US20130012831A1 - Method, system and apparatus for neural localization - Google Patents

Method, system and apparatus for neural localization Download PDF

Info

Publication number
US20130012831A1
US20130012831A1 US13/619,930 US201213619930A US2013012831A1 US 20130012831 A1 US20130012831 A1 US 20130012831A1 US 201213619930 A US201213619930 A US 201213619930A US 2013012831 A1 US2013012831 A1 US 2013012831A1
Authority
US
United States
Prior art keywords
bipole
region
nerve
network
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/619,930
Inventor
Gregory P. Schmitz
Michael P. Wallace
Jeffery L. Bleich
Eric C. Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baxano Surgical Inc
Original Assignee
Baxano Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baxano Inc filed Critical Baxano Inc
Priority to US13/619,930 priority Critical patent/US20130012831A1/en
Priority to US13/662,247 priority patent/US20130053853A1/en
Publication of US20130012831A1 publication Critical patent/US20130012831A1/en
Assigned to BAXANO, INC. reassignment BAXANO, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WALLACE, MICHAEL P., BLEICH, JEFFERY L., MILLER, ERIC C., SCHMITZ, GREGORY P.
Assigned to BAXANO SURGICAL, INC. reassignment BAXANO SURGICAL, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BAXANO, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1104Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb induced by stimuli or drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • A61B5/395Details of stimulation, e.g. nerve stimulation to elicit EMG response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4041Evaluating nerves condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/4893Nerves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • A61B5/6855Catheters with a distal curved tip

Definitions

  • medical devices may be used to cut, extract, suture, coagulate, or otherwise manipulate tissue including or near neural tissue. It would therefore be beneficial to precisely determine the location and/or orientation of neural tissue when performing a medical procedure.
  • a medical device e.g., a probe, retractor, scalpel, etc.
  • a medical device e.g., a probe, retractor, scalpel, etc.
  • a current is applied from an electrode (e.g., a needle electrode) in order to evoke an efferent muscular response such as a twitch or EMG response.
  • Such systems typically broadcast, via the applied current, from the electrode and the current passes through nearby tissue until it is sufficiently near a nerve that the current density is adequate to depolarize the nerve.
  • the conductance of biological tissue may vary between individuals, over time in the same individual, and within different tissue regions of the same individual, it has been particularly difficult to predictably regulate the applied current.
  • the broadcast fields generated by such systems are typically limited in their ability to spatially resolve nerve location and/or orientation with respect to the medical device.
  • US patent application 2005/0075578 to Gharib et. al. and US 2005/0182454 to Gharib et al. describe a system and related methods to determine nerve proximity and nerve direction.
  • U.S. Pat. No. 6,564,078 to Marino et al. describes a nerve surveillance cannula system
  • US 2007/016097 to Farquhar et al. describes a system and method for determining nerve proximity and direction.
  • These devices generally apply electrical current to send current into the tissue and thereby depolarize nearby nerves.
  • multiple electrodes may be used to stimulate the tissue, the devices, systems and methods described are do not substantially control the broadcast field. Thus, these systems may be limited by the amount of current applied, and the region over which they can detect nerves.
  • neural stimulation e.g. EMG, muscle movement, or SSEP
  • the devices may include one or more bipole pairs that can be excited by the application of a current or voltage to produce a bipole field between the anode(s) and cathode(s). These bipoles may be referred to as “tight” bipole pairs because the bipole field produced is limited to the adjacent region relatively near the surface of the device.
  • the bipole field is formed by a bipole network comprising a plurality of anodes and cathodes arranged along an outer surface of the device. Multiple bipole pairs or multiple bipole networks maybe arranged in different regions along the outer surface of the device.
  • devices that are capable of determining if a nerve is nearby a region of the device.
  • These devices may include an elongate body having an outer surface, and a bipole network arranged along the outer surface.
  • the bipole network typically includes a plurality of anodes and a plurality of cathodes, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along a portion of the device's outer surface.
  • the plurality of anodes are in electrical communication with a first anodal conductor.
  • the plurality of anodes may all be positioned in a single region of the device (e.g., the outer surface of the device) and may all connect to a single connector.
  • the plurality of anodes are effectively formed from a single anode.
  • all of the anodes in a particular region may be formed from a single anodal wire.
  • Individual anodes forming the bipole network may be formed as openings (or uninsulated regions) through the body of the device electrically exposing the anodal conductor (e.g., wire).
  • any of the devices described herein may include a plurality of cathodes that are all in electrical communication with a first cathodal conductor.
  • the cathodes forming a bipole network may be formed from the same cathodal conductor, such as a wire having multiple regions that are exposed (or uninsulated) to form the cathodes.
  • the individual anodes and/or cathodes forming the bipoles of the devices described herein may be separately connected to the power supply and/or controller.
  • each anode and/or cathode may be separately wired back to the controller, allowing individual control of each anode and/or cathode.
  • the anodes and cathodes forming the bipole network may be arranged so that the current from a particular cathode or anode passes substantially to an adjacent cathode or anode rather than spreading out or broadcasting.
  • the broadcast field formed when the bipoles are excited by the application of energy may be limited or controlled.
  • each anode of a bipole network may be located less than 2 mm from at least one cathode.
  • the anodes and cathodes form an alternating pattern (e.g., of adjacent anodes/cathode/anode).
  • a bipole network (or a plurality of bipoles) may be formed as a “tripolar” electrode arrangement, in which an anode is adjacent to two cathodes, or a cathode is adjacent to two anodes.
  • the anodes forming a bipole network are arranged in a line.
  • the cathodes may be formed in a line.
  • the openings through the electrical insulator that expose the wire may be arranged in a line (including a curved or straight line).
  • an anodal wire forms the anodes of a bipole network
  • a cathodal wire forms the cathodes of the bipole network
  • the wires are arranged in parallel with each other on or in the body of the device.
  • the anodal and cathodal wires are arranged in a helical pattern.
  • the electrodes forming a bipole may have any appropriate dimension, particularly relatively smaller dimensions.
  • the anode and/or cathode may have a surface area of less than 5 mm 2 (or less than 3 mm 2 , less than 2 mm 2 , less than 1 mm 2 , etc.).
  • the cathode may be the same size as the anode, or the sizes of the cathodes and anodes may be different.
  • Some device variations have a plurality of bipole networks that are arranged in a non-overlapping fashion along the outer surface.
  • the outer surface of the device may contain two or more regions that each includes a bipole network.
  • the plurality of anodes in the first bipole network may be formed along a first anodal conductor and the plurality of cathodes in the first bipole network may be formed along a first cathodal conductor.
  • the plurality of anodes in the second bipole network may be formed along a second anodal conductor and the plurality of cathodes in the second bipole network may be formed along a second cathodal conductor.
  • the dimension and arrangement of the anodes and cathodes within each bipole network may be formed as described above.
  • the bipole field formed along the first region of the outer surface does not overlap with the bipole field formed along the second region of the outer surface.
  • the substantially continuous bipole filed may be formed by applying current or voltage simultaneously to all of the anodes and cathodes so that the bipole filed extends between adjacent anodes and cathodes to form a region in which the bipole fields connect the adjacent anodes and cathodes to form a stitched together length.
  • This substantially continuous bipole filed provides a length along the surface of the device which may be used to detect a nerve near this region of the surface.
  • the plurality of anodes of the first bipole network may be arranged in a line.
  • a first connector electrically is connected to the anodes of the first bipole network and a second connector electrically connected to the cathodes of the first bipole network.
  • the anodes of the first bipole network may be formed from a single anodal conductor and the cathodes of the first bipole network may be formed from a single cathodal conductor.
  • a third connector may be electrically connected to the anodes of the second bipole network and a fourth connector electrically may be connected to the cathodes of the second bipole network.
  • the first bipole network may include a plurality of anodes in electrical communication with a first anodal conductor and a plurality of cathodes in electrical communication with a first cathodal conductor, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along the first region of outer surface.
  • the second bipole network in the second region may include a plurality of anodes in electrical communication with a second anodal conductor, and a plurality of cathodes in electrical communication with a second cathodal conductor, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along the second region of outer surface.
  • the bipole field formed along the first region may not overlap with the bipole field formed along the second region when these bipole fields are excited.
  • Also described herein are devices capable of determining if a nerve is nearby a region of the device that include an elongate body having an outer surface, wherein the outer surface includes a first region and a second region, a first bipole network in the first region, and a second bipole network in the second region.
  • the first bipole network may include a first anodal conductor forming a plurality of anodes within the first region, and a first cathodal conductor forming a plurality of cathodes within the first region.
  • the plurality of anodes and the plurality of cathodes in the first region may be configured to form a substantially continuous bipole field in the first region.
  • the second bipole network in the second region may include a second anodal conductor forming a plurality of anodes located within the second region and a second cathodal conductor forming a plurality of cathodes located within the second region, wherein the plurality of anodes and the plurality of cathodes in the second region are configured to form a continuous bipole field in the second region.
  • devices capable of determining if a nerve is nearby a region of the device that include an elongate body having an outer surface and a plurality of anodes and cathodes on the outer surface, wherein the anodes and cathodes are arranged to form a substantially continuous broadcast field between the plurality of anodes and cathodes such that the broadcast field is formed by adjacent bipole pairs of anodes and cathodes which share either an anode or cathode.
  • the plurality of anodes may be in electrical communication with a first anodal conductor
  • the plurality of cathodes may be in electrical communication with a first cathodal conductor.
  • bipole pairs formed by an anode and cathode
  • adjacent bipole pairs share either a cathode or an anode, and an anode may communicate electrically with one or more adjacent cathode, and a cathode may communicate with one or more adjacent anodes.
  • This arrangement allows a single network (in some cases formed by a single cathodal conductor and a single anodal conductor) to span a larger region of the surface using a relatively small exposed electrode area. As described below, there may also be advantages in the ability to detect adjacent nerves based on the multiple field orientations.
  • the device also includes a second, non-overlapping plurality of anodes and cathodes on the outer surface configured to form a substantially continuous broadcast field between the second plurality of anodes and cathodes such that the broadcast field is formed by adjacent bipole pairs of anodes and cathodes which share either an anode or cathode.
  • a second, non-overlapping plurality of anodes and cathodes on the outer surface configured to form a substantially continuous broadcast field between the second plurality of anodes and cathodes such that the broadcast field is formed by adjacent bipole pairs of anodes and cathodes which share either an anode or cathode.
  • multiple regions on the surface may each include a plurality of anodes and cathodes configured to form a substantially continuous broadcast field.
  • a device capable of determining if a nerve is nearby a region of the device may include an elongate body having an outer surface, wherein the outer surface includes a first region and a second region, a plurality of anodes and cathodes in the first region, wherein the anodes and cathodes are arranged in the first region to form a substantially continuous broadcast field between the plurality of anodes and cathodes such that the broadcast field is formed by adjacent bipole pairs of anodes and cathodes which share either an anode or cathode, and a plurality of anodes and cathodes in the second region, wherein the anodes and cathodes are arranged in the second region to form a substantially continuous broadcast field between the plurality of anodes and cathodes such that the broadcast field is formed by adjacent bipole pairs of anodes and cathodes which share either an anode or cathode.
  • the broadcast field of the first region does not substantially overlap with the broadcast field of the second region.
  • devices capable of determining if a nerve is nearby a region of the device that include an outer surface, a plurality of adjacent bipolar electrode pairs within a first region of the surface, wherein the bipolar electrode pairs are formed by alternating anodes and cathodes such that adjacent bipole pairs share either an anode or a cathode, wherein the anodes in the first region are electrically continuous and the cathodes in the first region are electrically continuous and the adjacent bipole pairs form an angle of less than 180 degrees.
  • This arrangement may also be referred as forming a “zigzag” pattern of bipole pairs.
  • the systems may include any of the variations of the devices described herein as well as one or more additional elements.
  • the device may include a device with an outer surface having a first region and a second region, a first bipole network including a plurality of anodes and a plurality of cathodes, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along the first region of outer surface, and a second bipole network including a plurality of anodes and a plurality of cathodes, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along the second region of outer surface.
  • the controller may be configured to switch between applying energy to form the bipole field of the first bipole network or applying energy to form the bipole field of the second bipole network.
  • the system may also include a power source connected to the controller.
  • the power source may be a battery.
  • the system includes one or more sensors.
  • the sensors may be configured for detecting stimulation of a nerve. For example, motion detectors, muscle twitch detectors, nerve depolarization detectors, EMG detectors, etc.
  • the plurality of anodes in the first bipole network may be in electrical communication with a first anodal conductor and the plurality of cathodes in the first bipole network may be in electrical communication with a first cathodal conductor; similarly the plurality of anodes in the second bipole network may be in electrical communication with a second anodal conductor and the plurality of cathodes in the second bipole network may be in electrical communication with a second cathodal conductor.
  • any of the features or arrangements of the devices described herein may be part of the systems for determining if a nerve is nearby one or more regions of a device.
  • devices for determining if a nerve is nearby including an elongate device with an outer surface having a first circumferential region and a second circumferential region, a first tight bipole pair within the first circumferential region, wherein the first tight bipole pair comprises an anode and a cathode that are separated by a distance that is less half the length of the first circumferential region, and a second tight bipole pair within the second circumferential region, wherein the second tight bipole pair comprises an anode and a cathode that are separated by a distance that is less than half the length of the second circumferential region, wherein the broadcast field of the first bipole pair does not overlap with the broadcast field of the second bipole pair.
  • each anode is located less than 2 mm from at least one cathode. Further, each anode may have a surface area of less than 5 mm 2 , and/or each cathode may have a surface area of less than 5 mm 2 (e.g., less than 3 mm 2 , less than 2 mm 2 , less than 1 mm 2 , etc.). In some variations, the first tight bipole pair is separated from the second tight bipole pair by a distance that is greater than the distance separating either the first tight bipole pair or the second tight bipole pair.
  • Also described herein are systems for determining if a nerve is nearby a region of a probe that include an elongate probe with a surface having a first region and a second region, a first tight bipole pair within the first region, a second tight bipole pair within the second region (wherein the broadcast field of the first tight bipole pair does not substantially overlap with the broadcast field of the second tight bipole pair), and a controller configured to switch between the first or second tight bipole pairs so that energy may be applied to either the first or second tight bipole pairs, wherein the system is configured to enable determination of whether the tissue is detectably closer to the first region or the second region.
  • This system may include a power supply connected to the controller, wherein the controller regulates the power applied to the tight bipole pairs.
  • the system may also include one or more sensors, such as a sensor for determining stimulation of a nerve.
  • devices for determining if a nerve is nearby the device that includes one or more rotatable bipole pairs.
  • the device including an elongate body having an outer body surface and a plurality of circumferential regions, a scanning surface that is movable with respect to the outer body surface, and a bipolar electrode pair connected to the scanning surface, wherein the bipole pair comprises an anode and a cathode configured to form a bipole field, wherein the scanning surface is configured to scan the bipolar electrodes across at least two of the circumferential regions to determine if a nerve is near a circumferential region.
  • the device may also include a controller configured to control the scanning of the bipolar electrode pair.
  • the devices also include a driver for driving the motion of the scanning surface.
  • the driver may be a motor or other moving mechanism that drives the movement of the bipole pair.
  • the device may also include an output for indicating which circumferential region the bipolar electrode pair corresponds to. For example, as the bipole pair is rotated, the output may indicate where around the circumference of the elongate body the bipole pair is positioned. This may help coordinate the location of the nerve relative to the probe.
  • the scanning surface (including the bipole pair(s)) may be movable in any appropriate fashion.
  • the scanning surface is rotatable with respect to the outer body surface.
  • the scanning surface includes a plurality of bipolar electrode pairs.
  • any of the devices and systems described herein may be used to determine if a nerve is nearby the device.
  • a method of determining if a nerve is nearby a region of a device may include the steps of energizing a first tight bipole pair within a first circumferential region of the device to form a first broadcast field, energizing a second tight bipole pair within a second circumferential region of the device to form a second broadcast field, and determining if a nerve has been stimulated by either the first broadcast field or the second broadcast field.
  • the step of energizing the second tight bipole pair may include forming a second broadcast field that does not substantially overlap with the first broadcast field.
  • energy e.g., current, voltage
  • the bipole pairs which may be a bipole network of different circumferential regions at different times in order to determine which region is closer to the device.
  • the method may also include the step of determining whether a nerve is closer to the first circumferential region or the second circumferential region.
  • the method includes the step of monitoring the output of the nerve, such as muscle twitch, EMG, SSEP, or other methods for determining depolarization of the nerve, directly or indirectly. If the nerve is depolarized when stimulating the bipole pair(s) in one region but not when stimulating other regions, then the nerve is likely closer to the region that resulted in stimulation. Alternatively, if the nerve is stimulated after exciting bipole pairs from more than one region, the nerve may be relatively near all of these regions, but may be assumed to be closer to the region that results in the greatest output response.
  • the method may also include switching between the bipole pairs to apply energy.
  • the energy may be applied separately (in time) between different regions.
  • the method may include the steps of energizing a bipolar electrode pair, scanning the bipolar electrode pair across a plurality of circumferential regions of the outer surface of an elongate body, and determining if a nerve has been stimulated.
  • the method may also include determining which circumferential region corresponds to the stimulation of a nerve.
  • the step of scanning the bipolar electrode pair includes rotating the bipole pair with respect to the outer surface of the elongate body.
  • the step of energizing a bipolar electrode pair comprises energizing a plurality of bipolar electrode pairs.
  • a method of determining if a nerve is nearby a device may generally include energizing a plurality of bipolar electrodes within a first region of an outer surface of the device to form a first substantially continuous broadcast field, and determining if a nerve has been stimulated by energizing the first substantially continuous broadcast field.
  • the method may also include the steps of energizing a plurality of bipolar electrodes within a second region of an outer surface of the device to form a second substantially continuous broadcast field when not energizing the plurality of electrodes within the first region, and determining if a nerve has been stimulated by the second substantially continuous broadcast field.
  • the method includes the steps of determining whether a nerve is closer to the first region or the second region.
  • Also described herein are methods of determining if a nerve is nearby a device including the steps of energizing a plurality of bipolar electrodes within a first region of an outer surface of the device, energizing a plurality of bipolar electrodes within a second region of an outer surface of the device, and determining whether a nerve is closer to the first region or the second region.
  • the plurality of bipole pairs within the first region may be substantially simultaneously energized.
  • the plurality of bipole pairs within the second region may be substantially simultaneously energized.
  • Also described herein are methods of determining if a nerve is nearby a device including the steps of energizing a plurality of bipolar electrodes within a first region of an outer surface of the device to form a first substantially continuous broadcast field, energizing a plurality of bipolar electrodes within a second region of an outer surface of the device to form a second substantially continuous broadcast field, wherein the second broadcast field does not overlap with the first broadcast field, and determining whether a nerve is closer to the first region or the second region.
  • Another method of determining if a nerve is nearby a device includes energizing a plurality of bipolar electrodes within a first region of an outer surface of the device, wherein the plurality of bipolar electrodes comprise one or more anodes electrically connected to a first anodal conductor and one or more cathodes electrically connected to a first cathodal conductor, energizing a plurality of bipolar electrodes within a second region of an outer surface of the device, wherein the plurality of bipolar electrodes comprise one or more anodes electrically connected to a second anodal conductor and one or more cathodes electrically connected to a second cathodal conductor, and determining whether a nerve is closer to the first region or the second region.
  • any of the devices described herein may be used as part of a treatment method for treating tissue that includes the method of determining if a nerve is nearby the device.
  • the device may be a treatment device or a device involved in the procedure.
  • any of the devices described herein may be integrated into known devices or instruments.
  • a method of determining if a nerve is nearby a device may include the steps of positioning a device within a tissue, wherein the device comprises a plurality of circumferential regions around the device, wherein each circumferential region includes a plurality of electrodes comprising at least one bipole pair, energizing the electrodes in a first circumferential region to a plurality of stimulation levels, determining a first stimulation level from the plurality of stimulation levels based on a response of a nerve, energizing the electrodes in the other circumferential regions to the first stimulation level, and determining which circumferential region the nerve is nearest to.
  • the step of energizing the electrodes in the first circumferential region may include energizing the electrodes in to a plurality of increasing stimulation levels.
  • the electrodes within each circumferential region may comprise a plurality of bipole pairs configured to form a substantially continuous broadcast field when energized.
  • the step of energizing the electrodes in the first circumferential region may comprises energizing the electrodes to increasing stimulation levels between 0.001 mV and 100 mV (e.g., between 0.01 mV and 10 mV, etc.).
  • the step of energizing the electrodes includes applying a ramp of stimulation at increasing levels (e.g., increasing voltage).
  • the step of determining the first stimulation level may include determining the first stimulation level at which the nerve responds.
  • the step of energizing the electrodes in the other circumferential regions comprises sequentially energizing the electrodes in the other circumferential regions.
  • the step of determining which circumferential region the nerve is nearest to may include determining which circumferential region evokes the largest response from the nerve when the electrodes within that circumferential region are energized to the first stimulation level.
  • FIG. 1A shows an example of a generic device including an elongate body and a bipole pair.
  • FIGS. 1B and 1C show a tight bipole pair.
  • FIGS. 1D-1F show bipole networks.
  • FIGS. 2A-2D are various views of portions of a neurostimulation device, according to one embodiment of the present invention.
  • FIG. 3 is cross-section through a device showing four circumferential regions.
  • FIG. 4 is another cross-section through a device having four circumferential regions.
  • FIGS. 5A and 5B illustrate side views and cross-sectional views, respectively, of one variation of a portion of a nerve localization device.
  • FIGS. 6A and 6B illustrate side views and cross-sectional views, respectively, of another variation of a portion of a nerve localization device.
  • FIGS. 7A and 7B illustrate side views and cross-sectional views, respectively, of another variation of a portion of a nerve localization device.
  • FIG. 8 is a side view of a nerve localization device showing multiple current path direction features.
  • FIG. 9 is a circuit diagram of one variation of a portion of a nerve localization device.
  • FIG. 10 is a perspective view of a portion of a nerve localization device having two electrodes with rotating brushes.
  • FIGS. 11A-11C are simplified diagrams of one variation of a nerve localization device.
  • FIGS. 12A-12C illustrate elongate bodies having a plurality of regions each including at least one bipole pair.
  • FIGS. 13A-13D show partial cross-sections through various devices having elongate bodies including multiple regions.
  • FIGS. 14A-14B illustrate one variations of a device employed in tissue.
  • FIG. 14C illustrates another variation of a device in tissue.
  • FIGS. 14D and 14E show a cross-section and a partial perspective view, respectively, of a device having an elongate body including four regions.
  • FIG. 14F show a schematic illustration of an electrode that may form part of a tight bipole pair.
  • FIG. 15 is a cross-section through another variation of a device.
  • FIGS. 16A-16D illustrate exemplary signals that may be applied to one or more bipole pairs or networks within a region of a device.
  • FIG. 17A illustrates a system for determining if a nerve is nearby applied to a patient.
  • FIG. 17B-17D are simplified diagrams of sensors which may be used as part of a system for determining if a nerve is nearby.
  • FIGS. 18A-18B illustrate variations of a device for determining if a nerve is nearby.
  • FIGS. 19A-19C are flow diagrams illustrating method of determining if a nerve is nearby a region of a device.
  • FIG. 20 is a block diagram illustrating components that may be part of a system for determining if a nerve is nearby a device.
  • FIG. 21 is a cross-sectional view of a spine, showing a top view of a lumbar vertebra, a cross-sectional view of the cauda equina, and two exiting nerve roots.
  • FIG. 22 is a side view of a lumbar spine.
  • FIG. 23 is a cross-sectional view of a spine, illustrating a minimally invasive spinal decompression device and method including the use of neural localization as described herein.
  • FIG. 24 is a block diagram of one variation of a nerve tissue localization system.
  • FIG. 25 is a perspective view of a nerve tissue localization system.
  • FIGS. 26A-26F are cross-sectional views of a spine, illustrating one method for using a nerve tissue localization system.
  • FIGS. 27A-27H are cross-sectional views of a spine, illustrating another method for using a nerve tissue localization system.
  • FIGS. 28A and 28B show variations of devices for determining if a nerve is nearby.
  • a device for determining if a nerve is nearby a device includes an elongate body having an outer surface with one or more bipoles arranged on the outer surface. These bipoles may also be referred to as tight bipoles, and include a cathode and an anode that are spaced relatively close together to form a limited broadcast field.
  • the broadcast field may be referred to as the bipole field, or the field formed by the excitation of the bipole pair.
  • the bipole filed is a controlled or “tight” broadcast field that extends from the bipole pair(s).
  • a device for determining if a nerve is nearby the device may be referred to as a nerve localization device, a localization device, or a neurostimulation device.
  • the elongate body region of the device may be referred to as a probe, although it should be understood that any appropriate surgical or medical device may be configured as a device for determining if a nerve is nearby the device. Particular examples of such devices are described below.
  • FIG. 1A shows a generic device 1 configured as a nerve localization device that having an elongate body 5 that may be configured to determine if a nerve is nearby.
  • the outer surface of a device for determining if a nerve is nearby a region of the device may have two or more regions.
  • each region includes two or more bipole pairs that are arranged to detect a nearby nerve.
  • the regions may be arranged around or along the outer surface of the device.
  • the regions may be circumferential regions that divide the outer surface up along the circumference. Examples of different regions are described below.
  • Each region may include one or more bipole pairs, which may be used to detect a nearby nerve.
  • the elongate body 5 has an outer surface with a blunt (atraumatic) end.
  • the outer body of the device 5 may be formed of any appropriate material, including polymeric materials such as PEBAX, PEEK or the like. Non-conducting and biocompatible materials may be particularly preferred.
  • FIG. 1A a single bipole pair 7 is shown near the distal end of the device.
  • FIG. 1B illustrates an approximation of the current lines for a dipole pair, including the cathode 8 and the anode 6 . These current lines reflect the dipole field to broadcast field for the dipole pair.
  • a tight bipole pair may have a very limited broadcast field, as reflected in FIG. 1C , which shows the bipole pair of FIG. 1B having only the major current line.
  • the size of the anode 6 and cathode 6 forming the bipole pair are relatively small, particularly (e.g., less than 5 mm 2 , less than 3 mm 2 , less than 2 mm 2 , less than 1 mm 2 ), and the anode and cathode are positioned sufficiently nearby so that the majority of current passes between the anodes and cathodes.
  • the anode and cathode of a bipole pair may be separated by less than 5 mm, less than 2 mm, less than 1 mm, etc.
  • the limited broadcast field may allow stimulation of only nerves that are very near the bipole pair. This may enhance accuracy, and help prevent or limit tissue damage, particularly at the low stimulation.
  • the bipoles may be arranged as a bipole network.
  • a bipole network includes at least two bipoles that are formed by at least three electrodes (e.g., two anodes and a cathode or two cathodes and an anode).
  • the bipole network is typically arranged so that all of the bipoles in the network are activated synchronously to create an effectively continuous bipole field along the outer surface.
  • FIGS. 1D and 1E illustrates an example of an effectively continuous bipole filed.
  • the anodes and cathodes forming the bipolar network are arranged so that the current between the two electrodes forms a zigzag pattern.
  • Bipole pairs are located adjacent to each other and share either an anode or a cathode.
  • FIG. 1F illustrates another example of a bipole network, in which adjacent bipole pairs do not share anode or cathodes. This bipole network also forms an effectively continuous bipole field along the outer surface of the device. Adjacent bipole pairs are positioned close to each other.
  • all of the cathodes forming a bipole network are electrically connected to each other and all of the anodes forming a bipole network are electrically connected.
  • the anodes of the bipole network may all be formed from a single anodal connector, and all of the cathodes of a bipole network may be formed from a single cathodal connector.
  • all of the cathodes of the bipole network may be formed separately and connected distally on the device.
  • all of the cathodes may be wired to a single connector that connects to a power source or controller configured to energize the bipole network in a particular region.
  • a device may include multiple bipole networks.
  • different regions on the surface of the device may include different bipole networks (e.g., each region may have its own bipole network).
  • the bipole networks in different regions may be non-overlapping, and may form effectively non-overlapping continuous bipole fields.
  • Effectively non-overlapping bipole fields means that the broadcast fields of two or more bipole networks do not substantially overlap.
  • the component of a broadcast field (e.g., intensity) due to a second bipole network is less than 15% (or 10%, or 8% or 5% or 1%) of the component due to a first bipole network at any position near the first bipole network, particularly at the excitation ranges described herein.
  • a device for determining if a nerve is nearby may also include a controller for controlling the application of energy to the bipoles.
  • the application of energy to the bipoles may be coordinated as described in the methods sections below, so that the activation of a nerve can be correlated to a particular region of the surface of the device.
  • the bipole or bipole networks are movable with respect to the outer surface of the device. Moving the bipole (e.g., rotating it a around the outer surface) may allow a bipole field (a tight or narrow broadcast field) to be correlated with different regions of the device. This is also described in greater detail below.
  • FIG. 2A illustrates the distal portion of one embodiment of a device capable of determining if a nerve is nearby.
  • This exemplary device 80 is shown in partial cross-section. For clarity, FIG. 2A does not show the bipoles, thus showing more clearly the structure of probe device 80 .
  • the device 80 includes a rigid cannula 82 (or tube or needle) and a curved, flexible guide 84 that can slide through cannula 82 .
  • the guide 84 may include a Nitinol core 86 (or inner tube) having a central lumen 88 and an atraumatic, rounded tip 87 and may also include a sheath 89 (or coating or cover) disposed over at least part of Nitinol core 86 .
  • the sheath 89 may comprise, in one embodiment, a polymeric material such as PEBAX, PEEK or the like, or any other suitable material, and may form an outer surface having different regions.
  • Core 86 may be made of Nitinol or may alternatively be made of one or more other substances, such as spring stainless steel or other metals.
  • Lumen 88 in some embodiments, may be used to pass a guidewire.
  • FIG. 2B is a perspective view of a portion of the probe 80 of FIG. 2A , in which two electrically conductive members 90 are visible.
  • One member may be a cathodal conductor and one member may be an anodal conductor.
  • a probe may include as many electrode pairs as desired, such as eight, sixteen, thirty-two, etc.
  • the probe may have a preformed, curved shape and may be made of at least one flexible, shape memory material, such as Nitinol.
  • guide 84 may be passed through cannula 82 in a relatively straight configuration and may resume its preformed curved shape upon exiting a distal opening in cannula 82 .
  • This curved shape may facilitate passage of guide 74 around a curved anatomical surface, such as through an intervertebral foramen of a spine.
  • the exemplary device shown in FIGS. 2A-2D may include at least one bipole network, including a plurality of anodes and cathodes.
  • anodes of a single bipole network are all formed from the same anodal conductor
  • the cathodes of the same anodal conductor are all formed from the same cathodal conductor.
  • FIG. 2C illustrates this.
  • a section of probe sheath 89 including the outer surface region, is shown in more detail.
  • sheath 89 which fits directly over at least a portion of Nitinol core 86 ( FIG.
  • each of which may contain an electrical conductor 94 forming a plurality of electrodes (e.g., anodes or cathodes).
  • conductors 94 may be slideably disposed inside lumen 92 , while in other embodiments they may be fixedly contained therein.
  • Openings into the sheath 89 form the plurality of cathodes and anodes. The openings may be pores, holes, ports, slits, grooves or the like.
  • Each aperture 96 may extend from an outer surface of sheath 89 to one of conductor lumen 92 .
  • apertures 96 may help direct current along paths from one electrical conductor (e.g., cathodal conductor) to the other electrical conductor (e.g., anodal conductor) forming the plurality of bipolar electrode pairs.
  • the conductor 94 may partially extend through and above of the aperture 96 surface. This may be achieved by a conductor 94 that has several bends enabling the apex of the bend to protrude through the aperture 96 .
  • the conductor 94 may have sections of its length near the aperature 96 that have a larger diameter than other sections of conductor 94 .
  • any number of lumen 92 , electrical conductors 94 and apertures 96 forming anodes or cathodes may be used.
  • apertures 96 may extend along a desired length of sheath 89 to approximate, for example, a length of an area to be treated by a device or procedure.
  • FIG. 2D shows a section of sheath 89 is shown in cross section, showing an electrical conductor 94 comprising (i.e., a cathodal conductor) and a current directing aperture 96 (i.e., forming a cathode of a bipole).
  • an electrical conductor 94 comprising (i.e., a cathodal conductor) and a current directing aperture 96 (i.e., forming a cathode of a bipole).
  • some or all of apertures 96 may be filled with a conductive material 97 , such as a conductive gel, solid, matrix or the like.
  • Conductive material 97 may serve the dual purpose of helping conduct electric current along a path and preventing non-conductive substances from clogging apertures 96 .
  • each region includes a bipole network formed by an anodal and cathodal conductor that are positioned in parallel.
  • the bipole network (similar to that shown in FIGS. 1D and 1E ) extends along the length of each surface region of the device, and may form an effectively continuous bipolar field along the outer surface.
  • FIG. 3 illustrates a similar arrangement having four regions which each include electrical connectors within the elongate body that may form the bipole network.
  • four pairs 102 of anodal and cathodal conductors are shown.
  • the conductors of each pair 102 are close enough together that electric current is transmitted only between electrodes formed by each pair 102 a and not, for example, between electrode pairs formed by other anodal or cathodal conductors 102 b , 102 c , 102 d .
  • the anodal conductor and the cathodal conductor may be “switched” to change the direction that current is passed between electrodes formed by the two conductors.
  • one conductor of each pair 102 may be designated as the transmission conductor (cathode), and the other electrode of the pair 102 may be designated as the return electrode (anode).
  • this ground may be isolated from the ground (e.g., an anodal conductor) in other regions of the device, which may help isolate the current to the bipolar network in a single region of the device.
  • electrodes forming the bipole pair may be spaced at any suitable distance apart by spacing the electrical conductors forming the electrodes of the bipole pair.
  • electrodes of each pair may be spaced about 0.1 mm to about 2 mm apart, or about 0.25 mm to about 1.5 mm apart, or about 0.5 mm to about 1.0 mm apart.
  • FIG. 4 shows another example of a cross-section through a device having pairs 112 of electrical conductors that may form a network of bipole pairs on the surface of the device.
  • the anodal and cathodal conductors are spaced farther apart.
  • Farther spaced electrode pairs 112 may allow current to pass farther into tissue but may also risk dispersing the current farther and potentially being less accurate.
  • the bipole pairs formed may be spaced at any of a number of suitable distances from one another.
  • FIGS. 5A-7B Alternative arrangements of bipole pairs formed from an anodal and cathodal conductor are shown in FIGS. 5A-7B .
  • FIG. 5A is a side-view of a pair of bipole pairs that are formed by apertures 122 , 124 in the body of the device (sheath 120 ) which expose portions of the cathodal electrical conductor 126 and portions of the anodal conductor 128 .
  • Apertures forming the cathodes 122 and anodes 124 are disposed along a length of sheath 120 separated by a distance d. As shown in FIG.
  • the electrical conductors i.e., cathodal conductor 126 and anodal conductor 128
  • the electrical conductors are embedded in the elongate body and are spaced apart from each other about a circumferential distance s.
  • the distance d may be greater than the distance s, so that current is more likely to travel circumferentially between positive and negative electrodes, rather than longitudinally along sheath 120 .
  • current may be directed along any of a number of different paths in different embodiments of elongate body (sheath 120 ), by changing the separation distances of apertures 122 , 124 providing access to the electrical conductors 126 , 128 .
  • the cathodal and anodal conductors are positioned in immediately above and below one another, and apertures forming the anodes and cathodes of bipole pairs may be spaced at different distances along the body of the device 130 , such that current is more likely to travel between two closer spaced apertures (distance d′) than between two farther spaced apertures (distance d).
  • current may be directed along a distance d between apertures forming anodes and cathodes of bipole pairs that are spaced more closely together than the anodal and cathodal conductors of other bipole pairs.
  • any combination of anodal or cathodal conductors, apertures forming the anode and cathode pairs, and/or other current direction path features may be included.
  • FIG. 8 shows a portion of a nerve localization device 150 .
  • This nerve localization device variant includes a sheath 152 having multiple current directing apertures 154 disposed over a cathodal conductor and an anodal conductor, forming bipole pairs along the outer surface of the device. As shown, current may be driven along multiple paths between pairs of apertures 154 a , 154 b , 154 c , 154 d . Multiple individual currents I 1 , I 2 , I 3 and I 4 add up to the total current IT transmitted between the anodal and cathodal conductor.
  • the bipole pairs formed 154 may be disposed along any desired length of probe 150 . Any number of bipole pairs may be included.
  • the cathodes and/or anodes formed in a single region of the device may be formed from multiple (including individual) anodal/cathodal conductors (e.g., wires).
  • FIG. 9 is a circuit diagram 160 for a nerve localization device having two bipole pairs (e.g., eight electrical conductors).
  • electric current may be driven between the electrical conductors along a top, bottom, left and right side, separately. Each of these side forms a different region of the device.
  • FIG. 10 Another example of a nerve localization device is shown in FIG. 10 .
  • the nerve localization device includes two electrical conductors 172 , 174 forming at least one bipole pair (not shown) and two rotating brushes 176 , 178 .
  • Such an embodiment may allow different sides, such as top, bottom, left and/or right sides, to be stimulated with only two electrodes 172 , 174 , rather than multiple electrode pairs in different sections.
  • the elongate bodies forming part of the nerve localization devices described above may be used with any appropriate controller and/or stimulator configured to energize the bipole pairs. Thus, any of these devices may be used as part of a system including a controller and/or stimulator. In some variations, the elongate body may also be referred to as a probe. Examples of elongate bodies, including elongate bodies having different regions which may each contain one or more bipole pairs, are shown in FIGS. 11A-13D .
  • FIG. 11A is a simplified diagram of one variation of a device 10 .
  • This device 10 may be used to perform one or more medical procedures when orientation of the device with respect to an adjacent nerve is desired. Similar to the device shown in FIG. 2A above, this variation 10 includes a cannula 20 and a probe 30 .
  • the device 30 includes a tip 40 , a top section 32 , and a bottom section 34 .
  • the device 30 may include multiple bipole pairs 76 , 78 or bipole networks consisting of multiple bipole pairs.
  • a first bipole pair or bipole network 76 may be located on a first section 32 and a second bipole pair 78 may be located on a second section 34 .
  • the bipole network or pair 76 may be energized to determine whether a nerve is located near or adjacent to the first or top section 32 .
  • the second bipole network or pair 78 may be energized to determine whether a nerve is located near or adjacent to the second or bottom section 34 .
  • the first bipole network or pair 76 and the second bipole network or pair 78 may be alternatively energized to independently determine whether a nerve is located near or adjacent to the first section 32 and/or the second section 34 .
  • a bipole pair or network 76 , 78 is typically energized with one or more electrical signal(s).
  • the device may monitor the electrical signal applied to the bipole network (or pair) 76 , 78 , and may monitor the characteristics of the electrical signal and determine whether tissue is near or adjacent the bipole(s) 76 , 78 as a function of the monitored electrical signal characteristics.
  • the electrical signal characteristics may include amplitude, phase, impedance, capacitance, and inductance over time or frequency.
  • the nerve localization device includes a sensor or sensors for monitoring the nerve response.
  • the device may monitor one or more sensors anatomically coupled to nerve or afferent tissue enervated by the nerve whose condition is modified by the signal(s) applied to the bipolar network or pair 76 , 78 .
  • the device may monitor one or more sensors innervated by the nerve tissue such as limb muscles.
  • the nerve localization devices and systems described herein may include one or more indicators or outputs 22 , 24 .
  • the detectors may provide a user-identifiable signal to indicate the location of the nerve or the status of the system.
  • the nerve localization devices may include one or more light emitting diodes (LEDs), buzzers (or other sound output), a video display, or the like.
  • An LED may be illuminated based on signals generated by, received by, or generated in response to the energized bipole(s) 76 or 78 as discussed above.
  • the system or devices create a vibration or sound that a user manipulating the device 20 may feel or hear.
  • the intensity of the output may vary as a function of detected signal.
  • a nerve localization device may include a pair of electrical conductors 36 (anodal conductor and cathodal conductor) which form one or more bipole pairs.
  • the anode or a cathode of the bipole pair(s) 76 , 78 may be formed as described above via an opening 37 filled with a conductive material 38 , such as a conductive gel, solid, matrix, or other conductive material.
  • a conductive material 38 such as a conductive gel, solid, matrix, or other conductive material.
  • the bipole pair 36 and the conductive material 38 could be formed from the same conductive elastic or semi-elastic material.
  • the elongate body of the device 30 may include a bipole network comprising bipole pairs that are configured in a coil or zig-zag pattern along the length of the probe. This arrangement may help ensure continuous conduction during flexion of the probe 30 .
  • the anodal and/or cathodal conductors are formed of conductive ink (e.g., loaded in an elastomeric matrix) may be deposited on the outside of the probe.
  • the conductive ink could be insulated with the exception of discrete points forming the anode or cathode of the bipole pair.
  • a thin flex circuit could be wrapped around probe to construct the bipoles.
  • FIG. 11D is a partial, simplified diagram of a rongeur jaw 680 configured as a nerve localization device.
  • the rongeur jaw forms the elongate body of the device on which at least one bipole pair is located.
  • the rongeur jaw 680 may include a lower jaw 682 and an upper jaw 684 .
  • the lower jaw 682 may have a tip 688 and a bipolar network or pair 78 on an inner surface.
  • the upper jaw 684 may have a tip 686 and a bipolar network or pair 76 on an inner surface.
  • the first bipolar network or pair 78 may be energized to determine whether a nerve is located near or adjacent to the first or bottom jaw 682 .
  • the second bipole network or pair 76 may be energized to determine whether a nerve is located near or adjacent to the second or top jaw 684 .
  • the first bipolar network or pair 76 and the second bipolar network or pair 78 may be alternatively energized to independently determine whether a nerve is located near or adjacent to the first, bottom jaw 682 and/or the second, upper jaw 684 .
  • a user may employ such a device to ensure that a nerve is located between the lower jaw 682 and upper jaw 684 or that a nerve is not located between the lower jaw 682 and upper jaw 684 .
  • a user may then engage the rongeur jaws 680 to excise tissue located between the jaws 682 , 684 .
  • a user may continue to energize or alternately energize the bipole networks or pairs 76 , 78 on either jaw while excising tissue.
  • FIGS. 12A-12C are examples of elongate bodies having regions which include at least one bipole pair, and may include a bipole network.
  • Each elongate body in FIGS. 12A-12C ( 40 , 50 , and 60 , respectively) may be part of a device or system capable of determining if a nerve is nearby the device, and may be configured as part of surgical instrument such as a rongeur 680 , or other instrument.
  • the configuration 40 shown in FIG. 12A includes two longitudinal regions 42 , 44 at the distal end.
  • the distal section 42 has a longitudinal length L 1 and a width R, which may also be referred to as a radial length.
  • the more proximal section 44 has a longitudinal length L 2 and a width of R.
  • Each region 42 , 44 includes at least one bipole pair 46 , 48 .
  • a bipole pair 46 , 48 typically includes at least one anode ( ⁇ ) and cathode (+) that can be excited to create a restricted current pathway between the anode and cathode 46 , 48 .
  • the distance between the anode and cathode pair of may be less than the distance between any of the electrodes forming part of a bipole pair in an adjacent region of the elongate body.
  • the electrodes forming the bipole pair (or bipole network) in the first region 42 are closer to each other than to either the anode or the cathode in the adjacent region 44 .
  • the distance between the anode and cathode pair in the second region 44 is less than the distance between the anode and the cathode of the first region.
  • D 1 the distance between the anode and cathode forming bipole pairs in the first region 42 is labeled D 1 and the distance between the anode and cathode in the bipole pair in the second region is labeled D 2 .
  • D 1 may be less than or equal to L 1 and R and D 2 may be less than or equal to L 2 and R.
  • Any appropriate spacing may be used between the anodes and cathodes forming the bipole pairs.
  • D 1 and D 2 may be about 0.25 mm to 2.0 mm apart. In one variation D 1 and/or D 2 are about 0.50 mm.
  • bipole or bipole network in a region 46 , 48 When a bipole or bipole network in a region 46 , 48 , is energized, current may flow between the anode and cathode along a conductive pathway substantially only within its respective sections 42 , 44 . This current flow (and/or the related magnetic field) may be referred to as the ‘broadcast field of the bipole pair or bipolar network.
  • a device including regions having tight bipoles or bipole networks 40 may be employed to determine whether a nerve is closer to the first region 42 or the second 44 , as described above.
  • the bipole pairs (or bipole networks) in each region may be alternatively energized and an external sensor(s) can be used to monitor and/or determine whether a nerve is closer to the first region 42 or second region 44 .
  • the arrangement of the bipole pairs or bipole network may help determine the sensitivity of the device.
  • D 1 may be less than D 2 , resulting in the bipole pair in the first region having a smaller broadcast field (and a shorter conductive pathway) than the bipole pair 48 in the second region. This may allow detection of a nerve located further from second region than the first region, assuming a nearly equivalent energy is applied to the bipole pairs (or networks) within each region. Of course, the energy applied may be varied between different regions.
  • FIG. 12B shows an example of an elongate member 50 having two regions 52 , 54 separated along the longitudinal (or circumferential if the member is rounded) axis of the member 50 .
  • Each region 52 , 54 may include one or more a bipole pairs 56 , 58 .
  • each region may include a bipole network formed of multiple bipole pairs.
  • the individual bipole pairs may share anodes and cathodes, as described above.
  • the width of the first region is the circumferential or linear distance, R 1 , and the length is the distance L.
  • the width of the second region is R 2 and the length is L.
  • the bipole pairs 56 , 58 in each region may be longitudinally oriented, radially oriented, or some combination.
  • a bipole network may have anodes and cathodes arranged in a linear pattern (e.g., extending longitudinally) or a zigzag pattern (also extending generally lineally). Other arrangements are possible.
  • FIG. 12C shows another variation of an elongate member having three regions, two arranged longitudinally 62 , 64 , and one more proximally 63 , adjacent to the two distal longitudinal (or circumferential) regions.
  • Each region 62 , 63 , 64 may include one or more bipoles 66 , 67 , 68 or bipole networks.
  • the spacing between the electrodes forming the bipoles of a bipole pair or network in one of the regions may be less than the spacing to electrodes outside of the region. This may prevent current from passing from an electrode (e.g., anode, cathode) in one region and electrodes in another region.
  • the controller or device is configured so that the anodes and/or cathodes are electrically isolated (e.g., do not share a common ground) and may be configured to electrically float when not being energized.
  • FIGS. 13A-13D show partial cross-sections through elongate members 470 , 480 , 490 , 510 which may be used as part of a device for determining if a nerve is nearby.
  • Each region includes multiple (e.g., two or more) regions that each include one or more bipole pairs (e.g., bipole networks). These examples each have a different cross-sectional shape, and have circumferential regions that are oriented differently around the perimeter of the elongate member.
  • FIG. 13A shows a portion of a device having an outer surface that includes two regions or sections 472 , 474 that are circumferentially distributed.
  • Each region 472 , 474 includes one or more bipoles 476 , 478 , having at least one anode ( ⁇ ) and one cathode (+) that can be powered so that current flows between the anode and cathode, resulting in a broadcast field.
  • the distances between the anode and cathode pairs forming the bipoles in each region are less than the distance between the anode of one region and the cathode of the other region.
  • Region 472 may have a radial length R 1 and circumferential span of L (e.g., a width of R 1 *pi); the longitudinal distance or length is not apparent from this cross-section, but may extend for some distance.
  • a bipole pair in the first region may have an anode and cathode 476 that are separated by a distance (approximately D 1 ) that is less than half the length of the first circumferential region, and the spacing of the tight bipole pair (approximately D 2 ) in the second region may be less than half the length of the second circumferential region.
  • D 1 and/or D 2 may be about 0.50 mm. In some variations the spacing between the bipole pairs in different regions (and within the same region for bipole networks) is approximately the same.
  • the configuration 480 shown in FIG. 13B may also include two circumferential regions 482 , 484 on the distal end of the elongate member.
  • Each region 482 , 484 may include a bipole pair or network 86 , 88 , as described above.
  • the distances between the anode and cathode pairs of either of region 486 and 488 is less than the distance between the anode of one region and the cathode of the other region.
  • the configuration 490 shown in FIG. 13C includes four radial regions 492 , 494 , 502 , 504 which may also each have one or more bipole 496 , 498 , 506 , 508 .
  • FIG. 13D has two circumferential regions 512 , 514 . Each radial region 512 , 514 includes at least one bipole pair 516 , 518 .
  • FIGS. 14A-14C are partial diagrams of a portion of a device capable of determining if a nerve is nearby.
  • the device includes an elongate body (shown in cross-section) having to regions with at least one bipole pair in each region.
  • the device is deployed in tissue 522 , 524 .
  • the device 470 shown in FIG. 14A includes two radially separated regions 472 , 474 , similar to the device shown in FIG. 13A .
  • Each region 472 , 474 has a bipole network or at least one bipole pair 476 , 478 having an anode ( ⁇ ) and cathode (+).
  • the device may determine whether the module 476 is near or adjacent a nerve (e.g., in the tissue 522 or 524 ) as a function of signals generated in response to one or more energized bipole pairs in the regions, as described above.
  • a nerve e.g., in the tissue 522 or 524
  • the conductive pathway typically does not extend substantially into the tissue 524 , 522 .
  • the first region 472 may have a radial length R 1 and longitudinal length, L
  • the second region 474 may have a radial length R 2 and longitudinal length, L.
  • An anode and a cathode forming at least one bipole pair within the first region 472 may be separated by a distance, D 1
  • an anode and cathode in the second region may be separated by a distance D 2 .
  • the energy applied to a bipole pair or network does not project very far into the tissue. This may be a function of the configuration of the bipole pair (e.g., the size and spacing) and the energy applied.
  • the energy projecting in to the tissue from a bipole pair in the first region 472 may not extend substantially further than a distance of T 1 , so that it would not provoke a response from a neuron located further than T 1 from the electrodes.
  • the energy projecting into the tissue from a bipole pair (or the bipole network) in the second region 474 may not extend substantially further than a distance of T 2 from the electrodes.
  • the electrodes of the bipole pair or network in the first region 472 may be are separated by a distance, D 1 that is less than or equal to R 1 , T 1 , and L
  • the bipole pair or network in the second region 474 may be separated by a distance D 2 that is less than or equal to R 2 , T 2 , and L.
  • D 1 and D 2 may be about 0.25 mm to 2.0 mm apart (e.g., 0.50 mm).
  • the energy applied to the bipole pair or network may be limited to limit the projection of energy into the tissue.
  • the current between the bipole pairs may be between about 0.1 mA to 10 mA.
  • the device may be used to determine if a nerve is near one or more regions of the outer surface of the device, and/or which region the nerve is closest to. For example, a first electrical signal may be applied to the bipole pair/network in the first region 472 for a first predetermined time interval, and a response (or lack of response) determined. A response may be determined by using one or more sensors, it may be determined by observing the subject (e.g., for muscle twitch), or the like. Thereafter a second electrical signal may be applied to the bipole pair/network in the second region 474 for a second predetermined time interval, and a response (or lack of a response) determined. The first predetermined time interval and the second predetermined time interval may not substantially overlap, allowing temporal distinction between the responses to different regions.
  • the device may include more than two regions, and the bipole network may be of any appropriate size or length.
  • a nerve is nearby one or the regions of the device, or which region is closest. For example, if application of energy to the bipole pairs/networks in both regions results in a response, the magnitude of the response may be used to determine which region is closest.
  • the durations of the predetermined time intervals may be the same, or they may be different. For example, the duration of the first predetermined time interval may be longer than the duration of the second predetermined time interval.
  • the average magnitude of the electrical signals applied may be the same, or they may be different. For example, the magnitude of the signal applied to the bipole pair/network in the first region may be greater than the average magnitude of the signal applied to the second region.
  • the device 450 shown in FIGS. 14A and 14B includes two longitudinally separated sections 452 , 454 .
  • Each section 452 , 454 has a bipole pair or bipole network 456 , 458 that has at least one anode ( ⁇ ) and one cathode (+).
  • the device 440 shown in FIG. 14C includes two longitudinally separated regions 442 , 444 , each including a bipole pair or network 446 , 448 including at least one anode ( ⁇ ) and one cathode (+).
  • the bipole pair or network in a region is energized, the device may be used to determine if a nerve is nearby based on the generated response to the energized bipole pair/network.
  • FIG. 14D shows a cross-section through a region of an elongate body of a device having four regions which each include bipole pairs or networks.
  • the electrodes forming the bipole pairs or networks are connected to an electrically conductive element so that the anode(s) and cathode(s) in a particularly region are all in electrical communication.
  • four cathodal conductors 644 , 664 , 632 , 652 pass through the body of the device and electrically connect to electrode regions (not visible in FIG. 14D ) on the surface of the device.
  • anodal conductors 642 , 662 , 634 , 654 pass through the body of the device and electrically connect to electrode regions (not visible in FIG. 14D ) on the surface.
  • the cathodal and/or anodal conductors form multiple electrode regions (electrodes) in each region, they may form a bipole network 640 , 660 , 630 , 650 .
  • FIG. 14E is a partial isometric diagram of a device shown in FIG. 14D , in which each region includes a bipole network formed along the lengths of the device.
  • Each bipole network includes anodes formed from a single anodal conductor and cathodes formed from a single cathodal conductor.
  • FIG. 14F is an exemplary illustration of an anode or cathode 632 .
  • the anode may have any appropriate shape (e.g., round, oval, square, rectangular, etc.), and any appropriate surface area (e.g., less than 10 mm 2 , less than 5 mm 2 , less than 3 mm 2 , less than 2 mm 2 , less than 1 mm 2 ).
  • the electrode may be formed of a conductive material (e.g., metal, polymer, etc.), and may be formed by forming a passage into the body of the elongate member until contacting the conductive member, then filling the passage with an electrically conductive material.
  • the conductive element may be a conductive wire, gel, liquid, etc. that may communicate energy to the anodes or cathodes.
  • the elongate body may be any appropriate dimension, and may be typically fairly small in cross-sectional area, to minimize the damage to tissue.
  • the outer diameter of elongate member may be about 1.5 mm to 5 mm (e.g., about 2 mm).
  • FIG. 15 illustrates conductive pathways 550 of one example of a device 490 (similar to the variation shown in FIG. 13C ) that includes four radial regions 492 , 494 , 502 , 504 near the distal region of the elongate body.
  • Each bipole pair or network 496 , 498 , 506 , 508 includes at least one anode ( ⁇ ) and cathode (+) that, when energized, creates a limited conductive pathway between the respective anode(s) and cathode(s) of the bipole or bipole network 496 , 498 , 506 , 508 .
  • the current pathways 554 , 556 , 552 , and 558 between the bipoles may broadcast energy about 3 to 5 times the distance between the respective cathodes and anodes forming the bipole(s).
  • the current pathways 554 , 556 , 558 , 552 may be substantially confined to the respective regions 492 , 494 , 502 , 504 of the elongate body forming the bipole or bipole network.
  • each bipole network is stimulated separately for a predetermined time.
  • one bipole network 496 , 498 , 506 , or 508 may be energized with a first signal for a predetermined first time interval.
  • another bipole network 496 , 498 , 506 , or 508 may be energized with a second signal for a predetermined second time interval.
  • Different energy levels may be applied, for example, as a function of the tissue 522 , 524 that a user is attempting to locate or identify.
  • FIGS. 16A-16D are diagrams of electrical signal waveforms 580 , 590 , 210 , 220 , 230 , 240 that may be applied to one or more bipole pairs (or bipole networks).
  • Exemplary signal waveforms include square-wave pulses 582 , 584 , 586 .
  • Each pulse 582 , 584 , 586 may a have a similar magnitude and envelope.
  • the square-wave pulses may be idealized (e.g., with square edges, etc.), or rounded (as shown in FIGS. 16A-16D ).
  • the waveforms may be used to energize the bipole network periodically P 1 for a predetermined interval T 1 where each pulse 582 , 584 , 586 has an amplitude A 1 .
  • a 1 may be about 0.1 milliamperes (mA) to 10 mA
  • the pulse width T 1 may be about 100 microseconds ( ⁇ s) to 500 ⁇ s and the period P 1 may from 100 ms to 500 ms.
  • a 1 may be about 0.5 milliamperes (mA) to 5 mA
  • the pulse width T 1 may be about 200 microsecond ( ⁇ s)
  • the period P 1 may about 250 ms as a function of the energy required to depolarize neutral tissue.
  • the applied energy may also be expressed as a voltage.
  • FIG. 16B illustrates another variation, in which the applied signal waveform 590 includes square-wave pulses 592 , 594 , 596 that have an increasing magnitude but similar pulse width T 1 .
  • the waveform 590 may be used to energize a bipole network periodically P 1 for a predetermined interval T 1 where pulses 592 , 594 , 596 have increasing or ramping amplitudes A 1 , A 2 , A 3 .
  • the waveform 590 may continue to increase pulse amplitudes in order to identify a nerve (up to some predetermined limit). For example, stimulation of one or more bipole pairs may cycle a ramping stimulation.
  • a 1 , A 2 , and A 3 are about 1 milliamps (mA) to 5 mA where A 3 >A 2 >A 1 , the pulse width T 1 may be about 100 microsecond ( ⁇ s) to 500 ⁇ s and the period P 1 may from 100 ms to 500 ms.
  • the pulse width T 1 may be about 200 microseconds ( ⁇ s) and the period P 1 may about 250 ms.
  • a first waveform 210 may be applied to a first bipole network of a device, and a second waveform 220 may be applied to energize a second bipole network of the device.
  • the signals are interleaved.
  • the signal waveform 210 includes several square-wave pulses 212 , 214 , and 216 and the signal waveform 220 includes several square-wave pulses 222 , 224 , and 226 .
  • Each pulse 212 , 214 , 216 , 222 , 224 , 226 may a have a similar magnitude and envelope.
  • the waveform 210 may be used to energize the first bipole network periodically P 1 for a predetermined interval T 1 , where each pulse 212 , 214 , 216 has an amplitude A 1 .
  • the second waveform 220 may be used to energize a second bipole network periodically P 2 for a predetermined interval T 2 where each pulse 222 , 224 , 226 has an amplitude B 1 .
  • the pulse width T 1 , T 2 is about 100 microseconds ( ⁇ s) to 500 ⁇ s, and the period P 1 , P 2 is from 100 ms to 500 ms.
  • a 1 , A 2 may be about 0.5 milliamperes (mA) to 5 mA, the pulse width T 1 , T 2 may be about 200 microsecond ( ⁇ s) and the period P 1 , P 2 may about 250 ms.
  • the pulses 212 , 214 , 216 do not substantially overlap the pulses 222 , 224 , 226 .
  • T 1 >T 2 and P 2 is an integer multiple of P 1 .
  • FIG. 16D is another example, in which different regions of the device are energized with pulses having increasing amplitudes.
  • an amplitude increasing or ramping pulse waveform 230 may be applied to a first bipole network
  • a second amplitude increasing or ramping pulse waveform 240 may be applied to a second bipole network.
  • the signal waveform 230 includes several amplitude increasing or ramping square-wave pulses 232 , 234 , and 236 and the signal waveform 240 includes several amplitude increasing or ramping square-wave pulses 242 , 244 , and 246 .
  • each region may be stimulated separately, so that the time period between stimulations (P 1 -T 1 ) may be larger than illustrated here.
  • Methods may also include changing the stimulation applied, or scaling it based on a response, as described in more detail below.
  • FIG. 17A is illustrates a schematic of a subject 310 in which the device for determining if a nerve is nearby is being used.
  • a tissue localization device 10 is used as part of a system including sensors 322 , 324 .
  • the device 10 may energize one or more bipole pairs or bipole networks to depolarize neutral tissue that is near a region of the device including the bipole pair or network.
  • a sensor 322 may be placed on, near, or within muscle that may be innervated when neutral tissue is depolarized by a nearby energized bipolar or optical module.
  • the sensor 322 may be innervately coupled to nerve tissue via a neural pathway 316 and sensor 324 may be innervately coupled to nerve tissue via a neural pathway 314 .
  • the device may be used as part of a spinal procedure and the sensors 322 may detect an Electromyography (EMG) evoked potentials communicated in part by a patient's cauda equina along the pathways 314 , 316 .
  • EMG Electromyography
  • FIGS. 17B-11D are simplified diagrams of sensors 330 , 340 , 350 that may be employed according to various embodiments.
  • a sensor 330 may include a multiple axis accelerometer employed on or near muscle, particularly muscle innervated by neurons within the region of tissue being operated on.
  • the accelerometer may be a low-g triaxial accelerometer.
  • the accelerometer 330 may detect differential capacitance where acceleration may cause displacement of the silicon structure of the accelerometer and change its capacitance.
  • the sensor 340 may include a strain gauge that also may be applied on or near muscle innervated by neurons within the region begin operated on.
  • the strain gauge may a multiple planar strain gauge where the gauge's resistance or capacitance varies as a function of gauge flex forces in multiple directions.
  • the sensor 350 may include an EMG probe.
  • the EMG probe may include a needle to be inserted near or within muscle innervated by a neuron or neurons within the region being operated on.
  • a sensor may determine a positive response when detecting an EMG signal of about 10 to 20 ⁇ V on the EMG probe 350 for about 1 second.
  • FIGS. 18A-18B illustrate the outer surface of a device having an elongate body having two regions 446 , 448 , wherein each region includes at least one bipole pair.
  • the bipole pairs in the different regions may have different geometries.
  • the bipole pair in the second region 444 is spaced further apart (D 2 >D 1 ) than the bipole pair in the first region 442 . This may result in the bipole pair in the second region projecting the bipole field further into the tissue than the bipole pair in the first region.
  • FIG. 18B The configuration shown in FIG. 18B is similar, but illustrates a bipole network 449 in the second region 444 that is a tripolar electrode, having two anodes ( ⁇ ) separated from the cathode (+) in this example by different distances D 2 , D 3 .
  • a bipole network may include additional cathodes and electrodes that are typically electrically coupled (e.g., to the same anodal or cathodal conductor) so that they can be stimulated substantially simultaneously.
  • a method of determining if a nerve is nearby a device, or a region of a device includes the steps of exciting a bipole pair or a bipole network to pass current between the bipole pair, resulting in a limited broadcast field that can stimulate a nearby neuron.
  • the broadcast field may be limited by the geometry of the tight bipole pairs and the bipole networks described herein, and by the applied energy. It can then be determined if a nerve has been stimulated in response to the excitation of bipole pair or network; the magnitude of the response can also be compared for different bipole networks (or bipole pairs) in different regions of the device to determine which region is nearest the nerve.
  • FIGS. 19A-19C are flow diagrams illustrating methods of determining if a nerve is near a device as described herein.
  • a first bipole network (or bipole pair) located on a first region or section of a device having two or more regions is energized 382 .
  • the bipole network may be energized by the application of signal for a predetermined time interval.
  • the energization of the bipolar module may generate a current between an anode ( ⁇ ) and cathode (+) (or anodes and cathodes).
  • the subject is then monitored to determine if a response is detected 384 . If a response is detected, then a nerve may be nearby.
  • the first bipole network may be energized with a first signal for a first predetermined time interval.
  • the first bipole network is energized as the device is moved within the tissue (e.g., as it is advanced) to continuously sense if a nerve is nearby.
  • FIG. 19B illustrates one method of sensing as advancing.
  • the bipole pair in the first region is energized and a response (or lack of a response) is determined.
  • the bipole network (or pair) may be energized as described above. For example, a continuous signal may be applied, a periodic signal may be applied, or a varying (e.g., ramping) signal may be applied 392 .
  • a response may be detected by muscle twitch, nerve firing, or otherwise 394 .
  • the device can then be moved based on the response 396 , or continued to be moved based on the response. Movement may be continued in the same direction (e.g., if no response is detected) or in a new direction (if a nerve is detected). Movement may also be stopped if a nerve is detected. Steps 394 and 396 may b repeated during motion to guide the device.
  • FIG. 19C illustrates one variation in which a second region of the device, having its own, separated bipole network, is stimulated.
  • the first bipole network (or a bipole pair) in the first region is energized 532 , and the patient is monitored for a response 534 to the stimulation.
  • the bipole pair in a second region is then energized 536 , and the patient is monitored for a response 538 . Additional energizing and monitoring steps (not shown) may also be included for other regions of the device, if present.
  • the responses to the different region can be compared 542 , and the device can be moved in response to the presence of a nerve in one or more of the regions 546 .
  • the device may be used to position (or form a passage for) another device or a region of the device that acts on the tissue.
  • the device may be used to position a guide channel or guide wire.
  • the method may include repeatedly energizing only a subset of the bipole networks (or bipole pairs) until a nerve is detected, and then other bipole networks on the device may be energized to determine with more accuracy the relationship (e.g., orientation) of the nerve with respect to the device.
  • the step of monitoring or detecting a response may be performed manually (e.g., visually), or using a sensor or sensor.
  • an accelerometer may be coupled to muscle.
  • the accelerometer may be a multiple axis accelerometer that detects the movement of the muscle in any direction, and movement coordinated with stimulation may be detected.
  • a strain gauge may be used on muscle innervated by a nerve passing through or originating in the region of tissue being examined.
  • the strain gauge may be a multiple axis strain gauge that detects the movement of the muscle in any direction.
  • an EMG probe may be used to measure evoked potentials of the muscle. The magnitude of any response may also be determined.
  • Systems may include components (e.g., hardware, software, or the like) to execute the methods described herein.
  • FIG. 20 is a block diagram of additional components of a system 580 for determining if a nerve is nearby a device.
  • the components 580 shown in FIG. 20 may be used with any of the devices described herein, and may include any computing device, including a personal data assistant, cellular telephone, laptop computer, or desktop computer.
  • the system may include a central processing unit (CPU) 582 , a random access memory (RAM) 584 , a read only memory (ROM′′) 606 , a display 588 , a user input device 612 , a transceiver application specific integrated circuit (ASIC) 616 , a digital to analog (D/A) and analog to digital (A/D) convertor 615 , a microphone 608 , a speaker 602 , and an antenna 604 .
  • the CPU 582 may include an OS module 614 and an application module 613 .
  • the RAM 584 may include a queue 598 where the queue 598 may store signal levels to be applied to one or more bipolar modules 46 , 48 .
  • the OS module 614 and the application module 613 may be separate elements.
  • the OS module 614 may execute a computer system or controller OS.
  • the application module 612 may execute the applications related to the control of the system.
  • the ROM 606 may be coupled to the CPU 582 and may store program instructions to be executed by the CPU 582 , OS module 614 , and application module 613 .
  • the RAM 584 is coupled to the CPU 582 and may store temporary program data, overhead information, and the queues 598 .
  • the user input device 512 may comprise an input device such as a keypad, touch pad screen, track ball or other similar input device that allows the user to navigate through menus in order to operate the article 580 .
  • the display 588 may be an output device such as a CRT, LCD, LED or other lighting apparatus that enables the user to read, view, or hear user detectable signals.
  • the microphone 608 and speaker 602 may be incorporated into the device.
  • the microphone 608 and speaker 602 may also be separated from the device.
  • Received data may be transmitted to the CPU 582 via a serial bus 596 where the data may include signals for a bipole network.
  • the transceiver ASIC 616 may include an instruction set necessary to communicate data, screens, or signals.
  • the ASIC 616 may be coupled to the antenna 604 to communicate wireless messages, pages, and signal information within the signal.
  • When a message is received by the transceiver ASIC 616 its corresponding data may be transferred to the CPU 582 via the serial bus 596 .
  • the data can include wireless protocol, overhead information, and data to be processed by the device in accordance with the methods described herein.
  • the D/A and A/D convertor 615 may be coupled to one or more bipole networks to generate a signal to be used to energize them.
  • the D/A and A/D convertor 615 may also be coupled to one or more sensors 322 , 324 to monitor the sensor 322 , 324 state or condition.
  • any of the components previously described can be implemented in a number of ways, including embodiments in software. These may include hardware circuitry, single or multi-processor circuits, memory circuits, software program modules and objects, firmware, and combinations thereof, as desired by the architect of the system 10 and as appropriate for particular implementations of various embodiments.
  • spinal stenosis One area of surgery which could benefit from the development of less invasive techniques including neural localization is the treatment of spinal stenosis.
  • Spinal stenosis often occurs when nerve tissue and/or blood vessels supplying nerve tissue in the lower (or “lumbar”) spine become impinged by one or more structures pressing against them, causing pain, numbness and/or loss of function in the lower back and/or lower limb(s).
  • tissues such as ligamentum flavum, hypertrophied facet joint and bulging intervertebral disc impinge a nerve root as it passes from the cauda equine (the bundle of nerves that extends from the base of the spinal cord) through an intervertebral foramen (one of the side-facing channels between adjacent vertebrae).
  • a device for determining if a nerve is nearby that may be used as part of method for treating spinal stenosis.
  • FIG. 21 is a top view of a vertebra with the cauda equina shown in cross section and two nerve roots branching from the cauda equina to exit the central spinal canal and extend through intervertebral foramina on either side of the vertebra.
  • FIG. 22 is a side view of the lumbar spine, showing multiple vertebrae, the intervertebral foramina between adjacent vertebrae, and the 1st-5th spinal nerves exiting the foramina.
  • Lumbar spinal stenosis surgery typically involves first making an incision in the back and stripping muscles and supporting structures away from the spine to expose the posterior aspect of the vertebral column. Thickened ligamentum flavum is then exposed by complete or partial removal of the bony arch (lamina) covering the back of the spinal canal (laminectomy or laminotomy). In addition, the surgery often includes partial or complete facetectomy (removal of all or part of one or more facet joints), to remove impinging ligamentum flavum or bone tissue.
  • the methods and devices for neural localization described herein may be used in less invasive spine surgery procedures, including the treatment of spinal stenosis.
  • the methods and devices described herein can be used with minimal or no direct visualization of the target or nerve tissue, such as in a percutaneous or minimally invasive small-incision procedure.
  • FIG. 23 illustrates one device for treatment of spinal stenosis including a tissue cutting device 1000 including a guidewire.
  • a tissue cutting device 1000 including a guidewire.
  • FIG. 23 illustrates one device for treatment of spinal stenosis including a tissue cutting device 1000 including a guidewire.
  • guidewire systems and methods for inserting device 1000 and other tissue removal or modification devices reference may also be made to U.S. patent application Ser. Nos. 11/468,247 (now U.S. Pat. No. 7,857,813) and 11/468,252 (Publication No. US-2008-0086034-A1), both titled “TISSUE ACCESS GUIDEWIRE SYSTEM AND METHOD,” and both filed Aug. 29, 2006, the full disclosures of which are hereby incorporated by reference.
  • Cutting device 1000 may be at least partially flexible, and in some embodiments may be advanced through an intervertebral foramen IF of a patient's spine to remove ligamentum flavum LF and/or bone of a vertebra V, such as hypertrophied facet (superior articular process SAP in FIG. 23 ), to reduce impingement of such tissues on a spinal nerve SN and/or nerve root.
  • device 1000 cuts tissue by advancing a proximal blade 1012 on an upper side of device 1000 toward a distal blade 1014 . This cutting device may be used with (or as part of) a system for determining if a nerve is nearby, and may prevent damage to nerves in the region which the device operates.
  • device 1000 may be used in an open surgical procedure, a minimally invasive surgical procedure or a percutaneous procedure.
  • target tissue such as ligament and bone
  • percutaneous procedure it is essential for a surgeon to know that device 1000 is placed in a position to cut target tissue, such as ligament and bone, and to avoid cutting nerve tissue.
  • target tissue such as ligament and bone
  • a surgeon performing a minimally invasive or percutaneous procedure will want to confirm that the tissue cutting portion of device 1000 is not directly facing and contacting nerve tissue.
  • the various nerve localization devices and systems described herein may help the surgeon verify such nerve/device location.
  • a neural localization system and method may be used in conjunction with device 1000 or with any other tissue removal, tissue modification or other surgical devices.
  • various embodiments may have applicability outside the spine, such as for locating nerve tissue in or near other structures, such as the prostate gland, the genitounrinary tract, the gastrointestinal tract, the heart, and various joint spaces in the body such as the knee or shoulder, or the like. Therefore, although the following description focuses on the use of embodiments of the invention in the spine, all other suitable uses for the various embodiments described herein are also contemplated.
  • Neural localization system 1000 may include an electronic control unit 1024 and a neural stimulation probe 1024 , a patient feedback device 1026 , a user input device 1028 and a display 1030 , all coupled with control unit 1022 .
  • ECU 1020 may include a computer, microprocessor or any other processor for controlling inputs and outputs to and from the other components of system 1020 .
  • ECU 1020 may include a central processing unit (CPU) and a Digital to Analog (D/A) and Analog to Digital Converter (A/D).
  • ECU 1022 may include any microprocessor having sufficient processing power to control the operation of the D/A A/D converter and the other components of system 1020 .
  • ECU 1022 may control the operation of the D/A A/D converter and display device 1030 , in some embodiments based on data received from a user via user input device 1028 , and in other embodiments without input from the user.
  • User input device 1028 may include any input device or combination of devices, such as but not limited to a keyboard, mouse and/or touch sensitive screen.
  • Display device 1030 may include any output device or combination of devices controllable by ECU 1022 , such as but not limited to a computer monitor, printer and/or other computer controlled display device.
  • system 1020 generates electrical signals (or other nerve stimulating energy signals in alternative embodiments), which are transmitted to electrodes on probe 1024 , and receives signals from patient feedback device 1026 (or multiple feedback devices 1026 in some embodiments).
  • ECU 1022 may generate a digital representation of signals to be transmitted by electrodes, and the D/A A/D converter may convert the digital signals to analog signals before they are transmitted to probe 1024 .
  • ECU 1022 also receive a return current from probe 1024 , convert the current to a digital signal using the D/A A/D converter, and process the converted current to determine whether current was successfully delivered to the stimulating portion of probe 1024 .
  • the D/A A/D converter may convert an analog signal received by patient feedback device(s) 1026 into a digital signal that may be processed by ECU 1022 .
  • ECU 1022 may hold any suitable software for processing signals from patient feedback devices 1026 , to and from probe 1024 and the like.
  • display device 1030 may display any of a number of different outputs to a user, such as but not limited to information describing the signals transmitted to probe 1024 , verification that stimulating energy was successfully delivered to a stimulating portion of probe 1024 , information describing signals sensed by patient feedback devices 1026 , a visual and/or auditory warning when a nerve has been stimulated, and/or the like.
  • system 1020 may include additional components or a different combination or configuration of components, without departing from the scope of the present invention.
  • the neural stimulation probe 1024 is an elongate body having an outer surface including one or more regions with a bipole pair or bipole network. Furthermore, any suitable number of regions may be included on a given probe 1024 . In various embodiments, for example, probe 1024 may includes two or more regions, each having a bipole pair or bipole network (comprising a plurality of bipole pairs) disposed along the probe in any desired configuration. In one embodiment, probe 1024 may include four regions, each having at least one bipole pairs, one pair on each of top, bottom, left and right sides of a distal portion of the probe that is configured to address neural tissue.
  • ECU 1022 may measure current returned through probe 1024 and may process such returned current to verify that current was, in fact, successfully transmitted to a nerve stimulation portion of probe 1024 . In one embodiment, if ECU 1022 cannot verify that current is being transmitted to the nerve stimulation portion of probe 1024 , ECU 1022 may automatically shut off system 1020 . In an alternative embodiment, if ECU 1022 cannot verify that current is being transmitted to the nerve stimulation portion of probe 1024 , ECU 1022 may signal the user, via display device 1030 , that probe 1024 is not functioning properly. Optionally, in some embodiments, system 1020 may include both a user signal and automatic shut-down.
  • Patient feedback device 1026 may include any suitable sensing device and typically includes multiple devices for positioning at multiple different locations on a patient's body.
  • multiple motion sensors may be included in system 1020 .
  • Such motion sensors may include, but are not limited to, accelerometers, emitter/detector pairs, lasers, strain gauges, ultrasound transducers, capacitors, inductors, resistors, gyroscopes, and/or piezoelectric crystals.
  • feedback device 1026 may include multiple accelerometers each accelerometer attached to a separate patient coupling member, such as an adhesive pad, for coupling the accelerometers to a patient.
  • each accelerometer may be placed over a separate muscle myotome on the patients lower limbs.
  • one or more patient feedback devices 1026 may sense a response to the stimulation and deliver a corresponding signal to ECU 1022 .
  • ECU 1022 may process such incoming signals and provide information to a user via display device 1030 . For example, in one embodiment, information may be displayed to a user indicating that one sensor has sensed motion in a particular myotome.
  • ECU 1022 may filter out “noise” or sensed motion that is not related to stimulation by probe 1024 .
  • an algorithm may be applied by ECU 1022 to determine which of multiple sensors are sensing the largest signals, and thus to pinpoint the nerve (or nerves) stimulated by probe 1024 .
  • patient feedback device 1026 may include multiple electromyography (EMG) electrodes.
  • EMG electrodes receive EMG or evoked muscle action potential (EMAP) signals generated by muscle electrically coupled to EMG electrodes and to a depolarized nerve (motor unit).
  • EMG electrodes receive EMG or evoked muscle action potential (EMAP) signals generated by muscle electrically coupled to EMG electrodes and to a depolarized nerve (motor unit).
  • ECU 1022 may be programmed to process incoming information from multiple EMG electrodes and provide this processed information to a user in a useful format via display device 1030 .
  • User input device 1028 may include any suitable knob, switch, foot pedal, toggle or the like and may be directly attached to or separate and coupleable with ECU 1022 .
  • input device 1028 may include an on/off switch, a dial for selecting various bipolar electrode pairs on probe 1024 to stimulate, a knob for selecting an amount of energy to transmit to probe 1024 and/or the like.
  • a nerve tissue localization system 1040 may include an ECU 1042 , a neural stimulation probe 1044 , multiple patient feedback devices 1026 , and a user input device 48 .
  • Probe 1044 may include, in one embodiment, a curved, flexible nerve stimulating elongate member 1058 , which may slide through a rigid cannula 1056 having a handle 1054 .
  • the probe 1044 is a device for determining if a nerve is nearby a region of the device, and includes a plurality of regions which each include one or more bipole pairs. In some variations the probe 1044 includes two regions (an upper region and a lower region), and each region includes a bipole network configured to form a continuous bipole field along the length of the probe in either the upper or lower regions.
  • a nerve stimulating member 1058 may include a guidewire lumen for allowing passage of a guidewire 1059 , for example after nerve tissue has been detected to verify that the curved portion of nerve stimulating member 1058 is in a desired location relative to target tissue TT and nerve tissue NT.
  • ECU 1042 may include user input device 1048 , such as a knob with four settings corresponding to top, bottom, left and right sides of a nerve tissue stimulation portion of nerve stimulating member 1058 .
  • ECU 1042 may also optionally include a display 1047 , which may indicate an amount of muscle movement sensed by an accelerometer feedback device 1046 .
  • ECU 1042 may include one or more additional displays, such as red and green lights 1049 indicating when it is safe or unsafe to perform a procedure or whether or not probe 1044 is functioning properly. Any other suitable displays may additionally or alternatively be provided, such as lamps, graphs, digits and/or audible signals such as buzzers or alarms.
  • each of patient feedback devices 1046 may include an accelerometer coupled with an adhesive pad or other patient coupling device.
  • a curved portion of nerve stimulating member 1058 may be configured to pass from an epidural space of the spine at least partway through an intervertebral foramen of the spine.
  • nerve stimulating member 1058 may be straight, steerable and/or preformed to a shape other than curved.
  • FIGS. 26A and 26B describe a method for localizing nerve tissue and placing a guidewire in a desired location in a spine using the device configured to determine if a nerve is nearby.
  • multiple patient feedback devices 1046 such as accelerometers or EMG electrodes, may be placed on the patient, and ECU 1042 may be turned on.
  • a test current may be transmitted to probe 1044 , and a return current from probe 1044 may be received and processed by ECU 1042 to verify that probe 1044 is working properly.
  • an epidural needle 1060 (or cannula) may be passed through the patient's skin, and a distal tip of needle 1060 may be advanced through the ligamentum flavum LF of the spine into the epidural space ES.
  • a probe that is configured to determine if a nerve is nearby the probe 1062 may be passed through epidural needle 1060 , such that a curved, flexible, distal portion passes into the epidural space ES and through an intervertebral foramen IF of the spine, between target tissue (ligamentum flavum LF and/or facet bone) and non-target neural tissue (cauda equina CE and nerve root NR).
  • the upper region of the probe having a first bipole network may be energized to generate a bipole field as current passes between the anodes and cathodes of the bipole network in the upper region 1062 .
  • the bipole pairs may be monitored to confirm that transmitted energy returned proximally along the probe, as described previously.
  • the lower bipole network may then be energized to generate a bipole field from the curved portion of probe 1062 .
  • energy may be transmitted only to the top, only to the bottom, or to the bottom first and then the top regions.
  • energy may be further transmitted to electrodes on left and right regions of probe 1062 .
  • any suitable number of electrodes may form the bipole network of a particular region.
  • patient response may be monitored manually or via multiple patient feedback devices (not shown in FIG. 26 ), such as, but not limited to, accelerometers or EMG electrodes.
  • patient feedback devices such as, but not limited to, accelerometers or EMG electrodes.
  • the same amount of energy may be transmitted to the bipole network in the different regions of the probe in series, and amounts of feedback sensed to each transmission may be measured and compared to help localize a nerve relative to probe 1062 . If a first application of energy does not generate any response in the patient, a second application of energy at higher level(s) may be tried and so forth, until a general location of nerve tissue can be determined.
  • the method may involve determining a threshold amount of energy required by bipole network to stimulate a response in the patient. These threshold amounts of energy may then be compared to determine a general location of the nerve relative to the probe. In another alternative embodiment, some combination of threshold and set-level testing may be used.
  • nerve probe 1062 may include a guidewire lumen through which a guidewire may be passed, once it is determined that device 1062 is placed in a desired position between target and non-target tissue (e.g., avoiding a nerve adjacent to the upper region).
  • guidewire 1064 may be left in place between target tissue (such as ligamentum flavum LF and/or facet bone) and non-target tissue (such as cauda equina CE and nerve root NR).
  • Any of a number of different minimally invasive or percutaneous surgical devices may then be pulled into the spine behind guidewire 1064 or advanced over guidewire 1064 , such as the embodiment shown in FIG. 23 and others described by the assignee of the present application in other applications incorporated by reference herein.
  • FIGS. 27A-27H another embodiment of a method for accessing an intervertebral foramen IF and verifying a location of a probe relative to tissue (such as ligamentum flavum LF and nerve/nerve root NR tissue) is demonstrated.
  • tissue such as ligamentum flavum LF and nerve/nerve root NR tissue
  • an access cannula 1070 may be advanced into the patient over an epidural needle 1072 with attached syringe.
  • cannula 1070 and needle 1072 may be advanced using a loss of resistance technique, as is commonly performed to achieve access to the epidural space via an epidural needle.
  • a curved, flexible guide 1074 having an atraumatic distal tip 1075 may be passed through cannula 1070 and through opening 1073 in the ligamentum flavum LF, to extend at least partway through an intervertebral foramen IF.
  • the guide 1074 is configured as a device for determining if a nerve is nearby a region of the device.
  • the guide 1074 is an elongate member that includes at least a first region having a bipole pair, or more preferably a bipole network thereon.
  • a first bipole network on or near an external surface of guide 1074 may then be energized, and the patient may be monitored for response.
  • a second bipole network disposed along guide 1074 in a different circumferential region than the region may be energized, and the patient may again be monitored for response. This process of activation and monitoring may be repeated for any number of bipole networks or as the device is manipulated in the tissue, according to various embodiments.
  • guide 1074 may include a first region having a bipole network on its top side (inner curvature), a second region having a bipole network on the bottom side (outer curvature), and a third and fourth region each having a bipole network on the left side and right side, respectively.
  • a preselected amount of electrical energy may be transmitted to a bipole network, and the patient may be monitored for an amount of response (EMG, muscle twitch, or the like).
  • the same (or a different) preselected amount of energy may be transmitted to a second bipole network, the patient may be monitored for an amount of response, and then optionally the same amount of energy may be transmitted sequentially to third, fourth or more bipole networks, while monitoring for amounts of response to each stimulation.
  • the amounts of response may then be compared, and from that comparison a determination may be made as to which region is closest to nerve tissue and/or which region is farthest from nerve tissue.
  • energy may be transmitted to a first bipole electrode and the amount may be adjusted to determine a threshold amount of energy required to elicit a patient response (EMG, muscle twitch, or the like).
  • EMG muscle twitch
  • Energy may then be transmitted to a second bipole network, adjusted, and a threshold amount of energy determined. Again, this may be repeated for any number of bipole networks (e.g., regions). The threshold amounts of required energy may then be compared to determine the location of the regions relative to nerve tissue.
  • a guidewire 1076 may be passed through guide and thus through the intervertebral foramen IF and out the patient's skin. Cannula 1070 and guide 1074 may then be withdrawn, leaving guidewire 1076 in place, passing into the patient, through the intervertebral foramen, and back out of the patient. Any of a number of devices may then be pulled behind or passed over guidewire 1076 to perform a procedure in the spine.
  • nerve localizing device including one or more tight bipole pairs is a device having at least one tight bipole pair that can be scanned (e.g., rotated) over at least a portion of the circumference of the device to detect a nearby nerve.
  • a device having a movable tight bipole pair may include an elongate body that has an outer surface and at least one bipole pair that can be scanned (moved) with respect to the outer surface of the device so as to be energized in different regions of the outer surface of the device to determine if a nerve is nearby.
  • a device may include an elongate body having an outer surface that can be divided up into a plurality of circumferential regions and a scanning that is movable with respect to the outer surface. At least one tight bipole pair (or a bipole network) is attached to the scanning surface, allowing the bipole pair or network to be scanned to different circumferential regions.
  • FIGS. 28A and 28B illustrate variations of a device having a scanning or movable bipole pair (or bipole network).
  • FIG. 28A includes an elongate body 2801 having an outer surface.
  • the elongate body has a circular or oval cross-section, although other cross-sectional shapes may be used, including substantially flat.
  • the surface of the outer body includes a window 2803 region exposing a scanning surface 2807 to which at least one bipole pair is connected.
  • the scanning surface may be moved relative to the outer surface (as indicated by the arrow).
  • the window extends circumferentially, and the scanning surface may be scanned radially (e.g., up and down with respect to the window).
  • FIG. 28B illustrates another variation, in which the distal end of the elongate body 2801 ′ is rotatable with respect to the more proximal region of the device.
  • the distal end includes one or more bipole pairs.
  • the rotatable distal end includes a bipole network 2819 .
  • the bipole network may be energized as it is rotated, or it may be rotated into different positions around the circumference of the device and energized after it has reached each position.
  • the devices illustrated in FIGS. 28A and 28B may include a controller configured to control the scanning (i.e., rotation) of the bipole pair.
  • the device may also include a driver for driving the motion of the bipole pair.
  • the drive may be a motor, magnet, axel, shaft, cam, gear, etc.
  • the controller may control the driver, and may control the circumferential position of the bipole pair (or bipole network).
  • the device may also include an output for indicting the circumferential region of the bipole network or pair.
  • the scanning bipole pair can be used to determine if a nerve is near the device by moving the bipole pair or network with respect to the rest of the device (e.g., the outer surfaced of the elongate body).
  • the device may be used to determine if a nerve is nearby the device by scanning the bipole pair (or a bipolar network comprising a plurality of bipole pairs) across a plurality of circumferential regions of the outer surface of the elongate body, and by energizing the bipole pair(s) when it is in one of the circumferential regions.
  • the bipole pair(s) may be energized as they are moved, or they may be energized once they are in position. The movement may be reciprocal (e.g., back and forth) or rotation, or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Neurology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Neurosurgery (AREA)
  • Physiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Described herein are devices, systems and methods for determining if a nerve is nearby a device or a region of a device. In general, a device for determining if a nerve is nearby a device includes an elongate body having an outer surface with one or more bipole pairs arranged on the outer surface. Bipole pairs may also be referred to as tight bipoles. The bipole pairs may be arranged as a bipole network, and may include a cathode and an anode that are spaced relatively close together to form a limited broadcast field. In general, the broadcast filed is a controlled or “tight” broadcast field that extends from the bipole pair(s). Methods of using these devices and system are also described.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/090,944, filed on Apr. 20, 2011, titled “METHOD, SYSTEM AND APPARATUS FOR NEURAL LOCALIATION,” now Publication No. US-2011-0196257-A1, which is a divisional of U.S. patent application Ser. No. 12/060,229, filed on Mar. 31, 2008, titled “METHOD, SYSTEM AND APPARATUS FOR NEURAL LOCALIZATION,” now U.S. Pat. No. 7,959,577, which claims priority to U.S. Provisional Patent Application Nos. 61/020,670, filed on Jan. 11, 2008, titled “DEVICES AND METHODS FOR TISSUE LOCALIZATION AND IDENTIFICATION;” 61/017,512, filed on Dec. 28, 2007, titled “METHOD, SYSTEM AND APPARATUS FOR TISSUE LOCALIZATION AND IDENTIFICATION;” 60/976,029, filed on Sep. 28, 2007, titled “METHOD AND APPARATUS FOR NEURAL LOCALIZATION;” and 60/970,458, filed Sep. 6, 2007, titled “NERVE TISSUE LOCALIZATION SYSTEM.” Each of these provisional patent applications is herein incorporated by reference in its entirety.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • BACKGROUND
  • Many types of surgical intervention require manipulation of one or more medical devices in close proximity to a nerve or nerves, and therefore risk damage to the nerve tissue. For example, medical devices may be used to cut, extract, suture, coagulate, or otherwise manipulate tissue including or near neural tissue. It would therefore be beneficial to precisely determine the location and/or orientation of neural tissue when performing a medical procedure.
  • Knowing the location or orientation of a nerve in relation to a medical device (e.g., a probe, retractor, scalpel, etc.) would enable more accurate medical procedures, and may prevent unnecessary damage to nearby nerves. Although systems for monitoring neural tissue have been described, these systems are relatively imprecise. Further, many of these systems require large current densities (which may also damage tissue) and may be severely limited in their ability to accurately guide surgical procedures. For example, in many such systems a current is applied from an electrode (e.g., a needle electrode) in order to evoke an efferent muscular response such as a twitch or EMG response. Such systems typically broadcast, via the applied current, from the electrode and the current passes through nearby tissue until it is sufficiently near a nerve that the current density is adequate to depolarize the nerve.
  • Because the conductance of biological tissue may vary between individuals, over time in the same individual, and within different tissue regions of the same individual, it has been particularly difficult to predictably regulate the applied current. Furthermore, the broadcast fields generated by such systems are typically limited in their ability to spatially resolve nerve location and/or orientation with respect to the medical device.
  • For example, US patent application 2005/0075578 to Gharib et. al. and US 2005/0182454 to Gharib et al. describe a system and related methods to determine nerve proximity and nerve direction. Similarly, U.S. Pat. No. 6,564,078 to Marino et al. describes a nerve surveillance cannula system and US 2007/016097 to Farquhar et al. describes a system and method for determining nerve proximity and direction. These devices generally apply electrical current to send current into the tissue and thereby depolarize nearby nerves. Although multiple electrodes may be used to stimulate the tissue, the devices, systems and methods described are do not substantially control the broadcast field. Thus, these systems may be limited by the amount of current applied, and the region over which they can detect nerves.
  • Thus, it may be desirable to provide devices, systems and methods that controllably produce precise electrical broadcast fields in order to stimulate adjacent neural tissue, while indirectly or directly monitoring for neural stimulation (e.g. EMG, muscle movement, or SSEP), and thereby accurately determine if a nerve is in close proximity to a specified region of the device.
  • SUMMARY OF THE DISCLOSURE
  • Described herein are devices, systems and methods for determining if a nerve is nearby a region of a device. In general, the devices may include one or more bipole pairs that can be excited by the application of a current or voltage to produce a bipole field between the anode(s) and cathode(s). These bipoles may be referred to as “tight” bipole pairs because the bipole field produced is limited to the adjacent region relatively near the surface of the device. In some variations the bipole field is formed by a bipole network comprising a plurality of anodes and cathodes arranged along an outer surface of the device. Multiple bipole pairs or multiple bipole networks maybe arranged in different regions along the outer surface of the device.
  • For example, described herein are devices that are capable of determining if a nerve is nearby a region of the device. These devices may include an elongate body having an outer surface, and a bipole network arranged along the outer surface. The bipole network typically includes a plurality of anodes and a plurality of cathodes, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along a portion of the device's outer surface.
  • In some variations the plurality of anodes are in electrical communication with a first anodal conductor. For example, the plurality of anodes may all be positioned in a single region of the device (e.g., the outer surface of the device) and may all connect to a single connector. In some variations the plurality of anodes are effectively formed from a single anode. For example, all of the anodes in a particular region may be formed from a single anodal wire. Individual anodes forming the bipole network may be formed as openings (or uninsulated regions) through the body of the device electrically exposing the anodal conductor (e.g., wire).
  • Similarly, any of the devices described herein may include a plurality of cathodes that are all in electrical communication with a first cathodal conductor. As mentioned for the anodes, the cathodes forming a bipole network may be formed from the same cathodal conductor, such as a wire having multiple regions that are exposed (or uninsulated) to form the cathodes.
  • Alternatively, in some variations the individual anodes and/or cathodes forming the bipoles of the devices described herein (including the bipoles of a bipole network) may be separately connected to the power supply and/or controller. For example, each anode and/or cathode may be separately wired back to the controller, allowing individual control of each anode and/or cathode.
  • The anodes and cathodes forming the bipole network may be arranged so that the current from a particular cathode or anode passes substantially to an adjacent cathode or anode rather than spreading out or broadcasting. Thus, the broadcast field formed when the bipoles are excited by the application of energy may be limited or controlled. For example, each anode of a bipole network may be located less than 2 mm from at least one cathode. In some variations the anodes and cathodes form an alternating pattern (e.g., of adjacent anodes/cathode/anode). As used herein, a bipole network (or a plurality of bipoles) may be formed as a “tripolar” electrode arrangement, in which an anode is adjacent to two cathodes, or a cathode is adjacent to two anodes.
  • In some variations, the anodes forming a bipole network are arranged in a line. Similarly, the cathodes may be formed in a line. For example, when the anodes of a bipole network are formed from a single anodal conductor such as an insulated wire, the openings through the electrical insulator that expose the wire may be arranged in a line (including a curved or straight line). In some variations, an anodal wire forms the anodes of a bipole network, and a cathodal wire forms the cathodes of the bipole network, and the wires are arranged in parallel with each other on or in the body of the device. In some variations, the anodal and cathodal wires are arranged in a helical pattern.
  • The electrodes forming a bipole may have any appropriate dimension, particularly relatively smaller dimensions. For example, the anode and/or cathode may have a surface area of less than 5 mm2 (or less than 3 mm2, less than 2 mm2, less than 1 mm2, etc.). The cathode may be the same size as the anode, or the sizes of the cathodes and anodes may be different.
  • Some device variations have a plurality of bipole networks that are arranged in a non-overlapping fashion along the outer surface. For example, the outer surface of the device may contain two or more regions that each includes a bipole network.
  • Also described herein are devices capable of determining if a nerve is nearby one or more regions of the device that include an outer surface having a first region and a second region, a first bipole network comprising a plurality of anodes and a plurality of cathodes, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along the first region of outer surface, and a second bipole network comprising a plurality of anodes and a plurality of cathodes, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along the second region of outer surface.
  • As described above, the plurality of anodes in the first bipole network may be formed along a first anodal conductor and the plurality of cathodes in the first bipole network may be formed along a first cathodal conductor. Similarly, the plurality of anodes in the second bipole network may be formed along a second anodal conductor and the plurality of cathodes in the second bipole network may be formed along a second cathodal conductor.
  • The dimension and arrangement of the anodes and cathodes within each bipole network may be formed as described above.
  • In some variations, the bipole field formed along the first region of the outer surface does not overlap with the bipole field formed along the second region of the outer surface. For example, the substantially continuous bipole filed may be formed by applying current or voltage simultaneously to all of the anodes and cathodes so that the bipole filed extends between adjacent anodes and cathodes to form a region in which the bipole fields connect the adjacent anodes and cathodes to form a stitched together length. This substantially continuous bipole filed provides a length along the surface of the device which may be used to detect a nerve near this region of the surface. For example, the plurality of anodes of the first bipole network may be arranged in a line.
  • In some variations, a first connector electrically is connected to the anodes of the first bipole network and a second connector electrically connected to the cathodes of the first bipole network. For example, the anodes of the first bipole network may be formed from a single anodal conductor and the cathodes of the first bipole network may be formed from a single cathodal conductor. Similarly a third connector may be electrically connected to the anodes of the second bipole network and a fourth connector electrically may be connected to the cathodes of the second bipole network.
  • Also described herein are devices capable of determining if a nerve is nearby one or more regions of the device that include an outer surface having a first region and a second region, a first bipole network in the first region and a second bipole network in the second region. The first bipole network may include a plurality of anodes in electrical communication with a first anodal conductor and a plurality of cathodes in electrical communication with a first cathodal conductor, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along the first region of outer surface. The second bipole network in the second region may include a plurality of anodes in electrical communication with a second anodal conductor, and a plurality of cathodes in electrical communication with a second cathodal conductor, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along the second region of outer surface.
  • As mentioned above, the bipole field formed along the first region may not overlap with the bipole field formed along the second region when these bipole fields are excited.
  • Also described herein are devices capable of determining if a nerve is nearby a region of the device that include an elongate body having an outer surface, wherein the outer surface includes a first region and a second region, a first bipole network in the first region, and a second bipole network in the second region. The first bipole network may include a first anodal conductor forming a plurality of anodes within the first region, and a first cathodal conductor forming a plurality of cathodes within the first region. The plurality of anodes and the plurality of cathodes in the first region may be configured to form a substantially continuous bipole field in the first region. Similarly, the second bipole network in the second region may include a second anodal conductor forming a plurality of anodes located within the second region and a second cathodal conductor forming a plurality of cathodes located within the second region, wherein the plurality of anodes and the plurality of cathodes in the second region are configured to form a continuous bipole field in the second region.
  • Also described herein are devices capable of determining if a nerve is nearby a region of the device that include an elongate body having an outer surface and a plurality of anodes and cathodes on the outer surface, wherein the anodes and cathodes are arranged to form a substantially continuous broadcast field between the plurality of anodes and cathodes such that the broadcast field is formed by adjacent bipole pairs of anodes and cathodes which share either an anode or cathode.
  • As mentioned, the plurality of anodes may be in electrical communication with a first anodal conductor, and the plurality of cathodes may be in electrical communication with a first cathodal conductor. In this variation, bipole pairs (formed by an anode and cathode) are arranged adjacent to each other so that they can form a substantially continuous broadcast field (e.g., bipole filed). Thus, adjacent bipole pairs share either a cathode or an anode, and an anode may communicate electrically with one or more adjacent cathode, and a cathode may communicate with one or more adjacent anodes. This arrangement allows a single network (in some cases formed by a single cathodal conductor and a single anodal conductor) to span a larger region of the surface using a relatively small exposed electrode area. As described below, there may also be advantages in the ability to detect adjacent nerves based on the multiple field orientations.
  • In some variations, the device also includes a second, non-overlapping plurality of anodes and cathodes on the outer surface configured to form a substantially continuous broadcast field between the second plurality of anodes and cathodes such that the broadcast field is formed by adjacent bipole pairs of anodes and cathodes which share either an anode or cathode. For example, multiple regions on the surface (including more than two) may each include a plurality of anodes and cathodes configured to form a substantially continuous broadcast field.
  • For example, a device capable of determining if a nerve is nearby a region of the device may include an elongate body having an outer surface, wherein the outer surface includes a first region and a second region, a plurality of anodes and cathodes in the first region, wherein the anodes and cathodes are arranged in the first region to form a substantially continuous broadcast field between the plurality of anodes and cathodes such that the broadcast field is formed by adjacent bipole pairs of anodes and cathodes which share either an anode or cathode, and a plurality of anodes and cathodes in the second region, wherein the anodes and cathodes are arranged in the second region to form a substantially continuous broadcast field between the plurality of anodes and cathodes such that the broadcast field is formed by adjacent bipole pairs of anodes and cathodes which share either an anode or cathode. The broadcast field of the first region does not substantially overlap with the broadcast field of the second region.
  • For example, also described herein are devices capable of determining if a nerve is nearby a region of the device that include an outer surface, a plurality of adjacent bipolar electrode pairs within a first region of the surface, wherein the bipolar electrode pairs are formed by alternating anodes and cathodes such that adjacent bipole pairs share either an anode or a cathode, wherein the anodes in the first region are electrically continuous and the cathodes in the first region are electrically continuous and the adjacent bipole pairs form an angle of less than 180 degrees. This arrangement may also be referred as forming a “zigzag” pattern of bipole pairs.
  • Also described herein are systems capable of determining if a nerve is nearby one or more regions of a device. The systems may include any of the variations of the devices described herein as well as one or more additional elements. For example, a system capable of determining if a nerve is nearby one or more regions of a device and a controller. The device may include a device with an outer surface having a first region and a second region, a first bipole network including a plurality of anodes and a plurality of cathodes, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along the first region of outer surface, and a second bipole network including a plurality of anodes and a plurality of cathodes, wherein the plurality of anodes and the plurality of cathodes are configured to form an effectively continuous bipole field along the second region of outer surface. The controller may be configured to switch between applying energy to form the bipole field of the first bipole network or applying energy to form the bipole field of the second bipole network.
  • The system may also include a power source connected to the controller. The power source may be a battery. In some variations the system includes one or more sensors. In particular, the sensors may be configured for detecting stimulation of a nerve. For example, motion detectors, muscle twitch detectors, nerve depolarization detectors, EMG detectors, etc.
  • As already described, in some variations of the device, the plurality of anodes in the first bipole network may be in electrical communication with a first anodal conductor and the plurality of cathodes in the first bipole network may be in electrical communication with a first cathodal conductor; similarly the plurality of anodes in the second bipole network may be in electrical communication with a second anodal conductor and the plurality of cathodes in the second bipole network may be in electrical communication with a second cathodal conductor.
  • Any of the features or arrangements of the devices described herein may be part of the systems for determining if a nerve is nearby one or more regions of a device.
  • Also described herein are device for determining if a nerve is nearby a region of the device that only require a single tight bipole pair in each region of the outer diameter of an elongate member. For example, described herein are devices for determining if a nerve is nearby including an elongate device with an outer surface having a first circumferential region and a second circumferential region, a first tight bipole pair within the first circumferential region, wherein the first tight bipole pair comprises an anode and a cathode that are separated by a distance that is less half the length of the first circumferential region, and a second tight bipole pair within the second circumferential region, wherein the second tight bipole pair comprises an anode and a cathode that are separated by a distance that is less than half the length of the second circumferential region, wherein the broadcast field of the first bipole pair does not overlap with the broadcast field of the second bipole pair.
  • In some variations, each anode is located less than 2 mm from at least one cathode. Further, each anode may have a surface area of less than 5 mm2, and/or each cathode may have a surface area of less than 5 mm2 (e.g., less than 3 mm2, less than 2 mm2, less than 1 mm2, etc.). In some variations, the first tight bipole pair is separated from the second tight bipole pair by a distance that is greater than the distance separating either the first tight bipole pair or the second tight bipole pair.
  • Also described herein are systems for determining if a nerve is nearby a region of a probe that include an elongate probe with a surface having a first region and a second region, a first tight bipole pair within the first region, a second tight bipole pair within the second region (wherein the broadcast field of the first tight bipole pair does not substantially overlap with the broadcast field of the second tight bipole pair), and a controller configured to switch between the first or second tight bipole pairs so that energy may be applied to either the first or second tight bipole pairs, wherein the system is configured to enable determination of whether the tissue is detectably closer to the first region or the second region.
  • This system, as with any of the systems described herein, may include a power supply connected to the controller, wherein the controller regulates the power applied to the tight bipole pairs. The system may also include one or more sensors, such as a sensor for determining stimulation of a nerve.
  • Also described herein are devices for determining if a nerve is nearby the device that includes one or more rotatable bipole pairs. For example, described herein are devices for determining if a nerve is nearby the device, the device including an elongate body having an outer body surface and a plurality of circumferential regions, a scanning surface that is movable with respect to the outer body surface, and a bipolar electrode pair connected to the scanning surface, wherein the bipole pair comprises an anode and a cathode configured to form a bipole field, wherein the scanning surface is configured to scan the bipolar electrodes across at least two of the circumferential regions to determine if a nerve is near a circumferential region.
  • The device may also include a controller configured to control the scanning of the bipolar electrode pair. In some variations the devices also include a driver for driving the motion of the scanning surface. The driver may be a motor or other moving mechanism that drives the movement of the bipole pair. The device may also include an output for indicating which circumferential region the bipolar electrode pair corresponds to. For example, as the bipole pair is rotated, the output may indicate where around the circumference of the elongate body the bipole pair is positioned. This may help coordinate the location of the nerve relative to the probe.
  • The scanning surface (including the bipole pair(s)) may be movable in any appropriate fashion. For example, in some variations the scanning surface is rotatable with respect to the outer body surface.
  • In some variations, the scanning surface includes a plurality of bipolar electrode pairs.
  • In operation, any of the devices and systems described herein may be used to determine if a nerve is nearby the device.
  • For example, a method of determining if a nerve is nearby a region of a device may include the steps of energizing a first tight bipole pair within a first circumferential region of the device to form a first broadcast field, energizing a second tight bipole pair within a second circumferential region of the device to form a second broadcast field, and determining if a nerve has been stimulated by either the first broadcast field or the second broadcast field.
  • The step of energizing the second tight bipole pair may include forming a second broadcast field that does not substantially overlap with the first broadcast field. Thus, energy (e.g., current, voltage) may be applied to the bipole pairs (which may be a bipole network) of different circumferential regions at different times in order to determine which region is closer to the device.
  • The method may also include the step of determining whether a nerve is closer to the first circumferential region or the second circumferential region. In some variations the method includes the step of monitoring the output of the nerve, such as muscle twitch, EMG, SSEP, or other methods for determining depolarization of the nerve, directly or indirectly. If the nerve is depolarized when stimulating the bipole pair(s) in one region but not when stimulating other regions, then the nerve is likely closer to the region that resulted in stimulation. Alternatively, if the nerve is stimulated after exciting bipole pairs from more than one region, the nerve may be relatively near all of these regions, but may be assumed to be closer to the region that results in the greatest output response.
  • The method may also include switching between the bipole pairs to apply energy. Thus, the energy may be applied separately (in time) between different regions.
  • Also described herein are methods of determining if a nerve is nearby a region of a device using a moving bipole pair. For example, the method may include the steps of energizing a bipolar electrode pair, scanning the bipolar electrode pair across a plurality of circumferential regions of the outer surface of an elongate body, and determining if a nerve has been stimulated. The method may also include determining which circumferential region corresponds to the stimulation of a nerve.
  • The step of scanning the bipolar electrode pair includes rotating the bipole pair with respect to the outer surface of the elongate body. In some variations, the step of energizing a bipolar electrode pair comprises energizing a plurality of bipolar electrode pairs.
  • Also described herein are methods of determining if a nerve is nearby a device when the bipole pair forms part of a bipole network in an outer surface region of a device. For example, a method of determining if a nerve is nearby a device may generally include energizing a plurality of bipolar electrodes within a first region of an outer surface of the device to form a first substantially continuous broadcast field, and determining if a nerve has been stimulated by energizing the first substantially continuous broadcast field.
  • The method may also include the steps of energizing a plurality of bipolar electrodes within a second region of an outer surface of the device to form a second substantially continuous broadcast field when not energizing the plurality of electrodes within the first region, and determining if a nerve has been stimulated by the second substantially continuous broadcast field. In some variations, the method includes the steps of determining whether a nerve is closer to the first region or the second region.
  • Also described herein are methods of determining if a nerve is nearby a device including the steps of energizing a plurality of bipolar electrodes within a first region of an outer surface of the device, energizing a plurality of bipolar electrodes within a second region of an outer surface of the device, and determining whether a nerve is closer to the first region or the second region. The plurality of bipole pairs within the first region may be substantially simultaneously energized. The plurality of bipole pairs within the second region may be substantially simultaneously energized.
  • Also described herein are methods of determining if a nerve is nearby a device including the steps of energizing a plurality of bipolar electrodes within a first region of an outer surface of the device to form a first substantially continuous broadcast field, energizing a plurality of bipolar electrodes within a second region of an outer surface of the device to form a second substantially continuous broadcast field, wherein the second broadcast field does not overlap with the first broadcast field, and determining whether a nerve is closer to the first region or the second region.
  • Another method of determining if a nerve is nearby a device includes energizing a plurality of bipolar electrodes within a first region of an outer surface of the device, wherein the plurality of bipolar electrodes comprise one or more anodes electrically connected to a first anodal conductor and one or more cathodes electrically connected to a first cathodal conductor, energizing a plurality of bipolar electrodes within a second region of an outer surface of the device, wherein the plurality of bipolar electrodes comprise one or more anodes electrically connected to a second anodal conductor and one or more cathodes electrically connected to a second cathodal conductor, and determining whether a nerve is closer to the first region or the second region.
  • Any of the devices described herein may be used as part of a treatment method for treating tissue that includes the method of determining if a nerve is nearby the device. The device may be a treatment device or a device involved in the procedure. Thus, any of the devices described herein may be integrated into known devices or instruments.
  • For example, a method of determining if a nerve is nearby a device may include the steps of positioning a device within a tissue, wherein the device comprises a plurality of circumferential regions around the device, wherein each circumferential region includes a plurality of electrodes comprising at least one bipole pair, energizing the electrodes in a first circumferential region to a plurality of stimulation levels, determining a first stimulation level from the plurality of stimulation levels based on a response of a nerve, energizing the electrodes in the other circumferential regions to the first stimulation level, and determining which circumferential region the nerve is nearest to. The step of energizing the electrodes in the first circumferential region may include energizing the electrodes in to a plurality of increasing stimulation levels. In some variations, the electrodes within each circumferential region may comprise a plurality of bipole pairs configured to form a substantially continuous broadcast field when energized.
  • The step of energizing the electrodes in the first circumferential region may comprises energizing the electrodes to increasing stimulation levels between 0.001 mV and 100 mV (e.g., between 0.01 mV and 10 mV, etc.). In some variations the step of energizing the electrodes includes applying a ramp of stimulation at increasing levels (e.g., increasing voltage).
  • The step of determining the first stimulation level may include determining the first stimulation level at which the nerve responds.
  • In some variations, the step of energizing the electrodes in the other circumferential regions comprises sequentially energizing the electrodes in the other circumferential regions.
  • The step of determining which circumferential region the nerve is nearest to may include determining which circumferential region evokes the largest response from the nerve when the electrodes within that circumferential region are energized to the first stimulation level.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A shows an example of a generic device including an elongate body and a bipole pair.
  • FIGS. 1B and 1C show a tight bipole pair.
  • FIGS. 1D-1F show bipole networks.
  • FIGS. 2A-2D are various views of portions of a neurostimulation device, according to one embodiment of the present invention.
  • FIG. 3 is cross-section through a device showing four circumferential regions.
  • FIG. 4 is another cross-section through a device having four circumferential regions.
  • FIGS. 5A and 5B illustrate side views and cross-sectional views, respectively, of one variation of a portion of a nerve localization device.
  • FIGS. 6A and 6B illustrate side views and cross-sectional views, respectively, of another variation of a portion of a nerve localization device.
  • FIGS. 7A and 7B illustrate side views and cross-sectional views, respectively, of another variation of a portion of a nerve localization device.
  • FIG. 8 is a side view of a nerve localization device showing multiple current path direction features.
  • FIG. 9 is a circuit diagram of one variation of a portion of a nerve localization device.
  • FIG. 10 is a perspective view of a portion of a nerve localization device having two electrodes with rotating brushes.
  • FIGS. 11A-11C are simplified diagrams of one variation of a nerve localization device.
  • FIG. 11D is a partial, simplified diagram of a rongeur tip configured as a nerve localization device.
  • FIGS. 12A-12C illustrate elongate bodies having a plurality of regions each including at least one bipole pair.
  • FIGS. 13A-13D show partial cross-sections through various devices having elongate bodies including multiple regions.
  • FIGS. 14A-14B illustrate one variations of a device employed in tissue.
  • FIG. 14C illustrates another variation of a device in tissue.
  • FIGS. 14D and 14E show a cross-section and a partial perspective view, respectively, of a device having an elongate body including four regions.
  • FIG. 14F show a schematic illustration of an electrode that may form part of a tight bipole pair.
  • FIG. 15 is a cross-section through another variation of a device.
  • FIGS. 16A-16D illustrate exemplary signals that may be applied to one or more bipole pairs or networks within a region of a device.
  • FIG. 17A illustrates a system for determining if a nerve is nearby applied to a patient.
  • FIG. 17B-17D are simplified diagrams of sensors which may be used as part of a system for determining if a nerve is nearby.
  • FIGS. 18A-18B illustrate variations of a device for determining if a nerve is nearby.
  • FIGS. 19A-19C are flow diagrams illustrating method of determining if a nerve is nearby a region of a device.
  • FIG. 20 is a block diagram illustrating components that may be part of a system for determining if a nerve is nearby a device.
  • FIG. 21 is a cross-sectional view of a spine, showing a top view of a lumbar vertebra, a cross-sectional view of the cauda equina, and two exiting nerve roots.
  • FIG. 22 is a side view of a lumbar spine.
  • FIG. 23 is a cross-sectional view of a spine, illustrating a minimally invasive spinal decompression device and method including the use of neural localization as described herein.
  • FIG. 24 is a block diagram of one variation of a nerve tissue localization system.
  • FIG. 25 is a perspective view of a nerve tissue localization system.
  • FIGS. 26A-26F are cross-sectional views of a spine, illustrating one method for using a nerve tissue localization system.
  • FIGS. 27A-27H are cross-sectional views of a spine, illustrating another method for using a nerve tissue localization system.
  • FIGS. 28A and 28B show variations of devices for determining if a nerve is nearby.
  • DETAILED DESCRIPTION
  • Described herein are devices, systems and methods for determining if a nerve is nearby a device or a region of a device. In general, a device for determining if a nerve is nearby a device includes an elongate body having an outer surface with one or more bipoles arranged on the outer surface. These bipoles may also be referred to as tight bipoles, and include a cathode and an anode that are spaced relatively close together to form a limited broadcast field. The broadcast field may be referred to as the bipole field, or the field formed by the excitation of the bipole pair. In general, the bipole filed is a controlled or “tight” broadcast field that extends from the bipole pair(s).
  • A device for determining if a nerve is nearby the device may be referred to as a nerve localization device, a localization device, or a neurostimulation device. The elongate body region of the device may be referred to as a probe, although it should be understood that any appropriate surgical or medical device may be configured as a device for determining if a nerve is nearby the device. Particular examples of such devices are described below. For example, FIG. 1A shows a generic device 1 configured as a nerve localization device that having an elongate body 5 that may be configured to determine if a nerve is nearby.
  • The outer surface of a device for determining if a nerve is nearby a region of the device may have two or more regions. In some variations, each region includes two or more bipole pairs that are arranged to detect a nearby nerve. The regions may be arranged around or along the outer surface of the device. For example, the regions may be circumferential regions that divide the outer surface up along the circumference. Examples of different regions are described below. Each region may include one or more bipole pairs, which may be used to detect a nearby nerve.
  • Returning to FIG. 1A, the elongate body 5 has an outer surface with a blunt (atraumatic) end. In general, the outer body of the device 5 may be formed of any appropriate material, including polymeric materials such as PEBAX, PEEK or the like. Non-conducting and biocompatible materials may be particularly preferred. In FIG. 1A, a single bipole pair 7 is shown near the distal end of the device. FIG. 1B illustrates an approximation of the current lines for a dipole pair, including the cathode 8 and the anode 6. These current lines reflect the dipole field to broadcast field for the dipole pair.
  • A tight bipole pair may have a very limited broadcast field, as reflected in FIG. 1C, which shows the bipole pair of FIG. 1B having only the major current line. In some variations the size of the anode 6 and cathode 6 forming the bipole pair are relatively small, particularly (e.g., less than 5 mm2, less than 3 mm2, less than 2 mm2, less than 1 mm2), and the anode and cathode are positioned sufficiently nearby so that the majority of current passes between the anodes and cathodes. For example, the anode and cathode of a bipole pair may be separated by less than 5 mm, less than 2 mm, less than 1 mm, etc.
  • The limited broadcast field may allow stimulation of only nerves that are very near the bipole pair. This may enhance accuracy, and help prevent or limit tissue damage, particularly at the low stimulation.
  • When a region of the outer surface of a device includes more than one bipole, the bipoles may be arranged as a bipole network. A bipole network includes at least two bipoles that are formed by at least three electrodes (e.g., two anodes and a cathode or two cathodes and an anode). The bipole network is typically arranged so that all of the bipoles in the network are activated synchronously to create an effectively continuous bipole field along the outer surface. For example, FIGS. 1D and 1E illustrates an example of an effectively continuous bipole filed. In this example, the anodes and cathodes forming the bipolar network are arranged so that the current between the two electrodes forms a zigzag pattern. Bipole pairs are located adjacent to each other and share either an anode or a cathode. FIG. 1F illustrates another example of a bipole network, in which adjacent bipole pairs do not share anode or cathodes. This bipole network also forms an effectively continuous bipole field along the outer surface of the device. Adjacent bipole pairs are positioned close to each other.
  • In some variation all of the cathodes forming a bipole network are electrically connected to each other and all of the anodes forming a bipole network are electrically connected. For example, the anodes of the bipole network may all be formed from a single anodal connector, and all of the cathodes of a bipole network may be formed from a single cathodal connector. Alternatively, all of the cathodes of the bipole network may be formed separately and connected distally on the device. For example, all of the cathodes may be wired to a single connector that connects to a power source or controller configured to energize the bipole network in a particular region.
  • A device may include multiple bipole networks. For example, different regions on the surface of the device may include different bipole networks (e.g., each region may have its own bipole network). The bipole networks in different regions may be non-overlapping, and may form effectively non-overlapping continuous bipole fields. “Effectively non-overlapping bipole fields” means that the broadcast fields of two or more bipole networks do not substantially overlap. For example, the component of a broadcast field (e.g., intensity) due to a second bipole network is less than 15% (or 10%, or 8% or 5% or 1%) of the component due to a first bipole network at any position near the first bipole network, particularly at the excitation ranges described herein.
  • A device for determining if a nerve is nearby may also include a controller for controlling the application of energy to the bipoles. In particular, the application of energy to the bipoles may be coordinated as described in the methods sections below, so that the activation of a nerve can be correlated to a particular region of the surface of the device.
  • In some variations, the bipole or bipole networks are movable with respect to the outer surface of the device. Moving the bipole (e.g., rotating it a around the outer surface) may allow a bipole field (a tight or narrow broadcast field) to be correlated with different regions of the device. This is also described in greater detail below.
  • Nerve Localization Devices
  • FIG. 2A, illustrates the distal portion of one embodiment of a device capable of determining if a nerve is nearby. This exemplary device 80 is shown in partial cross-section. For clarity, FIG. 2A does not show the bipoles, thus showing more clearly the structure of probe device 80. In this example, the device 80 includes a rigid cannula 82 (or tube or needle) and a curved, flexible guide 84 that can slide through cannula 82. The guide 84 may include a Nitinol core 86 (or inner tube) having a central lumen 88 and an atraumatic, rounded tip 87 and may also include a sheath 89 (or coating or cover) disposed over at least part of Nitinol core 86. The sheath 89 may comprise, in one embodiment, a polymeric material such as PEBAX, PEEK or the like, or any other suitable material, and may form an outer surface having different regions. Core 86 may be made of Nitinol or may alternatively be made of one or more other substances, such as spring stainless steel or other metals. Lumen 88, in some embodiments, may be used to pass a guidewire.
  • FIG. 2B is a perspective view of a portion of the probe 80 of FIG. 2A, in which two electrically conductive members 90 are visible. One member may be a cathodal conductor and one member may be an anodal conductor. A probe may include as many electrode pairs as desired, such as eight, sixteen, thirty-two, etc. In this example, the probe may have a preformed, curved shape and may be made of at least one flexible, shape memory material, such as Nitinol. In this way, guide 84 may be passed through cannula 82 in a relatively straight configuration and may resume its preformed curved shape upon exiting a distal opening in cannula 82. This curved shape may facilitate passage of guide 74 around a curved anatomical surface, such as through an intervertebral foramen of a spine.
  • The exemplary device shown in FIGS. 2A-2D may include at least one bipole network, including a plurality of anodes and cathodes. In this example, anodes of a single bipole network are all formed from the same anodal conductor, and the cathodes of the same anodal conductor are all formed from the same cathodal conductor. FIG. 2C illustrates this. In FIG. 2C a section of probe sheath 89, including the outer surface region, is shown in more detail. In one embodiment, sheath 89, which fits directly over at least a portion of Nitinol core 86 (FIG. 2A), includes multiple, longitudinal lumen 92, each of which may contain an electrical conductor 94 forming a plurality of electrodes (e.g., anodes or cathodes). In some embodiments, conductors 94 may be slideably disposed inside lumen 92, while in other embodiments they may be fixedly contained therein. Openings into the sheath 89 form the plurality of cathodes and anodes. The openings may be pores, holes, ports, slits, grooves or the like. Each aperture 96 may extend from an outer surface of sheath 89 to one of conductor lumen 92. As such, apertures 96 may help direct current along paths from one electrical conductor (e.g., cathodal conductor) to the other electrical conductor (e.g., anodal conductor) forming the plurality of bipolar electrode pairs. In some embodiments the conductor 94 may partially extend through and above of the aperture 96 surface. This may be achieved by a conductor 94 that has several bends enabling the apex of the bend to protrude through the aperture 96. Alternatively, the conductor 94 may have sections of its length near the aperature 96 that have a larger diameter than other sections of conductor 94. In a given embodiment, any number of lumen 92, electrical conductors 94 and apertures 96 forming anodes or cathodes may be used. In some embodiments, apertures 96 may extend along a desired length of sheath 89 to approximate, for example, a length of an area to be treated by a device or procedure.
  • FIG. 2D shows a section of sheath 89 is shown in cross section, showing an electrical conductor 94 comprising (i.e., a cathodal conductor) and a current directing aperture 96 (i.e., forming a cathode of a bipole). In some embodiments, some or all of apertures 96 may be filled with a conductive material 97, such as a conductive gel, solid, matrix or the like. Conductive material 97 may serve the dual purpose of helping conduct electric current along a path and preventing non-conductive substances from clogging apertures 96.
  • The example shown in FIGS. 2C-2D has four circumferential regions spaced around the circumference of the outer surface of the sheath region of the device. In this example, each region includes a bipole network formed by an anodal and cathodal conductor that are positioned in parallel. Thus, the bipole network (similar to that shown in FIGS. 1D and 1E) extends along the length of each surface region of the device, and may form an effectively continuous bipolar field along the outer surface.
  • FIG. 3 illustrates a similar arrangement having four regions which each include electrical connectors within the elongate body that may form the bipole network. For example, in FIG. 3, four pairs 102 of anodal and cathodal conductors are shown. The conductors of each pair 102 are close enough together that electric current is transmitted only between electrodes formed by each pair 102 a and not, for example, between electrode pairs formed by other anodal or cathodal conductors 102 b, 102 c, 102 d. In some embodiments, the anodal conductor and the cathodal conductor may be “switched” to change the direction that current is passed between electrodes formed by the two conductors. For example, one conductor of each pair 102 may be designated as the transmission conductor (cathode), and the other electrode of the pair 102 may be designated as the return electrode (anode). When one of the conductors forming the anode or cathode is set to ground, this ground may be isolated from the ground (e.g., an anodal conductor) in other regions of the device, which may help isolate the current to the bipolar network in a single region of the device. In various embodiments, electrodes forming the bipole pair may be spaced at any suitable distance apart by spacing the electrical conductors forming the electrodes of the bipole pair. For example, electrodes of each pair may be spaced about 0.1 mm to about 2 mm apart, or about 0.25 mm to about 1.5 mm apart, or about 0.5 mm to about 1.0 mm apart.
  • FIG. 4 shows another example of a cross-section through a device having pairs 112 of electrical conductors that may form a network of bipole pairs on the surface of the device. In this example, the anodal and cathodal conductors are spaced farther apart. Farther spaced electrode pairs 112 may allow current to pass farther into tissue but may also risk dispersing the current farther and potentially being less accurate. Depending on the specific use and desired characteristics of the device (e.g., sheath 110), the bipole pairs formed may be spaced at any of a number of suitable distances from one another.
  • Alternative arrangements of bipole pairs formed from an anodal and cathodal conductor are shown in FIGS. 5A-7B. For example, FIG. 5A is a side-view of a pair of bipole pairs that are formed by apertures 122, 124 in the body of the device (sheath 120) which expose portions of the cathodal electrical conductor 126 and portions of the anodal conductor 128. Apertures forming the cathodes 122 and anodes 124 are disposed along a length of sheath 120 separated by a distance d. As shown in FIG. 5B, the electrical conductors (i.e., cathodal conductor 126 and anodal conductor 128) are embedded in the elongate body and are spaced apart from each other about a circumferential distance s. In one embodiment, the distance d may be greater than the distance s, so that current is more likely to travel circumferentially between positive and negative electrodes, rather than longitudinally along sheath 120. As can be appreciated from FIGS. 6A and 7A, current may be directed along any of a number of different paths in different embodiments of elongate body (sheath 120), by changing the separation distances of apertures 122, 124 providing access to the electrical conductors 126, 128.
  • For example, in FIGS. 6A and 6B, the cathodal and anodal conductors are positioned in immediately above and below one another, and apertures forming the anodes and cathodes of bipole pairs may be spaced at different distances along the body of the device 130, such that current is more likely to travel between two closer spaced apertures (distance d′) than between two farther spaced apertures (distance d).
  • In FIGS. 7A and 7B, current may be directed along a distance d between apertures forming anodes and cathodes of bipole pairs that are spaced more closely together than the anodal and cathodal conductors of other bipole pairs. As mentioned above, in various embodiments of these nerve localization devices, any combination of anodal or cathodal conductors, apertures forming the anode and cathode pairs, and/or other current direction path features may be included.
  • FIG. 8 shows a portion of a nerve localization device 150. This nerve localization device variant includes a sheath 152 having multiple current directing apertures 154 disposed over a cathodal conductor and an anodal conductor, forming bipole pairs along the outer surface of the device. As shown, current may be driven along multiple paths between pairs of apertures 154 a, 154 b, 154 c, 154 d. Multiple individual currents I1, I2, I3 and I4 add up to the total current IT transmitted between the anodal and cathodal conductor. In various embodiments, the bipole pairs formed 154 may be disposed along any desired length of probe 150. Any number of bipole pairs may be included. As mentioned above, in some variations the cathodes and/or anodes formed in a single region of the device may be formed from multiple (including individual) anodal/cathodal conductors (e.g., wires).
  • FIG. 9 is a circuit diagram 160 for a nerve localization device having two bipole pairs (e.g., eight electrical conductors). In this simple form, electric current may be driven between the electrical conductors along a top, bottom, left and right side, separately. Each of these side forms a different region of the device.
  • Another example of a nerve localization device is shown in FIG. 10. In FIG. 10, the nerve localization device includes two electrical conductors 172, 174 forming at least one bipole pair (not shown) and two rotating brushes 176, 178. Such an embodiment may allow different sides, such as top, bottom, left and/or right sides, to be stimulated with only two electrodes 172, 174, rather than multiple electrode pairs in different sections.
  • The elongate bodies forming part of the nerve localization devices described above may be used with any appropriate controller and/or stimulator configured to energize the bipole pairs. Thus, any of these devices may be used as part of a system including a controller and/or stimulator. In some variations, the elongate body may also be referred to as a probe. Examples of elongate bodies, including elongate bodies having different regions which may each contain one or more bipole pairs, are shown in FIGS. 11A-13D.
  • FIG. 11A is a simplified diagram of one variation of a device 10. This device 10 may be used to perform one or more medical procedures when orientation of the device with respect to an adjacent nerve is desired. Similar to the device shown in FIG. 2A above, this variation 10 includes a cannula 20 and a probe 30. The device 30 includes a tip 40, a top section 32, and a bottom section 34. The device 30 may include multiple bipole pairs 76, 78 or bipole networks consisting of multiple bipole pairs. A first bipole pair or bipole network 76 may be located on a first section 32 and a second bipole pair 78 may be located on a second section 34. In one variation the bipole network or pair 76 may be energized to determine whether a nerve is located near or adjacent to the first or top section 32. The second bipole network or pair 78 may be energized to determine whether a nerve is located near or adjacent to the second or bottom section 34. The first bipole network or pair 76 and the second bipole network or pair 78 may be alternatively energized to independently determine whether a nerve is located near or adjacent to the first section 32 and/or the second section 34.
  • In some variations a bipole pair or network 76, 78 is typically energized with one or more electrical signal(s). The device may monitor the electrical signal applied to the bipole network (or pair) 76, 78, and may monitor the characteristics of the electrical signal and determine whether tissue is near or adjacent the bipole(s) 76, 78 as a function of the monitored electrical signal characteristics. The electrical signal characteristics may include amplitude, phase, impedance, capacitance, and inductance over time or frequency.
  • After an electrical signal is applied to the bipole network or pair 76, 78, an output may be detected. In some variations the nerve localization device includes a sensor or sensors for monitoring the nerve response. For example, the device may monitor one or more sensors anatomically coupled to nerve or afferent tissue enervated by the nerve whose condition is modified by the signal(s) applied to the bipolar network or pair 76, 78. For example, the device may monitor one or more sensors innervated by the nerve tissue such as limb muscles.
  • The nerve localization devices and systems described herein may include one or more indicators or outputs 22, 24. The detectors may provide a user-identifiable signal to indicate the location of the nerve or the status of the system. For example, the nerve localization devices may include one or more light emitting diodes (LEDs), buzzers (or other sound output), a video display, or the like. An LED may be illuminated based on signals generated by, received by, or generated in response to the energized bipole(s) 76 or 78 as discussed above. In some variations the system or devices create a vibration or sound that a user manipulating the device 20 may feel or hear. The intensity of the output may vary as a function of detected signal.
  • As shown in FIG. 11B, a nerve localization device may include a pair of electrical conductors 36 (anodal conductor and cathodal conductor) which form one or more bipole pairs. The anode or a cathode of the bipole pair(s) 76, 78 may be formed as described above via an opening 37 filled with a conductive material 38, such as a conductive gel, solid, matrix, or other conductive material. An example of this is shown in FIG. 11C. Alternatively, the bipole pair 36 and the conductive material 38 could be formed from the same conductive elastic or semi-elastic material. The elongate body of the device 30 may include a bipole network comprising bipole pairs that are configured in a coil or zig-zag pattern along the length of the probe. This arrangement may help ensure continuous conduction during flexion of the probe 30. In another variation, the anodal and/or cathodal conductors are formed of conductive ink (e.g., loaded in an elastomeric matrix) may be deposited on the outside of the probe. The conductive ink could be insulated with the exception of discrete points forming the anode or cathode of the bipole pair. In another embodiment a thin flex circuit could be wrapped around probe to construct the bipoles.
  • FIG. 11D is a partial, simplified diagram of a rongeur jaw 680 configured as a nerve localization device. In this variation the rongeur jaw forms the elongate body of the device on which at least one bipole pair is located. The rongeur jaw 680 may include a lower jaw 682 and an upper jaw 684. The lower jaw 682 may have a tip 688 and a bipolar network or pair 78 on an inner surface. The upper jaw 684 may have a tip 686 and a bipolar network or pair 76 on an inner surface. In one variation, the first bipolar network or pair 78 may be energized to determine whether a nerve is located near or adjacent to the first or bottom jaw 682. The second bipole network or pair 76 may be energized to determine whether a nerve is located near or adjacent to the second or top jaw 684. The first bipolar network or pair 76 and the second bipolar network or pair 78 may be alternatively energized to independently determine whether a nerve is located near or adjacent to the first, bottom jaw 682 and/or the second, upper jaw 684.
  • In operation, a user may employ such a device to ensure that a nerve is located between the lower jaw 682 and upper jaw 684 or that a nerve is not located between the lower jaw 682 and upper jaw 684. A user may then engage the rongeur jaws 680 to excise tissue located between the jaws 682, 684. A user may continue to energize or alternately energize the bipole networks or pairs 76, 78 on either jaw while excising tissue.
  • FIGS. 12A-12C are examples of elongate bodies having regions which include at least one bipole pair, and may include a bipole network. Each elongate body in FIGS. 12A-12C (40, 50, and 60, respectively) may be part of a device or system capable of determining if a nerve is nearby the device, and may be configured as part of surgical instrument such as a rongeur 680, or other instrument. The configuration 40 shown in FIG. 12A includes two longitudinal regions 42, 44 at the distal end. The distal section 42 has a longitudinal length L1 and a width R, which may also be referred to as a radial length. The more proximal section 44 has a longitudinal length L2 and a width of R. Each region 42, 44 includes at least one bipole pair 46, 48. A bipole pair 46, 48 typically includes at least one anode (−) and cathode (+) that can be excited to create a restricted current pathway between the anode and cathode 46, 48.
  • The distance between the anode and cathode pair of may be less than the distance between any of the electrodes forming part of a bipole pair in an adjacent region of the elongate body. For example, the electrodes forming the bipole pair (or bipole network) in the first region 42 are closer to each other than to either the anode or the cathode in the adjacent region 44. Likewise, the distance between the anode and cathode pair in the second region 44 is less than the distance between the anode and the cathode of the first region. For example, the distance between the anode and cathode forming bipole pairs in the first region 42 is labeled D1 and the distance between the anode and cathode in the bipole pair in the second region is labeled D2. D1 may be less than or equal to L1 and R and D2 may be less than or equal to L2 and R. Any appropriate spacing (D1 or D2) may be used between the anodes and cathodes forming the bipole pairs. For example, D1 and D2 may be about 0.25 mm to 2.0 mm apart. In one variation D1 and/or D2 are about 0.50 mm. When a bipole or bipole network in a region 46, 48, is energized, current may flow between the anode and cathode along a conductive pathway substantially only within its respective sections 42, 44. This current flow (and/or the related magnetic field) may be referred to as the ‘broadcast field of the bipole pair or bipolar network. A device including regions having tight bipoles or bipole networks 40 may be employed to determine whether a nerve is closer to the first region 42 or the second 44, as described above. The bipole pairs (or bipole networks) in each region may be alternatively energized and an external sensor(s) can be used to monitor and/or determine whether a nerve is closer to the first region 42 or second region 44.
  • The arrangement of the bipole pairs or bipole network may help determine the sensitivity of the device. For example, D1 may be less than D2, resulting in the bipole pair in the first region having a smaller broadcast field (and a shorter conductive pathway) than the bipole pair 48 in the second region. This may allow detection of a nerve located further from second region than the first region, assuming a nearly equivalent energy is applied to the bipole pairs (or networks) within each region. Of course, the energy applied may be varied between different regions.
  • FIG. 12B shows an example of an elongate member 50 having two regions 52, 54 separated along the longitudinal (or circumferential if the member is rounded) axis of the member 50. Each region 52, 54 may include one or more a bipole pairs 56, 58. For example, each region may include a bipole network formed of multiple bipole pairs. The individual bipole pairs may share anodes and cathodes, as described above. In this example, the width of the first region is the circumferential or linear distance, R1, and the length is the distance L. The width of the second region is R2 and the length is L. The bipole pairs 56, 58 in each region may be longitudinally oriented, radially oriented, or some combination. For example, a bipole network may have anodes and cathodes arranged in a linear pattern (e.g., extending longitudinally) or a zigzag pattern (also extending generally lineally). Other arrangements are possible.
  • FIG. 12C shows another variation of an elongate member having three regions, two arranged longitudinally 62, 64, and one more proximally 63, adjacent to the two distal longitudinal (or circumferential) regions. Each region 62, 63, 64 may include one or more bipoles 66, 67, 68 or bipole networks. The spacing between the electrodes forming the bipoles of a bipole pair or network in one of the regions may be less than the spacing to electrodes outside of the region. This may prevent current from passing from an electrode (e.g., anode, cathode) in one region and electrodes in another region. In some variations the controller or device is configured so that the anodes and/or cathodes are electrically isolated (e.g., do not share a common ground) and may be configured to electrically float when not being energized.
  • FIGS. 13A-13D show partial cross-sections through elongate members 470, 480, 490, 510 which may be used as part of a device for determining if a nerve is nearby. Each region includes multiple (e.g., two or more) regions that each include one or more bipole pairs (e.g., bipole networks). These examples each have a different cross-sectional shape, and have circumferential regions that are oriented differently around the perimeter of the elongate member. For example, FIG. 13A shows a portion of a device having an outer surface that includes two regions or sections 472, 474 that are circumferentially distributed. Each region 472, 474 includes one or more bipoles 476, 478, having at least one anode (−) and one cathode (+) that can be powered so that current flows between the anode and cathode, resulting in a broadcast field. In this embodiment, the distances between the anode and cathode pairs forming the bipoles in each region are less than the distance between the anode of one region and the cathode of the other region. Region 472 may have a radial length R1 and circumferential span of L (e.g., a width of R1*pi); the longitudinal distance or length is not apparent from this cross-section, but may extend for some distance. In this example, a bipole pair in the first region may have an anode and cathode 476 that are separated by a distance (approximately D1) that is less than half the length of the first circumferential region, and the spacing of the tight bipole pair (approximately D2) in the second region may be less than half the length of the second circumferential region. In one variation, D1 and/or D2 may be about 0.50 mm. In some variations the spacing between the bipole pairs in different regions (and within the same region for bipole networks) is approximately the same.
  • The configuration 480 shown in FIG. 13B may also include two circumferential regions 482, 484 on the distal end of the elongate member. Each region 482, 484 may include a bipole pair or network 86, 88, as described above. In this embodiment, the distances between the anode and cathode pairs of either of region 486 and 488 is less than the distance between the anode of one region and the cathode of the other region.
  • The configuration 490 shown in FIG. 13C includes four radial regions 492, 494, 502, 504 which may also each have one or more bipole 496, 498, 506, 508. FIG. 13D has two circumferential regions 512, 514. Each radial region 512, 514 includes at least one bipole pair 516, 518.
  • FIGS. 14A-14C are partial diagrams of a portion of a device capable of determining if a nerve is nearby. The device includes an elongate body (shown in cross-section) having to regions with at least one bipole pair in each region. The device is deployed in tissue 522, 524. The device 470 shown in FIG. 14A includes two radially separated regions 472, 474, similar to the device shown in FIG. 13A. Each region 472, 474 has a bipole network or at least one bipole pair 476, 478 having an anode (−) and cathode (+). The device may determine whether the module 476 is near or adjacent a nerve (e.g., in the tissue 522 or 524) as a function of signals generated in response to one or more energized bipole pairs in the regions, as described above. When a bipole pair or network 476 is energized, the conductive pathway (or bipole field) typically does not extend substantially into the tissue 524, 522.
  • The first region 472 may have a radial length R1 and longitudinal length, L, and the second region 474 may have a radial length R2 and longitudinal length, L. An anode and a cathode forming at least one bipole pair within the first region 472 may be separated by a distance, D1, and an anode and cathode in the second region may be separated by a distance D2. In some variations the energy applied to a bipole pair or network does not project very far into the tissue. This may be a function of the configuration of the bipole pair (e.g., the size and spacing) and the energy applied. For example, the energy projecting in to the tissue from a bipole pair in the first region 472 may not extend substantially further than a distance of T1, so that it would not provoke a response from a neuron located further than T1 from the electrodes. Similarly, the energy projecting into the tissue from a bipole pair (or the bipole network) in the second region 474 may not extend substantially further than a distance of T2 from the electrodes. The electrodes of the bipole pair or network in the first region 472 may be are separated by a distance, D1 that is less than or equal to R1, T1, and L, and the bipole pair or network in the second region 474 may be separated by a distance D2 that is less than or equal to R2, T2, and L. For example, D1 and D2 may be about 0.25 mm to 2.0 mm apart (e.g., 0.50 mm). The energy applied to the bipole pair or network may be limited to limit the projection of energy into the tissue. For example, the current between the bipole pairs may be between about 0.1 mA to 10 mA.
  • The device may be used to determine if a nerve is near one or more regions of the outer surface of the device, and/or which region the nerve is closest to. For example, a first electrical signal may be applied to the bipole pair/network in the first region 472 for a first predetermined time interval, and a response (or lack of response) determined. A response may be determined by using one or more sensors, it may be determined by observing the subject (e.g., for muscle twitch), or the like. Thereafter a second electrical signal may be applied to the bipole pair/network in the second region 474 for a second predetermined time interval, and a response (or lack of a response) determined. The first predetermined time interval and the second predetermined time interval may not substantially overlap, allowing temporal distinction between the responses to different regions. The device may include more than two regions, and the bipole network may be of any appropriate size or length.
  • Based on the monitored response generated after the application of energy during the predetermined time intervals, it may be determined if a nerve is nearby one or the regions of the device, or which region is closest. For example, if application of energy to the bipole pairs/networks in both regions results in a response, the magnitude of the response may be used to determine which region is closest. The durations of the predetermined time intervals may be the same, or they may be different. For example, the duration of the first predetermined time interval may be longer than the duration of the second predetermined time interval. The average magnitude of the electrical signals applied may be the same, or they may be different. For example, the magnitude of the signal applied to the bipole pair/network in the first region may be greater than the average magnitude of the signal applied to the second region.
  • The device 450 shown in FIGS. 14A and 14B includes two longitudinally separated sections 452, 454. Each section 452, 454 has a bipole pair or bipole network 456, 458 that has at least one anode (−) and one cathode (+).
  • The device 440 shown in FIG. 14C includes two longitudinally separated regions 442, 444, each including a bipole pair or network 446, 448 including at least one anode (−) and one cathode (+). When the bipole pair or network in a region is energized, the device may be used to determine if a nerve is nearby based on the generated response to the energized bipole pair/network.
  • FIG. 14D shows a cross-section through a region of an elongate body of a device having four regions which each include bipole pairs or networks. The electrodes forming the bipole pairs or networks are connected to an electrically conductive element so that the anode(s) and cathode(s) in a particularly region are all in electrical communication. For example, as illustrated in FIG. 14D, four cathodal conductors 644, 664, 632, 652 pass through the body of the device and electrically connect to electrode regions (not visible in FIG. 14D) on the surface of the device. Similarly, four anodal conductors 642, 662, 634, 654 pass through the body of the device and electrically connect to electrode regions (not visible in FIG. 14D) on the surface. This forms bipole pairs 640, 660, 630, 650. When the cathodal and/or anodal conductors form multiple electrode regions (electrodes) in each region, they may form a bipole network 640, 660, 630, 650.
  • FIG. 14E is a partial isometric diagram of a device shown in FIG. 14D, in which each region includes a bipole network formed along the lengths of the device. Each bipole network includes anodes formed from a single anodal conductor and cathodes formed from a single cathodal conductor. FIG. 14F is an exemplary illustration of an anode or cathode 632. The anode may have any appropriate shape (e.g., round, oval, square, rectangular, etc.), and any appropriate surface area (e.g., less than 10 mm2, less than 5 mm2, less than 3 mm2, less than 2 mm2, less than 1 mm2). For example, in some variations, the height of the anode or cathode (e.g., Y1) may be about 0.25 mm to 0.75 mm, and the width of the anode or cathode (e.g., X1) is about 3× the height (e.g., X1=3*Y1). As mentioned previously, the electrode may be formed of a conductive material (e.g., metal, polymer, etc.), and may be formed by forming a passage into the body of the elongate member until contacting the conductive member, then filling the passage with an electrically conductive material.
  • The conductive element may be a conductive wire, gel, liquid, etc. that may communicate energy to the anodes or cathodes.
  • The elongate body may be any appropriate dimension, and may be typically fairly small in cross-sectional area, to minimize the damage to tissue. For example, the outer diameter of elongate member may be about 1.5 mm to 5 mm (e.g., about 2 mm).
  • FIG. 15 illustrates conductive pathways 550 of one example of a device 490 (similar to the variation shown in FIG. 13C) that includes four radial regions 492, 494, 502, 504 near the distal region of the elongate body. Each bipole pair or network 496, 498, 506, 508 includes at least one anode (−) and cathode (+) that, when energized, creates a limited conductive pathway between the respective anode(s) and cathode(s) of the bipole or bipole network 496, 498, 506, 508. For example, the current pathways 554, 556, 552, and 558 between the bipoles may broadcast energy about 3 to 5 times the distance between the respective cathodes and anodes forming the bipole(s). Thus, the current pathways 554, 556, 558, 552 may be substantially confined to the respective regions 492, 494, 502, 504 of the elongate body forming the bipole or bipole network.
  • In operation, each bipole network is stimulated separately for a predetermined time. For example, one bipole network 496, 498, 506, or 508 may be energized with a first signal for a predetermined first time interval. Thereafter, another bipole network 496, 498, 506, or 508 may be energized with a second signal for a predetermined second time interval. Different energy levels may be applied, for example, as a function of the tissue 522, 524 that a user is attempting to locate or identify.
  • FIGS. 16A-16D are diagrams of electrical signal waveforms 580, 590, 210, 220, 230, 240 that may be applied to one or more bipole pairs (or bipole networks). Exemplary signal waveforms include square- wave pulses 582, 584, 586. Each pulse 582, 584, 586 may a have a similar magnitude and envelope. The square-wave pulses may be idealized (e.g., with square edges, etc.), or rounded (as shown in FIGS. 16A-16D). The waveforms may be used to energize the bipole network periodically P1 for a predetermined interval T1 where each pulse 582, 584, 586 has an amplitude A1. For example, A1 may be about 0.1 milliamperes (mA) to 10 mA, the pulse width T1 may be about 100 microseconds (μs) to 500 μs and the period P1 may from 100 ms to 500 ms. For example, A1 may be about 0.5 milliamperes (mA) to 5 mA, the pulse width T1 may be about 200 microsecond (μs) and the period P1 may about 250 ms as a function of the energy required to depolarize neutral tissue. The applied energy may also be expressed as a voltage.
  • FIG. 16B illustrates another variation, in which the applied signal waveform 590 includes square- wave pulses 592, 594, 596 that have an increasing magnitude but similar pulse width T1. The waveform 590 may be used to energize a bipole network periodically P1 for a predetermined interval T1 where pulses 592, 594, 596 have increasing or ramping amplitudes A1, A2, A3. The waveform 590 may continue to increase pulse amplitudes in order to identify a nerve (up to some predetermined limit). For example, stimulation of one or more bipole pairs may cycle a ramping stimulation. In one example, A1, A2, and A3 are about 1 milliamps (mA) to 5 mA where A3>A2>A1, the pulse width T1 may be about 100 microsecond (μs) to 500 μs and the period P1 may from 100 ms to 500 ms. For example, the pulse width T1 may be about 200 microseconds (μs) and the period P1 may about 250 ms.
  • In FIG. 16C the signals applied to energize different regions of the device are different. For example, a first waveform 210 may be applied to a first bipole network of a device, and a second waveform 220 may be applied to energize a second bipole network of the device. In this example, the signals are interleaved. The signal waveform 210 includes several square- wave pulses 212, 214, and 216 and the signal waveform 220 includes several square- wave pulses 222, 224, and 226. Each pulse 212, 214, 216, 222, 224, 226 may a have a similar magnitude and envelope. The waveform 210 may be used to energize the first bipole network periodically P1 for a predetermined interval T1, where each pulse 212, 214, 216 has an amplitude A1. The second waveform 220 may be used to energize a second bipole network periodically P2 for a predetermined interval T2 where each pulse 222, 224, 226 has an amplitude B1. In some variations, the pulse width T1, T2 is about 100 microseconds (μs) to 500 μs, and the period P1, P2 is from 100 ms to 500 ms. For example, A1, A2 may be about 0.5 milliamperes (mA) to 5 mA, the pulse width T1, T2 may be about 200 microsecond (μs) and the period P1, P2 may about 250 ms. The pulses 212, 214, 216 do not substantially overlap the pulses 222, 224, 226. In some variations, T1>T2 and P2 is an integer multiple of P1.
  • FIG. 16D is another example, in which different regions of the device are energized with pulses having increasing amplitudes. In this example, an amplitude increasing or ramping pulse waveform 230 may be applied to a first bipole network, and a second amplitude increasing or ramping pulse waveform 240 may be applied to a second bipole network. The signal waveform 230 includes several amplitude increasing or ramping square- wave pulses 232, 234, and 236 and the signal waveform 240 includes several amplitude increasing or ramping square- wave pulses 242, 244, and 246. In variations having more than two regions, each region may be stimulated separately, so that the time period between stimulations (P1-T1) may be larger than illustrated here. Methods may also include changing the stimulation applied, or scaling it based on a response, as described in more detail below.
  • FIG. 17A is illustrates a schematic of a subject 310 in which the device for determining if a nerve is nearby is being used. In this illustration 300, a tissue localization device 10 is used as part of a system including sensors 322, 324. In this system, the device 10 may energize one or more bipole pairs or bipole networks to depolarize neutral tissue that is near a region of the device including the bipole pair or network. A sensor 322 may be placed on, near, or within muscle that may be innervated when neutral tissue is depolarized by a nearby energized bipolar or optical module. The sensor 322 may be innervately coupled to nerve tissue via a neural pathway 316 and sensor 324 may be innervately coupled to nerve tissue via a neural pathway 314. For example, the device may be used as part of a spinal procedure and the sensors 322 may detect an Electromyography (EMG) evoked potentials communicated in part by a patient's cauda equina along the pathways 314, 316.
  • FIGS. 17B-11D are simplified diagrams of sensors 330, 340, 350 that may be employed according to various embodiments. For example, a sensor 330 may include a multiple axis accelerometer employed on or near muscle, particularly muscle innervated by neurons within the region of tissue being operated on. The accelerometer may be a low-g triaxial accelerometer. The accelerometer 330 may detect differential capacitance where acceleration may cause displacement of the silicon structure of the accelerometer and change its capacitance. The sensor 340 may include a strain gauge that also may be applied on or near muscle innervated by neurons within the region begin operated on. The strain gauge may a multiple planar strain gauge where the gauge's resistance or capacitance varies as a function of gauge flex forces in multiple directions. The sensor 350 may include an EMG probe. The EMG probe may include a needle to be inserted near or within muscle innervated by a neuron or neurons within the region being operated on. For example, a sensor may determine a positive response when detecting an EMG signal of about 10 to 20 μV on the EMG probe 350 for about 1 second.
  • FIGS. 18A-18B illustrate the outer surface of a device having an elongate body having two regions 446, 448, wherein each region includes at least one bipole pair. The bipole pairs in the different regions may have different geometries. For example the bipole pair in the second region 444 is spaced further apart (D2>D1) than the bipole pair in the first region 442. This may result in the bipole pair in the second region projecting the bipole field further into the tissue than the bipole pair in the first region.
  • The configuration shown in FIG. 18B is similar, but illustrates a bipole network 449 in the second region 444 that is a tripolar electrode, having two anodes (−) separated from the cathode (+) in this example by different distances D2, D3. A bipole network may include additional cathodes and electrodes that are typically electrically coupled (e.g., to the same anodal or cathodal conductor) so that they can be stimulated substantially simultaneously.
  • Methods of Operation
  • In general, a method of determining if a nerve is nearby a device, or a region of a device, includes the steps of exciting a bipole pair or a bipole network to pass current between the bipole pair, resulting in a limited broadcast field that can stimulate a nearby neuron. The broadcast field may be limited by the geometry of the tight bipole pairs and the bipole networks described herein, and by the applied energy. It can then be determined if a nerve has been stimulated in response to the excitation of bipole pair or network; the magnitude of the response can also be compared for different bipole networks (or bipole pairs) in different regions of the device to determine which region is nearest the nerve.
  • FIGS. 19A-19C are flow diagrams illustrating methods of determining if a nerve is near a device as described herein. In the algorithm 380 shown in FIG. 19A a first bipole network (or bipole pair) located on a first region or section of a device having two or more regions is energized 382. The bipole network may be energized by the application of signal for a predetermined time interval. The energization of the bipolar module may generate a current between an anode (−) and cathode (+) (or anodes and cathodes). The subject is then monitored to determine if a response is detected 384. If a response is detected, then a nerve may be nearby. The first bipole network may be energized with a first signal for a first predetermined time interval. In some variations, the first bipole network is energized as the device is moved within the tissue (e.g., as it is advanced) to continuously sense if a nerve is nearby. For example, FIG. 19B illustrates one method of sensing as advancing.
  • In FIG. 19B the bipole pair in the first region is energized and a response (or lack of a response) is determined. The bipole network (or pair) may be energized as described above. For example, a continuous signal may be applied, a periodic signal may be applied, or a varying (e.g., ramping) signal may be applied 392. A response may be detected by muscle twitch, nerve firing, or otherwise 394. The device can then be moved based on the response 396, or continued to be moved based on the response. Movement may be continued in the same direction (e.g., if no response is detected) or in a new direction (if a nerve is detected). Movement may also be stopped if a nerve is detected. Steps 394 and 396 may b repeated during motion to guide the device.
  • In some variations, multiple regions of the device are stimulated to determine if a nerve is nearby. For example, FIG. 19C illustrates one variation in which a second region of the device, having its own, separated bipole network, is stimulated. In FIG. 19C, the first bipole network (or a bipole pair) in the first region is energized 532, and the patient is monitored for a response 534 to the stimulation. The bipole pair in a second region is then energized 536, and the patient is monitored for a response 538. Additional energizing and monitoring steps (not shown) may also be included for other regions of the device, if present. The responses to the different region can be compared 542, and the device can be moved in response to the presence of a nerve in one or more of the regions 546. Optionally, it may be determined which region of the device is closer to the nerve 544. If the nerve is detected, the tissue may be acted on (e.g., cut, ablated, removed, etc., or the device may be further oriented by moving it, and these steps may be repeated. If no nerve is detected, the steps may be repeated until the device is positioned as desired, and a procedure may then be performed.
  • In some variations, the device may be used to position (or form a passage for) another device or a region of the device that acts on the tissue. For example, the device may be used to position a guide channel or guide wire. In some variations, the method may include repeatedly energizing only a subset of the bipole networks (or bipole pairs) until a nerve is detected, and then other bipole networks on the device may be energized to determine with more accuracy the relationship (e.g., orientation) of the nerve with respect to the device.
  • As mentioned, the step of monitoring or detecting a response may be performed manually (e.g., visually), or using a sensor or sensor. For example, using an accelerometer may be coupled to muscle. The accelerometer may be a multiple axis accelerometer that detects the movement of the muscle in any direction, and movement coordinated with stimulation may be detected. In some variations, a strain gauge may be used on muscle innervated by a nerve passing through or originating in the region of tissue being examined. The strain gauge may be a multiple axis strain gauge that detects the movement of the muscle in any direction. In some variations, an EMG probe may be used to measure evoked potentials of the muscle. The magnitude of any response may also be determined.
  • Systems
  • Any of the devices described herein may be used as part of a system, which may be referred to as a nerve localization system. Systems may include components (e.g., hardware, software, or the like) to execute the methods described herein.
  • FIG. 20 is a block diagram of additional components of a system 580 for determining if a nerve is nearby a device. The components 580 shown in FIG. 20 may be used with any of the devices described herein, and may include any computing device, including a personal data assistant, cellular telephone, laptop computer, or desktop computer. The system may include a central processing unit (CPU) 582, a random access memory (RAM) 584, a read only memory (ROM″) 606, a display 588, a user input device 612, a transceiver application specific integrated circuit (ASIC) 616, a digital to analog (D/A) and analog to digital (A/D) convertor 615, a microphone 608, a speaker 602, and an antenna 604. The CPU 582 may include an OS module 614 and an application module 613. The RAM 584 may include a queue 598 where the queue 598 may store signal levels to be applied to one or more bipolar modules 46, 48. The OS module 614 and the application module 613 may be separate elements. The OS module 614 may execute a computer system or controller OS. The application module 612 may execute the applications related to the control of the system.
  • The ROM 606 may be coupled to the CPU 582 and may store program instructions to be executed by the CPU 582, OS module 614, and application module 613. The RAM 584 is coupled to the CPU 582 and may store temporary program data, overhead information, and the queues 598. The user input device 512 may comprise an input device such as a keypad, touch pad screen, track ball or other similar input device that allows the user to navigate through menus in order to operate the article 580. The display 588 may be an output device such as a CRT, LCD, LED or other lighting apparatus that enables the user to read, view, or hear user detectable signals.
  • The microphone 608 and speaker 602 may be incorporated into the device. The microphone 608 and speaker 602 may also be separated from the device. Received data may be transmitted to the CPU 582 via a serial bus 596 where the data may include signals for a bipole network. The transceiver ASIC 616 may include an instruction set necessary to communicate data, screens, or signals. The ASIC 616 may be coupled to the antenna 604 to communicate wireless messages, pages, and signal information within the signal. When a message is received by the transceiver ASIC 616, its corresponding data may be transferred to the CPU 582 via the serial bus 596. The data can include wireless protocol, overhead information, and data to be processed by the device in accordance with the methods described herein.
  • The D/A and A/D convertor 615 may be coupled to one or more bipole networks to generate a signal to be used to energize them. The D/A and A/D convertor 615 may also be coupled to one or more sensors 322, 324 to monitor the sensor 322, 324 state or condition.
  • Any of the components previously described can be implemented in a number of ways, including embodiments in software. These may include hardware circuitry, single or multi-processor circuits, memory circuits, software program modules and objects, firmware, and combinations thereof, as desired by the architect of the system 10 and as appropriate for particular implementations of various embodiments.
  • Example 1 Neural Localization when Treating Spinal Stenosis
  • One area of surgery which could benefit from the development of less invasive techniques including neural localization is the treatment of spinal stenosis. Spinal stenosis often occurs when nerve tissue and/or blood vessels supplying nerve tissue in the lower (or “lumbar”) spine become impinged by one or more structures pressing against them, causing pain, numbness and/or loss of function in the lower back and/or lower limb(s). In many cases, tissues such as ligamentum flavum, hypertrophied facet joint and bulging intervertebral disc impinge a nerve root as it passes from the cauda equine (the bundle of nerves that extends from the base of the spinal cord) through an intervertebral foramen (one of the side-facing channels between adjacent vertebrae). Here we provide one example of a device for determining if a nerve is nearby that may be used as part of method for treating spinal stenosis.
  • FIG. 21 is a top view of a vertebra with the cauda equina shown in cross section and two nerve roots branching from the cauda equina to exit the central spinal canal and extend through intervertebral foramina on either side of the vertebra. FIG. 22 is a side view of the lumbar spine, showing multiple vertebrae, the intervertebral foramina between adjacent vertebrae, and the 1st-5th spinal nerves exiting the foramina.
  • Surgery may be required to remove impinging tissue and decompress the impinged nerve tissue of a spinal stenosis. Lumbar spinal stenosis surgery typically involves first making an incision in the back and stripping muscles and supporting structures away from the spine to expose the posterior aspect of the vertebral column. Thickened ligamentum flavum is then exposed by complete or partial removal of the bony arch (lamina) covering the back of the spinal canal (laminectomy or laminotomy). In addition, the surgery often includes partial or complete facetectomy (removal of all or part of one or more facet joints), to remove impinging ligamentum flavum or bone tissue. Spinal stenosis surgery is performed under general anesthesia, and patients are usually admitted to the hospital for five to seven days after surgery, with full recovery from surgery requiring between six weeks and three months. Many patients need extended therapy at a rehabilitation facility to regain enough mobility to live independently.
  • Removal of vertebral bone, as in laminectomy and facetectomy, often leaves the affected area of the spine very unstable, requiring an additional highly invasive fusion procedure that puts extra demands on the patient's vertebrae and limits the patient's ability to move. Unfortunately, a surgical spine fusion results in a loss of ability to move the fused section of the back, diminishing the patient's range of motion and causing stress on the discs and facet joints of adjacent vertebral segments. Such stress on adjacent vertebrae often leads to further dysfunction of the spine, back pain, lower leg weakness or pain, and/or other symptoms. Furthermore, using current surgical techniques, gaining sufficient access to the spine to perform a laminectomy, facetectomy and spinal fusion requires dissecting through a wide incision on the back and typically causes extensive muscle damage, leading to significant post-operative pain and lengthy rehabilitation. Thus, while laminectomy, facetectomy, and spinal fusion frequently improve symptoms of neural and neurovascular impingement in the short term, these procedures are highly invasive, diminish spinal function, drastically disrupt normal anatomy, and increase long-term morbidity above levels seen in untreated patients.
  • A number of devices, systems and methods for less invasive treatment of spinal stenosis have been described, for example, in U.S. patent application Ser. Nos. 11/250,332, titled “DEVICES AND METHODS FOR SELECTIVE SURGICAL REMOVAL OF TISSUE,” filed Oct. 15, 2005, now U.S. Pat. No. 7,738,968; 11/375,265, titled “METHOD AND APPARATUS FOR TISSUE MODIFICATION,” filed Mar. 13, 2006, now U.S. Pat. No. 7,887,538; and 11/535,000, titled “TISSUE CUTTING DEVICES AND METHODS,” filed Sep. 25, 2006, Publication No. US-2008-0033465-A1, now abandoned. all of which applications are hereby incorporated fully be reference herein.
  • Challenges in developing and using less invasive or minimally invasive devices and techniques for treating neural and neurovascular impingement include accessing hard-to-reach target tissue and locating nerve tissue adjacent the target tissue, so that target tissue can be treated and damage to nerve tissue can be prevented. These challenges may prove daunting, because the tissue impinging on neural or neurovascular tissue in the spine is typically located in small, confined areas, such as intervertebral foramina, the central spinal canal and the lateral recesses of the central spinal canal, which typically have very little open space and are difficult to see without removing significant amounts of spinal bone. The assignee of the present invention has described a number of devices, systems and methods for accessing target tissue and identifying neural tissue. Exemplary embodiments are described, for example, in U.S. patent application Ser. Nos. 11/251,205, titled “DEVICES AND METHODS FOR TISSUE ACCESS,” filed Oct. 15, 2005, now U.S. Pat. No. 7,918,849; 11/457,416, titled “SPINAL ACCESS AND NEURAL LOCALIZATION,” filed Jul. 13, 2006, now U.S. Pat. No. 7,578,819; and 11/468,247, titled “TISSUE ACCESS GUIDEWIRE SYSTEM AND METHOD,” filed Aug. 29, 2006, now U.S. Pat. No. 7,857,813, all of which applications are hereby incorporated fully be reference herein.
  • The methods and devices for neural localization described herein may be used in less invasive spine surgery procedures, including the treatment of spinal stenosis. For example, the methods and devices described herein can be used with minimal or no direct visualization of the target or nerve tissue, such as in a percutaneous or minimally invasive small-incision procedure.
  • FIG. 23 illustrates one device for treatment of spinal stenosis including a tissue cutting device 1000 including a guidewire. For further explanation of guidewire systems and methods for inserting device 1000 and other tissue removal or modification devices, reference may also be made to U.S. patent application Ser. Nos. 11/468,247 (now U.S. Pat. No. 7,857,813) and 11/468,252 (Publication No. US-2008-0086034-A1), both titled “TISSUE ACCESS GUIDEWIRE SYSTEM AND METHOD,” and both filed Aug. 29, 2006, the full disclosures of which are hereby incorporated by reference.
  • Cutting device 1000 may be at least partially flexible, and in some embodiments may be advanced through an intervertebral foramen IF of a patient's spine to remove ligamentum flavum LF and/or bone of a vertebra V, such as hypertrophied facet (superior articular process SAP in FIG. 23), to reduce impingement of such tissues on a spinal nerve SN and/or nerve root. In one embodiment, device 1000 cuts tissue by advancing a proximal blade 1012 on an upper side of device 1000 toward a distal blade 1014. This cutting device may be used with (or as part of) a system for determining if a nerve is nearby, and may prevent damage to nerves in the region which the device operates.
  • In various embodiments, device 1000 may be used in an open surgical procedure, a minimally invasive surgical procedure or a percutaneous procedure. In any procedure, it is essential for a surgeon to know that device 1000 is placed in a position to cut target tissue, such as ligament and bone, and to avoid cutting nerve tissue. In minimally invasive and percutaneous procedures, it may be difficult or impossible to directly visualize the treatment area, thus necessitating some other means for determining where target tissue and neural tissue are located relative to the tissue removal device. At least, a surgeon performing a minimally invasive or percutaneous procedure will want to confirm that the tissue cutting portion of device 1000 is not directly facing and contacting nerve tissue. The various nerve localization devices and systems described herein may help the surgeon verify such nerve/device location. A neural localization system and method may be used in conjunction with device 1000 or with any other tissue removal, tissue modification or other surgical devices. Furthermore, various embodiments may have applicability outside the spine, such as for locating nerve tissue in or near other structures, such as the prostate gland, the genitounrinary tract, the gastrointestinal tract, the heart, and various joint spaces in the body such as the knee or shoulder, or the like. Therefore, although the following description focuses on the use of embodiments of the invention in the spine, all other suitable uses for the various embodiments described herein are also contemplated.
  • Referring now to FIG. 24, a diagrammatic representation of one embodiment of a nerve tissue localization system 1020 is shown. Neural localization system 1000 may include an electronic control unit 1024 and a neural stimulation probe 1024, a patient feedback device 1026, a user input device 1028 and a display 1030, all coupled with control unit 1022.
  • In one embodiment, electronic control unit (ECU) 1020 may include a computer, microprocessor or any other processor for controlling inputs and outputs to and from the other components of system 1020. In one embodiment, for example, ECU 1020 may include a central processing unit (CPU) and a Digital to Analog (D/A) and Analog to Digital Converter (A/D). ECU 1022 may include any microprocessor having sufficient processing power to control the operation of the D/A A/D converter and the other components of system 1020. Generally, ECU 1022 may control the operation of the D/A A/D converter and display device 1030, in some embodiments based on data received from a user via user input device 1028, and in other embodiments without input from the user. User input device 1028 may include any input device or combination of devices, such as but not limited to a keyboard, mouse and/or touch sensitive screen. Display device 1030 may include any output device or combination of devices controllable by ECU 1022, such as but not limited to a computer monitor, printer and/or other computer controlled display device. In one embodiment, system 1020 generates electrical signals (or other nerve stimulating energy signals in alternative embodiments), which are transmitted to electrodes on probe 1024, and receives signals from patient feedback device 1026 (or multiple feedback devices 1026 in some embodiments). Generally, ECU 1022 may generate a digital representation of signals to be transmitted by electrodes, and the D/A A/D converter may convert the digital signals to analog signals before they are transmitted to probe 1024. ECU 1022 also receive a return current from probe 1024, convert the current to a digital signal using the D/A A/D converter, and process the converted current to determine whether current was successfully delivered to the stimulating portion of probe 1024. The D/A A/D converter may convert an analog signal received by patient feedback device(s) 1026 into a digital signal that may be processed by ECU 1022. ECU 1022 may hold any suitable software for processing signals from patient feedback devices 1026, to and from probe 1024 and the like. According to various embodiments, display device 1030 may display any of a number of different outputs to a user, such as but not limited to information describing the signals transmitted to probe 1024, verification that stimulating energy was successfully delivered to a stimulating portion of probe 1024, information describing signals sensed by patient feedback devices 1026, a visual and/or auditory warning when a nerve has been stimulated, and/or the like. In various alternative embodiments, system 1020 may include additional components or a different combination or configuration of components, without departing from the scope of the present invention.
  • The neural stimulation probe 1024 is an elongate body having an outer surface including one or more regions with a bipole pair or bipole network. Furthermore, any suitable number of regions may be included on a given probe 1024. In various embodiments, for example, probe 1024 may includes two or more regions, each having a bipole pair or bipole network (comprising a plurality of bipole pairs) disposed along the probe in any desired configuration. In one embodiment, probe 1024 may include four regions, each having at least one bipole pairs, one pair on each of top, bottom, left and right sides of a distal portion of the probe that is configured to address neural tissue.
  • In some embodiments, ECU 1022 may measure current returned through probe 1024 and may process such returned current to verify that current was, in fact, successfully transmitted to a nerve stimulation portion of probe 1024. In one embodiment, if ECU 1022 cannot verify that current is being transmitted to the nerve stimulation portion of probe 1024, ECU 1022 may automatically shut off system 1020. In an alternative embodiment, if ECU 1022 cannot verify that current is being transmitted to the nerve stimulation portion of probe 1024, ECU 1022 may signal the user, via display device 1030, that probe 1024 is not functioning properly. Optionally, in some embodiments, system 1020 may include both a user signal and automatic shut-down.
  • Patient feedback device 1026 may include any suitable sensing device and typically includes multiple devices for positioning at multiple different locations on a patient's body. In some embodiments, for example, multiple motion sensors may be included in system 1020. Such motion sensors may include, but are not limited to, accelerometers, emitter/detector pairs, lasers, strain gauges, ultrasound transducers, capacitors, inductors, resistors, gyroscopes, and/or piezoelectric crystals. In one embodiment, where nerve tissue stimulation system 1020 is used for nerve tissue detection in the lumbar spine, feedback device 1026 may include multiple accelerometers each accelerometer attached to a separate patient coupling member, such as an adhesive pad, for coupling the accelerometers to a patient. In one such embodiment, for example, each accelerometer may be placed over a separate muscle myotome on the patients lower limbs.
  • When nerve tissue is stimulated by probe 1024, one or more patient feedback devices 1026 may sense a response to the stimulation and deliver a corresponding signal to ECU 1022. ECU 1022 may process such incoming signals and provide information to a user via display device 1030. For example, in one embodiment, information may be displayed to a user indicating that one sensor has sensed motion in a particular myotome. As part of the processing of signals, ECU 1022 may filter out “noise” or sensed motion that is not related to stimulation by probe 1024. In some embodiments, an algorithm may be applied by ECU 1022 to determine which of multiple sensors are sensing the largest signals, and thus to pinpoint the nerve (or nerves) stimulated by probe 1024.
  • In an alternative embodiment, patient feedback device 1026 may include multiple electromyography (EMG) electrodes. EMG electrodes receive EMG or evoked muscle action potential (EMAP) signals generated by muscle electrically coupled to EMG electrodes and to a depolarized nerve (motor unit). One or more nerves may be depolarized by one or more electrical signals transmitted by probe. As with the motion sensor embodiment, ECU 1022 may be programmed to process incoming information from multiple EMG electrodes and provide this processed information to a user in a useful format via display device 1030.
  • User input device 1028, in various embodiments, may include any suitable knob, switch, foot pedal, toggle or the like and may be directly attached to or separate and coupleable with ECU 1022. In one embodiment, for example, input device 1028 may include an on/off switch, a dial for selecting various bipolar electrode pairs on probe 1024 to stimulate, a knob for selecting an amount of energy to transmit to probe 1024 and/or the like.
  • Referring now to FIG. 25, in one embodiment, a nerve tissue localization system 1040 may include an ECU 1042, a neural stimulation probe 1044, multiple patient feedback devices 1026, and a user input device 48. Probe 1044 may include, in one embodiment, a curved, flexible nerve stimulating elongate member 1058, which may slide through a rigid cannula 1056 having a handle 1054.
  • The probe 1044 is a device for determining if a nerve is nearby a region of the device, and includes a plurality of regions which each include one or more bipole pairs. In some variations the probe 1044 includes two regions (an upper region and a lower region), and each region includes a bipole network configured to form a continuous bipole field along the length of the probe in either the upper or lower regions. A nerve stimulating member 1058 may include a guidewire lumen for allowing passage of a guidewire 1059, for example after nerve tissue has been detected to verify that the curved portion of nerve stimulating member 1058 is in a desired location relative to target tissue TT and nerve tissue NT. Patient feedback devices 1046 and probe 1044 may be coupled with ECU 1042 via wires 1050 and 1052 or any other suitable connectors. ECU 1042 may include user input device 1048, such as a knob with four settings corresponding to top, bottom, left and right sides of a nerve tissue stimulation portion of nerve stimulating member 1058. ECU 1042 may also optionally include a display 1047, which may indicate an amount of muscle movement sensed by an accelerometer feedback device 1046. In one embodiment, ECU 1042 may include one or more additional displays, such as red and green lights 1049 indicating when it is safe or unsafe to perform a procedure or whether or not probe 1044 is functioning properly. Any other suitable displays may additionally or alternatively be provided, such as lamps, graphs, digits and/or audible signals such as buzzers or alarms.
  • In one embodiment, each of patient feedback devices 1046 may include an accelerometer coupled with an adhesive pad or other patient coupling device. In one embodiment, a curved portion of nerve stimulating member 1058 may be configured to pass from an epidural space of the spine at least partway through an intervertebral foramen of the spine. In other embodiments, nerve stimulating member 1058 may be straight, steerable and/or preformed to a shape other than curved.
  • FIGS. 26A and 26B describe a method for localizing nerve tissue and placing a guidewire in a desired location in a spine using the device configured to determine if a nerve is nearby. Before advancing a nerve tissue localization probe into the patient, and referring again to FIG. 25, multiple patient feedback devices 1046, such as accelerometers or EMG electrodes, may be placed on the patient, and ECU 1042 may be turned on. In one embodiment, a test current may be transmitted to probe 1044, and a return current from probe 1044 may be received and processed by ECU 1042 to verify that probe 1044 is working properly.
  • As shown in FIG. 26A, an epidural needle 1060 (or cannula) may be passed through the patient's skin, and a distal tip of needle 1060 may be advanced through the ligamentum flavum LF of the spine into the epidural space ES. Next, as shown in FIG. 26B, a probe that is configured to determine if a nerve is nearby the probe 1062 may be passed through epidural needle 1060, such that a curved, flexible, distal portion passes into the epidural space ES and through an intervertebral foramen IF of the spine, between target tissue (ligamentum flavum LF and/or facet bone) and non-target neural tissue (cauda equina CE and nerve root NR). As shown in FIG. 26C, the upper region of the probe having a first bipole network may be energized to generate a bipole field as current passes between the anodes and cathodes of the bipole network in the upper region 1062. In some variations, the bipole pairs may be monitored to confirm that transmitted energy returned proximally along the probe, as described previously. As shown in FIG. 26D, the lower bipole network may then be energized to generate a bipole field from the curved portion of probe 1062. In an alternative embodiment, energy may be transmitted only to the top, only to the bottom, or to the bottom first and then the top regions. In some embodiments, energy may be further transmitted to electrodes on left and right regions of probe 1062. Depending on the use of a given probe 1062 and thus its size constraints and the medical or surgical application for which it is being used, any suitable number of electrodes may form the bipole network of a particular region.
  • As energy is transmitted to the bipole network in any region of the probe 1062, patient response may be monitored manually or via multiple patient feedback devices (not shown in FIG. 26), such as, but not limited to, accelerometers or EMG electrodes. In one method, the same amount of energy may be transmitted to the bipole network in the different regions of the probe in series, and amounts of feedback sensed to each transmission may be measured and compared to help localize a nerve relative to probe 1062. If a first application of energy does not generate any response in the patient, a second application of energy at higher level(s) may be tried and so forth, until a general location of nerve tissue can be determined. In an alternative embodiment, the method may involve determining a threshold amount of energy required by bipole network to stimulate a response in the patient. These threshold amounts of energy may then be compared to determine a general location of the nerve relative to the probe. In another alternative embodiment, some combination of threshold and set-level testing may be used.
  • In one embodiment, as shown in FIG. 26E, nerve probe 1062 may include a guidewire lumen through which a guidewire may be passed, once it is determined that device 1062 is placed in a desired position between target and non-target tissue (e.g., avoiding a nerve adjacent to the upper region). As shown in FIG. 26F, when epidural needle 1060 and probe 1062 are removed, guidewire 1064 may be left in place between target tissue (such as ligamentum flavum LF and/or facet bone) and non-target tissue (such as cauda equina CE and nerve root NR). Any of a number of different minimally invasive or percutaneous surgical devices may then be pulled into the spine behind guidewire 1064 or advanced over guidewire 1064, such as the embodiment shown in FIG. 23 and others described by the assignee of the present application in other applications incorporated by reference herein.
  • Referring now to FIGS. 27A-27H, another embodiment of a method for accessing an intervertebral foramen IF and verifying a location of a probe relative to tissue (such as ligamentum flavum LF and nerve/nerve root NR tissue) is demonstrated. In this embodiment, as shown in FIG. 27A, an access cannula 1070 may be advanced into the patient over an epidural needle 1072 with attached syringe. As shown in FIG. 27B, cannula 1070 and needle 1072 may be advanced using a loss of resistance technique, as is commonly performed to achieve access to the epidural space via an epidural needle. Using this technique, when the tip of needle 1072 enters the epidural space, the plunger on the syringe depresses easily, thus passing saline solution through the distal end of needle 1072 (see solid-tipped arrows). As shown in FIG. 27C, once epidural access is achieved, needle can be withdrawn from the patient, leaving cannula in place with its distal end contacting or near ligamentum flavum LF. Although needle 1072 may be removed, its passage through ligamentum flavum LF may leave an opening 1073 (or path, track or the like) through the ligamentum flavum LF.
  • As shown in FIG. 27D, a curved, flexible guide 1074 having an atraumatic distal tip 1075 may be passed through cannula 1070 and through opening 1073 in the ligamentum flavum LF, to extend at least partway through an intervertebral foramen IF. In this variation, the guide 1074 is configured as a device for determining if a nerve is nearby a region of the device. The guide 1074 is an elongate member that includes at least a first region having a bipole pair, or more preferably a bipole network thereon.
  • In FIG. 27E, a first bipole network on or near an external surface of guide 1074 may then be energized, and the patient may be monitored for response. As in FIG. A7F, a second bipole network disposed along guide 1074 in a different circumferential region than the region may be energized, and the patient may again be monitored for response. This process of activation and monitoring may be repeated for any number of bipole networks or as the device is manipulated in the tissue, according to various embodiments. For example, in one embodiment, guide 1074 may include a first region having a bipole network on its top side (inner curvature), a second region having a bipole network on the bottom side (outer curvature), and a third and fourth region each having a bipole network on the left side and right side, respectively. A preselected amount of electrical energy (current, voltage, and/or the like) may be transmitted to a bipole network, and the patient may be monitored for an amount of response (EMG, muscle twitch, or the like). The same (or a different) preselected amount of energy may be transmitted to a second bipole network, the patient may be monitored for an amount of response, and then optionally the same amount of energy may be transmitted sequentially to third, fourth or more bipole networks, while monitoring for amounts of response to each stimulation. The amounts of response may then be compared, and from that comparison a determination may be made as to which region is closest to nerve tissue and/or which region is farthest from nerve tissue.
  • In an alternative method, energy may be transmitted to a first bipole electrode and the amount may be adjusted to determine a threshold amount of energy required to elicit a patient response (EMG, muscle twitch, or the like). Energy may then be transmitted to a second bipole network, adjusted, and a threshold amount of energy determined. Again, this may be repeated for any number of bipole networks (e.g., regions). The threshold amounts of required energy may then be compared to determine the location of the regions relative to nerve tissue.
  • Referring now to FIG. 27G, once it is verified that guide 1074 is in a desired position relative to nerve tissue and/or target tissue, a guidewire 1076 may be passed through guide and thus through the intervertebral foramen IF and out the patient's skin. Cannula 1070 and guide 1074 may then be withdrawn, leaving guidewire 1076 in place, passing into the patient, through the intervertebral foramen, and back out of the patient. Any of a number of devices may then be pulled behind or passed over guidewire 1076 to perform a procedure in the spine.
  • Rotating a Tight Bipole Pair
  • Another variation of nerve localizing device including one or more tight bipole pairs is a device having at least one tight bipole pair that can be scanned (e.g., rotated) over at least a portion of the circumference of the device to detect a nearby nerve.
  • In general, a device having a movable tight bipole pair may include an elongate body that has an outer surface and at least one bipole pair that can be scanned (moved) with respect to the outer surface of the device so as to be energized in different regions of the outer surface of the device to determine if a nerve is nearby. For example, a device may include an elongate body having an outer surface that can be divided up into a plurality of circumferential regions and a scanning that is movable with respect to the outer surface. At least one tight bipole pair (or a bipole network) is attached to the scanning surface, allowing the bipole pair or network to be scanned to different circumferential regions.
  • FIGS. 28A and 28B illustrate variations of a device having a scanning or movable bipole pair (or bipole network). For example, FIG. 28A includes an elongate body 2801 having an outer surface. In this variation the elongate body has a circular or oval cross-section, although other cross-sectional shapes may be used, including substantially flat. The surface of the outer body includes a window 2803 region exposing a scanning surface 2807 to which at least one bipole pair is connected. The scanning surface may be moved relative to the outer surface (as indicated by the arrow). In this example, the window extends circumferentially, and the scanning surface may be scanned radially (e.g., up and down with respect to the window).
  • FIG. 28B illustrates another variation, in which the distal end of the elongate body 2801′ is rotatable with respect to the more proximal region of the device. The distal end includes one or more bipole pairs. In FIG. 28 the rotatable distal end includes a bipole network 2819. The bipole network may be energized as it is rotated, or it may be rotated into different positions around the circumference of the device and energized after it has reached each position.
  • The devices illustrated in FIGS. 28A and 28B may include a controller configured to control the scanning (i.e., rotation) of the bipole pair. The device may also include a driver for driving the motion of the bipole pair. For example, the drive may be a motor, magnet, axel, shaft, cam, gear, etc. The controller may control the driver, and may control the circumferential position of the bipole pair (or bipole network). The device may also include an output for indicting the circumferential region of the bipole network or pair.
  • In operation, the scanning bipole pair can be used to determine if a nerve is near the device by moving the bipole pair or network with respect to the rest of the device (e.g., the outer surfaced of the elongate body). For example, the device may be used to determine if a nerve is nearby the device by scanning the bipole pair (or a bipolar network comprising a plurality of bipole pairs) across a plurality of circumferential regions of the outer surface of the elongate body, and by energizing the bipole pair(s) when it is in one of the circumferential regions. As mentioned, the bipole pair(s) may be energized as they are moved, or they may be energized once they are in position. The movement may be reciprocal (e.g., back and forth) or rotation, or the like.
  • The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims (8)

1. A method of detecting if a nerve is above or below a region of a device in a tissue, the method comprising:
positioning a flexible elongate device within the tissue, so that an upper region of the device faces the dorsal side of a patient and a lower region of the device faces the ventral side of the patient;
determining a threshold amount of energy required to stimulate a response in the patient while the upper region faces the dorsal side of the patient by applying increasing levels of energy from the upper region to determine the first stimulation level at which the nerve responds;
repositioning the device within the tissue so that the lower region faces the dorsal side of the patient and the upper region faces the ventral side of the patient;
determining a threshold amount of energy required to stimulate a response in the patient while the upper region faces the ventral side by applying increasing levels of energy from upper region to determine the first stimulation level at which the nerve responds;
confirming that the nerve is ventral to the device by comparing the threshold amounts.
2. The method of claim 1, further comprising positioning a guidewire after confirming that the nerve is ventral to the device.
3. The method of claim 2, further comprising removing the device from the patient with the guidewire in position.
4. The method of claim 3, further comprising using the guidewire to position a surgical device.
5. A method of detecting if a nerve is above or below a region of a device in a tissue, the method comprising:
positioning a device within the tissue, wherein the device comprises a flexible elongate body having a first plurality of anodes and cathodes on a stimulation region of the device;
determining a threshold amount of energy required to stimulate a response in the patient from the stimulation region by applying increasing levels of energy to form a substantially continuous broadcast field in a first direction from the stimulation region to determine the first stimulation level at which the nerve responds;
determining a threshold amount of energy required to stimulate a response in the patient from the stimulation region by applying increasing levels of energy to form a substantially continuous broadcast field in a second direction from the stimulation region to determine the second stimulation level at which the nerve responds; and
determining if the nerve is in the first direction from the device or in the second direction from the device by comparing the threshold amounts.
6. The method of claim 5, further comprising positioning a guidewire after confirming that the nerve is ventral to the device.
7. The method of claim 6, further comprising removing the device from the patient with the guidewire in position.
8. The method of claim 7, further comprising using the guidewire to position a surgical device.
US13/619,930 2007-09-06 2012-09-14 Method, system and apparatus for neural localization Abandoned US20130012831A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/619,930 US20130012831A1 (en) 2007-09-06 2012-09-14 Method, system and apparatus for neural localization
US13/662,247 US20130053853A1 (en) 2007-09-06 2012-10-26 Devices, methods and systems for neural localization

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US97045807P 2007-09-06 2007-09-06
US97602907P 2007-09-28 2007-09-28
US1751207P 2007-12-28 2007-12-28
US2067008P 2008-01-11 2008-01-11
US12/060,229 US7959577B2 (en) 2007-09-06 2008-03-31 Method, system, and apparatus for neural localization
US13/090,944 US8303516B2 (en) 2007-09-06 2011-04-20 Method, system and apparatus for neural localization
US13/619,930 US20130012831A1 (en) 2007-09-06 2012-09-14 Method, system and apparatus for neural localization

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/090,944 Continuation US8303516B2 (en) 2007-09-06 2011-04-20 Method, system and apparatus for neural localization

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/060,229 Continuation US7959577B2 (en) 2004-10-15 2008-03-31 Method, system, and apparatus for neural localization

Publications (1)

Publication Number Publication Date
US20130012831A1 true US20130012831A1 (en) 2013-01-10

Family

ID=39535818

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/060,229 Active 2028-06-27 US7959577B2 (en) 2004-10-15 2008-03-31 Method, system, and apparatus for neural localization
US13/090,944 Active US8303516B2 (en) 2007-09-06 2011-04-20 Method, system and apparatus for neural localization
US13/619,930 Abandoned US20130012831A1 (en) 2007-09-06 2012-09-14 Method, system and apparatus for neural localization

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/060,229 Active 2028-06-27 US7959577B2 (en) 2004-10-15 2008-03-31 Method, system, and apparatus for neural localization
US13/090,944 Active US8303516B2 (en) 2007-09-06 2011-04-20 Method, system and apparatus for neural localization

Country Status (3)

Country Link
US (3) US7959577B2 (en)
EP (1) EP2194861A1 (en)
WO (1) WO2009032363A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110004207A1 (en) * 2004-10-15 2011-01-06 Baxano, Inc. Flexible Neural Localization Devices and Methods
US20110046613A1 (en) * 2006-08-29 2011-02-24 Gregory Schmitz Tissue access guidewire system and method
US20110060314A1 (en) * 2004-10-15 2011-03-10 Wallace Michael P Devices and methods for treating tissue
US20110112539A1 (en) * 2008-07-14 2011-05-12 Wallace Michael P Tissue modification devices
US20110160731A1 (en) * 2004-10-15 2011-06-30 Bleich Jeffery L Devices and methods for tissue access
US20110190772A1 (en) * 2004-10-15 2011-08-04 Vahid Saadat Powered tissue modification devices and methods
US8579902B2 (en) 2004-10-15 2013-11-12 Baxano Signal, Inc. Devices and methods for tissue modification
US8585704B2 (en) 2006-05-04 2013-11-19 Baxano Surgical, Inc. Flexible tissue removal devices and methods
US8613745B2 (en) 2004-10-15 2013-12-24 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US8647346B2 (en) 2004-10-15 2014-02-11 Baxano Surgical, Inc. Devices and methods for tissue modification
US8652138B2 (en) 2004-10-15 2014-02-18 Baxano Surgical, Inc. Flexible tissue rasp
US8663228B2 (en) 2007-12-07 2014-03-04 Baxano Surgical, Inc. Tissue modification devices
US9125682B2 (en) 2005-10-15 2015-09-08 Amendia, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US9320618B2 (en) 2004-10-15 2016-04-26 Amendia, Inc. Access and tissue modification systems and methods
US10016600B2 (en) 2013-05-30 2018-07-10 Neurostim Solutions, Llc Topical neurological stimulation
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
US11458311B2 (en) 2019-06-26 2022-10-04 Neurostim Technologies Llc Non-invasive nerve activator patch with adaptive circuit
US11730958B2 (en) 2019-12-16 2023-08-22 Neurostim Solutions, Llc Non-invasive nerve activator with boosted charge delivery

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062300B2 (en) 2006-05-04 2011-11-22 Baxano, Inc. Tissue removal with at least partially flexible devices
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US7578819B2 (en) * 2005-05-16 2009-08-25 Baxano, Inc. Spinal access and neural localization
US8430881B2 (en) 2004-10-15 2013-04-30 Baxano, Inc. Mechanical tissue modification devices and methods
US8092456B2 (en) 2005-10-15 2012-01-10 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
EP2194861A1 (en) 2007-09-06 2010-06-16 Baxano, Inc. Method, system and apparatus for neural localization
US8942797B2 (en) * 2007-10-18 2015-01-27 Innovative Surgical Solutions, Llc Neural monitoring system
US8343079B2 (en) 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural monitoring sensor
US9084550B1 (en) * 2007-10-18 2015-07-21 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
US8343065B2 (en) 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural event detection
US20090105788A1 (en) * 2007-10-18 2009-04-23 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
WO2009067626A1 (en) 2007-11-21 2009-05-28 Glumetrics, Inc. Use of an equilibrium intravascular sensor to achieve tight glycemic control
WO2009129186A2 (en) * 2008-04-17 2009-10-22 Glumetrics, Inc. Sensor for percutaneous intravascular deployment without an indwelling cannula
US8272383B2 (en) * 2008-05-06 2012-09-25 Nxthera, Inc. Systems and methods for male sterilization
WO2009138093A1 (en) * 2008-05-12 2009-11-19 Tallinn University Of Technology Method and device using shortened square wave waveforms in synchronous signal processing
US8409206B2 (en) 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
BRPI0921422A2 (en) 2008-11-06 2016-01-05 Nxthera Inc prostate therapy system.
WO2010054237A1 (en) 2008-11-06 2010-05-14 Nxthera, Inc. Systems and methods for treatment of bph
DE102008062018A1 (en) * 2008-12-12 2010-06-17 Up Management Gmbh Device and method for detecting electrical potentials on the human or animal body
US20100256483A1 (en) * 2009-04-03 2010-10-07 Insite Medical Technologies, Inc. Devices and methods for tissue navigation
US9833277B2 (en) 2009-04-27 2017-12-05 Nxthera, Inc. Systems and methods for prostate treatment
WO2010138919A2 (en) 2009-05-28 2010-12-02 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US8394102B2 (en) 2009-06-25 2013-03-12 Baxano, Inc. Surgical tools for treatment of spinal stenosis
US8753364B2 (en) 2009-08-07 2014-06-17 Thayer Intellectual Property, Inc. Systems and methods for treatment of compressed nerves
US8348966B2 (en) * 2009-08-07 2013-01-08 Thayer Intellectual Property, Inc. Systems and methods for treatment of compressed nerves
US8652157B2 (en) 2009-08-07 2014-02-18 Thayer Intellectual Property, Inc. Systems and methods for treatment of compressed nerves
US8926525B2 (en) * 2009-08-19 2015-01-06 Mirador Biomedical Systems, methods, and devices for facilitating access to target anatomical sites or environments
WO2011041546A1 (en) 2009-09-30 2011-04-07 Glumetrics, Inc. Sensors with thromboresistant coating
US8467843B2 (en) 2009-11-04 2013-06-18 Glumetrics, Inc. Optical sensor configuration for ratiometric correction of blood glucose measurement
US20110160772A1 (en) * 2009-12-28 2011-06-30 Arcenio Gregory B Systems and methods for performing spinal fusion
NZ602609A (en) * 2010-03-25 2014-12-24 Nxthera Inc Systems and methods for prostate treatment
USD674489S1 (en) 2010-09-15 2013-01-15 Thayer Intellectual Property, Inc. Handle for a medical device
USD666725S1 (en) 2010-09-15 2012-09-04 Thayer Intellectual Property, Inc. Handle for a medical device
USD673683S1 (en) 2010-09-15 2013-01-01 Thayer Intellectual Property, Inc. Medical device
US8876845B2 (en) 2010-09-30 2014-11-04 Loubert Suddaby Sling blade transection of the transverse carpal ligament
WO2012051433A2 (en) 2010-10-13 2012-04-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US20120283715A1 (en) * 2011-05-02 2012-11-08 Teresa Ann Mihalik Electrical sensing systems and methods of use for treating tissue
EP2755614B1 (en) 2011-09-13 2017-11-01 Nxthera, Inc. Systems for prostate treatment
US9078665B2 (en) 2011-09-28 2015-07-14 Angiodynamics, Inc. Multiple treatment zone ablation probe
US11373780B2 (en) 2011-10-06 2022-06-28 3Dt Holdings, Llc Methods to generate elongated wires having a metallic substrate thereon and devices comprising the same
US9734938B2 (en) 2011-10-06 2017-08-15 3Dt Holdings, Llc Devices and systems for obtaining conductance data and methods of manufacturing and using the same
US8983593B2 (en) * 2011-11-10 2015-03-17 Innovative Surgical Solutions, Llc Method of assessing neural function
US9301711B2 (en) 2011-11-10 2016-04-05 Innovative Surgical Solutions, Llc System and method for assessing neural health
US9414881B2 (en) 2012-02-08 2016-08-16 Angiodynamics, Inc. System and method for increasing a target zone for electrical ablation
US9888859B1 (en) * 2013-03-14 2018-02-13 Nuvasive, Inc. Directional dilator for intraoperative monitoring
US8855822B2 (en) 2012-03-23 2014-10-07 Innovative Surgical Solutions, Llc Robotic surgical system with mechanomyography feedback
US10335222B2 (en) 2012-04-03 2019-07-02 Nxthera, Inc. Induction coil vapor generator
US9439598B2 (en) 2012-04-12 2016-09-13 NeuroMedic, Inc. Mapping and ablation of nerves within arteries and tissues
US9039630B2 (en) 2012-08-22 2015-05-26 Innovative Surgical Solutions, Llc Method of detecting a sacral nerve
US8892259B2 (en) 2012-09-26 2014-11-18 Innovative Surgical Solutions, LLC. Robotic surgical system with mechanomyography feedback
US10016142B2 (en) 2012-10-19 2018-07-10 Sidewaystrategies Llc Systems and methods for nerve mapping and monitoring
BR112015022358A2 (en) 2013-03-14 2017-07-18 Nxthera Inc method for treating abnormal prostate tissue, and, method for treating prostate cancer, and, prostate cancer therapy system
US10478096B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions. Neural event detection
US10478097B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions Neural event detection
US10376209B2 (en) * 2013-09-20 2019-08-13 Innovative Surgical Solutions, Llc Neural locating method
US10376208B2 (en) 2013-09-20 2019-08-13 Innovative Surgical Solutions, Llc Nerve mapping system
US9622684B2 (en) 2013-09-20 2017-04-18 Innovative Surgical Solutions, Llc Neural locating system
US10449002B2 (en) 2013-09-20 2019-10-22 Innovative Surgical Solutions, Llc Method of mapping a nerve
US9968395B2 (en) 2013-12-10 2018-05-15 Nxthera, Inc. Systems and methods for treating the prostate
CN105813591B (en) 2013-12-10 2018-05-01 恩克斯特拉公司 steam ablation system and method
US9974597B2 (en) * 2014-03-19 2018-05-22 Boston Scientific Scimed, Inc. Systems and methods for assessing and treating tissue
JP6590460B2 (en) 2014-08-26 2019-10-16 アヴェント インコーポレイテッド System for identification and treatment of pain sources of chronic pain
US12114911B2 (en) 2014-08-28 2024-10-15 Angiodynamics, Inc. System and method for ablating a tissue site by electroporation with real-time pulse monitoring
WO2016123498A1 (en) 2015-01-29 2016-08-04 Nxthera, Inc. Vapor ablation systems and methods
CN107530118B (en) 2015-05-13 2021-06-04 波士顿科学医学有限公司 Systems and methods for treating bladder using condensable vapors
WO2018014007A1 (en) 2016-07-14 2018-01-18 Sidewaystrategies Llc System and methods for improving diagnostic evoked potential studies for functional assessments of nerves and nerve pathways
US10321833B2 (en) 2016-10-05 2019-06-18 Innovative Surgical Solutions. Neural locating method
US10905492B2 (en) 2016-11-17 2021-02-02 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
WO2018119269A1 (en) 2016-12-21 2018-06-28 Nxthera, Inc. Vapor ablation systems and methods
JP7193463B2 (en) 2017-01-06 2022-12-20 ボストン サイエンティフィック サイムド,インコーポレイテッド Transperitoneal steam ablation system and method
US10869616B2 (en) 2018-06-01 2020-12-22 DePuy Synthes Products, Inc. Neural event detection
US10870002B2 (en) 2018-10-12 2020-12-22 DePuy Synthes Products, Inc. Neuromuscular sensing device with multi-sensor array
US11399777B2 (en) 2019-09-27 2022-08-02 DePuy Synthes Products, Inc. Intraoperative neural monitoring system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284153A (en) * 1992-04-14 1994-02-08 Brigham And Women's Hospital Method for locating a nerve and for protecting nerves from injury during surgery
US5775331A (en) * 1995-06-07 1998-07-07 Uromed Corporation Apparatus and method for locating a nerve
US20060089633A1 (en) * 2004-10-15 2006-04-27 Baxano, Inc. Devices and methods for tissue access
US20060258951A1 (en) * 2005-05-16 2006-11-16 Baxano, Inc. Spinal Access and Neural Localization

Family Cites Families (637)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1938200A (en) 1933-12-05 Band-saw operating mechanism
US289104A (en) 1883-11-27 Combined rasp and saw
US184804A (en) 1876-11-28 Improvement in surgical saws
USRE25582E (en) 1964-05-19 D a vi es
US863389A (en) 1906-06-07 1907-08-13 E N Dickerson Flexible file.
US1039487A (en) 1912-03-09 1912-09-24 Williams Patent Crusher & Pulv Abrasive.
US1201467A (en) 1915-04-26 1916-10-17 Emil J Hoglund Bone-cutting instrument.
US1374638A (en) 1920-01-06 1921-04-12 Cew Charles A De Hand power-driven band-saw
US1543195A (en) 1921-07-07 1925-06-23 Thygesen Jens Peter Nielsen Device for cutting up fetal and like objects in animals
US1690812A (en) 1927-10-08 1928-11-06 John P Benning File
US2243757A (en) 1939-11-09 1941-05-27 Continental Machines File band
US2269749A (en) 1940-09-16 1942-01-13 Continental Machines File band
US2372553A (en) 1942-06-11 1945-03-27 Continental Machines File band
US2437697A (en) 1946-04-01 1948-03-16 Kalom Lawrence Electrical probe
US2516882A (en) 1948-01-22 1950-08-01 Kalom Lawrence Electrical probe
US2982005A (en) 1952-02-06 1961-05-02 Simmonds Aerocessories Ltd Cutting and abrading machines
US2704064A (en) 1952-09-10 1955-03-15 Meditron Company Neurosurgical stimulator
US2820281A (en) 1956-11-30 1958-01-21 Red Devil Tools Abrasive article
US2843128A (en) 1957-03-18 1958-07-15 Storz Instr Co Adenotome
US3150470A (en) 1961-08-11 1964-09-29 Lee H Barron Diamond coated wire saw
US3200814A (en) 1963-03-12 1965-08-17 Ellis R Taylor Apparatus for measuring reflexes, tremors and the like
US3528152A (en) 1966-03-17 1970-09-15 Shinnosuke Funakubo Band-type file
US3495590A (en) 1967-03-15 1970-02-17 Warren Zeiller Surgical cast and cast removal saw
US3389447A (en) 1967-05-26 1968-06-25 Theobald Elwin Omnidirectional cutting tool
US3491776A (en) 1967-06-08 1970-01-27 Floxite Co Inc Dental cleaner for the removal of tobacco and other stains from teeth
AU424672B2 (en) 1968-12-13 1972-05-30 Improved oscillator circuit configuration
US3682162A (en) 1968-12-13 1972-08-08 Wellcome Found Combined electrode and hypodermic syringe needle
US3640280A (en) 1969-11-26 1972-02-08 Daniel R Slanker Power-driven reciprocating bone surgery instrument
IE34766B1 (en) 1969-12-24 1975-08-06 Cigarette Components Ltd Tobacco smoke filter
US3651844A (en) 1970-02-24 1972-03-28 Terry B C Barnes All purpose saw
US3664329A (en) 1970-03-09 1972-05-23 Concept Nerve locator/stimulator
US3699729A (en) 1971-05-14 1972-10-24 Carrier Craft Corp Sanding hand tool
US3774355A (en) 1971-10-15 1973-11-27 Remington Arms Co Inc Armored metal file band and production thereof
US3835859A (en) 1973-02-22 1974-09-17 R Roberts Surgical instrument
US3830226A (en) 1973-06-15 1974-08-20 Concept Variable output nerve locator
US3956858A (en) 1973-11-23 1976-05-18 Remington Arms Company, Inc. Flexible hand held abrading tool
US3978862A (en) 1974-08-26 1976-09-07 Stryker Corporation Surgical cutting device
US3957036A (en) 1975-02-03 1976-05-18 Baylor College Of Medicine Method and apparatus for recording activity in intact nerves
US4015931A (en) 1975-09-29 1977-04-05 Engelhard Minerals & Chemicals Corporation Bonded-abrasive wire saw
US4172440A (en) 1976-03-27 1979-10-30 Hoechst Aktiengesellschaft Cutting monofilament
US3999294A (en) 1976-05-07 1976-12-28 George Shoben Flexible bladed saw
GB1534162A (en) 1976-07-21 1978-11-29 Lloyd J Cyosurgical probe
US4099519A (en) 1977-01-14 1978-07-11 Warren Fred E Diagnostic device
US4108182A (en) 1977-02-16 1978-08-22 Concept Inc. Reciprocation vitreous suction cutter head
US4160320A (en) 1977-04-06 1979-07-10 Best & Donovan Hand held band saw
GB1580924A (en) * 1977-06-24 1980-12-10 Smiths Industries Ltd Methods of hole-forming in plastics workpieces and products manufactured using such methods
US4203444A (en) 1977-11-07 1980-05-20 Dyonics, Inc. Surgical instrument suitable for closed surgery such as of the knee
US4621636A (en) 1979-07-23 1986-11-11 Fogarty Thomas J Endarterectomy method and apparatus
USD273806S (en) 1981-08-03 1984-05-08 Zimmer, Inc. Reamer/rasp tool, with disposable, debris retaining cutting surface
US4405061A (en) 1981-08-18 1983-09-20 National Instrument Co., Inc. Filling machine
US5147364A (en) 1981-08-20 1992-09-15 Ohio Medical Instrument Company Osteotomy saw/file, cutting guide and method
DE3209403A1 (en) 1982-03-16 1983-09-22 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Device for making an excavation in a bone
US5421819A (en) 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US4545374A (en) 1982-09-03 1985-10-08 Jacobson Robert E Method and instruments for performing a percutaneous lumbar diskectomy
US4464836A (en) 1982-09-15 1984-08-14 Hissa Robert E Friction saw and handle assembly
US4518022A (en) 1982-09-29 1985-05-21 Valdes Guillermo A Oscillating cutting element
US4894063A (en) * 1983-05-24 1990-01-16 Baxter International Inc. Barrier layer for implantable tendons and ligaments
US4502184A (en) 1983-06-30 1985-03-05 Kentmaster Manufacturing Co., Inc. Reversible carcass saw
US4515168A (en) 1983-07-22 1985-05-07 Chester Martin H Clamp-on nerve stimulator and locator
US4625725A (en) 1983-08-30 1986-12-02 Snowden-Pencer, Inc. Surgical rasp and method of manufacture
US4573448A (en) 1983-10-05 1986-03-04 Pilling Co. Method for decompressing herniated intervertebral discs
US4580545A (en) 1984-02-29 1986-04-08 Florida Wire And Cable Company Stone sawing strand
USRE33258E (en) 1984-07-23 1990-07-10 Surgical Dynamics Inc. Irrigating, cutting and aspirating system for percutaneous surgery
US4678459A (en) 1984-07-23 1987-07-07 E-Z-Em, Inc. Irrigating, cutting and aspirating system for percutaneous surgery
US4590949A (en) * 1984-11-01 1986-05-27 Cordis Corporation Neural stimulating lead with stabilizing mechanism and method for using same
JPS61113442A (en) 1984-11-09 1986-05-31 而至歯科工業株式会社 Dental polishing strip
US4616660A (en) 1984-12-10 1986-10-14 Suncoast Medical Manufacturing, Inc. Variable alternating current output nerve locator/stimulator
US4741343A (en) * 1985-05-06 1988-05-03 Massachusetts Institute Of Technology Method and apparatus for measuring oxygen partial pressure and temperature in living tissue
US4660571A (en) * 1985-07-18 1987-04-28 Cordis Corporation Percutaneous lead having radially adjustable electrode
US4817628A (en) * 1985-10-18 1989-04-04 David L. Zealear System and method for evaluating neurological function controlling muscular movements
US4700702A (en) 1985-12-09 1987-10-20 Tatiana Nilsson Instrument for cutting tissues in surgery
US4794931A (en) * 1986-02-28 1989-01-03 Cardiovascular Imaging Systems, Inc. Catheter apparatus, system and method for intravascular two-dimensional ultrasonography
US5078137A (en) * 1986-05-05 1992-01-07 Massachusetts Institute Of Technology Apparatus for measuring oxygen partial pressure and temperature, in living tissue
US4709699A (en) 1986-08-06 1987-12-01 Fort Wayne Metals Research Products Corporation Surgeon's Gigli saw and method
US4750249A (en) 1986-09-08 1988-06-14 Richardson Henry A Pipe scraping tool
CA1328123C (en) * 1986-10-08 1994-03-29 Nigel John Randall Intrauterine probe
CH671692A5 (en) 1987-01-08 1989-09-29 Sulzer Ag
US4808157A (en) 1987-07-13 1989-02-28 Neuro Delivery Technology, Inc. Multi-lumen epidural-spinal needle
US4856193A (en) 1987-07-24 1989-08-15 Grachan Ronald A Saw
ATE115384T1 (en) 1987-10-13 1994-12-15 United States Surgical Corp TROCAR DEVICE.
US4873978A (en) 1987-12-04 1989-10-17 Robert Ginsburg Device and method for emboli retrieval
US4883460A (en) 1988-04-25 1989-11-28 Zanetti Paul H Technique for removing deposits from body vessels
US4973329A (en) 1988-05-16 1990-11-27 Medical Innovations Corporation Assembly of wire inserter and lock for a medical wire
US4867155A (en) 1988-06-21 1989-09-19 Nu-Tech Industries, Inc. Arthroscopic cutting device
US4943295A (en) 1988-07-13 1990-07-24 Hartlaub Thaddeus J Surgical cutting tool
US5374261A (en) 1990-07-24 1994-12-20 Yoon; Inbae Multifunctional devices for use in endoscopic surgical procedures and methods-therefor
DK170965B1 (en) 1988-08-31 1996-04-09 Meadox Medicals Inc dilatation catheter
US5178161A (en) 1988-09-02 1993-01-12 The Board Of Trustees Of The Leland Stanford Junior University Microelectronic interface
DE8811408U1 (en) 1988-09-09 1988-12-01 B. Braun Melsungen Ag, 3508 Melsungen Catheter device for spinal anesthesia
US4957117A (en) 1988-11-03 1990-09-18 Ramsey Foundation One-handed percutaneous transluminal angioplasty steering device and method
US4946462A (en) 1988-12-12 1990-08-07 Watanabe Robert S Arthroscopic guide and method
US5353799A (en) 1991-01-22 1994-10-11 Non Invasive Technology, Inc. Examination of subjects using photon migration with high directionality techniques
US5026386A (en) 1988-12-23 1991-06-25 Michelson Gary K Flaval separator
US4872452A (en) 1989-01-09 1989-10-10 Minnesota Mining And Manufacturing Company Bone rasp
US4990148A (en) 1989-01-13 1991-02-05 Codman & Shurtleff, Inc. Thin footplate rongeur
US4912799A (en) 1989-01-30 1990-04-03 Coleman Jr Lewis E Water main scraper
US5318570A (en) 1989-01-31 1994-06-07 Advanced Osseous Technologies, Inc. Ultrasonic tool
US5125928A (en) * 1989-04-13 1992-06-30 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US6200320B1 (en) 1989-04-24 2001-03-13 Gary Karlin Michelson Surgical rongeur
US4962766A (en) 1989-07-19 1990-10-16 Herzon Garrett D Nerve locator and stimulator
US6004330A (en) 1989-08-16 1999-12-21 Medtronic, Inc. Device or apparatus for manipulating matter
US5622188A (en) * 1989-08-18 1997-04-22 Endovascular Instruments, Inc. Method of restoring reduced or absent blood flow capacity in an artery
US5201704A (en) 1989-11-07 1993-04-13 Ray Joel W Method of making and using a hemostatic agent applicator
US5215105A (en) 1989-11-14 1993-06-01 Custom Medical Concepts, Inc. Method of treating epidural lesions
US5026379A (en) 1989-12-05 1991-06-25 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
US5089003A (en) 1989-12-22 1992-02-18 Zimmer, Inc. Rasp tool including detachable handle member
WO1991010406A1 (en) * 1990-01-22 1991-07-25 Phillips Arnold G A bone wax applicator and method for dressing bone tissue
US4995200A (en) 1990-02-27 1991-02-26 Edward Eberhart Sanding tool
US5191888A (en) 1990-04-18 1993-03-09 Cordis Corporation Assembly of an extension guidewire and an alignment tool for same
US5813405A (en) 1990-04-18 1998-09-29 Cordis Corporation Snap-in connection assembly for extension guidewire system
US5100424A (en) * 1990-05-21 1992-03-31 Cardiovascular Imaging Systems, Inc. Intravascular catheter having combined imaging abrasion head
US5269785A (en) 1990-06-28 1993-12-14 Bonutti Peter M Apparatus and method for tissue removal
US5300077A (en) 1990-07-16 1994-04-05 Arthrotek Method and instruments for ACL reconstruction
JP2960140B2 (en) 1990-10-02 1999-10-06 ユニチカ株式会社 Surgical suture assembly
SE466987B (en) 1990-10-18 1992-05-11 Stiftelsen Ct Foer Dentaltekni DEVICE FOR DEEP-SELECTIVE NON-INVASIVE, LOCAL SEATING OF ELECTRICAL IMPEDANCE IN ORGANIC AND BIOLOGICAL MATERIALS AND PROBE FOR SEATING ELECTRICAL IMPEDANCE
FR2668695B1 (en) * 1990-11-06 1995-09-29 Ethnor ENDOSCOPIC SURGICAL INSTRUMENT FOR MOVING TISSUES OR ORGANS.
US5108403A (en) * 1990-11-09 1992-04-28 Stern Mark S Bone waxing device
DE4036804A1 (en) 1990-11-19 1992-05-21 Univ Halle Wittenberg Instruments for decompression of cervical narrow spinal channel - act to remove dorsal edge points of vertebrae and ventral bridge building of damaged segments
GB9026592D0 (en) 1990-12-06 1991-01-23 Meswania Jayantilal M Surgical instrument
US5176649A (en) 1991-01-28 1993-01-05 Akio Wakabayashi Insertion device for use with curved, rigid endoscopic instruments and the like
US5456254A (en) 1991-02-15 1995-10-10 Cardiac Pathways Corp Flexible strip assembly having insulating layer with conductive pads exposed through insulating layer and device utilizing the same
US5234435A (en) 1991-03-08 1993-08-10 Seagrave Jr Richard A Surgical method and apparatus
US5163939A (en) 1991-06-27 1992-11-17 Frederick Winston Disk flow and methods therefor
US5152749A (en) 1991-06-28 1992-10-06 American Medical Systems, Inc. Instrument placement apparatus
US5178145A (en) 1991-07-24 1993-01-12 Rea James L Self retaining laryngeal surface electrode and method for independent identification of human recurrent laryngeal nerve
US5219358A (en) 1991-08-29 1993-06-15 Ethicon, Inc. Shape memory effect surgical needles
US5161534A (en) 1991-09-05 1992-11-10 C. R. Bard, Inc. Tool for manipulating a medical guidewire
US5524338A (en) * 1991-10-22 1996-06-11 Pi Medical Corporation Method of making implantable microelectrode
US5762629A (en) 1991-10-30 1998-06-09 Smith & Nephew, Inc. Oval cannula assembly and method of use
US5255691A (en) 1991-11-13 1993-10-26 Medtronic, Inc. Percutaneous epidural lead introducing system and method
DE4138172C2 (en) 1991-11-21 1994-06-09 Draegerwerk Ag Half mask
US6770071B2 (en) 1995-06-07 2004-08-03 Arthrocare Corporation Bladed electrosurgical probe
US5271415A (en) 1992-01-28 1993-12-21 Baxter International Inc. Guidewire extension system
DK0563585T3 (en) 1992-04-01 1995-12-18 Integral Medizintechnik Plastic bone asparagus
US5396880A (en) 1992-04-08 1995-03-14 Danek Medical, Inc. Endoscope for direct visualization of the spine and epidural space
US5250035A (en) 1992-04-20 1993-10-05 Abbott Laboratories Cannula and stylet system
US5326350A (en) 1992-05-11 1994-07-05 Li Shu Tung Soft tissue closure systems
US5242418A (en) 1992-05-22 1993-09-07 Weinstein James D Protective means for a needle or similar cannula medical device
US5281218A (en) * 1992-06-05 1994-01-25 Cardiac Pathways Corporation Catheter having needle electrode for radiofrequency ablation
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5857996A (en) 1992-07-06 1999-01-12 Catheter Imaging Systems Method of epidermal surgery
US5351679A (en) 1992-08-17 1994-10-04 Ilya Mayzels Surgical endoscopic retractor instrument
US5360441A (en) 1992-10-30 1994-11-01 Medtronic, Inc. Lead with stylet capture member
US5611354A (en) 1992-11-12 1997-03-18 Alleyne; Neville Cardiac protection device
US5365928A (en) 1992-11-25 1994-11-22 Medrad, Inc. Endorectal probe with planar moveable MRI coil
US5735792A (en) 1992-11-25 1998-04-07 Clarus Medical Systems, Inc. Surgical instrument including viewing optics and an atraumatic probe
US5385146A (en) * 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US5385570A (en) 1993-01-12 1995-01-31 R. J. Surgical Instruments, Inc. Surgical cutting instrument
US5833692A (en) 1993-01-29 1998-11-10 Smith & Nephew, Inc. Surgical instrument
US5620447A (en) 1993-01-29 1997-04-15 Smith & Nephew Dyonics Inc. Surgical instrument
US5643304A (en) 1993-02-16 1997-07-01 Danek Medical, Inc. Method and apparatus for minimally invasive tissue removal
US5439464A (en) 1993-03-09 1995-08-08 Shapiro Partners Limited Method and instruments for performing arthroscopic spinal surgery
US6491646B1 (en) 1993-03-11 2002-12-10 Lake Region Manufacturing, Inc. Guidewire extension system
US5353784A (en) 1993-04-02 1994-10-11 The Research Foundation Of Suny Endoscopic device and method of use
US5325868A (en) 1993-05-04 1994-07-05 Kimmelstiel Carey D Self-gripping medical wire torquer
JP3607702B2 (en) 1993-05-17 2005-01-05 ボストン・サイエンティフィック・コーポレーション Multiple biopsy sampling equipment
US5531749A (en) 1993-06-10 1996-07-02 Gary K. Michelson Spinal bone waxer
US5480404A (en) 1993-06-16 1996-01-02 Ethicon, Inc. Surgical tissue retrieval instrument
FR2706309B1 (en) 1993-06-17 1995-10-06 Sofamor Instrument for surgical treatment of an intervertebral disc by the anterior route.
US5441044A (en) 1993-08-16 1995-08-15 United States Surgical Corporation Surgical retractor
US5441510A (en) 1993-09-01 1995-08-15 Technology Development Center Bi-axial cutter apparatus for catheter
WO1995008294A1 (en) 1993-09-24 1995-03-30 Cardiometrics, Inc. Extension device, assembly thereof, heater for use therewith and method
ZA948393B (en) 1993-11-01 1995-06-26 Polartechnics Ltd Method and apparatus for tissue type recognition
US5421348A (en) 1993-11-29 1995-06-06 Cordis Corporation Rotating guidewire extension system with mechanically locking extension wire
WO1995020344A1 (en) 1994-01-28 1995-08-03 Ep Technologies, Inc. System for examining cardiac tissue electrical characteristics
US5560372A (en) 1994-02-02 1996-10-01 Cory; Philip C. Non-invasive, peripheral nerve mapping device and method of use
US5620458A (en) 1994-03-16 1997-04-15 United States Surgical Corporation Surgical instruments useful for endoscopic spinal procedures
CA2144211C (en) 1994-03-16 2005-05-24 David T. Green Surgical instruments useful for endoscopic spinal procedures
US5437661A (en) 1994-03-23 1995-08-01 Rieser; Bernhard Method for removal of prolapsed nucleus pulposus material on an intervertebral disc using a laser
US5649547A (en) * 1994-03-24 1997-07-22 Biopsys Medical, Inc. Methods and devices for automated biopsy and collection of soft tissue
US5546958A (en) 1994-03-31 1996-08-20 Lake Region Manufacturing Company, Inc. Guidewire extension system with tactile connection indication
US5598848A (en) 1994-03-31 1997-02-04 Ep Technologies, Inc. Systems and methods for positioning multiple electrode structures in electrical contact with the myocardium
US5512037A (en) * 1994-05-12 1996-04-30 United States Surgical Corporation Percutaneous surgical retractor
USRE38335E1 (en) 1994-05-24 2003-11-25 Endius Incorporated Surgical instrument
US5680860A (en) 1994-07-07 1997-10-28 Cardiac Pathways Corporation Mapping and/or ablation catheter with coilable distal extremity and method for using same
WO1996002298A1 (en) * 1994-07-13 1996-02-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Flexible artificial nerve plate
US5496325A (en) 1994-08-09 1996-03-05 Mclees; Donald J. Split stem surgical saw blade
US5899909A (en) * 1994-08-30 1999-05-04 Medscand Medical Ab Surgical instrument for treating female urinary incontinence
US5634475A (en) 1994-09-01 1997-06-03 Datascope Investment Corp. Guidewire delivery assist device and system
RU2107459C1 (en) 1994-09-29 1998-03-27 Нижегородский государственный научно-исследовательский институт травматологии и ортопедии Method and device for searching nerves and plexus nervosus
US5656012A (en) 1994-10-06 1997-08-12 United States Surgical Corporation Surgical retractor
US5803902A (en) 1994-10-06 1998-09-08 United States Surgical Corporation Surgical retractor
CA2159685C (en) 1994-10-07 2007-07-31 Scott W. Larsen Endoscopic surgical instruments useful for spinal procedures
US6142994A (en) 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
US6678552B2 (en) 1994-10-24 2004-01-13 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
US5555892A (en) 1994-11-14 1996-09-17 Tipton; Clyde C. Biopsy shaver
US5632754A (en) 1994-12-23 1997-05-27 Devices For Vascular Intervention Universal catheter with interchangeable work element
US5562695A (en) 1995-01-10 1996-10-08 Obenchain; Theodore G. Nerve deflecting conduit needle and method
US5601561A (en) 1995-01-17 1997-02-11 W. L. Gore & Associates, Inc. Guided bone rasp
US5665062A (en) 1995-01-23 1997-09-09 Houser; Russell A. Atherectomy catheter and RF cutting method
US5630426A (en) 1995-03-03 1997-05-20 Neovision Corporation Apparatus and method for characterization and treatment of tumors
US5795308A (en) 1995-03-09 1998-08-18 Russin; Lincoln D. Apparatus for coaxial breast biopsy
US5728118A (en) 1995-03-29 1998-03-17 Linvatec Corporation Apparatus and method for harvesting a bone-tendon-bone ligament graft
CA2229391C (en) 1995-04-10 2005-09-27 Admir Hadzic Peripheral nerve stimulation device for unassisted nerve blockade
US6602248B1 (en) * 1995-06-07 2003-08-05 Arthro Care Corp. Methods for repairing damaged intervertebral discs
US20050004634A1 (en) 1995-06-07 2005-01-06 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
US6772012B2 (en) 1995-06-07 2004-08-03 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
US6015406A (en) * 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
AUPN533195A0 (en) 1995-09-07 1995-10-05 Cochlear Pty. Limited Derived threshold and comfort level for auditory prostheses
EP0853464A4 (en) 1995-09-18 2001-02-07 Exactech Inc Counter-balanced oscillating surgical saw
US5749882A (en) 1995-10-18 1998-05-12 Applied Medical Resources Corporation Apparatus for disrupting vein valves
US6122549A (en) * 1996-08-13 2000-09-19 Oratec Interventions, Inc. Apparatus for treating intervertebral discs with resistive energy
US5709697A (en) 1995-11-22 1998-01-20 United States Surgical Corporation Apparatus and method for removing tissue
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
NL1001890C2 (en) 1995-12-13 1997-06-17 Cordis Europ Catheter with plate-shaped electrode array.
US5766168A (en) 1996-01-11 1998-06-16 Northgate Technologies, Inc. Perforated resectoscope electrode assembly
US5851209A (en) 1996-01-16 1998-12-22 Hospital For Joint Diseases Bone cerclage tool
US5779642A (en) 1996-01-16 1998-07-14 Nightengale; Christopher Interrogation device and method
EP0932362B1 (en) 1996-02-15 2005-01-26 Biosense Webster, Inc. Method for calibrating a probe
US5695513A (en) 1996-03-01 1997-12-09 Metagen, Llc Flexible cutting tool and methods for its use
US5895417A (en) * 1996-03-06 1999-04-20 Cardiac Pathways Corporation Deflectable loop design for a linear lesion ablation apparatus
US5792044A (en) 1996-03-22 1998-08-11 Danek Medical, Inc. Devices and methods for percutaneous surgery
US6679833B2 (en) 1996-03-22 2004-01-20 Sdgi Holdings, Inc. Devices and methods for percutaneous surgery
ES2224228T3 (en) 1996-03-22 2005-03-01 Sdgi Holdings, Inc. DEVICE FOR PERCUTANEOUS SURGERY.
US7198598B2 (en) 1996-03-22 2007-04-03 Warsaw Orthopedic, Inc. Devices and methods for percutaneous surgery
US5788653A (en) 1996-04-03 1998-08-04 Cordis Corporation Guidewire extension with sliding release mechanism
WO1997037720A1 (en) * 1996-04-04 1997-10-16 Medtronic, Inc. Living tissue stimulation and recording techniques
EP0807415B1 (en) 1996-05-09 2003-12-03 Olympus Optical Co., Ltd. A cavity retaining tool for bone surgery, a cavity retaining tool for general surgery, an endoscopic surgery system involving the use of a cavity retaining tool
US5919189A (en) 1996-05-21 1999-07-06 Benderev; Theodore V. Electrosurgical instrument and method of use
US5755718A (en) 1996-06-04 1998-05-26 Sklar; Joseph H. Apparatus and method for reconstructing ligaments
US5725530A (en) 1996-06-19 1998-03-10 Popken; John A. Surgical saw and methods therefor
US6726684B1 (en) 1996-07-16 2004-04-27 Arthrocare Corporation Methods for electrosurgical spine surgery
US5853373A (en) 1996-08-05 1998-12-29 Becton, Dickinson And Company Bi-level charge pulse apparatus to facilitate nerve location during peripheral nerve block procedures
US5826576A (en) * 1996-08-08 1998-10-27 Medtronic, Inc. Electrophysiology catheter with multifunction wire and method for making
US7069087B2 (en) 2000-02-25 2006-06-27 Oratec Interventions, Inc. Apparatus and method for accessing and performing a function within an intervertebral disc
US6733496B2 (en) * 2001-06-06 2004-05-11 Oratec Interventions, Inc. Intervertebral disc device employing flexible probe
US6126682A (en) 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
US6726685B2 (en) * 2001-06-06 2004-04-27 Oratec Interventions, Inc. Intervertebral disc device employing looped probe
US5759159A (en) 1996-09-25 1998-06-02 Ormco Corporation Method and apparatus for apical detection with complex impedance measurement
WO1998016197A1 (en) 1996-10-15 1998-04-23 Needham Charles W Surgical method and composition therefor
EP1006885B1 (en) 1996-10-23 2006-09-20 Oratec Interventions, Inc. Apparatus for treating intervertebral discs
US6682536B2 (en) 2000-03-22 2004-01-27 Advanced Stent Technologies, Inc. Guidewire introducer sheath
US5830188A (en) 1996-12-11 1998-11-03 Board Of Regents, The University Of Texas System Curved cannula for continuous spinal anesthesia
US6332880B1 (en) * 1996-12-19 2001-12-25 Ep Technologies, Inc. Loop structures for supporting multiple electrode elements
US5919190A (en) 1996-12-20 1999-07-06 Vandusseldorp; Gregg A. Cutting loop for an electrocautery probe
US6068630A (en) 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US5836948A (en) 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US5918604A (en) 1997-02-12 1999-07-06 Arthrex, Inc. Method of loading tendons into the knee
EP1006908A2 (en) 1997-02-12 2000-06-14 Oratec Interventions, Inc. Concave probe for arthroscopic surgery
JP4023560B2 (en) * 1997-02-13 2007-12-19 ボストン サイエンティフィック リミテッド Percutaneous and hiatal devices
US5769865A (en) 1997-02-25 1998-06-23 Surgical Insight, Inc. Instrument and method for transection of a ligament
US5916173A (en) * 1997-02-26 1999-06-29 Kirsner; Vaclav Methods and apparatus for monitoring fertility status in the mammalian vagina
US5904657A (en) 1997-02-26 1999-05-18 Unsworth; John D. System for guiding devices in body lumens
US5941822A (en) 1997-03-17 1999-08-24 Polartechnics Limited Apparatus for tissue type recognition within a body canal
US6487439B1 (en) 1997-03-17 2002-11-26 Victor N. Skladnev Glove-mounted hybrid probe for tissue type recognition
US5928158A (en) 1997-03-25 1999-07-27 Aristides; Arellano Medical instrument with nerve sensor
US5830157A (en) 1997-05-09 1998-11-03 Merit Medical Systems, Inc. Guidewire connection guide and method of use
US6102930A (en) 1997-05-16 2000-08-15 Simmons, Jr.; Edward D. Volumetric measurement device and method in lateral recess and foraminal spinal stenosis
US6132387A (en) 1997-07-01 2000-10-17 Neurometrix, Inc. Neuromuscular electrode
US7628761B2 (en) 1997-07-01 2009-12-08 Neurometrix, Inc. Apparatus and method for performing nerve conduction studies with localization of evoked responses
US5851191A (en) 1997-07-01 1998-12-22 Neurometrix, Inc. Apparatus and methods for assessment of neuromuscular function
US5976146A (en) 1997-07-11 1999-11-02 Olympus Optical Co., Ltd. Surgical operation system and method of securing working space for surgical operation in body
US6324418B1 (en) 1997-09-29 2001-11-27 Boston Scientific Corporation Portable tissue spectroscopy apparatus and method
AUPO820897A0 (en) * 1997-07-24 1997-08-14 Cardiac Crc Nominees Pty Limited An intraoperative endocardial and epicardial ablation probe
US6241701B1 (en) * 1997-08-01 2001-06-05 Genetronics, Inc. Apparatus for electroporation mediated delivery of drugs and genes
US6004326A (en) 1997-09-10 1999-12-21 United States Surgical Method and instrumentation for implant insertion
US6106558A (en) 1997-09-15 2000-08-22 Applied Medical Research, Inc. Neuro decompression device
US6050955A (en) 1997-09-19 2000-04-18 United States Surgical Corporation Biopsy apparatus and method
US5972013A (en) 1997-09-19 1999-10-26 Comedicus Incorporated Direct pericardial access device with deflecting mechanism and method
US6214001B1 (en) 1997-09-19 2001-04-10 Oratec Interventions, Inc. Electrocauterizing tool for orthopedic shave devices
US6416505B1 (en) 1998-05-05 2002-07-09 Scimed Life Systems, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and pressure application probe for use with same
US6267760B1 (en) 1998-05-05 2001-07-31 Scimed Life Systems, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and forming an incision in tissue with minimal blood loss
US6033411A (en) 1997-10-14 2000-03-07 Parallax Medical Inc. Precision depth guided instruments for use in vertebroplasty
US6152894A (en) 1997-10-27 2000-11-28 Kubler; Harald Surgical cutting instrument
KR100779258B1 (en) 1997-10-27 2007-11-27 세인트 프랜시스 메디컬 테크놀로지스, 인코포레이티드 Spine distraction implant
US5803904A (en) 1997-10-28 1998-09-08 Mehdizadeh; Hamid Nerve root retractor and disc space separator
US5961522A (en) 1997-11-10 1999-10-05 Mehdizadeh; Hamid M. Laminectomy chisel and guide apparatus
US6146380A (en) 1998-01-09 2000-11-14 Radionics, Inc. Bent tip electrical surgical probe
US5976110A (en) 1998-01-14 1999-11-02 Duke University Catheter system for administration of continuous peripheral nerve anesthetic
SE513484C2 (en) 1998-01-21 2000-09-18 Hagby Asahi Ab Saw strap and concrete saw
WO1999040856A1 (en) 1998-02-10 1999-08-19 Biosense Inc. Improved catheter calibration
US6808498B2 (en) 1998-02-13 2004-10-26 Ventrica, Inc. Placing a guide member into a heart chamber through a coronary vessel and delivering devices for placing the coronary vessel in communication with the heart chamber
US6142993A (en) 1998-02-27 2000-11-07 Ep Technologies, Inc. Collapsible spline structure using a balloon as an expanding actuator
US6113534A (en) 1998-03-19 2000-09-05 Koros; Tibor B. Adjustable heart surface stabilizer
US6241740B1 (en) 1998-04-09 2001-06-05 Origin Medsystems, Inc. System and method of use for ligating and cutting tissue
US6666874B2 (en) 1998-04-10 2003-12-23 Endicor Medical, Inc. Rotational atherectomy system with serrated cutting tip
US6161047A (en) 1998-04-30 2000-12-12 Medtronic Inc. Apparatus and method for expanding a stimulation lead body in situ
US6319241B1 (en) 1998-04-30 2001-11-20 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or a brain
US6451335B1 (en) 1998-07-02 2002-09-17 Euro-Celtique S.A. Formulations and methods for providing prolonged local anesthesia
US6390906B1 (en) 1998-07-06 2002-05-21 Saint-Gobain Abrasives Technology Company Flexible abrasive belts
US6296639B1 (en) * 1999-02-12 2001-10-02 Novacept Apparatuses and methods for interstitial tissue removal
US6002964A (en) 1998-07-15 1999-12-14 Feler; Claudio A. Epidural nerve root stimulation
US6080175A (en) * 1998-07-29 2000-06-27 Corvascular, Inc. Surgical cutting instrument and method of use
US6187000B1 (en) 1998-08-20 2001-02-13 Endius Incorporated Cannula for receiving surgical instruments
US6136014A (en) 1998-09-01 2000-10-24 Vivant Medical, Inc. Percutaneous tissue removal device
US6022362A (en) 1998-09-03 2000-02-08 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6385472B1 (en) * 1999-09-10 2002-05-07 Stereotaxis, Inc. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
US6030401A (en) 1998-10-07 2000-02-29 Nuvasive, Inc. Vertebral enplate decorticator and osteophyte resector
US6845264B1 (en) 1998-10-08 2005-01-18 Victor Skladnev Apparatus for recognizing tissue types
US6266558B1 (en) * 1998-12-01 2001-07-24 Neurometrix, Inc. Apparatus and method for nerve conduction measurements with automatic setting of stimulus intensity
KR20010040761A (en) 1998-12-09 2001-05-15 쿡 인코포레이티드 Hollow, Curved, Superelastic Medical Needle
US6564078B1 (en) 1998-12-23 2003-05-13 Nuvasive, Inc. Nerve surveillance cannula systems
WO2000038574A1 (en) 1998-12-23 2000-07-06 Nuvasive, Inc. Nerve surveillance cannulae systems
US6280447B1 (en) 1998-12-23 2001-08-28 Nuvasive, Inc. Bony tissue resector
US6165140A (en) 1998-12-28 2000-12-26 Micrus Corporation Composite guidewire
DE69939946D1 (en) 1998-12-31 2009-01-02 Kensey Nash Corp TISSUE FASTENING ELEMENT AND ITS INSERTION TOOL
US7449019B2 (en) 1999-01-25 2008-11-11 Smith & Nephew, Inc. Intervertebral decompression
US6442848B1 (en) 1999-03-22 2002-09-03 Ethan Dean Coping saw
US6726531B1 (en) 1999-03-26 2004-04-27 Stephen K. Harrel Abrasive tool having safe and active areas
US6048345A (en) 1999-04-08 2000-04-11 Joseph J. Berke Motorized reciprocating surgical file apparatus and method
US6606523B1 (en) 1999-04-14 2003-08-12 Transneuronix Inc. Gastric stimulator apparatus and method for installing
US6478805B1 (en) 1999-04-16 2002-11-12 Nuvasive, Inc. System for removing cut tissue from the inner bore of a surgical instrument
US6277094B1 (en) 1999-04-28 2001-08-21 Medtronic, Inc. Apparatus and method for dilating ligaments and tissue by the alternating insertion of expandable tubes
US6055456A (en) 1999-04-29 2000-04-25 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
US6214016B1 (en) * 1999-04-29 2001-04-10 Medtronic, Inc. Medical instrument positioning device internal to a catheter or lead and method of use
DE59900101D1 (en) 1999-04-29 2001-06-28 Storz Karl Gmbh & Co Kg Medical instrument for tissue preparation
US20010025192A1 (en) * 1999-04-29 2001-09-27 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
US6259945B1 (en) 1999-04-30 2001-07-10 Uromed Corporation Method and device for locating a nerve
US6231571B1 (en) 1999-05-03 2001-05-15 Alan G. Ellman Electrosurgical handpiece for treating tissue
US6805697B1 (en) 1999-05-07 2004-10-19 University Of Virginia Patent Foundation Method and system for fusing a spinal region
US6607530B1 (en) 1999-05-10 2003-08-19 Highgate Orthopedics, Inc. Systems and methods for spinal fixation
DE69917683T2 (en) 1999-06-16 2005-07-07 Joimax Gmbh DEVICE FOR DECOMPRESSION OF DETACHED WASHERS
US6343226B1 (en) * 1999-06-25 2002-01-29 Neurokinetic Aps Multifunction electrode for neural tissue stimulation
US6991643B2 (en) * 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
IL131197A (en) * 1999-08-01 2009-12-24 Assaf Dekel Apparatus for spinal procedures
US7713279B2 (en) 2000-12-20 2010-05-11 Fox Hollow Technologies, Inc. Method and devices for cutting tissue
US6638233B2 (en) 1999-08-19 2003-10-28 Fox Hollow Technologies, Inc. Apparatus and methods for material capture and removal
US6299622B1 (en) 1999-08-19 2001-10-09 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
WO2001015759A1 (en) 1999-09-01 2001-03-08 Bacchus Vascular, Inc. Methods and apparatus for accessing and treating body lumens
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6298256B1 (en) 1999-09-10 2001-10-02 Frank-Egbert Meyer Device and method for the location and catheterization of the surroundings of a nerve
US6334068B1 (en) 1999-09-14 2001-12-25 Medtronic Xomed, Inc. Intraoperative neuroelectrophysiological monitor
US6368324B1 (en) 1999-09-24 2002-04-09 Medtronic Xomed, Inc. Powered surgical handpiece assemblies and handpiece adapter assemblies
US6533749B1 (en) 1999-09-24 2003-03-18 Medtronic Xomed, Inc. Angled rotary tissue cutting instrument with flexible inner member
US6236892B1 (en) * 1999-10-07 2001-05-22 Claudio A. Feler Spinal cord stimulation lead
US6436101B1 (en) 1999-10-13 2002-08-20 James S. Hamada Rasp for use in spine surgery
US7081122B1 (en) 1999-10-19 2006-07-25 Kyphon Inc. Hand-held instruments that access interior body regions
US6830570B1 (en) 1999-10-21 2004-12-14 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
US6764491B2 (en) 1999-10-21 2004-07-20 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
AU776041B2 (en) 1999-10-22 2004-08-26 Fsi Acquisition Sub, Llc Facet arthroplasty devices and methods
US6324432B1 (en) 1999-11-01 2001-11-27 Compex Sa Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses
US6466817B1 (en) 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
EP1237472A4 (en) 1999-11-24 2008-04-30 Nuvasive Inc Electromyography system
FR2802105B1 (en) 1999-12-10 2002-07-05 Sedat MANUAL CONTROL DEVICE FOR A SURGICAL GUIDE
US6684886B1 (en) 2000-01-21 2004-02-03 Prospine, Inc. Intervertebral disc repair methods and apparatus
US6564088B1 (en) 2000-01-21 2003-05-13 University Of Massachusetts Probe for localized tissue spectroscopy
US6632184B1 (en) 2000-02-11 2003-10-14 Regents Of The University Of Minnesota Method and device for deflecting a probe
US6558390B2 (en) 2000-02-16 2003-05-06 Axiamed, Inc. Methods and apparatus for performing therapeutic procedures in the spine
US6790210B1 (en) 2000-02-16 2004-09-14 Trans1, Inc. Methods and apparatus for forming curved axial bores through spinal vertebrae
US6899716B2 (en) 2000-02-16 2005-05-31 Trans1, Inc. Method and apparatus for spinal augmentation
US7014633B2 (en) * 2000-02-16 2006-03-21 Trans1, Inc. Methods of performing procedures in the spine
US6575979B1 (en) 2000-02-16 2003-06-10 Axiamed, Inc. Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae
US6973342B1 (en) 2000-03-02 2005-12-06 Advanced Neuromodulation Systems, Inc. Flexible bio-probe assembly
US7181289B2 (en) 2000-03-20 2007-02-20 Pflueger D Russell Epidural nerve root access catheter and treatment methods
US6805695B2 (en) 2000-04-04 2004-10-19 Spinalabs, Llc Devices and methods for annular repair of intervertebral discs
US6579291B1 (en) 2000-10-10 2003-06-17 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US6312392B1 (en) 2000-04-06 2001-11-06 Garrett D. Herzon Bipolar handheld nerve locator and evaluator
US6673068B1 (en) 2000-04-12 2004-01-06 Afx, Inc. Electrode arrangement for use in a medical instrument
EP1278471B1 (en) 2000-04-27 2005-06-15 Medtronic, Inc. Vibration sensitive ablation apparatus
US6851430B2 (en) 2000-05-01 2005-02-08 Paul M. Tsou Method and apparatus for endoscopic spinal surgery
WO2001087154A1 (en) 2000-05-18 2001-11-22 Nuvasive, Inc. Tissue discrimination and applications in medical procedures
US6306423B1 (en) * 2000-06-02 2001-10-23 Allergan Sales, Inc. Neurotoxin implant
AU2001269768B2 (en) 2000-06-08 2005-09-01 Nuvasive, Inc. Relative nerve movement and status detection system and method
US20030187368A1 (en) 2000-06-12 2003-10-02 Masataka Sata Medical guide wire doubling as a catheter
US6569160B1 (en) 2000-07-07 2003-05-27 Biosense, Inc. System and method for detecting electrode-tissue contact
US6546270B1 (en) 2000-07-07 2003-04-08 Biosense, Inc. Multi-electrode catheter, system and method
ATE541509T1 (en) 2000-07-19 2012-02-15 Critical Perfusion Inc CATHETER FOR USE IN A SYSTEM FOR MONITORING MUCOSE DAMAGE OF VISCOUS HOLLOW ORGANS
AU2001278998A1 (en) 2000-07-25 2002-02-05 Richard Alan Dickson Flexible file and method for making it
US6423071B1 (en) 2000-07-25 2002-07-23 Kevin Jon Lawson Surgical tool and method for passing pilot-line sutures through spinal vertebrae
EP1304971A1 (en) 2000-07-25 2003-05-02 Rita Medical Systems, Inc. Apparatus for detecting and treating tumors using localized impedance measurement
US6494882B1 (en) 2000-07-25 2002-12-17 Verimetra, Inc. Cutting instrument having integrated sensors
US6564079B1 (en) 2000-07-27 2003-05-13 Ckm Diagnostics, Inc. Electrode array and skin attachment system for noninvasive nerve location and imaging device
US7070596B1 (en) 2000-08-09 2006-07-04 Arthrocare Corporation Electrosurgical apparatus having a curved distal section
US6895283B2 (en) * 2000-08-10 2005-05-17 Advanced Neuromodulation Systems, Inc. Stimulation/sensing lead adapted for percutaneous insertion
US6679886B2 (en) 2000-09-01 2004-01-20 Synthes (Usa) Tools and methods for creating cavities in bone
EP1582166B1 (en) 2000-09-07 2007-06-27 Sherwood Services AG Apparatus for the treatment of the intervertebral disc
US6358254B1 (en) 2000-09-11 2002-03-19 D. Greg Anderson Method and implant for expanding a spinal canal
US7166107B2 (en) 2000-09-11 2007-01-23 D. Greg Anderson Percutaneous technique and implant for expanding the spinal canal
US6624510B1 (en) 2000-09-28 2003-09-23 University Of Iowa Research Foundation Electrode array having a thin, flexible substrate
US7166073B2 (en) * 2000-09-29 2007-01-23 Stephen Ritland Method and device for microsurgical intermuscular spinal surgery
US6692434B2 (en) * 2000-09-29 2004-02-17 Stephen Ritland Method and device for retractor for microsurgical intermuscular lumbar arthrodesis
US6673063B2 (en) 2000-10-06 2004-01-06 Expanding Concepts, Llc. Epidural thermal posterior annuloplasty
US20040006379A1 (en) 2000-10-06 2004-01-08 Expanding Concepts, L.L.C. Epidural thermal posterior annuloplasty
WO2002034120A2 (en) 2000-10-27 2002-05-02 Blackstone Medical, Inc. Facet fixation devices
US7033373B2 (en) 2000-11-03 2006-04-25 Satiety, Inc. Method and device for use in minimally invasive placement of space-occupying intragastric devices
US6847849B2 (en) 2000-11-15 2005-01-25 Medtronic, Inc. Minimally invasive apparatus for implanting a sacral stimulation lead
CA2363821A1 (en) 2000-11-24 2002-05-24 Alvin Wexler High definition electrical impedance tomography methods for the detection and diagnosis of early stages of breast cancer
US20020072739A1 (en) 2000-12-07 2002-06-13 Roberta Lee Methods and devices for radiofrequency electrosurgery
US7001333B2 (en) 2000-12-20 2006-02-21 Hamel Ross J Surgical retractor system
US6622731B2 (en) 2001-01-11 2003-09-23 Rita Medical Systems, Inc. Bone-treatment instrument and method
EP2263743A1 (en) 2001-01-16 2010-12-22 BMR Research & Development Limited Apparatus for stimulating a muscle of a subject
US20020147382A1 (en) * 2001-01-23 2002-10-10 Neisz Johann J. Surgical articles and methods
US7070556B2 (en) 2002-03-07 2006-07-04 Ams Research Corporation Transobturator surgical articles and methods
US6612977B2 (en) 2001-01-23 2003-09-02 American Medical Systems Inc. Sling delivery system and method of use
US6558353B2 (en) 2001-01-25 2003-05-06 Walter A. Zohmann Spinal needle
FR2820305B1 (en) 2001-02-06 2003-04-18 Soprane Sa ENDOSCOPIC RODENT-TYPE SURGICAL INSTRUMENT
WO2002064044A2 (en) 2001-02-13 2002-08-22 Yeung Jeffrey E Intervertebral disc repair compression device and trocar
US6929647B2 (en) 2001-02-21 2005-08-16 Howmedica Osteonics Corp. Instrumentation and method for implant insertion
US6584345B2 (en) * 2001-03-13 2003-06-24 Biosense, Inc. Apparatus and method for measuring a plurality of electrical signals from the body of a patient
US20020138091A1 (en) 2001-03-23 2002-09-26 Devonrex, Inc. Micro-invasive nucleotomy device and method
CA2441886C (en) 2001-03-23 2009-07-21 Viacor, Incorporated Method and apparatus for reducing mitral regurgitation
US6562033B2 (en) 2001-04-09 2003-05-13 Baylis Medical Co. Intradiscal lesioning apparatus
WO2002083003A1 (en) 2001-04-11 2002-10-24 Clarke Dana S Tissue structure identification in advance of instrument
US6648883B2 (en) 2001-04-26 2003-11-18 Medtronic, Inc. Ablation system and method of use
US6512958B1 (en) 2001-04-26 2003-01-28 Medtronic, Inc. Percutaneous medical probe and flexible guide wire
US6663627B2 (en) 2001-04-26 2003-12-16 Medtronic, Inc. Ablation system and method of use
US7250048B2 (en) 2001-04-26 2007-07-31 Medtronic, Inc. Ablation system and method of use
US6746451B2 (en) 2001-06-01 2004-06-08 Lance M. Middleton Tissue cavitation device and method
US20030105503A1 (en) 2001-06-08 2003-06-05 Nuvasive, Inc. Relative nerve movement and status detection system and method
AUPR571801A0 (en) 2001-06-15 2001-07-12 Polartechnics Limited Apparatus for tissue type recognition using multiple measurement techniques
BR0210563A (en) * 2001-06-20 2004-05-25 Microventio Inc Medical device insertable into the body of a human or veterinary patient, and method of manufacturing a coated medical device
WO2003002003A2 (en) * 2001-06-29 2003-01-09 The Trustees Of Columbia University Optical transesophageal echocardiography probe
US6832111B2 (en) 2001-07-06 2004-12-14 Hosheng Tu Device for tumor diagnosis and methods thereof
US6620129B2 (en) 2001-07-09 2003-09-16 Eric C. Stecker Enlargeable multifunctional devices
JP4295086B2 (en) 2001-07-11 2009-07-15 ヌバシブ, インコーポレイテッド System and method for determining nerve proximity, nerve orientation, and pathology during surgery
EP1438093A4 (en) 2001-07-17 2004-11-03 Univ Yale Tunneler-needle combination for tunneled catheter placement
US6911016B2 (en) * 2001-08-06 2005-06-28 Scimed Life Systems, Inc. Guidewire extension system
US6776765B2 (en) 2001-08-21 2004-08-17 Synovis Life Technologies, Inc. Steerable stylet
US6736815B2 (en) * 2001-09-06 2004-05-18 Core Medical, Inc. Apparatus and methods for treating spinal discs
US6743228B2 (en) 2001-09-12 2004-06-01 Manoa Medical, Inc. Devices and methods for tissue severing and removal
EP1435828A4 (en) 2001-09-25 2009-11-11 Nuvasive Inc System and methods for performing surgical procedures and assessments
US7254444B2 (en) 2001-10-17 2007-08-07 Encore Medical Asset Corporation Electrical nerve stimulation device
JP2003116868A (en) 2001-10-19 2003-04-22 Yamashita Hiroyuki Ribbon file for surgery
US6788966B2 (en) 2001-10-22 2004-09-07 Transscan Medical Ltd. Diagnosis probe
US8002775B2 (en) 2001-10-24 2011-08-23 Warsaw Orthopedic, Inc. Methods and instruments for treating pseudoarthrosis
US7008431B2 (en) 2001-10-30 2006-03-07 Depuy Spine, Inc. Configured and sized cannula
US6807444B2 (en) 2001-11-05 2004-10-19 Hosheng Tu Apparatus and methods for monitoring tissue impedance
US7214197B2 (en) 2001-11-06 2007-05-08 Prass Richard L Intraoperative neurophysiological monitoring system
US6865409B2 (en) * 2001-11-07 2005-03-08 Kinesense, Inc. Surface electromyographic electrode assembly
US20030130738A1 (en) 2001-11-08 2003-07-10 Arthrocare Corporation System and method for repairing a damaged intervertebral disc
US6916328B2 (en) 2001-11-15 2005-07-12 Expanding Concepts, L.L.C Percutaneous cellulite removal system
US6993384B2 (en) 2001-12-04 2006-01-31 Advanced Bionics Corporation Apparatus and method for determining the relative position and orientation of neurostimulation leads
US6875221B2 (en) 2001-12-14 2005-04-05 Bausch & Lomb Incorporated Turbine driven vitrectomy cutter
US20030113906A1 (en) * 2001-12-14 2003-06-19 Sangha Jangbir S. Method and apparatus for DNA collection
US7715602B2 (en) 2002-01-18 2010-05-11 Orthosoft Inc. Method and apparatus for reconstructing bone surfaces during surgery
DE10230813A1 (en) 2002-07-08 2004-01-22 Siemens Ag Method for localizing at least one focal lesion in a biological tissue section
US7184820B2 (en) 2002-01-25 2007-02-27 Subqiview, Inc. Tissue monitoring system for intravascular infusion
AU2002243789A1 (en) 2002-02-04 2003-09-02 Aaron V. Kaplan Methods and apparatus for pericardial access
US20030167021A1 (en) 2002-03-04 2003-09-04 Shimm Peter B. Apparatus for locating and anesthetizing nerve groups
US6911003B2 (en) 2002-03-07 2005-06-28 Ams Research Corporation Transobturator surgical articles and methods
US20030212400A1 (en) 2002-03-12 2003-11-13 Aesculap Ag & Co. Kg Methods for treating spinal stenosis by pedicle distraction
US6736835B2 (en) 2002-03-21 2004-05-18 Depuy Acromed, Inc. Early intervention spinal treatment methods and devices for use therein
US20040049208A1 (en) * 2002-04-03 2004-03-11 Thomas Fogarty, M.D. Methods and systems for vein harvesting and fistula creation
US20030188749A1 (en) 2002-04-05 2003-10-09 Nichols Travis R. Systems and methods for endotracheal intubation
US20040030330A1 (en) 2002-04-18 2004-02-12 Brassell James L. Electrosurgery systems
US6969392B2 (en) 2002-05-01 2005-11-29 Nevmet Corporation Multiportal device and method for percutaneous surgery
US6830561B2 (en) 2002-05-08 2004-12-14 Scimed Life Systems, Inc. Catheter with protective sleeve
US7118576B2 (en) 2002-05-15 2006-10-10 Nevmet Corporation Multiportal device with linked cannulae and method for percutaneous surgery
US8147421B2 (en) * 2003-01-15 2012-04-03 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
US6949104B2 (en) 2002-05-31 2005-09-27 Jack Griffis Guide wire steering handle
KR100505133B1 (en) 2002-06-29 2005-08-01 메디칸(주) Facial bone contouring device using non plugging, penetrating, overlapped pass-through lumen rasp
US7771366B2 (en) 2002-07-01 2010-08-10 Vaclav Kirsner Vaginal fertility probe
US7993351B2 (en) 2002-07-24 2011-08-09 Pressure Products Medical Supplies, Inc. Telescopic introducer with a compound curvature for inducing alignment and method of using the same
JP4546829B2 (en) 2002-09-04 2010-09-22 アーメイ ウィリアム エフ Positioning device for nerve stimulation needles
EP1549199A4 (en) 2002-09-27 2010-08-25 Surgitech Llc Shielded reciprocating surgical file
US7837687B2 (en) 2002-09-27 2010-11-23 Surgitech, Llc Surgical assembly for tissue removal
US6907884B2 (en) 2002-09-30 2005-06-21 Depay Acromed, Inc. Method of straddling an intraosseous nerve
US7245789B2 (en) * 2002-10-07 2007-07-17 Vascular Imaging Corporation Systems and methods for minimally-invasive optical-acoustic imaging
WO2004043271A1 (en) * 2002-11-08 2004-05-27 Sdgi Holdings, Inc. Transpedicular intervertebral disk access methods and devices
AU2002952663A0 (en) 2002-11-14 2002-11-28 Western Sydney Area Health Service An intramural needle-tipped surgical device
US7047084B2 (en) * 2002-11-20 2006-05-16 Advanced Neuromodulation Systems, Inc. Apparatus for directionally stimulating nerve tissue
US7172562B2 (en) 2002-11-22 2007-02-06 Mckinley Laurence M System, method and apparatus for locating, measuring and evaluating the enlargement of a foramen
CA2415173A1 (en) 2002-12-09 2004-06-09 Thomas Hemmerling Neuromuscular monitoring using phonomyography
US7010352B2 (en) 2002-12-11 2006-03-07 The Mcw Research Foundation, Inc. Transcutaneous electrical nerve locator
US20040127893A1 (en) 2002-12-13 2004-07-01 Arthrocare Corporation Methods for visualizing and treating intervertebral discs
US7069083B2 (en) * 2002-12-13 2006-06-27 Advanced Neuromodulation Systems, Inc. System and method for electrical stimulation of the intervertebral disc
US20040122482A1 (en) 2002-12-20 2004-06-24 James Tung Nerve proximity method and device
US20040143280A1 (en) 2003-01-17 2004-07-22 Loubert Suddaby Flexible wire transection the transverse carpal ligament
US7216001B2 (en) * 2003-01-22 2007-05-08 Medtronic Xomed, Inc. Apparatus for intraoperative neural monitoring
EP1605875A3 (en) 2003-03-03 2005-12-28 Sinus Rhythm Technologies, Inc. Electrical block positioning devices and methods of use therefor
AU2003207922A1 (en) 2003-03-13 2004-09-30 Warsaw Orthopedic, Inc. Vertebral endplate preparation tool kit
US7238189B2 (en) 2003-03-18 2007-07-03 Arthrex, Inc. ACL reconstruction technique using retrodrill
WO2004089226A1 (en) 2003-04-11 2004-10-21 Martin Nolde Rasp attachment for a motor-driven surgical hand-held device
US7473267B2 (en) 2003-04-25 2009-01-06 Warsaw Orthopedic, Inc. System and method for minimally invasive posterior fixation
US20040225233A1 (en) 2003-05-09 2004-11-11 Frankowski Brian J. Magnetic guidewires
US7645232B2 (en) 2003-05-16 2010-01-12 Zimmer Spine, Inc. Access device for minimally invasive surgery
US6999820B2 (en) 2003-05-29 2006-02-14 Advanced Neuromodulation Systems, Inc. Winged electrode body for spinal cord stimulation
US7107104B2 (en) 2003-05-30 2006-09-12 Medtronic, Inc. Implantable cortical neural lead and method
US20040260358A1 (en) 2003-06-17 2004-12-23 Robin Vaughan Triggered electromyographic test device and methods of use thereof
KR100582768B1 (en) 2003-07-24 2006-05-23 최병관 Insert complement for vertebra
US7494473B2 (en) * 2003-07-30 2009-02-24 Intact Medical Corp. Electrical apparatus and system with improved tissue capture component
JP4436836B2 (en) 2003-08-05 2010-03-24 ヌヴァシヴ インコーポレイテッド System and method for performing dynamic pedicle integrity assessment
US20050033393A1 (en) 2003-08-08 2005-02-10 Advanced Neuromodulation Systems, Inc. Apparatus and method for implanting an electrical stimulation system and a paddle style electrical stimulation lead
US20050240193A1 (en) 2003-09-03 2005-10-27 Kyphon Inc. Devices for creating voids in interior body regions and related methods
US8002798B2 (en) 2003-09-24 2011-08-23 Stryker Spine System and method for spinal implant placement
US7905840B2 (en) 2003-10-17 2011-03-15 Nuvasive, Inc. Surgical access system and related methods
EP1680177B1 (en) * 2003-09-25 2017-04-12 NuVasive, Inc. Surgical access system
KR20060132588A (en) 2003-10-23 2006-12-21 트랜스1 인코포레이티드 Tools and tool kits for performing minimally invasive procedures on the spine
WO2005053789A2 (en) 2003-11-25 2005-06-16 Advanced Neuromodulation Systems, Inc. Directional stimulation lead and orientation system, and improved percutaneous-insertion needle and method of implanting a lead
EP1686903B1 (en) 2003-11-28 2014-07-30 Cook Medical Technologies LLC Vascular occlusion devices
WO2005057467A2 (en) 2003-12-02 2005-06-23 Subqiview Inc. Tissue characterization using an eddy-current probe
US20080197024A1 (en) 2003-12-05 2008-08-21 Dexcom, Inc. Analyte sensor
US7527638B2 (en) * 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US8221424B2 (en) * 2004-12-20 2012-07-17 Spinascope, Inc. Surgical instrument for orthopedic surgery
US7295881B2 (en) 2003-12-29 2007-11-13 Biocontrol Medical Ltd. Nerve-branch-specific action-potential activation, inhibition, and monitoring
US7273469B1 (en) * 2003-12-31 2007-09-25 Advanced Cardiovascular Systems, Inc. Modified needle catheter for directional orientation delivery
US20060030854A1 (en) 2004-02-02 2006-02-09 Haines Timothy G Methods and apparatus for wireplasty bone resection
US7499746B2 (en) 2004-01-30 2009-03-03 Encore Medical Asset Corporation Automated adaptive muscle stimulation method and apparatus
FR2865921B1 (en) 2004-02-11 2007-06-01 Spinevision EXPLORATION DEVICE FOR TRACKING THE PENETRATION OF AN INSTRUMENT IN AN ANATOMICAL STRUCTURE
US20060064101A1 (en) 2004-02-12 2006-03-23 Arthrocare Corporation Bone access system
US20050187537A1 (en) 2004-02-19 2005-08-25 Loeb Marvin P. Angular deflection apparatus for use in confined spaces and method of use
WO2005092218A1 (en) 2004-02-27 2005-10-06 Jackson Roger P Orthopedic implant rod reduction tool set and method
US20050197661A1 (en) 2004-03-03 2005-09-08 Scimed Life Systems, Inc. Tissue removal probe with sliding burr in cutting window
US20050209610A1 (en) 2004-03-03 2005-09-22 Scimed Life Systems, Inc. Radially adjustable tissue removal device
US20050209622A1 (en) 2004-03-03 2005-09-22 Scimed Life Systems, Inc. Tissue removal probe with irrigation and aspiration ports
US20050209617A1 (en) 2004-03-05 2005-09-22 Paul Koven Valvulotome
US7590454B2 (en) 2004-03-12 2009-09-15 Boston Scientific Neuromodulation Corporation Modular stimulation lead network
US7699864B2 (en) 2004-03-18 2010-04-20 Onset Medical Corporation Expandable medical access device
US7846165B2 (en) 2004-03-29 2010-12-07 Depuy Products, Inc. Method and apparatus for arthroscopic bone preparation
US20050222598A1 (en) 2004-04-05 2005-10-06 Manoa Medical, Inc., A Delaware Corporation Tissue cutting device
US7452351B2 (en) 2004-04-16 2008-11-18 Kyphon Sarl Spinal diagnostic methods and apparatus
US7507218B2 (en) 2004-04-26 2009-03-24 Gyrus Acmi, Inc. Stent with flexible elements
US20050261692A1 (en) 2004-05-21 2005-11-24 Scimed Life Systems, Inc. Articulating tissue removal probe and methods of using the same
US7087053B2 (en) 2004-05-27 2006-08-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter with bifurcated, collapsible tip for sensing and ablating
US7846171B2 (en) 2004-05-27 2010-12-07 C.R. Bard, Inc. Method and apparatus for delivering a prosthetic fabric into a patient
WO2005117554A2 (en) 2004-06-01 2005-12-15 California Institute Of Technology Microfabricated neural probes and methods of making same
US20050283148A1 (en) 2004-06-17 2005-12-22 Janssen William M Ablation apparatus and system to limit nerve conduction
US8328810B2 (en) 2004-06-17 2012-12-11 Boston Scientific Scimed, Inc. Slidable sheaths for tissue removal devices
US7909843B2 (en) 2004-06-30 2011-03-22 Thompson Surgical Instruments, Inc. Elongateable surgical port and dilator
US20060015131A1 (en) 2004-07-15 2006-01-19 Kierce Paul C Cannula for in utero surgery
US10342452B2 (en) * 2004-07-29 2019-07-09 Medtronic Xomed, Inc. Stimulator handpiece for an evoked potential monitoring system
US20060184175A1 (en) 2004-07-29 2006-08-17 X-Sten, Inc. Spinal ligament modification devices
EP3205371B1 (en) 2004-08-03 2019-09-25 DePuy Synthes Products, Inc. Telescopic percutaneous tissue dilation systems and related methods of producing
US7503920B2 (en) * 2004-08-11 2009-03-17 Tzony Siegal Spinal surgery system and method
US7337005B2 (en) * 2004-09-08 2008-02-26 Spinal Modulations, Inc. Methods for stimulating a nerve root ganglion
US7666189B2 (en) 2004-09-29 2010-02-23 Synthes Usa, Llc Less invasive surgical system and methods
WO2006042206A2 (en) 2004-10-06 2006-04-20 Nuvasive, Inc. Systems and methods for direct restoration of foraminal volume
US8538539B2 (en) * 2004-10-07 2013-09-17 Nu Vasive, Inc. System and methods for assessing the neuromuscular pathway prior to nerve testing
US7938830B2 (en) 2004-10-15 2011-05-10 Baxano, Inc. Powered tissue modification devices and methods
US8062300B2 (en) 2006-05-04 2011-11-22 Baxano, Inc. Tissue removal with at least partially flexible devices
US9247952B2 (en) 2004-10-15 2016-02-02 Amendia, Inc. Devices and methods for tissue access
US8613745B2 (en) 2004-10-15 2013-12-24 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US20060122458A1 (en) 2004-10-15 2006-06-08 Baxano, Inc. Devices and methods for tissue access
US8430881B2 (en) 2004-10-15 2013-04-30 Baxano, Inc. Mechanical tissue modification devices and methods
US8048080B2 (en) 2004-10-15 2011-11-01 Baxano, Inc. Flexible tissue rasp
US20100004654A1 (en) 2008-07-01 2010-01-07 Schmitz Gregory P Access and tissue modification systems and methods
US7887538B2 (en) 2005-10-15 2011-02-15 Baxano, Inc. Methods and apparatus for tissue modification
US9101386B2 (en) 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US7738969B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US20080312660A1 (en) 2007-06-15 2008-12-18 Baxano, Inc. Devices and methods for measuring the space around a nerve root
US7963915B2 (en) 2004-10-15 2011-06-21 Baxano, Inc. Devices and methods for tissue access
US20090171381A1 (en) 2007-12-28 2009-07-02 Schmitz Gregory P Devices, methods and systems for neural localization
US20080161809A1 (en) 2006-10-03 2008-07-03 Baxano, Inc. Articulating Tissue Cutting Device
US8221397B2 (en) 2004-10-15 2012-07-17 Baxano, Inc. Devices and methods for tissue modification
US20100331883A1 (en) 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US20070213734A1 (en) 2006-03-13 2007-09-13 Bleich Jeffery L Tissue modification barrier devices and methods
US20110190772A1 (en) 2004-10-15 2011-08-04 Vahid Saadat Powered tissue modification devices and methods
US20080103504A1 (en) 2006-10-30 2008-05-01 Schmitz Gregory P Percutaneous spinal stenosis treatment
US20110004207A1 (en) 2004-10-15 2011-01-06 Baxano, Inc. Flexible Neural Localization Devices and Methods
US9023084B2 (en) 2004-10-20 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
US20060085048A1 (en) 2004-10-20 2006-04-20 Nervonix, Inc. Algorithms for an active electrode, bioimpedance-based tissue discrimination system
US7865236B2 (en) 2004-10-20 2011-01-04 Nervonix, Inc. Active electrode, bio-impedance based, tissue discrimination system and methods of use
US20060089688A1 (en) 2004-10-25 2006-04-27 Dorin Panescu Method and apparatus to reduce wrinkles through application of radio frequency energy to nerves
US7189626B2 (en) * 2004-11-03 2007-03-13 Micron Technology, Inc. Electroless plating of metal caps for chalcogenide-based memory devices
US20060106381A1 (en) 2004-11-18 2006-05-18 Ferree Bret A Methods and apparatus for treating spinal stenosis
EP1827244A2 (en) 2004-11-22 2007-09-05 Endius Incorporated Expandable device for providing access to the spine
CA2587857C (en) 2004-11-23 2017-10-10 Pneumrx, Inc. Steerable device for accessing a target site and methods
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
US7615053B2 (en) 2004-12-06 2009-11-10 Aeolin, Llc Surgical rongeur
US20060173374A1 (en) 2005-01-31 2006-08-03 Neubardt Seth L Electrically insulated surgical probing tool
WO2006084193A2 (en) 2005-02-02 2006-08-10 Nuvasive, Inc. System and methods for performing neurophysiologic assessments during spine surgery
US20060195106A1 (en) 2005-02-02 2006-08-31 Jones Bryan S Ultrasonic cutting device
US8568331B2 (en) * 2005-02-02 2013-10-29 Nuvasive, Inc. System and methods for monitoring during anterior surgery
US20060200219A1 (en) 2005-03-01 2006-09-07 Ndi Medical, Llc Systems and methods for differentiating and/or identifying tissue regions innervated by targeted nerves for diagnostic and/or therapeutic purposes
US20060206178A1 (en) 2005-03-11 2006-09-14 Kim Daniel H Percutaneous endoscopic access tools for the spinal epidural space and related methods of treatment
US7702385B2 (en) 2005-11-16 2010-04-20 Boston Scientific Neuromodulation Corporation Electrode contact configurations for an implantable stimulator
US20060235279A1 (en) 2005-03-18 2006-10-19 Hawkes David T Less invasive access port system and method for using the same
KR20080002824A (en) 2005-03-29 2008-01-04 신세스 게엠바하 Method and apparatus for implanting a hydrogel prosthesis for a nucleus pulposus
US7774053B2 (en) 2005-03-31 2010-08-10 Wisconsin Alumni Research Foundation Neural probe array
EP1874210B1 (en) 2005-04-29 2010-02-24 Stryker Corporation Medical bipolar electrode assembly with cannula and removable supply electrode
US20060276836A1 (en) 2005-06-07 2006-12-07 Bergin Patrick J Hemostatic wire guided bandage and method of use
JP4493547B2 (en) 2005-05-10 2010-06-30 マニー株式会社 Medical saw
EP1885263A1 (en) 2005-05-18 2008-02-13 Sonoma Orthopaedic Products, Inc Minimally invasive actuable bone fixation devices, systems and methods of use
US20060276720A1 (en) 2005-06-03 2006-12-07 Mcginnis William C Method of using dermatomal somatosensory evoked potentials in real-time for surgical and clinical management
US8620435B2 (en) * 2005-06-09 2013-12-31 Medtronic, Inc. Combination therapy including peripheral nerve field stimulation
US7383639B2 (en) 2005-07-12 2008-06-10 Medtronic Spine Llc Measurement instrument for percutaneous surgery
US7769472B2 (en) * 2005-07-29 2010-08-03 Medtronic, Inc. Electrical stimulation lead with conformable array of electrodes
US20070055263A1 (en) 2005-07-29 2007-03-08 X-Sten Corp. Tools for Percutaneous Spinal Ligament Decompression and Device for Supporting Same
US8696671B2 (en) 2005-07-29 2014-04-15 Vertos Medical Inc. Percutaneous tissue excision devices
CA2617872C (en) 2005-08-16 2013-12-24 Benvenue Medical, Inc. Spinal tissue distraction devices
WO2007041293A2 (en) * 2005-09-29 2007-04-12 Doheny Eye Institute Microelectrode systems for neuro-stimulation and neuro-sensing and microchip packaging and related methods
US20080091227A1 (en) 2006-08-25 2008-04-17 Baxano, Inc. Surgical probe and method of making
US20080033465A1 (en) 2006-08-01 2008-02-07 Baxano, Inc. Multi-Wire Tissue Cutter
US8366712B2 (en) 2005-10-15 2013-02-05 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8092456B2 (en) 2005-10-15 2012-01-10 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8062298B2 (en) 2005-10-15 2011-11-22 Baxano, Inc. Flexible tissue removal devices and methods
US20080086034A1 (en) 2006-08-29 2008-04-10 Baxano, Inc. Tissue Access Guidewire System and Method
US20080051812A1 (en) 2006-08-01 2008-02-28 Baxano, Inc. Multi-Wire Tissue Cutter
US20070106219A1 (en) * 2005-10-31 2007-05-10 Andreas Grabinsky Cleveland round tip (CRT) needle
US20070123890A1 (en) * 2005-11-04 2007-05-31 X-Sten, Corp. Tissue retrieval devices and methods
US20070162061A1 (en) 2005-11-04 2007-07-12 X-Sten, Corp. Tissue excision devices and methods
US7842031B2 (en) 2005-11-18 2010-11-30 Medtronic Cryocath Lp Bioimpedance measurement system and method
US7963970B2 (en) 2005-11-23 2011-06-21 Trinity Orthopedics Percutaneous transpedicular access, fusion, discectomy, and stabilization system and method
US8332025B2 (en) 2005-12-06 2012-12-11 Epi-Sci, Llc Method and system for detecting electrophysiological changes in pre-cancerous and cancerous tissue and epithelium
US20070162062A1 (en) 2005-12-08 2007-07-12 Norton Britt K Reciprocating apparatus and methods for removal of intervertebral disc tissues
EP1962699A4 (en) 2005-12-23 2015-07-15 Azad Najar Laparoscopic instrument
US7655026B2 (en) * 2006-01-31 2010-02-02 Warsaw Orthopedic, Inc. Expandable spinal rods and methods of use
US7520879B2 (en) 2006-02-07 2009-04-21 Warsaw Orthopedic, Inc. Surgical instruments and techniques for percutaneous placement of spinal stabilization elements
WO2007106079A2 (en) 2006-03-10 2007-09-20 The Board Of Trustees Of The Leland Stanford Junior University Percutaneous access and visualization of the spine
US20070213583A1 (en) 2006-03-10 2007-09-13 Kim Daniel H Percutaneous access and visualization of the spine
EP2001372A1 (en) 2006-04-05 2008-12-17 Impliant Ltd. Spinal reamer with cutter elements on track
US7617006B2 (en) 2006-04-28 2009-11-10 Medtronic, Inc. Medical electrical lead for spinal cord stimulation
US8892214B2 (en) 2006-04-28 2014-11-18 Medtronic, Inc. Multi-electrode peripheral nerve evaluation lead and related system and method of use
US7942830B2 (en) 2006-05-09 2011-05-17 Vertos Medical, Inc. Ipsilateral approach to minimally invasive ligament decompression procedure
US20070276286A1 (en) 2006-05-27 2007-11-29 Craig James Miller Device for Tissue Diagnosis and Spatial Tissue Mapping
US20070282217A1 (en) 2006-06-01 2007-12-06 Mcginnis William J Methods & systems for intraoperatively monitoring nerve & muscle frequency latency and amplitude
US20070299403A1 (en) 2006-06-23 2007-12-27 Crowe John E Directional introducer
US20070299459A1 (en) 2006-06-26 2007-12-27 X-Sten Corp. Percutaneous Tissue Access Device
US7801603B2 (en) * 2006-09-01 2010-09-21 Cardiac Pacemakers, Inc. Method and apparatus for optimizing vagal nerve stimulation using laryngeal activity
US8170638B2 (en) 2006-09-11 2012-05-01 University Of Florida Research Foundation, Inc. MEMS flexible substrate neural probe and method of fabricating same
US20080161810A1 (en) 2006-10-18 2008-07-03 Warsaw Orthopedic, Inc. Guide and Cutter for Contouring Facet Joints and Methods of Use
WO2008049088A2 (en) * 2006-10-21 2008-04-24 Rollins Aaron M D Guidewire manipulation device
US7853303B2 (en) * 2006-11-16 2010-12-14 National Research Council Of Canada Neurological probe and method of using same
WO2008070807A2 (en) 2006-12-06 2008-06-12 Spinal Modulation, Inc. Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels
WO2008070808A2 (en) 2006-12-06 2008-06-12 Spinal Modulation, Inc. Expandable stimulation leads and methods of use
AU2007329230A1 (en) 2006-12-07 2008-06-12 Baxano, Inc. Tissue removal devices and methods
JP5271281B2 (en) 2007-02-09 2013-08-21 アルファテック スパイン, インコーポレイテッド Curved spine access method and device
US20080221383A1 (en) 2007-02-12 2008-09-11 Vertos Medical, Inc. Tissue excision devices and methods
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US7648521B2 (en) * 2007-03-15 2010-01-19 Zimmer Spine, Inc. System and method for minimally invasive spinal surgery
US8255045B2 (en) * 2007-04-03 2012-08-28 Nuvasive, Inc. Neurophysiologic monitoring system
WO2009009621A2 (en) 2007-07-09 2009-01-15 Baxano, Inc. Spinal access system and method
US8372131B2 (en) 2007-07-16 2013-02-12 Power Ten , LLC Surgical site access system and deployment device for same
US8052728B2 (en) 2007-07-31 2011-11-08 Zimmer Spine, Inc. Method for stabilizing a facet joint
WO2009021116A2 (en) 2007-08-07 2009-02-12 Synthes (U.S.A.) Dynamic cable system
US20090054941A1 (en) * 2007-08-20 2009-02-26 Medtronic, Inc. Stimulation field management
WO2009025824A1 (en) * 2007-08-20 2009-02-26 Medtronic, Inc. Implantable medical lead with biased electrode
WO2009029639A1 (en) * 2007-08-27 2009-03-05 Spine View, Inc. Balloon cannula system for accessing and visualizing spine and related methods
EP2194861A1 (en) 2007-09-06 2010-06-16 Baxano, Inc. Method, system and apparatus for neural localization
US8968365B2 (en) 2007-09-14 2015-03-03 DePuy Synthes Products, LLC Interspinous spacer
US20090088803A1 (en) 2007-10-01 2009-04-02 Warsaw Orthopedic, Inc. Flexible members for correcting spinal deformities
US20090105788A1 (en) * 2007-10-18 2009-04-23 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
US8043381B2 (en) 2007-10-29 2011-10-25 Zimmer Spine, Inc. Minimally invasive interbody device and method
US20090118709A1 (en) 2007-11-06 2009-05-07 Vertos Medical, Inc. A Delaware Corporation Tissue Excision Tool, Kits and Methods of Using the Same
US20090124934A1 (en) 2007-11-09 2009-05-14 Abbott Laboratories Guidewire torque device
US20090143807A1 (en) 2007-12-03 2009-06-04 Vertos Medical, Inc., A Delaware Corporation Percutaneous Devices for Separating Tissue, Kits and Methods of Using the Same
US8192436B2 (en) 2007-12-07 2012-06-05 Baxano, Inc. Tissue modification devices
US8355768B2 (en) 2007-12-17 2013-01-15 California Institute Of Technology Micromachined neural probes
WO2009151926A2 (en) 2008-05-23 2009-12-17 Spine View, Inc. Method and devices for treating spinal stenosis
US8409206B2 (en) 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
MX348805B (en) 2008-07-14 2017-06-28 Baxano Inc Tissue modification devices.
JP5709747B2 (en) 2008-07-28 2015-04-30 スパイン ビュー, インコーポレイテッド Penetration member with direct visualization
US8394102B2 (en) 2009-06-25 2013-03-12 Baxano, Inc. Surgical tools for treatment of spinal stenosis
US20120143206A1 (en) 2009-06-25 2012-06-07 Wallace Michael P Surgical tools for treatment of spinal stenosis
US20110160772A1 (en) 2009-12-28 2011-06-30 Arcenio Gregory B Systems and methods for performing spinal fusion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284153A (en) * 1992-04-14 1994-02-08 Brigham And Women's Hospital Method for locating a nerve and for protecting nerves from injury during surgery
US5775331A (en) * 1995-06-07 1998-07-07 Uromed Corporation Apparatus and method for locating a nerve
US20060089633A1 (en) * 2004-10-15 2006-04-27 Baxano, Inc. Devices and methods for tissue access
US20060258951A1 (en) * 2005-05-16 2006-11-16 Baxano, Inc. Spinal Access and Neural Localization
US7578819B2 (en) * 2005-05-16 2009-08-25 Baxano, Inc. Spinal access and neural localization

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9345491B2 (en) 2004-10-15 2016-05-24 Amendia, Inc. Flexible tissue rasp
US20110060314A1 (en) * 2004-10-15 2011-03-10 Wallace Michael P Devices and methods for treating tissue
US8613745B2 (en) 2004-10-15 2013-12-24 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US8617163B2 (en) 2004-10-15 2013-12-31 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US20110160731A1 (en) * 2004-10-15 2011-06-30 Bleich Jeffery L Devices and methods for tissue access
US20110190772A1 (en) * 2004-10-15 2011-08-04 Vahid Saadat Powered tissue modification devices and methods
US9456829B2 (en) 2004-10-15 2016-10-04 Amendia, Inc. Powered tissue modification devices and methods
US8579902B2 (en) 2004-10-15 2013-11-12 Baxano Signal, Inc. Devices and methods for tissue modification
US9101386B2 (en) 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US9463041B2 (en) 2004-10-15 2016-10-11 Amendia, Inc. Devices and methods for tissue access
US11382647B2 (en) 2004-10-15 2022-07-12 Spinal Elements, Inc. Devices and methods for treating tissue
US8647346B2 (en) 2004-10-15 2014-02-11 Baxano Surgical, Inc. Devices and methods for tissue modification
US8652138B2 (en) 2004-10-15 2014-02-18 Baxano Surgical, Inc. Flexible tissue rasp
US9320618B2 (en) 2004-10-15 2016-04-26 Amendia, Inc. Access and tissue modification systems and methods
US8801626B2 (en) 2004-10-15 2014-08-12 Baxano Surgical, Inc. Flexible neural localization devices and methods
US20110004207A1 (en) * 2004-10-15 2011-01-06 Baxano, Inc. Flexible Neural Localization Devices and Methods
US10052116B2 (en) 2004-10-15 2018-08-21 Amendia, Inc. Devices and methods for treating tissue
US9247952B2 (en) 2004-10-15 2016-02-02 Amendia, Inc. Devices and methods for tissue access
US9125682B2 (en) 2005-10-15 2015-09-08 Amendia, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US9492151B2 (en) 2005-10-15 2016-11-15 Amendia, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8585704B2 (en) 2006-05-04 2013-11-19 Baxano Surgical, Inc. Flexible tissue removal devices and methods
US9351741B2 (en) 2006-05-04 2016-05-31 Amendia, Inc. Flexible tissue removal devices and methods
US8845637B2 (en) 2006-08-29 2014-09-30 Baxano Surgical, Inc. Tissue access guidewire system and method
US8551097B2 (en) 2006-08-29 2013-10-08 Baxano Surgical, Inc. Tissue access guidewire system and method
US20110046613A1 (en) * 2006-08-29 2011-02-24 Gregory Schmitz Tissue access guidewire system and method
US8663228B2 (en) 2007-12-07 2014-03-04 Baxano Surgical, Inc. Tissue modification devices
US9463029B2 (en) 2007-12-07 2016-10-11 Amendia, Inc. Tissue modification devices
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US8845639B2 (en) 2008-07-14 2014-09-30 Baxano Surgical, Inc. Tissue modification devices
US20110112539A1 (en) * 2008-07-14 2011-05-12 Wallace Michael P Tissue modification devices
US10016600B2 (en) 2013-05-30 2018-07-10 Neurostim Solutions, Llc Topical neurological stimulation
US10307591B2 (en) 2013-05-30 2019-06-04 Neurostim Solutions, Llc Topical neurological stimulation
US10918853B2 (en) 2013-05-30 2021-02-16 Neurostim Solutions, Llc Topical neurological stimulation
US10946185B2 (en) 2013-05-30 2021-03-16 Neurostim Solutions, Llc Topical neurological stimulation
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
US11291828B2 (en) 2013-05-30 2022-04-05 Neurostim Solutions LLC Topical neurological stimulation
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
US11458311B2 (en) 2019-06-26 2022-10-04 Neurostim Technologies Llc Non-invasive nerve activator patch with adaptive circuit
US11730958B2 (en) 2019-12-16 2023-08-22 Neurostim Solutions, Llc Non-invasive nerve activator with boosted charge delivery

Also Published As

Publication number Publication date
US20110196257A1 (en) 2011-08-11
US8303516B2 (en) 2012-11-06
US20090069709A1 (en) 2009-03-12
US7959577B2 (en) 2011-06-14
EP2194861A1 (en) 2010-06-16
WO2009032363A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
US7959577B2 (en) Method, system, and apparatus for neural localization
US20130053853A1 (en) Devices, methods and systems for neural localization
JP5582619B2 (en) Flexible nerve position determination device
US20220142555A1 (en) Systems and Methods for Performing Neurophysiologic Monitoring During Spine Surgery
US11712218B2 (en) System and methods for nerve monitoring
US20210282689A1 (en) Intraoperative neurophysiological monitoring system
US7991463B2 (en) Electromyography system
RU2313299C2 (en) Device for inspecting passage of penetration tool inside anatomical members
US20120191003A1 (en) Flexible neural localization devices and methods
US9427224B1 (en) Apparatus and methods for surgical access

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAXANO, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHMITZ, GREGORY P.;WALLACE, MICHAEL P.;BLEICH, JEFFERY L.;AND OTHERS;SIGNING DATES FROM 20080625 TO 20080709;REEL/FRAME:029652/0554

AS Assignment

Owner name: BAXANO SURGICAL, INC., NORTH CAROLINA

Free format text: CHANGE OF NAME;ASSIGNOR:BAXANO, INC.;REEL/FRAME:031666/0526

Effective date: 20130531

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION