in the present composition is from about 0.1% to about 6%.
- Urea hydrogen peroxide (also known as urea peroxide, carbamide peroxide or percarbamide) is soluble in water and contains approximately 35% hydrogen peroxide. Carbamide peroxide for use in this composition can be used as a gel, for example with 16% carbamide peroxide that represents 5.6% hydrogen peroxide, or 12% carbamide peroxide. A suitable range of concentration over which urea peroxide can be used in the present composition is from about 0.3% to about 16%. Urea peroxide breaks down to urea and hydrogen peroxide in a slow-release fashion that can be accelerated with heat or photochemical reactions. The released urea [carbamide, (NH2)CO2)], is highly soluble in water and is a powerful protein denaturant. It increases solubility of some proteins and enhances rehydration of the skin and/or mucosa.
- Benzoyl peroxide consists of two benzoyl groups (benzoic acid with the H of the carboxylic acid removed) joined by a peroxide group. It is found in treatments for acne, in concentrations varying from 2.5% to 10%. The released peroxide groups are effective at killing bacteria. Benzoyl peroxide also promotes skin turnover and clearing of pores, which further contributes to decreasing bacterial counts and reduce acne. Benzoyl peroxide breaks down to benzoic acid and oxygen upon contact with skin, neither of which is toxic. A suitable range of concentration over which benzoyl peroxide can be used in the present composition is from about 2.5% to about 5%.
- Specific oxygen-releasing agents that that are preferably used in the materials or methods of this disclosure include, but are not limited to hydrogen peroxide, carbamide peroxide, or benzoyl peroxide. Inclusion of other forms of peroxides (e.g. organic or inorganic peroxides) should be avoided due to their increased toxicity and their unpredictable reaction with the photodynamic energy transfer. Oxygen-releasing agents can be provided in powder, liquid or gel form. Alternatively, the oxygen-releasing agents may also be applied to the tissue site separately to the composition. Alternatively, the composition may include an amount of oxygen-releasing agent, which is augmented by the separate application of oxygen-releasing agents to the treatment site.
- In the compositions and methods of the present disclosure, additional components may optionally be included, or used in combination with the biophotonic compositions as described herein. Such additional components include, but are not limited to, healing factors, growth factors, antimicrobials, wrinkle fillers (e.g. botox, hyaluronic acid or polylactic acid), collagens, anti-virals, anti-fungals, antibiotics, drugs, and/or agents that promote collagen synthesis. These additional components may be applied to the wound, skin or mucosa in a topical fashion, prior to, at the same time of, and/or after topical application of the biophotonic composition of the present disclosure, and may also be systemically administered. Suitable healing factors, antimicrobials, collagens, and/or agents that promote collagen synthesis are discussed below:
- (d) Healing Factors
- Healing factors comprise compounds that promote or enhance the healing or regenerative process of the tissues on the application site of the composition. During the photoactivation of the composition of the present disclosure, there is an increase of the absorption of molecules at the treatment site by the skin, wound or the mucosa. An augmentation in the blood flow at the site of treatment is observed for an extent period of time. An increase in the lymphatic drainage and a possible change in the osmotic equilibrium due to the dynamic interaction of the free radical cascades can be enhanced or even fortified with the inclusion of healing factors. Suitable healing factors include, but are not limited to:
- Hyaluronic acid (Hyaluronan, hyaluronate): is a non-sulfated glycosaminoglycan, distributed widely throughout connective, epithelial and neural tissues. It is one of the primary components of the extracellular matrix, and contributes significantly to cell proliferation and migration. Hyaluronan is a major component of the skin, where it is involved in tissue repair. While it is abundant in extracellular matrices, it contributes to tissues hydrodynamics, movement and proliferation of cells and participates in a wide number of cell surface receptor interactions, notably those including primary receptor CD44. The hyaluronidases enzymes degrade hyaluronan. There are at least seven types of hyaluronidase-like enzymes in humans, several of which are tumor suppressors. The degradation products of hyaluronic acid, the oligosaccharides and the very-low molecular weight hyaluronic acid, exhibit pro-angiogenic properties. In addition, recent studies show that hyaluronan fragments, but not the native high molecular mass of hyaluronan, can induce inflammatory responses in macrophages and dendritic cells in tissue injury. Hyaluronic acid is well suited to biological applications targeting the skin. Due to its high biocompatibility, it is used to stimulate tissue regeneration. Studies have shown hyaluronic acid appearing in the early stages of healing to physically create room for white blood cells that mediate the immune response. It is used in the synthesis of biological scaffolds for wound healing applications and in wrinkle treatment. A suitable range of concentration over which hyaluronic acid can be used in the present composition is from about 0.001% to about 3%.
- Glucosamine: is one of the most abundant monosaccharides in human tissues and a precursor in the biological synthesis of glycosilated proteins and lipids. It is commonly used in the treatment of osteoarthritis. The common form of glucosamine used is its sulfate salt. Glucosamine shows a number of effects including an anti-inflammatory activity, stimulation of the synthesis of proteoglycans and the synthesis of proteolytic enzymes. A suitable range of concentration over which glucosamine can be used in the present composition is from about 0.01% to about 3%.
- Allantoin: is a diureide of glyosilic acid. It has keratolytic effect, increases the water content of the extracellular matrix, enhances the desquamation of the upper layers of dead (apoptotic) skin cells, and promotes skin proliferation and wound healing.
- Also, saffron can act as both a chromophore and a healing factor. Other healing agents can also be included such as growth factors.
- (e) Antimicrobials
- Antimicrobials kill microbes or inhibit their growth or accumulation. Exemplary antimicrobials (or antimicrobial agent) are recited in U.S. Patent Application Publications 20040009227 and 20110081530. Suitable antimicrobials for use in the methods of the present disclosure include, but not limited to, phenolic and chlorinated phenolic and chlorinated phenolic compounds, resorcinol and its derivatives, bisphenolic compounds, benzoic esters (parabens), halogenated carbonilides, polymeric antimicrobial agents, thazolines, trichloromethylthioimides, natural antimicrobial agents (also referred to as “natural essential oils”), metal salts, and broad-spectrum antibiotics.
- Specific phenolic and chlorinated phenolic antimicrobial agents that can be used in the disclosure include, but are not limited to: phenol; 2-methyl phenol; 3-methyl phenol; 4-methyl phenol; 4-ethyl phenol; 2,4-dimethyl phenol; 2,5-dimethyl phenol; 3,4-dimethyl phenol; 2,6-dimethyl phenol; 4-n-propyl phenol; 4-n-butyl phenol; 4-n-amyl phenol; 4-tert-amyl phenol; 4-n-hexyl phenol; 4-n-heptyl phenol; mono- and poly-alkyl and aromatic halophenols; p-chlorophenyl; methyl p-chlorophenol; ethyl p-chlorophenol; n-propyl p-chlorophenol; n-butyl p-chlorophenol; n-amyl p-chlorophenol; sec-amyl p-chlorophenol; n-hexyl p-chlorophenol; cyclohexyl p-chlorophenol; n-heptyl p-chlorophenol; n-octyl; p-chlorophenol; o-chlorophenol; methyl o-chlorophenol; ethyl o-chlorophenol; n-propyl o-chlorophenol; n-butyl o-chlorophenol; n-amyl o-chlorophenol; tert-amyl o-chlorophenol; n-hexyl o-chlorophenol; n-heptyl o-chlorophenol; o-benzyl p-chlorophenol; o-benxyl-m-methyl p-chlorophenol; o-benzyl-m,m-dimethyl p-chlorophenol; o-phenylethyl p-chlorophenol; o-phenylethyl-m-methyl p-chlorophenol; 3-methyl p-chlorophenol 3,5-dimethyl p-chlorophenol, 6-ethyl-3-methyl p-chlorophenol, 6-n-propyl-3-methyl p-chlorophenol; 6-iso-propyl-3-methyl p-chlorophenol; 2-ethyl-3,5-dimethyl p-chlorophenol; 6-sec-butyl-3-methyl p-chlorophenol; 2-iso-propyl-3,5-dimethyl p-chlorophenol; 6-diethylmethyl-3-methyl p-chlorophenol; 6-iso-propyl-2-ethyl-3-methyl p-chlorophenol; 2-sec-amyl-3,5-dimethyl p-chlorophenol; 2-diethylmethyl-3,5-dimethyl p-chlorophenol; 6-sec-octyl-3-methyl p-chlorophenol; p-chloro-m-cresol p-bromophenol; methyl p-bromophenol; ethyl p-bromophenol; n-propyl p-bromophenol; n-butyl p-bromophenol; n-amyl p-bromophenol; sec-amyl p-bromophenol; n-hexyl p-bromophenol; cyclohexyl p-bromophenol; o-bromophenol; tert-amyl o-bromophenol; n-hexyl o-bromophenol; n-propyl-m,m-dimethyl o-bromophenol; 2-phenyl phenol; 4-chloro-2-methyl phenol; 4-chloro-3-methyl phenol; 4-chloro-3,5-dimethyl phenol; 2,4-dichloro-3,5-dimethylphenol; 3,4,5,6-tetabromo-2-methylphenol-; 5-methyl-2-pentylphenol; 4-isopropyl-3-methylphenol; para-chloro-metaxylenol (PCMX); chlorothymol; phenoxyethanol; phenoxyisopropanol; and 5-chloro-2-hydroxydiphenylmethane.
- Resorcinol and its derivatives can also be used as antimicrobial agents. Specific resorcinol derivatives include, but are not limited to: methyl resorcinol; ethyl resorcinol; n-propyl resorcinol; n-butyl resorcinol; n-amyl resorcinol; n-hexyl resorcinol; n-heptyl resorcinol; n-octyl resorcinol; n-nonyl resorcinol; phenyl resorcinol; benzyl resorcinol; phenylethyl resorcinol; phenylpropyl resorcinol; p-chlorobenzyl resorcinol; 5-chloro-2,4-dihydroxydiphenyl methane; 4′-chloro-2,4-dihydroxydiphenyl methane; 5-bromo-2,4-dihydroxydiphenyl methane; and 4′-bromo-2,4-dihydroxydiphenyl methane.
- Specific bisphenolic antimicrobial agents that can be used in the disclosure include, but are not limited to: 2,2′-methylene bis-(4-chlorophenol); 2,4,4′trichloro-2′-hydroxy-diphenyl ether, which is sold by Ciba Geigy, Florham Park, N.J. under the tradename Triclosan®; 2,2′-methylene bis-(3,4,6-trichlorophenol); 2,2′-methylene bis-(4-chloro-6-bromophenol); bis-(2-hydroxy-3,5-dichlorop-henyl) sulphide; and bis-(2-hydroxy-5-chlorobenzyl)sulphide.
- Specific benzoie esters (parabens) that can be used in the disclosure include, but are not limited to: methylparaben; propylparaben; butylparaben; ethylparaben; isopropylparaben; isobutylparaben; benzylparaben; sodium methylparaben; and sodium propylparaben.
- Specific halogenated carbanilides that can be used in the disclosure include, but are not limited to: 3,4,4′-trichlorocarbanilides, such as 3-(4-chlorophenyl)-1-(3,4-dichlorphenyl)urea sold under the tradename Triclocarban® by Ciba-Geigy, Florham Park, N.J.; 3-trifluoromethyl-4,4′-dichlorocarbanilide; and 3,3′,4-trichlorocarbanilide.
- Specific polymeric antimicrobial agents that can be used in the disclosure include, but are not limited to: polyhexamethylene biguanide hydrochloride; and poly(iminoimidocarbonyl iminoimidocarbonyl iminohexamethylene hydrochloride), which is sold under the tradename Vantocil® IB.
- Specific thazolines that can be used in the disclosure include, but are not limited to that sold under the tradename Micro-Check®; and 2-n-octyl-4-isothiazolin-3-one, which is sold under the tradename Vinyzene® IT-3000 DIDP.
- Specific trichloromethylthioimides that can be used in the disclosure include, but are not limited to: N-(trichloromethylthio)phthalimide, which is sold under the tradename Fungitrol®; and N-trichloromethylthio-4-cyclohexene-1,2-dicarboximide, which is sold under the tradename Vancide®.
- Specific natural antimicrobial agents that can be used in the disclosure include, but are not limited to, oils of: anise; lemon; orange; rosemary; wintergreen; thyme; lavender; cloves; hops; tea tree; citronella; wheat; barley; lemongrass; cedar leaf; cedarwood; cinnamon; fleagrass; geranium; sandalwood; violet; cranberry; eucalyptus; vervain; peppermint; gum benzoin; basil; fennel; fir; balsam; menthol; ocmea origanuin; hydastis; carradensis; Berberidaceac daceae; Ratanhiae longa; and Curcuma longa. Also included in this class of natural antimicrobial agents are the key chemical components of the plant oils which have been found to provide antimicrobial benefit. These chemicals include, but are not limited to: anethol; catechole; camphene; thymol; eugenol; eucalyptol; ferulic acid; farnesol; hinokitiol; tropolone; limonene; menthol; methyl salicylate; carvacol; terpineol; verbenone; berberine; ratanhiae extract; caryophellene oxide; citronellic acid; curcumin; nerolidol; and geraniol.
- Specific metal salts that can be used in the disclosure include, but are not limited to, salts of metals in groups 3a-5a, 3b-7b, and 8 of the periodic table. Specific examples of metal salts include, but are not limited to, salts of: aluminum; zirconium; zinc; silver; gold; copper; lanthanum; tin; mercury; bismuth; selenium; strontium; scandium; yttrium; cerium; praseodymiun; neodymium; promethum; samarium; europium; gadolinium; terbium; dysprosium; holmium; erbium; thalium; ytterbium; lutetium; and mixtures thereof. An example of the metal-ion based antimicrobial agent is sold under the tradename HealthShield®, and is manufactured by HealthShield Technology, Wakefield, Mass. [give other examples here e.g. smith and nephew]
- Specific broad-spectrum antimicrobial agents that can be used in the disclosure include, but are not limited to, those that are recited in other categories of antimicrobial agents herein.
- Additional antimicrobial agents that can be used in the methods of the disclosure include, but are not limited to: pyrithiones, and in particular pyrithione-including zinc complexes such as that sold under the tradename Octopirox®; dimethyldimethylol hydantoin, which is sold under the tradename Glydant®; methylchloroisothiazolinone/methylisothiazolinone, which is sold under the tradename Kathon CG®; sodium sulfite; sodium bisulfite; imidazolidinyl urea, which is sold under the tradename Germall 115®; diazolidinyl urea, which is sold under the tradename Germall 11®; benzyl alcohol v2-bromo-2-nitropropane-1,3-diol, which is sold under the tradename Bronopol®; formalin or formaldehyde; iodopropenyl butylcarbamate, which is sold under the tradename Polyphase P100®; chloroacetamide; methanamine; methyldibromonitrile glutaronitrile (1,2-dibromo-2,4-dicyanobutane), which is sold under the tradename Tektamer®; glutaraldehyde; 5-bromo-5-nitro-1,3-dioxane, which is sold under the tradename Bronidox®; phenethyl alcohol; o-phenylphenol/sodium o-phenylphenol sodium hydroxymethylglycinate, which is sold under the tradename Suttocide A®; polymethoxy bicyclic oxazolidine; which is sold under the tradename Nuosept C®; dimethoxane; thimersal; dichlorobenzyl alcohol; captan; chlorphenenesin; dichlorophene; chlorbutanol; glyceryl laurate; halogenated diphenyl ethers; 2,4,4′-trichloro-2′-hydroxy-diphenyl ether, which is sold under the tradename Triclosan® and is available from Ciba-Geigy, Florham Park, N.J.; and 2,2′-dihydroxy-5,5′-dibromo-diphenyl ether.
- Additional antimicrobial agents that can be used in the methods of the disclosure include those disclosed by U.S. Pat. Nos. 3,141,321; 4,402,959; 4,430,381; 4,533,435; 4,625,026; 4,736,467; 4,855,139; 5,069,907; 5,091,102; 5,639,464; 5,853,883; 5,854,147; 5,894,042; and 5,919,554, and U.S. Pat. Appl. Publ. Nos. 20040009227 and 20110081530.
- (f) Collagens and Agents that Promote Collagen Synthesis
- Collagen is a fibrous protein produced in dermal fibroblast cells and forming 70% of the dermis. Collagen is responsible for the smoothing and firming of the skin. Therefore, when the synthesis of collagen is reduced, skin aging will occur, and so the firming and smoothing of the skin will be rapidly reduced. As a result, the skin will be flaccid and wrinkled. On the other hand, when metabolism of collagen is activated by the stimulation of collagen synthesis in the skin, the components of dermal matrices will be increased, leading to effects, such as wrinkle improvement, firmness improvement and skin strengthening. Thus, collagens and agents that promote collagen synthesis may also be useful in the present disclosure. Agents that promote collagen synthesis (i.e., pro-collagen synthesis agents) include amino acids, peptides, proteins, lipids, small chemical molecules, natural products and extracts from natural products.
- For instance, it was discovered that intake of vitamin C, iron, and collagen can effectively increase the amount of collagen in skin or bone. See, e.g., U.S. Patent Application Publication 20090069217. Examples of the vitamin C include an ascorbic acid derivative such as L-ascorbic acid or sodium L-ascorbate, an ascorbic acid preparation obtained by coating ascorbic acid with an emulsifier or the like, and a mixture containing two or more of those vitamin Cs at an arbitrary rate. In addition, natural products containing vitamin C such as acerola and lemon may also be used. Examples of the iron preparation include: an inorganic iron such as ferrous sulfate, sodium ferrous citrate, or ferric pyrophosphate; an organic iron such as heme iron, ferritin iron, or lactoferrin iron; and a mixture containing two or more of those irons at an arbitrary rate. In addition, natural products containing iron such as spinach or liver may also be used. Moreover, examples of the collagen include: an extract obtained by treating bone, skin, or the like of a mammal such as bovine or swine with an acid or alkaline; a peptide obtained by hydrolyzing the extract with a protease such as pepsine, trypsin, or chymotrypsin; and a mixture containing two or more of those collagens at an arbitrary rate. Collagens extracted from plant sources may also be used.
- Additional pro-collagen synthesis agents are described, for example, in U.S. Pat. Nos. 7,598,291, 7,722,904, 6,203,805, 5,529,769, etc, and U.S. Patent Application Publications 20060247313, 20080108681, 20110130459, 20090325885, 20110086060, etc.
- The biophotonic compositions of the present disclosure have numerous uses. Without being bound by theory, the biophotonic compositions of the present disclosure may promote wound healing or tissue repair. The biophotonic compositions of the present disclosure may also be used to treat a skin disorder. The biophotonic compositions of the present disclosure may also be used to treat acne. The biophotonic compositions of the present disclosure may also be used for skin rejuvenation. The biophotonic compositions of the present disclosure may also be used for treating acute inflammation. Therefore, it is an objective of the present disclosure to provide a method for providing biophotonic therapy to a wound, where the method promotes wound healing. It is also an objective of the present disclosure to provide a method for providing biophotonic therapy to a skin tissue afflicted with acne, wherein the method is used to treat acne. It is also an objective of the present disclosure to provide a method for providing biophotonic therapy to a skin tissue afflicted with a skin disorder, wherein the method is used to treat the skin disorder. It is also an objective of the present disclosure to provide a method for providing biophotonic therapy to skin tissue, wherein the method is used for promoting skin rejuvenation.
- In certain embodiments, the present disclosure provides a method for providing a biophotonic therapy to a wound, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a site of a wound, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the chromophore(s) of the biophotonic composition.
- In one aspect, the present disclosure provides a method for providing biophotonic therapy to a wound, comprising: topically applying a biophotonic composition comprising a first chromophore; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it limits leaching of the chromophore into the tissue during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the wound or tissue during treatment.
- In another aspect, the present disclosure provides a method for treating a wound or providing biophotonic therapy to a wound, comprising: topically applying a biophotonic composition comprising a first chromophore and a gelling agent to a site of a wound; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the gelling agent blocks substantial leaching of the chromophores into the site of a wound during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the wound or tissue during treatment.
- In yet another aspect, the present disclosure provides a method for promoting skin rejuvenation. In certain embodiments, the present disclosure provides a method for providing skin rejuvenation, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to the skin, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the chromophore(s) of the biophotonic composition.
- In other embodiments, the present disclosure provides a method for promoting skin rejuvenation comprising: topically applying a biophotonic composition comprising a first chromophore to skin; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it limits leaching of the chromophore into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the wound or tissue during treatment.
- In another aspect, the present disclosure provides a method for promoting skin rejuvenation, comprising: topically applying a biophotonic composition comprising a first chromophore and a gelling agent to skin; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it blocks substantial leaching of the chromophores into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the skin during treatment.
- In yet another aspect, the present disclosure to provide a method for providing biophotonic therapy to a target skin tissue afflicted with a skin disorder. In certain embodiments, the present disclosure provides a method for providing a biophotonic therapy to a target skin tissue, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a target skin tissue, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the chromophore(s) of the biophotonic composition.
- In other embodiments, the present disclosure provides a method for treating a skin disorder, comprising: topically applying a biophotonic composition to a target skin tissue afflicted with the skin disorder, wherein the biophotonic composition comprises a first chromophore; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it limits leaching of the chromophore into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the skin during treatment.
- In another aspect, the present disclosure provides a method for treating a skin disorder, comprising: topically applying a biophotonic composition comprising a first chromophore and a gelling agent to skin afflicted with the skin disorder; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it blocks substantial leaching of the chromophores into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the skin during treatment.
- In yet another aspect, the present disclosure to provide a method for providing biophotonic therapy to a target skin tissue afflicted with acne. In certain embodiments, the present disclosure provides a method for providing a biophotonic therapy to a target skin tissue afflicted with acne, the method comprising: applying (e.g., by topical application) a biophotonic composition of the present disclosure to a target skin tissue, and illuminating the biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the chromophore(s) of the biophotonic composition.
- In other embodiments, the present disclosure provides a method for treating acne, comprising: topically applying a biophotonic composition to a target skin tissue afflicted with acne, wherein the biophotonic composition comprises a first chromophore; illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it limits leaching of the chromophore into tissue during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the tissue during treatment.
- In another aspect, the present disclosure provides a method for treating acne, comprising: topically applying a biophotonic composition comprising a first chromophore to skin afflicted with acne; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it blocks substantial leaching of the chromophores into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the wound or tissue during treatment.
- In other embodiments, the present disclosure provides a method for treating acute inflammation, comprising: topically applying a biophotonic composition to a target skin tissue with acute inflammation, wherein the biophotonic composition comprises a first chromophore; illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it limits leaching of the chromophore into tissue during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the tissue during treatment.
- In another aspect, the present disclosure provides a method for treating acute inflammation, comprising: topically applying a biophotonic composition comprising a first chromophore to skin afflicted with acute inflammation; and illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore; wherein the biophotonic composition is substantially resistant to leaching such that it blocks substantial leaching of the chromophores into the skin during treatment. In some embodiments, less than 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.8%, 0.5% or 0.1% or essentially 0% of the total chromophore amount leaches out of the biophotonic composition into the wound or tissue during treatment.
- The biophotonic compositions suitable for use in the methods of the present disclosure may be selected from any of the embodiments of the biophotonic compositions described above. For instance, the biophotonic compositions useful in the method of the present disclosure may comprise a first chromophore that undergoes at least partial photobleaching upon application of light. The first chromophore may absorb at a wavelength of about 200-800 nm, 200-700 nm, 200-600 nm or 200-500 nm. In one embodiment, the first chromophore absorbs at a wavelength of about 200-600 nm. In some embodiments, the first chromophore absorbs light at a wavelength of about 200-300 nm, 250-350 nm, 300-400 nm, 350-450 nm, 400-500 nm, 450-650 nm, 600-700 nm, 650-750 nm or 700-800 nm. In other examples, suitable biophotonic compositions for the methods of the present disclosure may further comprise at least one additional chromophore (e.g., a second chromophore). The absorption spectrum of the second chromophore overlaps at least about 80%, 50%, 40%, 30%, or 20% with the emission spectrum of the first chromophore. In some embodiments, the first chromophore has an emission spectrum that overlaps at least 1-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35-45%, 50-60%, 55-65% or 60-70% with an absorption spectrum of the second chromophore.
- Illumination of the biophotonic composition with light may cause a transfer of energy from the first chromophore to the second chromophore. Subsequently, the second chromophore may emit energy as fluorescence and/or generate reactive oxygen species. In certain embodiments of the methods the present disclosure, energy transfer caused by the application of light is not accompanied by concomitant generation of heat, or does not result in tissue damage.
- The biophotonic compositions useful for the present methods comprise a gelling agent. The gelling agent may include, but is not limited to, lipids such as glycerin, glycols such as propylene glycol, hyaluronic acid, glucosamine sulfate, cellulose derivatives (hydroxypropyl methylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methylcellulose and the like), noncellulose polysaccharides (galactomannans, guar gum, carob gum, gum arabic, sterculia gum, agar, alginates and the like) and acrylic acid polymers.
- When the method involves a biophotonic composition having at least two chromophores, the first chromophore is present in an amount of about 0.01-40% per weight of the composition, and the second chromophore is present in an amount of about 0.001-40% per weight of the composition. In certain embodiments, the first chromophore is present in an amount of about 0.01-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition. In certain embodiments, the second chromophore is present in an amount of about 0.001-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition. In certain embodiments, the total weight per weight of chromophore or combination of chromophores may be in the amount of about 0.01-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the composition.
- In the methods of the present disclosure, any source of actinic light can be used. Any type of halogen, LED or plasma arc lamp or laser may be suitable. The primary characteristic of suitable sources of actinic light will be that they emit light in a wavelength (or wavelengths) appropriate for activating the one or more photoactivators present in the composition. In one embodiment, an argon laser is used. In another embodiment, a potassium-titanyl phosphate (KTP) laser (e.g. a GreenLight™ laser) is used. In another embodiment, sunlight may be used. In yet another embodiment, a LED photocuring device is the source of the actinic light. In yet another embodiment, the source of the actinic light is a source of light having a wavelength between about 200 to 800 nm. In another embodiment, the source of the actinic light is a source of visible light having a wavelength between about 400 and 600 nm. Furthermore, the source of actinic light should have a suitable power density. Suitable power density for non-collimated light sources (LED, halogen or plasma lamps) are in the range from about 1 mW/cm2 to about 200 mW/cm2. Suitable power density for laser light sources are in the range from about 0.5 mW/cm2 to about 0.8 mW/cm2.
- In some embodiments of the methods of the present disclosure, the light has an energy at the subject's skin, wound or mucosa surface of between about 1 mW/cm2 and about 500 mW/cm2, 1-300 mW/cm2, or 1-200 mW/cm2, wherein the energy applied depends at least on the condition being treated, the wavelength of the light, the distance of the subject's skin from the light source, and the thickness of the biophotonic composition. In certain embodiments, the light at the subject's skin is between about 1-40 mW/cm2, or 20-60 mW/cm2, or 40-80 mW/cm2, or 60-100 mW/cm2, or 80-120 mW/cm2, or 100-140 mW/cm2, or 120-160 mW/cm2, or 140-180 mW/cm2, or 160-200 mW/cm2, or 110-240 mW/cm2, or 110-150 mW/cm2, or 190-240 mW/cm2.
- In some embodiments, a mobile device can be used to activate embodiments of the biophotonic composition of the present disclosure, wherein the mobile device can emit light having an emission spectra which overlaps an absorption spectra of the chromophore in the biophotonic composition. The mobile device can have a display screen through which the light is emitted and/or the mobile device can emit light from a flashlight which can photoactivate the biophotonic composition.
- In some embodiments, a display screen on a television or a computer monitor can be used to activate the biophotonic composition, wherein the display screen can emit light having an emission spectra which overlaps an absorption spectra of a photoactive agent in the photoactivatable composition.
- In certain embodiments, the first and/or the second chromophore (when present) can be photoactivated by ambient light which may originate from the sun or other light sources. Ambient light can be considered to be a general illumination that comes from all directions in a room that has no visible source. In certain embodiments, the first and/or the second chromophore (when present) can be photoactivated by light in the visible range of the electromagnetic spectrum. Exposure times to ambient light may be longer than that to direct light.
- In certain embodiments, different sources of light can be used to activate the biophotonic compositions, such as a combination of ambient light and direct LED light.
- The duration of the exposure to actinic light required will be dependent on the surface of the treated area, the type of lesion, trauma or injury that is being treated, the power density, wavelength and bandwidth of the light source, the thickness of the biophotonic composition, and the treatment distance from the light source. The illumination of the treated area by fluorescence may take place within seconds or even fragment of seconds, but a prolonged exposure period is beneficial to exploit the synergistic effects of the absorbed, reflected and reemitted light on the composition of the present disclosure and its interaction with the tissue being treated. In one embodiment, the time of exposure to actinic light of the tissue, skin or wound on which the biophotonic composition has been applied is a period between 1 minute and 5 minutes. In another embodiment, the time of exposure to actinic light of the tissue, skin or wound on which the biophotonic composition has been applied is a period between 1 minute and 5 minutes. In some other embodiments, the biophotonic composition is illuminated for a period between 1 minute and 3 minutes. In certain embodiments, light is applied for a period of 1-30 seconds, 15-45 seconds, 30-60 seconds, 0.75-1.5 minutes, 1-2 minutes, 1.5-2.5 minutes, 2-3 minutes, 2.5-3.5 minutes, 3-4 minutes, 3.5-4.5 minutes, 4-5 minutes, 5-10 minutes, 10-15 minutes, 15-20 minutes, 20-25 minutes, or 20-30 minutes. In yet another embodiment, the source of actinic light is in continuous motion over the treated area for the appropriate time of exposure. In yet another embodiment, multiple applications of the biophotonic composition and actinic light are performed. In some embodiments, the tissue, skin or wound is exposed to actinic light at least two, three, four, five or six times. In some embodiments, a fresh application of the biophotonic composition is applied before exposure to actinic light.
- In the methods of the present disclosure, the biophotonic composition may be optionally removed from the site of treatment following application of light. In certain embodiments, the biophotonic composition is left on the treatment site for more than 30 minutes, more than one hour, more than 2 hours, more than 3 hours. It can be illuminated with ambient light. To prevent drying, the composition can be covered with a transparent or translucent cover such as a polymer film, or an opaque cover which can be removed before illumination.
- The biophotonic compositions and methods of the present disclosure may be used to treat wounds and promote wound healing. Wounds that may be treated by the biophotonic compositions and methods of the present disclosure include, for example, injuries to the skin and subcutaneous tissue initiated in different ways (e.g., pressure ulcers from extended bed rest, wounds induced by trauma, wounds induced by conditions such as periodontitis) and with varying characteristics. In certain embodiments, the present disclosure provides biophotonic compositions and methods for treating and/or promoting the healing of, for example, burns, incisions, excisions, lacerations, abrasions, puncture or penetrating wounds, surgical wounds, contusions, hematomas, crushing injuries, sores and ulcers.
- Biophotonic compositions and methods of the present disclosure may be used to treat and/or promote the healing of chronic cutaneous ulcers or wounds, which are wounds that have failed to proceed through an orderly and timely series of events to produce a durable structural, functional, and cosmetic closure. The vast majority of chronic wounds can be classified into three categories based on their etiology: pressure ulcers, neuropathic (diabetic foot) ulcers and vascular (venous or arterial) ulcers.
- In certain other embodiments, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing, Grade I-IV ulcers. In certain embodiments, the application provides compositions suitable for use with Grade II ulcers in particular. Ulcers may be classified into one of four grades depending on the depth of the wound: i) Grade I: wounds limited to the epithelium; ii) Grade II: wounds extending into the dermis; iii) Grade III: wounds extending into the subcutaneous tissue; and iv) Grade IV (or full-thickness wounds): wounds wherein bones are exposed (e.g., a bony pressure point such as the greater trochanter or the sacrum).
- For example, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of a diabetic ulcer. Diabetic patients are prone to foot and other ulcerations due to both neurologic and vascular complications. Peripheral neuropathy can cause altered or complete loss of sensation in the foot and/or leg. Diabetic patients with advanced neuropathy lose all ability for sharp-dull discrimination. Any cuts or trauma to the foot may go completely unnoticed for days or weeks in a patient with neuropathy. A patient with advanced neuropathy loses the ability to sense a sustained pressure insult, as a result, tissue ischemia and necrosis may occur leading to for example, plantar ulcerations. Microvascular disease is one of the significant complications for diabetics which may also lead to ulcerations. In certain embodiments, compositions and methods of treating a chronic wound are provided here in, where the chronic wound is characterized by diabetic foot ulcers and/or ulcerations due to neurologic and/or vascular complications of diabetes.
- In other examples, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of a pressure ulcer. Pressure ulcer includes bed sores, decubitus ulcers and ischial tuberosity ulcers and can cause considerable pain and discomfort to a patient. A pressure ulcer can occur as a result of a prolonged pressure applied to the skin. Thus, pressure can be exerted on the skin of a patient due to the weight or mass of an individual. A pressure ulcer can develop when blood supply to an area of the skin is obstructed or cut off for more than two or three hours. The affected skin area can turns red, becomes painful and can become necrotic. If untreated, the skin breaks open and can become infected. An ulcer sore is therefore a skin ulcer that occurs in an area of the skin that is under pressure from e.g. lying in bed, sitting in a wheelchair, and/or wearing a cast for a prolonged period of time. Pressure ulcer can occur when a person is bedridden, unconscious, unable to sense pain, or immobile. Pressure ulcer often occur in boney prominences of the body such as the buttocks area (on the sacrum or iliac crest), or on the heels of foot.
- In other examples, the present disclosure provides biophotonic compositions and methods for treating and/or promoting healing of acute wounds.
- Additional types of wound that can be treated by the biophotonic compositions and methods of the present disclosure include those disclosed by U.S. Pat. Appl. Publ. No. 20090220450, which is incorporated herein by reference.
- Wound healing in adult tissues is a complicated reparative process. For example, the healing process for skin involves the recruitment of a variety of specialized cells to the site of the wound, extracellular matrix and basement membrane deposition, angiogenesis, selective protease activity and re-epithelialization.
- There are three distinct phases in the wound healing process. First, in the inflammatory phase, which typically occurs from the moment a wound occurs until the first two to five days, platelets aggregate to deposit granules, promoting the deposit of fibrin and stimulating the release of growth factors. Leukocytes migrate to the wound site and begin to digest and transport debris away from the wound. During this inflammatory phase, monocytes are also converted to macrophages, which release growth factors for stimulating angiogenesis and the production of fibroblasts.
- Second, in the proliferative phase, which typically occurs from two days to three weeks, granulation tissue forms, and epithelialization and contraction begin. Fibroblasts, which are key cell types in this phase, proliferate and synthesize collagen to fill the wound and provide a strong matrix on which epithelial cells grow. As fibroblasts produce collagen, vascularization extends from nearby vessels, resulting in granulation tissue. Granulation tissue typically grows from the base of the wound. Epithelialization involves the migration of epithelial cells from the wound surfaces to seal the wound. Epithelial cells are driven by the need to contact cells of like type and are guided by a network of fibrin strands that function as a grid over which these cells migrate. Contractile cells called myofibroblasts appear in wounds, and aid in wound closure. These cells exhibit collagen synthesis and contractility, and are common in granulating wounds.
- Third, in the remodeling phase, the final phase of wound healing which can take place from three weeks up to several years, collagen in the scar undergoes repeated degradation and re-synthesis. During this phase, the tensile strength of the newly formed skin increases.
- However, as the rate of wound healing increases, there is often an associated increase in scar formation. Scarring is a consequence of the healing process in most adult animal and human tissues. Scar tissue is not identical to the tissue which it replaces, as it is usually of inferior functional quality. The types of scars include, but are not limited to, atrophic, hypertrophic and keloidal scars, as well as scar contractures. Atrophic scars are flat and depressed below the surrounding skin as a valley or hole. Hypertrophic scars are elevated scars that remain within the boundaries of the original lesion, and often contain excessive collagen arranged in an abnormal pattern. Keloidal scars are elevated scars that spread beyond the margins of the original wound and invade the surrounding normal skin in a way that is site specific, and often contain whorls of collagen arranged in an abnormal fashion.
- In contrast, normal skin consists of collagen fibers arranged in a basket-weave pattern, which contributes to both the strength and elasticity of the dermis. Thus, to achieve a smoother wound healing process, an approach is needed that not only stimulates collagen production, but also does so in a way that reduces scar formation.
- The biophotonic compositions and methods of the present disclosure promote the wound healing by promoting the formation of substantially uniform epithelialization; promoting collagen synthesis; promoting controlled contraction; and/or by reducing the formation of scar tissue. In certain embodiments, the biophotonic compositions and methods of the present disclosure may promote wound healing by promoting the formation of substantially uniform epithelialization. In some embodiments, the biophotonic compositions and methods of the present disclosure promote collagen synthesis. In some other embodiments, the biophotonic compositions and methods of the present disclosure promote controlled contraction. In certain embodiments, the biophotonic compositions and methods of the present disclosure promote wound healing, for example, by reducing the formation of scar tissue or by speeding up the wound closure process. In certain embodiments, the biophotonic compositions and methods of the present disclosure promote wound healing, for example, by reducing inflammation. In certain embodiments, the biophotonic composition can be used following wound closure to optimize scar revision. In this case, the biophotonic composition may be applied at regular intervals such as once a week, or at an interval deemed appropriate by the physician.
- The biophotonic composition may be soaked into a woven or non-woven material or a sponge and applied as a wound dressing. A light source, such as LEDs or waveguides, may be provided within or adjacent the wound dressing or the composition to illuminate the composition. The waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymethylmethacrylate.
- Adjunct therapies which may be topical or systemic such as antibiotic treatment may also be used. Negative pressure assisted wound closure can also be used to assist wound closure and/or to remove the composition.
- The biophotonic compositions and methods of the present disclosure may be used to treat acne. As used herein, “acne” means a disorder of the skin caused by inflammation of skin glands or hair follicles. The biophotonic compositions and methods of the disclosure can be used to treat acne at early pre-emergent stages or later stages where lesions from acne are visible. Mild, moderate and severe acne can be treated with embodiments of the biophotonic compositions and methods. Early pre-emergent stages of acne usually begin with an excessive secretion of sebum or dermal oil from the sebaceous glands located in the pilosebaceous apparatus. Sebum reaches the skin surface through the duct of the hair follicle. The presence of excessive amounts of sebum in the duct and on the skin tends to obstruct or stagnate the normal flow of sebum from the follicular duct, thus producing a thickening and solidification of the sebum to create a solid plug known as a comedone. In the normal sequence of developing acne, hyperkeratinazation of the follicular opening is stimulated, thus completing blocking of the duct. The usual results are papules, pustules, or cysts, often contaminated with bacteria, which cause secondary infections. Acne is characterized particularly by the presence of comedones, inflammatory papules, or cysts. The appearance of acne may range from slight skin irritation to pitting and even the development of disfiguring scars. Accordingly, the biophotonic compositions and methods of the present disclosure can be used to treat one or more of skin irritation, pitting, development of scars, comedones, inflammatory papules, cysts, hyperkeratinazation, and thickening and hardening of sebum associated with acne.
- The composition may be soaked into or applied to a woven or non-woven material or a sponge and applied as a mask to body parts such as the face, body, arms, legs etc. A light source, such as LEDs or waveguides, may be provided within or adjacent the mask or the composition to illuminate the composition. The waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymethylmethacrylate.
- The biophotonic compositions and methods of the present disclosure may be used to treat various types of acne. Some types of acne include, for example, acne vulgaris, cystic acne, acne atrophica, bromide acne, chlorine acne, acne conglobata, acne cosmetica, acne detergicans, epidemic acne, acne estivalis, acne fulminans, halogen acne, acne indurata, iodide acne, acne keloid, acne mechanica, acne papulosa, pomade acne, premenstrual acne, acne pustulosa, acne scorbutica, acne scrofulosorum, acne urticata, acne varioliformis, acne venenata, propionic acne, acne excoriee, gram negative acne, steroid acne, and nodulocystic acne.
- The dermis is the second layer of skin, containing the structural elements of the skin, the connective tissue. There are various types of connective tissue with different functions. Elastin fibers give the skin its elasticity, and collagen gives the skin its strength.
- The junction between the dermis and the epidermis is an important structure. The dermal-epidermal junction interlocks forming finger-like epidermal ridges. The cells of the epidermis receive their nutrients from the blood vessels in the dermis. The epidermal ridges increase the surface area of the epidermis that is exposed to these blood vessels and the needed nutrients.
- The aging of skin comes with significant physiological changes to the skin. The generation of new skin cells slows down, and the epidermal ridges of the dermal-epidermal junction flatten out. While the number of elastin fibers increases, their structure and coherence decrease. Also the amount of collagen and the thickness of the dermis decrease with the ageing of the skin.
- Collagen is a major component of the skin's extracellular matrix, providing a structural framework. During the aging process, the decrease of collagen synthesis and insolubilization of collagen fibers contribute to a thinning of the dermis and loss of the skin's biomechanical properties.
- The physiological changes to the skin result in noticeable aging symptoms often referred to as chronological-, intrinsic- and photo-ageing. The skin becomes drier, roughness and scaling increase, the appearance becomes duller, and most obviously fine lines and wrinkles appear. Other symptoms or signs of skin aging include, but are not limited to, thinning and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, a blotchy complexion.
- The dermal-epidermal junction is a basement membrane that separates the keratinocytes in the epidermis from the extracellular matrix, which lies below in the dermis. This membrane consists of two layers: the basal lamina in contact with the keratinocytes, and the underlying reticular lamina in contact with the extracellular matrix. The basal lamina is rich in collagen type IV and laminin, molecules that play a role in providing a structural network and bioadhesive properties for cell attachment.
- Laminin is a glycoprotein that only exists in basement membranes. It is composed of three polypeptide chains (alpha, beta and gamma) arranged in the shape of an asymmetric cross and held together by disulfide bonds. The three chains exist as different subtypes which result in twelve different isoforms for laminin, including Laminin-1 and Laminin-5
- The dermis is anchored to hemidesmosomes, specific junction points located on the keratinocytes, which consist of a-integrins and other proteins, at the basal membrane keratinocytes by type VII collagen fibrils. Laminins, and particularly Laminin-5, constitute the real anchor point between hemidesmosomal transmembrane proteins in basal keratinocytes and type VII collagen.
- Laminin-5 synthesis and type VII collagen expression have been proven to decrease in aged skin. This causes a loss of contact between dermis and epidermis, and results in the skin losing elasticity and becoming saggy.
- Recently another type of wrinkles generally referred to as expression wrinkles, got general recognition. These wrinkles require loss of resilience, particularly in the dermis, because of which the skin is no longer able to resume its original state when facial muscles which produce facial expressions exert stress on the skin, resulting in expression wrinkles.
- The compositions and methods of the present disclosure promote skin rejuvenation. In certain embodiments, the compositions and methods of the present disclosure promote collagen synthesis. In certain other embodiments, the compositions and methods of the present disclosure may reduce, diminish, retard or even reverse one or more signs of skin aging including, but not limited to, appearance of fine lines or wrinkles, thin and transparent skin, loss of underlying fat (leading to hollowed cheeks and eye sockets as well as noticeable loss of firmness on the hands and neck), bone loss (such that bones shrink away from the skin due to bone loss, which causes sagging skin), dry skin (which might itch), inability to sweat sufficiently to cool the skin, unwanted facial hair, freckles, age spots, spider veins, rough and leathery skin, fine wrinkles that disappear when stretched, loose skin, or a blotchy complexion. In certain embodiments, the compositions and methods of the present disclosure may induce a reduction in pore size, enhance sculpturing of skin subsections, and/or enhance skin translucence.
- The biophotonic compositions and methods of the present disclosure may be used to treat skin disorders that include, but are not limited to, erythema, telangiectasia, actinic telangiectasia, psoriasis, skin cancer, pemphigus, sunburn, dermatitis, eczema, rashes, impetigo, lichen simplex chronicus, rhinophyma, perioral dermatitis, pseudofolliculitis barbae, drug eruptions, erythema multiforme, erythema nodosum, granuloma annulare, actinic keratosis, purpura, alopecia areata, aphthous stomatitis, drug eruptions, dry skin, chapping, xerosis, ichthyosis vulgaris, fungal infections, parasitic infection, herpes simplex, intertrigo, keloids, keratoses, milia, moluscum contagiosum, pityriasis rosea, pruritus, urticaria, and vascular tumors and malformations. Dermatitis includes contact dermatitis, atopic dermatitis, seborrheic dermatitis, nummular dermatitis, generalized exfoliative dermatitis, and statis dermatitis. Skin cancers include melanoma, basal cell carcinoma, and squamous cell carcinoma.
- Some skin disorders present various symptoms including redness, flushing, burning, scaling, pimples, papules, pustules, comedones, macules, nodules, vesicles, blisters, telangiectasia, spider veins, sores, surface irritations or pain, itching, inflammation, red, purple, or blue patches or discolorations, moles, and/or tumors. Accordingly, the biophotonic compositions and methods of the present disclosure can be used to treat redness, flushing, burning, scaling, pimples, papules, pustules, comedones, macules, nodules, vesicles, blisters, telangiectasia, spider veins, sores, surface irritations or pain, itching, acute inflammation, red, purple, or blue patches or discolorations, moles, and/or tumors. Acute inflammation can present itself as pain, heat, redness, swelling and loss of function. It includes those seen in allergic reactions such as insect bites e.g.; mosquito, bees, wasps, poison ivy, post-ablative treatment.
- The composition may be soaked into or applied to a woven or non-woven material or a sponge and applied as a mask to body parts to treat skin disorders. A light source, such as LEDs or waveguides, may be provided within or adjacent the mask or the composition to illuminate the composition. The waveguides can be optical fibres which can transmit light, not only from their ends, but also from their body. For example, made of polycarbonate or polymethylmethacrylate.
- The present disclosure also provides kits for preparing and/or applying any of the compositions of the present disclosure. The kit may include a biophotonic topical composition comprising at least a first chromophore in a gelling agent. The composition may include an oxygen-releasing agent present in amount about 0.01%-40%, 0.01%-1.0%, 0.5%-10.0%, 5%-15%, 10%-20%, 15%-25%, 20%-30%, 15.0%-25%, 20%-30%, 25%-35%, or 30%-40% by weight to weight of the composition. The chromophore may be present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition. In embodiments where the composition comprises more than one chromophore, the first chromophore may be present in an amount of about 0.01-40% per weight of the composition, and a second chromophore may be present in an amount of about 0.01-40% per weight of the composition. In certain embodiments, the first chromophore is present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition. In certain embodiments, the second chromophore is present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the composition. In certain embodiments, the amount of chromophore or combination of chromophores may be in the amount of about 0.05-40.05% per weight of the composition. In certain embodiments, the amount of chromophore or combination of chromophores may be in the amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the composition.
- In some embodiments, the kit includes more than one composition, for example, a first and a second composition. The first composition may include the oxygen-releasing agent and the second composition may include the first chromophore in the gelling agent. The first chromophore may have an emission wavelength between about 400 nm and about 570 nm. The oxygen-releasing agent may be present in the first composition in an amount of about 0.01%-1.0%, 0.5%-10.0%, 5%-15%, 10%-20%, 15%-25%, 20%-30%, 15.0%-25%, 20%-30%, 25%-35%, 30%-40% or 35%-45% by weight to weight of the first composition. The chromophore may be present in the second composition in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the second composition. In embodiments where the second composition comprises more than one chromophore, the first chromophore may be present in an amount of about 0.01-40% per weight of the second composition, and a second chromophore may be present in an amount of about 0.0001-40% per weight of the second composition. In certain embodiments, the first chromophore is present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the second composition. In certain embodiments, the second chromophore is present in an amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40% per weight of the second composition. In certain embodiments, the amount of chromophore or combination of chromophores may be in the amount of about 0.05-40.05% per weight of the second composition. In certain embodiments, the amount of chromophore or combination of chromophores may be in the amount of about 0.001-0.1%, 0.05-1%, 0.5-2%, 1-5%, 2.5-7.5%, 5-10%, 7.5-12.5%, 10-15%, 12.5-17.5%, 15-20%, 17.5-22.5%, 20-25%, 22.5-27.5%, 25-30%, 27.5-32.5%, 30-35%, 32.5-37.5%, or 35-40.05% per weight of the second chromophore.
- In some other embodiments, the first composition may comprise the first chromophore in a liquid or as a powder, and the second composition may comprise a gelling composition for thickening the first composition. The oxygen-releasing agent may be contained in the second composition or in a third composition in the kit. In some embodiments, the kit includes containers comprising the compositions of the present disclosure. In some embodiments, the kit includes a first container comprising a first composition that includes the oxygen-releasing agent, and a second container comprising a second composition that includes at least one chromophore. The containers may be light impermeable, air-tight and/or leak resistant. Exemplary containers include, but are not limited to, syringes, vials, or pouches. The first and second compositions may be included within the same container but separated from one another until a user mixes the compositions. For example, the container may be a dual-chamber syringe where the contents of the chambers mix on expulsion of the compositions from the chambers. In another example, the pouch may include two chambers separated by a frangible membrane. In another example, one component may be contained in a syringe and injectable into a container comprising the second component.
- The biophotonic composition may also be provided in a container comprising one or more chambers for holding one or more components of the biophotonic composition, and an outlet in communication with the one or more chambers for discharging the biophotonic composition from the container. In one embodiment, discharging the biophotonic compositions causes the components of the composition to mix to form a biophotonic composition which has less than 15% leaching properties.
- In other embodiments, the kit comprises a systemic or topical drug for augmenting the treatment of the composition. For example, the kit may include a systemic or topical antibiotic or hormone treatment for acne treatment or wound healing.
- Written instructions on how to use the biophotonic composition in accordance with the present disclosure may be included in the kit, or may be included on or associated with the containers comprising the compositions of the present disclosure.
- In certain embodiments, the kit may comprise a further component which is a dressing. The dressing may be a porous or semi-porous structure for receiving the biophotonic composition. The dressing may comprise woven or non-woven fibrous materials.
- In certain embodiments of the kit, the kit may further comprise a light source such as a portable light with a wavelength appropriate to activate the chromophore in the biophotonic composition. The portable light may be battery operated or re-chargeable.
- In certain embodiments, the kit may further comprise one or more waveguides.
- Identification of equivalent compositions, methods and kits are well within the skill of the ordinary practitioner and would require no more than routine experimentation, in light of the teachings of the present disclosure. Practice of the disclosure will be still more fully understood from the following examples, which are presented herein for illustration only and should not be construed as limiting the disclosure in any way.
- The examples below are given so as to illustrate the practice of various embodiments of the present disclosure. They are not intended to limit or define the entire scope of this disclosure.
- The photodynamic properties of (i) Fluorescein sodium salt at about 0.09 mg/mL, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of Fluorescein sodium salt at about 0.09 mg/mL and Eosin Y at about 0.305 mg/mL in a gel according to an embodiment of the present disclosure (comprising about 12% carbamide peroxide), were evaluated. A flexstation 384 II spectrometer was used with the following parameters: mode fluorescence,
excitation 460 nm, emission spectra 465-750 nm. The absorption and emission spectra are shown inFIGS. 6 a and 6 b which indicate an energy transfer between the chromophores in the combination. - The photodynamic properties of (i) Fluorescein sodium salt at 0.18 mg/mL final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of Fluorescein sodium salt at about 0.18 mg/mL and Eosin Y at about 0.305 mg/mL in an aqueous solution were evaluated. A flexstation 384 II spectrometer was used with the following parameters: mode fluorescence,
excitation 460 nm, emission spectra 465-750 nm. The absorption and emission spectra are shown inFIGS. 7 a and 7 b which indicate an energy transfer between the chromophores in the combination. - The photodynamic properties of (i) Rose Bengal at about 0.085 mg/mL, (ii)
- Fluorescein sodium salt at about 0.44 mg/mL final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of (i), (ii) and (iii) in a gel comprising about 12% carbamide peroxide (Set A), according to an embodiment of the invention, were evaluated. A flexstation 384 II spectrometer was used with the following parameters: mode fluorescence,
excitation 460 nm, emission spectra 465-750 nm. The absorbance and emission spectra are shown inFIGS. 8 a and 8 b which indicate an energy transfer between the chromophores in the chromophore combination. - The photodynamic properties of (i) Rose Bengal at about 0.085 mg/mL, (ii)
- Fluorescein sodium salt at about 0.44 mg/mL final concentration, (ii) Eosin Y at about 0.305 mg/mL, and (iii) a mixture of (i), (ii) and (iii) in an aqueous solution (Set A), were evaluated. A flexstation 384 II spectrometer was used with the following parameters: mode fluorescence,
excitation 460 nm, emission spectra 465-750 nm. The absorbance and emission spectra are shown inFIGS. 9 a and 9 b which indicate an energy transfer between the chromophores in the chromophore combination, in the absence of an oxygen-releasing agent. - Energy transfer was also seen between: Eosin Y and Rose Bengal; Phloxine B and EosinY; Phloxine B, EosinY and Fluorescein, amongst other combinations. It is to be reasonably inferred that energy transfer can also occur in biophotonic compositions of the present disclosure.
- A randomized, split-face clinical trial of 12 weeks was performed on 90 patients (ages 14-30) having moderate to severe facial acne. Moderate facial acne was defined as having “an Investigator's Global Assessment (IGA) of 3 with 20-40 inflammatory lesions and no more than 1 nodule”. Severe facial acne was defined as having “an IGA of 4 with more than 40 inflammatory lesions with the presence of more than 2 nodules and/or presence of sever erythema and inflammatory scarring type lesion”. For each patient, one randomly selected side of the face was treated twice a week for 6 weeks with a biophotonic composition comprising Eosin Y and an oxygen-releasing agent, and exposed to light from an LED source (peak wavelength range 400-470 nm) for about 5 minutes. Other hemiface remained untreated for the 6 week period. Both the treated and untreated sides of the face were evaluated after 12 weeks. Results are presented in Tables 1-5 below. The treatment was well tolerated by the patients and there were no serious adverse events. 80% of patients completed the study with no adverse events reported.
- At
week 4, there was a 30% reduction in inflammatory lesions (including papules, pustules and nodules) for the treated group compared to 9.0% reduction for untreated. Atweek 6, the reduction was 46.8% for treated and 18.4% for untreated, and atweek 12, the reduction was 59.2% for treated and 35.6% for untreated. -
TABLE 1 Total reduction from baseline in IGA at week 12of more than or equal to 2 grades and less than 2 grades for treated and untreated hemifaces. Total reduction from baseline in IGA at week 12Treated (n = 89) Untreated (n = 89) ≧2 grades 46 (51.7%)* 16 (18.0%) <2 grades 43 (48.3%)* 73 (82.0%) *P value < 0.0001 -
TABLE 2 Total reduction from baseline in IGA at week 12of more than or equal to 1 grade and less than 1 grade for treated and untreated hemifaces. Total reduction from Total reduction from baseline in IGA at week 12baseline in IGA at week 6 (n = 89) Treated Untreated Treated Untreated ≧1 grade 79 (88.8%)* 62 (69.7%) 71 (79.8%)+ 40 (44.9%) <1 grade 10 (11.2%)* 27 (30.3%) 18 (20.2%)+ 49 (55.1%) *P value < 0.0001 +P value < 0.0001 -
TABLE 3 Total reduction from baseline in IGA at weeks grade 0 andgrade 1 andgrades Total reduction from Total reduction from baseline in IGA at week 12baseline in IGA at week 6 (n = 89) Treated Untreated Treated Untreated To Grade 29 (32.6%)* 10 (11.2%) 16 (18.0%)+ 6 (6.7%) 0 or 1 To Grade (67.4%)* 79 (88.8%) 73 (82.0%)+ 83 (93.2%) 2, 3 or 4 *P value < 0.0001 +P value < 0.0213 -
TABLE 4 Proportion of patients showing at least 40% reduction from baseline in inflammatory lesion count (includes papules, pustules and nodules) at weeks Total reduction from Total reduction from baseline in inflammatory baseline in inflammatory lesion count at week 12lesion count at week 6Treated Untreated Treated Untreated (n = 87) (n = 87) (n = 87) (n = 87) ≧40% 71 (81.6%)* 40 (46.0%) 56 (64.4%)+ 27 (31.0%) <40% (18.4%)* 47 (54.0%) 31 (35.6%)+ 60 (69.0%) *P value < 0.0001 +P value < 0.0001 -
TABLE 5 Summary of inflammatory lesion count and absolute changes by hemiface. Difference Treated Untreated (Treated − Untreated) Inflammatory Lesion Lesion Change Lesion Count* Count Change Count Change (Absolute) Change Baseline n 90 90 90 Mean 23.0 23.3 −0.3 (SD) (13.79) (15.41) (7.10) Week 4 n 87 87 87 87 87 87 Mean 16.3 −6.9 21.2 −2.3 −4.9 −4.6 (SD) (10.82) (6.55) (14.39) (5.44) (7.58) (7.74) Week 6 n 87 87 87 87 87 87 Mean 12.4 −10.9 19.0 −4.5 −6.6 −6.3 (SD) (8.35) (8.85) (13.92) (7.24) (8.34) (9.35) p value <0.0001 <0.0001 Week 12 n 87 87 87 87 87 87 Mean 9.5 −13.7 15.0 −8.5 −5.5 −5.2 (SD) (7.10) (11.52) (11.33) (11.04) (7.37) (9.05) p value <0.0001 <0.0001 *Includes papules, pustules and nodules -
FIG. 14 is an emission spectrum showing the intensity over time of the light being emitted from the biophotonic composition. -
FIG. 5 depicts an experimental setup of an in vitro release test for evaluating leaching of the chromophore(s) or other components (e.g., oxygen releasing agents) from the biophotonic compositions of the present disclosure. In this in vitro test, a 2 mm thick layer of the biophotonic composition is applied on the surface of a 3 cm diameter polycarbonate (PC) membrane with pore size of 3 p.m. It will be appreciated that other membranes with different pore sizes can also be used. The membrane is in direct contact with phosphate saline buffer (PBS) or PBS containing 4% bovine serum albumin (PBS/BSA) contained in a closed compartment (i.e., the receptor compartment). The biophotonic composition is then illuminated with an activating light for an appropriate period of time (e.g., 5 min) at an appropriate distance (e.g. 5 cm from the light source). Samples (100 μl×2) are then taken from the receptor compartment at different time points (e.g., at 5, 10, 20, and 30 min), and evaluated for concentration of the chromophore(s) or any other components of the biophotonic composition using spectrophotometry or any other suitable method. - For example, when the chromophore being tested is eosin, a wavelength of 517 nm (absorbance) may be used. The concentration of the chromophore may then be calculated based on the chromophore standards of known concentration prepared in PBS or PBS/BSA and measured at the same time. Moreover, the presence of peroxide (i.e., an indicator of the oxygen releasing agents) may be assessed using peroxide test sticks (
e.g. Quantofix Peroxide 25, Sigma Aldrich). - Table 9 summarizes leaching data for different biophotonic compositions according to the present disclosure. The amount of hydrogen peroxide found in the receptor compartment was very low for all compositions in Table 9. The detection method of chromophore by spectrophotometry can measure the chromophore concentration from 0.2 μg/ml. The release of chromophores increased overtime but was less than 15% even after 30 minutes incubation which is longer than a treatment time according to embodiments of the present disclosure.
-
TABLE 9 Percentage of chromophores released from biophotonic compositions according to embodiments of the present disclosure, with time of incubation. Percentage chromophore released into receptor compartment from composition with time of incubation (n = 3) 5 mins 10 mins 20 mins 30 mins Eosin Y (0.011%) in a carbamide Not Not 0.75 0.78 gel (glycerine, propylene glycol, detect- detect- carbopol polymer, urea peroxide) able able Fluorescein (0.2%) in a carbamide 2.71 4.85 4.72 4.84 gel Rose Bengal (0.2%) in a carbamide 2.39 3.32 5.26 5.21 gel Rose Bengal (0.1%) + Fluorescein 2.91 5.21 8.48 8.43 (0.1%) in a carbamide gel Phloxin B (0.2%) in a carbamide 0.54 2.39 4.62 4.50 gel Eosin Y (0.2%) in a carbamide 2.77 2.72 6.56 9.08 gel Phloxin B (0.1%) and Fluorescein 2.28 4.49 7.56 11.02 (0.1%) in a carbamide gel Phloxin B (0.1%) and Rose Bengal 2.41 2.36 5.14 4.90 (0.1%) in a carbamide gel Eosin Y (0.1%) + Phloxin B 3.84 6.25 10.08 12.00 (0.1%) in a carbamide gel Eosin Y (0.1%) + Rose Bengal 3.04 4.28 6.63 8.12 (0.1%) a carbamide gel Eosin Y (0.1%) + Fluorescein 2.96 3.99 5.78 7.58 (0.1%) in a carbamide gel Phloxin B (0.1%) + Eosin Y 1.00 2.3 4.48 5.80 (0.1%) in a carbopol polymer gel Eosin Y (0.2%) in a carbopol 6.78 8.2 14.38 17.89 polymer gel including urea peroxide Phloxin B (0.1%) + Eosin Y 0.51 0.25 1.79 3.14 (0.1%) in a 5% gelatin gel Rose Bengal (0.1%) + Eosin Y 0 0.39 1.39 2.15 (0.1%) in a 5% gelatin gel - A human skin model was developed to assess the angiogenic potential of the biophotonic composition of the present disclosure. Briefly, a biophotonic composition a biophotonic composition comprising Eosin Y and Erythrosine was placed on top of a human skin model containing fibroblasts and keratinocytes. The skin model and the composition were separated by a nylon mesh of 20 micron pore size. The composition was then irradiated with blue light (‘activating light’) for 5 minutes at a distance of 5 cm from the light source. The activating light consisted of light emitted from an LED lamp having an average peak wavelength of about 400-470 nm, and a power intensity measured at 10 cm of 7.7 J/cm2 to 11.5 J/cm2. Upon illumination with the activating light, the biophotonic composition emitted fluorescent light (
FIG. 4 ). Since the biophotonic composition was in limited contact with the cells, the fibroblasts and keratinocytes were exposed mainly to the activating light and the fluorescent light emitted from the biophotonic composition. Conditioned media from the treated human 3D skin model were then applied to human aortic endothelial cells previously plated in matrigel. The formation of tubes by endothelial cells was observed and monitored by microscopy after 24 hours. The conditioned medium from 3D skin models treated with light illumination induced endothelial tube formation in vitro, suggesting an indirect effect of the light treatment (blue light and fluorescence) on angiogenesis via the production of factors by fibroblasts and keratinocytes. Plain medium and conditioned medium from untreated skin samples were used as a control, and did not induce endothelial tube formation. -
FIG. 15 is an emission spectrum showing the intensity over time of the light being emitted from the biophotonic composition. - Wounded and unwounded 3D human skin models (EpiDermFT, MatTek Corporation) were used to assess the potential of a biophotonic composition of the present disclosure to trigger distinct protein secretion and gene expression profiles. Briefly, a biophotonic composition comprising Eosin and Erythrosine were placed on top of wounded and unwounded 3D human skin models cultured under different conditions (with growth factors, 50% growth factors and no growth factors). The skin models and the composition were separated by a nylon mesh of 20 micron pore size. Each skin model-composition combination was then irradiated with blue light (‘activating light’) for 5 minutes at a distance of 5 cm from the light source. The activating light consisted of light emitted from an LED lamp having an average peak wavelength of about 440-470 nm, a power density of 60-150 mW/cm2 at 5 cm, and a total intensity after 5 minutes of about 18-39 J/cm2. The controls consisted of 3D skin models not illuminated with light.
- Gene expression and protein secretion profiles were measured 24 hours post-light exposure. Cytokine secretion was analyzed by antibody arrays (RayBio Human Cytokine antibody array), gene expression was analyzed by PCR array (PAHS-013A, SABioscience) and cytotoxicity was determined by GAPDH and LDH release. Results (Tables 1 and 2) showed that the light treatment is capable of increasing the level of protein secreted and gene expression involved in the early inflammatory phase of wound healing in wounded skin inserts and in non-starvation conditions. In starvation conditions mimicking chronic wounds, there was no increase in the level of inflammatory protein secreted when compared to the control. Interestingly, the effect of the light treatment on unwounded skin models has a much lower impact at the cellular level than on wounded skin insert, which suggests an effect at the cellular effect level of the light treatment. It seems to accelerate the inflammatory phase of the wound healing process. Due to the lack of other cell types such as macrophages in the 3D skin model, the anti-inflammatory feed-back is absent and may explain the delay in wound closure. Cytoxicity was not observed in the light treatments.
-
TABLE 6 List of proteins with statistically significant difference secretion ratio between treated and untreated control at day 3. Two arrows mean that the ratio was over 2 folds.Medium 1X Medium 0.5X Medium 0X Increase ENA78 p = 0.04 ↑↑ Angiogenin p = 0.03 ↑ Il-1R4/ST2 p = 0.02 ↑↑ CXCL16 p = 0.04 ↑ MMP3 p = 0.01 ↑↑ MCP-2 p = 0.04 ↑↑ Decrease BMP6 p = 0.01 ↓ BMP6 p = 0.02 ↓ TNFα p = 0.005 ↓ -
TABLE 7 List of genes with statistically significant difference expression ratio between treated and untreated control during the first 24 hours. Two arrows mean that the ratio was over 2 folds. Medium 1X Medium 0.5X Medium 0X Increase CTGF p = 0.02 ↑ CTGF P = 0.04 ↑ MMP3 p = 0.007 ↑↑ ITGB3 p = 0.03 ↑ ITGB3 p = 0.05 ↑ LAMA1 p = 0.03 ↑ MMP1 p = 0.03 ↑ MMP1 p = 0.02 ↑↑ ITGA2 p = 0.03 ↑ MMP3 p = 0.01 ↑ MMP10 p = 0.003 ↑↑ THBS1 P = 0.02 ↑ MMP3 p = 0.007 ↑↑ MMP8 p = 0.02 ↑↑ THBS1 p = 0.03 ↑ Decrease HAS1 p = 0.009 ↓↓ NCAM1 p = 0.02 ↓↓ NCAM1 p = 0.05 ↓↓ VCAN p = 0.02 ↓ VCAM1 p = 0.03 ↓↓ LAMC1 p = 0.002 ↓ COL7A1 p = 0.04 ↓ COL6A1 p = 0.007 ↓ CTNNA1 p = 0.03 ↓ MMP7 p = 0.003 ↓ - A randomized, placebo-controlled, single-blinded, split face and single hand study of 32 patients, split into 4 groups (A, B, C and D), assessed the safety and efficacy of treatment once a week for 4 weeks: (A) “light alone”—light, according to an embodiment of the present disclosure, comprising light from an LED source having an average peak wavelength of about 400-490 nm at a power density of less than 150 mW/cm2 for 5 minutes; and a placebo formulation; (B) “light+gel”—light as in (A) plus biophotonic gel according to an embodiment of the present disclosure); (C) “gel alone”—biophotonic gel as in (B) and a sham light (white LED light); and (D) 0.1% retinoic based cream. Skin biopsies were obtained before treatment and 12 weeks after treatment from the treatment site. Histological samples of the skin biopsies were graded by an independent and experienced pathologist blinded to the treatment assignment. The results are presented in Table 8 below and show that the light treatment with and without the biophotonic gel, according to embodiments of the present disclosure, showed a 287% and 400% increase from the baseline, respectively, in collagen clusters as viewed through Gomori Trichome staining, in the treated areas of skin. There were no serious adverse events. There was no reported or observed photosensitivity, inflammation or pain.
-
TABLE 8 Semi-quantitative histological collagen evaluation Treatment % increase in collagen Photoactivatable composition excited with light 400 having 460 nm peak wavelength Placebo composition + light having 460 nm peak 287 wavelength Retinol cream with no light 189 Placebo composition with white light 150 - A caudally based rectangular flap was elevated in the back of Wistar rats. A silicone sheet was inserted beneath the skin flap to prevent adhesion and reperfusion of the flap from the underlying tissues. Following flap closure, a biophotonic gel according to an embodiment of the present disclosure (including chromophores and hydroscopic agents) was applied onto the dorsal flap in a thin monolayer (2 mm) and exposed to a light, for 5 minutes, from a LED light source having a peak wavelength of about 440-470 nm and a bandwidth of about 18-23 nm. The biophotonic gel was removed and skin specimens were collected from different areas in the flap for histological analyses nine days post-treatment. The treated group demonstrated a significantly greater number of Ki67-positive-staining events (P=0.02) compared to those in the non-treated group these results, suggesting that the treatment may modulate the proliferation of the cells involved in wound healing (
FIG. 11 ). Following examination by an external pathologist, the treatment group was associated with a significant (P<0.05) decrease in the coagulative necrosis in the epidermis and an increase of the fibrillar stroma (dermis) as compared to the control group. - Regular white print paper was soaked in 70% ethanol (EtOH). A 2 mm thickness of different embodiment's of biophotonic compositions according to the present disclosure (Table 10) were placed onto the soaked paper and left for 5 minutes. After 5 minutes, the compositions were washed off with 70% EtOH. A composition comprising Eosin (0.017%), silica particles, modified starch, and hydrogen peroxide was also tested.
- The results show that biophotonic compositions of the present disclosure including a carbamide gel do not stain white paper. A composition containing Eosin and another hydrophilic polymer (starch) in combination with silica particles did stain the paper.
-
TABLE 10 Evaluation of removal of biophotonic composition from paper Biophotonic composition Colour of paper after washing Eosin (0.017%), silica particles, Orange/red stain on paper modified starch, hydrogen peroxide observed. (included for comparison only). Eosin (0.011%) in a urea peroxide, Substantially white - no staining glycerin, propylene glycol, carbopol, observed. hyaluronic acid, glucosamine gel. Eosin (0.011%) + carbamide Substantially white - no staining peroxide + 1.8% carbopol 940 observed. - A 3 mm thick layer of a biophotonic composition according to an embodiment of the present disclosure comprising a fluorescent chromophore in a gel according to an embodiment of the present disclosure was applied on the skin of hands of volunteers with different skin types and illuminated for 5 minutes with a blue LED light having a power density of about 50 to 150 mW/cm2 at a distance of 5 cm from the light. A thermometer probe was placed within the composition, at the surface of the skin, and the temperature was monitored in real-time during illumination of the composition. The skin temperature with no composition but the same light illumination was also measured for the same volunteers. The skin types tested were, according to Fitzpatrick classification scales, type III (white skin, sometimes burns and gradually tans), type IV (beige to brown skin, rarely burns and easily tans) and type VI (black skin, never burns, very easily tans). The results are shown in table 7.
-
TABLE 11 Temperature of skin under biophotonic composition during illumination for 5 minutes compared to temperature skin with no composition and illumination alone Minimum-maximum temperature Minimum-maximum temperature of skin under composition during of skin without composition during 5 mins of illumination/° C. 5 mins. of illumination/° C. (Average over 5 mins/° C.) (Average over 5 mins/° C.) Skin Type III 26.5-35.1 (32.2) 28.7-39.1 (36.2) Skin Type IV 27.6-39.9 (36.1) 31.4-39.9 (37.0) Skin Type VI 28.5-39.9 (35.6) 29.6-40.0 (37.4) - All skin types with biophotonic composition applied demonstrated a slower temperature increase compared to bare skin (no biophotonic composition), and so the biophotonic composition conferred a buffer effect. After 5 minutes of light illumination, the temperature of the skin under the biophotonic composition for all volunteers reached a maximum of 39.9° C., compared to 40° C. with light alone and bare skin. Overall no pain, burning or discomfort was felt by the volunteers.
- The fluorescence spectra of biophotonic compositions with different concentrations of chromophores were investigated using a spectrophotometer and an activating blue light. Exemplary fluorescence spectra of Eosin Y and Fluorescein are presented in
FIG. 12 . It was found that emitted fluorescence from the chromophore increases rapidly with increasing concentration but slows down to a plateau with further concentration increase. Activating light passing through the composition decreases with increasing chromophore composition as more is absorbed by the chromophores. Therefore, the concentration of chromophores in biophotonic compositions of the present disclosure can be selected according to a required ratio and level of activating light and fluorescence treating the tissue based on this example. In some embodiments, it will be after the zone of rapid increase, i.e. between 0.5 and 1 mg/mL for Eosin Y (FIG. 12 ). - Therefore, concentration can be selected according to required activating light and fluorescence. In some embodiments, it will be after zone of rapid increase, i.e. between 0.5 and 1 mg/mL for Eosin Y (
FIG. 12 ). - The synergy between two chromophores according to various embodiments of the present disclosure was investigated by preparing the following:
- 1—Eosin Y (0.035%)+Rose Bengal (0.085%) in a 12% carbamide gel)
2—Rose Bengal (0.085%) in a 12% carbamide gel - Rose Bengal is known to have a high quantum yield in terms of oxygen production in the presence of oxygen-releasing agents when photoactivated by green light. Eosin Y is known to have a high quantum yield in terms of emitted fluorescent light when photoactivated and can be at least partially activated by blue light when in a gel. Photoactivated Eosin Y does not have a high quantum yield in terms of oxygen production in the presence of oxygen-releasing agents. When Eosin Y and Rose Bengal are combined, it appears that both chromophores are activated by the same blue light as evidenced by
FIG. 13 . -
FIG. 13 , left panel, shows a photograph of the composition when viewed under a light microscope (×250) before exposure to an activating light. Very few bubbles were seen in both compositions. Following illumination with blue light a dramatic increase in bubbles was seen with the composition comprising a combination of Eosin Y and Rose Bengal, but not with the composition comprising Rose Bengal alone. This suggests that there is a transfer of energy from Eosin Y to Rose Bengal leading to the form oxygen species.
Claims (26)
1. A method for promoting wound healing, comprising:
applying a biophotonic composition to a wound, wherein the biophotonic composition comprises at least a first chromophore and a gelling agent; and
illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore;
wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during treatment.
2. A method for biophotonic treatment of a skin disorder, comprising:
applying a biophotonic composition to a target skin tissue afflicted with the skin disorder, wherein the biophotonic composition comprises a first chromophore and a gelling agent; and
illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore;
wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during treatment.
3. A method for biophotonic treatment of acne, comprising:
applying a biophotonic composition to target tissue wherein the biophotonic composition comprises a first chromophore and a gelling agent, wherein the tissue is an acne lesion or an acne scar; and
illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore;
wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during treatment.
4. A method for promoting skin rejuvenation comprising:
applying a biophotonic composition to skin, wherein the biophotonic composition comprises a first chromophore and a gelling agent; and
illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore;
wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into the skin during treatment.
5. A method for providing cosmetic treatment, comprising:
applying a biophotonic composition to skin, wherein the biophotonic composition comprises a first chromophore and a gelling agent; and
illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore;
wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into the skin during treatment.
6. A method of biophotonic treatment of periodontal disease, comprising:
applying a biophotonic composition to a periodontal pocket, wherein the biophotonic composition comprises a first chromophore and a gelling agent; and
illuminating said biophotonic composition with light having a wavelength that overlaps with an absorption spectrum of the first chromophore;
wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition into tissue during treatment.
7. A biophotonic composition comprising a first chromophore and a gelling agent, wherein the gelling agent renders the biophotonic composition substantially resistant to leaching such that less than 15% of the total chromophore amount leaches out of the biophotonic composition.
8. A biophotonic composition comprising a first chromophore, wherein the composition is encapsulated in a membrane which limits leaching of the first chromophore such that less than 15% of the total chromophore amount leaches out into tissue.
9. The biophotonic composition of claim 8 , wherein the membrane comprises a lipid.
10. The biophotonic composition of claim 7 , wherein the composition further comprises a second chromophore.
11. The biophotonic composition of claim 10 , wherein the first chromophore has an emission spectrum that overlaps at least 20% with an absorption spectrum of the second chromophore.
12. The biophotonic composition of claim 7 , wherein the gelling agent is hygroscopic.
13. The biophotonic composition of claim 7 , wherein the gelling agent comprises at least one of glycerin, propylene glycol, a high molecular weight, cross-linked polyacrylic acid polymer, hyaluronic acid and glucosamine sulfate.
14. The biophotonic composition of claim 7 , wherein the gelling agent comprises a hydrophilic polymer.
15. The biophotonic composition of claim 14 , wherein the hydrophilic polymer comprises a high molecular weight, cross-linked polyacrylic acid polymer.
16. The biophotonic composition of claim 7 , wherein the composition is substantially translucent.
17. The biophotonic composition of claim 7 , further comprising an oxygen-releasing agent.
18. The biophotonic composition of claim 17 , wherein the oxygen-releasing agent is selected from hydrogen peroxide, carbamide peroxide, and benzoyl peroxide.
19. The biophotonic composition of claim 7 , wherein the first chromophore photobleaches upon illumination with a light.
20. The biophotonic composition of claim 7 , wherein the first chromophore emits fluorescence upon illumination with a light.
21. The biophotonic composition of claim 10 , wherein the first chromophore transfers energy to the second chromophore upon illumination with a light.
22. The biophotonic composition of claim 7 , wherein the first chromophore is a fluorescent chromophore.
23. The biophotonic composition of claim 22 , wherein the first chromophore is a fluorescent xanthene.
24. The biophotonic composition of claim 7 , wherein the first chromophore is selected from Eosin Y, Erythrosin B, Fluorescein, Rose Bengal and Phloxin B.
25. The biophotonic composition of claim 10 , wherein the second chromophore is selected from chlorophyllin, chlorophyll a and chlorophyll b.
26. The biophotonic composition of claim 10 , wherein the first and second chromophores are selected from Eosin Y, Fluorescein, Rose Bengal, Erythrosine, Phloxine B.
Priority Applications (54)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/830,488 US20130281913A1 (en) | 2012-04-20 | 2013-03-14 | Biophotonic compositions and methods for providing biophotonic treatment |
IN9118DEN2014 IN2014DN09118A (en) | 2012-04-20 | 2013-04-19 | |
CA2868893A CA2868893C (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
CN201380020826.8A CN104350125B (en) | 2012-04-20 | 2013-04-19 | Bio-photon composition, kit and method |
RU2014146615A RU2668127C2 (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
GB1307157.6A GB2499921B (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
BR112014026056A BR112014026056A2 (en) | 2012-04-20 | 2013-04-19 | biophotonics compounds, kits and methods |
EP13779016.8A EP2838974A4 (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
PCT/CA2013/000395 WO2013155620A1 (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
CA3126820A CA3126820C (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
NZ700515A NZ700515A (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
AU2013248900A AU2013248900B2 (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
MX2014012631A MX2014012631A (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods. |
JP2015506054A JP2015514724A (en) | 2012-04-20 | 2013-04-19 | Biophotonic composition, kit and method |
CN201710816520.3A CN107669507A (en) | 2012-04-20 | 2013-04-19 | Bio-photon composition, kit and method |
SG11201406245UA SG11201406245UA (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
KR1020217004665A KR20210025676A (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
KR1020147029156A KR102219776B1 (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
US14/395,374 US11116841B2 (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
EP16178316.2A EP3150226B1 (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
IN2938DEN2015 IN2015DN02938A (en) | 2012-09-14 | 2013-09-13 | |
KR1020217017420A KR20210072827A (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
CN201380047508.0A CN104755101B (en) | 2012-09-14 | 2013-09-13 | Bio-photon is combined with chromophore |
KR1020187028357A KR20180110240A (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
BR112015005382A BR112015005382A2 (en) | 2012-09-14 | 2013-09-13 | chromophor combinations for biophotonic uses, use of these chromophores, and kit |
EP16184973.2A EP3153177A1 (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
MX2015003361A MX367670B (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses. |
CA2883717A CA2883717A1 (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
EP13836318.9A EP2895194A4 (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
JP2015531408A JP2015528472A (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic use |
EP17196260.8A EP3329938B1 (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
AU2013315303A AU2013315303B2 (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
PCT/CA2013/000786 WO2014040176A1 (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
US14/427,993 US10213373B2 (en) | 2012-04-20 | 2013-09-13 | Chromophore combinations for biophotonic uses |
RU2015113595A RU2015113595A (en) | 2012-09-14 | 2013-09-13 | COMBINATION OF CHROMOPHORES FOR BIOPHOTON APPLICATIONS |
KR1020157006411A KR20150068358A (en) | 2012-09-14 | 2013-09-13 | Chromophore combinations for biophotonic uses |
HK14102101.6A HK1188951A1 (en) | 2012-04-20 | 2014-03-03 | Biophotonic compositions, kits and methods |
ZA2014/07310A ZA201407310B (en) | 2012-04-20 | 2014-10-08 | Biophotonic compositions, kits and methods |
IL235136A IL235136A0 (en) | 2012-04-20 | 2014-10-19 | Biophotonic compositions, kits and methods |
IL237657A IL237657A0 (en) | 2012-09-14 | 2015-03-10 | Chromophore combinations for biophotonic uses |
ZA2015/01700A ZA201501700B (en) | 2012-09-14 | 2015-03-12 | Chromophore combinations for biophotonic uses |
HK15107292.3A HK1206774A1 (en) | 2012-04-20 | 2015-07-30 | Biophotonic compositions, kits and methods |
HK15109532.9A HK1208807A1 (en) | 2012-09-14 | 2015-09-29 | Chromophore combinations for biophotonic uses |
HK16100462.1A HK1212592A1 (en) | 2012-09-14 | 2016-01-15 | Chromophore combinations for biophotonic uses |
US15/201,111 US10376455B2 (en) | 2012-04-20 | 2016-07-01 | Biophotonic compositions and methods for providing biophotonic treatment |
AU2017245269A AU2017245269B2 (en) | 2012-04-20 | 2017-10-09 | Biophotonic compositions, kits and methods |
JP2017238941A JP2018076343A (en) | 2012-09-14 | 2017-12-13 | Combination of chromophore for biological light use |
JP2018169059A JP2019006807A (en) | 2012-04-20 | 2018-09-10 | Biophotonic compositions, kits and methods |
US16/225,672 US20190133908A1 (en) | 2012-09-14 | 2018-12-19 | Chromophore combinations for biophotonic uses |
US16/536,996 US11331257B2 (en) | 2012-04-20 | 2019-08-09 | Biophotonic compositions and methods for providing biophotonic treatment |
JP2020081967A JP7097924B2 (en) | 2012-04-20 | 2020-05-07 | Bio-light compositions, kits and methods |
JP2021164474A JP2022003081A (en) | 2012-09-14 | 2021-10-06 | Biological light composition |
US17/743,518 US11723854B2 (en) | 2012-04-20 | 2022-05-13 | Biophotonic compositions and methods for providing biophotonic treatment |
US18/366,224 US20240041739A1 (en) | 2012-04-20 | 2023-08-07 | Biophotonic compositions and methods for providing biophotonic treatment |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261636480P | 2012-04-20 | 2012-04-20 | |
US201261636574P | 2012-04-20 | 2012-04-20 | |
US201261636577P | 2012-04-20 | 2012-04-20 | |
US201261701510P | 2012-09-14 | 2012-09-14 | |
US201261701502P | 2012-09-14 | 2012-09-14 | |
US201261701513P | 2012-09-14 | 2012-09-14 | |
US201361766611P | 2013-02-19 | 2013-02-19 | |
US13/830,488 US20130281913A1 (en) | 2012-04-20 | 2013-03-14 | Biophotonic compositions and methods for providing biophotonic treatment |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/395,374 Continuation-In-Part US11116841B2 (en) | 2012-04-20 | 2013-04-19 | Biophotonic compositions, kits and methods |
US14/427,993 Continuation US10213373B2 (en) | 2012-04-20 | 2013-09-13 | Chromophore combinations for biophotonic uses |
PCT/CA2013/000786 Continuation WO2014040176A1 (en) | 2012-04-20 | 2013-09-13 | Chromophore combinations for biophotonic uses |
US15/201,111 Continuation US10376455B2 (en) | 2012-04-20 | 2016-07-01 | Biophotonic compositions and methods for providing biophotonic treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130281913A1 true US20130281913A1 (en) | 2013-10-24 |
Family
ID=48537538
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/830,488 Abandoned US20130281913A1 (en) | 2012-04-20 | 2013-03-14 | Biophotonic compositions and methods for providing biophotonic treatment |
US14/427,993 Active US10213373B2 (en) | 2012-04-20 | 2013-09-13 | Chromophore combinations for biophotonic uses |
US15/201,111 Active US10376455B2 (en) | 2012-04-20 | 2016-07-01 | Biophotonic compositions and methods for providing biophotonic treatment |
US16/536,996 Active 2033-10-28 US11331257B2 (en) | 2012-04-20 | 2019-08-09 | Biophotonic compositions and methods for providing biophotonic treatment |
US17/743,518 Active US11723854B2 (en) | 2012-04-20 | 2022-05-13 | Biophotonic compositions and methods for providing biophotonic treatment |
US18/366,224 Pending US20240041739A1 (en) | 2012-04-20 | 2023-08-07 | Biophotonic compositions and methods for providing biophotonic treatment |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/427,993 Active US10213373B2 (en) | 2012-04-20 | 2013-09-13 | Chromophore combinations for biophotonic uses |
US15/201,111 Active US10376455B2 (en) | 2012-04-20 | 2016-07-01 | Biophotonic compositions and methods for providing biophotonic treatment |
US16/536,996 Active 2033-10-28 US11331257B2 (en) | 2012-04-20 | 2019-08-09 | Biophotonic compositions and methods for providing biophotonic treatment |
US17/743,518 Active US11723854B2 (en) | 2012-04-20 | 2022-05-13 | Biophotonic compositions and methods for providing biophotonic treatment |
US18/366,224 Pending US20240041739A1 (en) | 2012-04-20 | 2023-08-07 | Biophotonic compositions and methods for providing biophotonic treatment |
Country Status (18)
Country | Link |
---|---|
US (6) | US20130281913A1 (en) |
EP (2) | EP2838974A4 (en) |
JP (3) | JP2015514724A (en) |
KR (2) | KR20210025676A (en) |
CN (2) | CN104350125B (en) |
AU (2) | AU2013248900B2 (en) |
BR (1) | BR112014026056A2 (en) |
CA (2) | CA3126820C (en) |
GB (1) | GB2499921B (en) |
HK (2) | HK1188951A1 (en) |
IL (1) | IL235136A0 (en) |
IN (1) | IN2014DN09118A (en) |
MX (1) | MX2014012631A (en) |
NZ (1) | NZ700515A (en) |
RU (1) | RU2668127C2 (en) |
SG (1) | SG11201406245UA (en) |
WO (1) | WO2013155620A1 (en) |
ZA (1) | ZA201407310B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140161851A1 (en) * | 2012-12-11 | 2014-06-12 | Elc Management Llc | Cosmetic Compositions With Near Infra-Red (NIR) Light - Emitting Material And Methods Therefor |
US9345648B2 (en) | 2006-11-09 | 2016-05-24 | Klox Technologies Inc. | Photoactivatable oxygen-evolving compositions and methods for teeth whitening |
US20160199665A1 (en) * | 2015-01-08 | 2016-07-14 | Photomed Technologies, Inc. | Treatment of wounds using electromagnetic radiation |
US20160213783A1 (en) * | 2015-01-28 | 2016-07-28 | Hemant N. Joshi | Pharmaceutical composition and method of preparation of formulations for the management of dysphagia |
CN106413766A (en) * | 2014-04-01 | 2017-02-15 | 克洛克斯科技公司 | Tissue filler compositions and methods of use |
US20180043179A1 (en) * | 2015-02-24 | 2018-02-15 | Arturo Solis Herrera | Textile covered with an active outside surface and an active inside surface comprising optical fibers |
US10130706B2 (en) | 2013-03-14 | 2018-11-20 | Klox Technologies Inc. | Biophotonic materials and uses thereof |
US20190021973A1 (en) * | 2015-12-28 | 2019-01-24 | Klox Technologies Limited | Peroxide-less biophotonic compositions and methods |
US10213373B2 (en) | 2012-04-20 | 2019-02-26 | Klox Technologies, Inc. | Chromophore combinations for biophotonic uses |
US10836872B2 (en) | 2016-08-11 | 2020-11-17 | The Catholic University Of Korea Industry-Academy Cooperation | Visible light-curable water-soluble chitosan derivative, chitosan hydrogel, and preparation method therefor |
US10881736B2 (en) | 2013-07-03 | 2021-01-05 | Klox Technologies Inc. | Biophotonic compositions comprising a chromophore and a gelling agent for treating wounds |
US20210170027A1 (en) * | 2017-11-17 | 2021-06-10 | Klox Technologies Limited | Biophotonic compositions, methods and kits for enhancing hair growth |
US11116841B2 (en) | 2012-04-20 | 2021-09-14 | Klox Technologies Inc. | Biophotonic compositions, kits and methods |
US11421349B2 (en) | 2014-10-31 | 2022-08-23 | Klox Technologies Inc. | Photoactivatable fibers and fabric media |
US12059003B2 (en) | 2017-07-12 | 2024-08-13 | TerMir Inc. | Antimicrobial compositions effective against bacteria and fungus |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5366553B2 (en) | 2005-11-09 | 2013-12-11 | クロックス テクノロジーズ インコーポレイテッド | Teeth whitening composition and method |
US8658219B2 (en) | 2008-11-07 | 2014-02-25 | Klox Technologies Inc. | Oxidatitive photoactivated skin rejeuvenation composition comprising hyaluronic acid, glucosamine, or allantoin |
US8685466B2 (en) | 2009-07-17 | 2014-04-01 | Klox Technologies Inc. | Combination of an oxidant, a photosensitizer and a wound healing agent for oral disinfection and treatment of oral disease |
WO2014042936A2 (en) | 2012-09-14 | 2014-03-20 | Valeant Pharmaceuticals International, Inc. | Compositions and methods for teeth whitening |
CN104755101B (en) * | 2012-09-14 | 2018-10-02 | 克洛克斯科技公司 | Bio-photon is combined with chromophore |
WO2015184551A1 (en) * | 2014-06-04 | 2015-12-10 | Klox Technologies Inc. | Biophotonic hydrogels |
AR100864A1 (en) * | 2014-06-09 | 2016-11-09 | Klox Tech Inc | THERMOENDURECIBLE BIOPHOTONIC COMPOSITIONS AND THEIR USES |
US11266685B2 (en) * | 2014-06-09 | 2022-03-08 | Klox Technologies Inc. | Silicone-based biophotonic compositions and uses thereof |
US20170209348A1 (en) * | 2014-06-24 | 2017-07-27 | Klox Technologies Inc. | Biophotonic compositions comprising halogen and uses thereof |
AU2015318541A1 (en) * | 2014-09-15 | 2017-03-16 | Klox Technologies Inc. | Emissive polymeric matrices |
BR122020024964B1 (en) | 2015-07-28 | 2024-01-16 | Know Bio, Llc | METHODS AND DEVICES FOR REDUCING THE PRESENCE, CONCENTRATION OR GROWTH OF PATHOGENS IN OR ON TISSUE OF LIVING MAMMALS |
US12109429B2 (en) | 2015-07-28 | 2024-10-08 | Know Bio, Llc | Phototherapeutic light for treatment of pathogens |
CA3010872A1 (en) * | 2016-01-11 | 2017-07-20 | Klox Technologies Limited | Biophotonic compositions for the treatment of pyoderma |
BR112018014161A2 (en) * | 2016-01-11 | 2018-12-11 | Klox Tech Limited | biophotonic compositions for treating skin and soft tissue injury having one or both resistant and non-resistant infections |
US20200222536A1 (en) * | 2016-05-23 | 2020-07-16 | Orphaderm Limited | Biophotonic compositions comprising a fungal-derived chromophore |
JP2018048100A (en) * | 2016-09-23 | 2018-03-29 | クロクス テクノロジーズ インコーポレイテッド | Composition, method, and kit of bio-photon for alleviation of pain |
WO2018053646A1 (en) * | 2016-09-23 | 2018-03-29 | Klox Technologies Inc. | Biophotonic compositions, methods, and kits for inhibiting and disrupting biofilms |
CA3037397A1 (en) * | 2016-09-23 | 2018-03-29 | Klox Technologies Inc. | Biophotonic compositions and methods for reducing scarring |
US20190381173A1 (en) * | 2017-01-27 | 2019-12-19 | Klox Technologies Inc. | Methods for photobiomodulation of biological processes using fluorescence generated and emitted from a biophotonic composition or a biophotonic system |
JP6856227B2 (en) * | 2017-02-09 | 2021-04-07 | 株式会社Cics | Measuring device |
EP3634366B1 (en) * | 2017-06-06 | 2020-11-25 | Unilever N.V. | A composition, method and kit for whitening teeth |
EP3710108A4 (en) * | 2017-11-17 | 2021-08-18 | Klox Technologies Limited | Modulation of biophotonic regimens |
EP3801653A4 (en) * | 2018-06-05 | 2022-03-23 | Klox Technologies Inc. | Absorbent biophotonic fiber system |
US10967197B2 (en) | 2018-08-29 | 2021-04-06 | Azulite, Inc. | Phototherapy devices and methods for treating truncal acne and scars |
US12011611B2 (en) | 2020-03-19 | 2024-06-18 | Know Bio, Llc | Illumination devices for inducing biological effects |
US11147984B2 (en) | 2020-03-19 | 2021-10-19 | Know Bio, Llc | Illumination devices for inducing biological effects |
US11986666B2 (en) | 2020-03-19 | 2024-05-21 | Know Bio, Llc | Illumination devices for inducing biological effects |
WO2021216676A1 (en) * | 2020-04-21 | 2021-10-28 | Ellor LLC | Tissue treatment device and method of using the same |
WO2021243593A1 (en) * | 2020-06-03 | 2021-12-09 | 王芷尧 | Phototherapy system and use method thereof |
JP2020179256A (en) * | 2020-07-31 | 2020-11-05 | 株式会社三洋物産 | Game machine |
JP2020179257A (en) * | 2020-07-31 | 2020-11-05 | 株式会社三洋物産 | Game machine |
JP2020179255A (en) * | 2020-07-31 | 2020-11-05 | 株式会社三洋物産 | Game machine |
US12115384B2 (en) | 2021-03-15 | 2024-10-15 | Know Bio, Llc | Devices and methods for illuminating tissue to induce biological effects |
US11654294B2 (en) | 2021-03-15 | 2023-05-23 | Know Bio, Llc | Intranasal illumination devices |
AU2022426674A1 (en) * | 2021-12-28 | 2024-06-27 | Provectus Pharmatech, Inc. | Halogenated xanthene-containing topical anti-gram-positive bacterial ophthalmic composition and method |
WO2024030474A1 (en) * | 2022-08-03 | 2024-02-08 | Lucas Meyer Cosmetics Sas | Light-modulating cosmetic compositions and uses thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5292362A (en) * | 1990-07-27 | 1994-03-08 | The Trustees Of Columbia University In The City Of New York | Tissue bonding and sealing composition and method of using the same |
WO2010051636A1 (en) * | 2008-11-07 | 2010-05-14 | Klox Technologies Inc . | Combination of an oxidant and a photoactivator for the healing of wounds |
WO2010070292A1 (en) * | 2008-12-20 | 2010-06-24 | Convatec Technologies Inc | A composition for use on skin and wound |
US20100266989A1 (en) * | 2006-11-09 | 2010-10-21 | Klox Technologies Inc. | Teeth whitening compositions and methods |
WO2011006263A1 (en) * | 2009-07-17 | 2011-01-20 | Klox Technologies Inc. | Antibacterial oral composition |
Family Cites Families (246)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2877221A (en) | 1954-03-17 | 1959-03-10 | Pfizer & Co C | 11, 14-peroxides of substituted ergostadiene compounds |
US3309274A (en) | 1962-07-23 | 1967-03-14 | Brilliant Herbert | Use of fluorescent dyes in dental diagnostic methods |
US3141321A (en) | 1963-04-12 | 1964-07-21 | Scovill Manufacturing Co | Key retaining member |
US3293127A (en) | 1964-07-22 | 1966-12-20 | Gold Crest Chemical Corp Inc | Arterial embalming fluid and method for embalming therewith |
DE1617744A1 (en) | 1964-07-24 | 1970-09-10 | Peter Strong & Co Inc | Cleaning agents for dentures |
NL152290B (en) | 1965-09-08 | 1977-02-15 | American Cyanamid Co | PROCESS FOR PREPARING CHEMILUMINESCENT MIXTURES. |
US3372125A (en) | 1965-11-15 | 1968-03-05 | Peter Strong & Company Inc | Denture cleanser |
US3595798A (en) | 1967-12-18 | 1971-07-27 | Lever Brothers Ltd | Cleansing compositions |
US3671450A (en) | 1969-09-22 | 1972-06-20 | American Cyanamid Co | Chemiluminescent compositions |
US3728446A (en) | 1971-01-11 | 1973-04-17 | Colgate Palmolive Co | Speckled dentifrice gel |
FR2463613A1 (en) | 1979-08-20 | 1981-02-27 | Thorel Jean Noel | NEW COMPOSITIONS FOR THE REVELATION OF THE DENTAL PLATE |
DE2935450A1 (en) * | 1979-09-01 | 1981-03-19 | Hermann Dr.Med.Dent. 4044 Kaarst Gertenbach | Tooth cleansing compsn. contg. dye - pref. encapsulated in gelatin to indicate presence of tooth deposit e.g. plaque |
US4402959A (en) | 1980-06-02 | 1983-09-06 | Merck & Co., Inc. | Antimicrobial compositions |
US4320140A (en) | 1980-10-09 | 1982-03-16 | Sterling Drug Inc. | Synergistic insecticidal compositions |
US4430381A (en) | 1982-06-25 | 1984-02-07 | The Buckeye Cellulose Corporation | Monocarboxylic acid antimicrobials in fabrics |
US4625026A (en) | 1982-12-30 | 1986-11-25 | Biomeasure, Inc. | 2-amino-4-oxo-tricyclicpyrimidines having antiviral activities against herpes simplex virus type II infections |
US4518578A (en) | 1983-05-16 | 1985-05-21 | Colgate-Palmolive Company | Dentifrice composition containing visually clear pigment-colored stripe |
US4647578A (en) | 1983-12-02 | 1987-03-03 | Sterling Drug Inc. | Phototoxic insecticidal compositions and method of use thereof |
US4533435A (en) | 1984-06-07 | 1985-08-06 | Microban Products Company | Antimicrobial paper |
US4574097A (en) | 1984-08-10 | 1986-03-04 | Isopedix Corporation | Reinforced thixotropic gel composition |
US4846165A (en) | 1986-11-26 | 1989-07-11 | Dentsply Research & Development Corp. | Wound dressing membrane |
US4736467A (en) | 1986-12-24 | 1988-04-12 | Burlington Industries, Inc. | Operating room clothing system |
US4855139A (en) | 1987-01-20 | 1989-08-08 | Med. Fab (Lafayette), Inc. | Fungicidally active cellulosic textile compositions, or articles of manufacture |
JPH01279838A (en) | 1988-04-30 | 1989-11-10 | Kiyuukiyuu Yakuhin Kogyo Kk | Lysozyme chloride-containing plaster for gingivitis and pyorrhea |
US5453275A (en) | 1988-05-05 | 1995-09-26 | Interface, Inc. | Biocidal polymeric coating for heat exchanger coils |
US4891211A (en) | 1988-06-29 | 1990-01-02 | Church & Dwight Co., Inc. | Stable hydrogen peroxide-releasing dentifice |
EP0356868A3 (en) | 1988-09-01 | 1991-03-20 | Dentsply International, Inc. | A method of treating a tooth with adhesive dental cavity basing composition |
US5091102A (en) | 1988-11-15 | 1992-02-25 | Nordico, Inc. | Method of making a dry antimicrobial fabric |
NL8900165A (en) | 1989-01-24 | 1990-08-16 | Matthijs Cornelis Evers | WOUND POWDER. |
WO1990009779A1 (en) | 1989-02-28 | 1990-09-07 | Benhuri Marc N | Method and composition for treatment of periodontal disease |
US5143071A (en) | 1989-03-30 | 1992-09-01 | Nepera, Inc. | Non-stringy adhesive hydrophilic gels |
JPH0383927A (en) | 1989-08-25 | 1991-04-09 | Sunstar Inc | Periodontal tissue regeneration promoter |
US4992256A (en) | 1989-09-27 | 1991-02-12 | Colgate-Palmolive Company | Plaque disclosing compositions |
DE4007428A1 (en) | 1990-03-09 | 1991-09-12 | Hoechst Ag | Photopolymerisable mixt. sensitive to near UV and visible light |
US5069907A (en) | 1990-03-23 | 1991-12-03 | Phoenix Medical Technology | Surgical drape having incorporated therein a broad spectrum antimicrobial agent |
JP4564596B2 (en) | 1992-04-30 | 2010-10-20 | ユーシーエル ビジネス ピーエルシー | Laser treatment |
US5749968A (en) | 1993-03-01 | 1998-05-12 | Focal, Inc. | Device for priming for improved adherence of gels to substrates |
US5800373A (en) | 1995-03-23 | 1998-09-01 | Focal, Inc. | Initiator priming for improved adherence of gels to substrates |
US5567372A (en) | 1993-06-11 | 1996-10-22 | Kimberly-Clark Corporation | Method for preparing a nonwoven web containing antimicrobial siloxane quaternary ammonium salts |
US5705357A (en) | 1994-08-29 | 1998-01-06 | Johnson & Johnson Clinical Diagnostics, Inc. | Chemiluminescent reagent and assay using a substituted acetanilide for light generation |
US5529769A (en) | 1994-12-20 | 1996-06-25 | Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. | Cosmetic compositions containing betulinic acid |
GB9500116D0 (en) * | 1995-01-05 | 1995-03-01 | Ciba Geigy Ag | Pharmaceutical compositions |
ATE369402T1 (en) | 1995-03-23 | 2007-08-15 | Genzyme Corp | REDOX AND PHOTOINITIATOR SYSTEM FOR PRIMERING IMPROVED ADHESION OF GELS TO SUBSTRATES |
US6056548A (en) | 1995-04-26 | 2000-05-02 | Ceramoptec Industries, Inc. | Hygienic dental laser photo treatment method |
US5658148A (en) | 1995-04-26 | 1997-08-19 | Ceramoptec Industries, Inc. | Dental laser brushing or cleaning device |
JPH092925A (en) | 1995-06-16 | 1997-01-07 | Shiseido Co Ltd | Two agent-mixing type cosmetic |
AU7245596A (en) | 1995-09-25 | 1997-04-17 | Robert Eric Montgomery | Tooth bleaching compositions |
US5713738A (en) | 1995-12-12 | 1998-02-03 | Britesmile, Inc. | Method for whitening teeth |
US5894042A (en) | 1996-02-26 | 1999-04-13 | Technology Licensing Company | Bacteriostatic coating of polymeric conduit |
US6541460B2 (en) | 1996-08-07 | 2003-04-01 | George D. Petito | Method for use of hyaluronic acid in wound management |
AU4185397A (en) | 1996-09-16 | 1998-04-02 | Procter & Gamble Company, The | Antimicrobial oral care compositions |
US5913884A (en) | 1996-09-19 | 1999-06-22 | The General Hospital Corporation | Inhibition of fibrosis by photodynamic therapy |
US7353829B1 (en) | 1996-10-30 | 2008-04-08 | Provectus Devicetech, Inc. | Methods and apparatus for multi-photon photo-activation of therapeutic agents |
US7390668B2 (en) | 1996-10-30 | 2008-06-24 | Provectus Pharmatech, Inc. | Intracorporeal medicaments for photodynamic treatment of disease |
WO1998023219A1 (en) | 1996-11-27 | 1998-06-04 | Sibner Jeffrey A | Dental bleaching composition and method |
US6846182B1 (en) | 1996-11-27 | 2005-01-25 | Jeffrey A. Sibner | Dental bleaching composition and method |
US8182473B2 (en) | 1999-01-08 | 2012-05-22 | Palomar Medical Technologies | Cooling system for a photocosmetic device |
FR2756741B1 (en) | 1996-12-05 | 1999-01-08 | Cird Galderma | USE OF A CHROMOPHORE IN A COMPOSITION INTENDED TO BE APPLIED TO THE SKIN BEFORE LASER TREATMENT |
JPH10182390A (en) | 1996-12-25 | 1998-07-07 | Lion Corp | Composition for oral cavity |
US5785527A (en) | 1997-01-10 | 1998-07-28 | Ultradent Products, Inc. | Stable light or heat activated dental bleaching compositions |
US6391283B1 (en) | 1997-01-10 | 2002-05-21 | Ultradent Products, Inc. | Methods and apparatus for activating dental compositions |
US5858332A (en) | 1997-01-10 | 1999-01-12 | Ultradent Products, Inc. | Dental bleaching compositions with high concentrations of hydrogen peroxide |
CA2275667A1 (en) | 1997-01-30 | 1998-08-06 | Ciba Specialty Chemicals Holding Inc. | Non-volatile phenylglyoxalic esters |
US6305936B1 (en) | 1997-02-19 | 2001-10-23 | Ultradent Products, Inc. | Polymerizable isolation barriers with reduced polymerization strength and methods for forming and using such barriers |
DE69814501T2 (en) | 1997-02-24 | 2004-03-25 | KURARAY CO., LTD, Kurashiki | Antimicrobial caries indicating composition |
US5922331A (en) | 1997-03-26 | 1999-07-13 | Chanel, Inc. | Skin cream composition |
JPH10330235A (en) | 1997-06-02 | 1998-12-15 | Lion Corp | Agent for washing artificial tooth |
US6108850A (en) | 1997-06-03 | 2000-08-29 | Mclaughlin; Gerald | Accelerated method and instrumentation for whitening teeth |
US8974363B2 (en) | 1997-12-11 | 2015-03-10 | Provectus Pharmatech, Inc. | Topical medicaments and methods for photodynamic treatment of disease |
US6161544A (en) | 1998-01-28 | 2000-12-19 | Keratoform, Inc. | Methods for accelerated orthokeratology |
US5919554A (en) | 1998-01-30 | 1999-07-06 | Microban Products Company | Antimicrobial fiberglass reinforced plastic composite |
US6162055A (en) | 1998-02-13 | 2000-12-19 | Britesmile, Inc. | Light activated tooth whitening composition and method of using same |
DE69938775D1 (en) | 1998-02-13 | 2008-07-03 | Britesmile Professional Inc | BY LIGHT ACTIVATED TOOTHBAR MEDIUM AND METHOD OF USE |
US20030198605A1 (en) | 1998-02-13 | 2003-10-23 | Montgomery R. Eric | Light-activated tooth whitening composition and method of using same |
US6149895A (en) | 1998-02-17 | 2000-11-21 | Kreativ, Inc | Dental bleaching compositions, kits & methods |
US5977199A (en) | 1998-02-17 | 1999-11-02 | The Kerr Corporation | Composition, delivery system therefor, and method for making temporary crowns and bridges |
WO1999049823A1 (en) | 1998-03-30 | 1999-10-07 | Fibermark, Inc. | Light-activated antimicrobial polymeric materials |
US6036493A (en) | 1998-07-23 | 2000-03-14 | Ad Dent Inc. | Dental bleaching system and method |
US7648695B2 (en) | 1998-08-06 | 2010-01-19 | Provectus Pharmatech, Inc. | Medicaments for chemotherapeutic treatment of disease |
JP4199333B2 (en) | 1998-08-07 | 2008-12-17 | 宇部マテリアルズ株式会社 | Dentifrice composition |
US6203805B1 (en) | 1998-11-10 | 2001-03-20 | Color Access, Inc. | Topical compositions containing whey proteins |
MY131835A (en) | 1998-11-20 | 2007-09-28 | Gen Hospital Corp | Permanent, removable tissue markings |
US6663659B2 (en) | 2000-01-13 | 2003-12-16 | Mcdaniel David H. | Method and apparatus for the photomodulation of living cells |
US6887260B1 (en) | 1998-11-30 | 2005-05-03 | Light Bioscience, Llc | Method and apparatus for acne treatment |
US6676655B2 (en) * | 1998-11-30 | 2004-01-13 | Light Bioscience L.L.C. | Low intensity light therapy for the manipulation of fibroblast, and fibroblast-derived mammalian cells and collagen |
US6030222A (en) | 1998-12-01 | 2000-02-29 | Tarver; Jeanna G. | Dye compositions and methods for whitening teeth using same |
US6183773B1 (en) | 1999-01-04 | 2001-02-06 | The General Hospital Corporation | Targeting of sebaceous follicles as a treatment of sebaceous gland disorders |
US6423697B1 (en) | 1999-01-14 | 2002-07-23 | Mark Friedman | Intraoral topical anti-inflammatory treatment for relief of migraine, tension-type headache, post-traumatic headache, facial pain, and cervical-muscle spasm |
US20030162760A1 (en) | 1999-01-26 | 2003-08-28 | Eiko Masatsuji | Dermal agent |
US6420455B1 (en) | 1999-06-18 | 2002-07-16 | 3M Innovative Properties Company | Antimicrobial composition containing photosensitizers articles, and methods of use |
IT1306679B1 (en) | 1999-06-29 | 2001-10-02 | Fidia Advanced Biopolymers Srl | USE OF HYALURONIC ACID DERIVATIVES FOR THE PREPARATION OF PHARMACEUTICAL AND BIOMATERIAL COMPOSITIONS FOR THE PREVENTION OF |
US6365134B1 (en) | 1999-07-07 | 2002-04-02 | Scientific Pharmaceuticals, Inc. | Process and composition for high efficacy teeth whitening |
NL1012696C2 (en) | 1999-07-23 | 2001-01-24 | Berg Electronics Mfg | Plug or socket for use in a power connector. |
ATE406157T1 (en) | 1999-08-13 | 2008-09-15 | Provectus Pharmatech Inc | IMPROVED TOPICAL MEDICATIONS AND METHODS FOR THE PHOTODYNAMIC TREATMENT OF DISEASES |
US7220438B2 (en) | 1999-09-23 | 2007-05-22 | Asac Compañia de Biotecnologia | Pharmacological activities of Curcuma longa extracts |
CN1423549A (en) * | 1999-11-19 | 2003-06-11 | 宝洁公司 | Personal care articles comprising a hydrophilic conditioning agent exhibiting a defined leaching value |
US6475497B1 (en) | 1999-12-08 | 2002-11-05 | The Procter & Gamble Company | Tartar control denture adhesive compositions |
DE60015790T2 (en) | 1999-12-08 | 2005-11-03 | The Procter & Gamble Company, Cincinnati | TOOTH PROSTHETIC ADHERENCE FOR CONTROLLING TOOTH STONE TRAINING |
US6905672B2 (en) | 1999-12-08 | 2005-06-14 | The Procter & Gamble Company | Compositions and methods to inhibit tartar and microbes using denture adhesive compositions with colorants |
US6475498B1 (en) | 1999-12-08 | 2002-11-05 | The Procter & Gamble Company | Method to inhibit tartar and stain using denture adhesive compositions |
DE19961341C2 (en) | 1999-12-17 | 2003-09-11 | 3M Espe Ag | Improved dental materials |
US6444725B1 (en) | 2000-01-21 | 2002-09-03 | 3M Innovative Properties Company | Color-changing dental compositions |
EP1272119B1 (en) | 2000-02-11 | 2010-11-24 | The General Hospital Corporation | Photochemical tissue bonding |
US6551608B2 (en) | 2000-03-06 | 2003-04-22 | Porex Technologies Corporation | Porous plastic media with antiviral or antimicrobial properties and processes for making the same |
GB2360459B (en) | 2000-03-23 | 2002-08-07 | Photo Therapeutics Ltd | Therapeutic light source and method |
JP4146598B2 (en) | 2000-03-29 | 2008-09-10 | 積水化学工業株式会社 | Insulation structure of unit building and insulation construction method |
US6267976B1 (en) | 2000-04-14 | 2001-07-31 | Gojo Industries, Inc. | Skin cleanser with photosensitive dye |
US6800671B1 (en) | 2000-04-21 | 2004-10-05 | Britesmile, Inc. | Low peak exotherm curable compositions |
US7083610B1 (en) | 2000-06-07 | 2006-08-01 | Laserscope | Device for irradiating tissue |
AU2000268991A1 (en) | 2000-08-10 | 2002-02-25 | Paradyne Corporation | Filter system and method to suppress interference imposed upon a frequency-division multiplexed channel |
KR100768352B1 (en) | 2000-09-14 | 2007-10-18 | 하이 테크 레이저 | Composition for dental bleaching |
US6528555B1 (en) | 2000-10-12 | 2003-03-04 | 3M Innovative Properties Company | Adhesive for use in the oral environment having color-changing capabilities |
DE10056114A1 (en) | 2000-11-04 | 2002-05-29 | Wolfgang Malodobry | Scar-free tattoo removal |
US6485709B2 (en) | 2001-01-23 | 2002-11-26 | Addent Inc. | Dental bleaching gel composition, activator system and method for activating a dental bleaching gel |
FI20010222A0 (en) | 2001-02-06 | 2001-02-06 | Yli Urpo Antti | Dental care and medical polymer composites and compositions |
JP2002233612A (en) | 2001-02-07 | 2002-08-20 | Daito Giken:Kk | Gable table |
JP2002293747A (en) | 2001-03-29 | 2002-10-09 | Jinen:Kk | Skin preparation for external use |
US8541021B2 (en) | 2001-05-01 | 2013-09-24 | A.V. Topchiev Institute Of Petrochemical Synthesis | Hydrogel compositions demonstrating phase separation on contact with aqueous media |
DE60239528D1 (en) | 2001-05-01 | 2011-05-05 | Corium International Redwood City | TWO-PHASE, WATER-ABSORBING BIOADHESIVE COMPOSITION |
DE50113412D1 (en) | 2001-05-17 | 2008-02-07 | Kettenbach Gmbh & Co Kg | Chemically curing dental bleaching material |
ITMI20011315A1 (en) | 2001-06-21 | 2002-12-21 | Herbariorum Medicaminum Offici | COMPOSITION FOR ANTI-PLATE TOOTHPASTE PASTE WITH PLATE DETECTOR |
US20030009158A1 (en) | 2001-07-09 | 2003-01-09 | Perricone Nicholas V. | Skin treatments using blue and violet light |
US6558653B2 (en) | 2001-09-19 | 2003-05-06 | Scot N. Andersen | Methods for treating periodontal disease |
US7223270B2 (en) * | 2001-11-29 | 2007-05-29 | Altshuler Gregory B | Light emitting toothbrush for oral phototherapy |
US6648904B2 (en) | 2001-11-29 | 2003-11-18 | Palomar Medical Technologies, Inc. | Method and apparatus for controlling the temperature of a surface |
US20040147984A1 (en) | 2001-11-29 | 2004-07-29 | Palomar Medical Technologies, Inc. | Methods and apparatus for delivering low power optical treatments |
EP1467760A2 (en) | 2002-01-23 | 2004-10-20 | Light Sciences Corporation | Systems and methods for photodynamic therapy |
US7081128B2 (en) | 2002-03-04 | 2006-07-25 | Hart Barry M | Phototherapy device and method of use |
EP1490150A1 (en) | 2002-03-15 | 2004-12-29 | ZELICKSON, Brian D. | A device and method for treatment of external surfaces of a body utilizing a light-emitting container |
WO2003089063A1 (en) * | 2002-04-16 | 2003-10-30 | Lumerx, Inc | Chemiluminescent light source using visible light for biotherapy |
US6960079B2 (en) | 2002-04-18 | 2005-11-01 | 3M Innovative Properties Company | Orthodontic adhesives and appliances including an adhesive on the base of the appliance |
US6949240B2 (en) | 2002-05-23 | 2005-09-27 | The Procter & Gamble Company | Tooth whitening products |
US7304201B2 (en) | 2002-06-12 | 2007-12-04 | University Of Florida Research Foundation, Inc. | Phototherapy bandage |
US7201766B2 (en) | 2002-07-03 | 2007-04-10 | Life Support Technologies, Inc. | Methods and apparatus for light therapy |
JP2004107231A (en) | 2002-09-17 | 2004-04-08 | Showa Yakuhin Kako Kk | Oral composition |
US20050098766A1 (en) | 2002-09-19 | 2005-05-12 | Watson David L.Jr. | Chemiluminescent processes and systems |
GB0222091D0 (en) | 2002-09-24 | 2002-10-30 | Boots Co Plc | Dental compositions and methods |
US20080091250A1 (en) | 2002-09-26 | 2008-04-17 | Lumiport, Llc | Light therapy desk lamp |
WO2004032881A2 (en) | 2002-10-11 | 2004-04-22 | Novocell, Inc. | Implantation of encapsulated biological materials for treating diseases |
US7157502B2 (en) | 2003-02-19 | 2007-01-02 | Pulpdent Corporation | Polymerizable dental barrier material |
WO2004081222A2 (en) * | 2003-03-14 | 2004-09-23 | Sol-Gel Technologies Ltd. | Agent-encapsulating micro- and nanoparticles, methods for preparation of same and products containing same |
US20040191330A1 (en) | 2003-03-31 | 2004-09-30 | Keefe Candace R. | Daily skin care regimen |
US7114953B1 (en) | 2003-04-25 | 2006-10-03 | Wagner Eugene C | Tooth whitening appliance having membrane covered applicator |
JP2003339875A (en) | 2003-06-16 | 2003-12-02 | Hirokatsu Kimura | Tatoo eliminating device |
WO2005002510A2 (en) | 2003-06-16 | 2005-01-13 | Loma Linda University Medical Center | Deployable multifunctional hemostatic agent |
GB0314210D0 (en) | 2003-06-18 | 2003-07-23 | Unilever Plc | Laundry treatment compositions |
KR100960687B1 (en) | 2003-06-24 | 2010-06-01 | 엘지디스플레이 주식회사 | An etchant to etching a double layer with Cuor Cu-alloy |
AU2004259542A1 (en) * | 2003-07-31 | 2005-02-03 | Sol-Gel Technologies Ltd. | Microcapsules loaded with active ingredients and a method for their preparation |
WO2005032458A2 (en) | 2003-08-01 | 2005-04-14 | Glotell Products, Inc. | Dye solution and method for detecting anhydrous ammonia |
US8795693B2 (en) | 2003-08-04 | 2014-08-05 | Foamix Ltd. | Compositions with modulating agents |
US20050042712A1 (en) | 2003-08-22 | 2005-02-24 | Advanced Medical Optics, Inc. | Methods, compositions and instruments to predict antimicrobial or preservative activity |
US20050049228A1 (en) | 2003-09-02 | 2005-03-03 | Ceramoptec Industries Inc. | Antimicrobial photodynamic therapy compound and method of use |
KR20070017292A (en) * | 2003-09-16 | 2007-02-09 | 세람옵텍 인더스트리스, 인크. | Erythrosin-based antimicrobial photodynamic therapy compound and its use |
US20050059731A1 (en) | 2003-09-16 | 2005-03-17 | Ceramoptec Industries, Inc. | Erythrosin-based antimicrobial photodynamic therapy compound and its use |
CN101304766A (en) * | 2003-09-16 | 2008-11-12 | 塞拉莫普泰克工业公司 | Erythrosin-based antimicrobial photodynamic therapy compound and its use |
EP1684724A4 (en) | 2003-11-19 | 2008-04-02 | Barnes Jewish Hospital | Enhanced drug delivery |
US20050124721A1 (en) | 2003-12-03 | 2005-06-09 | Arthur Samuel D. | Bulky monomers leading to resins exhibiting low polymerization shrinkage |
US20050124722A1 (en) | 2003-12-03 | 2005-06-09 | Arthur Samuel D. | Branched highly-functional monomers exhibiting low polymerization shrinkage |
CA2457214A1 (en) | 2004-02-06 | 2005-08-06 | Qlt Inc. | Photodynamic therapy for the treatment of acne |
JP4815752B2 (en) | 2004-04-01 | 2011-11-16 | 味の素株式会社 | Amino acid-containing foods and drinks |
US7264471B2 (en) | 2004-05-05 | 2007-09-04 | Ultradent Products, Inc. | Methods and kits for bleaching teeth while protecting adjacent gingival tissue |
US20070244195A1 (en) | 2004-05-18 | 2007-10-18 | Burkhart Craig N | Treatment methods with peroxides and tertiary amines |
EP1749532B1 (en) | 2004-05-21 | 2014-04-23 | Tottori University | Drug for remedy or treatment of wound |
EP1778159A1 (en) | 2004-06-10 | 2007-05-02 | Segan Industries, Inc. | Plural activating optical change toothpastes, stimuli and elements |
US20050281890A1 (en) | 2004-06-18 | 2005-12-22 | San Chandan K | Methods and compositions for wound healing |
US8465284B2 (en) | 2004-07-08 | 2013-06-18 | 3M Innovative Properties Company | Dental methods, compositions, and kits including acid-sensitive dyes |
AU2005287375B8 (en) * | 2004-08-25 | 2009-11-12 | The Regents Of The University Of Michigan | Dendrimer based compositions and methods of using the same |
US7598291B2 (en) | 2004-09-02 | 2009-10-06 | Marcel Nimni | Methods and compositions for enhancing collagen and proteoglycan synthesis in the skin |
WO2006027664A2 (en) | 2004-09-08 | 2006-03-16 | Firmenich Sa | Process for producing nano-capsules containing a fragrance |
GB0420888D0 (en) | 2004-09-20 | 2004-10-20 | Photopharmica Ltd | Compounds and uses |
CA2486475A1 (en) | 2004-11-02 | 2006-05-02 | John Kennedy | Method of treating microorganisms in the oral cavity |
EP1814509A2 (en) | 2004-11-09 | 2007-08-08 | Discus Dental Impressions, Inc. | Dental whitening systems comprising transition metal salt activator |
CA2592860A1 (en) | 2005-01-03 | 2006-07-13 | Novozymes Biopolymer A/S | Hyaluronic acid fraction with moisturizing and anti-wrinkle properties |
US9358193B2 (en) | 2005-02-15 | 2016-06-07 | Martin S. Giniger | Whitening compositions and methods involving nitrogen oxide radicals |
US20060199242A1 (en) | 2005-03-01 | 2006-09-07 | Ching-Ying Cheung | Chemical probe compounds that become fluorescent upon reduction, and methods for their use |
US20060217690A1 (en) | 2005-03-22 | 2006-09-28 | Bastin Norman J | Method for treating various dermatological and muscular conditions using electromagnetic radiation |
JP5363696B2 (en) | 2005-03-23 | 2013-12-11 | 株式会社 資生堂 | Color material composition for skin cosmetics, foundation using the same, makeup method |
US20060237696A1 (en) | 2005-03-31 | 2006-10-26 | Luc Gourlaouen | Composition comprising at least one electrophilic monomer and at least one conductive polymer, and cosmetic processes for treating keratin fibers |
US20090069217A1 (en) | 2005-04-13 | 2009-03-12 | Snow Brand Milk Products Co., Ltd. | Nutrient composition |
US20060246020A1 (en) | 2005-04-29 | 2006-11-02 | Cole Curtis A | Topical composition detection |
EP1733762A1 (en) | 2005-05-25 | 2006-12-20 | 3M Espe AG | Dental composition for detection of carious tissue, detection method |
WO2006135344A1 (en) | 2005-06-13 | 2006-12-21 | National University Of Singapore | A photosensitising composition and uses thereof |
KR100721198B1 (en) | 2005-06-29 | 2007-05-23 | 주식회사 하이닉스반도체 | Internal voltage generation circuit of semiconductor device possibility automatic change internal voltage |
US20070021807A1 (en) | 2005-07-20 | 2007-01-25 | Eastman Kodak Company | Device for optically stimulating collagen formation in tissue |
JP5399069B2 (en) | 2005-08-10 | 2014-01-29 | デンツプライ インターナショナル インコーポレーテッド | Method for manufacturing a chair side dental crown |
WO2007025244A2 (en) | 2005-08-25 | 2007-03-01 | Houle Philip R | Treatment systems for delivery of sensitizer solutions |
JP4033877B2 (en) | 2005-09-29 | 2008-01-16 | 株式会社ファンケル | Composition for promoting type I collagen production |
US20070092469A1 (en) | 2005-10-26 | 2007-04-26 | Eric Jacobs | Topically applied Glucosamine Sulfate and all its related, precursor, and derivative compounds significantly increases the skin's natural produciton of hyaluronic acid for the rejuvenation of healthier younger-looking skin; while PhosphatidylCholine is required to replace its deficiency caused by topical Dimethylaminoethanol (DMAE) |
EP1779891A1 (en) | 2005-10-28 | 2007-05-02 | Abdula Kurkayev | Method of activating a photosensitizer |
JP5366553B2 (en) | 2005-11-09 | 2013-12-11 | クロックス テクノロジーズ インコーポレイテッド | Teeth whitening composition and method |
US20070142762A1 (en) | 2005-12-16 | 2007-06-21 | Eastman Kodak Company | Wound dressing |
US8999933B2 (en) | 2006-01-18 | 2015-04-07 | Biolitec Pharma Marketing Ltd | Photodynamic cosmetic procedure and healing method |
AR059155A1 (en) | 2006-01-23 | 2008-03-12 | Procter & Gamble | COMPOSITIONS THAT INCLUDE ENZYMES AND PHOTOBLANKERS |
US20100028407A1 (en) | 2006-04-27 | 2010-02-04 | University Of Louisville Research Foundation, Inc. | Layered bio-adhesive compositions and uses thereof |
US20070286824A1 (en) | 2006-06-07 | 2007-12-13 | Thomas Elliot Rabe | Bleed-resistant colored microparticles and skin care compositions comprising them |
US8454991B2 (en) | 2006-07-24 | 2013-06-04 | Quest Pharmatech Inc. | Method and device for photodynamic therapy |
WO2008013962A2 (en) | 2006-07-28 | 2008-01-31 | Ceramoptec Industries, Inc. | Method and mixture for in-vivo photochemical cross-linking of collagen |
CN101594904A (en) | 2006-10-24 | 2009-12-02 | 加州理工学院 | Influence the photochemical therapy of systemic machinery and/or chemical property |
SG175568A1 (en) | 2006-10-24 | 2011-11-28 | California Inst Of Techn | Photochemical therapy to affect mechanical and/or chemical properties of body tissue |
US20080108681A1 (en) | 2006-10-27 | 2008-05-08 | Access Business Group International Llc | Use of allantoin as a pro-collagen synthesis agent in cosmetic compositions |
US20080113037A1 (en) | 2006-11-10 | 2008-05-15 | Green Barbara A | Topical Compositions Comprising Polyhydroxy Acids and/or Lactones for Improved Cutaneous Effects of Oxidative Therapeutic Drugs |
KR20150072458A (en) | 2006-11-15 | 2015-06-29 | 코다 테라퓨틱스, 인크. | Improved methods and compositions for wound healing |
US20080138289A1 (en) | 2006-12-08 | 2008-06-12 | Evident Technologies, Inc. | Systems and methods for detecting infrared emitting composites and medical applications therefor |
CA2674378A1 (en) | 2007-01-03 | 2008-07-17 | Burnham Institute For Medical Research | Methods and compositions related to clot binding compounds |
KR20100004934A (en) | 2007-02-09 | 2010-01-13 | 클록스 테크놀로지스 인크. | Photopolymerization material for gums isolation |
JP5076549B2 (en) | 2007-02-23 | 2012-11-21 | 株式会社デンソー | Semiconductor device |
JP2008231010A (en) * | 2007-03-20 | 2008-10-02 | Shiseido Co Ltd | External preparation for skin |
WO2008139601A1 (en) | 2007-05-14 | 2008-11-20 | Alcare Co., Ltd. | Patch for the body surface |
JP5138995B2 (en) | 2007-07-06 | 2013-02-06 | 株式会社カネカ | Adhesive sheet for skin application and transdermal absorption preparation |
TR201904866T4 (en) | 2007-09-04 | 2019-04-22 | Compugen Ltd | Polypeptides and polynucleotides and their use as a drug target for producing drugs and biological material. |
US9079022B2 (en) | 2007-09-27 | 2015-07-14 | Led Intellectual Properties, Llc | LED based phototherapy device for photo-rejuvenation of cells |
US7722904B2 (en) | 2007-11-01 | 2010-05-25 | Access Business Group International Llc | Compositions and methods for stimulating synthesis of pro-collagen or collagen and hyaluronic acid |
US20090131499A1 (en) * | 2007-11-15 | 2009-05-21 | Ceramoptec Industries Inc. | Photodynamic therapy for skin related problems |
FR2924021B1 (en) | 2007-11-27 | 2010-08-13 | Du Vernet Michele Eymard | COMPOSITION FOR THE TREATMENT OF SKIN BY PHOTODYNAMIC THERAPY |
JP4740934B2 (en) | 2007-12-07 | 2011-08-03 | シャープ株式会社 | Lighting device |
CN101970560A (en) * | 2008-01-08 | 2011-02-09 | 奎克-麦德技术公司 | Disinfectant alcohol-soluble quaternary ammonium polymers |
WO2009089345A2 (en) | 2008-01-08 | 2009-07-16 | Blazetrak, Llc | Review managment system for audition portfolios |
US20090238778A1 (en) | 2008-03-19 | 2009-09-24 | Mordas Carolyn J | Tooth whitening compositions, delivery systems and methods |
US20110086060A1 (en) | 2008-04-11 | 2011-04-14 | Florence Bidamant | Novel compositions and their use |
US20090269121A1 (en) | 2008-04-23 | 2009-10-29 | Unicep Packaging, Inc. | Dispensing and applicator devices |
GB0810719D0 (en) | 2008-06-11 | 2008-07-16 | Dupont Teijin Films Us Ltd | Polymeric film |
GB0814105D0 (en) | 2008-08-01 | 2008-09-10 | Springdale Sustainable Develop | Composition for accelerated production of collagen |
US20100227799A1 (en) * | 2009-03-09 | 2010-09-09 | Medtronic Vascular, Inc. | Simultaneous photodynamic therapy and photo induced polymerization |
JP5052558B2 (en) * | 2009-04-03 | 2012-10-17 | ロート製薬株式会社 | Gel ointment |
KR101118586B1 (en) | 2009-04-15 | 2012-02-27 | 포항공과대학교 산학협력단 | Pharmaceutical compositions comprising polymer capsule |
FR2948584B1 (en) | 2009-07-30 | 2012-08-03 | Prod Dentaires Pierre Rolland | APPLICATION TIP |
CN102781514A (en) | 2009-10-27 | 2012-11-14 | 克洛克斯科技公司 | Device for personal use in phototherapy |
US20110171310A1 (en) | 2010-01-13 | 2011-07-14 | Allergan Industrie, Sas | Hydrogel compositions comprising vasoconstricting and anti-hemorrhagic agents for dermatological use |
GB201012217D0 (en) | 2010-07-21 | 2010-09-08 | Republic Polytechnic | Compounds for photodynamic therapy |
GB201020236D0 (en) | 2010-11-30 | 2011-01-12 | Convatec Technologies Inc | A composition for detecting biofilms on viable tissues |
CN103260597A (en) | 2010-12-20 | 2013-08-21 | 纳幕尔杜邦公司 | A non-aqueous stable composition for delivering substrates for a depilatory product using peracids |
CN102133208A (en) * | 2011-03-17 | 2011-07-27 | 北京化工大学 | Photosensitive microcapsule used for photodynamic therapy and preparation method thereof |
US20120244491A1 (en) | 2011-03-22 | 2012-09-27 | Remigio Piergallini | Device and method for teeth brightening |
WO2012138326A1 (en) * | 2011-04-05 | 2012-10-11 | Avon Products, Inc. | Clear or translucent composition |
US11116841B2 (en) * | 2012-04-20 | 2021-09-14 | Klox Technologies Inc. | Biophotonic compositions, kits and methods |
US20130281913A1 (en) | 2012-04-20 | 2013-10-24 | Klox Technologies Inc. | Biophotonic compositions and methods for providing biophotonic treatment |
CN108310672A (en) | 2012-09-14 | 2018-07-24 | 克洛克斯科技公司 | Beauty bio-photon composition |
CA2883717A1 (en) | 2012-09-14 | 2014-03-20 | Klox Technologies Inc. | Chromophore combinations for biophotonic uses |
CN104755101B (en) | 2012-09-14 | 2018-10-02 | 克洛克斯科技公司 | Bio-photon is combined with chromophore |
WO2014042936A2 (en) | 2012-09-14 | 2014-03-20 | Valeant Pharmaceuticals International, Inc. | Compositions and methods for teeth whitening |
RU2015141708A (en) | 2013-03-01 | 2017-04-06 | Клокс Текнолоджиз Инк. | PHOTOTHERAPEUTIC DEVICE, METHOD AND APPLICATION |
US20140276354A1 (en) * | 2013-03-14 | 2014-09-18 | Klox Technologies Inc. | Biophotonic materials and uses thereof |
KR20210108505A (en) | 2013-07-03 | 2021-09-02 | 광동 클록스 바이오메디컬 그룹 씨오., 엘티디 | Biophotonic Compositions Comprising a Chromophore and a Gelling Agent for Treating Wounds |
AR100864A1 (en) * | 2014-06-09 | 2016-11-09 | Klox Tech Inc | THERMOENDURECIBLE BIOPHOTONIC COMPOSITIONS AND THEIR USES |
CN107075738B (en) | 2014-10-31 | 2021-05-07 | 广东科洛克生物医药集团有限公司 | Photoactivated fibers and fabric media |
US20200222536A1 (en) | 2016-05-23 | 2020-07-16 | Orphaderm Limited | Biophotonic compositions comprising a fungal-derived chromophore |
-
2013
- 2013-03-14 US US13/830,488 patent/US20130281913A1/en not_active Abandoned
- 2013-04-19 KR KR1020217004665A patent/KR20210025676A/en active IP Right Grant
- 2013-04-19 CN CN201380020826.8A patent/CN104350125B/en active Active
- 2013-04-19 WO PCT/CA2013/000395 patent/WO2013155620A1/en active Application Filing
- 2013-04-19 GB GB1307157.6A patent/GB2499921B/en active Active
- 2013-04-19 MX MX2014012631A patent/MX2014012631A/en active IP Right Grant
- 2013-04-19 IN IN9118DEN2014 patent/IN2014DN09118A/en unknown
- 2013-04-19 CA CA3126820A patent/CA3126820C/en active Active
- 2013-04-19 KR KR1020147029156A patent/KR102219776B1/en active IP Right Grant
- 2013-04-19 EP EP13779016.8A patent/EP2838974A4/en not_active Withdrawn
- 2013-04-19 BR BR112014026056A patent/BR112014026056A2/en not_active IP Right Cessation
- 2013-04-19 CA CA2868893A patent/CA2868893C/en active Active
- 2013-04-19 CN CN201710816520.3A patent/CN107669507A/en active Pending
- 2013-04-19 NZ NZ700515A patent/NZ700515A/en unknown
- 2013-04-19 EP EP16178316.2A patent/EP3150226B1/en active Active
- 2013-04-19 SG SG11201406245UA patent/SG11201406245UA/en unknown
- 2013-04-19 JP JP2015506054A patent/JP2015514724A/en active Pending
- 2013-04-19 AU AU2013248900A patent/AU2013248900B2/en active Active
- 2013-04-19 RU RU2014146615A patent/RU2668127C2/en active
- 2013-09-13 US US14/427,993 patent/US10213373B2/en active Active
-
2014
- 2014-03-03 HK HK14102101.6A patent/HK1188951A1/en not_active IP Right Cessation
- 2014-10-08 ZA ZA2014/07310A patent/ZA201407310B/en unknown
- 2014-10-19 IL IL235136A patent/IL235136A0/en unknown
-
2015
- 2015-07-30 HK HK15107292.3A patent/HK1206774A1/en not_active IP Right Cessation
-
2016
- 2016-07-01 US US15/201,111 patent/US10376455B2/en active Active
-
2017
- 2017-10-09 AU AU2017245269A patent/AU2017245269B2/en active Active
-
2018
- 2018-09-10 JP JP2018169059A patent/JP2019006807A/en active Pending
-
2019
- 2019-08-09 US US16/536,996 patent/US11331257B2/en active Active
-
2020
- 2020-05-07 JP JP2020081967A patent/JP7097924B2/en active Active
-
2022
- 2022-05-13 US US17/743,518 patent/US11723854B2/en active Active
-
2023
- 2023-08-07 US US18/366,224 patent/US20240041739A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5292362A (en) * | 1990-07-27 | 1994-03-08 | The Trustees Of Columbia University In The City Of New York | Tissue bonding and sealing composition and method of using the same |
US20100266989A1 (en) * | 2006-11-09 | 2010-10-21 | Klox Technologies Inc. | Teeth whitening compositions and methods |
WO2010051636A1 (en) * | 2008-11-07 | 2010-05-14 | Klox Technologies Inc . | Combination of an oxidant and a photoactivator for the healing of wounds |
WO2010070292A1 (en) * | 2008-12-20 | 2010-06-24 | Convatec Technologies Inc | A composition for use on skin and wound |
WO2011006263A1 (en) * | 2009-07-17 | 2011-01-20 | Klox Technologies Inc. | Antibacterial oral composition |
Non-Patent Citations (1)
Title |
---|
Olympus America, Inc., "Spectral Characteristics of Common Biological Stains", April 30, 2000, https://micro.magnet.fsu.edu/primer/photomicrography/bwstainchart.html * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9345648B2 (en) | 2006-11-09 | 2016-05-24 | Klox Technologies Inc. | Photoactivatable oxygen-evolving compositions and methods for teeth whitening |
US11116841B2 (en) | 2012-04-20 | 2021-09-14 | Klox Technologies Inc. | Biophotonic compositions, kits and methods |
US11723854B2 (en) | 2012-04-20 | 2023-08-15 | Fle International S.R.L. | Biophotonic compositions and methods for providing biophotonic treatment |
US11331257B2 (en) | 2012-04-20 | 2022-05-17 | Klox Technologies Inc. | Biophotonic compositions and methods for providing biophotonic treatment |
US10376455B2 (en) | 2012-04-20 | 2019-08-13 | Klox Technologies Inc. | Biophotonic compositions and methods for providing biophotonic treatment |
US10213373B2 (en) | 2012-04-20 | 2019-02-26 | Klox Technologies, Inc. | Chromophore combinations for biophotonic uses |
US9408790B2 (en) * | 2012-12-11 | 2016-08-09 | Elc Management Llc | Cosmetic compositions with near infra-red (NIR) light-emitting material and methods therefor |
US20140161851A1 (en) * | 2012-12-11 | 2014-06-12 | Elc Management Llc | Cosmetic Compositions With Near Infra-Red (NIR) Light - Emitting Material And Methods Therefor |
US11324823B2 (en) | 2013-03-14 | 2022-05-10 | Klox Technologies Inc. | Biophotonic materials and uses thereof |
US10130706B2 (en) | 2013-03-14 | 2018-11-20 | Klox Technologies Inc. | Biophotonic materials and uses thereof |
US10881736B2 (en) | 2013-07-03 | 2021-01-05 | Klox Technologies Inc. | Biophotonic compositions comprising a chromophore and a gelling agent for treating wounds |
US10207029B2 (en) | 2014-04-01 | 2019-02-19 | Klox Technologies Inc. | Tissue filler compositions and methods of use |
US10772990B2 (en) | 2014-04-01 | 2020-09-15 | Klox Technologies Inc. | Tissue filler compositions and methods of use |
EP3125963A4 (en) * | 2014-04-01 | 2017-11-29 | Klox Technologies Inc. | Tissue filler compositions and methods of use |
CN106413766A (en) * | 2014-04-01 | 2017-02-15 | 克洛克斯科技公司 | Tissue filler compositions and methods of use |
US11421349B2 (en) | 2014-10-31 | 2022-08-23 | Klox Technologies Inc. | Photoactivatable fibers and fabric media |
US20160199665A1 (en) * | 2015-01-08 | 2016-07-14 | Photomed Technologies, Inc. | Treatment of wounds using electromagnetic radiation |
US20160213783A1 (en) * | 2015-01-28 | 2016-07-28 | Hemant N. Joshi | Pharmaceutical composition and method of preparation of formulations for the management of dysphagia |
US20180043179A1 (en) * | 2015-02-24 | 2018-02-15 | Arturo Solis Herrera | Textile covered with an active outside surface and an active inside surface comprising optical fibers |
US10722728B2 (en) * | 2015-02-24 | 2020-07-28 | Arturo Solis Herrera | Textile covered with an active outside surface and an active inside surface comprising optical fibers |
US20220023181A1 (en) * | 2015-12-28 | 2022-01-27 | Klox Technologies Limited | Peroxide-less biophotonic compositions and methods |
US20190021973A1 (en) * | 2015-12-28 | 2019-01-24 | Klox Technologies Limited | Peroxide-less biophotonic compositions and methods |
US10836872B2 (en) | 2016-08-11 | 2020-11-17 | The Catholic University Of Korea Industry-Academy Cooperation | Visible light-curable water-soluble chitosan derivative, chitosan hydrogel, and preparation method therefor |
US12059003B2 (en) | 2017-07-12 | 2024-08-13 | TerMir Inc. | Antimicrobial compositions effective against bacteria and fungus |
US20210170027A1 (en) * | 2017-11-17 | 2021-06-10 | Klox Technologies Limited | Biophotonic compositions, methods and kits for enhancing hair growth |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11723854B2 (en) | Biophotonic compositions and methods for providing biophotonic treatment | |
US20220265828A1 (en) | Biophotonic materials and uses thereof | |
US20190133908A1 (en) | Chromophore combinations for biophotonic uses | |
US11116841B2 (en) | Biophotonic compositions, kits and methods | |
CA2883717A1 (en) | Chromophore combinations for biophotonic uses | |
CA2951467C (en) | Thermosetting biophotonic compositions and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KLOX TECHNOLOGIES INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PIERGALLINI, REMIGIO;LOUPIS, NIKOLAOS;SIGNING DATES FROM 20130327 TO 20130617;REEL/FRAME:030655/0109 |
|
AS | Assignment |
Owner name: KLOX TECHNOLOGIES INC., CANADA Free format text: EMPLOYMENT AGREEMENT;ASSIGNOR:RASTOGI, SHIPRA;REEL/FRAME:036932/0693 Effective date: 20090612 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |