US20120328650A1 - Modified vaccinia ankara virus variant - Google Patents
Modified vaccinia ankara virus variant Download PDFInfo
- Publication number
- US20120328650A1 US20120328650A1 US13/588,217 US201213588217A US2012328650A1 US 20120328650 A1 US20120328650 A1 US 20120328650A1 US 201213588217 A US201213588217 A US 201213588217A US 2012328650 A1 US2012328650 A1 US 2012328650A1
- Authority
- US
- United States
- Prior art keywords
- mva
- virus
- human
- cell line
- mva virus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/275—Poxviridae, e.g. avipoxvirus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
- C12N7/04—Inactivation or attenuation; Producing viral sub-units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/275—Poxviridae, e.g. avipoxvirus
- A61K39/285—Vaccinia virus or variola virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
- A61P33/02—Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5254—Virus avirulent or attenuated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5256—Virus expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/24011—Poxviridae
- C12N2710/24111—Orthopoxvirus, e.g. vaccinia virus, variola
- C12N2710/24121—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/24011—Poxviridae
- C12N2710/24111—Orthopoxvirus, e.g. vaccinia virus, variola
- C12N2710/24141—Use of virus, viral particle or viral elements as a vector
- C12N2710/24143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16311—Human Immunodeficiency Virus, HIV concerning HIV regulatory proteins
- C12N2740/16322—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- the present invention provides an attenuated virus which is derived from Modified Vaccinia Ankara virus and which is characterized by the loss of its capability to reproductively replicate in human cell lines. It further describes recombinant viruses derived from this virus and the use of the virus or its recombinants as a medicament or vaccine. Additionally, a method is provided for inducing an immune response even in immune-compromised patients, patients with pre-existing immunity to the vaccine virus, or patients undergoing antiviral therapy.
- Modified Vaccinia Ankara (MVA) virus is related to vaccinia virus, a member of the genera Orthopoxvirus in the family of Poxyiridae.
- MVA was generated by 516 serial passages on chicken embryo fibroblasts of the Ankara strain of vaccinia virus (CVA) (for review see Mayr, A., et al. Infection 3, 6-14 [1975]).
- CVA Ankara strain of vaccinia virus
- the resulting MVA virus deleted about 31 kilobases of its genomic sequence and, therefore, was described as highly host cell restricted to avian cells (Meyer, H. et al., J. Gen. Virol. 72, 1031-1038 [1991]).
- MVA was engineered for use as a viral vector for recombinant gene expression or as a recombinant vaccine (Sutter, G. et al. [1994], Vaccine 12: 1032-40).
- MVA is not completely replication incompetent in human and mammalian cells, brings into question the absolute safety of known MVA as a human vaccine or a vector for recombinant vaccines.
- the balance between the efficacy and the safety of the vaccine vector virus is extremely important.
- an object of the invention is to provide novel virus strains having enhanced safety for the development of safer products, such as vaccines or pharmaceuticals. Moreover, a further object is to provide a means for improving an existing vaccination regimen.
- the invention inter alia comprises the following, alone or in combination:
- a method for inducing an immune response for treating a human patient comprising:
- a priming inoculation of an effective amount of a MVA virus wherein the MVA virus is characterized by reproductive replication in vitro in chicken embryo fibroblasts and by being non-replicative in vitro in human cell lines selected from the human keratinocyte cell line HaCaT, the human embryo kidney cell line 293, the human bone osteosarcoma cell line 143B, and the human cervix adenocarcinoma cell line HeLa; and
- MVA MVA-BN as deposited at the European Collection of Cell Cultures (ECACC), Salisbury (UK) under number V00083008 or a derivative thereof, such a
- the MVA virus comprises a heterologous nucleic acid sequence, such a
- heterologous nucleic acid sequence is selected from a sequence encoding at least one antigen, antigenic epitope, and/or a therapeutic compound, such a
- the antigen or antigenic epitope is derived from a virus selected from the family of Influenza virus, Flavivirus, Paramyxovirus, Hepatitis virus, Cytomegalovirus, Human immunodeficiency virus or from viruses causing hemorrhagic fever, such a virus selected from the family of Influenza virus, Flavivirus, Paramyxovirus, Hepatitis virus, Cytomegalovirus, Human immunodeficiency virus or from viruses causing hemorrhagic fever, such a virus selected from the family of Influenza virus, Flavivirus, Paramyxovirus, Hepatitis virus, Cytomegalovirus, Human immunodeficiency virus or from viruses causing hemorrhagic fever, such a virus selected from the family of Influenza virus, Flavivirus, Paramyxovirus, Hepatitis virus, Cytomegalovirus, Human immunodeficiency virus or from viruses causing hemorrhagic fever, such a virus selected from the family of Influenza virus, Flavivirus, Para
- the antigen or antigenic epitope comprises nef, such a
- the MVA virus is administered as a vaccine, such a
- the immune response is directed against an orthopox virus, selected from smallpox, such a
- the MVA is administered by intravenous, intramuscular, and/or subcutaneous injection, such a
- the MVA prime/MVA boost inoculation regime induces at least the same level of immune response when compared to a DNA-prime/vaccinia virus boost inoculation regime, such a
- the MVA is administered at a dose of at least about 1 ⁇ 10 8 TCID 50 , such a
- a priming inoculation of an effective amount of a MVA virus wherein the MVA virus is characterized by reproductive replication in vitro in chicken embryo fibroblasts and by being non-replicative in vitro in human cell lines selected from the human keratinocyte cell line HaCaT, the human embryo kidney cell line 293, the human bone osteosarcoma cell line 143B, and the human cervix adenocarcinoma cell line HeLa; and
- a kit for treating a human patient comprising:
- a MVA characterized by reproductive replication in vitro in chicken embryo fibroblasts and by being non-replicative in vitro in human cell lines selected from the human keratinocyte cell line HaCaT, the human embryo kidney cell line 293, the human bone osteosarcoma cell line 143B, and the human cervix adenocarcinoma cell line HeLa; and
- kits wherein the MVA is MVA-BN as deposited at the European Collection of Cell Cultures (ECACC), Salisbury (UK) under number V00083008 or a derivative thereof, such a
- kits wherein the MVA virus comprises a heterologous nucleic acid sequence, such a
- heterologous nucleic acid sequence is selected from a sequence encoding at least one antigen, antigenic epitope, and/or a therapeutic compound, such a
- kits wherein the antigen or antigenic epitope is derived from a virus selected from the family of Influenza virus, Flavivirus, Paramyxovirus, Hepatitis virus, Cytomegalovirus, Human immunodeficiency virus or from viruses causing hemorrhagic fever, such a
- kit wherein the MVA virus is administered as a vaccine, such a
- kit wherein the treatment is directed against an orthopox virus, selected from smallpox, such a
- kit wherein the treatment is directed to a patient who is immune compromised, such a
- kit wherein the MVA is administered by intravenous, intramuscular, and/or subcutaneous injection.
- new vaccinia viruses are provided which are capable of reproductive replication in non-human cells and cell lines, especially in chicken embryo fibroblasts (CEF), but not capable of reproductive replication in a human cell line known to permit replication with known vaccinia strains.
- CEF chicken embryo fibroblasts
- vaccinia strains reproductively replicate in at least some human cell lines, in particular the human keratinocyte cell line HaCaT (Boukamp et al. 1988, J Cell Biol 106(3): 761-71). Replication in the HaCaT cell line is predictive for replication in vivo, in particular for in vivo replication in humans. It is demonstrated in the example section that all known vaccinia strains tested that show a residual reproductive replication in HaCaT also replicate in vivo. Thus, the invention preferably relates to vaccinia viruses that do not reproductively replicate in the human cell line HaCaT.
- the invention concerns vaccinia virus strains that are not capable of reproductive replication in any of the following human cell lines: human cervix adenocarcinoma cell line HeLa (ATCC No. CCL-2), human embryo kidney cell line 293 (ECACC No. 85120602), human bone osteosarcoma cell line 143B (ECACC No. 91112502) and the HaCaT cell line.
- human cervix adenocarcinoma cell line HeLa ATCC No. CCL-2
- human embryo kidney cell line 293 ECACC No. 85120602
- human bone osteosarcoma cell line 143B ECACC No. 91112502
- HaCaT cell line HaCaT cell line
- the growth behaviour or amplification/replication of a virus is normally expressed by the ratio of virus produced from an infected cell (Output) to the amount originally used to infect the cell in the first place (Input) (“amplification ratio).
- Output the ratio of virus produced from an infected cell
- Input the amount originally used to infect the cell in the first place
- a ratio of “1” between Output and Input defines an amplification status wherein the amount of virus produced from the infected cells is the same as the amount initially used to infect the cells. This ratio is understood to mean that the infected cells are permissive for virus infection and virus reproduction.
- the term “not capable of reproductive replication” means that the virus of the present invention exhibits an amplification ratio of less than 1 in human cell lines, such as 293 (ECACC No. 85120602), 143B (ECACC No. 91112502), HeLa (ATCC No. CCL-2) and HaCaT (Boukamp et al. 1988, J Cell Biol 106(3): 761-71) under the conditions outlined in Example 1 of the present specification.
- the amplification ratio of the virus of the invention is 0.8 or less in each of the above human cell lines, i.e., HeLa, HaCaT, and 143B.
- Viruses of the invention are demonstrated in Example 1 and Table 1 not to reproductively replicate in cell lines 143B, HeLa and HaCaT.
- the particular strain of the invention that has been used in the examples was deposited on Aug. 30, 2000 at the European Collection of Cell Cultures (ECACC) under number V00083008. This strain is referred to as “MVA-BN” throughout the Specification. It has already been noted that the known MVA strains show residual replication in at least one of the human cell lines tested ( FIG. 1 , Example 1). All known vaccinia strains show at least some replication in the cell line HaCaT, whereas the MVA strains of the invention, in particular MVA-BN, do not reproductively replicate in HaCaT cells.
- MVA-BN exhibits an amplification ratio of 0.05 to 0.2 in the human embryo kidney cell line 293 (ECACC No. 85120602).
- the ratio is in the range of 0.0 to 0.6.
- the amplification ratio is in the range of 0.04 to 0.8 and of 0.02 to 0.8, respectively.
- MVA-BN has an amplification ratio of 0.01 to 0.06 in African green monkey kidney cells (CV1: ATCC No. CCL-70). Thus, MVA-BN, which is a representative strain of the invention, does not reproductively replicate in any of the human cell lines tested.
- the amplification ratio of MVA-BN is clearly above 1 in chicken embryo fibroblasts (CEF: primary cultures).
- CEF primary cultures
- a ratio of more than “1” indicates reproductive replication since the amount of virus produced from the infected cells is increased compared to the amount of virus that was used to infect the cells. Therefore, the virus can be easily propagated and amplified in CEF primary cultures with a ratio above 500.
- the invention concerns derivatives of the virus as deposited under ECACC V0083008.
- “Derivatives” of the viruses as deposited under ECACC V00083008 refer to viruses exhibiting essentially the same replication characteristics as the deposited strain but exhibiting differences in one or more parts of its genome.
- Viruses having the same “replication characteristics” as the deposited virus are viruses that replicate with similar amplification ratios as the deposited strain in CEF cells and the cell lines HeLa, HaCaT and 143B; and that show a similar replication in vivo, as determined in the AGR129 transgenic mouse model (see below).
- the vaccinia virus strains of the invention are characterized by a failure to replicate in vivo.
- “failure to replicate in vivo” refers to viruses that do not replicate in humans and in the mouse model described below.
- the “failure to replicate in vivo” can be preferably determined in mice that are incapable of producing mature B and T cells.
- An example of such mice is the transgenic mouse model AGR129 (obtained from Mark Sutter, Institute of Virology, University of Zurich, Zurich, Switzerland). This mouse strain has targeted gene disruptions in the IFN receptor type I (IFN- ⁇ / ⁇ ) and type II (IFN- ⁇ ) genes, and in RAG.
- the mice Due to these disruptions, the mice have no IFN system and are incapable of producing mature B and T cells, and as such, are severely immune-compromised and highly susceptible to a replicating virus.
- any other mouse strain can be used that is incapable of producing mature B and T cells, and as such, is severely immune-compromised and highly susceptible to a replicating virus.
- the viruses of the present invention do not kill AGR129 mice within a time period of at least 45 days, more preferably within at least 60 days, and most preferably within 90 days post infection of the mice with 10 7 pfu virus administered via intra-peritoneal injection.
- the viruses that exhibit “failure to replicate in vivo” are further characterized in that no virus can be recovered from organs or tissues of the AGR129 mice 45 days, preferably 60 days, and most preferably 90 days after infection of the mice with 10 7 pfu virus administered via intra-peritoneal injection.
- AGR129 mice 45 days, preferably 60 days, and most preferably 90 days after infection of the mice with 10 7 pfu virus administered via intra-peritoneal injection.
- Detailed information regarding the infection assays using AGR129 mice and the assays used to determine whether virus can be recovered from organs and tissues of infected mice can be found in the example section.
- the vaccinia virus strains of the invention are characterized as inducing a higher specific immune response compared to the strain MVA-575, as determined in a lethal challenge mouse model. Details of this experiment are outlined in Example 2, shown below. Briefly, in such a model unvaccinated mice die after infection with replication competent vaccinia strains such as the Western Reserve strain L929 TK+ or IHD-J. Infection with replication competent vaccinia viruses is referred to as “challenge” in the context of description of the lethal challenge model.
- the mice are usually killed and the viral titre in the ovaries is determined by standard plaque assays using VERO cells (for more details see example section).
- the viral titre is determined for unvaccinated mice and for mice vaccinated with vaccina viruses of the present invention. More specifically, the viruses of the present invention are characterized in that, in this test after the vaccination with 10 2 TCID 50 /ml of virus of the present invention, the ovarian virus titres are reduced by at least 70%, preferably by at least 80%, and more preferably by at least 90%, compared to unvaccinated mice.
- the vaccinia viruses of the present invention are useful for immunization with prime/boost administration of the vaccine.
- prime/boost regimes using a known MVA as a delivery vector induce poor immune responses and are inferior to DNA-prime/MVA-boost regimes (Schneider et al., 1998, Nat. Med. 4; 397-402).
- MVA strains that have been used are different from the vaccinia viruses of the present invention.
- DNA-prime/MVA-boost regimes are reported to be superior at generating high avidity responses because this regime combines the ability of DNA to effectively prime the immune response with the properties of MVA to boost the response in the absence of a pre-existing immunity to MVA.
- the use of MVA as a vaccine or therapeutic would have limited efficacy, particularly in the individuals that have been previously vaccinated against smallpox.
- the vaccinia virus of the present invention in particular MVA-BN and its derivatives, as well as corresponding recombinant viruses harboring heterologous sequences, can be used to efficiently first prime and then boost immune responses in naive animals, as well as animals with a pre-existing immunity to poxviruses.
- the vaccinia virus of the present invention induces at least substantially the same level of immunity in vaccinia virus prime/vaccinia virus boost regimes compared to DNA-prime/vaccinia virus boost regimes.
- the term “animal” as used in the present description is intended to also include human beings.
- the virus of the present invention is also useful for prime/boost regimes in human beings. If the virus is a non-recombinant virus such as MVA-BN or a derivative thereof, the virus may be used as a smallpox vaccine in humans, wherein the same virus can be used in both the priming and boosting vaccination.
- the virus is a recombinant virus such as MVA-BN or a derivative thereof that encodes a heterologous antigen
- the virus may be used in humans as a vaccine against the agent from which the heterologous antigen is derived, wherein the same virus can be used in both the priming and boosting vaccination.
- a vaccinia virus is regarded as inducing at least substantially the same level of immunity in vaccinia virus prime/vaccinia virus boost regimes if, when compared to DNA-prime/vaccinia virus boost regimes, the CTL response, as measured in one of the following two assays (“assay 1” and “assay 2”), preferably in both assays, is at least substantially the same in vaccinia virus prime/vaccinia virus boost regimes when compared to DNA-prime/vaccinia virus boost regimes. More preferably, the CTL response after vaccinia virus prime/vaccinia virus boost administration is higher in at least one of the assays, when compared to DNA-prime/vaccinia virus boost regimes. Most preferably, the CTL response is higher in both of the following assays.
- mice For vaccinia virus prime/vaccinia virus boost administrations, 6-8 week old BALB/c (H-2d) mice are prime-immunized by intravenous administration with 10 7 TCID 50 vaccinia virus of the invention expressing the murine polytope as described in Thomson et al., 1998, J. Immunol. 160, 1717 and then boost-immunized with the same amount of the same virus, administered in the same manner three weeks later. To this end, it is necessary to construct a recombinant vaccinia virus expressing the polytope. Methods to construct such recombinant viruses are known to a person skilled in the art and are described in more detail below.
- DNA prime/vaccinia virus boost regimes the prime vaccination is done by intra muscular injection of the mice with 50 ⁇ g DNA expressing the same antigen as the vaccinia virus.
- the boost administration with the vaccinia virus is done in exactly the same way as for the vaccinia virus prime/vaccinia virus boost administration.
- the DNA plasmid expressing the polytope is also described in the publication referenced above, i.e., Thomson, et al.
- the development of a CTL response against the epitopes SYI, RPQ and/or YPH is determined two weeks after the boost administration.
- the determination of the CTL response is preferably done using the ELISPOT analysis as described by Schneider, et al., 1998, Nat. Med.
- the virus of the invention is characterized in this experiment in that the CTL immune response against the epitopes mentioned above, which is induced by the vaccinia virus prime/vaccinia virus boost administration, is substantially the same, preferably at least the same, as that induced by DNA prime/vaccinia virus boost administration, as assessed by the number of IFN- ⁇ producing cells/10 6 spleen cells (see also experimental section).
- This assay basically corresponds to assay 1. However, instead of using 10 7 TCID 50 vaccinia virus administered i.v., as in Assay 1; in Assay 2, 10 8 TCID 50 vaccinia virus of the present invention is administered by subcutaneous injection for both prime and boost immunization.
- the virus of the present invention is characterized in this experiment in that the CTL immune response against the epitopes mentioned above, which is induced by the vaccinia virus prime/vaccinia virus boost administration, is substantially the same, preferably at least the same, as that induced by DNA prime/vaccinia virus boost administration, as assessed by the number of IFN- ⁇ producing cells/10 6 spleen cells (see also experimental section).
- the strength of a CTL response as measured in one of the assays shown above corresponds to the level of protection.
- viruses of the present invention are particularly suitable for vaccination purposes.
- a representative vaccinia virus of the present invention is characterized by having at least one of the following properties:
- the vaccinia virus of the present invention has at least two of the above properties, and more preferably at least three of the above properties. Most preferred are vaccinia viruses having all of the above properties.
- Representative vaccinia virus strains are MVA-575 deposited on Dec. 7, 2000 at the European Collection of Animal Cell Cultures (ECACC) with the deposition number V00120707; and MVA-BN, deposited on Aug. 30, 2000, at ECACC with the deposition number V000083008, and derivatives thereof, in particular if it is intended to vaccinate/treat humans.
- MVA-BN and its derivatives are most preferred for humans.
- the invention concerns a kit for vaccination comprising a virus of the present invention for the first vaccination (“priming”) in a first vial/container and for a second vaccination (“boosting”) in a second vial/container.
- the virus may be a non-recombinant vaccinia virus, i.e., a vaccinia virus that does not contain heterologous nucleotide sequences.
- a vaccinia virus is MVA-BN and its derivatives.
- the virus may be a recombinant vaccinia virus that contains additional nucleotide sequences that are heterologous to the vaccinia virus.
- the heterologous sequences may code for epitopes that induce a response by the immune system.
- the recombinant vaccinia virus may be used to vaccinate against the proteins or agents comprising the epitope.
- the viruses may be formulated as shown below in more detail. The amount of virus that may be used for each vaccination has been defined above.
- a process to obtain a virus of the instant invention may comprise the following steps:
- a strain of the present invention may be identified and isolated which corresponds to the strain with the accession number ECACC V0083008, mentioned above.
- the growth behavior of the vaccinia viruses of the present invention indicates that the strains of the present invention are far superior to any other characterized MVA isolates in terms of attenuation in human cell lines and failure to replicate in vivo.
- the strains of the present invention are therefore ideal candidates for the development of safer products such as vaccines or pharmaceuticals, as described below.
- the virus of the present invention in particular MVA-BN and its derivatives, is used as a vaccine against human poxvirus diseases, such as smallpox.
- the virus of the present invention may be recombinant, i.e., may express heterologous genes as, e.g., antigens or epitopes heterologous to the virus, and may thus be useful as a vaccine to induce an immune response against heterologous antigens or epitopes.
- immune response means the reaction of the immune system when a foreign substance or microorganism enters the organism.
- the immune response is divided into a specific and an unspecific reaction although both are closely related.
- the unspecific immune response is the immediate defence against a wide variety of foreign substances and infectious agents.
- the specific immune response is the defence raised after a lag phase, when the organism is challenged with a substance for the first time.
- the specific immune response is highly efficient and is responsible for the fact that an individual who recovers from a specific infection is protected against this specific infection.
- a second infection with the same or a very similar infectious agent causes much milder symptoms or no symptoms at all, since there is already a “pre-existing immunity” to this agent.
- Such immunity and immunological memory persist for a long time, in some cases even lifelong. Accordingly, the induction of an immunological memory can be used for vaccination.
- the “immune system” means a complex organ involved in the defence of the organism against foreign substances and microorganisms.
- the immune system comprises a cellular component, comprising several cell types, such as, e.g., lymphocytes and other cells derived from white blood cells, and a humoral component, comprising small peptides and complement factors.
- Vaccination means that an organism is challenged with an infectious agent, e.g., an attenuated or inactivated form of the infectious agent, to induce a specific immunity.
- the term vaccination also covers the challenge of an organism with recombinant vaccinia viruses of the present invention, in particular recombinant MVA-BN and its derivatives, expressing antigens or epitopes that are heterologous to the virus.
- epitopes are provided elsewhere in the description and include e.g., epitopes from proteins derived from other viruses, such as the Dengue virus, Hepatitis C virus, HIV, or epitopes derived from proteins that are associated with the development of tumors and cancer.
- the epitopes are expressed and presented to the immune system. A specific immune response against these epitopes may be induced. The organism, thus, is immunized against the agent/protein containing the epitope that is encoded by the recombinant vaccinia virus.
- Immunity means partial or complete protection of an organism against diseases caused by an infectious agent due to a successful elimination of a preceding infection with the infectious agent or a characteristic part thereof. Immunity is based on the existence, induction, and activation of specialized cells of the immune system.
- the recombinant viruses of the present invention in particular recombinant MVA-BN and its derivatives, contain at least one heterologous nucleic acid sequence.
- heterologous is used hereinafter for any combination of nucleic acid sequences that is not normally found intimately associated with the virus in nature; such virus is also called a “recombinant virus”.
- the heterologous sequences are preferably antigenic epitopes that are selected from any non-vaccinia source.
- the recombinant virus expresses one or more antigenic epitopes from: Plasmodium falciparum , mycobacteria, influenza virus, viruses of the family of flaviviruses, paramyxoviruses, hepatitis viruses, human immunodeficiency viruses, or from viruses causing hemorrhagic fever, such as hantaviruses or filoviruses, i.e., ebola or marburg virus.
- the heterologous sequences can be selected from another poxyiral or a vaccinia source. These viral sequences can be used to modify the host spectrum or the immunogenicity of the virus.
- the virus of the present invention may code for a heterologous gene/nucleic acid expressing a therapeutic compound.
- a “therapeutic compound” encoded by the heterologous nucleic acid in the virus can be, e.g., a therapeutic nucleic acid, such as an antisense nucleic acid or a peptide or protein with desired biological activity.
- the expression of a heterologous nucleic acid sequence is preferably, but not exclusively, under the transcriptional control of a poxvirus promoter, more preferably of a vaccinia virus promoter.
- the heterologous nucleic acid sequence is preferably inserted into a non-essential region of the virus genome.
- the heterologous nucleic acid sequence is inserted at a naturally occurring deletion site of the MVA genome as disclosed in PCT/EP96/02926. Methods for inserting heterologous sequences into the poxyiral genome are known to a person skilled in the art.
- the invention also includes the genome of the virus, its recombinants, or functional parts thereof.
- viral sequences can be used to identify or isolate the virus or its recombinants, e.g., by using PCR, hybridization technologies, or by establishing ELISA assays.
- viral sequences can be expressed from an expression vector to produce the encoded protein or peptide that then may supplement deletion mutants of a virus that lacks the viral sequence contained in the expression vector.
- “Functional part” of the viral genome means a part of the complete genomic sequence that encodes a physical entity, such as a protein, protein domain, or an epitope of a protein. Functional part of the viral genome also describes parts of the complete genomic sequence that code for regulatory elements or parts of such elements with individualized activity, such as promoter, enhancer, cis- or trans-acting elements.
- the recombinant virus of the present invention may be used for the introduction of a heterologous nucleic acid sequence into a target cell, the sequence being either homologous or heterologous to the target cell.
- the introduction of a heterologous nucleic acid sequence into a target cell may be used to produce in vitro heterologous peptides or polypeptides, and/or complete viruses encoded by the sequence.
- This method comprises the infection of a host cell with the recombinant MVA; cultivation of the infected host cell under suitable conditions; and isolation and/or enrichment of the peptide, protein and/or virus produced by the host cell.
- the method for introduction of a homologous or heterologous sequence into cells may be applied for in vitro and preferably in vivo therapy.
- isolated cells that have been previously (ex vivo) infected with the virus are administered to a living animal body for inducing an immune response.
- the virus or its recombinants are directly administered to a living animal body to induce an immune response.
- the cells surrounding the site of inoculation are directly infected in vivo by the virus, or its recombinants, of the present invention.
- the present invention also provides a pharmaceutical composition and a vaccine, e.g., for inducing an immune response in a living animal body, including a human.
- the virus of the invention is also safe in any other gene therapy protocol.
- the pharmaceutical composition may generally include one or more pharmaceutical acceptable and/or approved carriers, additives, antibiotics, preservatives, adjuvants, diluents and/or stabilizers.
- auxiliary substances can be water, saline, glycerol, ethanol, wetting or emulsifying agents, pH buffering substances, or the like.
- Suitable carriers are typically large, slowly metabolized molecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates, or the like.
- the virus or a recombinant of the present invention is converted into a physiologically acceptable form. This can be done based on experience in the preparation of poxvirus vaccines used for vaccination against smallpox (as described by Stickl, H. et al. [1974] Dtsch. med. Wschr. 99, 2386-2392).
- the purified virus is stored at ⁇ 80° C. with a titre of 5 ⁇ 10 8 TCID 50 /ml formulated in about 10 mM Tris, 140 mM NaCl, pH 7.4.
- the vaccine shots can be produced by stepwise, freeze-drying of the virus in a formulation.
- This formulation can contain additional additives such as mannitol, dextran, sugar, glycine, lactose, polyvinylpyrrolidone, or other additives, such as antioxidants or inert gas, stabilizers or recombinant proteins (e.g. human serum albumin) suitable for in vivo administration.
- the glass ampoule is then sealed and can be stored between 4° C. and room temperature for several months. However, as long as no need exists the ampoule is stored preferably at temperatures below ⁇ 20° C.
- the lyophilisate can be dissolved in 0.1 to 0.5 ml of an aqueous solution, preferably physiological saline or Tris buffer, and administered either systemically or locally, i.e., by parenteral, intramuscular, or any other path of administration know to a skilled practitioner.
- an aqueous solution preferably physiological saline or Tris buffer
- the mode of administration, dose, and number of administrations can be optimized by those skilled in the art in a known manner.
- the virus of the present invention is particularly useful to induce immune responses in immune-compromised animals, e.g., monkeys (CD4 ⁇ 400/ ⁇ l of blood) infected with SIV, or immune-compromised humans.
- immune-compromised describes the status of the immune system of an individual that exhibits only incomplete immune responses or has a reduced efficiency in the defence against infectious agents.
- the virus of the present invention can boost immune responses in immune-compromised animals or humans even in the presence of a pre-existing immunity to poxvirus in these animals or humans.
- the virus of the present invention can also boost immune responses in animals or humans receiving an antiviral, e.g., antiretroviral therapy.
- Antiviral therapy includes therapeutic concepts in order to eliminate or suppress viral infection including, e.g., (i) the administration of nucleotide analogs, (ii) the administration of inhibitors for viral enzymatic activity or viral assembling, or (iii) the administration of cytokines to influence immune responses of the host.
- the vaccine is especially, but not exclusively, applicable in the veterinary field, e.g., immunization against animal pox infection.
- the immunizing inoculation is preferably administered by nasal or parenteral administration, whereas in larger animals or humans, a subcutaneous, oral, or intramuscular inoculation is preferred.
- a vaccine shot containing an effective dose of only 10 2 TCID 50 (tissue culture infectious dose) of the virus of the present invention is sufficient to induce complete immunity against a wild type vaccinia virus challenge in mice.
- TCID 50 tissue culture infectious dose
- Such expectation is based on the understanding that for induction of an immune response, the antigenic epitopes must be presented to the immune system in sufficient quantity.
- a virus that is highly attenuated and thus, not replicating, can only present a very small amount of antigenic epitopes, i.e., as much as the virus itself incorporates.
- the amount of antigen carried by viral particles is not considered to be sufficient for induction of a potent immune response.
- the virus of the invention stimulates, even with a very low effective dose of only 10 2 TCID 50 , a potent and protective immune response in a mouse/vaccinia challenge model.
- the virus of the present invention exhibits an unexpected and increased induction of specific immunity compared to other characterized MVA strains. This makes the virus of the present invention and any vaccine derived thereof, especially useful for application in immune-compromised animals or humans.
- the virus is used as an adjuvant.
- An “adjuvant” in the context of the present description refers to an enhancer of the specific immune response in vaccines. “Using the virus as adjuvant” means including the virus in a pre-existing vaccine to additionally stimulate the immune system of the patient who receives the vaccine. The immunizing effect of an antigenic epitope in most vaccines is often enhanced by the addition of a so-called adjuvant.
- An adjuvant co-stimulates the immune system by causing a stronger specific immune reaction against an antigenic epitope of a vaccine. This stimulation can be regulated by factors of the unspecific immune system, such as interferon and interleukin.
- the virus is used in mammals, including humans, to activate, support, or suppress the immune system, and preferably to activate the immune response against any antigenic determinant.
- the virus may also be used to support the immune system in a situation of increased susceptibility to infection, such as in the case of stress.
- the virus used as an adjuvant may be a non-recombinant virus, i.e., a virus that does not contain heterologous DNA in its genome.
- a virus that does not contain heterologous DNA in its genome An example of this type of virus is MVA-BN.
- the virus used as an adjuvant is a recombinant virus containing in its genome heterologous DNA sequences that are not naturally present in the viral genome.
- the recombinant viral DNA preferably contains and expresses genes that code for immune stimulatory peptides or proteins such as interleukins.
- the virus is inactivated when used as an adjuvant or added to another vaccine.
- the inactivation of the virus may be performed by e.g., heat or chemicals, as known in the art.
- the virus is inactivated by ⁇ -propriolacton.
- the inactivated virus may be added to vaccines against numerous infectious or proliferative diseases to increase the immune response of the patient to this disease.
- FIG. 1 Growth kinetics of different strains of MVA in different cell lines.
- 1 A the results are grouped according to the MVA strains tested; whereas in 1 B, the results are grouped according to the cell lines tested.
- 1 B the amount of virus recovered from a cell line after four days (D4) of culture was determined by plaque assay and expressed as the ratio of virus recovered after 4 days to the initial inoculum on day 1 (D1).
- FIG. 2 Protection provided against a lethal challenge of vaccinia following vaccinations with either MVA-BN or MVA-575. The protection is measured by the reduction in ovarian titres determined 4 days post challenge by standard plaque assay.
- FIG. 3 Induction of CTL and protection provided against an influenza challenge using different prime/boost regimes.
- FIG. 4 Induction of antibodies to MVA following vaccination of mice with different smallpox vaccines.
- the levels of antibodies generated to MVA following vaccination with MVA-BN (week 0 and 4), was compared to conventional vaccinia strains, Elstree and Wyeth, given via tail scarification (week 0), MVA-572 (week 0 and 4), and MVA-BN and MVA-572 given as a pre-Elstree vaccine.
- MVA-572 has been deposited at the European Collection of Animal Cell Cultures as ECACC V94012707. The titres were determined using a capture ELISA and calculated by linear regression using the linear part of the graph and defined as the dilution that resulted in an optical density of 0.3.
- *MVA-BN:MVA-BN is significantly (p>0.05) different to MVA-572:MVA-572.
- MVA-BN To characterize a newly isolated strain of the present invention (further referred to as MVA-BN) the growth kinetics of the new strain were compared to those of known MVA strains that have already been characterized.
- the experiment compared the growth kinetics of the following viruses in the subsequently listed primary cells and cell lines:
- the primary cells and cell lines used were:
- the cells were seeded onto 6-well-plates at a concentration of 5 ⁇ 10 5 cells/well and incubated overnight at 37° C., 5% CO 2 in DMEM (Gibco, Cat. No. 61965-026) with 2% FCS.
- the cell culture medium was removed and cells were infected at approximately moi 0.05 for one hour at 37° C., 5% CO 2 (for infection it is assumed that cell numbers doubled over night).
- the amount of virus used for each infection was 5 ⁇ 10 4 TCID 50 and is referred to as Input.
- the cells were then washed 3 times with DMEM and finally 1 ml DMEM, 2% FCS was added and the plates were left to incubate for 96 hours (4 days) at 37° C., 5% CO 2 .
- the infections were stopped by freezing the plates at ⁇ 80° C.; followed by titration analysis.
- CEF virus test cells
- RPMI Gibco, Cat. No. 61870-010
- FCS 7% FCS
- 1% Antibiotic/Antimycotic Gabco, Cat. No. 15240-062
- the 6-well-plates containing the infection experiments were frozen/thawed 3 times and dilutions of 10 ⁇ 1 to 10 ⁇ 12 were prepared using RPMI growth medium.
- Virus dilutions were distributed onto test cells and incubated for five days at 37° C., 5% CO 2 to allow CPE (cytopathic effect) development.
- Test cells were fixed (Acetone/Methanol 1:1) for 10 min, washed with PBS and incubated with polyclonal vaccinia virus specific antibody (Quartett Berlin, Cat. No. 9503-2057) at a 1:1000 dilution in incubation buffer for one hour at RT. After washing twice with PBS (Gibco, Cat. No. 20012-019) the HRP-coupled anti-rabbit antibody (Promega Mannheim, Cat. No. W4011) was added at a 1:1000 dilution in incubation buffer (PBS containing 3% FCS) for one hour at RT.
- PBS containing 3% FCS
- the viruses were used to infect duplicate sets of cells that were expected to be permissive for MVA (i.e., CEF and BHK) and cells expected to be non-permissive for MVA (i.e., CV-1, Vero, HeLa, 143B and HaCaT).
- the cells were infected at a low multiplicity of infection, i.e., 0.05 infectious units per cell (5 ⁇ 10 4 TCID 50 ).
- the virus inoculum was removed and the cells were washed three times to remove any remaining unabsorbed viruses. Infections were left for a total of 4 days when viral extracts were prepared and then titered on CEF cells.
- Table 1 and FIG. 1 show the results of the titration assays where values are given as total amount of virus produced after 4 days infection.
- MVA-Vero amplified well Concerning replication in Vero cells (Monkey kidney cell line), MVA-Vero amplified well, as expected, i.e., 1000 fold above Input.
- MVA-575 did not amplify above the Input level and also exhibited a slight negative amplification, i.e., 16-fold decrease below Input.
- MVA-HLR amplified the best with a 30-fold increase above Input, followed by MVA-Vero with 5-fold increase above Input.
- MVA-Vero was the only strain to show amplification above Input (3-fold increase). All other viruses did not amplify above Input, however there was a big difference between the MVA-HLR and both MVA-BN and MVA-575.
- MVA-HLR was “borderline” (1-fold decrease below Input)
- MVA-BN exhibited the greatest attenuation (300-fold decrease below Input), followed by MVA-575 (59-fold decrease below Input).
- MVA-BN is superior with respect to attenuation in human 143B cells.
- MVA-BN is the most attenuated strain in this group of viruses.
- MVA-BN demonstrates extreme attenuation in human cell lines by exhibiting an amplification ratio of 0.05 to 0.2 in human embryo kidney cells (293: ECACC No. 85120602) (data not incorporated in Table 1). Furthermore, it exhibits an amplification ratio of about 0.0 in 143B cells; an amplification ratio of about 0.04 in HeLa cells; and an amplification ratio of about 0.22 in HaCaT cells. Additionally, MVA-BN exhibits an amplification ratio of about 0.0 in CV1 cells.
- MVA-BN is the only MVA strain exhibiting an amplification ratio of less than 1 in each human cell line examined, i.e., 143B, Hela, HaCaT, and 293.
- MVA-575 exhibits a profile similar to that of MVA-BN, however it is not as attenuated as MVA-BN.
- MVA-HLR amplified well in all (human or otherwise) cell lines tested, except for 143B cells. Thus, it can be regarded as replication competent in all cell lines tested, with the exception of 143B cells. In one case, it even amplified better in a human cell line (HeLa) than in a permissive cell line (BHK).
- HeLa human cell line
- BHK permissive cell line
- MVA-Vero does exhibit amplification in all cell lines, but to a lesser extent than demonstrated by MVA-HLR (ignoring the 143B result). Nevertheless, it cannot be considered as being in the same “class” with regards to attenuation, as MVA-BN or MVA-575.
- mice were immunized (i.p) with 10 7 pfu of either MVA-BN, MVA-HLR or MVA-572 (used in 120,000 people in Germany) and monitored daily for clinical signs.
- mice vaccinated with MVA-HLR or MVA-572 died within 28 and 60 days, respectively. At necropsy, there were general signs of severe viral infection in the majority of organs. A standard plaque assay measured the recovery of MVA (10 8 pfu) from the ovaries. In contrast, mice vaccinated with the same dose of MVA-BN (corresponding to the deposited strain ECACC V00083008) survived for more than 90 days and no MVA could be recovered from organs or tissues.
- Replication competent strains of vaccinia induce potent immune responses in mice and at high doses are lethal.
- MVA are highly attenuated and have a reduced ability to replicate on mammalian cells, there are differences in the attenuation between different strains of MVA. Indeed, MVA-BN appears to be more attenuated than other MVA strains, even the parental strain MVA-575.
- different doses of MVA-BN and MVA-575 were compared in a lethal vaccinia challenge model. The levels of protection were measured by a reduction in ovarian vaccinia titres determined 4 days post challenge, as this allowed a quantitative assessment of different doses and strains of MVA.
- MVA-BN and MVA-575 had been propagated on CEF cells, and had been sucrose purified and formulated in Tris pH 7.4.
- rVV replication competent vaccinia virus
- rVV replication competent vaccinia virus
- mice received a placebo vaccine.
- the protection was measured by the reduction in ovarian titres determined 4 days post challenge by standard plaque assay. For this, the mice were sacrificed on day 4 post the challenge and the ovaries were removed, homogenized in PBS (1 ml) and viral titres determined by standard plaque assay using VERO cells (Thomson, et al., 1998, J. Immunol. 160: 1717).
- mice vaccinated with two immunizations of either 10 4 or 10 6 TCID 50 /ml of MVA-BN or MVA-575 were completely protected as judged by a 100% reduction in ovarian rVV titres 4 days post challenge ( FIG. 2 ). The challenge virus was cleared. However, differences in the levels of protection afforded by MVA-BN or MVA-575 were observed at lower doses. Mice that received two immunizations of 10 2 TCID 50 /ml of MVA-575 failed to be protected, as judged by high ovarian rVV titres (mean 3.7 ⁇ 10 7 pfu+/ ⁇ 2.11 ⁇ 10 7 ).
- mice vaccinated with the same dose of MVA-BN exhibited a significant reduction (96%) in ovarian rVV titres (mean 0.21 ⁇ 10 7 pfu+/ ⁇ 0.287 ⁇ 10 7 ).
- the control mice that received a placebo vaccine had a mean viral titre of 5.11 ⁇ 10 7 pfu (+/ ⁇ 3.59 ⁇ 10 7 ) ( FIG. 2 ).
- MVA-BN is more potent than its parent strain MVA-575 at inducing a protective immune response against a lethal rVV challenge, which may be related to the increased attenuation of MVA-BN compared to MVA-575.
- MVA-BN The efficacy of MVA-BN was compared to other MVA and vaccinia strains previously used in the eradication of smallpox. These included single immunizations using the Elstree and Wyeth vaccinia strains produced in CEF cells and given via tail scarification, and immunizations using MVA-572 that was previously used in the smallpox eradication program in Germany. In addition, both MVA-BN and MVA-572 were compared as a pre-vaccine followed by Elstree via scarification. For each group eight BALB/c mice were used and all MVA vaccinations (1 ⁇ 10 7 TCID 50 ) were given subcutaneous at week 0 and week 3. Two weeks following the boost immunization the mice were challenged with vaccinia (IHD-J) and the titres in the ovaries were determined 4 days post challenge. All vaccines and regimes induced 100% protection.
- IHD-J vaccinia
- the immune responses induced using these different vaccines or regimes were measured in animals prior to challenge. Assays to measure levels of neutralizing antibodies, T cell proliferation, cytokine production (IFN- ⁇ vs IL-4) and IFN- ⁇ production by T cells were used.
- a weekly analysis of the antibody titres to MVA following the different vaccination regimes revealed that vaccinations with MVA-BN significantly enhanced the speed and magnitude of the antibody response compared to the other vaccination regimes ( FIG. 4 ).
- the antibody titres to MVA were significantly higher (p>0.05) at weeks 2, 4 and 5 (1 week post boost at week 4) when vaccinated with MVA-BN compared to mice vaccinated with MVA-572. Following the boost vaccination at week 4, the antibody titres were also significantly higher in the MVA-BN group compared to the mice receiving a single vaccination of either the vaccinia strains Elstree or Wyeth.
- MVA prime/boost regimes to generate high avidity CTL responses was assessed and compared to DNA prime/MVA boost regimes that have been reported to be superior.
- the different regimes were assessed using a murine polytope construct encoded by either a DNA vector or MVA-BN and the levels of CTL induction were compared by ELISPOT; whereas the avidity of the response was measured as the degree of protection afforded following a challenge with influenza.
- the DNA plasmid encoding the murine polytope (10 CTL epitopes including influenza, ovalbumin) was described previously (Thomson, et al., 1998, J. Immunol. 160: 1717). This murine polytope was inserted into deletion site II of MVA-BN, propagated on CEF cells, sucrose purified and formulated in Tris pH 7.4.
- mice In the current study, specific pathogen free 6-8 week old female BALB/c (H-2d) mice were used. Groups of 5 mice were used for ELISPOT analysis, whereas 6 mice per group were used for the influenza challenge experiments. Mice were vaccinated with different prime/boost regimes using MVA or DNA encoding the murine polytope, as detailed in the results. For immunizations with DNA, mice were given a single injection of 50 ⁇ g of endotoxin-free plasmid DNA (in 50 ⁇ l of PBS) in the quadricep muscle.
- Boost immunizations were given three weeks post primary immunization. Boosting with plasmid DNA was done in the same way as the primary immunization with DNA (see above).
- standard ELISPOT assays (Schneider et al., 1998, Nat. Med. 4; 397-402) were performed on splenocytes 2 weeks after the last booster immunization using the influenza CTL epitope peptide (TYQ), the P. berghei epitope peptide (SYI), the Cytomegalovirus peptide epitope (YPH) and/or the LCV peptide epitope (RPQ).
- mice were infected i.n. with a sub-lethal dose of influenza virus, Mem71 (4.5 ⁇ 10 5 pfu in 50 ml PBS).
- Mem71 4.5 ⁇ 10 5 pfu in 50 ml PBS.
- the lungs were removed and viral titres were determined in duplicate on Madin-Darby canine kidney cell line using a standard influenza plaque assay.
- Amplification ratio output TCID 50 ⁇ input TCID 50 .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Communicable Diseases (AREA)
- Epidemiology (AREA)
- Oncology (AREA)
- Mycology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Tropical Medicine & Parasitology (AREA)
- AIDS & HIV (AREA)
- Pulmonology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
The present invention provides an attenuated virus, which is derived from Modified Vaccinia Ankara virus, wherein the MVA-BN virus, or a derivative thereof, induces at least substantially the same level of immunity in vaccinia virus prime/vaccina virus boost regimes when compared to DNA prime/vaccinia virus boost regimes. It further describes recombinant viruses derived from this virus and the use of the virus, or its recombinants, as a medicament or vaccine. A method is provided for inducing an immune response in individuals who may be immune-compromised, receiving antiviral therapy, or have a pre-existing immunity to the vaccine virus.
Description
- This application is a continuation of U.S. application Ser. No. 13/053,361, filed Mar. 22, 2011, which is a continuation of U.S. application Ser. No. 12/471,144, filed May 22, 2009 (now U.S. Pat. No. 7,939,086), which is a continuation of U.S. application Ser. No. 11/977,808, filed Oct. 26, 2007 (now U.S. Pat. No. 7,923,017), which is a divisional of U.S. application Ser. No. 11/198,557, filed Aug. 5, 2005 (now U.S. Pat. No. 7,384,644), which is a continuation of U.S. application Ser. No. 10/440,073, filed May 16, 2003 (now U.S. Pat. No. 7,189,536), which is a continuation of International Application PCT/EP01/013628, filed Nov. 22, 2001, which claims the benefit of
PA 2000 01764, filed Nov. 23, 2000. All of these applications are incorporated by reference herein. - The present invention provides an attenuated virus which is derived from Modified Vaccinia Ankara virus and which is characterized by the loss of its capability to reproductively replicate in human cell lines. It further describes recombinant viruses derived from this virus and the use of the virus or its recombinants as a medicament or vaccine. Additionally, a method is provided for inducing an immune response even in immune-compromised patients, patients with pre-existing immunity to the vaccine virus, or patients undergoing antiviral therapy.
- Modified Vaccinia Ankara (MVA) virus is related to vaccinia virus, a member of the genera Orthopoxvirus in the family of Poxyiridae. MVA was generated by 516 serial passages on chicken embryo fibroblasts of the Ankara strain of vaccinia virus (CVA) (for review see Mayr, A., et al.
Infection 3, 6-14 [1975]). As a consequence of these long-term passages, the resulting MVA virus deleted about 31 kilobases of its genomic sequence and, therefore, was described as highly host cell restricted to avian cells (Meyer, H. et al., J. Gen. Virol. 72, 1031-1038 [1991]). It was shown in a variety of animal models that the resulting MVA was significantly avirulent (Mayr, A. & Danner, K. [1978] Dev. Biol. Stand. 41: 225-34). Additionally, this MVA strain has been tested in clinical trials as a vaccine to immunize against the human smallpox disease (Mayr et al., Zbl. Bakt. Hyg. I, Abt. Org. B 167, 375-390 [1987], Stickl et al., Dtsch. med. Wschr. 99, 2386-2392 [1974]). These studies involved over 120,000 humans, including high-risk patients, and proved that compared to vaccinia based vaccines, MVA had diminished virulence or infectiousness while it induced a good specific immune response. - In the following decades, MVA was engineered for use as a viral vector for recombinant gene expression or as a recombinant vaccine (Sutter, G. et al. [1994], Vaccine 12: 1032-40).
- In this respect, it is most astonishing that even though Mayr et al. demonstrated during the 1970s that MVA is highly attenuated and avirulent in humans and mammals, some recently reported observations (Blanchard et al., 1998, J Gen Virol 79, 1159-1167; Carroll & Moss, 1997, Virology 238, 198-211; Altenberger, U.S. Pat. No. 5,185,146; Ambrosini et al., 1999, J Neurosci Res 55(5), 569) have shown that MVA is not fully attenuated in mammalian and human cell lines since residual replication might occur in these cells. It is assumed that the results reported in these publications have been obtained with various known strains of MVA since the viruses used essentially differ in their properties, particularly in their growth behavior in various cell lines.
- Growth behavior is recognized as an indicator for virus attenuation. Generally, a virus strain is regarded as attenuated if it has lost its capacity or only has reduced capacity to reproductively replicate in host cells. The above-mentioned observation, that MVA is not completely replication incompetent in human and mammalian cells, brings into question the absolute safety of known MVA as a human vaccine or a vector for recombinant vaccines.
- Particularly for a vaccine, as well as for a recombinant vaccine, the balance between the efficacy and the safety of the vaccine vector virus is extremely important.
- Thus, an object of the invention is to provide novel virus strains having enhanced safety for the development of safer products, such as vaccines or pharmaceuticals. Moreover, a further object is to provide a means for improving an existing vaccination regimen.
- The invention inter alia comprises the following, alone or in combination:
- A method for inducing an immune response for treating a human patient comprising:
- (a) administering to the patient a priming inoculation of an effective amount of a MVA virus, wherein the MVA virus is characterized by reproductive replication in vitro in chicken embryo fibroblasts and by being non-replicative in vitro in human cell lines selected from the human keratinocyte cell line HaCaT, the human embryo kidney cell line 293, the human bone
osteosarcoma cell line 143B, and the human cervix adenocarcinoma cell line HeLa; and - (b) administering to the patient a boosting inoculation of an effective amount of a MVA virus, such a
- method wherein the MVA is MVA-BN as deposited at the European Collection of Cell Cultures (ECACC), Salisbury (UK) under number V00083008 or a derivative thereof, such a
- method wherein the MVA virus comprises a heterologous nucleic acid sequence, such a
- method wherein the heterologous nucleic acid sequence is selected from a sequence encoding at least one antigen, antigenic epitope, and/or a therapeutic compound, such a
- method wherein the antigen or antigenic epitope is derived from a virus selected from the family of Influenza virus, Flavivirus, Paramyxovirus, Hepatitis virus, Cytomegalovirus, Human immunodeficiency virus or from viruses causing hemorrhagic fever, such a
- method wherein the antigen or antigenic epitope comprises nef, such a
- method wherein an immune response is directed against HIV, such a
- method wherein the MVA virus is administered as a vaccine, such a
- method wherein the immune response is directed against an orthopox virus, selected from smallpox, such a
- method wherein the patient is immune compromised, such a
- method wherein the patient exhibits preexisting immunity to MVA, such a
- method wherein the MVA is administered by intravenous, intramuscular, and/or subcutaneous injection, such a
- method wherein the MVA prime/MVA boost inoculation regime induces at least the same level of immune response when compared to a DNA-prime/vaccinia virus boost inoculation regime, such a
- method wherein the MVA is administered at a dose of at least about 1×108 TCID50, such a
- method wherein the priming inoculation MVA is administered about 4 weeks prior to the boosting inoculation MVA, such a
- method for inducing an immune response for treating a mammal comprising:
- (a) administering to the mammal a priming inoculation of an effective amount of a MVA virus, wherein the MVA virus is characterized by reproductive replication in vitro in chicken embryo fibroblasts and by being non-replicative in vitro in human cell lines selected from the human keratinocyte cell line HaCaT, the human embryo kidney cell line 293, the human bone
osteosarcoma cell line 143B, and the human cervix adenocarcinoma cell line HeLa; and - (b) administering to the mammal a boosting inoculation of an effective amount of a MVA virus.
- A kit for treating a human patient comprising:
- (a) a MVA characterized by reproductive replication in vitro in chicken embryo fibroblasts and by being non-replicative in vitro in human cell lines selected from the human keratinocyte cell line HaCaT, the human embryo kidney cell line 293, the human bone
osteosarcoma cell line 143B, and the human cervix adenocarcinoma cell line HeLa; and - (b) instructions to administer the MVA in a priming inoculation and in a boosting inoculation, such a
- kit wherein the MVA is MVA-BN as deposited at the European Collection of Cell Cultures (ECACC), Salisbury (UK) under number V00083008 or a derivative thereof, such a
- kit wherein the MVA virus comprises a heterologous nucleic acid sequence, such a
- kit wherein the heterologous nucleic acid sequence is selected from a sequence encoding at least one antigen, antigenic epitope, and/or a therapeutic compound, such a
- kit wherein the antigen or antigenic epitope is derived from a virus selected from the family of Influenza virus, Flavivirus, Paramyxovirus, Hepatitis virus, Cytomegalovirus, Human immunodeficiency virus or from viruses causing hemorrhagic fever, such a
- kit wherein the MVA virus is administered as a vaccine, such a
- kit wherein the treatment is directed against an orthopox virus, selected from smallpox, such a
- kit wherein the treatment is directed to a patient who is immune compromised, such a
- kit wherein the MVA is administered by intravenous, intramuscular, and/or subcutaneous injection.
- To achieve the foregoing objectives, according to a preferred embodiment of the present invention, new vaccinia viruses are provided which are capable of reproductive replication in non-human cells and cell lines, especially in chicken embryo fibroblasts (CEF), but not capable of reproductive replication in a human cell line known to permit replication with known vaccinia strains.
- Known vaccinia strains reproductively replicate in at least some human cell lines, in particular the human keratinocyte cell line HaCaT (Boukamp et al. 1988, J Cell Biol 106(3): 761-71). Replication in the HaCaT cell line is predictive for replication in vivo, in particular for in vivo replication in humans. It is demonstrated in the example section that all known vaccinia strains tested that show a residual reproductive replication in HaCaT also replicate in vivo. Thus, the invention preferably relates to vaccinia viruses that do not reproductively replicate in the human cell line HaCaT. Most preferably, the invention concerns vaccinia virus strains that are not capable of reproductive replication in any of the following human cell lines: human cervix adenocarcinoma cell line HeLa (ATCC No. CCL-2), human embryo kidney cell line 293 (ECACC No. 85120602), human bone
osteosarcoma cell line 143B (ECACC No. 91112502) and the HaCaT cell line. - The growth behaviour or amplification/replication of a virus is normally expressed by the ratio of virus produced from an infected cell (Output) to the amount originally used to infect the cell in the first place (Input) (“amplification ratio). A ratio of “1” between Output and Input defines an amplification status wherein the amount of virus produced from the infected cells is the same as the amount initially used to infect the cells. This ratio is understood to mean that the infected cells are permissive for virus infection and virus reproduction.
- An amplification ratio of less than 1, i.e., a decrease of the amplification below input level, indicates a lack of reproductive replication and thus, attenuation of the virus. Therefore, it was of particular interest for the inventors to identify and isolate a strain that exhibits an amplification ratio of less than 1 in several human cell lines, in particular all of the
human cell lines 143B, HeLa, 293, and HaCaT. - Thus, the term “not capable of reproductive replication” means that the virus of the present invention exhibits an amplification ratio of less than 1 in human cell lines, such as 293 (ECACC No. 85120602), 143B (ECACC No. 91112502), HeLa (ATCC No. CCL-2) and HaCaT (Boukamp et al. 1988, J Cell Biol 106(3): 761-71) under the conditions outlined in Example 1 of the present specification. Preferably, the amplification ratio of the virus of the invention is 0.8 or less in each of the above human cell lines, i.e., HeLa, HaCaT, and 143B.
- Viruses of the invention are demonstrated in Example 1 and Table 1 not to reproductively replicate in
cell lines 143B, HeLa and HaCaT. The particular strain of the invention that has been used in the examples was deposited on Aug. 30, 2000 at the European Collection of Cell Cultures (ECACC) under number V00083008. This strain is referred to as “MVA-BN” throughout the Specification. It has already been noted that the known MVA strains show residual replication in at least one of the human cell lines tested (FIG. 1 , Example 1). All known vaccinia strains show at least some replication in the cell line HaCaT, whereas the MVA strains of the invention, in particular MVA-BN, do not reproductively replicate in HaCaT cells. In particular, MVA-BN exhibits an amplification ratio of 0.05 to 0.2 in the human embryo kidney cell line 293 (ECACC No. 85120602). In the human boneosteosarcoma cell line 143B (ECACC No. 91112502), the ratio is in the range of 0.0 to 0.6. For the human cervix adenocarcinoma cell line HeLa (ATCC No. CCL-2) and the human keratinocyte cell line HaCaT (Boukamp et al. 1988, J Cell Biol 106(3): 761-71), the amplification ratio is in the range of 0.04 to 0.8 and of 0.02 to 0.8, respectively. MVA-BN has an amplification ratio of 0.01 to 0.06 in African green monkey kidney cells (CV1: ATCC No. CCL-70). Thus, MVA-BN, which is a representative strain of the invention, does not reproductively replicate in any of the human cell lines tested. - The amplification ratio of MVA-BN is clearly above 1 in chicken embryo fibroblasts (CEF: primary cultures). As outlined above, a ratio of more than “1” indicates reproductive replication since the amount of virus produced from the infected cells is increased compared to the amount of virus that was used to infect the cells. Therefore, the virus can be easily propagated and amplified in CEF primary cultures with a ratio above 500.
- In a particular embodiment of the present invention, the invention concerns derivatives of the virus as deposited under ECACC V0083008. “Derivatives” of the viruses as deposited under ECACC V00083008 refer to viruses exhibiting essentially the same replication characteristics as the deposited strain but exhibiting differences in one or more parts of its genome. Viruses having the same “replication characteristics” as the deposited virus are viruses that replicate with similar amplification ratios as the deposited strain in CEF cells and the cell lines HeLa, HaCaT and 143B; and that show a similar replication in vivo, as determined in the AGR129 transgenic mouse model (see below).
- In a further preferred embodiment, the vaccinia virus strains of the invention, in particular MVA-BN and its derivatives, are characterized by a failure to replicate in vivo. In the context of the present invention, “failure to replicate in vivo” refers to viruses that do not replicate in humans and in the mouse model described below. The “failure to replicate in vivo” can be preferably determined in mice that are incapable of producing mature B and T cells. An example of such mice is the transgenic mouse model AGR129 (obtained from Mark Sutter, Institute of Virology, University of Zurich, Zurich, Switzerland). This mouse strain has targeted gene disruptions in the IFN receptor type I (IFN-α/β) and type II (IFN-γ) genes, and in RAG. Due to these disruptions, the mice have no IFN system and are incapable of producing mature B and T cells, and as such, are severely immune-compromised and highly susceptible to a replicating virus. In addition to the AGR129 mice, any other mouse strain can be used that is incapable of producing mature B and T cells, and as such, is severely immune-compromised and highly susceptible to a replicating virus. In particular, the viruses of the present invention do not kill AGR129 mice within a time period of at least 45 days, more preferably within at least 60 days, and most preferably within 90 days post infection of the mice with 107 pfu virus administered via intra-peritoneal injection. Preferably, the viruses that exhibit “failure to replicate in vivo” are further characterized in that no virus can be recovered from organs or tissues of the
AGR129 mice 45 days, preferably 60 days, and most preferably 90 days after infection of the mice with 107 pfu virus administered via intra-peritoneal injection. Detailed information regarding the infection assays using AGR129 mice and the assays used to determine whether virus can be recovered from organs and tissues of infected mice can be found in the example section. - In a further preferred embodiment, the vaccinia virus strains of the invention, in particular MVA-BN and its derivatives, are characterized as inducing a higher specific immune response compared to the strain MVA-575, as determined in a lethal challenge mouse model. Details of this experiment are outlined in Example 2, shown below. Briefly, in such a model unvaccinated mice die after infection with replication competent vaccinia strains such as the Western Reserve strain L929 TK+ or IHD-J. Infection with replication competent vaccinia viruses is referred to as “challenge” in the context of description of the lethal challenge model. Four days after the challenge, the mice are usually killed and the viral titre in the ovaries is determined by standard plaque assays using VERO cells (for more details see example section). The viral titre is determined for unvaccinated mice and for mice vaccinated with vaccina viruses of the present invention. More specifically, the viruses of the present invention are characterized in that, in this test after the vaccination with 102 TCID50/ml of virus of the present invention, the ovarian virus titres are reduced by at least 70%, preferably by at least 80%, and more preferably by at least 90%, compared to unvaccinated mice.
- In a further preferred embodiment, the vaccinia viruses of the present invention, in particular MVA-BN and its derivatives, are useful for immunization with prime/boost administration of the vaccine. There have been numerous reports suggesting that prime/boost regimes using a known MVA as a delivery vector induce poor immune responses and are inferior to DNA-prime/MVA-boost regimes (Schneider et al., 1998, Nat. Med. 4; 397-402). In all of those studies the MVA strains that have been used are different from the vaccinia viruses of the present invention. To explain the poor immune response if MVA was used for prime and boost administration it has been hypothesized that antibodies generated to MVA during the prime-administration neutralize the MVA administered in the second immunization, thereby preventing an effective boost of the immune response. In contrast, DNA-prime/MVA-boost regimes are reported to be superior at generating high avidity responses because this regime combines the ability of DNA to effectively prime the immune response with the properties of MVA to boost the response in the absence of a pre-existing immunity to MVA. Clearly, if a pre-existing immunity to MVA and/or vaccinia prevents boosting of the immune response, then the use of MVA as a vaccine or therapeutic would have limited efficacy, particularly in the individuals that have been previously vaccinated against smallpox. However, according to a further embodiment, the vaccinia virus of the present invention, in particular MVA-BN and its derivatives, as well as corresponding recombinant viruses harboring heterologous sequences, can be used to efficiently first prime and then boost immune responses in naive animals, as well as animals with a pre-existing immunity to poxviruses. Thus, the vaccinia virus of the present invention induces at least substantially the same level of immunity in vaccinia virus prime/vaccinia virus boost regimes compared to DNA-prime/vaccinia virus boost regimes. The term “animal” as used in the present description is intended to also include human beings. Thus, the virus of the present invention is also useful for prime/boost regimes in human beings. If the virus is a non-recombinant virus such as MVA-BN or a derivative thereof, the virus may be used as a smallpox vaccine in humans, wherein the same virus can be used in both the priming and boosting vaccination. If the virus is a recombinant virus such as MVA-BN or a derivative thereof that encodes a heterologous antigen, the virus may be used in humans as a vaccine against the agent from which the heterologous antigen is derived, wherein the same virus can be used in both the priming and boosting vaccination.
- A vaccinia virus is regarded as inducing at least substantially the same level of immunity in vaccinia virus prime/vaccinia virus boost regimes if, when compared to DNA-prime/vaccinia virus boost regimes, the CTL response, as measured in one of the following two assays (“
assay 1” and “assay 2”), preferably in both assays, is at least substantially the same in vaccinia virus prime/vaccinia virus boost regimes when compared to DNA-prime/vaccinia virus boost regimes. More preferably, the CTL response after vaccinia virus prime/vaccinia virus boost administration is higher in at least one of the assays, when compared to DNA-prime/vaccinia virus boost regimes. Most preferably, the CTL response is higher in both of the following assays. - Assay 1:
- For vaccinia virus prime/vaccinia virus boost administrations, 6-8 week old BALB/c (H-2d) mice are prime-immunized by intravenous administration with 107 TCID50 vaccinia virus of the invention expressing the murine polytope as described in Thomson et al., 1998, J. Immunol. 160, 1717 and then boost-immunized with the same amount of the same virus, administered in the same manner three weeks later. To this end, it is necessary to construct a recombinant vaccinia virus expressing the polytope. Methods to construct such recombinant viruses are known to a person skilled in the art and are described in more detail below. In DNA prime/vaccinia virus boost regimes the prime vaccination is done by intra muscular injection of the mice with 50 μg DNA expressing the same antigen as the vaccinia virus. The boost administration with the vaccinia virus is done in exactly the same way as for the vaccinia virus prime/vaccinia virus boost administration. The DNA plasmid expressing the polytope is also described in the publication referenced above, i.e., Thomson, et al. In both regimes, the development of a CTL response against the epitopes SYI, RPQ and/or YPH is determined two weeks after the boost administration. The determination of the CTL response is preferably done using the ELISPOT analysis as described by Schneider, et al., 1998, Nat. Med. 4, 397-402, and as outlined in the examples section below for a specific virus of the invention. The virus of the invention is characterized in this experiment in that the CTL immune response against the epitopes mentioned above, which is induced by the vaccinia virus prime/vaccinia virus boost administration, is substantially the same, preferably at least the same, as that induced by DNA prime/vaccinia virus boost administration, as assessed by the number of IFN-γ producing cells/106 spleen cells (see also experimental section).
- Assay 2:
- This assay basically corresponds to
assay 1. However, instead of using 107 TCID50 vaccinia virus administered i.v., as inAssay 1; inAssay - The strength of a CTL response as measured in one of the assays shown above corresponds to the level of protection.
- Thus, the viruses of the present invention are particularly suitable for vaccination purposes.
- In summary, a representative vaccinia virus of the present invention is characterized by having at least one of the following properties:
-
- (i) capability of reproductive replication in chicken embryo fibroblasts (CEF), but no capability of reproductive replication in a human cell line known to permit replication with known vaccinia strains,
- (ii) failure to replicate in vivo in those animals, including humans, in which the virus is used as a vaccine or active ingredient of a pharmaceutical composition,
- (iii) induction of a higher specific immune response compared to a known vaccinia strain and/or
- (iv) induction of at least substantially the same level of a specific immune response in vaccinia virus prime/vaccinia virus boost regimes when compared to DNA-prime/vaccinia virus boost regimes.
- Preferably, the vaccinia virus of the present invention has at least two of the above properties, and more preferably at least three of the above properties. Most preferred are vaccinia viruses having all of the above properties.
- Representative vaccinia virus strains are MVA-575 deposited on Dec. 7, 2000 at the European Collection of Animal Cell Cultures (ECACC) with the deposition number V00120707; and MVA-BN, deposited on Aug. 30, 2000, at ECACC with the deposition number V000083008, and derivatives thereof, in particular if it is intended to vaccinate/treat humans. MVA-BN and its derivatives are most preferred for humans.
- In a further embodiment, the invention concerns a kit for vaccination comprising a virus of the present invention for the first vaccination (“priming”) in a first vial/container and for a second vaccination (“boosting”) in a second vial/container. The virus may be a non-recombinant vaccinia virus, i.e., a vaccinia virus that does not contain heterologous nucleotide sequences. An example of such a vaccinia virus is MVA-BN and its derivatives. Alternatively, the virus may be a recombinant vaccinia virus that contains additional nucleotide sequences that are heterologous to the vaccinia virus. As outlined in other sections of the description, the heterologous sequences may code for epitopes that induce a response by the immune system. Thus, it is possible to use the recombinant vaccinia virus to vaccinate against the proteins or agents comprising the epitope. The viruses may be formulated as shown below in more detail. The amount of virus that may be used for each vaccination has been defined above.
- A process to obtain a virus of the instant invention may comprise the following steps:
-
- (i) introducing a vaccinia virus strain, for example MVA-574 or MVA-575 (ECACC V00120707) into non-human cells in which the virus is able to reproductively replicate, wherein the non-human cells are preferably selected from CEF cells,
- (ii) isolating/enriching virus particles from these cells and
- (iii) analyzing whether the obtained virus has at least one of the desired biological properties as previously defined above,
wherein the above steps can optionally be repeated until a virus with the desired replication characteristics is obtained. The invention further relates to the viruses obtained by the method of the instant invention. Methods for determining the expression of the desired biological properties are explained in other parts of this description.
- In applying this method, a strain of the present invention may be identified and isolated which corresponds to the strain with the accession number ECACC V0083008, mentioned above.
- The growth behavior of the vaccinia viruses of the present invention, in particular the growth behavior of MVA-BN, indicates that the strains of the present invention are far superior to any other characterized MVA isolates in terms of attenuation in human cell lines and failure to replicate in vivo. The strains of the present invention are therefore ideal candidates for the development of safer products such as vaccines or pharmaceuticals, as described below.
- In one further embodiment, the virus of the present invention, in particular MVA-BN and its derivatives, is used as a vaccine against human poxvirus diseases, such as smallpox.
- In a further embodiment, the virus of the present invention may be recombinant, i.e., may express heterologous genes as, e.g., antigens or epitopes heterologous to the virus, and may thus be useful as a vaccine to induce an immune response against heterologous antigens or epitopes.
- The term “immune response” means the reaction of the immune system when a foreign substance or microorganism enters the organism. By definition, the immune response is divided into a specific and an unspecific reaction although both are closely related. The unspecific immune response is the immediate defence against a wide variety of foreign substances and infectious agents. The specific immune response is the defence raised after a lag phase, when the organism is challenged with a substance for the first time. The specific immune response is highly efficient and is responsible for the fact that an individual who recovers from a specific infection is protected against this specific infection. Thus, a second infection with the same or a very similar infectious agent causes much milder symptoms or no symptoms at all, since there is already a “pre-existing immunity” to this agent. Such immunity and immunological memory persist for a long time, in some cases even lifelong. Accordingly, the induction of an immunological memory can be used for vaccination.
- The “immune system” means a complex organ involved in the defence of the organism against foreign substances and microorganisms. The immune system comprises a cellular component, comprising several cell types, such as, e.g., lymphocytes and other cells derived from white blood cells, and a humoral component, comprising small peptides and complement factors.
- “Vaccination” means that an organism is challenged with an infectious agent, e.g., an attenuated or inactivated form of the infectious agent, to induce a specific immunity. The term vaccination also covers the challenge of an organism with recombinant vaccinia viruses of the present invention, in particular recombinant MVA-BN and its derivatives, expressing antigens or epitopes that are heterologous to the virus. Examples of such epitopes are provided elsewhere in the description and include e.g., epitopes from proteins derived from other viruses, such as the Dengue virus, Hepatitis C virus, HIV, or epitopes derived from proteins that are associated with the development of tumors and cancer. Following administration of the recombinant vaccinia virus, the epitopes are expressed and presented to the immune system. A specific immune response against these epitopes may be induced. The organism, thus, is immunized against the agent/protein containing the epitope that is encoded by the recombinant vaccinia virus.
- “Immunity” means partial or complete protection of an organism against diseases caused by an infectious agent due to a successful elimination of a preceding infection with the infectious agent or a characteristic part thereof. Immunity is based on the existence, induction, and activation of specialized cells of the immune system.
- As indicated above, in one embodiment of the invention the recombinant viruses of the present invention, in particular recombinant MVA-BN and its derivatives, contain at least one heterologous nucleic acid sequence. The term “heterologous” is used hereinafter for any combination of nucleic acid sequences that is not normally found intimately associated with the virus in nature; such virus is also called a “recombinant virus”.
- According to a further embodiment of the present invention, the heterologous sequences are preferably antigenic epitopes that are selected from any non-vaccinia source. Most preferably, the recombinant virus expresses one or more antigenic epitopes from: Plasmodium falciparum, mycobacteria, influenza virus, viruses of the family of flaviviruses, paramyxoviruses, hepatitis viruses, human immunodeficiency viruses, or from viruses causing hemorrhagic fever, such as hantaviruses or filoviruses, i.e., ebola or marburg virus.
- According to still a further embodiment, but also in addition to the above-mentioned selection of antigenic epitopes, the heterologous sequences can be selected from another poxyiral or a vaccinia source. These viral sequences can be used to modify the host spectrum or the immunogenicity of the virus.
- In a further embodiment the virus of the present invention may code for a heterologous gene/nucleic acid expressing a therapeutic compound. A “therapeutic compound” encoded by the heterologous nucleic acid in the virus can be, e.g., a therapeutic nucleic acid, such as an antisense nucleic acid or a peptide or protein with desired biological activity.
- According to a further preferred embodiment, the expression of a heterologous nucleic acid sequence is preferably, but not exclusively, under the transcriptional control of a poxvirus promoter, more preferably of a vaccinia virus promoter.
- According to still a further embodiment, the heterologous nucleic acid sequence is preferably inserted into a non-essential region of the virus genome. In another preferred embodiment of the invention, the heterologous nucleic acid sequence is inserted at a naturally occurring deletion site of the MVA genome as disclosed in PCT/EP96/02926. Methods for inserting heterologous sequences into the poxyiral genome are known to a person skilled in the art.
- According to yet another preferred embodiment, the invention also includes the genome of the virus, its recombinants, or functional parts thereof. Such viral sequences can be used to identify or isolate the virus or its recombinants, e.g., by using PCR, hybridization technologies, or by establishing ELISA assays. Furthermore, such viral sequences can be expressed from an expression vector to produce the encoded protein or peptide that then may supplement deletion mutants of a virus that lacks the viral sequence contained in the expression vector.
- “Functional part” of the viral genome means a part of the complete genomic sequence that encodes a physical entity, such as a protein, protein domain, or an epitope of a protein. Functional part of the viral genome also describes parts of the complete genomic sequence that code for regulatory elements or parts of such elements with individualized activity, such as promoter, enhancer, cis- or trans-acting elements.
- The recombinant virus of the present invention may be used for the introduction of a heterologous nucleic acid sequence into a target cell, the sequence being either homologous or heterologous to the target cell. The introduction of a heterologous nucleic acid sequence into a target cell may be used to produce in vitro heterologous peptides or polypeptides, and/or complete viruses encoded by the sequence. This method comprises the infection of a host cell with the recombinant MVA; cultivation of the infected host cell under suitable conditions; and isolation and/or enrichment of the peptide, protein and/or virus produced by the host cell.
- Furthermore, the method for introduction of a homologous or heterologous sequence into cells may be applied for in vitro and preferably in vivo therapy. For in vitro therapy, isolated cells that have been previously (ex vivo) infected with the virus are administered to a living animal body for inducing an immune response. For in vivo therapy, the virus or its recombinants are directly administered to a living animal body to induce an immune response. In this case, the cells surrounding the site of inoculation are directly infected in vivo by the virus, or its recombinants, of the present invention.
- Since the virus of the invention is highly growth restricted in human and monkey cells and thus, highly attenuated, it is ideal to treat a wide range of mammals, including humans. Hence, the present invention also provides a pharmaceutical composition and a vaccine, e.g., for inducing an immune response in a living animal body, including a human. The virus of the invention is also safe in any other gene therapy protocol.
- The pharmaceutical composition may generally include one or more pharmaceutical acceptable and/or approved carriers, additives, antibiotics, preservatives, adjuvants, diluents and/or stabilizers. Such auxiliary substances can be water, saline, glycerol, ethanol, wetting or emulsifying agents, pH buffering substances, or the like. Suitable carriers are typically large, slowly metabolized molecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates, or the like.
- For the preparation of vaccines, the virus or a recombinant of the present invention, is converted into a physiologically acceptable form. This can be done based on experience in the preparation of poxvirus vaccines used for vaccination against smallpox (as described by Stickl, H. et al. [1974] Dtsch. med. Wschr. 99, 2386-2392). For example, the purified virus is stored at −80° C. with a titre of 5×108 TCID50/ml formulated in about 10 mM Tris, 140 mM NaCl, pH 7.4. For the preparation of vaccine shots, e.g., 102-108 particles of the virus are lyophilized in 100 ml of phosphate-buffered saline (PBS) in the presence of 2% peptone and 1% human albumin in an ampoule, preferably a glass ampoule. Alternatively, the vaccine shots can be produced by stepwise, freeze-drying of the virus in a formulation. This formulation can contain additional additives such as mannitol, dextran, sugar, glycine, lactose, polyvinylpyrrolidone, or other additives, such as antioxidants or inert gas, stabilizers or recombinant proteins (e.g. human serum albumin) suitable for in vivo administration. The glass ampoule is then sealed and can be stored between 4° C. and room temperature for several months. However, as long as no need exists the ampoule is stored preferably at temperatures below −20° C.
- For vaccination or therapy, the lyophilisate can be dissolved in 0.1 to 0.5 ml of an aqueous solution, preferably physiological saline or Tris buffer, and administered either systemically or locally, i.e., by parenteral, intramuscular, or any other path of administration know to a skilled practitioner. The mode of administration, dose, and number of administrations can be optimized by those skilled in the art in a known manner.
- Additionally according to a further embodiment, the virus of the present invention is particularly useful to induce immune responses in immune-compromised animals, e.g., monkeys (CD4<400/μl of blood) infected with SIV, or immune-compromised humans. The term “immune-compromised” describes the status of the immune system of an individual that exhibits only incomplete immune responses or has a reduced efficiency in the defence against infectious agents. Even more interesting and according to still a further embodiment, the virus of the present invention can boost immune responses in immune-compromised animals or humans even in the presence of a pre-existing immunity to poxvirus in these animals or humans. Of particular interest, the virus of the present invention can also boost immune responses in animals or humans receiving an antiviral, e.g., antiretroviral therapy. “Antiviral therapy” includes therapeutic concepts in order to eliminate or suppress viral infection including, e.g., (i) the administration of nucleotide analogs, (ii) the administration of inhibitors for viral enzymatic activity or viral assembling, or (iii) the administration of cytokines to influence immune responses of the host.
- According to still a further embodiment, the vaccine is especially, but not exclusively, applicable in the veterinary field, e.g., immunization against animal pox infection. In small animals, the immunizing inoculation is preferably administered by nasal or parenteral administration, whereas in larger animals or humans, a subcutaneous, oral, or intramuscular inoculation is preferred.
- The inventors have found that a vaccine shot containing an effective dose of only 102 TCID50 (tissue culture infectious dose) of the virus of the present invention is sufficient to induce complete immunity against a wild type vaccinia virus challenge in mice. This is particularly surprising since such a high degree of attenuation of the virus of the present invention would be expected to negatively influence and thereby, reduce its immunogenicity. Such expectation is based on the understanding that for induction of an immune response, the antigenic epitopes must be presented to the immune system in sufficient quantity. A virus that is highly attenuated and thus, not replicating, can only present a very small amount of antigenic epitopes, i.e., as much as the virus itself incorporates. The amount of antigen carried by viral particles is not considered to be sufficient for induction of a potent immune response. However, the virus of the invention stimulates, even with a very low effective dose of only 102 TCID50, a potent and protective immune response in a mouse/vaccinia challenge model. Thus, the virus of the present invention exhibits an unexpected and increased induction of specific immunity compared to other characterized MVA strains. This makes the virus of the present invention and any vaccine derived thereof, especially useful for application in immune-compromised animals or humans.
- According to still another embodiment of the invention, the virus is used as an adjuvant. An “adjuvant” in the context of the present description refers to an enhancer of the specific immune response in vaccines. “Using the virus as adjuvant” means including the virus in a pre-existing vaccine to additionally stimulate the immune system of the patient who receives the vaccine. The immunizing effect of an antigenic epitope in most vaccines is often enhanced by the addition of a so-called adjuvant. An adjuvant co-stimulates the immune system by causing a stronger specific immune reaction against an antigenic epitope of a vaccine. This stimulation can be regulated by factors of the unspecific immune system, such as interferon and interleukin. Hence, in a further embodiment of the invention, the virus is used in mammals, including humans, to activate, support, or suppress the immune system, and preferably to activate the immune response against any antigenic determinant. The virus may also be used to support the immune system in a situation of increased susceptibility to infection, such as in the case of stress.
- The virus used as an adjuvant may be a non-recombinant virus, i.e., a virus that does not contain heterologous DNA in its genome. An example of this type of virus is MVA-BN. Alternatively, the virus used as an adjuvant is a recombinant virus containing in its genome heterologous DNA sequences that are not naturally present in the viral genome. For use as an adjuvant, the recombinant viral DNA preferably contains and expresses genes that code for immune stimulatory peptides or proteins such as interleukins.
- According to a further embodiment, it is preferred that the virus is inactivated when used as an adjuvant or added to another vaccine. The inactivation of the virus may be performed by e.g., heat or chemicals, as known in the art. Preferably, the virus is inactivated by β-propriolacton. According to this embodiment of the invention, the inactivated virus may be added to vaccines against numerous infectious or proliferative diseases to increase the immune response of the patient to this disease.
-
FIG. 1 : Growth kinetics of different strains of MVA in different cell lines. In 1A, the results are grouped according to the MVA strains tested; whereas in 1B, the results are grouped according to the cell lines tested. In 1B, the amount of virus recovered from a cell line after four days (D4) of culture was determined by plaque assay and expressed as the ratio of virus recovered after 4 days to the initial inoculum on day 1 (D1). -
FIG. 2 : Protection provided against a lethal challenge of vaccinia following vaccinations with either MVA-BN or MVA-575. The protection is measured by the reduction in ovarian titres determined 4 days post challenge by standard plaque assay. -
FIG. 3 : Induction of CTL and protection provided against an influenza challenge using different prime/boost regimes. - 3A: Induction of CTL responses to 4 different H-2d restricted epitopes following vaccination with different combinations of DNA or MVA-BN vaccines encoding a murine polytope. BALB/c mice (5 per group) were vaccinated with either DNA (intramuscular) or MVA-BN (subcutaneous) and received booster immunizations three weeks later. CTL responses to 4 different epitopes encoded by the vaccines (TYQ, infuenza; SYI, P. berghei; YPH, cytomegalovirus; RPQ, LCV) were determined using an
ELISPOT assay 2 weeks post booster immunizations. - 3B: Induction of CTL responses to 4 different epitopes following vaccination with different combinations of DNA or MVA-BN vaccines encoding a murine polytope. BALB/c mice (5 per group) were vaccinated with either DNA (intramuscular) or MVA-BN (intraveneous) and received booster immunizations three weeks later. CTL responses to 4 different epitopes encoded by the vaccines (TYQ, influenza; SYI, P. berghei; YPH, cytomegalovirus; RPQ, LCV) were determined using an
ELISPOT assay 2 weeks post booster immunizations. - 3C: Frequency of peptide and MVA specific T cells following homologous prime/boost using an optimal dose (1×108 TCID50) of recombinant MVA-BN, administered subcutaneous. Groups of 8 mice were vaccinated with two shots of the combinations as indicated in the figure. Two weeks after the final vaccination, peptide-specific splenocytes were enumerated using an IFN-gamma ELISPOT assay. The bars represent the mean number of specific spots plus/minus the standard deviation from the mean.
-
FIG. 4 : Induction of antibodies to MVA following vaccination of mice with different smallpox vaccines. The levels of antibodies generated to MVA following vaccination with MVA-BN (week 0 and 4), was compared to conventional vaccinia strains, Elstree and Wyeth, given via tail scarification (week 0), MVA-572 (week 0 and 4), and MVA-BN and MVA-572 given as a pre-Elstree vaccine. MVA-572 has been deposited at the European Collection of Animal Cell Cultures as ECACC V94012707. The titres were determined using a capture ELISA and calculated by linear regression using the linear part of the graph and defined as the dilution that resulted in an optical density of 0.3. *MVA-BN:MVA-BN is significantly (p>0.05) different to MVA-572:MVA-572. - The following examples further illustrate the present invention. It should be understood by a person skilled in the art that the examples may not be interpreted in any way to limit the applicability of the technology provided by the present invention to specific application in these examples.
- To characterize a newly isolated strain of the present invention (further referred to as MVA-BN) the growth kinetics of the new strain were compared to those of known MVA strains that have already been characterized.
- The experiment compared the growth kinetics of the following viruses in the subsequently listed primary cells and cell lines:
-
- MVA-BN (
Virus stock # 23, 18. 02. 99 crude, titered at 2.0×107 TCID50/ml); - MVA as characterized by Altenburger (U.S. Pat. No. 5,185,146) and further referred to as MVA-HLR;
- MVA (passage 575) as characterized by Anton Mayr (Mayr, A., et al. [1975]
Infection 3; 6-14) and further referred to as MVA-575 (ECACC V00120707); and - MVA-Vero as characterized in the International Patent Application PCT/EP01/02703 (WO 01/68820); Virus stock,
passage 49, #20, 22.03.99 crude, titered at 4.2×107 TCID50/ml.
- MVA-BN (
- The primary cells and cell lines used were:
-
- CEF Chicken embryo fibroblasts (freshly prepared from SPF eggs);
- HeLa Human cervix adenocarcinoma (epithelial), ATCC No. CCL-2;
- 143B Human bone osteosarcoma TK-, ECACC No. 91112502;
- HaCaT Human keratinocyte cell line, Boukamp et al. 1988, J Cell Biol 106(3): 761-771;
- BHK Baby hamster kidney, ECACC 85011433;
- Vero African green monkey kidney fibroblasts, ECACC 85020299;
- CV1 African green monkey kidney fibroblasts, ECACC 87032605.
- For infection the cells were seeded onto 6-well-plates at a concentration of 5×105 cells/well and incubated overnight at 37° C., 5% CO2 in DMEM (Gibco, Cat. No. 61965-026) with 2% FCS. The cell culture medium was removed and cells were infected at approximately moi 0.05 for one hour at 37° C., 5% CO2 (for infection it is assumed that cell numbers doubled over night). The amount of virus used for each infection was 5×104 TCID50 and is referred to as Input. The cells were then washed 3 times with DMEM and finally 1 ml DMEM, 2% FCS was added and the plates were left to incubate for 96 hours (4 days) at 37° C., 5% CO2. The infections were stopped by freezing the plates at −80° C.; followed by titration analysis.
- Titration Analysis (Immunostaining with a Vaccinia Virus Specific Antibody)
- For titration of amount of virus test cells (CEF) were seeded on 96-well-plates in RPMI (Gibco, Cat. No. 61870-010), 7% FCS, 1% Antibiotic/Antimycotic (Gibco, Cat. No. 15240-062) at a concentration of 1×104 cells/well and incubated over night at 37° C., 5% CO2. The 6-well-plates containing the infection experiments were frozen/thawed 3 times and dilutions of 10−1 to 10−12 were prepared using RPMI growth medium. Virus dilutions were distributed onto test cells and incubated for five days at 37° C., 5% CO2 to allow CPE (cytopathic effect) development. Test cells were fixed (Acetone/Methanol 1:1) for 10 min, washed with PBS and incubated with polyclonal vaccinia virus specific antibody (Quartett Berlin, Cat. No. 9503-2057) at a 1:1000 dilution in incubation buffer for one hour at RT. After washing twice with PBS (Gibco, Cat. No. 20012-019) the HRP-coupled anti-rabbit antibody (Promega Mannheim, Cat. No. W4011) was added at a 1:1000 dilution in incubation buffer (PBS containing 3% FCS) for one hour at RT. Cells were again washed twice with PBS and incubated with staining solution (10 ml PBS+200 μl saturated solution of o-dianisidine in 100% ethanol+15 μl H2O2 freshly prepared) until brown spots were visible (two hours). Staining solution was removed and PBS was added to stop the staining reaction. Every well exhibiting a brown spot was marked as positive for CPE and the titre was calculated using the formula of Kaerber (TCID50 based assay) (Kaerber, G. 1931. Arch. Exp. Pathol. Pharmakol. 162, 480).
- The viruses were used to infect duplicate sets of cells that were expected to be permissive for MVA (i.e., CEF and BHK) and cells expected to be non-permissive for MVA (i.e., CV-1, Vero, HeLa, 143B and HaCaT). The cells were infected at a low multiplicity of infection, i.e., 0.05 infectious units per cell (5×104 TCID50). The virus inoculum was removed and the cells were washed three times to remove any remaining unabsorbed viruses. Infections were left for a total of 4 days when viral extracts were prepared and then titered on CEF cells. Table 1 and
FIG. 1 show the results of the titration assays where values are given as total amount of virus produced after 4 days infection. - It was demonstrated that all viruses amplified well in CEF cells as expected, since this is a permissive cell line for all MVAs. Additionally, it was demonstrated that all viruses amplified well in BHK (Hamster kidney cell line). MVA-Vero performed the best, since BHK is a permissive cell line for this strain.
- Concerning replication in Vero cells (Monkey kidney cell line), MVA-Vero amplified well, as expected, i.e., 1000 fold above Input. MVA-HLR and also MVA-575 amplified well with a 33-fold and 10-fold increase above Input, respectively. Only MVA-BN was found to not amplify as well in these cells when compared to the other strains, i.e., only a 2-fold increase above Input.
- Also concerning replication in CV1 cells (Monkey kidney cell line), it was found that MVA-BN is highly attenuated in this cell line. It exhibited a
- 200-fold decrease below Input. MVA-575 did not amplify above the Input level and also exhibited a slight negative amplification, i.e., 16-fold decrease below Input. MVA-HLR amplified the best with a 30-fold increase above Input, followed by MVA-Vero with 5-fold increase above Input.
- It is most interesting to compare the growth kinetics of the various viruses in human cell lines. Regarding reproductive replication in 143B cells (human bone cancer cell line) it was demonstrated that MVA-Vero was the only strain to show amplification above Input (3-fold increase). All other viruses did not amplify above Input, however there was a big difference between the MVA-HLR and both MVA-BN and MVA-575. MVA-HLR was “borderline” (1-fold decrease below Input), whereas MVA-BN exhibited the greatest attenuation (300-fold decrease below Input), followed by MVA-575 (59-fold decrease below Input). To summarize, MVA-BN is superior with respect to attenuation in human 143B cells.
- Furthermore, concerning replication in HeLa cells (human cervix cancer cells) it was demonstrated that MVA-HLR amplified well in this cell line, and even better than it did in the permissive BHK cells (HeLa=125-fold increase above Input; BHK=88-fold increase above Input) MVA-Vero also amplified in this cell line (27-fold increase above Input). However, MVA-BN, and also to a lesser extent MVA-575, were attenuated in these cell lines (MVA-BN=29-fold decrease below Input and MVA-575=6-fold decrease below Input).
- Concerning the replication in HaCaT cells (human keratinocyte cell line), it was demonstrated that MVA-HLR amplified well in this cell line (55-fold increase above Input). Both MVA-Vero adapted and MVA-575 exhibited amplification in this cell line (1.2 and 1.1-fold increase above Input, respectively). However, MVA-BN was the only one to demonstrate attenuation (5-fold decrease below Input).
- From this experimental analysis, we may conclude that MVA-BN is the most attenuated strain in this group of viruses. MVA-BN demonstrates extreme attenuation in human cell lines by exhibiting an amplification ratio of 0.05 to 0.2 in human embryo kidney cells (293: ECACC No. 85120602) (data not incorporated in Table 1). Furthermore, it exhibits an amplification ratio of about 0.0 in 143B cells; an amplification ratio of about 0.04 in HeLa cells; and an amplification ratio of about 0.22 in HaCaT cells. Additionally, MVA-BN exhibits an amplification ratio of about 0.0 in CV1 cells. Amplification in Vero cells can be observed (ratio of 2.33), however, not to the same extent as in permissive cell lines such as BHK and CEF (compare to Table 1). Thus, MVA-BN is the only MVA strain exhibiting an amplification ratio of less than 1 in each human cell line examined, i.e., 143B, Hela, HaCaT, and 293.
- MVA-575 exhibits a profile similar to that of MVA-BN, however it is not as attenuated as MVA-BN.
- MVA-HLR amplified well in all (human or otherwise) cell lines tested, except for 143B cells. Thus, it can be regarded as replication competent in all cell lines tested, with the exception of 143B cells. In one case, it even amplified better in a human cell line (HeLa) than in a permissive cell line (BHK).
- MVA-Vero does exhibit amplification in all cell lines, but to a lesser extent than demonstrated by MVA-HLR (ignoring the 143B result). Nevertheless, it cannot be considered as being in the same “class” with regards to attenuation, as MVA-BN or MVA-575.
- Given that some MVA strains clearly replicate in vitro, different MVA strains were examined with regard to their ability to replicate in vivo using a transgenic mouse model AGR129. This mouse strain has targeted gene disruptions in the IFN receptor type I (IFN-α/β) and type II (IFN-γ) genes, and in RAG. Due to these disruptions, the mice have no IFN system and are incapable of producing mature B and T cells and, as such, are severely immune-compromised and highly susceptible to a replicating virus. Groups of six mice were immunized (i.p) with 107 pfu of either MVA-BN, MVA-HLR or MVA-572 (used in 120,000 people in Germany) and monitored daily for clinical signs. All mice vaccinated with MVA-HLR or MVA-572 died within 28 and 60 days, respectively. At necropsy, there were general signs of severe viral infection in the majority of organs. A standard plaque assay measured the recovery of MVA (108 pfu) from the ovaries. In contrast, mice vaccinated with the same dose of MVA-BN (corresponding to the deposited strain ECACC V00083008) survived for more than 90 days and no MVA could be recovered from organs or tissues.
- When taken together, data from the in vitro and in vivo studies clearly demonstrate that MVA-BN is more highly attenuated than the parental and commercial MVA-HLR strain, and may be safe for administration to immune-compromised subjects.
- These experiments were designed to compare different dose and vaccination regimens of MVA-BN compared to other MVAs in animal model systems.
- 2.1. Different Strains of MVA Differ in their Ability to Stimulate the Immune Response.
- Replication competent strains of vaccinia induce potent immune responses in mice and at high doses are lethal. Although MVA are highly attenuated and have a reduced ability to replicate on mammalian cells, there are differences in the attenuation between different strains of MVA. Indeed, MVA-BN appears to be more attenuated than other MVA strains, even the parental strain MVA-575. To determine whether this difference in attenuation affects the efficacy of MVA to induce protective immune responses, different doses of MVA-BN and MVA-575 were compared in a lethal vaccinia challenge model. The levels of protection were measured by a reduction in ovarian vaccinia titres determined 4 days post challenge, as this allowed a quantitative assessment of different doses and strains of MVA.
- Specific pathogen-free 6-8-week-old female BALB/c (H-2d mice (n=5) were immunized (i.p.) with different doses (102, 104 or 106 TCID50/ml) of either MVA-BN or MVA-575. MVA-BN and MVA-575 had been propagated on CEF cells, and had been sucrose purified and formulated in Tris pH 7.4. Three weeks later the mice received a boost of the same dose and strain of MVA, which was followed two weeks later by a lethal challenge (i.p.) with a replication competent strain of vaccinia. As replication competent vaccinia virus (abbreviated as “rVV”) either the strain WR-L929 TK+ or the strain IHD-J were used. Control mice received a placebo vaccine. The protection was measured by the reduction in ovarian titres determined 4 days post challenge by standard plaque assay. For this, the mice were sacrificed on
day 4 post the challenge and the ovaries were removed, homogenized in PBS (1 ml) and viral titres determined by standard plaque assay using VERO cells (Thomson, et al., 1998, J. Immunol. 160: 1717). - Mice vaccinated with two immunizations of either 104 or 106 TCID50/ml of MVA-BN or MVA-575 were completely protected as judged by a 100% reduction in
ovarian rVV titres 4 days post challenge (FIG. 2 ). The challenge virus was cleared. However, differences in the levels of protection afforded by MVA-BN or MVA-575 were observed at lower doses. Mice that received two immunizations of 102 TCID50/ml of MVA-575 failed to be protected, as judged by high ovarian rVV titres (mean 3.7×107 pfu+/−2.11×107). In contrast, mice vaccinated with the same dose of MVA-BN exhibited a significant reduction (96%) in ovarian rVV titres (mean 0.21×107 pfu+/−0.287×107). The control mice that received a placebo vaccine had a mean viral titre of 5.11×107 pfu (+/−3.59×107) (FIG. 2 ). - Both strains of MVA induce protective immune responses in mice against a lethal rVV challenge. Although both strains of MVA are equally efficient at higher doses, differences in their efficacy are clearly evident at sub-optimal doses. MVA-BN is more potent than its parent strain MVA-575 at inducing a protective immune response against a lethal rVV challenge, which may be related to the increased attenuation of MVA-BN compared to MVA-575.
- 2.2.1.: Induction of Antibodies to MVA Following Vaccination of Mice with Different Smallpox Vaccines
- The efficacy of MVA-BN was compared to other MVA and vaccinia strains previously used in the eradication of smallpox. These included single immunizations using the Elstree and Wyeth vaccinia strains produced in CEF cells and given via tail scarification, and immunizations using MVA-572 that was previously used in the smallpox eradication program in Germany. In addition, both MVA-BN and MVA-572 were compared as a pre-vaccine followed by Elstree via scarification. For each group eight BALB/c mice were used and all MVA vaccinations (1×107 TCID50) were given subcutaneous at
week 0 andweek 3. Two weeks following the boost immunization the mice were challenged with vaccinia (IHD-J) and the titres in the ovaries were determined 4 days post challenge. All vaccines and regimes induced 100% protection. - The immune responses induced using these different vaccines or regimes were measured in animals prior to challenge. Assays to measure levels of neutralizing antibodies, T cell proliferation, cytokine production (IFN-γ vs IL-4) and IFN-γ production by T cells were used. The level of the T cell responses induced by MVA-BN, as measured by ELISPOT, was generally equivalent to other MVA and vaccinia viruses demonstrating bio-equivalence. A weekly analysis of the antibody titres to MVA following the different vaccination regimes revealed that vaccinations with MVA-BN significantly enhanced the speed and magnitude of the antibody response compared to the other vaccination regimes (
FIG. 4 ). Indeed, the antibody titres to MVA were significantly higher (p>0.05) atweeks week 4, the antibody titres were also significantly higher in the MVA-BN group compared to the mice receiving a single vaccination of either the vaccinia strains Elstree or Wyeth. These results clearly demonstrate that 2 vaccinations with MVA-BN induced a superior antibody response compared to the classical single vaccination with traditional vaccinia strains (Elstree and Wyeth) and confirm the findings from section 1.5 that MVA-BN induces a higher specific immunity than other MVA strains. - The efficacy of MVA prime/boost regimes to generate high avidity CTL responses was assessed and compared to DNA prime/MVA boost regimes that have been reported to be superior. The different regimes were assessed using a murine polytope construct encoded by either a DNA vector or MVA-BN and the levels of CTL induction were compared by ELISPOT; whereas the avidity of the response was measured as the degree of protection afforded following a challenge with influenza.
- The DNA plasmid encoding the murine polytope (10 CTL epitopes including influenza, ovalbumin) was described previously (Thomson, et al., 1998, J. Immunol. 160: 1717). This murine polytope was inserted into deletion site II of MVA-BN, propagated on CEF cells, sucrose purified and formulated in Tris pH 7.4.
- In the current study, specific pathogen free 6-8 week old female BALB/c (H-2d) mice were used. Groups of 5 mice were used for ELISPOT analysis, whereas 6 mice per group were used for the influenza challenge experiments. Mice were vaccinated with different prime/boost regimes using MVA or DNA encoding the murine polytope, as detailed in the results. For immunizations with DNA, mice were given a single injection of 50 μg of endotoxin-free plasmid DNA (in 50 μl of PBS) in the quadricep muscle. Primary immunizations using MVA were done either by intravenous administration of 107 pfu MVA-BN per mouse, or by subcutaneous administration of 107 pfu or 108 pfu MVA-BN per mouse. Boost immunizations were given three weeks post primary immunization. Boosting with plasmid DNA was done in the same way as the primary immunization with DNA (see above). In order to establish CTL responses, standard ELISPOT assays (Schneider et al., 1998, Nat. Med. 4; 397-402) were performed on
splenocytes 2 weeks after the last booster immunization using the influenza CTL epitope peptide (TYQ), the P. berghei epitope peptide (SYI), the Cytomegalovirus peptide epitope (YPH) and/or the LCV peptide epitope (RPQ). - For the challenge experiments, mice were infected i.n. with a sub-lethal dose of influenza virus, Mem71 (4.5×105 pfu in 50 ml PBS). At
day 5 post-infection, the lungs were removed and viral titres were determined in duplicate on Madin-Darby canine kidney cell line using a standard influenza plaque assay. - Using the DNA vaccine alone, the induction of CTL to the 4 H-2d epitopes encoded by the murine polytope was poor and only weak responses could be detected to two of the epitopes for P. Berghei (SYI) and lymphocytic choriomeningitis virus (RPQ). In contrast, using a DNA prime/MVA boost regime (107 pfu MVA-BN given subcutaneous) there were significantly more CTL induced to SLY (8-fold increase) and RPQ (3-fold increase) and responses were also observed to a third epitope for murine cytomegalovirus (YPH) (
FIG. 3A ). However, 107 pfu MVA-BN given subcutaneous in a homologous prime/boost regime induced the same level of response as DNA followed by MVA-BN (FIG. 3A ). Surprisingly, there was no significant difference in the numbers of CTLs induced to the three epitopes when one immunization of MVA-BN (107 TCID50) was used, indicating that a secondary immunization with MVA-BN did not significantly boost CTL responses. - The subcutaneous administration of 107 pfu MVA has previously been shown to be the most inefficient route and virus concentration for vaccination using other strains of MVA; particularly when compared to intravenous immunizations (Schneider, et al. 1998). In order to define optimal immunization regimes, the above protocol was repeated using various amounts of virus and modes of administration. In one experiment, 107 pfu MVA-BN was given intravenously (
FIG. 3B ). In another experiment, 108 pfu MVA-BN was administered subcutaneous (FIG. 3C ). In both of these experiments, MVA-BN prime/boost immunizations induced higher mean CTL numbers to all three CTL epitopes when compared to DNA prime/MVA boost regimes. Also unlike 107 pfu MVA-BN administered subcutaneous, immunization with 107 pfu MVA-BN given intravenously and immunization with 108 pfu given subcutaneous significantly boosted the CTL response. This clearly indicates that MVA-BN can be used to boost CTL responses in the presence of a pre-existing immunity to the vector. - The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description.
- All patents, applications, publications, test methods, literature, and other materials cited herein are hereby incorporated by reference.
-
TABLE 1 CEF HeLa HaCaT 143B BHK Vero CV-1 MVA- 579.73 0.04 0.22 0.00 65.88 2.33 0.00 BN MVA- 796.53 0.15 1.17 0.02 131.22 10.66 0.06 575 MVA- 86.68 124.97 59.09 0.83 87.86 34.97 29.70 HLR MVA- 251.89 27.41 1.28 2.91 702.77 1416.46 4.48 Vero
Virus amplification above the input level after 4 days infection -
Amplification ratio=output TCID50−input TCID50. - Values are in TCID50.
Claims (17)
1-25. (canceled)
26. A method for generating a modified vaccinia Ankara (MVA) virus comprising:
a) culturing an MVA virus;
b) isolating an MVA virus that reproductively replicates in chicken embryo fibroblast cells; and
c) selecting for an MVA virus that is unable to reproductively replicate in the human keratinocyte cell line HaCaT, in the human bone osteosarcoma cell line 143B, in the human cervix adenocarcinoma cell line HeLa, and in the human embryo kidney cell line 293.
27. The method of claim 26 , wherein the selected MVA virus is capable of a replication amplification ratio of greater than 500 in chicken embryo fibroblast cells.
28. The method of claim 26 , wherein the MVA virus cultured in step a) is MVA 572.
29. The method of claim 26 , wherein the MVA virus cultured in step a) is MVA 575.
30. The method of claim 26 , further comprising converting the selected MVA virus to a physiologically acceptable form.
31. The method of claim 27 , further comprising converting the selected MVA virus to a physiologically acceptable form.
32. The method of claim 28 , further comprising converting the selected MVA virus to a physiologically acceptable form.
33. The method of claim 29 , further comprising converting the selected MVA virus to a physiologically acceptable form.
34. A modified vaccinia Ankara (MVA) virus prepared by:
a) culturing an MVA virus;
b) isolating an MVA virus that reproductively replicates in chicken embryo fibroblast cells; and
c) selecting for an MVA virus that is unable to reproductively replicate in the human keratinocyte cell line HaCaT, in the human bone osteosarcoma cell line 143B, in the human cervix adenocarcinoma cell line HeLa, and in the human embryo kidney cell line 293.
35. The MVA virus of claim 34 , wherein the selected MVA virus is capable of a replication amplification ratio of greater than 500 in chicken embryo fibroblast cells.
36. The MVA virus of claim 34 , wherein the MVA virus cultured in step a) is MVA 572.
37. The MVA virus of claim 34 , wherein the MVA virus cultured in step a) is MVA 575.
38. The MVA virus of claim 34 , in a physiologically acceptable form.
39. The MVA virus of claim 35 , in a physiologically acceptable form.
40. The MVA virus of claim 36 , in a physiologically acceptable form.
41. The MVA virus of claim 37 , in a physiologically acceptable form.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/588,217 US20120328650A1 (en) | 2000-11-23 | 2012-08-17 | Modified vaccinia ankara virus variant |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200001764 | 2000-11-23 | ||
DKPA200001764 | 2000-11-23 | ||
PCT/EP2001/013628 WO2002042480A2 (en) | 2000-11-23 | 2001-11-22 | Modified vaccinia ankara virus variant |
US10/440,073 US7189536B2 (en) | 2000-11-23 | 2003-05-16 | Modified vaccinia ankara virus variant |
US11/198,557 US7384644B2 (en) | 2000-11-23 | 2005-08-05 | Modified Vaccinia Ankara virus variant |
US11/977,808 US7923017B2 (en) | 2000-11-23 | 2007-10-26 | Modified Vaccinia Ankara virus variant |
US12/471,144 US7939086B2 (en) | 2000-11-23 | 2009-05-22 | Modified Vaccinia Ankara virus variant |
US13/053,361 US8268325B2 (en) | 2000-11-23 | 2011-03-22 | Modified Vaccinia Ankara virus variant |
US13/588,217 US20120328650A1 (en) | 2000-11-23 | 2012-08-17 | Modified vaccinia ankara virus variant |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/053,361 Continuation US8268325B2 (en) | 2000-11-23 | 2011-03-22 | Modified Vaccinia Ankara virus variant |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120328650A1 true US20120328650A1 (en) | 2012-12-27 |
Family
ID=8159864
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/440,073 Expired - Lifetime US7189536B2 (en) | 2000-11-23 | 2003-05-16 | Modified vaccinia ankara virus variant |
US10/439,953 Expired - Lifetime US6761893B2 (en) | 2000-11-23 | 2003-05-16 | Modified vaccinia ankara virus variant |
US10/439,439 Expired - Lifetime US6913752B2 (en) | 2000-11-23 | 2003-05-16 | Modified Vaccinia Ankara virus variant |
US11/198,557 Expired - Lifetime US7384644B2 (en) | 2000-11-23 | 2005-08-05 | Modified Vaccinia Ankara virus variant |
US11/508,797 Expired - Lifetime US7335364B2 (en) | 2000-11-23 | 2006-08-23 | Modified Vaccinia Ankara virus variant |
US11/977,808 Expired - Fee Related US7923017B2 (en) | 2000-11-23 | 2007-10-26 | Modified Vaccinia Ankara virus variant |
US11/999,127 Expired - Lifetime US7459270B2 (en) | 2000-11-23 | 2007-12-04 | Modified Vaccinia Ankara virus variant |
US12/471,144 Expired - Lifetime US7939086B2 (en) | 2000-11-23 | 2009-05-22 | Modified Vaccinia Ankara virus variant |
US13/053,450 Expired - Fee Related US8268329B2 (en) | 2000-11-23 | 2011-03-22 | Modified Vaccinia ankara virus variant |
US13/053,361 Expired - Fee Related US8268325B2 (en) | 2000-11-23 | 2011-03-22 | Modified Vaccinia Ankara virus variant |
US13/588,217 Abandoned US20120328650A1 (en) | 2000-11-23 | 2012-08-17 | Modified vaccinia ankara virus variant |
Family Applications Before (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/440,073 Expired - Lifetime US7189536B2 (en) | 2000-11-23 | 2003-05-16 | Modified vaccinia ankara virus variant |
US10/439,953 Expired - Lifetime US6761893B2 (en) | 2000-11-23 | 2003-05-16 | Modified vaccinia ankara virus variant |
US10/439,439 Expired - Lifetime US6913752B2 (en) | 2000-11-23 | 2003-05-16 | Modified Vaccinia Ankara virus variant |
US11/198,557 Expired - Lifetime US7384644B2 (en) | 2000-11-23 | 2005-08-05 | Modified Vaccinia Ankara virus variant |
US11/508,797 Expired - Lifetime US7335364B2 (en) | 2000-11-23 | 2006-08-23 | Modified Vaccinia Ankara virus variant |
US11/977,808 Expired - Fee Related US7923017B2 (en) | 2000-11-23 | 2007-10-26 | Modified Vaccinia Ankara virus variant |
US11/999,127 Expired - Lifetime US7459270B2 (en) | 2000-11-23 | 2007-12-04 | Modified Vaccinia Ankara virus variant |
US12/471,144 Expired - Lifetime US7939086B2 (en) | 2000-11-23 | 2009-05-22 | Modified Vaccinia Ankara virus variant |
US13/053,450 Expired - Fee Related US8268329B2 (en) | 2000-11-23 | 2011-03-22 | Modified Vaccinia ankara virus variant |
US13/053,361 Expired - Fee Related US8268325B2 (en) | 2000-11-23 | 2011-03-22 | Modified Vaccinia Ankara virus variant |
Country Status (30)
Country | Link |
---|---|
US (11) | US7189536B2 (en) |
EP (4) | EP1598425A1 (en) |
JP (1) | JP4421188B2 (en) |
KR (3) | KR100830295B1 (en) |
CN (2) | CN101676389A (en) |
AT (1) | ATE314483T2 (en) |
AU (2) | AU3163902A (en) |
BE (1) | BE2013C065I2 (en) |
BR (1) | BRPI0115533B8 (en) |
CA (1) | CA2421151C (en) |
CY (2) | CY1105594T1 (en) |
CZ (1) | CZ295808B6 (en) |
DE (2) | DE20122302U1 (en) |
DK (1) | DK1335987T4 (en) |
EE (1) | EE05680B1 (en) |
ES (1) | ES2256323T5 (en) |
FR (1) | FR13C0070I2 (en) |
HK (1) | HK1059453A1 (en) |
HU (2) | HU230198B1 (en) |
IL (2) | IL154712A0 (en) |
LU (1) | LU92311I2 (en) |
MX (1) | MXPA03002513A (en) |
NO (1) | NO337867B1 (en) |
NZ (1) | NZ524661A (en) |
PL (1) | PL212047B1 (en) |
PT (1) | PT1335987E (en) |
RU (1) | RU2290438C2 (en) |
SI (1) | SI1335987T2 (en) |
UA (1) | UA76731C2 (en) |
WO (1) | WO2002042480A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160030551A1 (en) * | 2013-03-15 | 2016-02-04 | Bavarian Nordic A/S | Single high dose of mva induces a protective immune response in neonates and infants |
US9879281B2 (en) | 2014-10-16 | 2018-01-30 | Korea Centers for Disease Control and Prevention | Recombinant vaccinia virus derived from KVAC103 strain |
US9879232B2 (en) | 2014-10-16 | 2018-01-30 | Korea Centers for Disease Control and Prevention | Attenuated vaccinia virus KVAC103 strain |
Families Citing this family (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7628980B2 (en) | 2000-11-23 | 2009-12-08 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US7097842B2 (en) | 2000-11-23 | 2006-08-29 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
EP1598425A1 (en) * | 2000-11-23 | 2005-11-23 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant |
US7445924B2 (en) | 2000-11-23 | 2008-11-04 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant and cultivation method |
UA82466C2 (en) * | 2001-07-18 | 2008-04-25 | Бавариан Нордика А/С | Method for intensification of chordopoxvirus amplification |
CN102409063A (en) * | 2001-12-04 | 2012-04-11 | 巴法里安诺迪克有限公司 | Flavivirus ns1 subunit vaccine |
CN100540051C (en) | 2002-04-19 | 2009-09-16 | 巴法里安诺迪克有限公司 | Be used to inoculate the vaccinia ankara virus of neonatal improvement |
CA2481521C (en) | 2002-05-16 | 2012-04-17 | Bavarian Nordic A/S | Intergenic regions as insertion sites in the genome of modified vaccinia virus ankara (mva) |
WO2003097844A1 (en) * | 2002-05-16 | 2003-11-27 | Bavarian Nordic A/S | Expression of genes in modified vaccinia virus ankara by using the cowpox ati promoter |
US7501127B2 (en) | 2002-05-16 | 2009-03-10 | Bavarian Nordic A/S | Intergenic regions as novel sites for insertion of HIV DNA sequences in the genome of Modified Vaccinia virus Ankara |
CN1692156B (en) | 2002-09-05 | 2011-05-11 | 巴法里安诺迪克有限公司 | Method for the cultivation of primary cells and for the amplification of viruses under serum free conditions |
EP1845164B1 (en) * | 2003-11-24 | 2010-06-16 | Bavarian Nordic A/S | Promoters for expression in modified vaccinia virus ankara |
ES2357772T3 (en) * | 2004-06-14 | 2011-04-29 | Ishihara Sangyo Kaisha, Ltd. | LIOFILIZED COMPOSITION OF INACTIVATED VIRAL WRAPPING WITH MEMBRANE FUSION ACTIVITY. |
CN1295339C (en) * | 2005-01-11 | 2007-01-17 | 武汉大学 | Attenuated vaccinia virus Tiantan strain vector and its preparation and application |
UA100836C2 (en) | 2005-02-23 | 2013-02-11 | Бавариан Нордик А/С | Normal;heading 1;heading 2;heading 3;USE OF A MODIFIED VACCINIA VIRUS ANKARA FOR THE RAPID INDUCTION OF IMMUNITY AGAINST A POXVIRUS OR OTHER INFECTIOUS AGENTS |
WO2006113927A2 (en) * | 2005-04-20 | 2006-10-26 | University Of Washington | Immunogenic vaccinia peptides and methods of using same |
KR100717279B1 (en) * | 2005-08-08 | 2007-05-15 | 삼성전자주식회사 | Mask rom device and method of formimg the same |
US7913477B2 (en) * | 2006-01-27 | 2011-03-29 | William Anthony Harper | Insert registration in packets |
EP1826264A1 (en) * | 2006-02-24 | 2007-08-29 | Deutsches Primatenzentrum GmbH | Primate model for orthopox virus infections |
EP1835031A1 (en) | 2006-03-14 | 2007-09-19 | Paul-Ehrlich-Institut Bundesamt für Sera und Impfstoffe | Use of a recombinant modified vaccinia virus Ankara (MVA) for the treatment of type I hypersensitivity in a living animal including humans |
RU2453335C2 (en) | 2006-06-20 | 2012-06-20 | Трансжене С.А. | Recombinant viral vaccine |
WO2007147528A1 (en) * | 2006-06-20 | 2007-12-27 | Transgene S.A. | Process for producing poxviruses and poxvirus compositions |
WO2008028665A1 (en) * | 2006-09-08 | 2008-03-13 | Bavarian Nordic A/S | Phenotypic and genotypic differences of mva strains |
WO2008045346A2 (en) * | 2006-10-06 | 2008-04-17 | Bn Immunotherapeutics Inc. | Recombinant modified vaccinia ankara encoding a her-2 antigen for use in treating cancer |
US8268327B2 (en) | 2007-04-27 | 2012-09-18 | Bavarian Nordic A/S | Immediate protection against pathogens via MVA |
US8003364B2 (en) | 2007-05-14 | 2011-08-23 | Bavarian Nordic A/S | Purification of vaccinia viruses using hydrophobic interaction chromatography |
WO2008138533A1 (en) | 2007-05-14 | 2008-11-20 | Bavarian Nordic A/S | Purification of vaccinia virus- and recombinant vaccinia virus-based vaccines |
RU2499606C2 (en) * | 2007-10-18 | 2013-11-27 | Бавэариан Нордик Инк. | Using mva (modified vaccinia ankara) for treating prostate cancer |
KR100970449B1 (en) * | 2007-12-21 | 2010-07-16 | (주)이지아이 | Safety rubber plate for children playground and construction method its |
US20110052627A1 (en) * | 2008-06-20 | 2011-03-03 | Paul Chaplin | Recombinant modified vaccinia virus measles vaccine |
WO2010084100A1 (en) | 2009-01-20 | 2010-07-29 | Transgene Sa | Soluble icam-1 as biomarker for prediction of therapeutic response |
US8613936B2 (en) | 2009-03-13 | 2013-12-24 | Bavarian Nordic A/S | Replication deficient recombinant viruses expressing antigens regulated by transcriptional control elements comprising multiple elements |
US8394385B2 (en) | 2009-03-13 | 2013-03-12 | Bavarian Nordic A/S | Optimized early-late promoter combined with repeated vaccination favors cytotoxic T cell response against recombinant antigen in MVA vaccines |
AU2010227611B2 (en) | 2009-03-24 | 2014-05-29 | Transgene Sa | Biomarker for monitoring patients |
US20120058493A1 (en) | 2009-04-17 | 2012-03-08 | Bruce Acres | Biomarker for monitoring patients |
MX337287B (en) | 2009-07-10 | 2016-02-22 | Transgene Sa | Biomarker for selecting patients and related methods. |
WO2011042180A1 (en) | 2009-10-08 | 2011-04-14 | Bavarian Nordic A/S | Generation of a broad t-cell response in humans against hiv |
WO2011063359A1 (en) * | 2009-11-20 | 2011-05-26 | Inviragen, Inc. | Compositions, methods and uses for poxvirus elements in vaccine constructs |
EP2529010B1 (en) | 2010-01-28 | 2017-04-19 | Bavarian Nordic A/S | Vaccinia virus mutants containing the major genomic deletions of mva |
ES2625406T3 (en) | 2010-03-25 | 2017-07-19 | Oregon Health & Science University | CMV glycoproteins and recombinant vectors |
CA2802430C (en) | 2010-07-20 | 2021-07-20 | Bavarian Nordic A/S | Method for harvesting poxvirus |
WO2012018856A2 (en) * | 2010-08-02 | 2012-02-09 | Virxsys Corporation | Hiv vaccine therapy with concomitant antiviral monotherapy |
AU2011316164B2 (en) * | 2010-10-15 | 2016-01-14 | Bavarian Nordic A/S | Recombinant modified vaccinia virus Ankara (MVA) influenza vaccine |
WO2012170765A2 (en) | 2011-06-10 | 2012-12-13 | Oregon Health & Science University | Cmv glycoproteins and recombinant vectors |
CA2841831C (en) * | 2011-08-05 | 2019-12-31 | John Bell | Methods and compositions for production of vaccinia virus |
EP2568289A3 (en) | 2011-09-12 | 2013-04-03 | International AIDS Vaccine Initiative | Immunoselection of recombinant vesicular stomatitis virus expressing hiv-1 proteins by broadly neutralizing antibodies |
US9402894B2 (en) | 2011-10-27 | 2016-08-02 | International Aids Vaccine Initiative | Viral particles derived from an enveloped virus |
EP2788021B1 (en) | 2011-12-09 | 2017-01-18 | Bavarian Nordic A/S | Poxvirus vector for the expression of bacterial antigens linked to tetanus toxin fragment c |
EP2620446A1 (en) | 2012-01-27 | 2013-07-31 | Laboratorios Del Dr. Esteve, S.A. | Immunogens for HIV vaccination |
EP2864487B1 (en) | 2012-06-22 | 2018-12-05 | Bavarian Nordic A/S | Poxviral vectors for low antibody response after a first priming immunization |
EP2679596B1 (en) | 2012-06-27 | 2017-04-12 | International Aids Vaccine Initiative | HIV-1 env glycoprotein variant |
SG11201500171YA (en) | 2012-07-10 | 2015-02-27 | Transgene Sa | Mycobacterial antigen vaccine |
WO2014009433A1 (en) | 2012-07-10 | 2014-01-16 | Transgene Sa | Mycobacterium resuscitation promoting factor for use as adjuvant |
MX362511B (en) | 2012-08-01 | 2019-01-22 | Bavarian Nordic As | Recombinant modified vaccinia virus ankara (mva) respiratory syncytial virus (rsv) vaccine. |
EP2892549A1 (en) | 2012-09-04 | 2015-07-15 | Bavarian Nordic A/S | Methods and compositions for enhancing vaccine immune responses |
WO2014043535A1 (en) | 2012-09-14 | 2014-03-20 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Compositions for the treatment of cancer |
AU2013331328B2 (en) | 2012-10-19 | 2018-05-31 | Bavarian Nordic A/S | Methods and compositions for the treatment of cancer |
PT2912183T (en) | 2012-10-28 | 2020-06-05 | Bavarian Nordic As | Pr13.5 promoter for robust t-cell and antibody responses |
EP2848937A1 (en) | 2013-09-05 | 2015-03-18 | International Aids Vaccine Initiative | Methods of identifying novel HIV-1 immunogens |
US10058604B2 (en) | 2013-10-07 | 2018-08-28 | International Aids Vaccine Initiative | Soluble HIV-1 envelope glycoprotein trimers |
US10035832B2 (en) | 2013-10-23 | 2018-07-31 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | HLA-A24 agonist epitopes of MUC1-C oncoprotein and compositions and methods of use |
WO2015077717A1 (en) | 2013-11-25 | 2015-05-28 | The Broad Institute Inc. | Compositions and methods for diagnosing, evaluating and treating cancer by means of the dna methylation status |
EA039037B1 (en) | 2013-11-28 | 2021-11-24 | Бавариан Нордик А/С | Recombinant poxvirus for enhancing innate immune response in a vertebrate and use thereof |
US11725237B2 (en) | 2013-12-05 | 2023-08-15 | The Broad Institute Inc. | Polymorphic gene typing and somatic change detection using sequencing data |
KR20160101073A (en) | 2013-12-20 | 2016-08-24 | 더 브로드 인스티튜트, 인코퍼레이티드 | Combination therapy with neoantigen vaccine |
KR20160130216A (en) | 2014-01-09 | 2016-11-10 | 트랜스진 에스아이 | Fusion of heterooligomeric mycobacterial antigens |
JP2017515841A (en) | 2014-05-13 | 2017-06-15 | バヴァリアン・ノルディック・アクティーゼルスカブ | Combination therapy for cancer treatment using poxvirus expressing tumor antigen and monoclonal antibody against TIM-3 |
BR112016028816A8 (en) | 2014-06-13 | 2021-07-20 | Glaxosmithkline Biologicals Sa | immunogenic combination, method of obtaining a specific immune response, use of an immunogenic combination, and, vaccination regimen for the prevention, reduction or treatment of respiratory syncytial virus infection |
KR20190062617A (en) | 2014-09-03 | 2019-06-05 | 버베리안 노딕 에이/에스 | Methods and compositions for enhancing immune responses |
EP3188753B1 (en) | 2014-09-03 | 2019-12-18 | Bavarian Nordic A/S | Methods and compositions for inducing protective immunity against filovirus infection |
SG11201702110RA (en) | 2014-09-26 | 2017-04-27 | Beth Israel Deaconess Medical Ct Inc | Methods and compositions for inducing protective immunity against human immunodeficiency virus infection |
RS58080B1 (en) | 2014-11-04 | 2019-02-28 | Janssen Vaccines & Prevention Bv | Therapeutic hpv16 vaccines |
US10975442B2 (en) | 2014-12-19 | 2021-04-13 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
US10993997B2 (en) | 2014-12-19 | 2021-05-04 | The Broad Institute, Inc. | Methods for profiling the t cell repertoire |
EP4122492A1 (en) | 2015-02-25 | 2023-01-25 | Memorial Sloan Kettering Cancer Center | Use of inactivated nonreplicating modified vaccinia virus ankara (mva)as monoimmunotherapy or in combination with immune checkpoint blocking agents for solid tumors |
EP3069730A3 (en) | 2015-03-20 | 2017-03-15 | International Aids Vaccine Initiative | Soluble hiv-1 envelope glycoprotein trimers |
EP3072901A1 (en) | 2015-03-23 | 2016-09-28 | International Aids Vaccine Initiative | Soluble hiv-1 envelope glycoprotein trimers |
CN116173193A (en) | 2015-04-17 | 2023-05-30 | 纪念斯隆凯特琳癌症中心 | Use of MVA or MVA delta E3L as immunotherapeutic agent against solid tumors |
IL294183B2 (en) | 2015-05-20 | 2023-10-01 | Dana Farber Cancer Inst Inc | Shared neoantigens |
TW202241500A (en) | 2015-06-09 | 2022-11-01 | 美商博德研究所有限公司 | Formulations for neoplasia vaccines and methods of preparing thereof |
WO2016202828A1 (en) * | 2015-06-15 | 2016-12-22 | Bavarian Nordic A/S | Recombinant modified vaccinia virus ankara (mva) foot and mouth disease virus (fmdv) vaccine |
US9925258B2 (en) | 2015-10-02 | 2018-03-27 | International Aids Vaccine Initiative | Replication-competent VSV-HIV Env vaccines |
FR3042121A1 (en) | 2015-10-08 | 2017-04-14 | Jean-Marc Limacher | ANTI-TUMOR COMPOSITION |
CN106591361A (en) * | 2015-10-20 | 2017-04-26 | 钱文斌 | Recombinant pox oncolytic virus, and construction method and application thereof |
TWI707039B (en) | 2015-12-15 | 2020-10-11 | 荷蘭商傑森疫苗防護公司 | Human immunodeficiency virus antigens, vectors, compositions, and methods of use thereof |
PL3407910T3 (en) | 2016-01-29 | 2022-08-16 | Bavarian Nordic A/S | Recombinant modified vaccinia virus ankara (mva) equine encephalitis virus vaccine |
SG11201807022XA (en) | 2016-02-25 | 2018-09-27 | Memorial Sloan Kettering Cancer Center | Recombinant mva or mvadele3l expressing human flt3l and use thereof as immuno-therapeutic agents against solid tumors |
CN109152815B (en) | 2016-02-25 | 2022-10-18 | 纪念斯隆凯特琳癌症中心 | Replication-competent attenuated vaccinia virus with thymidine kinase deletion and with or without human FLT3L or GM-CSF expression for cancer immunotherapy |
WO2017180770A1 (en) | 2016-04-13 | 2017-10-19 | Synthetic Genomics, Inc. | Recombinant arterivirus replicon systems and uses thereof |
US20190346442A1 (en) | 2016-04-18 | 2019-11-14 | The Broad Institute, Inc. | Improved hla epitope prediction |
SG11201808809PA (en) * | 2016-05-02 | 2018-11-29 | Janssen Vaccine & Prevention B V | Therapeutic hpv vaccine combinations |
KR102389489B1 (en) | 2016-06-16 | 2022-04-22 | 얀센 백신스 앤드 프리벤션 비.브이. | HIV Vaccine Formulations |
EP3484507A1 (en) | 2016-07-15 | 2019-05-22 | Janssen Vaccines & Prevention B.V. | Methods and compositions for inducing protective immunity against a marburg virus infection |
CA3035759A1 (en) | 2016-09-02 | 2018-03-08 | Janssen Vaccines & Prevention B.V. | Methods for inducing an immune response against human immunodeficiency virus infection in subjects undergoing antiretroviral treatment |
WO2018050747A1 (en) | 2016-09-15 | 2018-03-22 | Janssen Vaccines & Prevention B.V. | Trimer stabilizing hiv envelope protein mutations |
US11052139B2 (en) | 2016-09-28 | 2021-07-06 | Bavarian Nordic A/S | Compositions and methods for enhancing the stability of transgenes in poxviruses |
CA3040264A1 (en) | 2016-10-17 | 2018-04-26 | Synthetic Genomics, Inc. | Recombinant virus replicon systems and uses thereof |
WO2018085751A1 (en) | 2016-11-07 | 2018-05-11 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Development of agonist epitopes of the human papillomavirus |
US11845939B2 (en) | 2016-12-05 | 2023-12-19 | Janssen Pharmaceuticals, Inc. | Compositions and methods for enhancing gene expression |
US11549149B2 (en) | 2017-01-24 | 2023-01-10 | The Broad Institute, Inc. | Compositions and methods for detecting a mutant variant of a polynucleotide |
WO2018185732A1 (en) | 2017-04-06 | 2018-10-11 | Janssen Vaccines & Prevention B.V. | Mva-bn and ad26.zebov or ad26.filo prime-boost regimen |
WO2018209315A1 (en) | 2017-05-12 | 2018-11-15 | Memorial Sloan Kettering Cancer Center | Vaccinia virus mutants useful for cancer immunotherapy |
JP2020519666A (en) | 2017-05-15 | 2020-07-02 | ヤンセン ファッシンズ アンド プリベンション ベーフェーJanssen Vaccines & Prevention B.V. | Stable virus-containing composition |
AU2018270375A1 (en) | 2017-05-15 | 2019-10-31 | Bavarian Nordic A/S | Stable virus-containing composition |
WO2018229711A1 (en) | 2017-06-15 | 2018-12-20 | Janssen Vaccines & Prevention B.V. | Poxvirus vectors encoding hiv antigens, and methods of use thereof |
CN110891601A (en) | 2017-07-19 | 2020-03-17 | 扬森疫苗与预防公司 | Trimer-stable HIV envelope protein mutations |
US20190022212A1 (en) | 2017-07-21 | 2019-01-24 | Beth Israel Deaconess Medical Center, Inc. | Methods for safe induction of cross-clade immunity against human immunodeficiency virus infection in human |
CN111050790B (en) | 2017-08-24 | 2024-07-12 | 巴法里安诺迪克有限公司 | Combination therapy for the treatment of cancer by intravenous administration of recombinant MVA and antibodies |
US20190083620A1 (en) | 2017-09-18 | 2019-03-21 | Janssen Vaccines & Prevention B.V. | Methods for inducing an immune response against human immunodeficiency virus infection in subjects undergoing antiretroviral treatment |
US11021692B2 (en) | 2017-12-19 | 2021-06-01 | Janssen Sciences Ireland Unlimited Company | Hepatitis B virus (HBV) vaccines and uses thereof |
EA202091516A1 (en) | 2017-12-19 | 2020-11-03 | Янссен Сайенсиз Айрлэнд Анлимитед Компани | METHODS AND COMPOSITIONS FOR INDUCING IMMUNE RESPONSE AGAINST HEPATITIS B VIRUS (HBV) |
US11389531B2 (en) | 2017-12-19 | 2022-07-19 | Janssen Sciences Ireland Unlimited Company | Methods and apparatus for the delivery of hepatitis B virus (HBV) vaccines |
CN111741766A (en) | 2017-12-19 | 2020-10-02 | 杨森科学爱尔兰无限公司 | Methods and compositions for inducing an immune response against Hepatitis B Virus (HBV) |
AU2018392884B2 (en) | 2017-12-20 | 2021-11-11 | Glaxosmithkline Biologicals Sa | Epstein-Barr Virus antigen constructs |
CA3089024A1 (en) | 2018-01-19 | 2019-07-25 | Janssen Pharmaceuticals, Inc. | Induce and enhance immune responses using recombinant replicon systems |
US20220001001A1 (en) * | 2018-07-13 | 2022-01-06 | University Of Georgia Research Foundation | Broadly reactive immunogens of dengue virus, compositions, and methods of use thereof |
CA3111273C (en) | 2018-09-06 | 2024-03-26 | Bavarian Nordic A/S | Storage improved poxvirus compositions |
WO2020072700A1 (en) | 2018-10-02 | 2020-04-09 | Dana-Farber Cancer Institute, Inc. | Hla single allele lines |
AU2019354101A1 (en) | 2018-10-05 | 2021-04-15 | Bavarian Nordic A/S | Combination therapy for treating cancer with an intravenous administration of a recombinant mva and an immune checkpoint antagonist or agonist |
US20220009980A1 (en) | 2018-11-14 | 2022-01-13 | The United States Of America,As Represented By The Secretary,Department Of Health And Human Services | Tp5, a peptide inhibitor of aberrant and hyperactive cdk5/p25 as treatment for cancer |
SG11202104918PA (en) | 2018-11-20 | 2021-06-29 | Bavarian Nordic As | Therapy for treating cancer with an intratumoral and/or intravenous administration of a recombinant mva encoding 4-1bbl (cd137l) and/or cd40l |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
TWI852977B (en) | 2019-01-10 | 2024-08-21 | 美商健生生物科技公司 | Prostate neoantigens and their uses |
WO2020237052A1 (en) | 2019-05-22 | 2020-11-26 | Janssen Vaccines & Prevention B.V. | Methods for inducing an immune response against human immunodeficiency virus infection in subjects undergoing antiretroviral treatment |
EP3983012A1 (en) | 2019-06-11 | 2022-04-20 | GlaxoSmithKline Biologicals S.A. | Mucosal vaccine formulations |
BR112022009421A2 (en) | 2019-11-14 | 2022-10-25 | Aelix Therapeutics S L | DOSAGE SCHEMES FOR VACCINES |
CR20220220A (en) | 2019-11-18 | 2022-09-20 | Janssen Biotech Inc | Vaccines based on mutant calr and jak2 and their uses |
BR112022009798A2 (en) | 2019-11-20 | 2022-10-18 | Bavarian Nordic As | RECOMBINANT MVA VIRUS FOR INTRATUMORAL AND/OR INTRAVENOUS ADMINISTRATION FOR CANCER TREATMENT |
WO2021099572A1 (en) | 2019-11-20 | 2021-05-27 | Bavarian Nordic A/S | Medical uses of 4-1bbl adjuvanted recombinant modified vaccinia virus ankara (mva) |
US20230287067A1 (en) | 2020-01-21 | 2023-09-14 | The United States Of America,As Represented By The Secretary,Department Of Health And Human Services | Human immunogenic epitopes of hemo and hhla2 human endogenous retroviruses (hervs) |
WO2021150713A2 (en) | 2020-01-21 | 2021-07-29 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Human immunogenic epitopes of h, k, and e human endogenous retroviruses (hervs) |
WO2021180943A1 (en) | 2020-03-12 | 2021-09-16 | Bavarian Nordic A/S | Compositions improving poxvirus stability |
JP2023528984A (en) | 2020-06-10 | 2023-07-06 | バヴァリアン・ノルディック・アクティーゼルスカブ | Recombinant Modified Vaccinia Virus Ankara (MVA) Vaccine Against Coronavirus Disease |
EP3928789A1 (en) | 2020-06-24 | 2021-12-29 | Consejo Superior de Investigaciones Científicas (CSIC) | Mva-based vaccine against covid-19 expressing sars-cov-2 antigens |
WO2021260065A1 (en) | 2020-06-24 | 2021-12-30 | Consejo Superior De Investigaciones Científicas (Csic) | Mva-based vaccine against covid-19 expressing sars-cov-2 antigens |
KR20230050328A (en) | 2020-07-08 | 2023-04-14 | 얀센 사이언시즈 아일랜드 언리미티드 컴퍼니 | RNA replicon vaccine against HBV |
US20220118081A1 (en) | 2020-10-20 | 2022-04-21 | Janssen Vaccines & Prevention B.V. | HIV vaccine regimens |
EP4358999A1 (en) | 2021-06-23 | 2024-05-01 | Consejo Superior De Investigaciones Científicas | Mva-based vaccine expressing a prefusion-stabilized sars-cov-2 s protein |
EP4108257A1 (en) | 2021-06-23 | 2022-12-28 | Consejo Superior De Investigaciones Científicas | Mva-based vaccine against covid-19 expressing a prefusion-stabilized sars-cov-2 s protein |
MX2024002641A (en) | 2021-09-03 | 2024-05-10 | Bavarian Nordic As | Utilization of micro-rna for downregulation of cytotoxic transgene expression by modified vaccinia virus ankara (mva). |
AU2022422563A1 (en) | 2021-12-23 | 2024-07-04 | Bavarian Nordic A/S | Therapy for modulating immune response with recombinant mva encoding il-12 |
WO2023118508A1 (en) | 2021-12-23 | 2023-06-29 | Bavarian Nordic A/S | Recombinant mva viruses for intraperitoneal administration for treating cancer |
WO2023198815A1 (en) | 2022-04-14 | 2023-10-19 | Janssen Vaccines & Prevention B.V. | Sequential administration of adenoviruses |
WO2024003238A1 (en) | 2022-06-29 | 2024-01-04 | Bavarian Nordic A/S | Epstein-barr-virus vaccine |
WO2024003239A1 (en) | 2022-06-29 | 2024-01-04 | Bavarian Nordic A/S | RECOMBINANT MODIFIED saRNA (VRP) AND VACCINIA VIRUS ANKARA (MVA) PRIME-BOOST REGIMEN |
WO2024003346A1 (en) | 2022-06-30 | 2024-01-04 | Bavarian Nordic A/S | Mammalian cell line for the production of modified vaccinia virus ankara (mva) |
WO2024015892A1 (en) | 2022-07-13 | 2024-01-18 | The Broad Institute, Inc. | Hla-ii immunopeptidome methods and systems for antigen discovery |
EP4316514A1 (en) | 2022-08-03 | 2024-02-07 | Consejo Superior de Investigaciones Científicas (CSIC) | Mva-based vectors and their use as vaccine against sars-cov-2 |
WO2024188801A1 (en) | 2023-03-10 | 2024-09-19 | Bavarian Nordic A/S | Use of quail cell lines for poxvirus production |
WO2024188802A1 (en) | 2023-03-10 | 2024-09-19 | Bavarian Nordic A/S | Methods of isolating poxviruses from avian cell cultures |
WO2024188803A1 (en) | 2023-03-10 | 2024-09-19 | Bavarian Nordic A/S | Production of poxviruses from quail cell cultures |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6761893B2 (en) * | 2000-11-23 | 2004-07-13 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant |
US6924137B2 (en) * | 2001-07-18 | 2005-08-02 | Bavarian Nordic A/S | Method for virus propagation |
US7056723B2 (en) * | 2001-12-20 | 2006-06-06 | Bavarian Nordic A/S | Method for the recovery and purification of poxviruses from infected cells |
US7097842B2 (en) * | 2000-11-23 | 2006-08-29 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US7300658B2 (en) * | 2002-11-25 | 2007-11-27 | Bavarian Nordic A/S | Recombinant poxvirus comprising at least two compox ATI promoters |
US7338662B2 (en) * | 2002-05-16 | 2008-03-04 | Bavarian Nordic A/S | Recombinant poxvirus expressing homologous genes inserted into the foxviral genome |
US7628980B2 (en) * | 2000-11-23 | 2009-12-08 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US7695939B2 (en) * | 2002-09-05 | 2010-04-13 | Bavarian Nordic A/S | Method for the cultivation of primary cells and for the amplification of viruses under serum free conditions |
US7759116B2 (en) * | 2001-12-04 | 2010-07-20 | Bavarian Nordic A/S | MVA virus vector expressing dengue NS1 protein |
US7807146B2 (en) * | 2006-10-06 | 2010-10-05 | Bn Immunotherapeutics, Inc. | Methods for treating cancer with a recombinant MVA expressing HER-2 |
US7816508B2 (en) * | 2003-11-24 | 2010-10-19 | Bavarian Nordic A/S | Promoters for expression in modified vaccinia virus Ankara |
US7867483B2 (en) * | 2007-10-18 | 2011-01-11 | Bn Immunotherapeutics, Inc. | Use of MVA to treat prostate cancer |
US7897156B2 (en) * | 2001-11-22 | 2011-03-01 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US7964395B2 (en) * | 2000-11-23 | 2011-06-21 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant and cultivation method |
US8268327B2 (en) * | 2007-04-27 | 2012-09-18 | Bavarian Nordic A/S | Immediate protection against pathogens via MVA |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4072565A (en) * | 1974-11-04 | 1978-02-07 | The Dow Chemical Company | Production of viruses in tissue culture without use of serum |
US3914408A (en) * | 1973-10-12 | 1975-10-21 | Univ Nebraska | Vaccine for neonatal calf diarrhea |
DE2714665A1 (en) * | 1977-04-01 | 1978-10-05 | Mayr Anton | PREPARATION FOR TREATING HERPES ZOSTER AND OTHER HERPES INFECTIONS AND METHOD FOR THE PRODUCTION THEREOF |
US5155020A (en) * | 1989-03-08 | 1992-10-13 | Health Research Inc. | Recombinant poxvirus host range selection system |
US5338683A (en) | 1981-12-24 | 1994-08-16 | Health Research Incorporated | Vaccinia virus containing DNA sequences encoding herpesvirus glycoproteins |
GB8322414D0 (en) * | 1983-08-19 | 1983-09-21 | Szelke M | Renin inhibitors |
FR2603040B1 (en) | 1986-08-22 | 1990-01-26 | Transgene Sa | PROTEIN, DNA SEQUENCE, POXVIRUSES, CELLS AND THEIR CULTURE PROCESS, AS WELL AS THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM, USEFUL IN THE PREVENTION OF SCHISTOSOMOSIS |
AU613583B2 (en) | 1986-08-22 | 1991-08-08 | Transgene S.A. | Proteins and the method for preparing them, DNA sequences, antibodies and their application, poxviruses, transformed or infected cells, pharmaceutical compositions which are useful in the prevention of schistosomiasis and application by way of an agent possessing glutathione s-transferase activity |
DE3743298A1 (en) | 1987-12-19 | 1989-06-29 | Wilkinson Sword Gmbh | SHAVING APPARATUS AND METHOD FOR PRODUCING A LAYER OF LOW FRICTION RESISTANCE ON A SHAVING APPARATUS |
CA1341245C (en) | 1988-01-12 | 2001-06-05 | F. Hoffmann-La Roche Ag | Recombinant vaccinia virus mva |
US6248333B1 (en) * | 1990-04-04 | 2001-06-19 | Health Research Inc. | Isolated nucleic acid sequence of equine herpesvirus type 1 glycoprotein D (EHV-1 gD) |
JPH06500918A (en) | 1990-09-25 | 1994-01-27 | スミスクライン・ビーチャム・コーポレイション | Mammalian cell culture medium |
US5843456A (en) * | 1991-03-07 | 1998-12-01 | Virogenetics Corporation | Alvac poxvirus-rabies compositions and combination compositions and uses |
KR100242671B1 (en) * | 1991-03-07 | 2000-03-02 | 고돈 에릭 | Genetically engineered vaccine strain |
US5403582A (en) | 1993-01-21 | 1995-04-04 | Nippon Zeon Co., Ltd. | Vaccine comprising fowlpox virus recombinants expressing the envelope glycoprotein of an avian reticuloendotheliosis retrovirus |
US5405772A (en) | 1993-06-18 | 1995-04-11 | Amgen Inc. | Medium for long-term proliferation and development of cells |
US6015686A (en) * | 1993-09-15 | 2000-01-18 | Chiron Viagene, Inc. | Eukaryotic layered vector initiation systems |
US5490794A (en) * | 1993-11-05 | 1996-02-13 | Sumitomo Wiring Systems, Ltd. | Branch joint box |
US6190655B1 (en) | 1993-12-03 | 2001-02-20 | Immunex Corporation | Methods of using Flt-3 ligand for exogenous gene transfer |
DE4405841C1 (en) * | 1994-02-23 | 1995-01-05 | Mayr Anton Prof Dr Med Vet Dr | Multipotent non-specific immunity inducers based on combinations of poxvirus components, processes for their preparation and their use as pharmaceuticals |
DE69534289T2 (en) * | 1994-04-29 | 2006-04-27 | Baxter Healthcare S.A. | Recombinant poxviruses with foreign polynucleotides in important regions |
CN1180843C (en) * | 1994-07-27 | 2004-12-22 | 昆士兰医学研究所 | Polyepitope vaccines |
US5676950A (en) * | 1994-10-28 | 1997-10-14 | University Of Florida | Enterically administered recombinant poxvirus vaccines |
US5756341A (en) | 1994-11-10 | 1998-05-26 | Immuno Ag | Method for controlling the infectivity of viruses |
US5753489A (en) | 1994-11-10 | 1998-05-19 | Immuno Ag | Method for producing viruses and vaccines in serum-free culture |
US5566011A (en) * | 1994-12-08 | 1996-10-15 | Luncent Technologies Inc. | Antiflector black matrix having successively a chromium oxide layer, a molybdenum layer and a second chromium oxide layer |
UA68327C2 (en) † | 1995-07-04 | 2004-08-16 | Gsf Forschungszentrum Fur Unwe | A recombinant mva virus, an isolated eukaryotic cell, infected with recombinant mva virus, a method for production in vitro of polypeptides with use of said cell, a method for production in vitro of virus parts (variants), vaccine containing the recombinant mva virus, a method for immunization of animals |
WO1997031119A1 (en) | 1996-02-21 | 1997-08-28 | Res Inst For Genetic And Human | Methods and compositions for protective and therapeutic genetic immunization |
AU3813597A (en) | 1996-07-26 | 1998-02-20 | University Of Manitoba | Serum-free medium for growth of anchorage-dependant mammalian cells |
AU4556597A (en) † | 1996-09-24 | 1998-04-17 | Bavarian Nordic Research Institute A/S | Recombinant mva virus expressing dengue virus antigens, and the use thereof in vaccines |
WO1998017283A1 (en) | 1996-10-25 | 1998-04-30 | The Wistar Institute Of Anatomy & Biology | Method of vaccinating infants against infections |
US6204250B1 (en) * | 1996-11-22 | 2001-03-20 | The Mount Sinai Medical Center Of The City Of New York | Immunization of infants |
GB9711957D0 (en) * | 1997-06-09 | 1997-08-06 | Isis Innovation | Methods and reagents for vaccination |
US20030138454A1 (en) * | 1997-06-09 | 2003-07-24 | Oxxon Pharmaccines, Ltd. | Vaccination method |
GB0023203D0 (en) | 2000-09-21 | 2000-11-01 | Isis Innovation | Vaccination method |
DE19729279A1 (en) † | 1997-07-09 | 1999-01-14 | Peter Hildebrandt | Urological implant, in particular vascular wall support for the urinal tract |
AU3910097A (en) † | 1997-08-05 | 1999-03-01 | Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The | Live recombinant vaccine comprising inefficiently or non-replicating vir us |
US6667176B1 (en) * | 2000-01-11 | 2003-12-23 | Geron Corporation | cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells |
EP1137769B1 (en) | 1998-11-10 | 2008-09-03 | University Of Rochester | Methods for the generation of dna libraries |
GB2370571B (en) | 1998-11-18 | 2003-05-07 | Oxford Biomedica Ltd | A modified 5t4 antigen |
DE69924826T8 (en) | 1998-11-18 | 2008-09-25 | Oxford Biomedica (Uk) Ltd. | USE OF CANCER ASSOCIATED ANTIGEN 5T4 TO IMMUNE THERAPY |
US6173813B1 (en) | 1998-12-23 | 2001-01-16 | Otis Elevator Company | Electronic control for an elevator braking system |
US6497883B1 (en) | 1999-06-10 | 2002-12-24 | Merial | Porcine circovirus recombinant poxvirus vaccine |
CA2401974C (en) * | 2000-03-02 | 2013-07-02 | Emory University | Dna expression vectors and methods of use |
EE05633B1 (en) * | 2000-03-14 | 2013-02-15 | Mayr Anton | Modified Vaccine Virus Ankara (MVA), an Inhibited Host Cell and a Pharmaceutical Composition Containing It, Preparation and Therapeutic Use of MVA |
KR100341030B1 (en) | 2000-03-16 | 2002-06-20 | 유태욱 | method for replaying caption data and audio data and a display device using the same |
BR0111366A (en) | 2000-05-24 | 2003-05-20 | Merial Sas | Recombinant Porcine Respiratory and Respiratory Syndrome Virus (prrsv) Vaccine |
CA2415397C (en) * | 2000-07-11 | 2011-04-26 | Bayer Aktiengesellschaft | Use of strains of parapoxvirus ovis for producing antiviral medicaments and medicaments against cancer |
US6733993B2 (en) * | 2000-09-15 | 2004-05-11 | Merck & Co., Inc. | Enhanced first generation adenovirus vaccines expressing codon optimized HIV1-gag, pol, nef and modifications |
US7025970B2 (en) | 2002-03-15 | 2006-04-11 | Baxter International Inc. | Modified poxviruses, including modified smallpox virus vaccine based on recombinant drug-sensitive vaccinia virus, and new selection methods |
WO2003097844A1 (en) * | 2002-05-16 | 2003-11-27 | Bavarian Nordic A/S | Expression of genes in modified vaccinia virus ankara by using the cowpox ati promoter |
US6976752B2 (en) * | 2003-10-28 | 2005-12-20 | Lexmark International, Inc. | Ink jet printer with resistance compensation circuit |
EP1586330A1 (en) * | 2004-04-16 | 2005-10-19 | Georg-August-Universität Göttingen | Vaccination against malignant melanoma |
US8354093B2 (en) * | 2004-10-15 | 2013-01-15 | Washington University | Cell permeable nanoconjugates of shell-crosslinked knedel (SCK) and peptide nucleic acids (“PNAs”) with uniquely expressed or over-expressed mRNA targeting sequences for early diagnosis and therapy of cancer |
EP1835031A1 (en) | 2006-03-14 | 2007-09-19 | Paul-Ehrlich-Institut Bundesamt für Sera und Impfstoffe | Use of a recombinant modified vaccinia virus Ankara (MVA) for the treatment of type I hypersensitivity in a living animal including humans |
EP1925318A1 (en) | 2006-11-20 | 2008-05-28 | Paul-Ehrlich-Institut | Recombinant modified vaccinia virus Ankara (MVA)-based vaccine for the avian flu |
-
2001
- 2001-11-22 EP EP05017694A patent/EP1598425A1/en not_active Withdrawn
- 2001-11-22 EE EEP200300173A patent/EE05680B1/en unknown
- 2001-11-22 EP EP10158053A patent/EP2204452A1/en not_active Withdrawn
- 2001-11-22 HU HU0400685A patent/HU230198B1/en active Protection Beyond IP Right Term
- 2001-11-22 BR BRPI0115533A patent/BRPI0115533B8/en not_active IP Right Cessation
- 2001-11-22 CN CN200910151102A patent/CN101676389A/en active Pending
- 2001-11-22 SI SI200130512T patent/SI1335987T2/en unknown
- 2001-11-22 AU AU3163902A patent/AU3163902A/en active Pending
- 2001-11-22 WO PCT/EP2001/013628 patent/WO2002042480A2/en active Application Filing
- 2001-11-22 EP EP10158051A patent/EP2202315A1/en not_active Withdrawn
- 2001-11-22 AT AT01991753T patent/ATE314483T2/en active
- 2001-11-22 ES ES01991753.3T patent/ES2256323T5/en not_active Expired - Lifetime
- 2001-11-22 RU RU2003118436/13A patent/RU2290438C2/en active
- 2001-11-22 PT PT01991753T patent/PT1335987E/en unknown
- 2001-11-22 CA CA2421151A patent/CA2421151C/en not_active Expired - Lifetime
- 2001-11-22 KR KR1020037006970A patent/KR100830295B1/en active IP Right Grant
- 2001-11-22 DK DK01991753.3T patent/DK1335987T4/en active
- 2001-11-22 IL IL15471201A patent/IL154712A0/en unknown
- 2001-11-22 DE DE20122302U patent/DE20122302U1/en not_active Expired - Lifetime
- 2001-11-22 KR KR1020087007423A patent/KR100910297B1/en active IP Right Grant
- 2001-11-22 AU AU2002231639A patent/AU2002231639B2/en not_active Expired
- 2001-11-22 JP JP2002545184A patent/JP4421188B2/en not_active Expired - Lifetime
- 2001-11-22 EP EP01991753.3A patent/EP1335987B2/en not_active Expired - Lifetime
- 2001-11-22 UA UA2003054618A patent/UA76731C2/en unknown
- 2001-11-22 PL PL361459A patent/PL212047B1/en unknown
- 2001-11-22 CN CNB018194109A patent/CN100537773C/en not_active Expired - Lifetime
- 2001-11-22 DE DE60116371.0T patent/DE60116371T3/en not_active Expired - Lifetime
- 2001-11-22 MX MXPA03002513A patent/MXPA03002513A/en active IP Right Grant
- 2001-11-22 CZ CZ20031366A patent/CZ295808B6/en not_active IP Right Cessation
- 2001-11-22 KR KR1020097010451A patent/KR20090057335A/en not_active Application Discontinuation
- 2001-11-22 NZ NZ524661A patent/NZ524661A/en not_active IP Right Cessation
-
2003
- 2003-03-03 IL IL154712A patent/IL154712A/en active IP Right Grant
- 2003-05-16 US US10/440,073 patent/US7189536B2/en not_active Expired - Lifetime
- 2003-05-16 US US10/439,953 patent/US6761893B2/en not_active Expired - Lifetime
- 2003-05-16 US US10/439,439 patent/US6913752B2/en not_active Expired - Lifetime
- 2003-05-21 NO NO20032309A patent/NO337867B1/en not_active IP Right Cessation
-
2004
- 2004-03-31 HK HK04102348.1A patent/HK1059453A1/en not_active IP Right Cessation
-
2005
- 2005-08-05 US US11/198,557 patent/US7384644B2/en not_active Expired - Lifetime
-
2006
- 2006-03-27 CY CY20061100421T patent/CY1105594T1/en unknown
- 2006-08-23 US US11/508,797 patent/US7335364B2/en not_active Expired - Lifetime
-
2007
- 2007-10-26 US US11/977,808 patent/US7923017B2/en not_active Expired - Fee Related
- 2007-12-04 US US11/999,127 patent/US7459270B2/en not_active Expired - Lifetime
-
2009
- 2009-05-22 US US12/471,144 patent/US7939086B2/en not_active Expired - Lifetime
-
2011
- 2011-03-22 US US13/053,450 patent/US8268329B2/en not_active Expired - Fee Related
- 2011-03-22 US US13/053,361 patent/US8268325B2/en not_active Expired - Fee Related
-
2012
- 2012-08-17 US US13/588,217 patent/US20120328650A1/en not_active Abandoned
-
2013
- 2013-11-20 LU LU92311C patent/LU92311I2/en unknown
- 2013-11-21 BE BE2013C065C patent/BE2013C065I2/fr unknown
- 2013-12-13 FR FR13C0070C patent/FR13C0070I2/en active Active
- 2013-12-23 CY CY2013048C patent/CY2013048I1/en unknown
-
2016
- 2016-02-29 HU HUS1600010C patent/HUS1600010I1/en unknown
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8163293B2 (en) * | 2000-11-23 | 2012-04-24 | Bavarian Nordic A/S | Modified Vaccinia Virus Ankara for the vaccination of neonates |
US20120183574A1 (en) * | 2000-11-23 | 2012-07-19 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccnation of neonates |
US7892533B2 (en) * | 2000-11-23 | 2011-02-22 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US7097842B2 (en) * | 2000-11-23 | 2006-08-29 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US8372622B2 (en) * | 2000-11-23 | 2013-02-12 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US8268325B2 (en) * | 2000-11-23 | 2012-09-18 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant |
US7384644B2 (en) * | 2000-11-23 | 2008-06-10 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant |
US7628980B2 (en) * | 2000-11-23 | 2009-12-08 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US6761893B2 (en) * | 2000-11-23 | 2004-07-13 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant |
US7964396B2 (en) * | 2000-11-23 | 2011-06-21 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant and cultivation method |
US7964398B2 (en) * | 2000-11-23 | 2011-06-21 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant and cultivation method |
US7964395B2 (en) * | 2000-11-23 | 2011-06-21 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant and cultivation method |
US8268329B2 (en) * | 2000-11-23 | 2012-09-18 | Bavarian Nordic A/S | Modified Vaccinia ankara virus variant |
US6924137B2 (en) * | 2001-07-18 | 2005-08-02 | Bavarian Nordic A/S | Method for virus propagation |
US7897156B2 (en) * | 2001-11-22 | 2011-03-01 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US7759116B2 (en) * | 2001-12-04 | 2010-07-20 | Bavarian Nordic A/S | MVA virus vector expressing dengue NS1 protein |
US7056723B2 (en) * | 2001-12-20 | 2006-06-06 | Bavarian Nordic A/S | Method for the recovery and purification of poxviruses from infected cells |
US7338662B2 (en) * | 2002-05-16 | 2008-03-04 | Bavarian Nordic A/S | Recombinant poxvirus expressing homologous genes inserted into the foxviral genome |
US7695939B2 (en) * | 2002-09-05 | 2010-04-13 | Bavarian Nordic A/S | Method for the cultivation of primary cells and for the amplification of viruses under serum free conditions |
US7300658B2 (en) * | 2002-11-25 | 2007-11-27 | Bavarian Nordic A/S | Recombinant poxvirus comprising at least two compox ATI promoters |
US7816508B2 (en) * | 2003-11-24 | 2010-10-19 | Bavarian Nordic A/S | Promoters for expression in modified vaccinia virus Ankara |
US7807146B2 (en) * | 2006-10-06 | 2010-10-05 | Bn Immunotherapeutics, Inc. | Methods for treating cancer with a recombinant MVA expressing HER-2 |
US8313740B2 (en) * | 2006-10-06 | 2012-11-20 | Bn Immunotherapeutics, Inc. | Methods for treating cancer with a recombinant MVA expressing HER-2 |
US8268327B2 (en) * | 2007-04-27 | 2012-09-18 | Bavarian Nordic A/S | Immediate protection against pathogens via MVA |
US8268328B2 (en) * | 2007-04-27 | 2012-09-18 | Bavarian Nordic A/S | Immediate protection against pathogens via MVA |
US8377688B2 (en) * | 2007-10-18 | 2013-02-19 | Bn Immunotherapeutics, Inc. | Use of MVA to treat prostate cancer |
US7867483B2 (en) * | 2007-10-18 | 2011-01-11 | Bn Immunotherapeutics, Inc. | Use of MVA to treat prostate cancer |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160030551A1 (en) * | 2013-03-15 | 2016-02-04 | Bavarian Nordic A/S | Single high dose of mva induces a protective immune response in neonates and infants |
US9707291B2 (en) * | 2013-03-15 | 2017-07-18 | Bavarian Nordic A/S | Single high dose of MVA induces a protective immune response in neonates and infants |
US9879281B2 (en) | 2014-10-16 | 2018-01-30 | Korea Centers for Disease Control and Prevention | Recombinant vaccinia virus derived from KVAC103 strain |
US9879232B2 (en) | 2014-10-16 | 2018-01-30 | Korea Centers for Disease Control and Prevention | Attenuated vaccinia virus KVAC103 strain |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8268329B2 (en) | Modified Vaccinia ankara virus variant | |
US8236560B2 (en) | Modified Vaccinia Ankara virus variant and cultivation method | |
AU2002231639A1 (en) | Modified vaccinia ankara virus variant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCV | Information on status: appeal procedure |
Free format text: COURT PROCEEDINGS TERMINATED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |