US20120302367A1 - Metal wood club - Google Patents
Metal wood club Download PDFInfo
- Publication number
- US20120302367A1 US20120302367A1 US13/571,650 US201213571650A US2012302367A1 US 20120302367 A1 US20120302367 A1 US 20120302367A1 US 201213571650 A US201213571650 A US 201213571650A US 2012302367 A1 US2012302367 A1 US 2012302367A1
- Authority
- US
- United States
- Prior art keywords
- club head
- wood
- golf club
- face
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0466—Heads wood-type
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0433—Heads with special sole configurations
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/045—Strengthening ribs
- A63B53/0454—Strengthening ribs on the rear surface of the impact face plate
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B60/00—Details or accessories of golf clubs, bats, rackets or the like
- A63B60/02—Ballast means for adjusting the centre of mass
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B2053/0491—Heads with added weights, e.g. changeable, replaceable
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2225/00—Miscellaneous features of sport apparatus, devices or equipment
- A63B2225/01—Special aerodynamic features, e.g. airfoil shapes, wings or air passages
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0408—Heads characterised by specific dimensions, e.g. thickness
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0408—Heads characterised by specific dimensions, e.g. thickness
- A63B53/0412—Volume
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0416—Heads having an impact surface provided by a face insert
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0458—Heads with non-uniform thickness of the impact face plate
Definitions
- the present invention relates to an improved golf club including a wood-type golf club head having modified sole plates which change golf club face angle at address in order to correct for variations/deviations in the striking surface.
- Golf club heads come in many different forms and makes, such as wood- or metal-type (including drivers and fairway woods), iron-type (including wedge-type club heads), utility- or specialty-type, and putter-type. Each of these styles has a prescribed function and make-up.
- the present invention relates primarily to hollow golf club heads, such as wood-type and utility-type (generally referred to herein as wood-type golf clubs).
- Wood-type or metal-type golf club heads generally include a front or striking face, a crown, a sole and an arcuate skirt including a heel, a toe and a back.
- the crown and skirt are sometimes referred to as a shell.
- the front face interfaces with and strikes the golf ball.
- a plurality of grooves, sometimes referred to as “score lines,” may be provided on the face to assist in imparting spin to the ball and for decorative purposes.
- the crown is generally configured to have a particular look to the golfer and to provide structural rigidity for the striking face.
- the sole of the golf club is particularly important to the golf shot because it contacts and interacts with the ground during the swing.
- the complexities of golf club design are well known.
- the specifications for each component of the club i.e., the club head, shaft, grip, and subcomponents thereof) directly impact the performance of the club.
- a golf club can be tailored to have specific performance characteristics.
- club heads require careful attention to club head construction. Among the many factors that must be considered are material selection, material treatment, structural integrity and overall geometrical design. Exemplary geometrical design considerations include loft, lie, face angle, horizontal face bulge, vertical face roll, face size, center of gravity, sole curvature, and overall head weight.
- the interior design of the club head may be tailored to achieve particular characteristics, such as by including hosel or shaft attachment means, perimeter weighting on the face or body of the club head, and fillers within hollow club heads.
- Club heads are typically formed from stainless steel, aluminum, or titanium and are cast, stamped, as by forming sheet metal with pressure, forged, or formed by a combination of any two or more of these processes.
- the club heads may be formed from multiple pieces that are welded or otherwise joined together to form a hollow head, as is often the case of club heads designed with inserts, such as soleplates, or face plates, or crown plates.
- the multi-piece constructions facilitate access to the cavity formed within the club head, thereby permitting the attachment of various other components to the head such as internal weights and the club shaft.
- the cavity may remain empty, or may be partially or completely filled, such as with foam.
- An adhesive may be injected into the club head to provide the correct swing weight and to collect and retain any debris that may be in the club head.
- the use of multi-piece constructions allows the manufacture of a club head to a tight set of standards.
- wood-type golf clubs out of metallic materials. These clubs were originally manufactured primarily by casting durable metals such as stainless steel, aluminum, beryllium copper, etc. into a unitary structure comprising a metal body, face and hosel. As technology progressed, it became more desirable to increase the performance of the face of the club, usually by using a titanium material.
- Players generally seek a metal wood driver and golf ball combination that delivers maximum distance and landing accuracy.
- the distance a ball travels after impact is dictated by the magnitude and direction of the ball's translational velocity, ball speed, and the ball's rotational velocity or spin.
- Environmental conditions including atmospheric pressure, humidity, temperature, and wind speed, further influence the ball's flight. However, these environmental effects are beyond the control of the golf equipment manufacturer.
- Golf ball landing accuracy is driven by a number of factors as well. Some of these factors are attributed to club head design, such as center of gravity and club face flexibility.
- the sole of the golf club is particularly important to the golf shot because it contacts and interacts with the ground during the golf shot.
- the sole of the club is slightly curved such that when the club head is placed on the ground, the leading edge is located above the ground.
- the curvature toward the front of the club generally provides bounce. Bounce assists in preventing the club from digging into the ground and substantially slowing club head speed.
- the curvature toward the trailing edge generally prevents the club head from getting caught on the ground during the back swing.
- club face angle is a material factor affecting trajectory and direction.
- Club face angle is the angle of the club at address in relation to a desired target (i.e., a hole on the course).
- a club's face angle will vary based on at least two considerations.
- “lie angle” contributes to club face angle.
- a lie angle is formed between the center of the shaft and the ground line of the club at address and generally results from how high a player grips the club in relation to the ground when the golf club sole is resting on the ground just prior to the player swinging the golf club.
- club face angle will change based on differences in the topography and terrain of the ground.
- lie angle may vary from player to player within a general range of from about 50° to about 65°, any difference in the topography of the ground at a given location on the golf course remains a constant for every golfer. Accordingly, manufacturers seek to provide golfers with clubs which are capable of correcting for these topographical variances of the ground notwithstanding the golfer's particular lie angle within this general range.
- golf club includes an adjustable shaft for correcting club face angle.
- adjusting the shaft may undesirably also change the loft of the golf club head, and thereby cancel out, at least in part, any correction.
- the golf club head is designed to include a modified sole that is integral with the head in order to compensate for irregularities in the terrain.
- this solution has proven undesirably expensive to golfers who may need several clubs, each having a differently contoured sole in order to adjust for different terrains on the course. And some golfers dislike the permanent nature and/or design of such golf club heads.
- the wood-type golf club of the invention addresses and resolves the disadvantages of prior attempts to correct/adjust club face angle on the green.
- the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel.
- the body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face.
- a system is disposed within the body for adjusting club face angle at address comprising an element that is rotatable about a system axis that is substantially parallel to the y-axis to provide at least first and second club face angle positions at address. See for example, FIG. 25 .
- the element interacts with the ground plane at address to change/modify the club face angle.
- the number of degrees by which the element changes/modifies the club face angle at address is related at least in part to the distance that the element extends outward from the sole.
- the system changes the golf club angle by less than 1°.
- the system changes the golf club angle by at least about 1°.
- the system changes the golf club angle by at least about 2°. °.
- the system changes the golf club angle by at least about 3°.
- the system changes the golf club angle by greater than about 3°.
- the element has a cylindrically shaped base member that is flush with the sole and a protrusion formed on and protruding from the base member for changing/correcting the club face angle at address.
- the element may comprise any shape that is rotatable about the system axis that is substantially parallel to the y-axis, for example, being conically shaped, disc-shaped, wedge-shaped or tapered.
- the protrusion may also comprise any shape or form capable of interacting with the ground at address and changing/correcting club face angle.
- the element comprises a base member (without protrusion) wherein the base member extends past the sole at address to correct/change the club face angle.
- the system is disposed within the body between the toe and the heel at a distance from the heel that is less than a distance from the toe.
- the system may alternatively be disposed within the body between the toe and the heel at a distance from the heel that is greater than or substantially similar to a distance from the toe.
- the body comprises a more than one system for changing club face angle at address spaced between the heel and the toe.
- one of systems may be disengaged at will.
- Any known fastening means may be used to secure or fasten the element and system within the body, including for example, mechanical locking means, welding or brazing, or adhesives, temporarily or permanently.
- the system including the element may comprise any known material including for example plastic, composite, or metal.
- the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel, wherein the body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face; and wherein the body comprises a weight member that is adjustable in a vertical direction to move the center of gravity in the vertical direction and is rotatable about a system axis that is substantially parallel to the y-axis to adjust club face angle at address.
- the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel.
- the body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face.
- a system is disposed within the body for adjusting club face angle at address comprising an element that is rotatable about a system axis that is substantially parallel to the z-axis to provide at least first and second club face angle positions at address. See, e.g., FIGS. 26A and 26B .
- the wood-type golf club incorporates a head comprising a body having a face, a sole, a crown, a toe and a heel, wherein the sole is disposed between the toe and the heel.
- the sole comprises a body portion and one of a plurality of interchangeable adjustment portions wherein the body portion is integral with the body and one of the plurality of interchangeable adjustment portions is interchangeably mated with the body portion such that for a club face angle X at address at location L, each of the plurality of interchangeable adjustment parts adjusts the club face angle X to a different club face angle X a wherein n is the number of interchangeable adjustment portions. See, e.g., FIGS. 27A , 27 B, and 27 C.
- FIG. 1 is a perspective view of an embodiment of a club head of the present invention
- FIG. 2 is bottom plan view of an embodiment of a club head of FIG. 1 ;
- FIG. 3A is a front plan view of an embodiment of a club head according to FIG. 1 at impact with a golf ball;
- FIG. 3B is a front plan view of an embodiment of a club head according to FIG. 1 at address;
- FIG. 4A is bottom plan view of an embodiment of a club head of FIG. 1 ;
- FIG. 4B is a cross-sectional view of the club head of FIG. 4 taken along line 3 B- 3 B in FIG. 4 ;
- FIG. 4C is a cross-sectional view of the club head of FIG. 4 taken along line 4 C- 4 C in FIG. 4 ;
- FIG. 4D is a cross-sectional view of the club head of FIG. 4 taken along line 4 D- 4 D in FIG. 4 ;
- FIG. 5 is a back view of the club head of FIG. 1 ;
- FIG. 6 is a heel side view of the club head of FIG. 1 ;
- FIG. 7A is a bottom plan view of a club head with the inventive sole of FIG. 1 ;
- FIG. 7B is a cross sectional view of the club head of FIG. 7A taken along line 7 B- 7 B;
- FIG. 8 is a bottom plan view of another alternative embodiment of a club head of the present invention.
- FIG. 9 is a top plan view of an alternative embodiment of a club head according to the present invention.
- FIG. 10A is a front plan view of a club head according to an embodiment of the club head of FIG. 9 ;
- FIG. 10B is a cross-sectional view of the club head of FIG. 10A , taken along lines 10 B- 10 B;
- FIG. 11 is a top plan view of the club head according to an embodiment of FIG. 9 ;
- FIG. 12A is a front plan view of a club head according to an embodiment of the club head of FIG. 9 ;
- FIG. 12B is a cross-sectional view of the club head of FIG. 12A , taken along lines 12 B- 12 B;
- FIG. 13 is a back perspective cut-out view of an embodiment of a club head according to FIG. 9 ;
- FIG. 14 is a back view of the club head of FIG. 13 ;
- FIG. 15 is a perspective view of a weight tube according to the embodiment of the FIG. 13 ;
- FIG. 16 is a back perspective cut-out view of another embodiment of a club head according to FIG. 9 ;
- FIG. 17 is a perspective view of a weight tube according to the embodiment of the FIG. 17 ;
- FIG. 18 is a back perspective cut-out view of another embodiment of a club head according to FIG. 9 ;
- FIG. 19 is a bottom plan view of another embodiment of a club head according to FIG. 9 ;
- FIG. 20 is a front perspective cut-out view of another embodiment of a club head according to FIG. 9 ;
- FIG. 21 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 13 ;
- FIG. 22 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 13 ;
- FIG. 23 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 16 ;
- FIG. 24 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 16 ;
- FIG. 25 is a front perspective cut-out view of the golf club head according to another embodiment of the golf club of the invention.
- FIGS. 26A and 26B are heel side views of the golf club head according to another embodiment of the golf club of the invention.
- FIGS. 27A , 27 B and 27 C are heel side views of the golf club head according to another embodiment of the golf club of the invention.
- FIG. 1 shows a golf club head 10 of the present invention.
- Club head 10 includes a body 12 having a strike face 14 , a sole 16 , a crown 18 , a skirt 20 and a hosel 22 .
- the body defines a hollow interior volume 24 (See FIGS. 4B-4D ).
- Foam or other material may partially or completely fill the interior volume.
- Weights may be included within the interior volume.
- the face may be provided with grooves or score lines of varying design.
- the club head has a toe 26 and a heel 28 .
- a golf club shaft (not shown) is attached at hosel 22 and is disposed along a shaft axis A-A.
- the hosel 22 may extend to the bottom of the club head 10 , may terminate at a location between the sole and crown portions 16 and 18 of the head 10 , or the hosel 22 may terminate flush with the crown portion 26 .
- the inner volume 24 have a volume greater than 125 cubic centimeters, and more preferably greater than 175 cubic centimeters.
- the mass of the inventive club head 10 is greater than 150 grams, but less than 220 grams; although the club head may have any suitable weight.
- the body 12 may be formed of sheets welded together or cast, preferably from steel, aluminum or titanium or any other suitable material or combination thereof.
- the strike face 14 may be made by milling, casting, forging or stamping and forming.
- the face 14 may be made of any suitable material, including titanium, titanium alloy, carbon steel, stainless steel, beryllium copper, and other metals or composites.
- the face 14 may have any suitable thickness, and may be uniform or varied.
- the face 14 may be connected to the body 12 by any suitable means, including bonding and welding.
- the body 12 and face 14 may be cast simultaneously forming a homogeneous shell and eliminating the need to bond or otherwise permanently secure a separate face 14 to the body 12 .
- the sole 16 or crown 18 may be formed separately and fitted to the remainder of the body 12 as is known to those of skill in the art.
- the sole 16 preferably has a complex shape that accomplishes two objectives.
- the first objective is to provide a surface for the club head 10 to sit on in the address position that squares the face 14 to the target.
- the second objective is to provide a sole shape that gives more clearance to the ground at impact than would be available in a club head with a conventional sole.
- an address portion or zero degree bounce portion 30 is provided. This portion is a sufficient area on the sole 16 on which the club head 10 may rest when placed at the address position by a golfer.
- the zero degree bounce portion 30 may be a flat portion provided on the sole 16 .
- the zero degree bounce portion 30 may be directly centered behind the face 16 or, as illustrated, may be provided more toward the heel 28 . As illustrated in FIGS.
- the sole 16 has a zero degree bounce portion 30 , such that at address the club head 10 rests at this point and the face 14 is square to the target.
- the zero degree bounce portion 30 enables the club head 10 to sit just as a conventional club head without a sole having a complex shape.
- the complex sole of the inventive club head 10 does not adversely affect the way the club head sits at address.
- a portion of the sole 16 is relieved to give it a multi-relief surface 32 with a negative bounce.
- a negative bounce portion 34 is provided on the sole 16 in a center portion that is spaced from the face 14 of the club head 10 .
- the club head 10 has two areas of bounce.
- the impact position I p of the club head 10 is different than an address position A p because the dynamics of the golf swing cause the shaft to flex at impact thereby moving the position of the club head 10 .
- FIG. 3B illustrates the club head at address where the face is square to the target, the shaft axis A-A creates an angle with the ground G called the shaft angle ⁇ a .
- the shaft angle ⁇ i As illustrated in FIG. 3A , during impact, the club head is rotated a few degrees upright, and the shaft axis A-A creates a different angle with the ground G called shaft angle ⁇ i .
- the toe 26 may be up at least 5 degrees at a first measurement, for example when the club head 10 sits at address, such that the face 14 measures square.
- a second measurement for example during impact with a golf ball, taken at a centered position the face 14 measures differently than the first measurement.
- the face 14 may measure at least two degrees more open at the second measurement than the first measurement, or at least two degrees open at the second measurement than the first measurement.
- the centered position may comprise the negative bounce portion 34 , which may be a substantially flat surface.
- the shaft angle ⁇ a preferably measures about 55 to 45 degrees.
- the shaft angle ⁇ i measures about 55 degrees to 60 degrees.
- the sole 16 features a multi-relief surface 32 to provide greater ground clearance at the trailing edge 36 of the sole 16 to minimize turf resistance.
- the ground/sole contact point remains forward toward the leading edge 38 of the strike face 14 . Maintaining a forward ground/sole contact point improves directional control and ball flight, by reducing the potential of the club head 10 to bounce or skip onto the ball. This is particularly true of players that play the ball forward in their stance, or who sweep the ball from the turf with a shallow angle of attack.
- the multi-relief surface 32 sole features the negative bounce portion 32 and a cutaway portion 40 .
- the negative bounce portion 34 may have any desired overall shape; preferably the negative bounce portion 34 has a triangular shape as shown in FIGS. 1 and 2 .
- FIGS. 4A-4D illustrates the negative bounce portion 34 and cutaway portion 40 in the sole 16 .
- Cross-sectional views illustrated in FIGS. 4B and 4D show cutaway portion 40 in comparison with the regular surface 42 of a conventional club head sole.
- FIG. 4B illustrates the cross-sectional view of the center section of the club head 10 with the negative bounce portion 34 and cutaway portion 40 in comparison with the regular surface of a conventional club head sole 42 .
- the cutaway portion 40 extends from the negative bounce portion 34 to the trailing edge 36 of to the club head 10 . As illustrated in FIGS. 4B-D , the cutaway portion 40 continues and may gradually increase the negative surface from the plane S running along the bottom of the sole. Preferably, the cutaway portion 40 has a depth d cp of about 0.05 to 0.5 inch from the regular surface of a conventional club head sole 42 ; this depth may or may not be constant.
- FIGS. 5 and 6 illustrate the back 44 and heel 28 of the club head. The full extent of the cutaway portion 40 can be envisioned.
- FIGS. 7A-7B illustrate the sole 16 of the club head 10 and a cross-sectional view through line 7 B- 7 B which illustrates the multi-relief surface 32 of the sole 16 .
- the negative bounce portion 34 is spaced a distance D 1 from the strike face, where D 1 is preferably about 0.1 to 1.0 inch. More preferably, D 1 is about 0.35 to 0.65 inch from the strike face 14 of the club head 10 .
- the distance D 1 may be different for different club heads as it may depend on the face progression and the loft of the club head.
- the negative bounce portion 34 comprises a surface having an angle ⁇ from a plane S running along the bottom of the sole 16 parallel to the z-axis of a coordinate system running through the club head.
- the negative bounce portion 34 comprises about a negative 0.5 to a negative 4.0 degree surface, such that the angle ⁇ is about negative 0.5 to 4.0 degrees from the plane S.
- the negative bounce portion 34 comprises about a negative 2.0 degree surface. It will be appreciated that the negative bounce portion 34 may have a constant angle or may have an angle that varies toward the back of the sole.
- the negative bounce portion 34 may have locations with multiple radii.
- the multi-relief surface 32 includes both the negative bounce portion 34 and the cutaway portion 40 and these form a triangular shape.
- the triangular shape forms an angle ⁇ , angle ⁇ is preferably about 35 to 50 degrees, and more preferably about 38 to 44 degrees.
- the negative bounce portion 34 and cutaway portion 40 have a length L, length L is preferably about 1 to 5 inches, and more preferably about 2 to 4 inches.
- FIG. 8 shows an alternative embodiment for the sole 16 .
- the club head 46 features a multi-relief sole 32 as described above.
- the multi-relief sole features the negative bounce portion 34 and the cutaway portion 40 . It will be appreciated that the negative bounce portion 34 and cutaway portion 40 may have any suitable shape.
- the center of gravity of the club head is moved toward the bottom and back of the club head. This permits an average golfer to launch the ball up in the air faster and hit the ball farther.
- the moment of inertia of the club head is increased to minimize the distance and accuracy penalties associated with off-center hits.
- material or mass is generally taken from one area of the club head and moved to another. Materials can be taken from the face of the club, creating a thin club face, the crown and/or sole and placed toward the back of the club.
- FIG. 9 illustrates a top of a club head 50 according to another embodiment of the present invention.
- Club head 50 includes a body 52 having a strike face 54 , a sole 56 (see FIGS. 10A and 10B ), a crown 58 , a skirt 60 and a hosel 62 .
- the body defines a hollow interior volume 64 (See FIGS. 10B and 12B ).
- the face may be provided with grooves or score lines of varying design.
- the club head has a toe 66 and a heel 68 .
- FIG. 9 illustrates the center of gravity (e.g.) along the x-axis and z-axis.
- the club head 50 features a weight system 70 (see FIGS. 10A-10B and 12 A- 12 B) to move the e.g. within the club head 50 to a more optimal position.
- the e.g. is movable within a 6 mm distance along the z-axis in comparison to a club head without the weight system. More preferably, the e.g. is movable within a 4 mm distance along the z-axis.
- the e.g. is moveable within a 6 mm distance along the x-axis in comparison to a club head without the weight system, more preferably within a 2 mm distance, and still more preferably within a 0.5 mm distance. Additionally, the e.g. is moveable within a 6 mm distance along the y-axis in comparison to a club head without the weight system (See FIG. 10A-10B and 12 A- 12 B). Preferably the e.g. is moveable within a 2 mm distance along the y-axis.
- the e.g. adjustability may not substantially affect the dynamic loft of the club head. For example, for a 3 mm front-back e.g. shift the dynamic loft changes about 0.4 degrees. When the e.g. is moved back, the backspin may increase, for example between 100 and 300 rpm per 3 mm of e.g. movement toward the rear of the club head.
- FIG. 10A illustrates the front face 54 of the club head showing the x-axis and the y-axis.
- FIG. 10B is a cross-sectional view taken along lines 10 B- 10 B of FIG. 10A .
- FIG. 10B depicts the inside of the club head featuring a weight system 70 according to the invention, and the e.g. may be moved along the z axis and y axis.
- FIG. 10B depicts the weight system 70 as a tube 72 placed within the club head 50 within a plane formed by the y-axis and z-axis to adjust the e.g. of the club head.
- the weight system 70 features a tube 72 with a weight 74 at one end 76 of the tube 72 .
- the weight 74 is placed the back of the club head 50 to move the e.g. to a desired location for desirable ball flight.
- the tube 72 may feature multiple inserts varying in weight for placement within the tube 72 to move the e.g. of the club head 50 to a desired location.
- the tube 72 is preferably provided at an angle within the club head 50 .
- the tube 72 is angled downward toward the face 54 of the club head 50 , such that the tube 72 is provided within the plane formed by the z-axis and y-axis.
- the tube 72 may be angled by an angle ⁇ , where ⁇ is at least 1 degree from the plane W formed by the z axis and x axis.
- the tube is angled downward toward the face 54 by at least 3 degrees from the plane W formed by the z-axis and x-axis. More preferably, the tube 72 is angled downward toward the face of the club head 50 by about 3 to 7 degrees from the plane W formed by the z-axis and x-axis.
- the tube 72 may be offset in either direction from that plane by any desired amount.
- the tube 72 may be flipped within the club head 50 , such that the weight 74 is provided at the other end 76 of the club head 50 , closer to the face 54 , to move the e.g to a different location for desirable ball flight.
- the weight 74 is located at a front of the club head 50 a shot hit off the club head 50 has less backspin and a lower trajectory resulting in a shallower landing for increased distance.
- the tube 72 itself may be able to be inserted in the club head with the weight 74 in either direction, or that different tubes 72 may be selectable with the weight 74 at the desired end and then provided in the club head.
- a club having the weight system 70 may also include the multi-relief surface 32 on the sole 56 as described above.
- the sole 56 may feature a multi-relief surface 32 with a negative bounce portion 34 and a cutaway portion 40 as described above.
- the angle 8 of the tube may be substantially parallel to the multi-relief surface 32 .
- FIG. 13 illustrates how the tube 72 may be inserted into the club head 50 .
- a sheath 78 extending from a block 79 in the club head 50 receives the tube 72 with the weight 74 , and a fastener 80 locks the tube 72 in place within the club head 50 .
- the tube 72 is fastened to the outside of the club head 50 substantially flush with an outer surface 82 of the club head, as illustrated in FIG. 14 .
- FIG. 15 illustrates the tube 72 according to the embodiment of FIG. 13 .
- the weight 74 is provided at an end 76 of the tube 72 . It will be appreciated that the tube 72 and weight 74 may be joined by threaded engagement, epoxy, mechanical lock or other joining method.
- the weight 74 may comprise tungsten or any other suitable material.
- the weight 74 has a mass of about 10 to 25 grams.
- the combined mass of the tube 72 and weight 74 is about 20 to 40 grams.
- the tube 72 comprises aluminum, although any other suitable material may be used.
- the orientation of the tube 72 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location.
- the tube 72 has a diameter t d of about 0.3 to 0.5 inch and a length t 1 of about 2 to 3 inches. It will be appreciated that more than one tube 72 could be provided in the club head 50 at any one time as illustrated in FIG. 11 , or that multiple tubes 72 with a different mass may be provided to the user or fitting location.
- FIG. 16 illustrates an alternative embodiment for placement of the tube 72 within the club head 50 .
- the tube 72 has threads 84 on both ends 86 and 88 that interlock in threaded engagement to the mating threads 90 on a block 92 inside the club head adjacent the face 54 and threads 94 on a block 96 adjacent the skirt 60 of the club head 50 .
- the tube 72 is fastened to the inside of the club head 50 adjacent the face 54 . It is envisioned that the orientation of the tube 72 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location.
- FIG. 17 illustrates the tube 72 of the embodiment of FIG. 16 showing the dual threaded ends 86 and 88 of the tube that may be inserted in either direction into the club head 50 and threadedly received adjacent the face 54 .
- the tube 72 has a diameter t d and a length t 1 has described above and the weight 74 and tube 72 have a similar mass as described above.
- the exterior of the tube 72 would align substantially flush with the outer surface 82 of the club head 50 .
- FIG. 18 shows an alternative embodiment for the weight system 70 where a weight 98 may be slid along a pipe 100 provided in the club head 50 .
- the exterior surface 102 of the sole 56 of the club head 50 may feature a mechanism 104 to move the weight 98 along the pipe 100 to the desired location to move the e.g. for the desired ball flight as described above.
- the position of the weight 98 on the pipe 100 may be set during manufacture of the club head.
- FIG. 19 features another alternative embodiment for the weight system 70 .
- This embodiment features two or more cavities 106 in the sole 56 of the club head 50 for receiving inserts 108 .
- the cavities 106 may be placed in any desired location on the club head 50 . As illustrated, the three cavities 106 are provided along an axis O offset from the x-axis. The cavities 106 may be aligned parallel to the x-axis or may be offset in either direction. The cavities 106 may be provided on an axis O offset from the x-axis by 0 to 90 degrees in either direction.
- the back portion 110 of the club head may feature deeper cavities 106 to mimic the angle of the tube 72 described above relative to the plane formed by the z-axis and x-axis.
- the inserts 108 may have different mass and may be placed in the different cavities 106 to move the e.g. to a desired location.
- the inserts 108 may be movable by the user, or they may be set at the time of manufacture or modifiable in a fitting environment.
- FIG. 20 illustrates yet another alternative embodiment of the weighting system 70 for moving the center of gravity along the y-axis.
- the club head 50 features a vertical cavity 112 extending from the sole 56 into the hollow volume 64 of the club head.
- the cavity 112 may be placed in any desired location in the sole 56 , for example centered along the width of the face 54 and located more toward the back of the club head 50 , as illustrated.
- a weight 114 is made to fit within the cavity 112 , such that it mates securely within the cavity 112 . It will be appreciated that the weight 114 may be secured in the cavity in any suitable manner, including threaded engagement, epoxy, mechanical lock, or other joining method.
- the cavity 112 is cylindrical and the weight 114 is a corresponding cylindrical plug, although it will be appreciated that the weight 114 and mating cavity 112 may be any suitable shape and size.
- the weight 114 features a heavy end 116 and a lighter end 118 .
- the heavy or lighter end 116 and 118 may be placed closer to the sole 56 to move the e.g. to the desired location along the y-axis.
- the orientation of the orientation of the weight 114 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location. This embodiment may assist in isolating just one attribute, moving the e.g. along the y-axis, thereby making club fitting more straight forward.
- FIG. 21 the movement of the e.g. is illustrated based on the construction of FIG. 13 . It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the back of the club head 50 , and a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the front of the club head 50 .
- FIG. 21 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads.
- FIG. 22 the movement of the e.g. is illustrated based on the construction of FIG. 13 . It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the back of the club head 50 , and a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the front of the club head 50 .
- FIG. 22 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads.
- FIG. 23 the movement of the e.g. is illustrated based on the construction of FIG. 16 . It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 16 having the weight 74 in the back of the club head 50 , and a club head 74 with the weight system 70 of FIG. 16 having the weight 74 in the front of the club head 50 .
- FIG. 23 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads.
- FIG. 24 the movement of the e.g. is illustrated based on the construction of FIG. 16 . It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 16 having the weight 74 in the back of the club head 50 , and a club head 50 with the weight system 70 of FIG. 16 having the weight 74 in the front of the club head 50 .
- FIG. 24 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads. The locations of the e.g. shown in FIGS. 21-24 were calculated using a commercially available CAD (computer aided design) system.
- FIG. 25 illustrates and alternative embodiment of the golf ball of the invention depicted in FIG. 20 , having the following modifications.
- Protrusion 120 extends outward past sole 56 a distance sufficient to change the club face angle at address by rotating protrusion 120 about the y axis.
- cylindrically shaped weight 114 itself may extend a distance outward past sole 56 to change the club face angle at address.
- FIGS. 26A and 26B show examples wherein alternatively shaped elements 121 and 122 , respectively, may be rotated about an axis that is parallel to the z-axis to change the club face angle at address.
- FIGS. 27A , 27 B and 27 C show examples of how the sole may comprise a body portion 123 and one of a plurality of interchangeable adjustment portions 125 wherein the body portion 123 is integral with the body and the one of the plurality of interchangeable adjustment portions 125 is interchangeably mated with the body portion 123 to change the club face angle at address.
- Body portion 123 and adjustment portion 125 may mate by any known means for joining matable parts such as teeth 124 as in FIG. 27A , or a lip member such as in FIG. 27B or clip-on means such as depicted in FIG. 27C .
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Golf Clubs (AREA)
Abstract
Description
- This application is a continuation-in-part of U.S. application Ser. No. 13/206,191, filed Aug. 9, 2011, which is a divisional of U.S. patent application Ser. No. 12/911,052, filed Oct. 25, 2010, which is a continuation of U.S. patent application Ser. No. 11/560,903, filed on Nov. 17, 2006, now U.S. Pat. No. 7,824,277, which is a continuation-in-part of U.S. application Ser. No. 29/245,472, now U.S. Pat. D532, 474, filed on Dec. 23, 2005, the disclosures of which are incorporated by reference herein in their entirety.
- The present invention relates to an improved golf club including a wood-type golf club head having modified sole plates which change golf club face angle at address in order to correct for variations/deviations in the striking surface.
- Golf club heads come in many different forms and makes, such as wood- or metal-type (including drivers and fairway woods), iron-type (including wedge-type club heads), utility- or specialty-type, and putter-type. Each of these styles has a prescribed function and make-up. The present invention relates primarily to hollow golf club heads, such as wood-type and utility-type (generally referred to herein as wood-type golf clubs).
- Wood-type or metal-type golf club heads generally include a front or striking face, a crown, a sole and an arcuate skirt including a heel, a toe and a back. The crown and skirt are sometimes referred to as a shell. The front face interfaces with and strikes the golf ball. A plurality of grooves, sometimes referred to as “score lines,” may be provided on the face to assist in imparting spin to the ball and for decorative purposes. The crown is generally configured to have a particular look to the golfer and to provide structural rigidity for the striking face. The sole of the golf club is particularly important to the golf shot because it contacts and interacts with the ground during the swing.
- The complexities of golf club design are well known. The specifications for each component of the club (i.e., the club head, shaft, grip, and subcomponents thereof) directly impact the performance of the club. Thus, by varying the design specifications, a golf club can be tailored to have specific performance characteristics.
- The design and manufacture of wood-type club heads requires careful attention to club head construction. Among the many factors that must be considered are material selection, material treatment, structural integrity and overall geometrical design. Exemplary geometrical design considerations include loft, lie, face angle, horizontal face bulge, vertical face roll, face size, center of gravity, sole curvature, and overall head weight. The interior design of the club head may be tailored to achieve particular characteristics, such as by including hosel or shaft attachment means, perimeter weighting on the face or body of the club head, and fillers within hollow club heads. Club heads are typically formed from stainless steel, aluminum, or titanium and are cast, stamped, as by forming sheet metal with pressure, forged, or formed by a combination of any two or more of these processes.
- The club heads may be formed from multiple pieces that are welded or otherwise joined together to form a hollow head, as is often the case of club heads designed with inserts, such as soleplates, or face plates, or crown plates. The multi-piece constructions facilitate access to the cavity formed within the club head, thereby permitting the attachment of various other components to the head such as internal weights and the club shaft. The cavity may remain empty, or may be partially or completely filled, such as with foam. An adhesive may be injected into the club head to provide the correct swing weight and to collect and retain any debris that may be in the club head. In addition, due to difficulties in manufacturing one-piece club heads to high dimensional tolerances, the use of multi-piece constructions allows the manufacture of a club head to a tight set of standards.
- It is known to make wood-type golf clubs out of metallic materials. These clubs were originally manufactured primarily by casting durable metals such as stainless steel, aluminum, beryllium copper, etc. into a unitary structure comprising a metal body, face and hosel. As technology progressed, it became more desirable to increase the performance of the face of the club, usually by using a titanium material.
- Players generally seek a metal wood driver and golf ball combination that delivers maximum distance and landing accuracy. The distance a ball travels after impact is dictated by the magnitude and direction of the ball's translational velocity, ball speed, and the ball's rotational velocity or spin. Environmental conditions, including atmospheric pressure, humidity, temperature, and wind speed, further influence the ball's flight. However, these environmental effects are beyond the control of the golf equipment manufacturer. Golf ball landing accuracy is driven by a number of factors as well. Some of these factors are attributed to club head design, such as center of gravity and club face flexibility.
- The sole of the golf club is particularly important to the golf shot because it contacts and interacts with the ground during the golf shot. There are many sole configurations to optimize the performance of the club. Typically, the sole of the club is slightly curved such that when the club head is placed on the ground, the leading edge is located above the ground. The curvature toward the front of the club generally provides bounce. Bounce assists in preventing the club from digging into the ground and substantially slowing club head speed. The curvature toward the trailing edge generally prevents the club head from getting caught on the ground during the back swing.
- In fact, “club face angle” is a material factor affecting trajectory and direction. Club face angle is the angle of the club at address in relation to a desired target (i.e., a hole on the course). A club's face angle will vary based on at least two considerations. First, “lie angle” contributes to club face angle. A lie angle is formed between the center of the shaft and the ground line of the club at address and generally results from how high a player grips the club in relation to the ground when the golf club sole is resting on the ground just prior to the player swinging the golf club. Secondly, club face angle will change based on differences in the topography and terrain of the ground.
- While lie angle may vary from player to player within a general range of from about 50° to about 65°, any difference in the topography of the ground at a given location on the golf course remains a constant for every golfer. Accordingly, manufacturers seek to provide golfers with clubs which are capable of correcting for these topographical variances of the ground notwithstanding the golfer's particular lie angle within this general range.
- Prior clubs have addressed this issue in several ways. In one approach, golf club includes an adjustable shaft for correcting club face angle. The problem with this approach, however, is that adjusting the shaft may undesirably also change the loft of the golf club head, and thereby cancel out, at least in part, any correction.
- In another approach, the golf club head is designed to include a modified sole that is integral with the head in order to compensate for irregularities in the terrain. However, this solution has proven undesirably expensive to golfers who may need several clubs, each having a differently contoured sole in order to adjust for different terrains on the course. And some golfers dislike the permanent nature and/or design of such golf club heads.
- Accordingly, there is a need for an improved golf club head providing a time-saving and cost-effective solution for adjusting club face angle in light of issues such as differences in topography on the golf course as well as optimized face angle for fitting a player.
- A wood-type golf club of the invention addresses and resolves the disadvantages of prior attempts to correct/adjust club face angle on the green. In one embodiment of the invention, the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel. The body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face. A system is disposed within the body for adjusting club face angle at address comprising an element that is rotatable about a system axis that is substantially parallel to the y-axis to provide at least first and second club face angle positions at address. See for example,
FIG. 25 . - The element interacts with the ground plane at address to change/modify the club face angle. The number of degrees by which the element changes/modifies the club face angle at address is related at least in part to the distance that the element extends outward from the sole. In one embodiment, the system changes the golf club angle by less than 1°. In another embodiment, the system changes the golf club angle by at least about 1°. In yet another embodiment, the system changes the golf club angle by at least about 2°. °. In still another embodiment, the system changes the golf club angle by at least about 3°. In a different embodiment, the system changes the golf club angle by greater than about 3°.
- In one embodiment, the element has a cylindrically shaped base member that is flush with the sole and a protrusion formed on and protruding from the base member for changing/correcting the club face angle at address. Of course, the element may comprise any shape that is rotatable about the system axis that is substantially parallel to the y-axis, for example, being conically shaped, disc-shaped, wedge-shaped or tapered. And the protrusion may also comprise any shape or form capable of interacting with the ground at address and changing/correcting club face angle. In another embodiment, the element comprises a base member (without protrusion) wherein the base member extends past the sole at address to correct/change the club face angle.
- In another embodiment of the golf club of the invention, the system is disposed within the body between the toe and the heel at a distance from the heel that is less than a distance from the toe. However, in a golf club of the invention, the system may alternatively be disposed within the body between the toe and the heel at a distance from the heel that is greater than or substantially similar to a distance from the toe.
- In yet another embodiment, the body comprises a more than one system for changing club face angle at address spaced between the heel and the toe. In one embodiment, one of systems may be disengaged at will.
- Any known fastening means may be used to secure or fasten the element and system within the body, including for example, mechanical locking means, welding or brazing, or adhesives, temporarily or permanently.
- The system including the element may comprise any known material including for example plastic, composite, or metal.
- In yet another embodiment, the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel, wherein the body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face; and wherein the body comprises a weight member that is adjustable in a vertical direction to move the center of gravity in the vertical direction and is rotatable about a system axis that is substantially parallel to the y-axis to adjust club face angle at address.
- In a different embodiment of the invention, the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel. The body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face. A system is disposed within the body for adjusting club face angle at address comprising an element that is rotatable about a system axis that is substantially parallel to the z-axis to provide at least first and second club face angle positions at address. See, e.g.,
FIGS. 26A and 26B . - In still another embodiment, the wood-type golf club incorporates a head comprising a body having a face, a sole, a crown, a toe and a heel, wherein the sole is disposed between the toe and the heel. Further, the sole comprises a body portion and one of a plurality of interchangeable adjustment portions wherein the body portion is integral with the body and one of the plurality of interchangeable adjustment portions is interchangeably mated with the body portion such that for a club face angle X at address at location L, each of the plurality of interchangeable adjustment parts adjusts the club face angle X to a different club face angle Xa wherein n is the number of interchangeable adjustment portions. See, e.g.,
FIGS. 27A , 27B, and 27C. - Preferred features of the present invention are disclosed in the accompanying drawings, wherein similar reference characters denote similar elements throughout the several views, and wherein:
-
FIG. 1 is a perspective view of an embodiment of a club head of the present invention; -
FIG. 2 is bottom plan view of an embodiment of a club head ofFIG. 1 ; -
FIG. 3A is a front plan view of an embodiment of a club head according toFIG. 1 at impact with a golf ball; -
FIG. 3B is a front plan view of an embodiment of a club head according toFIG. 1 at address; -
FIG. 4A is bottom plan view of an embodiment of a club head ofFIG. 1 ; -
FIG. 4B is a cross-sectional view of the club head ofFIG. 4 taken along line 3B-3B inFIG. 4 ; -
FIG. 4C is a cross-sectional view of the club head ofFIG. 4 taken alongline 4C-4C inFIG. 4 ; -
FIG. 4D is a cross-sectional view of the club head ofFIG. 4 taken alongline 4D-4D inFIG. 4 ; -
FIG. 5 is a back view of the club head ofFIG. 1 ; -
FIG. 6 is a heel side view of the club head ofFIG. 1 ; -
FIG. 7A is a bottom plan view of a club head with the inventive sole ofFIG. 1 ; -
FIG. 7B is a cross sectional view of the club head ofFIG. 7A taken alongline 7B-7B; -
FIG. 8 is a bottom plan view of another alternative embodiment of a club head of the present invention; -
FIG. 9 is a top plan view of an alternative embodiment of a club head according to the present invention; -
FIG. 10A is a front plan view of a club head according to an embodiment of the club head ofFIG. 9 ; -
FIG. 10B is a cross-sectional view of the club head ofFIG. 10A , taken alonglines 10B-10B; -
FIG. 11 is a top plan view of the club head according to an embodiment ofFIG. 9 ; -
FIG. 12A is a front plan view of a club head according to an embodiment of the club head ofFIG. 9 ; -
FIG. 12B is a cross-sectional view of the club head ofFIG. 12A , taken alonglines 12B-12B; -
FIG. 13 is a back perspective cut-out view of an embodiment of a club head according toFIG. 9 ; -
FIG. 14 is a back view of the club head ofFIG. 13 ; -
FIG. 15 is a perspective view of a weight tube according to the embodiment of theFIG. 13 ; -
FIG. 16 is a back perspective cut-out view of another embodiment of a club head according toFIG. 9 ; -
FIG. 17 is a perspective view of a weight tube according to the embodiment of theFIG. 17 ; -
FIG. 18 is a back perspective cut-out view of another embodiment of a club head according toFIG. 9 ; -
FIG. 19 is a bottom plan view of another embodiment of a club head according toFIG. 9 ; -
FIG. 20 is a front perspective cut-out view of another embodiment of a club head according toFIG. 9 ; -
FIG. 21 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment ofFIG. 13 ; -
FIG. 22 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment ofFIG. 13 ; -
FIG. 23 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment ofFIG. 16 ; -
FIG. 24 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment ofFIG. 16 ; -
FIG. 25 is a front perspective cut-out view of the golf club head according to another embodiment of the golf club of the invention; -
FIGS. 26A and 26B are heel side views of the golf club head according to another embodiment of the golf club of the invention; and -
FIGS. 27A , 27B and 27C are heel side views of the golf club head according to another embodiment of the golf club of the invention. -
FIG. 1 shows agolf club head 10 of the present invention.Club head 10 includes abody 12 having astrike face 14, a sole 16, acrown 18, askirt 20 and ahosel 22. The body defines a hollow interior volume 24 (SeeFIGS. 4B-4D ). Foam or other material may partially or completely fill the interior volume. Weights may be included within the interior volume. The face may be provided with grooves or score lines of varying design. The club head has atoe 26 and aheel 28. - A golf club shaft (not shown) is attached at
hosel 22 and is disposed along a shaft axis A-A. Thehosel 22 may extend to the bottom of theclub head 10, may terminate at a location between the sole andcrown portions head 10, or thehosel 22 may terminate flush with thecrown portion 26. - It is recommended that the
inner volume 24 have a volume greater than 125 cubic centimeters, and more preferably greater than 175 cubic centimeters. Preferably, the mass of theinventive club head 10 is greater than 150 grams, but less than 220 grams; although the club head may have any suitable weight. Thebody 12 may be formed of sheets welded together or cast, preferably from steel, aluminum or titanium or any other suitable material or combination thereof. - The
strike face 14 may be made by milling, casting, forging or stamping and forming. Theface 14 may be made of any suitable material, including titanium, titanium alloy, carbon steel, stainless steel, beryllium copper, and other metals or composites. Theface 14 may have any suitable thickness, and may be uniform or varied. As will be appreciated, theface 14 may be connected to thebody 12 by any suitable means, including bonding and welding. Alternatively, thebody 12 andface 14 may be cast simultaneously forming a homogeneous shell and eliminating the need to bond or otherwise permanently secure aseparate face 14 to thebody 12. Alternatively, the sole 16 orcrown 18 may be formed separately and fitted to the remainder of thebody 12 as is known to those of skill in the art. - The sole 16 preferably has a complex shape that accomplishes two objectives. The first objective is to provide a surface for the
club head 10 to sit on in the address position that squares theface 14 to the target. The second objective is to provide a sole shape that gives more clearance to the ground at impact than would be available in a club head with a conventional sole. In order to achieve the first objective, an address portion or zerodegree bounce portion 30 is provided. This portion is a sufficient area on the sole 16 on which theclub head 10 may rest when placed at the address position by a golfer. The zerodegree bounce portion 30 may be a flat portion provided on the sole 16. The zerodegree bounce portion 30 may be directly centered behind theface 16 or, as illustrated, may be provided more toward theheel 28. As illustrated inFIGS. 1 and 2 , the sole 16 has a zerodegree bounce portion 30, such that at address theclub head 10 rests at this point and theface 14 is square to the target. The zerodegree bounce portion 30 enables theclub head 10 to sit just as a conventional club head without a sole having a complex shape. Thus, the complex sole of theinventive club head 10 does not adversely affect the way the club head sits at address. - In order to achieve the second objective, a portion of the sole 16 is relieved to give it a
multi-relief surface 32 with a negative bounce. Preferably, anegative bounce portion 34 is provided on the sole 16 in a center portion that is spaced from theface 14 of theclub head 10. Thus, theclub head 10 has two areas of bounce. As illustrated inFIGS. 3A and 3B , the impact position Ip of theclub head 10 is different than an address position Ap because the dynamics of the golf swing cause the shaft to flex at impact thereby moving the position of theclub head 10.FIG. 3B illustrates the club head at address where the face is square to the target, the shaft axis A-A creates an angle with the ground G called the shaft angle βa. As illustrated inFIG. 3A , during impact, the club head is rotated a few degrees upright, and the shaft axis A-A creates a different angle with the ground G called shaft angle βi. - It will be appreciated that in one embodiment the
toe 26 may be up at least 5 degrees at a first measurement, for example when theclub head 10 sits at address, such that theface 14 measures square. At a second measurement, for example during impact with a golf ball, taken at a centered position theface 14 measures differently than the first measurement. For example, theface 14 may measure at least two degrees more open at the second measurement than the first measurement, or at least two degrees open at the second measurement than the first measurement. The centered position may comprise thenegative bounce portion 34, which may be a substantially flat surface. When the first measurement occurs at the address position, the shaft angle βa preferably measures about 55 to 45 degrees. When the second measurement occurs at impact of theclub head 10 with a golf ball, the shaft angle βi measures about 55 degrees to 60 degrees. - As illustrated in
FIGS. 1 and 2 , the sole 16 features amulti-relief surface 32 to provide greater ground clearance at the trailingedge 36 of the sole 16 to minimize turf resistance. With this construction, the ground/sole contact point remains forward toward the leadingedge 38 of thestrike face 14. Maintaining a forward ground/sole contact point improves directional control and ball flight, by reducing the potential of theclub head 10 to bounce or skip onto the ball. This is particularly true of players that play the ball forward in their stance, or who sweep the ball from the turf with a shallow angle of attack. Preferably, themulti-relief surface 32 sole features thenegative bounce portion 32 and acutaway portion 40. - The
negative bounce portion 34 may have any desired overall shape; preferably thenegative bounce portion 34 has a triangular shape as shown inFIGS. 1 and 2 .FIGS. 4A-4D illustrates thenegative bounce portion 34 andcutaway portion 40 in the sole 16. Cross-sectional views illustrated inFIGS. 4B and 4D showcutaway portion 40 in comparison with theregular surface 42 of a conventional club head sole.FIG. 4B illustrates the cross-sectional view of the center section of theclub head 10 with thenegative bounce portion 34 andcutaway portion 40 in comparison with the regular surface of a conventionalclub head sole 42. - The
cutaway portion 40 extends from thenegative bounce portion 34 to the trailingedge 36 of to theclub head 10. As illustrated inFIGS. 4B-D , thecutaway portion 40 continues and may gradually increase the negative surface from the plane S running along the bottom of the sole. Preferably, thecutaway portion 40 has a depth dcp of about 0.05 to 0.5 inch from the regular surface of a conventionalclub head sole 42; this depth may or may not be constant.FIGS. 5 and 6 illustrate the back 44 andheel 28 of the club head. The full extent of thecutaway portion 40 can be envisioned. -
FIGS. 7A-7B illustrate the sole 16 of theclub head 10 and a cross-sectional view throughline 7B-7B which illustrates themulti-relief surface 32 of the sole 16. Thenegative bounce portion 34 is spaced a distance D1 from the strike face, where D1 is preferably about 0.1 to 1.0 inch. More preferably, D1 is about 0.35 to 0.65 inch from thestrike face 14 of theclub head 10. The distance D1 may be different for different club heads as it may depend on the face progression and the loft of the club head. As illustrated, thenegative bounce portion 34 comprises a surface having an angle α from a plane S running along the bottom of the sole 16 parallel to the z-axis of a coordinate system running through the club head. Thenegative bounce portion 34 comprises about a negative 0.5 to a negative 4.0 degree surface, such that the angle α is about negative 0.5 to 4.0 degrees from the plane S. Preferably, thenegative bounce portion 34 comprises about a negative 2.0 degree surface. It will be appreciated that thenegative bounce portion 34 may have a constant angle or may have an angle that varies toward the back of the sole. Thenegative bounce portion 34 may have locations with multiple radii. - As illustrated, the
multi-relief surface 32 includes both thenegative bounce portion 34 and thecutaway portion 40 and these form a triangular shape. The triangular shape forms an angle φ, angle φ is preferably about 35 to 50 degrees, and more preferably about 38 to 44 degrees. Thenegative bounce portion 34 andcutaway portion 40 have a length L, length L is preferably about 1 to 5 inches, and more preferably about 2 to 4 inches. -
FIG. 8 shows an alternative embodiment for the sole 16. Theclub head 46 features a multi-relief sole 32 as described above. The multi-relief sole features thenegative bounce portion 34 and thecutaway portion 40. It will be appreciated that thenegative bounce portion 34 andcutaway portion 40 may have any suitable shape. - In general, to increase the sweet spot, the center of gravity of the club head is moved toward the bottom and back of the club head. This permits an average golfer to launch the ball up in the air faster and hit the ball farther. In addition, the moment of inertia of the club head is increased to minimize the distance and accuracy penalties associated with off-center hits. In order to move the weight down and back without increasing the overall weight of the club head, material or mass is generally taken from one area of the club head and moved to another. Materials can be taken from the face of the club, creating a thin club face, the crown and/or sole and placed toward the back of the club.
-
FIG. 9 illustrates a top of aclub head 50 according to another embodiment of the present invention.Club head 50 includes abody 52 having astrike face 54, a sole 56 (seeFIGS. 10A and 10B ), acrown 58, askirt 60 and ahosel 62. The body defines a hollow interior volume 64 (SeeFIGS. 10B and 12B ). The face may be provided with grooves or score lines of varying design. The club head has atoe 66 and aheel 68. -
FIG. 9 illustrates the center of gravity (e.g.) along the x-axis and z-axis. In order to improve playability of theclub head 50 it is desired to be able to move the e.g. within theclub head 50 to a more optimal position. Preferably, theclub head 50 features a weight system 70 (seeFIGS. 10A-10B and 12A-12B) to move the e.g. within theclub head 50 to a more optimal position. Preferably, the e.g. is movable within a 6 mm distance along the z-axis in comparison to a club head without the weight system. More preferably, the e.g. is movable within a 4 mm distance along the z-axis. The e.g. may be movable within a 6 mm distance along the x-axis in comparison to a club head without the weight system, more preferably within a 2 mm distance, and still more preferably within a 0.5 mm distance. Additionally, the e.g. is moveable within a 6 mm distance along the y-axis in comparison to a club head without the weight system (SeeFIG. 10A-10B and 12A-12B). Preferably the e.g. is moveable within a 2 mm distance along the y-axis. - The e.g. adjustability may not substantially affect the dynamic loft of the club head. For example, for a 3 mm front-back e.g. shift the dynamic loft changes about 0.4 degrees. When the e.g. is moved back, the backspin may increase, for example between 100 and 300 rpm per 3 mm of e.g. movement toward the rear of the club head.
-
FIG. 10A illustrates thefront face 54 of the club head showing the x-axis and the y-axis.FIG. 10B is a cross-sectional view taken alonglines 10B-10B ofFIG. 10A .FIG. 10B depicts the inside of the club head featuring aweight system 70 according to the invention, and the e.g. may be moved along the z axis and y axis. -
FIG. 10B depicts theweight system 70 as atube 72 placed within theclub head 50 within a plane formed by the y-axis and z-axis to adjust the e.g. of the club head. As illustrated in FIG. 11, it will be appreciated that more than onetube 72 may be provided within theclub head 50. As illustrated inFIG. 10B , theweight system 70 features atube 72 with aweight 74 at oneend 76 of thetube 72. As shown inFIG. 10B , theweight 74 is placed the back of theclub head 50 to move the e.g. to a desired location for desirable ball flight. When theweight 74 is located at a back of theclub head 50, a shot hit off theclub head 50 has increased backspin and a higher launch angle resulting in a softer landing. In an alternative embodiment, it will be appreciated that thetube 72 may feature multiple inserts varying in weight for placement within thetube 72 to move the e.g. of theclub head 50 to a desired location. - As illustrated, the
tube 72 is preferably provided at an angle within theclub head 50. Thetube 72 is angled downward toward theface 54 of theclub head 50, such that thetube 72 is provided within the plane formed by the z-axis and y-axis. Thetube 72 may be angled by an angle δ, where δ is at least 1 degree from the plane W formed by the z axis and x axis. Preferably, the tube is angled downward toward theface 54 by at least 3 degrees from the plane W formed by the z-axis and x-axis. More preferably, thetube 72 is angled downward toward the face of theclub head 50 by about 3 to 7 degrees from the plane W formed by the z-axis and x-axis. It will be appreciated that although thetube 72 is described herein as being provided within a plane formed by the y-axis and z-axis, thetube 72 may be offset in either direction from that plane by any desired amount. - Now referring to
FIG. 12A-12B , it will be appreciated that thetube 72 may be flipped within theclub head 50, such that theweight 74 is provided at theother end 76 of theclub head 50, closer to theface 54, to move the e.g to a different location for desirable ball flight. When theweight 74 is located at a front of the club head 50 a shot hit off theclub head 50 has less backspin and a lower trajectory resulting in a shallower landing for increased distance. It will be appreciated that thetube 72 itself may be able to be inserted in the club head with theweight 74 in either direction, or thatdifferent tubes 72 may be selectable with theweight 74 at the desired end and then provided in the club head. - It will be appreciated that a club having the
weight system 70, such as thetube 72 andweight 74, may also include themulti-relief surface 32 on the sole 56 as described above. For example, inFIGS. 10B and 12B the sole 56 may feature amulti-relief surface 32 with anegative bounce portion 34 and acutaway portion 40 as described above. It will also be appreciated that the angle 8 of the tube may be substantially parallel to themulti-relief surface 32. -
FIG. 13 illustrates how thetube 72 may be inserted into theclub head 50. Asheath 78 extending from a block 79 in theclub head 50 receives thetube 72 with theweight 74, and afastener 80 locks thetube 72 in place within theclub head 50. Thetube 72 is fastened to the outside of theclub head 50 substantially flush with anouter surface 82 of the club head, as illustrated inFIG. 14 . -
FIG. 15 illustrates thetube 72 according to the embodiment ofFIG. 13 . Theweight 74 is provided at anend 76 of thetube 72. It will be appreciated that thetube 72 andweight 74 may be joined by threaded engagement, epoxy, mechanical lock or other joining method. Theweight 74 may comprise tungsten or any other suitable material. Theweight 74 has a mass of about 10 to 25 grams. The combined mass of thetube 72 andweight 74 is about 20 to 40 grams. Preferably, thetube 72 comprises aluminum, although any other suitable material may be used. - It is envisioned that the orientation of the
tube 72 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location. Thetube 72 has a diameter td of about 0.3 to 0.5 inch and a length t1 of about 2 to 3 inches. It will be appreciated that more than onetube 72 could be provided in theclub head 50 at any one time as illustrated inFIG. 11 , or thatmultiple tubes 72 with a different mass may be provided to the user or fitting location. -
FIG. 16 illustrates an alternative embodiment for placement of thetube 72 within theclub head 50. In this embodiment, thetube 72 hasthreads 84 on both ends 86 and 88 that interlock in threaded engagement to themating threads 90 on ablock 92 inside the club head adjacent theface 54 and threads 94 on ablock 96 adjacent theskirt 60 of theclub head 50. Thetube 72 is fastened to the inside of theclub head 50 adjacent theface 54. It is envisioned that the orientation of thetube 72 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location. -
FIG. 17 illustrates thetube 72 of the embodiment ofFIG. 16 showing the dual threaded ends 86 and 88 of the tube that may be inserted in either direction into theclub head 50 and threadedly received adjacent theface 54. Thetube 72 has a diameter td and a length t1 has described above and theweight 74 andtube 72 have a similar mass as described above. The exterior of thetube 72 would align substantially flush with theouter surface 82 of theclub head 50. -
FIG. 18 shows an alternative embodiment for theweight system 70 where aweight 98 may be slid along apipe 100 provided in theclub head 50. The exterior surface 102 of the sole 56 of theclub head 50 may feature a mechanism 104 to move theweight 98 along thepipe 100 to the desired location to move the e.g. for the desired ball flight as described above. Alternatively, the position of theweight 98 on thepipe 100 may be set during manufacture of the club head. -
FIG. 19 features another alternative embodiment for theweight system 70. This embodiment features two ormore cavities 106 in the sole 56 of theclub head 50 for receivinginserts 108. Thecavities 106 may be placed in any desired location on theclub head 50. As illustrated, the threecavities 106 are provided along an axis O offset from the x-axis. Thecavities 106 may be aligned parallel to the x-axis or may be offset in either direction. Thecavities 106 may be provided on an axis O offset from the x-axis by 0 to 90 degrees in either direction. Theback portion 110 of the club head may featuredeeper cavities 106 to mimic the angle of thetube 72 described above relative to the plane formed by the z-axis and x-axis. Theinserts 108 may have different mass and may be placed in thedifferent cavities 106 to move the e.g. to a desired location. Theinserts 108 may be movable by the user, or they may be set at the time of manufacture or modifiable in a fitting environment. -
FIG. 20 illustrates yet another alternative embodiment of theweighting system 70 for moving the center of gravity along the y-axis. As illustrated, theclub head 50 features avertical cavity 112 extending from the sole 56 into thehollow volume 64 of the club head. Thecavity 112 may be placed in any desired location in the sole 56, for example centered along the width of theface 54 and located more toward the back of theclub head 50, as illustrated. Aweight 114 is made to fit within thecavity 112, such that it mates securely within thecavity 112. It will be appreciated that theweight 114 may be secured in the cavity in any suitable manner, including threaded engagement, epoxy, mechanical lock, or other joining method. As illustrated, thecavity 112 is cylindrical and theweight 114 is a corresponding cylindrical plug, although it will be appreciated that theweight 114 andmating cavity 112 may be any suitable shape and size. Theweight 114 features aheavy end 116 and alighter end 118. The heavy orlighter end weight 114 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location. This embodiment may assist in isolating just one attribute, moving the e.g. along the y-axis, thereby making club fitting more straight forward. - As illustrated in
FIG. 21 , the movement of the e.g. is illustrated based on the construction ofFIG. 13 . It illustrates the movement of the e.g. along the y-axis and z-axis between anormal Titleist 904F fairway wood without a weight system, aclub head 50 with theweight system 70 ofFIG. 13 having theweight 74 in the back of theclub head 50, and aclub head 50 with theweight system 70 ofFIG. 13 having theweight 74 in the front of theclub head 50.FIG. 21 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads. - As illustrated in
FIG. 22 , the movement of the e.g. is illustrated based on the construction ofFIG. 13 . It illustrates the movement of the e.g. along the y-axis and z-axis between anormal Titleist 904F fairway wood without a weight system, aclub head 50 with theweight system 70 ofFIG. 13 having theweight 74 in the back of theclub head 50, and aclub head 50 with theweight system 70 ofFIG. 13 having theweight 74 in the front of theclub head 50.FIG. 22 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads. - As illustrated in
FIG. 23 , the movement of the e.g. is illustrated based on the construction ofFIG. 16 . It illustrates the movement of the e.g. along the y-axis and z-axis between anormal Titleist 904F fairway wood without a weight system, aclub head 50 with theweight system 70 ofFIG. 16 having theweight 74 in the back of theclub head 50, and aclub head 74 with theweight system 70 ofFIG. 16 having theweight 74 in the front of theclub head 50.FIG. 23 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads. - As illustrated in
FIG. 24 , the movement of the e.g. is illustrated based on the construction ofFIG. 16 . It illustrates the movement of the e.g. along the y-axis and z-axis between anormal Titleist 904F fairway wood without a weight system, aclub head 50 with theweight system 70 ofFIG. 16 having theweight 74 in the back of theclub head 50, and aclub head 50 with theweight system 70 ofFIG. 16 having theweight 74 in the front of theclub head 50.FIG. 24 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads. The locations of the e.g. shown inFIGS. 21-24 were calculated using a commercially available CAD (computer aided design) system. -
FIG. 25 illustrates and alternative embodiment of the golf ball of the invention depicted inFIG. 20 , having the following modifications. Protrusion 120 extends outward past sole 56 a distance sufficient to change the club face angle at address by rotating protrusion 120 about the y axis. Alternatively, inFIG. 20 , cylindrically shapedweight 114 itself may extend a distance outward past sole 56 to change the club face angle at address. -
FIGS. 26A and 26B show examples wherein alternatively shapedelements -
FIGS. 27A , 27B and 27C show examples of how the sole may comprise abody portion 123 and one of a plurality ofinterchangeable adjustment portions 125 wherein thebody portion 123 is integral with the body and the one of the plurality ofinterchangeable adjustment portions 125 is interchangeably mated with thebody portion 123 to change the club face angle at address.Body portion 123 andadjustment portion 125 may mate by any known means for joining matable parts such asteeth 124 as inFIG. 27A , or a lip member such as inFIG. 27B or clip-on means such as depicted inFIG. 27C . - While various descriptions of the present invention are described above, it should be understood that the various features of each embodiment could be used alone or in any combination thereof. Therefore, this invention is not to be limited to only the specifically preferred embodiments depicted herein. For example, the multi-relief surface sole may be combined in one club head with the weight system to move the e.g. of the club head. Further, it should be understood that variations and modifications within the spirit and scope of the invention might occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is accordingly defined as set forth in the appended claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/571,650 US20120302367A1 (en) | 2005-12-23 | 2012-08-10 | Metal wood club |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29/245,472 USD532474S1 (en) | 2005-12-23 | 2005-12-23 | Golf club head sole |
US11/560,903 US7824277B2 (en) | 2005-12-23 | 2006-11-17 | Metal wood club |
US12/911,052 US7997998B2 (en) | 2005-12-23 | 2010-10-25 | Metal wood club |
US13/206,191 US20110294595A1 (en) | 2005-12-23 | 2011-08-09 | Metal wood club |
US13/571,650 US20120302367A1 (en) | 2005-12-23 | 2012-08-10 | Metal wood club |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/206,191 Continuation-In-Part US20110294595A1 (en) | 2005-12-23 | 2011-08-09 | Metal wood club |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120302367A1 true US20120302367A1 (en) | 2012-11-29 |
Family
ID=47219596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/571,650 Abandoned US20120302367A1 (en) | 2005-12-23 | 2012-08-10 | Metal wood club |
Country Status (1)
Country | Link |
---|---|
US (1) | US20120302367A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8702534B2 (en) | 2010-08-20 | 2014-04-22 | Callaway Golf Company | Golf club head |
US8777774B1 (en) | 2012-01-27 | 2014-07-15 | Callaway Golf Company | Adjustable iron-type golf club head |
US8834294B1 (en) | 2012-06-08 | 2014-09-16 | Callaway Golf Company | Golf club head with center of gravity adjustability |
US8956244B1 (en) | 2012-06-08 | 2015-02-17 | Callaway Golf Company | Golf club head with center of gravity adjustability |
US20150367207A1 (en) * | 2014-06-23 | 2015-12-24 | Dunlop Sports Co. Ltd. | Golf club and golf club set |
US20170100649A1 (en) * | 2012-06-27 | 2017-04-13 | Callaway Golf Company | Golf Club Head Having Optimized Ball Speed to CT Relationship |
US20170151474A1 (en) * | 2012-06-27 | 2017-06-01 | Callaway Golf Company | Golf Club Head With Structural Columns |
US20170165539A1 (en) * | 2012-06-27 | 2017-06-15 | Callaway Golf Company | Golf Club Head With Structural Columns |
US9782646B2 (en) | 2012-06-08 | 2017-10-10 | Callaway Golf Company | Golf club head with center of gravity adjustability |
US9821199B1 (en) | 2012-06-27 | 2017-11-21 | Callaway Golf Company | Golf club head having stress-reducing tubes |
US9889349B1 (en) | 2012-06-27 | 2018-02-13 | Callway Golf Company | Golf club head having stress-reducing structures |
US10092797B2 (en) | 2011-12-29 | 2018-10-09 | Taylor Made Golf Company, Inc. | Golf club head |
US10238933B1 (en) * | 2012-06-27 | 2019-03-26 | Callaway Golf Company | Golf club head having adjustable stress-reducing structures |
US10300356B2 (en) | 2015-05-20 | 2019-05-28 | Taylor Made Golf Company, Inc. | Golf club heads |
US20190217167A1 (en) * | 2012-06-27 | 2019-07-18 | Callaway Golf Company | Golf Club Head Having Adjustable Stress-Reducing Structures |
USD930100S1 (en) * | 2017-07-10 | 2021-09-07 | Parsons Xtreme Golf, LLC | Golf club head |
US20220258017A1 (en) * | 2019-07-19 | 2022-08-18 | Aerotec Power Pty Ltd | Improved sporting articles |
US11541286B2 (en) | 2014-05-21 | 2023-01-03 | Taylor Made Golf Company, Inc. | Golf club heads |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5429354A (en) * | 1994-07-27 | 1995-07-04 | Lisco, Inc. | Crownless golf club |
US5435551A (en) * | 1994-11-22 | 1995-07-25 | Chen; Archer C. C. | Golf club head of composite material |
US5518242A (en) * | 1994-07-27 | 1996-05-21 | Lisco, Inc. | Crownless golf club |
US5807186A (en) * | 1997-03-18 | 1998-09-15 | Chen; Archer C. C. | Golf club including lie adjusting device |
USD470203S1 (en) * | 2002-04-12 | 2003-02-11 | Callaway Golf Company | Golf club head |
USD470552S1 (en) * | 2002-04-12 | 2003-02-18 | Callaway Golf Company | Golf club head |
USD470553S1 (en) * | 2002-04-12 | 2003-02-18 | Callaway Golf Company | Golf club head |
US6530848B2 (en) * | 2000-05-19 | 2003-03-11 | Elizabeth P. Gillig | Multipurpose golf club |
US6623374B1 (en) * | 2002-04-15 | 2003-09-23 | Callaway Golf Company | Golf club head and set of golf clubs |
USD503444S1 (en) * | 2004-01-21 | 2005-03-29 | John P. Gillig | Golf club head |
US7128660B2 (en) * | 2000-05-19 | 2006-10-31 | Elizabeth P. Gillig Revocable Trust | Method of golf club performance enhancement and articles resultant therefrom |
US7789774B2 (en) * | 2004-10-13 | 2010-09-07 | Roger Cleveland Golf Company, Inc. | Golf club head having a displaced crown portion |
US7854667B2 (en) * | 2000-05-19 | 2010-12-21 | Triple Tee Golf, Inc. | Method of golf club performance enhancement and articles resultant therefrom |
US20110152000A1 (en) * | 2009-12-23 | 2011-06-23 | Taylormade Golf Company, Inc. | Golf club |
US8142308B2 (en) * | 2000-05-19 | 2012-03-27 | Triple Tee Golf, Inc. | System of golf club performance enhancement and articles resultant therefrom |
US20130324307A1 (en) * | 2012-05-31 | 2013-12-05 | Nike, Inc. | Golf club and golf club head with a crown recessed feature |
-
2012
- 2012-08-10 US US13/571,650 patent/US20120302367A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5518242A (en) * | 1994-07-27 | 1996-05-21 | Lisco, Inc. | Crownless golf club |
US5429354A (en) * | 1994-07-27 | 1995-07-04 | Lisco, Inc. | Crownless golf club |
US5435551A (en) * | 1994-11-22 | 1995-07-25 | Chen; Archer C. C. | Golf club head of composite material |
US5807186A (en) * | 1997-03-18 | 1998-09-15 | Chen; Archer C. C. | Golf club including lie adjusting device |
US7128660B2 (en) * | 2000-05-19 | 2006-10-31 | Elizabeth P. Gillig Revocable Trust | Method of golf club performance enhancement and articles resultant therefrom |
US8142308B2 (en) * | 2000-05-19 | 2012-03-27 | Triple Tee Golf, Inc. | System of golf club performance enhancement and articles resultant therefrom |
US7854667B2 (en) * | 2000-05-19 | 2010-12-21 | Triple Tee Golf, Inc. | Method of golf club performance enhancement and articles resultant therefrom |
US6530848B2 (en) * | 2000-05-19 | 2003-03-11 | Elizabeth P. Gillig | Multipurpose golf club |
USD470203S1 (en) * | 2002-04-12 | 2003-02-11 | Callaway Golf Company | Golf club head |
USD470553S1 (en) * | 2002-04-12 | 2003-02-18 | Callaway Golf Company | Golf club head |
USD470552S1 (en) * | 2002-04-12 | 2003-02-18 | Callaway Golf Company | Golf club head |
US6623374B1 (en) * | 2002-04-15 | 2003-09-23 | Callaway Golf Company | Golf club head and set of golf clubs |
USD503444S1 (en) * | 2004-01-21 | 2005-03-29 | John P. Gillig | Golf club head |
US7789774B2 (en) * | 2004-10-13 | 2010-09-07 | Roger Cleveland Golf Company, Inc. | Golf club head having a displaced crown portion |
US20110152000A1 (en) * | 2009-12-23 | 2011-06-23 | Taylormade Golf Company, Inc. | Golf club |
US20130324307A1 (en) * | 2012-05-31 | 2013-12-05 | Nike, Inc. | Golf club and golf club head with a crown recessed feature |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8727911B2 (en) | 2010-08-20 | 2014-05-20 | Callaway Golf Company | Golf club head |
US8702534B2 (en) | 2010-08-20 | 2014-04-22 | Callaway Golf Company | Golf club head |
US12090372B2 (en) | 2011-12-29 | 2024-09-17 | Taylor Made Golf Company, Inc. | Golf club head |
US11266885B2 (en) | 2011-12-29 | 2022-03-08 | Taylor Made Golf Company, Inc. | Golf club head |
US10888742B2 (en) | 2011-12-29 | 2021-01-12 | Taylor Made Golf Company, Inc. | Golf club head |
US10463925B2 (en) | 2011-12-29 | 2019-11-05 | Taylor Made Golf Company, Inc. | Golf club head |
US10092797B2 (en) | 2011-12-29 | 2018-10-09 | Taylor Made Golf Company, Inc. | Golf club head |
US8777774B1 (en) | 2012-01-27 | 2014-07-15 | Callaway Golf Company | Adjustable iron-type golf club head |
US9782646B2 (en) | 2012-06-08 | 2017-10-10 | Callaway Golf Company | Golf club head with center of gravity adjustability |
US8834294B1 (en) | 2012-06-08 | 2014-09-16 | Callaway Golf Company | Golf club head with center of gravity adjustability |
US8956244B1 (en) | 2012-06-08 | 2015-02-17 | Callaway Golf Company | Golf club head with center of gravity adjustability |
US9889349B1 (en) | 2012-06-27 | 2018-02-13 | Callway Golf Company | Golf club head having stress-reducing structures |
US20170113104A1 (en) * | 2012-06-27 | 2017-04-27 | Callaway Golf Company | Golf Club Head Having Optimized Ball Speed to CT Relationship |
US9821199B1 (en) | 2012-06-27 | 2017-11-21 | Callaway Golf Company | Golf club head having stress-reducing tubes |
US20170165539A1 (en) * | 2012-06-27 | 2017-06-15 | Callaway Golf Company | Golf Club Head With Structural Columns |
US20170151474A1 (en) * | 2012-06-27 | 2017-06-01 | Callaway Golf Company | Golf Club Head With Structural Columns |
US10238933B1 (en) * | 2012-06-27 | 2019-03-26 | Callaway Golf Company | Golf club head having adjustable stress-reducing structures |
US20170100649A1 (en) * | 2012-06-27 | 2017-04-13 | Callaway Golf Company | Golf Club Head Having Optimized Ball Speed to CT Relationship |
US20170113105A1 (en) * | 2012-06-27 | 2017-04-27 | Callaway Golf Company | Golf Club Head Having Optimized Ball Speed To CT Relationship |
US20190217167A1 (en) * | 2012-06-27 | 2019-07-18 | Callaway Golf Company | Golf Club Head Having Adjustable Stress-Reducing Structures |
US9776058B2 (en) * | 2012-06-27 | 2017-10-03 | Callaway Golf Company | Golf club head having optimized ball speed to CT relationship |
US10589154B2 (en) * | 2012-06-27 | 2020-03-17 | Callaway Golf Company | Golf club head having adjustable stress-reducing structures |
US11541286B2 (en) | 2014-05-21 | 2023-01-03 | Taylor Made Golf Company, Inc. | Golf club heads |
US10286264B2 (en) * | 2014-06-23 | 2019-05-14 | Sumitomo Rubber Industries, Ltd. | Golf club set with progression of curvature of sole and center of gravity |
US20150367207A1 (en) * | 2014-06-23 | 2015-12-24 | Dunlop Sports Co. Ltd. | Golf club and golf club set |
US10300356B2 (en) | 2015-05-20 | 2019-05-28 | Taylor Made Golf Company, Inc. | Golf club heads |
USD930100S1 (en) * | 2017-07-10 | 2021-09-07 | Parsons Xtreme Golf, LLC | Golf club head |
US20220258017A1 (en) * | 2019-07-19 | 2022-08-18 | Aerotec Power Pty Ltd | Improved sporting articles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9737770B2 (en) | Metal wood club | |
US20120302367A1 (en) | Metal wood club | |
US9421432B2 (en) | Metal wood club | |
US20070149315A1 (en) | Metal wood club | |
US20130244808A1 (en) | Metal wood club | |
US9144717B2 (en) | Putter heads and putters | |
JP5601726B2 (en) | Golf club head or other ball striking device having a stiffening face portion | |
US8562452B2 (en) | Golf club or golf club head having an adjustable ball striking face | |
JP5767230B2 (en) | Golf club and golf club head | |
JP5769393B2 (en) | Metal wood club | |
US20040048682A1 (en) | Golf club head | |
US20060234807A1 (en) | Iron-type golf clubs | |
US6875130B2 (en) | Wood-type golf club head | |
US7819759B2 (en) | Golf club head | |
US8480507B2 (en) | Golf clubs and golf club heads | |
JP2003199850A (en) | Iron type golf club head | |
EP2432571B1 (en) | Multi-component golf club head | |
JP4657484B2 (en) | Golf club head and golf club |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ACUSHNET COMPANY, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MYRHUM, MARK C.;ZIMMERMAN, GERY M.;BENNETT, THOMAS ORRIN;AND OTHERS;SIGNING DATES FROM 20120725 TO 20120806;REEL/FRAME:028763/0980 |
|
AS | Assignment |
Owner name: KOREA DEVELOPMENT BANK, NEW YORK BRANCH, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:ACUSHNET COMPANY;REEL/FRAME:031868/0519 Effective date: 20121219 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ACUSHNET COMPANY, MASSACHUSETTS Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (031868/0519);ASSIGNOR:KOREA DEVELOPMENT BANK, NEW YORK BRANCH;REEL/FRAME:039939/0362 Effective date: 20160728 |