US20130013072A1 - Intervertebral prosthetic disc - Google Patents
Intervertebral prosthetic disc Download PDFInfo
- Publication number
- US20130013072A1 US20130013072A1 US13/619,180 US201213619180A US2013013072A1 US 20130013072 A1 US20130013072 A1 US 20130013072A1 US 201213619180 A US201213619180 A US 201213619180A US 2013013072 A1 US2013013072 A1 US 2013013072A1
- Authority
- US
- United States
- Prior art keywords
- core
- plates
- disc
- curved surfaces
- vertebrae
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2/4425—Intervertebral or spinal discs, e.g. resilient made of articulated components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2/4603—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
- A61F2/4611—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/30004—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
- A61F2002/30052—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in electric or magnetic properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/3008—Properties of materials and coating materials radio-opaque, e.g. radio-opaque markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30405—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by screwing complementary threads machined on the parts themselves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30462—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements retained or tied with a rope, string, thread, wire or cable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30574—Special structural features of bone or joint prostheses not otherwise provided for with an integral complete or partial collar or flange
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30621—Features concerning the anatomical functioning or articulation of the prosthetic joint
- A61F2002/30649—Ball-and-socket joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30621—Features concerning the anatomical functioning or articulation of the prosthetic joint
- A61F2002/30649—Ball-and-socket joints
- A61F2002/30662—Ball-and-socket joints with rotation-limiting means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30621—Features concerning the anatomical functioning or articulation of the prosthetic joint
- A61F2002/30649—Ball-and-socket joints
- A61F2002/30663—Ball-and-socket joints multiaxial, e.g. biaxial; multipolar, e.g. bipolar or having an intermediate shell articulating between the ball and the socket
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30884—Fins or wings, e.g. longitudinal wings for preventing rotation within the bone cavity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30899—Protrusions pierced with apertures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30904—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2/4425—Intervertebral or spinal discs, e.g. resilient made of articulated components
- A61F2002/443—Intervertebral or spinal discs, e.g. resilient made of articulated components having two transversal endplates and at least one intermediate component
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0033—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0075—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0071—Three-dimensional shapes spherical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0043—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in electric properties, e.g. in electrical conductivity, in galvanic properties
- A61F2250/0045—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in electric properties, e.g. in electrical conductivity, in galvanic properties differing in electromagnetical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0096—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
- A61F2250/0098—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00023—Titanium or titanium-based alloys, e.g. Ti-Ni alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00029—Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00592—Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
- A61F2310/00598—Coating or prosthesis-covering structure made of compounds based on metal oxides or hydroxides
- A61F2310/00604—Coating made of aluminium oxide or hydroxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00592—Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
- A61F2310/00856—Coating or prosthesis-covering structure made of compounds based on metal nitrides
- A61F2310/0088—Coating made of titanium nitride
Definitions
- This invention relates to medical devices and methods. More specifically, the invention relates to a prosthetic disc for intervertebral insertion, such as in the lumbar and cervical spine.
- intervertebral disc prostheses include upper and lower prosthesis plates or shells which locate against and engage the adjacent vertebral bodies, and a low friction core between the plates.
- the core has upper and lower convexly curved surfaces and the plates have corresponding, concavely curved recesses which cooperate with the curved surfaces of the core. This allows the plates to slide over the core to allow required spinal movements to take place.
- the curved recesses in the plates are surrounded by annular ridges which locate, at the limit of sliding movement of the plates over the core, in opposing upwardly and downwardly facing, peripheral channels surrounding the curved surfaces of the core.
- the curved surfaces of the core carry opposing, elongate keys that locate in elongate grooves in the plates and another alternative arrangement in which the plates have opposing elongate keys that locate in elongate grooves in the opposite curved surfaces of the core.
- These key and groove arrangements allow the plates to slide over the core within the limits of the length of the grooves, in one direction only. Although allowance is made for some lateral play of the keys in the grooves, very little sliding movement of the plates over the core can take place in the orthogonal vertical plane, and this is considered to be a serious drawback of this design.
- drawbacks include insufficient resistance to wear and tear, restricted range of motion and/or insufficient ability of the prosthesis to adhere to vertebral bone.
- an intervertebral prosthetic disc for insertion between adjacent vertebrae comprises: upper and lower plates having outer surfaces locatable against the respective vertebrae and inner, curved surfaces; a core between the plates, the core having upper and lower curved surfaces complementary in shape to the inner, curved surfaces of the plates to allow the plates to slide over the core; and at least one projection extending from at least one of the upper and lower curved surfaces of the core into at least one recess of one of the inner surfaces of the plates, the recess being oversize with respect to the projection to allow sliding movement of the plate over the core while retaining the core between the plates during such sliding movement.
- Some embodiments further include multiple projections extending from the upper and lower surfaces of the core.
- the multiple projections may include two elevated rings projecting from a peripheral portion of each of the upper and lower surfaces of the core into ring-shaped recesses on the upper and lower plates.
- the multiple projections may comprise multiple surface features projecting from a peripheral portion of each of the upper and lower surfaces of the core into multiple recesses on the upper and lower plates.
- the multiple projections may comprise respective ends of an elongate, upright element extending axially through the core, the ends projecting beyond the upper and lower core surfaces.
- the upright element may comprise a rod extending through an axial passage through the core. In some embodiments, such a rod and passage may be complementarily threaded for engagement with one another.
- the disc further includes at least one fin extending from each of the outer surfaces of the plates to promote attachment of the plates to the vertebrae.
- each fin extends from its respective outer surface at a 90° angle. In other embodiments, each fin extends from its respective outer surface at an angle other than 90°.
- each fin includes at least one hole for promoting attachment of the plates to the vertebrae.
- some embodiments include outer surfaces of the plates that are textured. For example, in some embodiments the textured surfaces comprise multiple serrations.
- the plates may have any of a number of different configurations, sizes, or the like.
- the outer surfaces of the plates are flat.
- lateral edge portions of the upper and lower plates are adapted to contact one another during sliding movement of the plates over the core.
- an intervertebral prosthetic disc for insertion between adjacent vertebrae comprises: upper and lower plates having outer surfaces locatable against the respective vertebrae and inner, curved surfaces, at least one of the inner surfaces having at least one recess; a core between the plates, the core having upper and lower curved surfaces complementary in shape to the inner, curved surfaces of the plates to allow the plates to slide over the core, and an axial passage extending through the core; and a rod extending through the axial passage into the at least one recess in the inner surface(s) of the plate(s).
- the recess are oversize with respect to the projection to allow sliding movement of the plate over the core while retaining the core between the plates during such sliding movement.
- the rod and passage may be complementarily threaded for engagement with one another.
- the rod is movably engaged with a first oversized recess on the upper plate and a second oversized recess on the lower plate.
- the plates and core may have any of the features or characteristics described above.
- an intervertebral prosthetic disc for insertion between adjacent vertebrae includes: upper and lower plates having outer surfaces locatable against the respective vertebrae and inner, curved surfaces; a core between the plates, the core having upper and lower curved surfaces complementary in shape to the inner, curved surfaces of the plates to allow the plates to slide over the core; and a flexible tie member extending laterally through the core and having ends outside the core which are engaged with one or both of the plates to retain the core between the plates when the plates slide over the core.
- the flexible tie member may extend through a lateral passage through the core and may include ends engaged with at least one of the upper and lower plates.
- the flexible tie member comprises a flexible cable or cord.
- an intervertebral prosthetic disc for insertion between adjacent vertebrae comprises: upper and lower plates having textured outer surfaces locatable against the respective vertebrae, each of the outer surfaces having at least one vertical fin and an edge portion adapted to contact a corresponding edge portion of the other plate, and inner, curved surfaces; and a core between the plates, the core having upper and lower curved surfaces complementary in shape to the inner, curved surfaces of the plates to allow the plates to slide over the core.
- the curved surfaces of the plates and core include formations which cooperate with one another to retain the core between the plates when the plates slide over the core.
- the formations include recesses and projections received by the recesses, and the recesses and projections are located between a central axis of the relevant curved surface and an outer periphery thereof.
- the projections may comprise two elevated rings projecting from a peripheral portion of each of the upper and lower surfaces of the core into ring-shaped recesses on the upper and lower plates.
- the projections may comprise multiple surface features projecting from a peripheral portion of each of the upper and lower surfaces of the core into multiple recesses on the upper and lower plates.
- the plates and core may include any of the features described above.
- FIG. 1 shows a cross-sectional anterior view of a prosthetic disc according to one embodiment of the invention, with the prosthesis plates and core in vertical alignment;
- FIG. 2 shows a cross-sectional side view of the disc of FIG. 1 , after sliding movement of the plates over the core;
- FIG. 3 shows a cross-sectional side view of the disc of FIG. 1 , after translational movement of the plates relative to the core;
- FIG. 4 shows a cross-sectional side view of the disc of FIG. 1 , with the plates and core in vertical alignment;
- FIG. 5 shows a plan view of the core of the disc of FIG. 1 ;
- FIG. 6 shows a plan view of the upper plate of the disc of FIG. 1 ;
- FIG. 6A shows a plan view of a disc, as in FIGS. 1 and 6 , with a fin rotated away from the anterior-posterior axis;
- FIG. 7 shows a cross-sectional anterior view of a prosthetic disc according to another embodiment of the invention.
- FIG. 8 shows a cross-sectional side view of the prosthetic disc of FIG. 7 ;
- FIG. 9 shows a cross-sectional anterior view of a prosthetic disc according to another embodiment of the invention.
- FIG. 10 shows a cross-sectional side view of the prosthetic disc of FIG. 9 ;
- FIG. 11 shows a cross-sectional side view of another embodiment of the invention.
- FIGS. 1-4 illustrate a prosthetic disc 10 for intervertebral insertion between two adjacent spinal vertebrae (not shown).
- the disc 10 comprises three components, namely an upper plate or shell 12 , a lower plate or shell 14 and a core 16 located between the plates.
- the upper plate 12 includes an outer surface 18 and an inner surface 24 and may be constructed from any suitable material or combination of materials, such as but not limited to cobalt chrome molybdenum, titanium (such as grade 5 titanium) and/or the like.
- the upper plate 12 is constructed of cobalt chrome molybdenum, and the outer surface 18 is treated with aluminum oxide blasting followed by a titanium plasma spray.
- the upper plate 12 is constructed of titanium, the inner surface 24 is coated with titanium nitride, and the outer surface 18 is treated with aluminum oxide blasting.
- An alternative cervical spine embodiment includes no coating on the inner surface 24 .
- the upper plate 12 may be made of an MRI-compatible material, such as titanium, but may include a harder material, such as cobalt chrome molybdenum, for the inner surface 24 .
- Any suitable technique may be used to couple materials together, such as snap fitting, slip fitting, lamination, interference fitting, use of adhesives, welding and/or the like. Any other suitable combination of materials and coatings may be employed in various embodiments of the invention.
- the outer surface 18 is planar. Oftentimes, the outer surface 18 will include one or more surface features and/or materials to enhance attachment of the prosthesis 10 to vertebral bone.
- the outer surface 18 may be machined to have a serrations 20 or other surface features for promoting adhesion of the upper plate 12 to a vertebra. In the embodiment shown ( FIG. 6 ), the serrations 20 extend in mutually orthogonal directions, but other geometries would also be useful.
- the outer surface 18 may be provided with a rough microfinish formed by blasting with aluminum oxide microparticles or the like. In some embodiments, the outer surface may also be titanium plasma sprayed to further enhance attachment of the outer surface 18 to vertebral bone.
- the outer surface 18 may also carry an upstanding, vertical fin 22 extending in an anterior-posterior direction.
- the fin 22 is pierced by transverse holes 23 .
- the fin 22 may be rotated away from the anterior-posterior axis, such as in a lateral-lateral orientation, a posterolateral-anterolateral orientation, or the like.
- the fin 22 may extend from the surface 18 at an angle other than 90.degree.
- multiple fins 22 may be attached to the surface 18 and/or the fin 22 may have any other suitable configuration, in various embodiments. In some embodiments, such as discs 10 for cervical insertion, the fins 22 , 42 may be omitted altogether.
- the lower plate 14 is similar to the upper plate 12 except for the absence of the peripheral restraining structure 26 .
- the lower plate 14 has an outer surface 40 which is planar, serrated and microfinished like the outer surface 18 of the upper plate 12 .
- the lower plate 14 optionally carries a fin 42 similar to the fin 22 of the upper plate.
- the inner surface 44 of the lower plate 14 is concavely, spherically curved with a radius of curvature matching that of the inner surface 24 of the upper plate 12 . Once again, this surface may be provided with a titanium nitride or other finish.
- the core 16 of the disc 10 is made of a low-friction material, such as polyethylene (ChirulenTM).
- the core 16 may comprise any other suitable material, such as other polymers, ceramics or the like.
- the surface zones of the core 16 may be hardened by an appropriate cross-linking procedure.
- a passage 32 extends axially through the core.
- the passage is provided with an internally threaded sleeve 33 of titanium or other suitable material.
- An elongate element in the form of a round cross-section, threaded rod 34 extends axially through the passage and is in threaded engagement with the sleeve 33 .
- the length of the rod is greater than the axial dimension of the core, with the result that the opposite ends 36 of the rod project from the curved surfaces 28 and 30 of the core. In the assembled disc 10 , these ends 36 locate in the recesses 26 .
- the diameter of the rod is less than that of the recesses 26 so there is substantial room for the rod ends to move laterally in the recesses.
- the disc 10 is surgically implanted between adjacent spinal vertebrae in place of a damaged disc.
- the adjacent vertebrae are forcibly separated from one another to provide the necessary space for insertion.
- the disc is inserted, normally in a posterior direction, into place between the vertebrae with the fins 22 , 42 of the plates 12 , 14 entering slots cut in the opposing vertebral surfaces to receive them.
- the vertebrae, facets, adjacent ligaments and soft tissues are allowed to move together to hold the disc in place.
- the serrated and microfinished surfaces 18 , 40 of the plates 12 , 14 locate against the opposing vertebrae.
- the serrations 20 and fins 22 , 42 provide initial stability and fixation for the disc 10 .
- the core 16 may be formed with narrow, angularly spaced, blind passages 61 which accommodate titanium pins 64 .
- the core 16 itself is transparent to X-radiation and so is invisible in a post-operative X-ray examination.
- the pins 64 serve as radiographic markers and enable the position of the core 16 to be ascertained during such examination.
- FIGS. 1 and 4 show the disc 10 with the plates 12 , 14 and core 16 aligned vertically with one another on the axis 40 .
- FIG. 2 illustrates a situation where maximum anterior flexion of the disc has taken place. Such flexion is enabled by the ability of the ends 36 of the rod to move laterally in all directions and through a fairly large distance, in the recesses 26 . At the position of maximum flexion, the ends 36 of the rod abut the sides of the recesses as illustrated.
- the plates 12 , 14 abut one another at the periphery of their curved surfaces. Similar principles apply to maximum posterior flexure of the plates 12 , 14 over the core, i.e. during spinal extension and/or in the event of maximum lateral flexure.
- FIG. 3 illustrates how the disc 10 can also allow for translational movement of the plates relative to the core.
- the limit of lateral translation (not shown) is again reached when the ends 36 of the rod abut laterally against the sides of the recesses 26 .
- the cooperating retaining formations i.e. the ends 36 of the rod and the recesses 26 cooperate with one another to prevent separation of the core from the plates.
- the cooperation of the retaining formations ensures that the core is held captive between the plates at all times during flexure of the disc 10 .
- the rod can be mounted fixedly to the core by means other than the illustrated threaded connection.
- the rod may be replaced by separate elements projecting respectively from the upper and lower curved surfaces of the core.
- FIGS. 7 and 8 illustrate another embodiment of the invention.
- the core 16 is formed with a lateral passage 50 extending diametrically through it.
- the passage is provided with a sleeve 52 of titanium or other suitably wear resistant material.
- a flexible tie means in this embodiment in the form of a cable 54 of braided titanium construction, passes with clearance through the sleeve 52 .
- the ends of the cable 54 are flexed upwardly and enter passages 56 in the upper plate 12 .
- the extremities of the cable carry crimped retention lugs or ferrules 58 anchored in blind ends of the passages 56 .
- the cable 54 holds the core 16 captive during sliding movement of the plates 12 , 14 over the core, whether in flexion, extension or translation.
- the cable can flex through a wide range of angles to allow sliding movement or articulation of the plates relative to the core to take place.
- the slack in the cable also allows a degree of rotational movement of the plates relative to the core.
- the ends of the passage 50 and sleeve 52 are belled to accommodate movements of the cable during sliding movements.
- surfaces 60 of the plates 12 , 14 are inclined to accommodate the cable when sliding has taken place, so that the cable does not act directly on the plates.
- FIGS. 9 and 10 illustrate another embodiment of a prostheses 10 .
- the curved surfaces 24 of the plates 12 , 14 are formed, at positions between the central axis and their peripheries, with continuous, inwardly directed ribs 62 of annular shape. These ribs locate, with considerable clearance, in annular channels 64 provided at corresponding positions in the upper and lower curved surfaces of the core 16 .
- cooperation between the retaining formations, i.e. the ribs and channels holds the core captive between the plates when the plates slide over the core during flexion, extension or translation.
- the rib 62 will abut against a side of the channel.
- the channel may be provided with a wear resistant lining as described previously.
- FIG. 11 illustrates another embodiment of a prosthesis.
- the core carries continuous, annular ribs 70 on its upper and lower surfaces which locate with clearance in channels 72 in the plates 12 , 14 .
- the ribs 70 may be lined with wear resistant material as described previously.
- the core 16 may be provided with radiographic markers as described previously. Also, in each of these versions, the outer surfaces of the plates 12 , 14 may have the same configuration as described in relation to the first version of FIGS. 1 to 6 .
- FIGS. 1-6 and 9 - 11 embodiments are illustrated in which retaining formations are provided that cooperate with one another between both plates and the core.
- core retention may be achieved by cooperation between retaining formations which only act between one of the plates, either the upper plate 12 or the lower plate 14 , and the core.
- there may be a single projection, which extends from the upper (or lower) curved surface of the core and a corresponding recess in the inner surface of the lower (or upper) plate.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Neurology (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physical Education & Sports Medicine (AREA)
- Prostheses (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 12/101,664 (Attorney Docket No. 29850-703.301), filed Apr. 11, 2008, which is a continuation of U.S. patent application Ser. No. 10/855,817 (Attorney Docket No. 29850-703.201), filed May 26, 2004, which claims the priority of U.S. Provisional Application Nos. 60/473,802 (Attorney Docket No. 29850-704.101) and 60/473,803, (Attorney Docket No. 29850-703.101), both of which were filed May 27, 2003; the full disclosures of which are hereby incorporated by reference.
- 1. Field of the Invention
- This invention relates to medical devices and methods. More specifically, the invention relates to a prosthetic disc for intervertebral insertion, such as in the lumbar and cervical spine.
- In the event of damage to a lumbar or cervical intervertebral disc, one possible surgical treatment is to replace the damaged disc with a disc prosthesis. Several types of intervertebral disc prostheses are currently available. For example, one type of intervertebral disc prosthesis is provided by Waldemar Link GmbH & Co under the trademark LINK® SB Charite. This prosthesis includes upper and lower prosthesis plates or shells which locate against and engage the adjacent vertebral bodies, and a low friction core between the plates. The core has upper and lower convexly curved surfaces and the plates have corresponding, concavely curved recesses which cooperate with the curved surfaces of the core. This allows the plates to slide over the core to allow required spinal movements to take place. The curved recesses in the plates are surrounded by annular ridges which locate, at the limit of sliding movement of the plates over the core, in opposing upwardly and downwardly facing, peripheral channels surrounding the curved surfaces of the core.
- This type of disc configuration is described in EP 1142544A1 and EP 1250898A1, assigned to Waldemar Link GmbH & Co. A drawback of such configurations is that the provision of the peripheral ribs and channels limits the areas available for bearing and sliding contact between the plates and core, and accordingly the loads which can be transmitted by the prosthesis. As a result of the relatively small bearing areas, it is believed that at least the core will be subject to rapid wear and have a relatively short lifespan. Also, because the core is in effect merely “clamped” between the plates, this configuration does not allow for secure retention of the core. In one alternative arrangement, the curved surfaces of the core carry opposing, elongate keys that locate in elongate grooves in the plates and another alternative arrangement in which the plates have opposing elongate keys that locate in elongate grooves in the opposite curved surfaces of the core. These key and groove arrangements allow the plates to slide over the core within the limits of the length of the grooves, in one direction only. Although allowance is made for some lateral play of the keys in the grooves, very little sliding movement of the plates over the core can take place in the orthogonal vertical plane, and this is considered to be a serious drawback of this design.
- Other currently available intervertebral disc prostheses have similar and/or other drawbacks. Typically, drawbacks include insufficient resistance to wear and tear, restricted range of motion and/or insufficient ability of the prosthesis to adhere to vertebral bone.
- Therefore, a need exists for improved intervertebral disc prostheses. Ideally, such improved prostheses would resist wear and tear, provide a desired range of motion and adhere well to vertebral bone. At least some of these objectives will be met by the present invention.
- 2. Description of the Background Art
- Published US patent applications 2002/0035400A1 and 2002/0128715A1 describe disc implants which comprise opposing plates with a core between them over which the plates can slide. The core receives one or more central posts, which are carried by the plates and which locate in opposite ends of a central opening in the core. Such arrangements limit the load bearing area available between the plates and core.
- Other patents related to intervertebral disc prostheses include U.S. Pat. Nos.: 4,759,766; 4,863,477; 4,997,432; 5,035,716; 5,071,437; 5,370,697; 5,401,269; 5,507,816; 5,534,030; 5,556,431; 5,674,296; 5,676,702; 5,702,450; 5,824,094; 5,865,846; 5,989,291; 6,001,130; 6,022,376; 6,039,763; 6,139,579; 6,156,067; 6,162,252; 6,315,797; 6,348,071; 6,368,350; 6,416,551; 6,592,624; 6,607,558 and 6,706,068. Other patent applications related to intervertebral disc prostheses include U.S. Patent Application Publication Nos.: 2003/0009224; 2003/0074076; 2003/0191536; 2003/0208271; 2003/0135277; 2003/0199982; 2001/0016773 and 2003/0100951. Other related patents include WO 01/01893A1, EP 1344507, EP 1344506, EP 1250898, EP 1306064, EP 1344508, EP 1344493, EP 1417940, EP 1142544, and EP 0333990.
- In one aspect of the present invention, an intervertebral prosthetic disc for insertion between adjacent vertebrae comprises: upper and lower plates having outer surfaces locatable against the respective vertebrae and inner, curved surfaces; a core between the plates, the core having upper and lower curved surfaces complementary in shape to the inner, curved surfaces of the plates to allow the plates to slide over the core; and at least one projection extending from at least one of the upper and lower curved surfaces of the core into at least one recess of one of the inner surfaces of the plates, the recess being oversize with respect to the projection to allow sliding movement of the plate over the core while retaining the core between the plates during such sliding movement.
- Some embodiments further include multiple projections extending from the upper and lower surfaces of the core. For example, the multiple projections may include two elevated rings projecting from a peripheral portion of each of the upper and lower surfaces of the core into ring-shaped recesses on the upper and lower plates. In other embodiments, the multiple projections may comprise multiple surface features projecting from a peripheral portion of each of the upper and lower surfaces of the core into multiple recesses on the upper and lower plates. In yet other embodiments, the multiple projections may comprise respective ends of an elongate, upright element extending axially through the core, the ends projecting beyond the upper and lower core surfaces. For example, the upright element may comprise a rod extending through an axial passage through the core. In some embodiments, such a rod and passage may be complementarily threaded for engagement with one another.
- In some embodiments, the disc further includes at least one fin extending from each of the outer surfaces of the plates to promote attachment of the plates to the vertebrae. In some embodiments, each fin extends from its respective outer surface at a 90° angle. In other embodiments, each fin extends from its respective outer surface at an angle other than 90°. In some embodiments, each fin includes at least one hole for promoting attachment of the plates to the vertebrae. For further promoting attachment of the plates to the vertebrae some embodiments include outer surfaces of the plates that are textured. For example, in some embodiments the textured surfaces comprise multiple serrations.
- The plates may have any of a number of different configurations, sizes, or the like. In one embodiment, the outer surfaces of the plates are flat. In one embodiment, lateral edge portions of the upper and lower plates are adapted to contact one another during sliding movement of the plates over the core.
- In another aspect of the present invention, an intervertebral prosthetic disc for insertion between adjacent vertebrae comprises: upper and lower plates having outer surfaces locatable against the respective vertebrae and inner, curved surfaces, at least one of the inner surfaces having at least one recess; a core between the plates, the core having upper and lower curved surfaces complementary in shape to the inner, curved surfaces of the plates to allow the plates to slide over the core, and an axial passage extending through the core; and a rod extending through the axial passage into the at least one recess in the inner surface(s) of the plate(s). The recess are oversize with respect to the projection to allow sliding movement of the plate over the core while retaining the core between the plates during such sliding movement.
- Optionally, the rod and passage may be complementarily threaded for engagement with one another. In some embodiments, the rod is movably engaged with a first oversized recess on the upper plate and a second oversized recess on the lower plate. In various embodiments, the plates and core may have any of the features or characteristics described above.
- In another aspect of the invention, an intervertebral prosthetic disc for insertion between adjacent vertebrae includes: upper and lower plates having outer surfaces locatable against the respective vertebrae and inner, curved surfaces; a core between the plates, the core having upper and lower curved surfaces complementary in shape to the inner, curved surfaces of the plates to allow the plates to slide over the core; and a flexible tie member extending laterally through the core and having ends outside the core which are engaged with one or both of the plates to retain the core between the plates when the plates slide over the core. The flexible tie member, for example, may extend through a lateral passage through the core and may include ends engaged with at least one of the upper and lower plates. In some embodiments, the flexible tie member comprises a flexible cable or cord.
- In yet another example of the present invention, an intervertebral prosthetic disc for insertion between adjacent vertebrae comprises: upper and lower plates having textured outer surfaces locatable against the respective vertebrae, each of the outer surfaces having at least one vertical fin and an edge portion adapted to contact a corresponding edge portion of the other plate, and inner, curved surfaces; and a core between the plates, the core having upper and lower curved surfaces complementary in shape to the inner, curved surfaces of the plates to allow the plates to slide over the core. The curved surfaces of the plates and core include formations which cooperate with one another to retain the core between the plates when the plates slide over the core. The formations include recesses and projections received by the recesses, and the recesses and projections are located between a central axis of the relevant curved surface and an outer periphery thereof.
- In some embodiments, for example, the projections may comprise two elevated rings projecting from a peripheral portion of each of the upper and lower surfaces of the core into ring-shaped recesses on the upper and lower plates. In other embodiments, the projections may comprise multiple surface features projecting from a peripheral portion of each of the upper and lower surfaces of the core into multiple recesses on the upper and lower plates. Again, the plates and core may include any of the features described above.
- These and other aspects and embodiments are described more fully below with reference to the drawing figures.
-
FIG. 1 shows a cross-sectional anterior view of a prosthetic disc according to one embodiment of the invention, with the prosthesis plates and core in vertical alignment; -
FIG. 2 shows a cross-sectional side view of the disc ofFIG. 1 , after sliding movement of the plates over the core; -
FIG. 3 shows a cross-sectional side view of the disc ofFIG. 1 , after translational movement of the plates relative to the core; -
FIG. 4 shows a cross-sectional side view of the disc ofFIG. 1 , with the plates and core in vertical alignment; -
FIG. 5 shows a plan view of the core of the disc ofFIG. 1 ; -
FIG. 6 shows a plan view of the upper plate of the disc ofFIG. 1 ; -
FIG. 6A shows a plan view of a disc, as inFIGS. 1 and 6 , with a fin rotated away from the anterior-posterior axis; -
FIG. 7 shows a cross-sectional anterior view of a prosthetic disc according to another embodiment of the invention; -
FIG. 8 shows a cross-sectional side view of the prosthetic disc ofFIG. 7 ; -
FIG. 9 shows a cross-sectional anterior view of a prosthetic disc according to another embodiment of the invention; -
FIG. 10 shows a cross-sectional side view of the prosthetic disc ofFIG. 9 ; and -
FIG. 11 shows a cross-sectional side view of another embodiment of the invention. -
FIGS. 1-4 illustrate aprosthetic disc 10 for intervertebral insertion between two adjacent spinal vertebrae (not shown). Thedisc 10 comprises three components, namely an upper plate orshell 12, a lower plate orshell 14 and a core 16 located between the plates. - The
upper plate 12 includes anouter surface 18 and aninner surface 24 and may be constructed from any suitable material or combination of materials, such as but not limited to cobalt chrome molybdenum, titanium (such as grade 5 titanium) and/or the like. In one embodiment, typically used in the lumbar spine, theupper plate 12 is constructed of cobalt chrome molybdenum, and theouter surface 18 is treated with aluminum oxide blasting followed by a titanium plasma spray. In another embodiment, typically used in the cervical spine, theupper plate 12 is constructed of titanium, theinner surface 24 is coated with titanium nitride, and theouter surface 18 is treated with aluminum oxide blasting. An alternative cervical spine embodiment includes no coating on theinner surface 24. In some embodiments, it may be useful to couple two materials together to form theinner surface 24 and theouter surface 18. For example, theupper plate 12 may be made of an MRI-compatible material, such as titanium, but may include a harder material, such as cobalt chrome molybdenum, for theinner surface 24. Any suitable technique may be used to couple materials together, such as snap fitting, slip fitting, lamination, interference fitting, use of adhesives, welding and/or the like. Any other suitable combination of materials and coatings may be employed in various embodiments of the invention. - In some embodiments, the
outer surface 18 is planar. Oftentimes, theouter surface 18 will include one or more surface features and/or materials to enhance attachment of theprosthesis 10 to vertebral bone. For example, theouter surface 18 may be machined to have aserrations 20 or other surface features for promoting adhesion of theupper plate 12 to a vertebra. In the embodiment shown (FIG. 6 ), theserrations 20 extend in mutually orthogonal directions, but other geometries would also be useful. Additionally, theouter surface 18 may be provided with a rough microfinish formed by blasting with aluminum oxide microparticles or the like. In some embodiments, the outer surface may also be titanium plasma sprayed to further enhance attachment of theouter surface 18 to vertebral bone. - The
outer surface 18 may also carry an upstanding,vertical fin 22 extending in an anterior-posterior direction. Thefin 22 is pierced bytransverse holes 23. In an alternative embodiment, as shown inFIG. 6A , thefin 22 may be rotated away from the anterior-posterior axis, such as in a lateral-lateral orientation, a posterolateral-anterolateral orientation, or the like. In some embodiments, thefin 22 may extend from thesurface 18 at an angle other than 90.degree. Furthermore,multiple fins 22 may be attached to thesurface 18 and/or thefin 22 may have any other suitable configuration, in various embodiments. In some embodiments, such asdiscs 10 for cervical insertion, thefins 22, 42 may be omitted altogether. - The
lower plate 14 is similar to theupper plate 12 except for the absence of theperipheral restraining structure 26. Thus, thelower plate 14 has an outer surface 40 which is planar, serrated and microfinished like theouter surface 18 of theupper plate 12. Thelower plate 14 optionally carries a fin 42 similar to thefin 22 of the upper plate. The inner surface 44 of thelower plate 14 is concavely, spherically curved with a radius of curvature matching that of theinner surface 24 of theupper plate 12. Once again, this surface may be provided with a titanium nitride or other finish. - The
core 16 of thedisc 10 is made of a low-friction material, such as polyethylene (Chirulen™). In alternative embodiments, thecore 16 may comprise any other suitable material, such as other polymers, ceramics or the like. For wear resistance, the surface zones of the core 16 may be hardened by an appropriate cross-linking procedure. Apassage 32 extends axially through the core. The passage is provided with an internally threadedsleeve 33 of titanium or other suitable material. An elongate element in the form of a round cross-section, threadedrod 34 extends axially through the passage and is in threaded engagement with thesleeve 33. The length of the rod is greater than the axial dimension of the core, with the result that the opposite ends 36 of the rod project from thecurved surfaces disc 10, these ends 36 locate in therecesses 26. The diameter of the rod is less than that of therecesses 26 so there is substantial room for the rod ends to move laterally in the recesses. - In use, the
disc 10 is surgically implanted between adjacent spinal vertebrae in place of a damaged disc. The adjacent vertebrae are forcibly separated from one another to provide the necessary space for insertion. The disc is inserted, normally in a posterior direction, into place between the vertebrae with thefins 22, 42 of theplates microfinished surfaces 18, 40 of theplates serrations 20 andfins 22, 42 provide initial stability and fixation for thedisc 10. With passage of time, enhanced by the titanium surface coating, firm connection between the plates and the vertebrae will be achieved as bone tissue grows over the serrated surface. Bone tissue growth will also take place about thefins 22, 40 and through thetransverse holes 23 therein, further enhancing the connection which is achieved. - Referring to
FIG. 5 , thecore 16 may be formed with narrow, angularly spaced, blind passages 61 which accommodate titanium pins 64. In many embodiments, the core 16 itself is transparent to X-radiation and so is invisible in a post-operative X-ray examination. Thepins 64 serve as radiographic markers and enable the position of the core 16 to be ascertained during such examination. - In the assembled
disc 10, the complementary and cooperating spherical surfaces of the plates and core allow the plates to slide or articulate over the core through a fairly large range of angles and in all directions or degrees of freedom, including rotation about the central axis 40.FIGS. 1 and 4 show thedisc 10 with theplates core 16 aligned vertically with one another on the axis 40.FIG. 2 illustrates a situation where maximum anterior flexion of the disc has taken place. Such flexion is enabled by the ability of theends 36 of the rod to move laterally in all directions and through a fairly large distance, in therecesses 26. At the position of maximum flexion, the ends 36 of the rod abut the sides of the recesses as illustrated. At the same time, theplates plates -
FIG. 3 illustrates how thedisc 10 can also allow for translational movement of the plates relative to the core. In the illustrated situation there has been lateral translation of the plates relative to the core. The limit of lateral translation (not shown) is again reached when the ends 36 of the rod abut laterally against the sides of therecesses 26. - In each case, the cooperating retaining formations, i.e. the ends 36 of the rod and the
recesses 26 cooperate with one another to prevent separation of the core from the plates. In other words, the cooperation of the retaining formations ensures that the core is held captive between the plates at all times during flexure of thedisc 10. In other embodiments of this version of the invention, the rod can be mounted fixedly to the core by means other than the illustrated threaded connection. In other embodiments, the rod may be replaced by separate elements projecting respectively from the upper and lower curved surfaces of the core. -
FIGS. 7 and 8 illustrate another embodiment of the invention. In this embodiment, thecore 16 is formed with alateral passage 50 extending diametrically through it. The passage is provided with asleeve 52 of titanium or other suitably wear resistant material. A flexible tie means, in this embodiment in the form of acable 54 of braided titanium construction, passes with clearance through thesleeve 52. The ends of thecable 54 are flexed upwardly and enterpassages 56 in theupper plate 12. The extremities of the cable carry crimped retention lugs orferrules 58 anchored in blind ends of thepassages 56. - The
cable 54 holds the core 16 captive during sliding movement of theplates FIG. 7 , the ends of thepassage 50 andsleeve 52 are belled to accommodate movements of the cable during sliding movements. Also, surfaces 60 of theplates -
FIGS. 9 and 10 illustrate another embodiment of aprostheses 10. In this embodiment, thecurved surfaces 24 of theplates annular channels 64 provided at corresponding positions in the upper and lower curved surfaces of thecore 16. Once again, cooperation between the retaining formations, i.e. the ribs and channels, holds the core captive between the plates when the plates slide over the core during flexion, extension or translation. At the limit of sliding movement in each case, the rib 62 will abut against a side of the channel. The channel may be provided with a wear resistant lining as described previously. -
FIG. 11 illustrates another embodiment of a prosthesis. In this case, the core carries continuous,annular ribs 70 on its upper and lower surfaces which locate with clearance inchannels 72 in theplates ribs 70 may be lined with wear resistant material as described previously. - In each of the later versions, i.e. those of
FIGS. 7 to 11 , thecore 16 may be provided with radiographic markers as described previously. Also, in each of these versions, the outer surfaces of theplates FIGS. 1 to 6 . - In
FIGS. 1-6 and 9-11, embodiments are illustrated in which retaining formations are provided that cooperate with one another between both plates and the core. In other embodiments, core retention may be achieved by cooperation between retaining formations which only act between one of the plates, either theupper plate 12 or thelower plate 14, and the core. In one embodiment, for example, there may be a single projection, which extends from the upper (or lower) curved surface of the core and a corresponding recess in the inner surface of the lower (or upper) plate. - Although the foregoing is a complete and accurate description of the invention, any of a number of modifications, additions or the like may be made to the various embodiments without departing from the scope of the invention. Therefore, nothing described above should be interpreted as limiting the scope of the invention at it is described in the claims.
- While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/619,180 US20130013072A1 (en) | 2003-05-27 | 2012-09-14 | Intervertebral prosthetic disc |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47380303P | 2003-05-27 | 2003-05-27 | |
US47380203P | 2003-05-27 | 2003-05-27 | |
US10/855,817 US7442211B2 (en) | 2003-05-27 | 2004-05-26 | Intervertebral prosthetic disc |
US12/101,664 US10342670B2 (en) | 2003-05-27 | 2008-04-11 | Intervertebral prosthetic disc |
US13/619,180 US20130013072A1 (en) | 2003-05-27 | 2012-09-14 | Intervertebral prosthetic disc |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/101,664 Continuation US10342670B2 (en) | 2003-05-27 | 2008-04-11 | Intervertebral prosthetic disc |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130013072A1 true US20130013072A1 (en) | 2013-01-10 |
Family
ID=33493362
Family Applications (17)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/855,253 Active 2028-02-17 US7753956B2 (en) | 2003-05-27 | 2004-05-26 | Prosthetic disc for intervertebral insertion |
US10/855,817 Active 2025-02-11 US7442211B2 (en) | 2003-05-27 | 2004-05-26 | Intervertebral prosthetic disc |
US12/030,772 Active - Reinstated 2027-06-25 US8454698B2 (en) | 2003-05-27 | 2008-02-13 | Prosthetic disc for intervertebral insertion |
US12/101,664 Active 2031-01-26 US10342670B2 (en) | 2003-05-27 | 2008-04-11 | Intervertebral prosthetic disc |
US12/103,210 Expired - Fee Related US8092538B2 (en) | 2003-05-27 | 2008-04-15 | Intervertebral prosthetic disc |
US12/464,670 Active - Reinstated 2025-05-18 US8444695B2 (en) | 2003-05-27 | 2009-05-12 | Prosthetic disc for intervertebral insertion |
US12/556,658 Abandoned US20090326656A1 (en) | 2003-05-27 | 2009-09-10 | Intervertebral Prosthetic Disc |
US12/626,027 Active 2025-11-03 US8845729B2 (en) | 2003-05-27 | 2009-11-25 | Prosthetic disc for intervertebral insertion |
US12/759,460 Abandoned US20100191338A1 (en) | 2003-05-27 | 2010-04-13 | Intervertebral Prosthetic Disc |
US12/986,292 Active 2027-10-04 US9439774B2 (en) | 2003-05-27 | 2011-01-07 | Intervertebral prosthetic disc |
US13/274,111 Abandoned US20120035732A1 (en) | 2003-05-27 | 2011-10-14 | Intervertebral prosthetic disc |
US13/619,180 Abandoned US20130013072A1 (en) | 2003-05-27 | 2012-09-14 | Intervertebral prosthetic disc |
US13/619,281 Expired - Lifetime US8771356B2 (en) | 2003-05-27 | 2012-09-14 | Intervertebral prosthetic disc |
US14/150,437 Expired - Lifetime US8974533B2 (en) | 2003-05-27 | 2014-01-08 | Prosthetic disc for intervertebral insertion |
US14/287,709 Active 2026-04-22 US10342671B2 (en) | 2003-05-27 | 2014-05-27 | Intervertebral prosthetic disc |
US15/167,763 Active 2025-04-29 US10357376B2 (en) | 2003-05-27 | 2016-05-27 | Intervertebral prosthetic disc |
US16/459,280 Active 2025-03-10 US11376130B2 (en) | 2003-05-27 | 2019-07-01 | Intervertebral prosthetic disc |
Family Applications Before (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/855,253 Active 2028-02-17 US7753956B2 (en) | 2003-05-27 | 2004-05-26 | Prosthetic disc for intervertebral insertion |
US10/855,817 Active 2025-02-11 US7442211B2 (en) | 2003-05-27 | 2004-05-26 | Intervertebral prosthetic disc |
US12/030,772 Active - Reinstated 2027-06-25 US8454698B2 (en) | 2003-05-27 | 2008-02-13 | Prosthetic disc for intervertebral insertion |
US12/101,664 Active 2031-01-26 US10342670B2 (en) | 2003-05-27 | 2008-04-11 | Intervertebral prosthetic disc |
US12/103,210 Expired - Fee Related US8092538B2 (en) | 2003-05-27 | 2008-04-15 | Intervertebral prosthetic disc |
US12/464,670 Active - Reinstated 2025-05-18 US8444695B2 (en) | 2003-05-27 | 2009-05-12 | Prosthetic disc for intervertebral insertion |
US12/556,658 Abandoned US20090326656A1 (en) | 2003-05-27 | 2009-09-10 | Intervertebral Prosthetic Disc |
US12/626,027 Active 2025-11-03 US8845729B2 (en) | 2003-05-27 | 2009-11-25 | Prosthetic disc for intervertebral insertion |
US12/759,460 Abandoned US20100191338A1 (en) | 2003-05-27 | 2010-04-13 | Intervertebral Prosthetic Disc |
US12/986,292 Active 2027-10-04 US9439774B2 (en) | 2003-05-27 | 2011-01-07 | Intervertebral prosthetic disc |
US13/274,111 Abandoned US20120035732A1 (en) | 2003-05-27 | 2011-10-14 | Intervertebral prosthetic disc |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/619,281 Expired - Lifetime US8771356B2 (en) | 2003-05-27 | 2012-09-14 | Intervertebral prosthetic disc |
US14/150,437 Expired - Lifetime US8974533B2 (en) | 2003-05-27 | 2014-01-08 | Prosthetic disc for intervertebral insertion |
US14/287,709 Active 2026-04-22 US10342671B2 (en) | 2003-05-27 | 2014-05-27 | Intervertebral prosthetic disc |
US15/167,763 Active 2025-04-29 US10357376B2 (en) | 2003-05-27 | 2016-05-27 | Intervertebral prosthetic disc |
US16/459,280 Active 2025-03-10 US11376130B2 (en) | 2003-05-27 | 2019-07-01 | Intervertebral prosthetic disc |
Country Status (7)
Country | Link |
---|---|
US (17) | US7753956B2 (en) |
EP (3) | EP1626685B1 (en) |
JP (4) | JP4481312B2 (en) |
AT (1) | ATE480203T1 (en) |
DE (1) | DE602004029026D1 (en) |
WO (1) | WO2004105638A2 (en) |
ZA (1) | ZA200509644B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130261746A1 (en) * | 2012-03-28 | 2013-10-03 | Linares Medical Devices, Llc | Implantable inter-vertebral disk having upper and lower layers of a metal exhibiting bone fusing characteristics and which sandwich therebetween a soft plastic cushioning disc for providing dynamic properties mimicking that of a natural inter-vertebral disc |
US8771356B2 (en) | 2003-05-27 | 2014-07-08 | Spinalmotion, Inc. | Intervertebral prosthetic disc |
US20160252954A1 (en) * | 2015-02-27 | 2016-09-01 | Microsoft Technology Licensing, Llc | Control apparatus |
US10687958B2 (en) * | 2011-02-23 | 2020-06-23 | Globus Medical, Inc. | Six degree spine stabilization devices and methods |
Families Citing this family (263)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9917397A (en) | 1999-07-02 | 2002-03-05 | Spine Solutions Inc | Intervertebral Implant |
US7011684B2 (en) * | 2002-01-17 | 2006-03-14 | Concept Matrix, Llc | Intervertebral disk prosthesis |
US6793678B2 (en) | 2002-06-27 | 2004-09-21 | Depuy Acromed, Inc. | Prosthetic intervertebral motion disc having dampening |
EP1549260B1 (en) | 2002-09-19 | 2010-01-20 | Malan De Villiers | Intervertebral prosthesis |
US7833246B2 (en) | 2002-10-29 | 2010-11-16 | Kyphon SÀRL | Interspinous process and sacrum implant and method |
WO2004066884A1 (en) * | 2003-01-31 | 2004-08-12 | Spinalmotion, Inc. | Intervertebral prosthesis placement instrument |
EP1587437B1 (en) * | 2003-01-31 | 2013-02-27 | Spinalmotion, Inc. | Spinal midline indicator |
EP1594423B1 (en) | 2003-02-14 | 2009-01-07 | DePuy Spine, Inc. | In-situ formed intervertebral fusion device |
US7491204B2 (en) | 2003-04-28 | 2009-02-17 | Spine Solutions, Inc. | Instruments and method for preparing an intervertebral space for receiving an artificial disc implant |
US10052211B2 (en) | 2003-05-27 | 2018-08-21 | Simplify Medical Pty Ltd. | Prosthetic disc for intervertebral insertion |
US20090076614A1 (en) * | 2007-09-17 | 2009-03-19 | Spinalmotion, Inc. | Intervertebral Prosthetic Disc with Shock Absorption Core |
US7575599B2 (en) | 2004-07-30 | 2009-08-18 | Spinalmotion, Inc. | Intervertebral prosthetic disc with metallic core |
WO2004112660A1 (en) * | 2003-06-24 | 2004-12-29 | Synthes Ag Chur | Implant for the intervertebral space |
US20040267367A1 (en) | 2003-06-30 | 2004-12-30 | Depuy Acromed, Inc | Intervertebral implant with conformable endplate |
ATE435630T1 (en) * | 2003-07-22 | 2009-07-15 | Synthes Gmbh | INTERVERTEBRATE IMPLANT WITH CALOT-LIKE JOINT SURFACES |
US7621956B2 (en) | 2003-07-31 | 2009-11-24 | Globus Medical, Inc. | Prosthetic spinal disc replacement |
US7811329B2 (en) * | 2003-07-31 | 2010-10-12 | Globus Medical | Transforaminal prosthetic spinal disc replacement and methods thereof |
US7713304B2 (en) * | 2003-07-31 | 2010-05-11 | Globus Medical, Inc. | Transforaminal prosthetic spinal disc replacement |
US7153325B2 (en) * | 2003-08-01 | 2006-12-26 | Ultra-Kinetics, Inc. | Prosthetic intervertebral disc and methods for using the same |
US7520899B2 (en) * | 2003-11-05 | 2009-04-21 | Kyphon Sarl | Laterally insertable artificial vertebral disk replacement implant with crossbar spacer |
ATE390101T1 (en) * | 2003-11-18 | 2008-04-15 | Zimmer Gmbh | DISC IMPLANT |
US20050149192A1 (en) * | 2003-11-20 | 2005-07-07 | St. Francis Medical Technologies, Inc. | Intervertebral body fusion cage with keels and implantation method |
US7837732B2 (en) * | 2003-11-20 | 2010-11-23 | Warsaw Orthopedic, Inc. | Intervertebral body fusion cage with keels and implantation methods |
US7691146B2 (en) * | 2003-11-21 | 2010-04-06 | Kyphon Sarl | Method of laterally inserting an artificial vertebral disk replacement implant with curved spacer |
US7503935B2 (en) * | 2003-12-02 | 2009-03-17 | Kyphon Sarl | Method of laterally inserting an artificial vertebral disk replacement with translating pivot point |
US7250060B2 (en) * | 2004-01-27 | 2007-07-31 | Sdgi Holdings, Inc. | Hybrid intervertebral disc system |
US7393361B2 (en) * | 2004-02-20 | 2008-07-01 | Spinecore, Inc. | Artificial intervertebral disc having a bored semispherical bearing with a compression locking post and retaining caps |
US8636802B2 (en) | 2004-03-06 | 2014-01-28 | DePuy Synthes Products, LLC | Dynamized interspinal implant |
US11806244B2 (en) | 2004-05-13 | 2023-11-07 | Moskowitz Family Llc | Artificial cervical and lumbar disc system |
US8535379B2 (en) | 2006-04-04 | 2013-09-17 | Nathan C. Moskowitz | Artificial cervical and lumbar discs, disc plate insertion gun for performing sequential single plate intervertebral implantation enabling symmetric bi-disc plate alignment for interplate mobile core placement |
US7585326B2 (en) * | 2004-08-06 | 2009-09-08 | Spinalmotion, Inc. | Methods and apparatus for intervertebral disc prosthesis insertion |
JP4543152B2 (en) * | 2004-08-20 | 2010-09-15 | 独立行政法人産業技術総合研究所 | Transparent titanium-coated biocompatible material |
US7780731B2 (en) * | 2004-11-26 | 2010-08-24 | Spine Solutions, Inc. | Intervertebral implant |
US7582115B2 (en) * | 2004-09-30 | 2009-09-01 | Helmut Weber | Intervertebral prosthesis |
WO2006042484A1 (en) * | 2004-10-18 | 2006-04-27 | Buettner-Janz Karin | Bent sliding core as part of an intervertebral disk endoprosthesis |
US8597360B2 (en) * | 2004-11-03 | 2013-12-03 | Neuropro Technologies, Inc. | Bone fusion device |
US8083797B2 (en) * | 2005-02-04 | 2011-12-27 | Spinalmotion, Inc. | Intervertebral prosthetic disc with shock absorption |
US20060276787A1 (en) * | 2005-05-26 | 2006-12-07 | Accin Corporation | Pedicle screw, cervical screw and rod |
US20060276900A1 (en) * | 2005-06-01 | 2006-12-07 | Carpenter Clyde T | Anatomic total disc replacement |
US20060282166A1 (en) * | 2005-06-09 | 2006-12-14 | Sdgi Holdings, Inc. | Compliant porous coating |
GB0516034D0 (en) * | 2005-08-04 | 2005-09-14 | Blacklock T | Orthopaedic medical device |
US8628582B2 (en) * | 2005-08-22 | 2014-01-14 | Vilex In Tennessee, Inc. | Subtalar implant and methods of use thereof |
US20070050032A1 (en) * | 2005-09-01 | 2007-03-01 | Spinal Kinetics, Inc. | Prosthetic intervertebral discs |
US7731753B2 (en) * | 2005-09-01 | 2010-06-08 | Spinal Kinetics, Inc. | Prosthetic intervertebral discs |
US20070083200A1 (en) | 2005-09-23 | 2007-04-12 | Gittings Darin C | Spinal stabilization systems and methods |
US8252058B2 (en) * | 2006-02-16 | 2012-08-28 | Amedica Corporation | Spinal implant with elliptical articulatory interface |
US20070270970A1 (en) * | 2006-03-14 | 2007-11-22 | Sdgi Holdings, Inc. | Spinal implants with improved wear resistance |
US20070233262A1 (en) * | 2006-03-31 | 2007-10-04 | Uri Arnin | Articulating spinal prosthesis |
AU2007238092A1 (en) | 2006-04-12 | 2007-10-25 | Spinalmotion, Inc. | Posterior spinal device and method |
US20070270952A1 (en) * | 2006-04-19 | 2007-11-22 | Spinal Kinetics, Inc. | Prosthetic intervertebral discs implantable by minimally invasive surgical techniques |
US20080021557A1 (en) * | 2006-07-24 | 2008-01-24 | Warsaw Orthopedic, Inc. | Spinal motion-preserving implants |
WO2008014258A2 (en) | 2006-07-24 | 2008-01-31 | Spine Solutions, Inc. | Intervertebral implant with keel |
US20080021462A1 (en) * | 2006-07-24 | 2008-01-24 | Warsaw Orthopedic Inc. | Spinal stabilization implants |
US20080051900A1 (en) * | 2006-07-28 | 2008-02-28 | Spinalmotion, Inc. | Spinal Prosthesis with Offset Anchors |
CA2659024A1 (en) | 2006-07-31 | 2008-02-07 | Synthes (Usa) | Drilling/milling guide and keel cut preparation system |
US9526525B2 (en) | 2006-08-22 | 2016-12-27 | Neuropro Technologies, Inc. | Percutaneous system for dynamic spinal stabilization |
EP2062290B1 (en) * | 2006-09-07 | 2019-08-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Defect reduction using aspect ratio trapping |
US9278007B2 (en) | 2006-09-26 | 2016-03-08 | Spinal Kinetics, Inc. | Prosthetic intervertebral discs having cast end plates and methods for making and using them |
US8403987B2 (en) * | 2006-09-27 | 2013-03-26 | Spinal Kinetics Inc. | Prosthetic intervertebral discs having compressible core elements bounded by fiber-containing membranes |
US9381098B2 (en) * | 2006-09-28 | 2016-07-05 | Spinal Kinetics, Inc. | Tool systems for implanting prosthetic intervertebral discs |
US8308812B2 (en) | 2006-11-07 | 2012-11-13 | Biomedflex, Llc | Prosthetic joint assembly and joint member therefor |
US20110166671A1 (en) | 2006-11-07 | 2011-07-07 | Kellar Franz W | Prosthetic joint |
US9005307B2 (en) | 2006-11-07 | 2015-04-14 | Biomedflex, Llc | Prosthetic ball-and-socket joint |
US8512413B2 (en) | 2006-11-07 | 2013-08-20 | Biomedflex, Llc | Prosthetic knee joint |
CA2668692C (en) | 2006-11-07 | 2013-06-18 | Biomedflex, Llc | Medical implants |
US8070823B2 (en) | 2006-11-07 | 2011-12-06 | Biomedflex Llc | Prosthetic ball-and-socket joint |
US7914580B2 (en) * | 2006-11-07 | 2011-03-29 | Biomedflex Llc | Prosthetic ball-and-socket joint |
US7905919B2 (en) * | 2006-11-07 | 2011-03-15 | Biomedflex Llc | Prosthetic joint |
US8029574B2 (en) | 2006-11-07 | 2011-10-04 | Biomedflex Llc | Prosthetic knee joint |
GB0623395D0 (en) | 2006-11-23 | 2007-01-03 | Renishaw Plc | Port |
US20080140204A1 (en) * | 2006-12-07 | 2008-06-12 | Warsaw Orthopedic, Inc. | Vertebral Implant Systems and Methods of Use |
US8105382B2 (en) | 2006-12-07 | 2012-01-31 | Interventional Spine, Inc. | Intervertebral implant |
US20080228275A1 (en) * | 2007-03-14 | 2008-09-18 | Heather Cannon | Intervertebral implant component with three points of contact |
US20090076612A1 (en) * | 2007-04-01 | 2009-03-19 | Spinal Kinetics, Inc. | Prosthetic Intervertebral Discs Having Substantially Cylindrical Cores Insertable Along Their Axes, That Are Suitable For Implantation By Minimally Invasive Surgical Techniques |
US20090012612A1 (en) * | 2007-04-10 | 2009-01-08 | David White | Devices and methods for push-delivery of implants |
US20080255664A1 (en) * | 2007-04-10 | 2008-10-16 | Mdesign International | Percutaneously deliverable orthopedic joint device |
US8956412B2 (en) * | 2007-06-22 | 2015-02-17 | Axiomed, LLC | Artificial disc |
US8298287B2 (en) * | 2007-06-26 | 2012-10-30 | Depuy Spine, Inc. | Intervertebral motion disc with helical shock absorber |
US8900307B2 (en) | 2007-06-26 | 2014-12-02 | DePuy Synthes Products, LLC | Highly lordosed fusion cage |
US20090043391A1 (en) * | 2007-08-09 | 2009-02-12 | Spinalmotion, Inc. | Customized Intervertebral Prosthetic Disc with Shock Absorption |
US8758441B2 (en) | 2007-10-22 | 2014-06-24 | Spinalmotion, Inc. | Vertebral body replacement and method for spanning a space formed upon removal of a vertebral body |
KR101552476B1 (en) | 2008-01-17 | 2015-09-11 | 신세스 게엠바하 | An expandable intervertebral implant and associated method of manufacturing the same |
WO2009094477A1 (en) * | 2008-01-25 | 2009-07-30 | Spinalmotion, Inc. | Compliant implantable prosthetic joint with preloaded spring |
US8083796B1 (en) | 2008-02-29 | 2011-12-27 | Nuvasive, Inc. | Implants and methods for spinal fusion |
US8764833B2 (en) * | 2008-03-11 | 2014-07-01 | Spinalmotion, Inc. | Artificial intervertebral disc with lower height |
CN102036623A (en) | 2008-04-05 | 2011-04-27 | 斯恩蒂斯有限公司 | Expandable intervertebral implant |
US9034038B2 (en) * | 2008-04-11 | 2015-05-19 | Spinalmotion, Inc. | Motion limiting insert for an artificial intervertebral disc |
AU2009244382A1 (en) * | 2008-05-05 | 2009-11-12 | Spinalmotion, Inc. | Polyaryletherketone artificial intervertebral disc |
US9220603B2 (en) * | 2008-07-02 | 2015-12-29 | Simplify Medical, Inc. | Limited motion prosthetic intervertebral disc |
DE102008032691A1 (en) * | 2008-07-03 | 2010-01-07 | Aesculap Ag | Intervertebral disc prosthesis system |
JP2011526500A (en) * | 2008-07-03 | 2011-10-13 | セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング | Intervertebral disc endoprosthesis |
WO2010009151A2 (en) | 2008-07-17 | 2010-01-21 | Spinalmotion, Inc. | Artificial intervertebral disc placement system |
WO2010009153A1 (en) * | 2008-07-18 | 2010-01-21 | Spinalmotion, Inc. | Posterior prosthetic intervertebral disc |
EP2339985A4 (en) * | 2008-09-12 | 2013-07-03 | Articulinx Inc | Tether-based orthopedic joint device delivery methods |
US8545566B2 (en) * | 2008-10-13 | 2013-10-01 | Globus Medical, Inc. | Articulating spacer |
US20100158209A1 (en) * | 2008-12-22 | 2010-06-24 | General Instrument Corporation | Access to Network Based on Automatic Speech-Recognition |
DE102009011648A1 (en) * | 2009-03-04 | 2010-09-09 | Advanced Medical Technologies Ag | Implant system with support elements |
US9526620B2 (en) | 2009-03-30 | 2016-12-27 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US8613771B2 (en) * | 2009-05-15 | 2013-12-24 | Globus Medical, Inc. | Artificial disc |
WO2011016989A2 (en) * | 2009-08-07 | 2011-02-10 | Ebi, Llc | Toroid-shaped spinal disc |
EP2475334A4 (en) | 2009-09-11 | 2014-10-22 | Articulinx Inc | Disc-shaped orthopedic devices |
US8709086B2 (en) | 2009-10-15 | 2014-04-29 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10806596B2 (en) | 2009-10-15 | 2020-10-20 | Globus Medical, Inc. | Expandable fusion device and method installation thereof |
US8062375B2 (en) | 2009-10-15 | 2011-11-22 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8556979B2 (en) * | 2009-10-15 | 2013-10-15 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9216095B2 (en) | 2009-10-15 | 2015-12-22 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US11564807B2 (en) | 2009-10-15 | 2023-01-31 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10098758B2 (en) | 2009-10-15 | 2018-10-16 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10327917B2 (en) | 2009-10-15 | 2019-06-25 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US11103366B2 (en) | 2009-10-15 | 2021-08-31 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8685098B2 (en) | 2010-06-25 | 2014-04-01 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US11344430B2 (en) | 2009-10-15 | 2022-05-31 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9155628B2 (en) | 2009-10-15 | 2015-10-13 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
ES2532826T3 (en) * | 2009-10-30 | 2015-04-01 | DePuy Synthes Products, LLC | Prosthesis with different texture surfaces |
US8277509B2 (en) * | 2009-12-07 | 2012-10-02 | Globus Medical, Inc. | Transforaminal prosthetic spinal disc apparatus |
US9393129B2 (en) | 2009-12-10 | 2016-07-19 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US8353963B2 (en) | 2010-01-12 | 2013-01-15 | Globus Medical | Expandable spacer and method for use thereof |
GB201002370D0 (en) | 2010-02-12 | 2010-03-31 | Renishaw Ireland Ltd | Percutaneous drug delivery apparatus |
US9913726B2 (en) | 2010-02-24 | 2018-03-13 | Globus Medical, Inc. | Expandable intervertebral spacer and method of posterior insertion thereof |
AU2011227293A1 (en) | 2010-03-16 | 2012-11-08 | Pinnacle Spine Group, Llc | Intervertebral implants and graft delivery systems and methods |
US8858636B2 (en) | 2010-04-09 | 2014-10-14 | DePuy Synthes Products, LLC | Intervertebral implant |
US9301853B2 (en) | 2010-04-09 | 2016-04-05 | DePuy Synthes Products, Inc. | Holder for implantation and extraction of prosthesis |
US9301850B2 (en) | 2010-04-12 | 2016-04-05 | Globus Medical, Inc. | Expandable vertebral implant |
US8870880B2 (en) | 2010-04-12 | 2014-10-28 | Globus Medical, Inc. | Angling inserter tool for expandable vertebral implant |
US20120101579A1 (en) * | 2010-04-27 | 2012-04-26 | Spinalmotion, Inc. | Prosthetic intervertebral disc with movable core |
US9763678B2 (en) | 2010-06-24 | 2017-09-19 | DePuy Synthes Products, Inc. | Multi-segment lateral cage adapted to flex substantially in the coronal plane |
US8979860B2 (en) | 2010-06-24 | 2015-03-17 | DePuy Synthes Products. LLC | Enhanced cage insertion device |
US9597200B2 (en) | 2010-06-25 | 2017-03-21 | Globus Medical, Inc | Expandable fusion device and method of installation thereof |
EP2588034B1 (en) | 2010-06-29 | 2018-01-03 | Synthes GmbH | Distractible intervertebral implant |
US10758367B2 (en) | 2010-09-03 | 2020-09-01 | Globus Medical Inc. | Expandable fusion device and method of installation thereof |
US9855151B2 (en) | 2010-09-03 | 2018-01-02 | Globus Medical, Inc | Expandable fusion device and method of installation thereof |
US9566168B2 (en) | 2010-09-03 | 2017-02-14 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US11793654B2 (en) | 2010-09-03 | 2023-10-24 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US11446162B2 (en) | 2010-09-03 | 2022-09-20 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10842644B2 (en) | 2010-09-03 | 2020-11-24 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10869768B2 (en) | 2010-09-03 | 2020-12-22 | Globus Medical Inc. | Expandable fusion device and method of installation thereof |
US8845731B2 (en) | 2010-09-03 | 2014-09-30 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8845734B2 (en) | 2010-09-03 | 2014-09-30 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8845732B2 (en) | 2010-09-03 | 2014-09-30 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US12059358B2 (en) | 2010-09-03 | 2024-08-13 | Globus Medical Inc. | Expandable fusion device and method of installation thereof |
US8632595B2 (en) | 2010-09-03 | 2014-01-21 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9351848B2 (en) | 2010-09-03 | 2016-05-31 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10709573B2 (en) | 2010-09-03 | 2020-07-14 | Globus Medical Inc. | Expandable fusion device and method of installation thereof |
US9907673B2 (en) | 2010-09-03 | 2018-03-06 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10779957B2 (en) | 2010-09-03 | 2020-09-22 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8491659B2 (en) | 2010-09-03 | 2013-07-23 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8852279B2 (en) | 2010-09-03 | 2014-10-07 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10945858B2 (en) | 2010-09-03 | 2021-03-16 | Globus Medical, Inc. | Expandable interspinous process fixation device |
US10835387B2 (en) | 2010-09-03 | 2020-11-17 | Globus Medical Inc. | Expandable fusion device and method of installation thereof |
US10512550B2 (en) | 2010-09-03 | 2019-12-24 | Globus Medical, Inc. | Expandable interspinous process fixation device |
US8435298B2 (en) | 2010-09-03 | 2013-05-07 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10085849B2 (en) | 2010-09-03 | 2018-10-02 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9474625B2 (en) | 2010-09-03 | 2016-10-25 | Globus Medical, Inc | Expandable fusion device and method of installation thereof |
US9402732B2 (en) | 2010-10-11 | 2016-08-02 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US8353964B2 (en) | 2010-11-04 | 2013-01-15 | Carpenter Clyde T | Anatomic total disc replacement |
US8496713B2 (en) | 2010-12-10 | 2013-07-30 | Globus Medical, Inc. | Spine stabilization device and methods |
US9101485B2 (en) * | 2011-01-04 | 2015-08-11 | DePuy Synthes Products, Inc. | Intervertebral implant with multiple radii |
US9358122B2 (en) | 2011-01-07 | 2016-06-07 | K2M, Inc. | Interbody spacer |
US9084683B2 (en) | 2011-01-07 | 2015-07-21 | Pbn Spinal Implants, Llc | Spinal implant system and method |
US8801793B2 (en) | 2011-01-18 | 2014-08-12 | Warsaw Orthopedic, Inc. | Interbody containment implant |
DE102011000375B4 (en) * | 2011-01-27 | 2022-07-14 | Aesculap Ag | Vertebral cage as a fracture implant |
US8480743B2 (en) * | 2011-03-25 | 2013-07-09 | Vicente Vanaclocha Vanaclocha | Universal disc prosthesis |
US8277505B1 (en) | 2011-06-10 | 2012-10-02 | Doty Keith L | Devices for providing up to six-degrees of motion having kinematically-linked components and methods of use |
WO2013023096A1 (en) | 2011-08-09 | 2013-02-14 | Neuropro Technologies, Inc. | Bone fusion device, system and method |
US10420654B2 (en) | 2011-08-09 | 2019-09-24 | Neuropro Technologies, Inc. | Bone fusion device, system and method |
WO2013023098A1 (en) | 2011-08-09 | 2013-02-14 | Neuropro Spinal Jaxx Inc. | Bone fusion device, apparatus and method |
US8840673B2 (en) * | 2011-09-21 | 2014-09-23 | Linares Medical Devices, Llc | Implantable elbow joint assembly with spherical inter-support |
US8864833B2 (en) | 2011-09-30 | 2014-10-21 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
EP2765958B1 (en) | 2011-10-13 | 2021-04-14 | Simplify Medical Pty Ltd. | Anatomy accommodating prosthetic intervertebral disc with lower height |
US9017410B2 (en) | 2011-10-26 | 2015-04-28 | Globus Medical, Inc. | Artificial discs |
US9380932B1 (en) | 2011-11-02 | 2016-07-05 | Pinnacle Spine Group, Llc | Retractor devices for minimally invasive access to the spine |
US8287598B1 (en) | 2011-12-05 | 2012-10-16 | TrueMotion Spine, Inc. | True spinal motion preserving, shock absorbing, intervertebral spinal disc prosthesis |
US9345583B2 (en) * | 2011-12-20 | 2016-05-24 | Warsaw Orthopedic, Inc. | Spinal implant |
US9125753B2 (en) | 2012-02-17 | 2015-09-08 | Ervin Caballes | Elastomeric artificial joints and intervertebral prosthesis systems |
US10159583B2 (en) | 2012-04-13 | 2018-12-25 | Neuropro Technologies, Inc. | Bone fusion device |
US9532883B2 (en) | 2012-04-13 | 2017-01-03 | Neuropro Technologies, Inc. | Bone fusion device |
GB201217606D0 (en) * | 2012-10-02 | 2012-11-14 | Renishaw Plc | Neurosurgical device and method |
US10350081B2 (en) | 2012-12-11 | 2019-07-16 | Globus Medical, Inc. | Expandable vertebral implant |
US10299934B2 (en) | 2012-12-11 | 2019-05-28 | Globus Medical, Inc | Expandable vertebral implant |
US9011493B2 (en) | 2012-12-31 | 2015-04-21 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US10105239B2 (en) | 2013-02-14 | 2018-10-23 | Globus Medical, Inc. | Devices and methods for correcting vertebral misalignment |
US9402738B2 (en) | 2013-02-14 | 2016-08-02 | Globus Medical, Inc. | Devices and methods for correcting vertebral misalignment |
US9585765B2 (en) | 2013-02-14 | 2017-03-07 | Globus Medical, Inc | Devices and methods for correcting vertebral misalignment |
US9782265B2 (en) | 2013-02-15 | 2017-10-10 | Globus Medical, Inc | Articulating and expandable vertebral implant |
US9801731B2 (en) | 2013-02-19 | 2017-10-31 | University Of Florida Research Foundation, Inc. | Spinal implant and methods of manufacture thereof |
US10117754B2 (en) | 2013-02-25 | 2018-11-06 | Globus Medical, Inc. | Expandable intervertebral implant |
US9717601B2 (en) | 2013-02-28 | 2017-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US9554918B2 (en) | 2013-03-01 | 2017-01-31 | Globus Medical, Inc. | Articulating expandable intervertebral implant |
US10004607B2 (en) | 2013-03-01 | 2018-06-26 | Globus Medical, Inc. | Articulating expandable intervertebral implant |
US9770343B2 (en) | 2013-03-01 | 2017-09-26 | Globus Medical Inc. | Articulating expandable intervertebral implant |
US9198772B2 (en) | 2013-03-01 | 2015-12-01 | Globus Medical, Inc. | Articulating expandable intervertebral implant |
US9204972B2 (en) | 2013-03-01 | 2015-12-08 | Globus Medical, Inc. | Articulating expandable intervertebral implant |
US9522070B2 (en) | 2013-03-07 | 2016-12-20 | Interventional Spine, Inc. | Intervertebral implant |
WO2014159739A1 (en) | 2013-03-14 | 2014-10-02 | Pinnacle Spine Group, Llc | Interbody implants and graft delivery systems |
US9233009B2 (en) | 2013-03-15 | 2016-01-12 | Globus Medical, Inc. | Expandable intervertebral implant |
WO2014143740A1 (en) | 2013-03-15 | 2014-09-18 | Mako Surgical Corp. | Unicondylar tibial knee implant |
US10098757B2 (en) | 2013-03-15 | 2018-10-16 | Neuropro Technologies Inc. | Bodiless bone fusion device, apparatus and method |
US9572677B2 (en) | 2013-03-15 | 2017-02-21 | Globus Medical, Inc. | Expandable intervertebral implant |
US9034045B2 (en) | 2013-03-15 | 2015-05-19 | Globus Medical, Inc | Expandable intervertebral implant |
US9186258B2 (en) | 2013-03-15 | 2015-11-17 | Globus Medical, Inc. | Expandable intervertebral implant |
US9456906B2 (en) | 2013-03-15 | 2016-10-04 | Globus Medical, Inc. | Expandable intervertebral implant |
US9149367B2 (en) | 2013-03-15 | 2015-10-06 | Globus Medical Inc | Expandable intervertebral implant |
US10039575B2 (en) * | 2013-07-01 | 2018-08-07 | Cousin Biotech Sas | Dynamic intervertebral stabilisation device |
US9198770B2 (en) | 2013-07-31 | 2015-12-01 | Globus Medical, Inc. | Artificial disc devices and related methods of use |
US10478313B1 (en) * | 2014-01-10 | 2019-11-19 | Nuvasive, Inc. | Spinal fusion implant and related methods |
US9662224B2 (en) | 2014-02-07 | 2017-05-30 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US9839528B2 (en) | 2014-02-07 | 2017-12-12 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US9402739B2 (en) | 2014-02-07 | 2016-08-02 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US9901459B2 (en) | 2014-12-16 | 2018-02-27 | Globus Medical, Inc. | Expandable fusion devices and methods of installation thereof |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US9814602B2 (en) | 2015-05-14 | 2017-11-14 | Globus Medical, Inc. | Expandable intervertebral implants and methods of installation thereof |
US10376378B2 (en) | 2015-05-21 | 2019-08-13 | Globus Medical, Inc. | Device and method for deployment of an anchoring device for intervertebral spinal fusion |
US10433975B2 (en) | 2015-05-21 | 2019-10-08 | Globus Medical, Inc. | Device and method for deployment of an anchoring device for intervertebral spinal fusion |
US10765532B2 (en) | 2015-05-21 | 2020-09-08 | Globus Medical, Inc. | Device and method for deployment of an anchoring device for intervertebral spinal fusion |
US9848996B2 (en) | 2015-06-17 | 2017-12-26 | Globus Medical, Inc. | Variable lordotic interbody spacer |
US10016282B2 (en) | 2015-07-17 | 2018-07-10 | Globus Medical, Inc. | Intervertebral spacer and plate |
US10137009B2 (en) | 2015-09-02 | 2018-11-27 | Globus Medical, Inc. | Expandable intervertebral fusion devices and methods of installation thereof |
US10034768B2 (en) | 2015-09-02 | 2018-07-31 | Globus Medical, Inc. | Implantable systems, devices and related methods |
US10617531B2 (en) | 2015-10-26 | 2020-04-14 | K2M, Inc. | Cervical disc and instrumentation |
US10219914B2 (en) | 2015-11-10 | 2019-03-05 | Globus Medical, Inc. | Stabilized expandable intervertebral spacer |
US10524928B2 (en) | 2015-12-15 | 2020-01-07 | Globus Medical, Inc | Stabilized intervertebral spacer |
US10369004B2 (en) | 2015-12-16 | 2019-08-06 | Globus Medical, Inc. | Expandable intervertebralspacer |
US9974575B2 (en) | 2016-02-02 | 2018-05-22 | Globus Medical, Inc. | Expandable spinal fixation system |
EP3430757B1 (en) * | 2016-03-16 | 2019-11-13 | Telefonaktiebolaget LM Ericsson (publ) | Secondary serving cell selection for a wireless communication device |
WO2017189517A1 (en) | 2016-04-26 | 2017-11-02 | Alethea Spine, Llc | Orthopedic implant with integrated core |
US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
JP7019616B2 (en) | 2016-06-28 | 2022-02-15 | イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー | Expandable and angle adjustable intervertebral cage with range of motion joints |
US10052215B2 (en) | 2016-06-29 | 2018-08-21 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9974662B2 (en) | 2016-06-29 | 2018-05-22 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US11596526B2 (en) | 2016-09-14 | 2023-03-07 | Globus Medical Inc. | Systems and methods for expandable corpectomy spacer implantation |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
DE102016124877B4 (en) | 2016-12-19 | 2019-02-07 | Ngmedical Gmbh | Intervertebral disc prosthesis and method for producing a disc prosthesis |
US10973657B2 (en) | 2017-01-18 | 2021-04-13 | Neuropro Technologies, Inc. | Bone fusion surgical system and method |
US10213321B2 (en) | 2017-01-18 | 2019-02-26 | Neuropro Technologies, Inc. | Bone fusion system, device and method including delivery apparatus |
US10111760B2 (en) | 2017-01-18 | 2018-10-30 | Neuropro Technologies, Inc. | Bone fusion system, device and method including a measuring mechanism |
US10729560B2 (en) | 2017-01-18 | 2020-08-04 | Neuropro Technologies, Inc. | Bone fusion system, device and method including an insertion instrument |
US10398563B2 (en) | 2017-05-08 | 2019-09-03 | Medos International Sarl | Expandable cage |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
US10426628B2 (en) | 2017-12-14 | 2019-10-01 | Simplify Medical Pty Ltd | Intervertebral prosthesis |
US11160672B2 (en) | 2018-09-24 | 2021-11-02 | Simplify Medical Pty Ltd | Robotic systems and methods for distraction in intervertebral disc prosthesis implantation |
US11648058B2 (en) | 2018-09-24 | 2023-05-16 | Simplify Medical Pty Ltd | Robotic system and method for bone preparation for intervertebral disc prosthesis implantation |
US11819424B2 (en) | 2018-09-24 | 2023-11-21 | Simplify Medical Pty Ltd | Robot assisted intervertebral disc prosthesis selection and implantation system |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
US11219536B2 (en) | 2019-05-01 | 2022-01-11 | Simplify Medical Pty Ltd | Intervertebral prosethetic disc placement and removal systems |
US11259933B2 (en) | 2019-09-06 | 2022-03-01 | Globus Medical Inc. | Expandable motion preservation spacer |
US11452618B2 (en) | 2019-09-23 | 2022-09-27 | Dimicron, Inc | Spinal artificial disc removal tool |
EP4034002A4 (en) | 2019-09-24 | 2023-11-01 | Simplify Medical Pty Limited | Surgical cutter instrument with trial |
US11197765B2 (en) | 2019-12-04 | 2021-12-14 | Robert S. Bray, Jr. | Artificial disc replacement device |
US11839554B2 (en) | 2020-01-23 | 2023-12-12 | Robert S. Bray, Jr. | Method of implanting an artificial disc replacement device |
US11191650B2 (en) | 2020-02-03 | 2021-12-07 | Globus Medical Inc. | Expandable fusions devices, instruments, and methods thereof |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11071632B2 (en) | 2020-04-04 | 2021-07-27 | Young Hoon Oh | Intervertebral implant device |
US11298240B2 (en) | 2020-06-16 | 2022-04-12 | Globus Medical, Inc. | Expanding intervertebral implants |
US11357640B2 (en) | 2020-07-08 | 2022-06-14 | Globus Medical Inc. | Expandable interbody fusions devices |
US11491020B2 (en) | 2020-07-09 | 2022-11-08 | Globus Medical, Inc. | Articulating and expandable interbody fusions devices |
US20220117749A1 (en) | 2020-07-09 | 2022-04-21 | Globus Medical, Inc. | Intradiscal fixation systems |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US11896499B2 (en) | 2021-12-02 | 2024-02-13 | Globus Medical, Inc | Expandable fusion device with integrated deployable retention spikes |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
US12011364B2 (en) | 2022-06-15 | 2024-06-18 | Globus Medical, Inc | Expandable footprint implant |
US11883080B1 (en) | 2022-07-13 | 2024-01-30 | Globus Medical, Inc | Reverse dynamization implants |
Family Cites Families (370)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US612825A (en) * | 1898-10-25 | Can-labeling machine | ||
US3486505A (en) * | 1967-05-22 | 1969-12-30 | Gordon M Morrison | Orthopedic surgical instrument |
SE391122B (en) | 1971-01-25 | 1977-02-07 | Cutter Lab | PROTESTS IN THE FORM OF A SPINE BONIC DISC AND PROCEDURES FOR MANUFACTURE THEREOF |
DE2263842A1 (en) * | 1972-12-28 | 1974-07-04 | Hoffmann Daimler Siegfried Dr | DISC PROTHESIS |
CH640131A5 (en) | 1979-10-03 | 1983-12-30 | Sulzer Ag | Complete intervertebral prosthesis |
US4309777A (en) | 1980-11-13 | 1982-01-12 | Patil Arun A | Artificial intervertebral disc |
US4526939A (en) | 1983-07-18 | 1985-07-02 | Desoto, Inc. | Thermosetting coating compositions for the sealing of fiber reinforced plastics |
US4531917A (en) | 1984-04-02 | 1985-07-30 | Linkow Leonard I | Detachable post for an osseous implant |
US4566466A (en) | 1984-04-16 | 1986-01-28 | Ripple Dale B | Surgical instrument |
JPH067391B2 (en) | 1984-07-26 | 1994-01-26 | オムロン株式会社 | Card reader |
ATE44871T1 (en) | 1984-09-04 | 1989-08-15 | Univ Berlin Humboldt | DISC PROSTHESIS. |
US4619660A (en) | 1984-10-15 | 1986-10-28 | Christiansen Jean E | Compressible rotational artificial joint |
JPS61122859U (en) | 1985-01-19 | 1986-08-02 | ||
US4673407A (en) | 1985-02-20 | 1987-06-16 | Martin Daniel L | Joint-replacement prosthetic device |
JPH07121265B2 (en) | 1986-12-26 | 1995-12-25 | 京セラ株式会社 | Cervical artificial disc |
CH671691A5 (en) | 1987-01-08 | 1989-09-29 | Sulzer Ag | |
US4834757A (en) * | 1987-01-22 | 1989-05-30 | Brantigan John W | Prosthetic implant |
CA1283501C (en) * | 1987-02-12 | 1991-04-30 | Thomas P. Hedman | Artificial spinal disc |
JPS63164948U (en) | 1987-04-13 | 1988-10-27 | ||
US4863477A (en) | 1987-05-12 | 1989-09-05 | Monson Gary L | Synthetic intervertebral disc prosthesis |
CH672589A5 (en) | 1987-07-09 | 1989-12-15 | Sulzer Ag | |
GB8718627D0 (en) | 1987-08-06 | 1987-09-09 | Showell A W Sugicraft Ltd | Spinal implants |
JPH01136655A (en) | 1987-11-24 | 1989-05-29 | Asahi Optical Co Ltd | Movable type pyramid spacer |
US4874389A (en) * | 1987-12-07 | 1989-10-17 | Downey Ernest L | Replacement disc |
US5195526A (en) * | 1988-03-11 | 1993-03-23 | Michelson Gary K | Spinal marker needle |
JPH01136655U (en) | 1988-03-11 | 1989-09-19 | ||
DE3809793A1 (en) | 1988-03-23 | 1989-10-05 | Link Waldemar Gmbh Co | SURGICAL INSTRUMENT SET |
US5772661A (en) | 1988-06-13 | 1998-06-30 | Michelson; Gary Karlin | Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine |
US5015247A (en) | 1988-06-13 | 1991-05-14 | Michelson Gary K | Threaded spinal implant |
EP0703757B1 (en) * | 1988-06-13 | 2003-08-27 | Karlin Technology, Inc. | Apparatus for inserting spinal implants |
US5484437A (en) | 1988-06-13 | 1996-01-16 | Michelson; Gary K. | Apparatus and method of inserting spinal implants |
US5609635A (en) * | 1988-06-28 | 1997-03-11 | Michelson; Gary K. | Lordotic interbody spinal fusion implants |
CA1318469C (en) * | 1989-02-15 | 1993-06-01 | Acromed Corporation | Artificial disc |
JPH067391Y2 (en) | 1989-03-31 | 1994-02-23 | 武藤工業株式会社 | XY plotter with coordinate reading function |
DE8912648U1 (en) | 1989-10-23 | 1990-11-22 | Mecron Medizinische Produkte Gmbh, 1000 Berlin | Vertebral body implant |
US5057108A (en) | 1990-01-12 | 1991-10-15 | Zimmer, Inc. | Method of surface finishing orthopedic implant devices |
FR2659226B1 (en) * | 1990-03-07 | 1992-05-29 | Jbs Sa | PROSTHESIS FOR INTERVERTEBRAL DISCS AND ITS IMPLEMENTATION INSTRUMENTS. |
GB9110778D0 (en) * | 1991-05-18 | 1991-07-10 | Middleton Jeffrey K | Apparatus for use in surgery |
US5320644A (en) | 1991-08-30 | 1994-06-14 | Sulzer Brothers Limited | Intervertebral disk prosthesis |
US20040015236A1 (en) | 1991-11-18 | 2004-01-22 | Sarfarazi Faezeh M. | Sarfarazi elliptical accommodative intraocular lens for small incision surgery |
GB9125798D0 (en) * | 1991-12-04 | 1992-02-05 | Customflex Limited | Improvements in or relating to spinal vertebrae implants |
US5258031A (en) | 1992-01-06 | 1993-11-02 | Danek Medical | Intervertebral disk arthroplasty |
US5425773A (en) | 1992-01-06 | 1995-06-20 | Danek Medical, Inc. | Intervertebral disk arthroplasty device |
ATE180411T1 (en) * | 1992-02-07 | 1999-06-15 | Smith & Nephew Inc | SURFACE HARDENED BIOVERATIBLE MEDICAL METAL IMPLANT |
US5282861A (en) | 1992-03-11 | 1994-02-01 | Ultramet | Open cell tantalum structures for cancellous bone implants and cell and tissue receptors |
DE4208115A1 (en) | 1992-03-13 | 1993-09-16 | Link Waldemar Gmbh Co | DISC ENDOPROTHESIS |
DE4208116C2 (en) | 1992-03-13 | 1995-08-03 | Link Waldemar Gmbh Co | Intervertebral disc prosthesis |
ATE141149T1 (en) * | 1992-04-21 | 1996-08-15 | Sulzer Medizinaltechnik Ag | ARTIFICIAL DISC BODY |
US5282661A (en) * | 1992-06-30 | 1994-02-01 | Steyr-Daimler-Puch Ag | Collapsible driver's cab for a truck |
DE4233978C1 (en) * | 1992-10-08 | 1994-04-21 | Leibinger Gmbh | Body marking device for medical examinations |
US5676701A (en) | 1993-01-14 | 1997-10-14 | Smith & Nephew, Inc. | Low wear artificial spinal disc |
ATE205069T1 (en) | 1993-02-09 | 2001-09-15 | Acromed Corp | DISC |
ATE185062T1 (en) * | 1993-02-10 | 1999-10-15 | Sulzer Spine Tech Inc | TOOL SET FOR STABILIZING THE SPINE |
EP0702693A1 (en) * | 1993-06-09 | 1996-03-27 | Connaught Laboratories Limited | Tandem synthetic hiv-1 peptides |
DK1092395T3 (en) * | 1993-06-10 | 2004-07-05 | Karlin Technology Inc | Protective device with first and second passage for kirugi in the discus room |
FR2707480B1 (en) | 1993-06-28 | 1995-10-20 | Bisserie Michel | Intervertebral disc prosthesis. |
US5899911A (en) * | 1993-08-25 | 1999-05-04 | Inlet Medical, Inc. | Method of using needle-point suture passer to retract and reinforce ligaments |
US5462575A (en) | 1993-12-23 | 1995-10-31 | Crs Holding, Inc. | Co-Cr-Mo powder metallurgy articles and process for their manufacture |
US5458642A (en) | 1994-01-18 | 1995-10-17 | Beer; John C. | Synthetic intervertebral disc |
IT1269200B (en) * | 1994-01-28 | 1997-03-21 | Eniricerche Spa | DETERMINATION OF WATER TOXICITY THROUGH THE USE OF ANAEROBIC BACTERIAL CULTURE |
US6290726B1 (en) * | 2000-01-30 | 2001-09-18 | Diamicron, Inc. | Prosthetic hip joint having sintered polycrystalline diamond compact articulation surfaces |
US5674296A (en) | 1994-11-14 | 1997-10-07 | Spinal Dynamics Corporation | Human spinal disc prosthesis |
TW316844B (en) | 1994-12-09 | 1997-10-01 | Sofamor Danek Group Inc | |
FR2728159B1 (en) | 1994-12-16 | 1997-06-27 | Tornier Sa | ELASTIC DISC PROSTHESIS |
CN1134810A (en) | 1995-02-17 | 1996-11-06 | 索发默达纳集团股份有限公司 | Improved interbody spinal fusion implants |
GB9505314D0 (en) * | 1995-03-16 | 1995-05-03 | Trontelj Janez | Electricity measurement apparatus |
US6245072B1 (en) | 1995-03-27 | 2001-06-12 | Sdgi Holdings, Inc. | Methods and instruments for interbody fusion |
US5782919A (en) | 1995-03-27 | 1998-07-21 | Sdgi Holdings, Inc. | Interbody fusion device and method for restoration of normal spinal anatomy |
US5683391A (en) | 1995-06-07 | 1997-11-04 | Danek Medical, Inc. | Anterior spinal instrumentation and method for implantation and revision |
US5709683A (en) | 1995-12-19 | 1998-01-20 | Spine-Tech, Inc. | Interbody bone implant having conjoining stabilization features for bony fusion |
US5683465A (en) | 1996-03-18 | 1997-11-04 | Shinn; Gary Lee | Artificial intervertebral disk prosthesis |
US6159214A (en) | 1996-07-31 | 2000-12-12 | Michelson; Gary K. | Milling instrumentation and method for preparing a space between adjacent vertebral bodies |
US5895426A (en) | 1996-09-06 | 1999-04-20 | Osteotech, Inc. | Fusion implant device and method of use |
US5782832A (en) | 1996-10-01 | 1998-07-21 | Surgical Dynamics, Inc. | Spinal fusion implant and method of insertion thereof |
US5895428A (en) | 1996-11-01 | 1999-04-20 | Berry; Don | Load bearing spinal joint implant |
US6712819B2 (en) | 1998-10-20 | 2004-03-30 | St. Francis Medical Technologies, Inc. | Mating insertion instruments for spinal implants and methods of use |
US5728159A (en) | 1997-01-02 | 1998-03-17 | Musculoskeletal Transplant Foundation | Serrated bone graft |
US5836948A (en) | 1997-01-02 | 1998-11-17 | Saint Francis Medical Technologies, Llc | Spine distraction implant and method |
US6039761A (en) | 1997-02-12 | 2000-03-21 | Li Medical Technologies, Inc. | Intervertebral spacer and tool and method for emplacement thereof |
IL128261A0 (en) | 1999-01-27 | 1999-11-30 | Disc O Tech Medical Tech Ltd | Expandable element |
ES2182055T3 (en) * | 1997-04-15 | 2003-03-01 | Synthes Ag | TELESCOPIC VERTEBRA PROTESIS. |
US6022376A (en) * | 1997-06-06 | 2000-02-08 | Raymedica, Inc. | Percutaneous prosthetic spinal disc nucleus and method of manufacture |
US6146421A (en) * | 1997-08-04 | 2000-11-14 | Gordon, Maya, Roberts And Thomas, Number 1, Llc | Multiple axis intervertebral prosthesis |
WO1999009897A1 (en) * | 1997-08-22 | 1999-03-04 | Karl Storz Gmbh & Co. | Device for destroying or fragmenting concretions |
GB2329187A (en) * | 1997-09-11 | 1999-03-17 | Procter & Gamble | Detergent composition containing an anionic surfactant system and a hydrophobic peroxy bleach |
US5865848A (en) | 1997-09-12 | 1999-02-02 | Artifex, Ltd. | Dynamic intervertebral spacer and method of use |
US5824094A (en) | 1997-10-17 | 1998-10-20 | Acromed Corporation | Spinal disc |
US20010016773A1 (en) | 1998-10-15 | 2001-08-23 | Hassan Serhan | Spinal disc |
CA2307888C (en) * | 1997-10-27 | 2007-09-18 | Saint Francis Medical Technologies, Inc. | Spine distraction implant |
US6139579A (en) | 1997-10-31 | 2000-10-31 | Depuy Motech Acromed, Inc. | Spinal disc |
US5888226A (en) * | 1997-11-12 | 1999-03-30 | Rogozinski; Chaim | Intervertebral prosthetic disc |
US6162252A (en) | 1997-12-12 | 2000-12-19 | Depuy Acromed, Inc. | Artificial spinal disc |
US6086613A (en) | 1997-12-23 | 2000-07-11 | Depuy Acromed, Inc. | Spacer assembly for use in spinal surgeries |
US6986788B2 (en) | 1998-01-30 | 2006-01-17 | Synthes (U.S.A.) | Intervertebral allograft spacer |
US6143033A (en) | 1998-01-30 | 2000-11-07 | Synthes (Usa) | Allogenic intervertebral implant |
US6258125B1 (en) | 1998-08-03 | 2001-07-10 | Synthes (U.S.A.) | Intervertebral allograft spacer |
US5989291A (en) | 1998-02-26 | 1999-11-23 | Third Millennium Engineering, Llc | Intervertebral spacer device |
WO1999049818A1 (en) | 1998-03-30 | 1999-10-07 | Marchosky J Alexander | Prosthetic system |
US6679915B1 (en) | 1998-04-23 | 2004-01-20 | Sdgi Holdings, Inc. | Articulating spinal implant |
US6019792A (en) * | 1998-04-23 | 2000-02-01 | Cauthen Research Group, Inc. | Articulating spinal implant |
US6132465A (en) | 1998-06-04 | 2000-10-17 | Raymedica, Inc. | Tapered prosthetic spinal disc nucleus |
US6083228A (en) | 1998-06-09 | 2000-07-04 | Michelson; Gary K. | Device and method for preparing a space between adjacent vertebrae to receive an insert |
EP1681021A3 (en) | 1998-06-09 | 2009-04-15 | Warsaw Orthopedic, Inc. | Abrading element for preparing a space between adjacent vertebral bodies |
US6126689A (en) | 1998-06-15 | 2000-10-03 | Expanding Concepts, L.L.C. | Collapsible and expandable interbody fusion device |
US6136031A (en) * | 1998-06-17 | 2000-10-24 | Surgical Dynamics, Inc. | Artificial intervertebral disc |
US5989251A (en) | 1998-06-17 | 1999-11-23 | Surgical Dynamics, Inc. | Apparatus for spinal stabilization |
US6296664B1 (en) | 1998-06-17 | 2001-10-02 | Surgical Dynamics, Inc. | Artificial intervertebral disc |
GB2338652A (en) | 1998-06-23 | 1999-12-29 | Biomet Merck Ltd | Vertebral body replacement |
US6231609B1 (en) | 1998-07-09 | 2001-05-15 | Hamid M. Mehdizadeh | Disc replacement prosthesis |
US5928284A (en) * | 1998-07-09 | 1999-07-27 | Mehdizadeh; Hamid M. | Disc replacement prosthesis |
DE69936263T2 (en) | 1998-07-22 | 2007-10-04 | Warsaw Orthopedic, Inc., Warsaw | SCREWED CYLINDRICAL, MULTIDISKOIDE EASY OR MULTIPLE NETWORK PLATE PROTESTS |
US6336941B1 (en) | 1998-08-14 | 2002-01-08 | G. V. Subba Rao | Modular hip implant with shock absorption system |
WO2000013619A1 (en) * | 1998-09-04 | 2000-03-16 | Spinal Dynamics Corporation | Peanut spectacle multi discoid thoraco-lumbar disc prosthesis |
EP1117335B1 (en) * | 1998-10-02 | 2009-03-25 | Synthes GmbH | Spinal disc space distractor |
US6039763A (en) | 1998-10-27 | 2000-03-21 | Disc Replacement Technologies, Inc. | Articulating spinal disc prosthesis |
US6174311B1 (en) * | 1998-10-28 | 2001-01-16 | Sdgi Holdings, Inc. | Interbody fusion grafts and instrumentation |
US6193757B1 (en) | 1998-10-29 | 2001-02-27 | Sdgi Holdings, Inc. | Expandable intervertebral spacers |
FR2787015B1 (en) | 1998-12-11 | 2001-04-27 | Dimso Sa | INTERVERTEBRAL DISC PROSTHESIS WITH COMPRESSIBLE BODY |
FR2787018B1 (en) | 1998-12-11 | 2001-03-02 | Dimso Sa | INTERVERTEBRAL DISC PROSTHESIS WITH LIQUID ENCLOSURE |
FR2787019B1 (en) * | 1998-12-11 | 2001-03-02 | Dimso Sa | INTERVERTEBRAL DISC PROSTHESIS WITH IMPROVED MECHANICAL BEHAVIOR |
FR2787017B1 (en) | 1998-12-11 | 2001-04-27 | Dimso Sa | INTERVERTEBRAL DISC PROSTHESIS WITH IMPROVED MECHANICAL BEHAVIOR |
FR2787016B1 (en) * | 1998-12-11 | 2001-03-02 | Dimso Sa | INTERVERTEBRAL DISK PROSTHESIS |
FR2787014B1 (en) * | 1998-12-11 | 2001-03-02 | Dimso Sa | INTERVERTEBRAL DISC PROSTHESIS WITH REDUCED FRICTION |
US6322567B1 (en) | 1998-12-14 | 2001-11-27 | Integrated Surgical Systems, Inc. | Bone motion tracking system |
US6547823B2 (en) | 1999-01-22 | 2003-04-15 | Osteotech, Inc. | Intervertebral implant |
ATE464847T1 (en) | 1999-01-25 | 2010-05-15 | Warsaw Orthopedic Inc | INSTRUMENT FOR CREATION OF AN INTERVERBEL SPACE FOR ACCOMMODATION OF AN IMPLANT |
DE29901611U1 (en) * | 1999-01-30 | 1999-04-22 | Aesculap AG & Co. KG, 78532 Tuttlingen | Surgical instrument for inserting intervertebral implants |
US6648895B2 (en) | 2000-02-04 | 2003-11-18 | Sdgi Holdings, Inc. | Methods and instrumentation for vertebral interbody fusion |
US6743234B2 (en) * | 1999-02-04 | 2004-06-01 | Sdgi Holdings, Inc. | Methods and instrumentation for vertebral interbody fusion |
US6368350B1 (en) | 1999-03-11 | 2002-04-09 | Sulzer Spine-Tech Inc. | Intervertebral disc prosthesis and method |
US20050234553A1 (en) | 1999-05-17 | 2005-10-20 | Vanderbilt University | Intervertebral disc replacement prothesis |
US6964686B2 (en) * | 1999-05-17 | 2005-11-15 | Vanderbilt University | Intervertebral disc replacement prosthesis |
ES2195470T3 (en) * | 1999-05-21 | 2003-12-01 | Link Waldemar Gmbh Co | INTERVERTEBRAL ENDOPROTESIS WITH A DENTED CONNECTION PLATE. |
US6520996B1 (en) * | 1999-06-04 | 2003-02-18 | Depuy Acromed, Incorporated | Orthopedic implant |
CA2376097A1 (en) | 1999-06-04 | 2000-12-14 | Sdgi Holdings, Inc. | Artificial disc implant |
BR9917397A (en) | 1999-07-02 | 2002-03-05 | Spine Solutions Inc | Intervertebral Implant |
GB9915465D0 (en) * | 1999-07-02 | 1999-09-01 | Lenzie Robert S | Identified preferred indexes for databases |
AU781628B2 (en) * | 1999-07-14 | 2005-06-02 | Clontech Laboratories, Inc. | Recombinase-based methods for producing expression vectors and compositions for use in practicing the same |
US7201776B2 (en) * | 1999-10-08 | 2007-04-10 | Ferree Bret A | Artificial intervertebral disc replacements with endplates |
DK1207821T3 (en) | 1999-08-27 | 2004-11-01 | Synthes Ag | Intervertebral implants |
BR9917485A (en) | 1999-09-14 | 2002-05-14 | Spine Solutions Inc | Insertion instrument for an implant between three-part vertebrae |
US6264695B1 (en) | 1999-09-30 | 2001-07-24 | Replication Medical, Inc. | Spinal nucleus implant |
US7201774B2 (en) * | 1999-10-08 | 2007-04-10 | Ferree Bret A | Artificial intervertebral disc replacements incorporating reinforced wall sections |
FR2799639B1 (en) | 1999-10-18 | 2002-07-19 | Dimso Sa | TOOTHED FACED INTERVERTEBRAL DISC PROSTHESIS |
US6520967B1 (en) * | 1999-10-20 | 2003-02-18 | Cauthen Research Group, Inc. | Spinal implant insertion instrument for spinal interbody prostheses |
WO2001028469A2 (en) * | 1999-10-21 | 2001-04-26 | Sdgi Holdings, Inc. | Devices and techniques for a posterior lateral disc space approach |
US6830570B1 (en) | 1999-10-21 | 2004-12-14 | Sdgi Holdings, Inc. | Devices and techniques for a posterior lateral disc space approach |
US6592624B1 (en) * | 1999-11-24 | 2003-07-15 | Depuy Acromed, Inc. | Prosthetic implant element |
US6827740B1 (en) | 1999-12-08 | 2004-12-07 | Gary K. Michelson | Spinal implant surface configuration |
FR2803741B1 (en) | 2000-01-13 | 2003-04-11 | Jean Claude Bouvet | INTERSOMATIC CAGE |
US7776068B2 (en) | 2003-10-23 | 2010-08-17 | Trans1 Inc. | Spinal motion preservation assemblies |
US7662173B2 (en) | 2000-02-16 | 2010-02-16 | Transl, Inc. | Spinal mobility preservation apparatus |
FR2805733B1 (en) * | 2000-03-03 | 2002-06-07 | Scient X | DISC PROSTHESIS FOR CERVICAL VERTEBRUS |
US6877095B1 (en) * | 2000-03-09 | 2005-04-05 | Microsoft Corporation | Session-state manager |
FR2805985B1 (en) | 2000-03-10 | 2003-02-07 | Eurosurgical | INTERVERTEBRAL DISK PROSTHESIS |
AR027685A1 (en) * | 2000-03-22 | 2003-04-09 | Synthes Ag | METHOD AND METHOD FOR CARRYING OUT |
EP1142544B1 (en) | 2000-04-04 | 2008-03-26 | Link Spine Group, Inc. | Intervertebral implant |
US6821298B1 (en) | 2000-04-18 | 2004-11-23 | Roger P. Jackson | Anterior expandable spinal fusion cage system |
US6478800B1 (en) | 2000-05-08 | 2002-11-12 | Depuy Acromed, Inc. | Medical installation tool |
AU2001275253A1 (en) * | 2000-06-05 | 2001-12-17 | Laser Fire | Orthopedic implant and method of making metal articles |
US6533817B1 (en) | 2000-06-05 | 2003-03-18 | Raymedica, Inc. | Packaged, partially hydrated prosthetic disc nucleus |
US6852126B2 (en) | 2000-07-17 | 2005-02-08 | Nuvasive, Inc. | Stackable interlocking intervertebral support system |
DE10035182C2 (en) | 2000-07-20 | 2002-07-11 | Aesculap Ag & Co Kg | Insertion tool for an intervertebral implant |
JP4617408B2 (en) | 2000-08-08 | 2011-01-26 | ワルシャワ オーソピディック、インク. | Implantable artificial joint |
US20020035400A1 (en) * | 2000-08-08 | 2002-03-21 | Vincent Bryan | Implantable joint prosthesis |
US7601174B2 (en) | 2000-08-08 | 2009-10-13 | Warsaw Orthopedic, Inc. | Wear-resistant endoprosthetic devices |
US20050154463A1 (en) | 2000-08-30 | 2005-07-14 | Trieu Hal H. | Spinal nucleus replacement implants and methods |
US7194302B2 (en) * | 2000-09-18 | 2007-03-20 | Cameron Health, Inc. | Subcutaneous cardiac stimulator with small contact surface electrodes |
US6666866B2 (en) * | 2000-11-07 | 2003-12-23 | Osteotech, Inc. | Spinal intervertebral implant insertion tool |
DE10065232C2 (en) | 2000-12-27 | 2002-11-14 | Ulrich Gmbh & Co Kg | Implant for insertion between the vertebral body and surgical instrument for handling the implant |
CZ20031981A3 (en) | 2001-01-30 | 2004-10-13 | Synthesáagáchur | Bone implant, in particular, an inter-vertebral implant |
DE60224850T2 (en) | 2001-02-04 | 2009-01-22 | Warsaw Orthopedic, Inc., Warsaw | Instrumentation for introducing and positioning an expandable intervertebral fusion implant |
US6986772B2 (en) | 2001-03-01 | 2006-01-17 | Michelson Gary K | Dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine |
US7235081B2 (en) | 2001-07-16 | 2007-06-26 | Spinecore, Inc. | Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc |
US6673113B2 (en) | 2001-10-18 | 2004-01-06 | Spinecore, Inc. | Intervertebral spacer device having arch shaped spring elements |
US7169182B2 (en) | 2001-07-16 | 2007-01-30 | Spinecore, Inc. | Implanting an artificial intervertebral disc |
US7115132B2 (en) | 2001-07-16 | 2006-10-03 | Spinecore, Inc. | Static trials and related instruments and methods for use in implanting an artificial intervertebral disc |
US7575576B2 (en) | 2001-07-16 | 2009-08-18 | Spinecore, Inc. | Wedge ramp distractor and related methods for use in implanting artificial intervertebral discs |
US6607559B2 (en) | 2001-07-16 | 2003-08-19 | Spine Care, Inc. | Trial intervertebral distraction spacers |
US6989032B2 (en) * | 2001-07-16 | 2006-01-24 | Spinecore, Inc. | Artificial intervertebral disc |
US6764515B2 (en) | 2001-02-15 | 2004-07-20 | Spinecore, Inc. | Intervertebral spacer device utilizing a spirally slotted belleville washer and a rotational mounting |
US6896680B2 (en) | 2001-03-01 | 2005-05-24 | Gary K. Michelson | Arcuate dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine |
US6368351B1 (en) | 2001-03-27 | 2002-04-09 | Bradley J. Glenn | Intervertebral space implant for use in spinal fusion procedures |
EP1250898A1 (en) | 2001-04-05 | 2002-10-23 | Waldemar Link (GmbH & Co.) | Intervertebral disc prosthesis system |
ATE419810T1 (en) | 2001-05-01 | 2009-01-15 | Amedica Corp | RADIO-LUCENT BONE TRANSPLANT |
US6719794B2 (en) | 2001-05-03 | 2004-04-13 | Synthes (U.S.A.) | Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure |
FR2824261B1 (en) | 2001-05-04 | 2004-05-28 | Ldr Medical | INTERVERTEBRAL DISC PROSTHESIS AND IMPLEMENTATION METHOD AND TOOLS |
US6607558B2 (en) * | 2001-07-03 | 2003-08-19 | Axiomed Spine Corporation | Artificial disc |
DE60231718D1 (en) | 2001-07-16 | 2009-05-07 | Spinecore Inc | ARTIFICIAL BELT WASH WITH A FORCE RESTORING ELEMENT IN THE FORM OF A WAVE WASHER |
US7491241B2 (en) | 2001-07-16 | 2009-02-17 | Spinecore, Inc. | Intervertebral spacer device having recessed notch pairs for manipulation using a surgical tool |
US7153310B2 (en) * | 2001-07-16 | 2006-12-26 | Spinecore, Inc. | Vertebral bone distraction instruments |
US6436102B1 (en) | 2001-07-16 | 2002-08-20 | Third Millennium Engineering, Llc | Method of distracting vertebral bones |
US6468310B1 (en) | 2001-07-16 | 2002-10-22 | Third Millennium Engineering, Llc | Intervertebral spacer device having a wave washer force restoring element |
US7160327B2 (en) | 2001-07-16 | 2007-01-09 | Spinecore, Inc. | Axially compressible artificial intervertebral disc having limited rotation using a captured ball and socket joint with a solid ball and compression locking post |
US6562047B2 (en) * | 2001-07-16 | 2003-05-13 | Spine Core, Inc. | Vertebral bone distraction instruments |
US6478801B1 (en) | 2001-07-16 | 2002-11-12 | Third Millennium Engineering, Llc | Insertion tool for use with tapered trial intervertebral distraction spacers |
US6471725B1 (en) | 2001-07-16 | 2002-10-29 | Third Millenium Engineering, Llc | Porous intervertebral distraction spacers |
US7182784B2 (en) * | 2001-07-18 | 2007-02-27 | Smith & Nephew, Inc. | Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene |
WO2003007829A1 (en) * | 2001-07-20 | 2003-01-30 | Spinal Concepts, Inc. | Spinal stabilization system and method |
US6375682B1 (en) | 2001-08-06 | 2002-04-23 | Lewis W. Fleischmann | Collapsible, rotatable and expandable spinal hydraulic prosthetic device |
DE50114038D1 (en) * | 2001-08-24 | 2008-07-31 | Zimmer Gmbh | Artificial disc |
US20030045884A1 (en) | 2001-09-04 | 2003-03-06 | Bruce Robie | Instrument and system for preparing the disc space between two vertebral bodies |
US6652533B2 (en) * | 2001-09-20 | 2003-11-25 | Depuy Acromed, Inc. | Medical inserter tool with slaphammer |
US6648917B2 (en) * | 2001-10-17 | 2003-11-18 | Medicinelodge, Inc. | Adjustable bone fusion implant and method |
EP1306064A1 (en) | 2001-10-29 | 2003-05-02 | Waldemar Link (GmbH & Co.) | Instrument for inserting an intervertebral prosthesis |
US6709439B2 (en) | 2001-10-30 | 2004-03-23 | Depuy Spine, Inc. | Slaphammer tool |
EP1439802A2 (en) * | 2001-10-30 | 2004-07-28 | Osteotech, Inc. | Bone implant and insertion tools |
FR2831796B1 (en) * | 2001-11-06 | 2003-12-26 | Ldr Medical | BONE ANCHORING DEVICE FOR PROSTHESIS |
US8025684B2 (en) | 2001-11-09 | 2011-09-27 | Zimmer Spine, Inc. | Instruments and methods for inserting a spinal implant |
US7025787B2 (en) | 2001-11-26 | 2006-04-11 | Sdgi Holdings, Inc. | Implantable joint prosthesis and associated instrumentation |
US7238203B2 (en) | 2001-12-12 | 2007-07-03 | Vita Special Purpose Corporation | Bioactive spinal implants and method of manufacture thereof |
WO2003051212A2 (en) | 2001-12-13 | 2003-06-26 | Sdgi Holdings, Inc. | Instrumentation and method for delivering an implant into a vertebral space |
US6740118B2 (en) * | 2002-01-09 | 2004-05-25 | Sdgi Holdings, Inc. | Intervertebral prosthetic joint |
US7708776B1 (en) | 2002-01-16 | 2010-05-04 | Nuvasive, Inc. | Intervertebral disk replacement system and methods |
US7011684B2 (en) | 2002-01-17 | 2006-03-14 | Concept Matrix, Llc | Intervertebral disk prosthesis |
ES2287460T3 (en) * | 2002-03-11 | 2007-12-16 | Spinal Concepts Inc. | INSTRUMENTATION TO IMPLEMENT COLUMN IMPLANTS. |
DE50213818D1 (en) | 2002-03-12 | 2009-10-15 | Cervitech Inc | Intrumentarium for the insertion of an intervertebral prosthesis |
EP1344507A1 (en) | 2002-03-12 | 2003-09-17 | Waldemar Link (GmbH & Co.) | Intervertebral prosthesis for the cervical spine |
RU2303422C2 (en) * | 2002-03-12 | 2007-07-27 | Сервитек Инк. | Intervertebral prosthesis and system of intervertebral prostheses, in peculiar case, for cervical department of vertebral column |
EP1344506A1 (en) | 2002-03-12 | 2003-09-17 | Waldemar Link (GmbH & Co.) | Intervertebral prosthesis for the cervical spine |
ATE363878T1 (en) | 2002-03-12 | 2007-06-15 | Cervitech Inc | INTERVERBAL PROSTHESIS, ESPECIALLY FOR THE CERVICAL SPINE |
US6808538B2 (en) * | 2002-03-15 | 2004-10-26 | Stryker Spine | Vertebral body spacer having variable wedged endplates |
US6726720B2 (en) | 2002-03-27 | 2004-04-27 | Depuy Spine, Inc. | Modular disc prosthesis |
CA2375070C (en) | 2002-03-28 | 2004-03-02 | 4254563 Manitoba Ltd. | Patch plug |
US8038713B2 (en) | 2002-04-23 | 2011-10-18 | Spinecore, Inc. | Two-component artificial disc replacements |
US20030195631A1 (en) | 2002-04-12 | 2003-10-16 | Ferree Bret A. | Shape-memory spacers for artificial disc replacements |
US20040093082A1 (en) | 2002-04-19 | 2004-05-13 | Ferree Bret A. | Mobile-bearing artificial disc replacement |
US6706068B2 (en) | 2002-04-23 | 2004-03-16 | Bret A. Ferree | Artificial disc replacements with natural kinematics |
US20030233148A1 (en) | 2002-04-23 | 2003-12-18 | Ferree Bret A. | Modular components to improve the fit of artificial disc replacements |
US20040030391A1 (en) * | 2002-04-24 | 2004-02-12 | Bret Ferree | Artificial intervertebral disc spacers |
US7156848B2 (en) | 2002-04-24 | 2007-01-02 | Ferree Bret A | Check reins for artificial disc replacements |
US7179294B2 (en) * | 2002-04-25 | 2007-02-20 | Warsaw Orthopedic, Inc. | Articular disc prosthesis and method for implanting the same |
US7338525B2 (en) * | 2002-04-30 | 2008-03-04 | Ferree Bret A | Methods and apparatus for preventing the migration of intradiscal devices |
CA2485015A1 (en) | 2002-05-06 | 2003-11-13 | Sdgi Holdings, Inc. | Instrumentation and methods for preparation of an intervertebral space |
US7066958B2 (en) | 2002-05-10 | 2006-06-27 | Ferree Bret A | Prosthetic components with partially contained compressible resilient members |
US6689132B2 (en) * | 2002-05-15 | 2004-02-10 | Spineco, Inc. | Spinal implant insertion tool |
US7001433B2 (en) * | 2002-05-23 | 2006-02-21 | Pioneer Laboratories, Inc. | Artificial intervertebral disc device |
US7016888B2 (en) | 2002-06-18 | 2006-03-21 | Bellsouth Intellectual Property Corporation | Learning device interaction rules |
US6770095B2 (en) * | 2002-06-18 | 2004-08-03 | Depuy Acroned, Inc. | Intervertebral disc |
US6858038B2 (en) | 2002-06-21 | 2005-02-22 | Richard R. Heuser | Stent system |
US7087055B2 (en) | 2002-06-25 | 2006-08-08 | Sdgi Holdings, Inc. | Minimally invasive expanding spacer and method |
US6793678B2 (en) * | 2002-06-27 | 2004-09-21 | Depuy Acromed, Inc. | Prosthetic intervertebral motion disc having dampening |
US6723097B2 (en) * | 2002-07-23 | 2004-04-20 | Depuy Spine, Inc. | Surgical trial implant |
US7901407B2 (en) * | 2002-08-02 | 2011-03-08 | Boston Scientific Scimed, Inc. | Media delivery device for bone structures |
CA2495373C (en) | 2002-08-15 | 2012-07-24 | David Gerber | Controlled artificial intervertebral disc implant |
DE10242329B4 (en) * | 2002-09-12 | 2005-03-17 | Biedermann Motech Gmbh | Disc prosthesis |
EP1549260B1 (en) * | 2002-09-19 | 2010-01-20 | Malan De Villiers | Intervertebral prosthesis |
WO2004026193A2 (en) | 2002-09-20 | 2004-04-01 | Sdgi Holdings, Inc. | Instrument and method for extraction of an implant |
US6899735B2 (en) | 2002-10-02 | 2005-05-31 | Sdgi Holdings, Inc. | Modular intervertebral prosthesis system |
DE10247762A1 (en) | 2002-10-14 | 2004-04-22 | Waldemar Link (Gmbh & Co.) | Intervertebral prosthesis |
WO2004037067A2 (en) | 2002-10-21 | 2004-05-06 | 3Hbfm, Llc | Intervertebral disk prosthesis |
US7267688B2 (en) | 2002-10-22 | 2007-09-11 | Ferree Bret A | Biaxial artificial disc replacement |
US7497859B2 (en) | 2002-10-29 | 2009-03-03 | Kyphon Sarl | Tools for implanting an artificial vertebral disk |
US6966929B2 (en) * | 2002-10-29 | 2005-11-22 | St. Francis Medical Technologies, Inc. | Artificial vertebral disk replacement implant with a spacer |
US7083649B2 (en) * | 2002-10-29 | 2006-08-01 | St. Francis Medical Technologies, Inc. | Artificial vertebral disk replacement implant with translating pivot point |
JP2006504492A (en) | 2002-10-31 | 2006-02-09 | スパイナル・コンセプツ・インコーポレーテッド | Movable disc implant |
US20040133278A1 (en) | 2002-10-31 | 2004-07-08 | Marino James F. | Spinal disc implant |
FR2846550B1 (en) | 2002-11-05 | 2006-01-13 | Ldr Medical | INTERVERTEBRAL DISC PROSTHESIS |
US20040093087A1 (en) * | 2002-11-05 | 2004-05-13 | Ferree Bret A. | Fluid-filled artificial disc replacement (ADR) |
EP1417940A1 (en) | 2002-11-08 | 2004-05-12 | Waldemar Link (GmbH & Co.) | Vertebral prosthesis |
US6963071B2 (en) | 2002-11-25 | 2005-11-08 | Intel Corporation | Debris mitigation device |
AU2003297195A1 (en) * | 2002-12-17 | 2004-07-22 | Amedica Corporation | Total disc implant |
NZ540228A (en) | 2002-12-17 | 2006-04-28 | Synthes Gmbh | Intervertebral implant comprising joint parts that are mounted to form a universal joint |
NZ540230A (en) | 2002-12-17 | 2005-12-23 | Synthes Gmbh | Intervertebral implant |
US20040143334A1 (en) | 2003-01-08 | 2004-07-22 | Ferree Bret A. | Artificial disc replacements (ADRS) with features to enhance longevity and prevent extrusion |
US20040167626A1 (en) | 2003-01-23 | 2004-08-26 | Geremakis Perry A. | Expandable artificial disc prosthesis |
EP1587437B1 (en) * | 2003-01-31 | 2013-02-27 | Spinalmotion, Inc. | Spinal midline indicator |
WO2004066884A1 (en) * | 2003-01-31 | 2004-08-12 | Spinalmotion, Inc. | Intervertebral prosthesis placement instrument |
US7364589B2 (en) | 2003-02-12 | 2008-04-29 | Warsaw Orthopedic, Inc. | Mobile bearing articulating disc |
US6908484B2 (en) * | 2003-03-06 | 2005-06-21 | Spinecore, Inc. | Cervical disc replacement |
US20040186569A1 (en) | 2003-03-20 | 2004-09-23 | Berry Bret M. | Height adjustable vertebral body and disc space replacement devices |
US7303582B2 (en) | 2003-03-21 | 2007-12-04 | Advanced Medical Optics, Inc. | Foldable angle-fixated intraocular lens |
EP1610740A4 (en) | 2003-04-04 | 2009-04-08 | Theken Disc Llc | Artificial disc prosthesis |
CA2534169C (en) | 2003-04-14 | 2010-10-12 | Mathys Medizinaltechnik Ag | Intervertebral implant |
US7419505B2 (en) | 2003-04-22 | 2008-09-02 | Fleischmann Lewis W | Collapsible, rotatable, and tiltable hydraulic spinal disc prosthesis system with selectable modular components |
US6969405B2 (en) | 2003-04-23 | 2005-11-29 | Loubert Suddaby | Inflatable intervertebral disc replacement prosthesis |
US7407513B2 (en) * | 2003-05-02 | 2008-08-05 | Smart Disc, Inc. | Artificial spinal disk |
US20050143824A1 (en) * | 2003-05-06 | 2005-06-30 | Marc Richelsoph | Artificial intervertebral disc |
US6986771B2 (en) | 2003-05-23 | 2006-01-17 | Globus Medical, Inc. | Spine stabilization system |
US7575599B2 (en) | 2004-07-30 | 2009-08-18 | Spinalmotion, Inc. | Intervertebral prosthetic disc with metallic core |
US20090076614A1 (en) | 2007-09-17 | 2009-03-19 | Spinalmotion, Inc. | Intervertebral Prosthetic Disc with Shock Absorption Core |
DE602004029026D1 (en) | 2003-05-27 | 2010-10-21 | Spinalmotion Inc | BELT PANTHEES FOR THE INTERVERTEBRALE INTRODUCTION |
US7270679B2 (en) | 2003-05-30 | 2007-09-18 | Warsaw Orthopedic, Inc. | Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance |
US20040243238A1 (en) * | 2003-06-02 | 2004-12-02 | Uri Arnin | Spinal disc prosthesis |
US7537612B2 (en) | 2003-06-20 | 2009-05-26 | Warsaw Orthopedic, Inc. | Lumbar composite nucleus |
DE10330698B4 (en) * | 2003-07-08 | 2005-05-25 | Aesculap Ag & Co. Kg | Intervertebral implant |
DE10330699B3 (en) | 2003-07-08 | 2005-02-17 | Aesculap Ag & Co. Kg | Surgical instrument for handling an implant |
US20060212122A1 (en) | 2003-07-12 | 2006-09-21 | Fiorella Perera | Intervertebral disk prosthesis |
US20050015095A1 (en) | 2003-07-15 | 2005-01-20 | Cervitech, Inc. | Insertion instrument for cervical prostheses |
US7695515B2 (en) | 2003-07-15 | 2010-04-13 | Spinal Generations, Llc | Spinal disc prosthesis system |
US7320689B2 (en) | 2003-07-15 | 2008-01-22 | Cervitech, Inc. | Multi-part cervical endoprosthesis with insertion instrument |
ES2329897T3 (en) | 2003-07-23 | 2009-12-02 | Ebi, Llc | EXPANSIBLE SPINAL IMPLANT. |
US7044983B1 (en) | 2003-07-24 | 2006-05-16 | Chia Pao Cheng | Positioning and buffering device for artificial knee joint |
US7022138B2 (en) | 2003-07-31 | 2006-04-04 | Mashburn M Laine | Spinal interbody fusion device and method |
US7621956B2 (en) | 2003-07-31 | 2009-11-24 | Globus Medical, Inc. | Prosthetic spinal disc replacement |
US7806932B2 (en) | 2003-08-01 | 2010-10-05 | Zimmer Spine, Inc. | Spinal implant |
US7153325B2 (en) | 2003-08-01 | 2006-12-26 | Ultra-Kinetics, Inc. | Prosthetic intervertebral disc and methods for using the same |
US7235082B2 (en) * | 2003-08-12 | 2007-06-26 | Depuy Spine, Inc. | Device for insertion of implants |
US7255714B2 (en) | 2003-09-30 | 2007-08-14 | Michel H. Malek | Vertically adjustable intervertebral disc prosthesis |
ATE390101T1 (en) * | 2003-11-18 | 2008-04-15 | Zimmer Gmbh | DISC IMPLANT |
WO2005053580A1 (en) | 2003-11-28 | 2005-06-16 | Richard Mervyn Walker | An intervertebral prosthesis |
US7217291B2 (en) | 2003-12-08 | 2007-05-15 | St. Francis Medical Technologies, Inc. | System and method for replacing degenerated spinal disks |
FR2864763B1 (en) * | 2004-01-07 | 2006-11-24 | Scient X | PROSTHETIC DISCALE FOR VERTEBRATES |
US7235103B2 (en) | 2004-01-13 | 2007-06-26 | Rivin Evgeny I | Artificial intervertebral disc |
US7625379B2 (en) | 2004-01-26 | 2009-12-01 | Warsaw Orthopedic, Inc. | Methods and instrumentation for inserting intervertebral grafts and devices |
US7250060B2 (en) | 2004-01-27 | 2007-07-31 | Sdgi Holdings, Inc. | Hybrid intervertebral disc system |
FR2865629B1 (en) | 2004-02-04 | 2007-01-26 | Ldr Medical | INTERVERTEBRAL DISC PROSTHESIS |
US7214244B2 (en) | 2004-02-19 | 2007-05-08 | Spinecore, Inc. | Artificial intervertebral disc having an articulating joint |
US7083651B2 (en) | 2004-03-03 | 2006-08-01 | Joint Synergy, Llc | Spinal implant |
US7195644B2 (en) | 2004-03-02 | 2007-03-27 | Joint Synergy, Llc | Ball and dual socket joint |
EP1570813A1 (en) | 2004-03-05 | 2005-09-07 | Cervitech, Inc. | Cervical intervertebral disc prosthesis with anti-luxation means, and instrument |
US8070816B2 (en) | 2004-03-29 | 2011-12-06 | 3Hbfm, Llc | Arthroplasty spinal prosthesis and insertion device |
FR2869528B1 (en) | 2004-04-28 | 2007-02-02 | Ldr Medical | INTERVERTEBRAL DISC PROSTHESIS |
US20050251261A1 (en) | 2004-05-05 | 2005-11-10 | Sdgi Holdings, Inc. | Artificial intervertebral disc for lateral insertion |
US20050256576A1 (en) | 2004-05-13 | 2005-11-17 | Moskowitz Nathan C | Artificial expansile total lumbar and thoracic discs for posterior placement without supplemental instrumentation and its adaptation for anterior placement of artificial cervical, thoracic and lumbar discs |
US8021428B2 (en) * | 2004-06-30 | 2011-09-20 | Depuy Spine, Inc. | Ceramic disc prosthesis |
JP2008505708A (en) | 2004-07-09 | 2008-02-28 | パイオニア ラボラトリーズ インコーポレイテッド | Skeletal reconstruction device |
US20060020342A1 (en) | 2004-07-21 | 2006-01-26 | Ferree Bret A | Facet-preserving artificial disc replacements |
US7585326B2 (en) | 2004-08-06 | 2009-09-08 | Spinalmotion, Inc. | Methods and apparatus for intervertebral disc prosthesis insertion |
US20060041313A1 (en) * | 2004-08-19 | 2006-02-23 | Sdgi Holdings, Inc. | Intervertebral disc system |
US20060041314A1 (en) | 2004-08-20 | 2006-02-23 | Thierry Millard | Artificial disc prosthesis |
US20060052870A1 (en) | 2004-09-09 | 2006-03-09 | Ferree Bret A | Methods and apparatus to prevent movement through artificial disc replacements |
US7235085B1 (en) | 2004-09-27 | 2007-06-26 | Tahir Shaheen F | Hair removal apparatus |
US7575600B2 (en) * | 2004-09-29 | 2009-08-18 | Kyphon Sarl | Artificial vertebral disk replacement implant with translating articulation contact surface and method |
WO2006042486A1 (en) | 2004-10-18 | 2006-04-27 | Buettner-Janz Karin | Intervertebral disk endoprosthesis having a motion-adapted edge for the lumbar and cervical spine |
US7887589B2 (en) | 2004-11-23 | 2011-02-15 | Glenn Bradley J | Minimally invasive spinal disc stabilizer and insertion tool |
US20060142858A1 (en) | 2004-12-16 | 2006-06-29 | Dennis Colleran | Expandable implants for spinal disc replacement |
US8083797B2 (en) | 2005-02-04 | 2011-12-27 | Spinalmotion, Inc. | Intervertebral prosthetic disc with shock absorption |
US7690381B2 (en) | 2005-02-10 | 2010-04-06 | Depuy Spine, Inc. | Intervertebral prosthetic disc and method for installing using a guidewire |
US7722622B2 (en) | 2005-02-25 | 2010-05-25 | Synthes Usa, Llc | Implant insertion apparatus and method of use |
US7582114B2 (en) | 2005-03-03 | 2009-09-01 | Cervical Xpand, Llc | Intervertebral stabilizer, methods of use, and instrumentation therefor |
WO2006105437A2 (en) | 2005-03-31 | 2006-10-05 | Life Spine, Inc. | Expandable spinal interbody and intravertebral body devices |
US7575580B2 (en) | 2005-04-15 | 2009-08-18 | Warsaw Orthopedic, Inc. | Instruments, implants and methods for positioning implants into a spinal disc space |
US20060235525A1 (en) | 2005-04-19 | 2006-10-19 | Sdgi Holdings, Inc. | Composite structure for biomedical implants |
US20060241766A1 (en) | 2005-04-20 | 2006-10-26 | Sdgi Holdings, Inc. | Method and apparatus for preventing articulation in an artificial joint |
US20060241641A1 (en) | 2005-04-22 | 2006-10-26 | Sdgi Holdings, Inc. | Methods and instrumentation for distraction and insertion of implants in a spinal disc space |
EP1879531A4 (en) | 2005-05-02 | 2011-08-03 | Seaspine Inc | Motion restoring intervertebral device |
US8323342B2 (en) | 2005-05-17 | 2012-12-04 | Schwab Frank J | Intervertebral implant |
US20060293752A1 (en) | 2005-06-27 | 2006-12-28 | Missoum Moumene | Intervertebral disc prosthesis and associated methods |
US20070021837A1 (en) * | 2005-07-20 | 2007-01-25 | Ashman Richard B | Stabilizing augment for prosthetic disc |
GB0516034D0 (en) | 2005-08-04 | 2005-09-14 | Blacklock T | Orthopaedic medical device |
US7731753B2 (en) | 2005-09-01 | 2010-06-08 | Spinal Kinetics, Inc. | Prosthetic intervertebral discs |
US8882841B2 (en) | 2005-09-16 | 2014-11-11 | Us Spine, Inc. | Steerable interbody fusion cage |
US20070067036A1 (en) * | 2005-09-20 | 2007-03-22 | Zimmer Spine, Inc. | Hydrogel total disc prosthesis |
EP1942840A2 (en) | 2005-09-26 | 2008-07-16 | Warsaw Orthopedic, Inc. | Hybrid intervertebral spinal fusion implant |
ATE539710T1 (en) | 2005-09-26 | 2012-01-15 | Warsaw Orthopedic Inc | ANTERIOR HYBRID IMPLANT |
CN101272750A (en) * | 2005-09-26 | 2008-09-24 | 华沙整形外科股份有限公司 | Transforaminal hybrid implant |
US8236058B2 (en) | 2005-09-27 | 2012-08-07 | Fabian Henry F | Spine surgery method and implant |
US8202320B2 (en) | 2005-10-31 | 2012-06-19 | Depuy Spine, Inc. | Intervertebral disc prosthesis |
US20070123903A1 (en) | 2005-10-31 | 2007-05-31 | Depuy Spine, Inc. | Medical Device installation tool and methods of use |
US20070123904A1 (en) | 2005-10-31 | 2007-05-31 | Depuy Spine, Inc. | Distraction instrument and method for distracting an intervertebral site |
US7927373B2 (en) | 2005-10-31 | 2011-04-19 | Depuy Spine, Inc. | Intervertebral disc prosthesis |
US20070135923A1 (en) | 2005-12-14 | 2007-06-14 | Sdgi Holdings, Inc. | Ceramic and polymer prosthetic device |
US20070179615A1 (en) | 2006-01-31 | 2007-08-02 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc |
US8556973B2 (en) | 2006-02-10 | 2013-10-15 | DePuy Synthes Products, LLC | Intervertebral disc prosthesis having multiple bearing surfaces |
US20070233251A1 (en) | 2006-02-18 | 2007-10-04 | Abdou M S | Use of Magnetic Fields in Orthopedic Implants |
US20070270970A1 (en) | 2006-03-14 | 2007-11-22 | Sdgi Holdings, Inc. | Spinal implants with improved wear resistance |
US20070233077A1 (en) | 2006-03-31 | 2007-10-04 | Khalili Farid B | Dynamic intervertebral spacer assembly |
AU2007238092A1 (en) | 2006-04-12 | 2007-10-25 | Spinalmotion, Inc. | Posterior spinal device and method |
US20080021557A1 (en) | 2006-07-24 | 2008-01-24 | Warsaw Orthopedic, Inc. | Spinal motion-preserving implants |
US20080051900A1 (en) * | 2006-07-28 | 2008-02-28 | Spinalmotion, Inc. | Spinal Prosthesis with Offset Anchors |
US20080051901A1 (en) * | 2006-07-28 | 2008-02-28 | Spinalmotion, Inc. | Spinal Prosthesis with Multiple Pillar Anchors |
US20090043391A1 (en) | 2007-08-09 | 2009-02-12 | Spinalmotion, Inc. | Customized Intervertebral Prosthetic Disc with Shock Absorption |
US8282681B2 (en) | 2007-08-13 | 2012-10-09 | Nuvasive, Inc. | Bioresorbable spinal implant and related methods |
US8758441B2 (en) | 2007-10-22 | 2014-06-24 | Spinalmotion, Inc. | Vertebral body replacement and method for spanning a space formed upon removal of a vertebral body |
US9034038B2 (en) | 2008-04-11 | 2015-05-19 | Spinalmotion, Inc. | Motion limiting insert for an artificial intervertebral disc |
AU2009244382A1 (en) | 2008-05-05 | 2009-11-12 | Spinalmotion, Inc. | Polyaryletherketone artificial intervertebral disc |
US9220603B2 (en) * | 2008-07-02 | 2015-12-29 | Simplify Medical, Inc. | Limited motion prosthetic intervertebral disc |
WO2010009151A2 (en) * | 2008-07-17 | 2010-01-21 | Spinalmotion, Inc. | Artificial intervertebral disc placement system |
WO2010009153A1 (en) * | 2008-07-18 | 2010-01-21 | Spinalmotion, Inc. | Posterior prosthetic intervertebral disc |
-
2004
- 2004-05-26 DE DE602004029026T patent/DE602004029026D1/en not_active Expired - Lifetime
- 2004-05-26 ZA ZA200509644A patent/ZA200509644B/en unknown
- 2004-05-26 EP EP04753592A patent/EP1626685B1/en not_active Expired - Lifetime
- 2004-05-26 EP EP09175973.8A patent/EP2161008B1/en not_active Expired - Lifetime
- 2004-05-26 AT AT04753592T patent/ATE480203T1/en not_active IP Right Cessation
- 2004-05-26 JP JP2006533469A patent/JP4481312B2/en not_active Expired - Lifetime
- 2004-05-26 US US10/855,253 patent/US7753956B2/en active Active
- 2004-05-26 EP EP10167387A patent/EP2226038A1/en not_active Withdrawn
- 2004-05-26 WO PCT/US2004/016789 patent/WO2004105638A2/en active Search and Examination
- 2004-05-26 US US10/855,817 patent/US7442211B2/en active Active
-
2008
- 2008-02-13 US US12/030,772 patent/US8454698B2/en active Active - Reinstated
- 2008-04-11 US US12/101,664 patent/US10342670B2/en active Active
- 2008-04-15 US US12/103,210 patent/US8092538B2/en not_active Expired - Fee Related
-
2009
- 2009-05-12 US US12/464,670 patent/US8444695B2/en active Active - Reinstated
- 2009-05-15 JP JP2009119224A patent/JP5074452B2/en not_active Expired - Lifetime
- 2009-09-10 US US12/556,658 patent/US20090326656A1/en not_active Abandoned
- 2009-09-17 JP JP2009216253A patent/JP2010017568A/en not_active Withdrawn
- 2009-11-25 US US12/626,027 patent/US8845729B2/en active Active
-
2010
- 2010-04-13 US US12/759,460 patent/US20100191338A1/en not_active Abandoned
-
2011
- 2011-01-07 US US12/986,292 patent/US9439774B2/en active Active
- 2011-10-14 US US13/274,111 patent/US20120035732A1/en not_active Abandoned
-
2012
- 2012-09-07 JP JP2012197417A patent/JP2013006063A/en active Pending
- 2012-09-14 US US13/619,180 patent/US20130013072A1/en not_active Abandoned
- 2012-09-14 US US13/619,281 patent/US8771356B2/en not_active Expired - Lifetime
-
2014
- 2014-01-08 US US14/150,437 patent/US8974533B2/en not_active Expired - Lifetime
- 2014-05-27 US US14/287,709 patent/US10342671B2/en active Active
-
2016
- 2016-05-27 US US15/167,763 patent/US10357376B2/en active Active
-
2019
- 2019-07-01 US US16/459,280 patent/US11376130B2/en active Active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8771356B2 (en) | 2003-05-27 | 2014-07-08 | Spinalmotion, Inc. | Intervertebral prosthetic disc |
US10342671B2 (en) | 2003-05-27 | 2019-07-09 | Simplify Medical Pty Ltd | Intervertebral prosthetic disc |
US10342670B2 (en) | 2003-05-27 | 2019-07-09 | Simplify Medical Pty Ltd | Intervertebral prosthetic disc |
US10357376B2 (en) | 2003-05-27 | 2019-07-23 | Simplify Medical Pty Ltd | Intervertebral prosthetic disc |
US11376130B2 (en) | 2003-05-27 | 2022-07-05 | Simplify Medical Pty Ltd | Intervertebral prosthetic disc |
US10687958B2 (en) * | 2011-02-23 | 2020-06-23 | Globus Medical, Inc. | Six degree spine stabilization devices and methods |
US11357639B2 (en) * | 2011-02-23 | 2022-06-14 | Globus Medical, Inc. | Six degree spine stabilization devices and methods |
US20220273457A1 (en) * | 2011-02-23 | 2022-09-01 | Globus Medical, Inc. | Six degree spine stabilization devices and methods |
US11857433B2 (en) * | 2011-02-23 | 2024-01-02 | Globus Medical, Inc. | Six degree spine stabilization devices and methods |
US20130261746A1 (en) * | 2012-03-28 | 2013-10-03 | Linares Medical Devices, Llc | Implantable inter-vertebral disk having upper and lower layers of a metal exhibiting bone fusing characteristics and which sandwich therebetween a soft plastic cushioning disc for providing dynamic properties mimicking that of a natural inter-vertebral disc |
US20160252954A1 (en) * | 2015-02-27 | 2016-09-01 | Microsoft Technology Licensing, Llc | Control apparatus |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11376130B2 (en) | Intervertebral prosthetic disc | |
US11771565B2 (en) | Prosthetic disc for intervertebral insertion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: SIMPLIFY MEDICAL, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:SPINALMOTION, INC.;REEL/FRAME:033347/0141 Effective date: 20140702 |
|
AS | Assignment |
Owner name: SPINALMOTION, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VILLIERS, MALAN DE;HAHNLE, ULRICH;SIGNING DATES FROM 20040807 TO 20040912;REEL/FRAME:039408/0097 Owner name: SIMPLIFY MEDICAL PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIMPLIFY MEDICAL, INC.;REEL/FRAME:039408/0426 Effective date: 20141209 |