US20120302367A1 - Metal wood club - Google Patents

Metal wood club Download PDF

Info

Publication number
US20120302367A1
US20120302367A1 US13/571,650 US201213571650A US2012302367A1 US 20120302367 A1 US20120302367 A1 US 20120302367A1 US 201213571650 A US201213571650 A US 201213571650A US 2012302367 A1 US2012302367 A1 US 2012302367A1
Authority
US
United States
Prior art keywords
club head
wood
golf club
face
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/571,650
Inventor
Mark C. Myrhum
Gery M. Zimmerman
Thomas Orrin Bennett
Christopher D. Harvell
Stephen S. Murphy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acushnet Co
Original Assignee
Acushnet Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US29/245,472 external-priority patent/USD532474S1/en
Priority claimed from US11/560,903 external-priority patent/US7824277B2/en
Application filed by Acushnet Co filed Critical Acushnet Co
Priority to US13/571,650 priority Critical patent/US20120302367A1/en
Assigned to ACUSHNET COMPANY reassignment ACUSHNET COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENNETT, THOMAS ORRIN, MURPHY, STEPHEN S., ZIMMERMAN, GERY M., HARVELL, CHRISTOPHER D., MYRHUM, MARK C.
Publication of US20120302367A1 publication Critical patent/US20120302367A1/en
Assigned to KOREA DEVELOPMENT BANK, NEW YORK BRANCH reassignment KOREA DEVELOPMENT BANK, NEW YORK BRANCH SECURITY AGREEMENT Assignors: ACUSHNET COMPANY
Assigned to ACUSHNET COMPANY reassignment ACUSHNET COMPANY RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (031868/0519) Assignors: KOREA DEVELOPMENT BANK, NEW YORK BRANCH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0466Heads wood-type
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0433Heads with special sole configurations
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/045Strengthening ribs
    • A63B53/0454Strengthening ribs on the rear surface of the impact face plate
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/02Ballast means for adjusting the centre of mass
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B2053/0491Heads with added weights, e.g. changeable, replaceable
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/01Special aerodynamic features, e.g. airfoil shapes, wings or air passages
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0408Heads characterised by specific dimensions, e.g. thickness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0408Heads characterised by specific dimensions, e.g. thickness
    • A63B53/0412Volume
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0416Heads having an impact surface provided by a face insert
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0458Heads with non-uniform thickness of the impact face plate

Definitions

  • the present invention relates to an improved golf club including a wood-type golf club head having modified sole plates which change golf club face angle at address in order to correct for variations/deviations in the striking surface.
  • Golf club heads come in many different forms and makes, such as wood- or metal-type (including drivers and fairway woods), iron-type (including wedge-type club heads), utility- or specialty-type, and putter-type. Each of these styles has a prescribed function and make-up.
  • the present invention relates primarily to hollow golf club heads, such as wood-type and utility-type (generally referred to herein as wood-type golf clubs).
  • Wood-type or metal-type golf club heads generally include a front or striking face, a crown, a sole and an arcuate skirt including a heel, a toe and a back.
  • the crown and skirt are sometimes referred to as a shell.
  • the front face interfaces with and strikes the golf ball.
  • a plurality of grooves, sometimes referred to as “score lines,” may be provided on the face to assist in imparting spin to the ball and for decorative purposes.
  • the crown is generally configured to have a particular look to the golfer and to provide structural rigidity for the striking face.
  • the sole of the golf club is particularly important to the golf shot because it contacts and interacts with the ground during the swing.
  • the complexities of golf club design are well known.
  • the specifications for each component of the club i.e., the club head, shaft, grip, and subcomponents thereof) directly impact the performance of the club.
  • a golf club can be tailored to have specific performance characteristics.
  • club heads require careful attention to club head construction. Among the many factors that must be considered are material selection, material treatment, structural integrity and overall geometrical design. Exemplary geometrical design considerations include loft, lie, face angle, horizontal face bulge, vertical face roll, face size, center of gravity, sole curvature, and overall head weight.
  • the interior design of the club head may be tailored to achieve particular characteristics, such as by including hosel or shaft attachment means, perimeter weighting on the face or body of the club head, and fillers within hollow club heads.
  • Club heads are typically formed from stainless steel, aluminum, or titanium and are cast, stamped, as by forming sheet metal with pressure, forged, or formed by a combination of any two or more of these processes.
  • the club heads may be formed from multiple pieces that are welded or otherwise joined together to form a hollow head, as is often the case of club heads designed with inserts, such as soleplates, or face plates, or crown plates.
  • the multi-piece constructions facilitate access to the cavity formed within the club head, thereby permitting the attachment of various other components to the head such as internal weights and the club shaft.
  • the cavity may remain empty, or may be partially or completely filled, such as with foam.
  • An adhesive may be injected into the club head to provide the correct swing weight and to collect and retain any debris that may be in the club head.
  • the use of multi-piece constructions allows the manufacture of a club head to a tight set of standards.
  • wood-type golf clubs out of metallic materials. These clubs were originally manufactured primarily by casting durable metals such as stainless steel, aluminum, beryllium copper, etc. into a unitary structure comprising a metal body, face and hosel. As technology progressed, it became more desirable to increase the performance of the face of the club, usually by using a titanium material.
  • Players generally seek a metal wood driver and golf ball combination that delivers maximum distance and landing accuracy.
  • the distance a ball travels after impact is dictated by the magnitude and direction of the ball's translational velocity, ball speed, and the ball's rotational velocity or spin.
  • Environmental conditions including atmospheric pressure, humidity, temperature, and wind speed, further influence the ball's flight. However, these environmental effects are beyond the control of the golf equipment manufacturer.
  • Golf ball landing accuracy is driven by a number of factors as well. Some of these factors are attributed to club head design, such as center of gravity and club face flexibility.
  • the sole of the golf club is particularly important to the golf shot because it contacts and interacts with the ground during the golf shot.
  • the sole of the club is slightly curved such that when the club head is placed on the ground, the leading edge is located above the ground.
  • the curvature toward the front of the club generally provides bounce. Bounce assists in preventing the club from digging into the ground and substantially slowing club head speed.
  • the curvature toward the trailing edge generally prevents the club head from getting caught on the ground during the back swing.
  • club face angle is a material factor affecting trajectory and direction.
  • Club face angle is the angle of the club at address in relation to a desired target (i.e., a hole on the course).
  • a club's face angle will vary based on at least two considerations.
  • “lie angle” contributes to club face angle.
  • a lie angle is formed between the center of the shaft and the ground line of the club at address and generally results from how high a player grips the club in relation to the ground when the golf club sole is resting on the ground just prior to the player swinging the golf club.
  • club face angle will change based on differences in the topography and terrain of the ground.
  • lie angle may vary from player to player within a general range of from about 50° to about 65°, any difference in the topography of the ground at a given location on the golf course remains a constant for every golfer. Accordingly, manufacturers seek to provide golfers with clubs which are capable of correcting for these topographical variances of the ground notwithstanding the golfer's particular lie angle within this general range.
  • golf club includes an adjustable shaft for correcting club face angle.
  • adjusting the shaft may undesirably also change the loft of the golf club head, and thereby cancel out, at least in part, any correction.
  • the golf club head is designed to include a modified sole that is integral with the head in order to compensate for irregularities in the terrain.
  • this solution has proven undesirably expensive to golfers who may need several clubs, each having a differently contoured sole in order to adjust for different terrains on the course. And some golfers dislike the permanent nature and/or design of such golf club heads.
  • the wood-type golf club of the invention addresses and resolves the disadvantages of prior attempts to correct/adjust club face angle on the green.
  • the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel.
  • the body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face.
  • a system is disposed within the body for adjusting club face angle at address comprising an element that is rotatable about a system axis that is substantially parallel to the y-axis to provide at least first and second club face angle positions at address. See for example, FIG. 25 .
  • the element interacts with the ground plane at address to change/modify the club face angle.
  • the number of degrees by which the element changes/modifies the club face angle at address is related at least in part to the distance that the element extends outward from the sole.
  • the system changes the golf club angle by less than 1°.
  • the system changes the golf club angle by at least about 1°.
  • the system changes the golf club angle by at least about 2°. °.
  • the system changes the golf club angle by at least about 3°.
  • the system changes the golf club angle by greater than about 3°.
  • the element has a cylindrically shaped base member that is flush with the sole and a protrusion formed on and protruding from the base member for changing/correcting the club face angle at address.
  • the element may comprise any shape that is rotatable about the system axis that is substantially parallel to the y-axis, for example, being conically shaped, disc-shaped, wedge-shaped or tapered.
  • the protrusion may also comprise any shape or form capable of interacting with the ground at address and changing/correcting club face angle.
  • the element comprises a base member (without protrusion) wherein the base member extends past the sole at address to correct/change the club face angle.
  • the system is disposed within the body between the toe and the heel at a distance from the heel that is less than a distance from the toe.
  • the system may alternatively be disposed within the body between the toe and the heel at a distance from the heel that is greater than or substantially similar to a distance from the toe.
  • the body comprises a more than one system for changing club face angle at address spaced between the heel and the toe.
  • one of systems may be disengaged at will.
  • Any known fastening means may be used to secure or fasten the element and system within the body, including for example, mechanical locking means, welding or brazing, or adhesives, temporarily or permanently.
  • the system including the element may comprise any known material including for example plastic, composite, or metal.
  • the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel, wherein the body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face; and wherein the body comprises a weight member that is adjustable in a vertical direction to move the center of gravity in the vertical direction and is rotatable about a system axis that is substantially parallel to the y-axis to adjust club face angle at address.
  • the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel.
  • the body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face.
  • a system is disposed within the body for adjusting club face angle at address comprising an element that is rotatable about a system axis that is substantially parallel to the z-axis to provide at least first and second club face angle positions at address. See, e.g., FIGS. 26A and 26B .
  • the wood-type golf club incorporates a head comprising a body having a face, a sole, a crown, a toe and a heel, wherein the sole is disposed between the toe and the heel.
  • the sole comprises a body portion and one of a plurality of interchangeable adjustment portions wherein the body portion is integral with the body and one of the plurality of interchangeable adjustment portions is interchangeably mated with the body portion such that for a club face angle X at address at location L, each of the plurality of interchangeable adjustment parts adjusts the club face angle X to a different club face angle X a wherein n is the number of interchangeable adjustment portions. See, e.g., FIGS. 27A , 27 B, and 27 C.
  • FIG. 1 is a perspective view of an embodiment of a club head of the present invention
  • FIG. 2 is bottom plan view of an embodiment of a club head of FIG. 1 ;
  • FIG. 3A is a front plan view of an embodiment of a club head according to FIG. 1 at impact with a golf ball;
  • FIG. 3B is a front plan view of an embodiment of a club head according to FIG. 1 at address;
  • FIG. 4A is bottom plan view of an embodiment of a club head of FIG. 1 ;
  • FIG. 4B is a cross-sectional view of the club head of FIG. 4 taken along line 3 B- 3 B in FIG. 4 ;
  • FIG. 4C is a cross-sectional view of the club head of FIG. 4 taken along line 4 C- 4 C in FIG. 4 ;
  • FIG. 4D is a cross-sectional view of the club head of FIG. 4 taken along line 4 D- 4 D in FIG. 4 ;
  • FIG. 5 is a back view of the club head of FIG. 1 ;
  • FIG. 6 is a heel side view of the club head of FIG. 1 ;
  • FIG. 7A is a bottom plan view of a club head with the inventive sole of FIG. 1 ;
  • FIG. 7B is a cross sectional view of the club head of FIG. 7A taken along line 7 B- 7 B;
  • FIG. 8 is a bottom plan view of another alternative embodiment of a club head of the present invention.
  • FIG. 9 is a top plan view of an alternative embodiment of a club head according to the present invention.
  • FIG. 10A is a front plan view of a club head according to an embodiment of the club head of FIG. 9 ;
  • FIG. 10B is a cross-sectional view of the club head of FIG. 10A , taken along lines 10 B- 10 B;
  • FIG. 11 is a top plan view of the club head according to an embodiment of FIG. 9 ;
  • FIG. 12A is a front plan view of a club head according to an embodiment of the club head of FIG. 9 ;
  • FIG. 12B is a cross-sectional view of the club head of FIG. 12A , taken along lines 12 B- 12 B;
  • FIG. 13 is a back perspective cut-out view of an embodiment of a club head according to FIG. 9 ;
  • FIG. 14 is a back view of the club head of FIG. 13 ;
  • FIG. 15 is a perspective view of a weight tube according to the embodiment of the FIG. 13 ;
  • FIG. 16 is a back perspective cut-out view of another embodiment of a club head according to FIG. 9 ;
  • FIG. 17 is a perspective view of a weight tube according to the embodiment of the FIG. 17 ;
  • FIG. 18 is a back perspective cut-out view of another embodiment of a club head according to FIG. 9 ;
  • FIG. 19 is a bottom plan view of another embodiment of a club head according to FIG. 9 ;
  • FIG. 20 is a front perspective cut-out view of another embodiment of a club head according to FIG. 9 ;
  • FIG. 21 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 13 ;
  • FIG. 22 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 13 ;
  • FIG. 23 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 16 ;
  • FIG. 24 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 16 ;
  • FIG. 25 is a front perspective cut-out view of the golf club head according to another embodiment of the golf club of the invention.
  • FIGS. 26A and 26B are heel side views of the golf club head according to another embodiment of the golf club of the invention.
  • FIGS. 27A , 27 B and 27 C are heel side views of the golf club head according to another embodiment of the golf club of the invention.
  • FIG. 1 shows a golf club head 10 of the present invention.
  • Club head 10 includes a body 12 having a strike face 14 , a sole 16 , a crown 18 , a skirt 20 and a hosel 22 .
  • the body defines a hollow interior volume 24 (See FIGS. 4B-4D ).
  • Foam or other material may partially or completely fill the interior volume.
  • Weights may be included within the interior volume.
  • the face may be provided with grooves or score lines of varying design.
  • the club head has a toe 26 and a heel 28 .
  • a golf club shaft (not shown) is attached at hosel 22 and is disposed along a shaft axis A-A.
  • the hosel 22 may extend to the bottom of the club head 10 , may terminate at a location between the sole and crown portions 16 and 18 of the head 10 , or the hosel 22 may terminate flush with the crown portion 26 .
  • the inner volume 24 have a volume greater than 125 cubic centimeters, and more preferably greater than 175 cubic centimeters.
  • the mass of the inventive club head 10 is greater than 150 grams, but less than 220 grams; although the club head may have any suitable weight.
  • the body 12 may be formed of sheets welded together or cast, preferably from steel, aluminum or titanium or any other suitable material or combination thereof.
  • the strike face 14 may be made by milling, casting, forging or stamping and forming.
  • the face 14 may be made of any suitable material, including titanium, titanium alloy, carbon steel, stainless steel, beryllium copper, and other metals or composites.
  • the face 14 may have any suitable thickness, and may be uniform or varied.
  • the face 14 may be connected to the body 12 by any suitable means, including bonding and welding.
  • the body 12 and face 14 may be cast simultaneously forming a homogeneous shell and eliminating the need to bond or otherwise permanently secure a separate face 14 to the body 12 .
  • the sole 16 or crown 18 may be formed separately and fitted to the remainder of the body 12 as is known to those of skill in the art.
  • the sole 16 preferably has a complex shape that accomplishes two objectives.
  • the first objective is to provide a surface for the club head 10 to sit on in the address position that squares the face 14 to the target.
  • the second objective is to provide a sole shape that gives more clearance to the ground at impact than would be available in a club head with a conventional sole.
  • an address portion or zero degree bounce portion 30 is provided. This portion is a sufficient area on the sole 16 on which the club head 10 may rest when placed at the address position by a golfer.
  • the zero degree bounce portion 30 may be a flat portion provided on the sole 16 .
  • the zero degree bounce portion 30 may be directly centered behind the face 16 or, as illustrated, may be provided more toward the heel 28 . As illustrated in FIGS.
  • the sole 16 has a zero degree bounce portion 30 , such that at address the club head 10 rests at this point and the face 14 is square to the target.
  • the zero degree bounce portion 30 enables the club head 10 to sit just as a conventional club head without a sole having a complex shape.
  • the complex sole of the inventive club head 10 does not adversely affect the way the club head sits at address.
  • a portion of the sole 16 is relieved to give it a multi-relief surface 32 with a negative bounce.
  • a negative bounce portion 34 is provided on the sole 16 in a center portion that is spaced from the face 14 of the club head 10 .
  • the club head 10 has two areas of bounce.
  • the impact position I p of the club head 10 is different than an address position A p because the dynamics of the golf swing cause the shaft to flex at impact thereby moving the position of the club head 10 .
  • FIG. 3B illustrates the club head at address where the face is square to the target, the shaft axis A-A creates an angle with the ground G called the shaft angle ⁇ a .
  • the shaft angle ⁇ i As illustrated in FIG. 3A , during impact, the club head is rotated a few degrees upright, and the shaft axis A-A creates a different angle with the ground G called shaft angle ⁇ i .
  • the toe 26 may be up at least 5 degrees at a first measurement, for example when the club head 10 sits at address, such that the face 14 measures square.
  • a second measurement for example during impact with a golf ball, taken at a centered position the face 14 measures differently than the first measurement.
  • the face 14 may measure at least two degrees more open at the second measurement than the first measurement, or at least two degrees open at the second measurement than the first measurement.
  • the centered position may comprise the negative bounce portion 34 , which may be a substantially flat surface.
  • the shaft angle ⁇ a preferably measures about 55 to 45 degrees.
  • the shaft angle ⁇ i measures about 55 degrees to 60 degrees.
  • the sole 16 features a multi-relief surface 32 to provide greater ground clearance at the trailing edge 36 of the sole 16 to minimize turf resistance.
  • the ground/sole contact point remains forward toward the leading edge 38 of the strike face 14 . Maintaining a forward ground/sole contact point improves directional control and ball flight, by reducing the potential of the club head 10 to bounce or skip onto the ball. This is particularly true of players that play the ball forward in their stance, or who sweep the ball from the turf with a shallow angle of attack.
  • the multi-relief surface 32 sole features the negative bounce portion 32 and a cutaway portion 40 .
  • the negative bounce portion 34 may have any desired overall shape; preferably the negative bounce portion 34 has a triangular shape as shown in FIGS. 1 and 2 .
  • FIGS. 4A-4D illustrates the negative bounce portion 34 and cutaway portion 40 in the sole 16 .
  • Cross-sectional views illustrated in FIGS. 4B and 4D show cutaway portion 40 in comparison with the regular surface 42 of a conventional club head sole.
  • FIG. 4B illustrates the cross-sectional view of the center section of the club head 10 with the negative bounce portion 34 and cutaway portion 40 in comparison with the regular surface of a conventional club head sole 42 .
  • the cutaway portion 40 extends from the negative bounce portion 34 to the trailing edge 36 of to the club head 10 . As illustrated in FIGS. 4B-D , the cutaway portion 40 continues and may gradually increase the negative surface from the plane S running along the bottom of the sole. Preferably, the cutaway portion 40 has a depth d cp of about 0.05 to 0.5 inch from the regular surface of a conventional club head sole 42 ; this depth may or may not be constant.
  • FIGS. 5 and 6 illustrate the back 44 and heel 28 of the club head. The full extent of the cutaway portion 40 can be envisioned.
  • FIGS. 7A-7B illustrate the sole 16 of the club head 10 and a cross-sectional view through line 7 B- 7 B which illustrates the multi-relief surface 32 of the sole 16 .
  • the negative bounce portion 34 is spaced a distance D 1 from the strike face, where D 1 is preferably about 0.1 to 1.0 inch. More preferably, D 1 is about 0.35 to 0.65 inch from the strike face 14 of the club head 10 .
  • the distance D 1 may be different for different club heads as it may depend on the face progression and the loft of the club head.
  • the negative bounce portion 34 comprises a surface having an angle ⁇ from a plane S running along the bottom of the sole 16 parallel to the z-axis of a coordinate system running through the club head.
  • the negative bounce portion 34 comprises about a negative 0.5 to a negative 4.0 degree surface, such that the angle ⁇ is about negative 0.5 to 4.0 degrees from the plane S.
  • the negative bounce portion 34 comprises about a negative 2.0 degree surface. It will be appreciated that the negative bounce portion 34 may have a constant angle or may have an angle that varies toward the back of the sole.
  • the negative bounce portion 34 may have locations with multiple radii.
  • the multi-relief surface 32 includes both the negative bounce portion 34 and the cutaway portion 40 and these form a triangular shape.
  • the triangular shape forms an angle ⁇ , angle ⁇ is preferably about 35 to 50 degrees, and more preferably about 38 to 44 degrees.
  • the negative bounce portion 34 and cutaway portion 40 have a length L, length L is preferably about 1 to 5 inches, and more preferably about 2 to 4 inches.
  • FIG. 8 shows an alternative embodiment for the sole 16 .
  • the club head 46 features a multi-relief sole 32 as described above.
  • the multi-relief sole features the negative bounce portion 34 and the cutaway portion 40 . It will be appreciated that the negative bounce portion 34 and cutaway portion 40 may have any suitable shape.
  • the center of gravity of the club head is moved toward the bottom and back of the club head. This permits an average golfer to launch the ball up in the air faster and hit the ball farther.
  • the moment of inertia of the club head is increased to minimize the distance and accuracy penalties associated with off-center hits.
  • material or mass is generally taken from one area of the club head and moved to another. Materials can be taken from the face of the club, creating a thin club face, the crown and/or sole and placed toward the back of the club.
  • FIG. 9 illustrates a top of a club head 50 according to another embodiment of the present invention.
  • Club head 50 includes a body 52 having a strike face 54 , a sole 56 (see FIGS. 10A and 10B ), a crown 58 , a skirt 60 and a hosel 62 .
  • the body defines a hollow interior volume 64 (See FIGS. 10B and 12B ).
  • the face may be provided with grooves or score lines of varying design.
  • the club head has a toe 66 and a heel 68 .
  • FIG. 9 illustrates the center of gravity (e.g.) along the x-axis and z-axis.
  • the club head 50 features a weight system 70 (see FIGS. 10A-10B and 12 A- 12 B) to move the e.g. within the club head 50 to a more optimal position.
  • the e.g. is movable within a 6 mm distance along the z-axis in comparison to a club head without the weight system. More preferably, the e.g. is movable within a 4 mm distance along the z-axis.
  • the e.g. is moveable within a 6 mm distance along the x-axis in comparison to a club head without the weight system, more preferably within a 2 mm distance, and still more preferably within a 0.5 mm distance. Additionally, the e.g. is moveable within a 6 mm distance along the y-axis in comparison to a club head without the weight system (See FIG. 10A-10B and 12 A- 12 B). Preferably the e.g. is moveable within a 2 mm distance along the y-axis.
  • the e.g. adjustability may not substantially affect the dynamic loft of the club head. For example, for a 3 mm front-back e.g. shift the dynamic loft changes about 0.4 degrees. When the e.g. is moved back, the backspin may increase, for example between 100 and 300 rpm per 3 mm of e.g. movement toward the rear of the club head.
  • FIG. 10A illustrates the front face 54 of the club head showing the x-axis and the y-axis.
  • FIG. 10B is a cross-sectional view taken along lines 10 B- 10 B of FIG. 10A .
  • FIG. 10B depicts the inside of the club head featuring a weight system 70 according to the invention, and the e.g. may be moved along the z axis and y axis.
  • FIG. 10B depicts the weight system 70 as a tube 72 placed within the club head 50 within a plane formed by the y-axis and z-axis to adjust the e.g. of the club head.
  • the weight system 70 features a tube 72 with a weight 74 at one end 76 of the tube 72 .
  • the weight 74 is placed the back of the club head 50 to move the e.g. to a desired location for desirable ball flight.
  • the tube 72 may feature multiple inserts varying in weight for placement within the tube 72 to move the e.g. of the club head 50 to a desired location.
  • the tube 72 is preferably provided at an angle within the club head 50 .
  • the tube 72 is angled downward toward the face 54 of the club head 50 , such that the tube 72 is provided within the plane formed by the z-axis and y-axis.
  • the tube 72 may be angled by an angle ⁇ , where ⁇ is at least 1 degree from the plane W formed by the z axis and x axis.
  • the tube is angled downward toward the face 54 by at least 3 degrees from the plane W formed by the z-axis and x-axis. More preferably, the tube 72 is angled downward toward the face of the club head 50 by about 3 to 7 degrees from the plane W formed by the z-axis and x-axis.
  • the tube 72 may be offset in either direction from that plane by any desired amount.
  • the tube 72 may be flipped within the club head 50 , such that the weight 74 is provided at the other end 76 of the club head 50 , closer to the face 54 , to move the e.g to a different location for desirable ball flight.
  • the weight 74 is located at a front of the club head 50 a shot hit off the club head 50 has less backspin and a lower trajectory resulting in a shallower landing for increased distance.
  • the tube 72 itself may be able to be inserted in the club head with the weight 74 in either direction, or that different tubes 72 may be selectable with the weight 74 at the desired end and then provided in the club head.
  • a club having the weight system 70 may also include the multi-relief surface 32 on the sole 56 as described above.
  • the sole 56 may feature a multi-relief surface 32 with a negative bounce portion 34 and a cutaway portion 40 as described above.
  • the angle 8 of the tube may be substantially parallel to the multi-relief surface 32 .
  • FIG. 13 illustrates how the tube 72 may be inserted into the club head 50 .
  • a sheath 78 extending from a block 79 in the club head 50 receives the tube 72 with the weight 74 , and a fastener 80 locks the tube 72 in place within the club head 50 .
  • the tube 72 is fastened to the outside of the club head 50 substantially flush with an outer surface 82 of the club head, as illustrated in FIG. 14 .
  • FIG. 15 illustrates the tube 72 according to the embodiment of FIG. 13 .
  • the weight 74 is provided at an end 76 of the tube 72 . It will be appreciated that the tube 72 and weight 74 may be joined by threaded engagement, epoxy, mechanical lock or other joining method.
  • the weight 74 may comprise tungsten or any other suitable material.
  • the weight 74 has a mass of about 10 to 25 grams.
  • the combined mass of the tube 72 and weight 74 is about 20 to 40 grams.
  • the tube 72 comprises aluminum, although any other suitable material may be used.
  • the orientation of the tube 72 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location.
  • the tube 72 has a diameter t d of about 0.3 to 0.5 inch and a length t 1 of about 2 to 3 inches. It will be appreciated that more than one tube 72 could be provided in the club head 50 at any one time as illustrated in FIG. 11 , or that multiple tubes 72 with a different mass may be provided to the user or fitting location.
  • FIG. 16 illustrates an alternative embodiment for placement of the tube 72 within the club head 50 .
  • the tube 72 has threads 84 on both ends 86 and 88 that interlock in threaded engagement to the mating threads 90 on a block 92 inside the club head adjacent the face 54 and threads 94 on a block 96 adjacent the skirt 60 of the club head 50 .
  • the tube 72 is fastened to the inside of the club head 50 adjacent the face 54 . It is envisioned that the orientation of the tube 72 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location.
  • FIG. 17 illustrates the tube 72 of the embodiment of FIG. 16 showing the dual threaded ends 86 and 88 of the tube that may be inserted in either direction into the club head 50 and threadedly received adjacent the face 54 .
  • the tube 72 has a diameter t d and a length t 1 has described above and the weight 74 and tube 72 have a similar mass as described above.
  • the exterior of the tube 72 would align substantially flush with the outer surface 82 of the club head 50 .
  • FIG. 18 shows an alternative embodiment for the weight system 70 where a weight 98 may be slid along a pipe 100 provided in the club head 50 .
  • the exterior surface 102 of the sole 56 of the club head 50 may feature a mechanism 104 to move the weight 98 along the pipe 100 to the desired location to move the e.g. for the desired ball flight as described above.
  • the position of the weight 98 on the pipe 100 may be set during manufacture of the club head.
  • FIG. 19 features another alternative embodiment for the weight system 70 .
  • This embodiment features two or more cavities 106 in the sole 56 of the club head 50 for receiving inserts 108 .
  • the cavities 106 may be placed in any desired location on the club head 50 . As illustrated, the three cavities 106 are provided along an axis O offset from the x-axis. The cavities 106 may be aligned parallel to the x-axis or may be offset in either direction. The cavities 106 may be provided on an axis O offset from the x-axis by 0 to 90 degrees in either direction.
  • the back portion 110 of the club head may feature deeper cavities 106 to mimic the angle of the tube 72 described above relative to the plane formed by the z-axis and x-axis.
  • the inserts 108 may have different mass and may be placed in the different cavities 106 to move the e.g. to a desired location.
  • the inserts 108 may be movable by the user, or they may be set at the time of manufacture or modifiable in a fitting environment.
  • FIG. 20 illustrates yet another alternative embodiment of the weighting system 70 for moving the center of gravity along the y-axis.
  • the club head 50 features a vertical cavity 112 extending from the sole 56 into the hollow volume 64 of the club head.
  • the cavity 112 may be placed in any desired location in the sole 56 , for example centered along the width of the face 54 and located more toward the back of the club head 50 , as illustrated.
  • a weight 114 is made to fit within the cavity 112 , such that it mates securely within the cavity 112 . It will be appreciated that the weight 114 may be secured in the cavity in any suitable manner, including threaded engagement, epoxy, mechanical lock, or other joining method.
  • the cavity 112 is cylindrical and the weight 114 is a corresponding cylindrical plug, although it will be appreciated that the weight 114 and mating cavity 112 may be any suitable shape and size.
  • the weight 114 features a heavy end 116 and a lighter end 118 .
  • the heavy or lighter end 116 and 118 may be placed closer to the sole 56 to move the e.g. to the desired location along the y-axis.
  • the orientation of the orientation of the weight 114 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location. This embodiment may assist in isolating just one attribute, moving the e.g. along the y-axis, thereby making club fitting more straight forward.
  • FIG. 21 the movement of the e.g. is illustrated based on the construction of FIG. 13 . It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the back of the club head 50 , and a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the front of the club head 50 .
  • FIG. 21 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads.
  • FIG. 22 the movement of the e.g. is illustrated based on the construction of FIG. 13 . It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the back of the club head 50 , and a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the front of the club head 50 .
  • FIG. 22 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads.
  • FIG. 23 the movement of the e.g. is illustrated based on the construction of FIG. 16 . It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 16 having the weight 74 in the back of the club head 50 , and a club head 74 with the weight system 70 of FIG. 16 having the weight 74 in the front of the club head 50 .
  • FIG. 23 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads.
  • FIG. 24 the movement of the e.g. is illustrated based on the construction of FIG. 16 . It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 16 having the weight 74 in the back of the club head 50 , and a club head 50 with the weight system 70 of FIG. 16 having the weight 74 in the front of the club head 50 .
  • FIG. 24 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads. The locations of the e.g. shown in FIGS. 21-24 were calculated using a commercially available CAD (computer aided design) system.
  • FIG. 25 illustrates and alternative embodiment of the golf ball of the invention depicted in FIG. 20 , having the following modifications.
  • Protrusion 120 extends outward past sole 56 a distance sufficient to change the club face angle at address by rotating protrusion 120 about the y axis.
  • cylindrically shaped weight 114 itself may extend a distance outward past sole 56 to change the club face angle at address.
  • FIGS. 26A and 26B show examples wherein alternatively shaped elements 121 and 122 , respectively, may be rotated about an axis that is parallel to the z-axis to change the club face angle at address.
  • FIGS. 27A , 27 B and 27 C show examples of how the sole may comprise a body portion 123 and one of a plurality of interchangeable adjustment portions 125 wherein the body portion 123 is integral with the body and the one of the plurality of interchangeable adjustment portions 125 is interchangeably mated with the body portion 123 to change the club face angle at address.
  • Body portion 123 and adjustment portion 125 may mate by any known means for joining matable parts such as teeth 124 as in FIG. 27A , or a lip member such as in FIG. 27B or clip-on means such as depicted in FIG. 27C .

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Golf Clubs (AREA)

Abstract

A wood-type golf club including a head comprising a body having a face, a sole, a crown, a toe and a heel and a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face. A system is disposed within the body for adjusting club face angle at address comprising an element that is rotatable about a system axis that is substantially parallel to the y-axis to provide at least first and second club face angle positions at address. The element may be any shape which changes club face angle at address. The system axis may alternatively be substantially parallel to the z-axis. Or, the element may even comprise a plurality of interchangeable adjustment portions interchangeably mated with a body portion.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. application Ser. No. 13/206,191, filed Aug. 9, 2011, which is a divisional of U.S. patent application Ser. No. 12/911,052, filed Oct. 25, 2010, which is a continuation of U.S. patent application Ser. No. 11/560,903, filed on Nov. 17, 2006, now U.S. Pat. No. 7,824,277, which is a continuation-in-part of U.S. application Ser. No. 29/245,472, now U.S. Pat. D532, 474, filed on Dec. 23, 2005, the disclosures of which are incorporated by reference herein in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to an improved golf club including a wood-type golf club head having modified sole plates which change golf club face angle at address in order to correct for variations/deviations in the striking surface.
  • BACKGROUND OF THE INVENTION
  • Golf club heads come in many different forms and makes, such as wood- or metal-type (including drivers and fairway woods), iron-type (including wedge-type club heads), utility- or specialty-type, and putter-type. Each of these styles has a prescribed function and make-up. The present invention relates primarily to hollow golf club heads, such as wood-type and utility-type (generally referred to herein as wood-type golf clubs).
  • Wood-type or metal-type golf club heads generally include a front or striking face, a crown, a sole and an arcuate skirt including a heel, a toe and a back. The crown and skirt are sometimes referred to as a shell. The front face interfaces with and strikes the golf ball. A plurality of grooves, sometimes referred to as “score lines,” may be provided on the face to assist in imparting spin to the ball and for decorative purposes. The crown is generally configured to have a particular look to the golfer and to provide structural rigidity for the striking face. The sole of the golf club is particularly important to the golf shot because it contacts and interacts with the ground during the swing.
  • The complexities of golf club design are well known. The specifications for each component of the club (i.e., the club head, shaft, grip, and subcomponents thereof) directly impact the performance of the club. Thus, by varying the design specifications, a golf club can be tailored to have specific performance characteristics.
  • The design and manufacture of wood-type club heads requires careful attention to club head construction. Among the many factors that must be considered are material selection, material treatment, structural integrity and overall geometrical design. Exemplary geometrical design considerations include loft, lie, face angle, horizontal face bulge, vertical face roll, face size, center of gravity, sole curvature, and overall head weight. The interior design of the club head may be tailored to achieve particular characteristics, such as by including hosel or shaft attachment means, perimeter weighting on the face or body of the club head, and fillers within hollow club heads. Club heads are typically formed from stainless steel, aluminum, or titanium and are cast, stamped, as by forming sheet metal with pressure, forged, or formed by a combination of any two or more of these processes.
  • The club heads may be formed from multiple pieces that are welded or otherwise joined together to form a hollow head, as is often the case of club heads designed with inserts, such as soleplates, or face plates, or crown plates. The multi-piece constructions facilitate access to the cavity formed within the club head, thereby permitting the attachment of various other components to the head such as internal weights and the club shaft. The cavity may remain empty, or may be partially or completely filled, such as with foam. An adhesive may be injected into the club head to provide the correct swing weight and to collect and retain any debris that may be in the club head. In addition, due to difficulties in manufacturing one-piece club heads to high dimensional tolerances, the use of multi-piece constructions allows the manufacture of a club head to a tight set of standards.
  • It is known to make wood-type golf clubs out of metallic materials. These clubs were originally manufactured primarily by casting durable metals such as stainless steel, aluminum, beryllium copper, etc. into a unitary structure comprising a metal body, face and hosel. As technology progressed, it became more desirable to increase the performance of the face of the club, usually by using a titanium material.
  • Players generally seek a metal wood driver and golf ball combination that delivers maximum distance and landing accuracy. The distance a ball travels after impact is dictated by the magnitude and direction of the ball's translational velocity, ball speed, and the ball's rotational velocity or spin. Environmental conditions, including atmospheric pressure, humidity, temperature, and wind speed, further influence the ball's flight. However, these environmental effects are beyond the control of the golf equipment manufacturer. Golf ball landing accuracy is driven by a number of factors as well. Some of these factors are attributed to club head design, such as center of gravity and club face flexibility.
  • The sole of the golf club is particularly important to the golf shot because it contacts and interacts with the ground during the golf shot. There are many sole configurations to optimize the performance of the club. Typically, the sole of the club is slightly curved such that when the club head is placed on the ground, the leading edge is located above the ground. The curvature toward the front of the club generally provides bounce. Bounce assists in preventing the club from digging into the ground and substantially slowing club head speed. The curvature toward the trailing edge generally prevents the club head from getting caught on the ground during the back swing.
  • In fact, “club face angle” is a material factor affecting trajectory and direction. Club face angle is the angle of the club at address in relation to a desired target (i.e., a hole on the course). A club's face angle will vary based on at least two considerations. First, “lie angle” contributes to club face angle. A lie angle is formed between the center of the shaft and the ground line of the club at address and generally results from how high a player grips the club in relation to the ground when the golf club sole is resting on the ground just prior to the player swinging the golf club. Secondly, club face angle will change based on differences in the topography and terrain of the ground.
  • While lie angle may vary from player to player within a general range of from about 50° to about 65°, any difference in the topography of the ground at a given location on the golf course remains a constant for every golfer. Accordingly, manufacturers seek to provide golfers with clubs which are capable of correcting for these topographical variances of the ground notwithstanding the golfer's particular lie angle within this general range.
  • Prior clubs have addressed this issue in several ways. In one approach, golf club includes an adjustable shaft for correcting club face angle. The problem with this approach, however, is that adjusting the shaft may undesirably also change the loft of the golf club head, and thereby cancel out, at least in part, any correction.
  • In another approach, the golf club head is designed to include a modified sole that is integral with the head in order to compensate for irregularities in the terrain. However, this solution has proven undesirably expensive to golfers who may need several clubs, each having a differently contoured sole in order to adjust for different terrains on the course. And some golfers dislike the permanent nature and/or design of such golf club heads.
  • Accordingly, there is a need for an improved golf club head providing a time-saving and cost-effective solution for adjusting club face angle in light of issues such as differences in topography on the golf course as well as optimized face angle for fitting a player.
  • SUMMARY OF THE INVENTION
  • A wood-type golf club of the invention addresses and resolves the disadvantages of prior attempts to correct/adjust club face angle on the green. In one embodiment of the invention, the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel. The body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face. A system is disposed within the body for adjusting club face angle at address comprising an element that is rotatable about a system axis that is substantially parallel to the y-axis to provide at least first and second club face angle positions at address. See for example, FIG. 25.
  • The element interacts with the ground plane at address to change/modify the club face angle. The number of degrees by which the element changes/modifies the club face angle at address is related at least in part to the distance that the element extends outward from the sole. In one embodiment, the system changes the golf club angle by less than 1°. In another embodiment, the system changes the golf club angle by at least about 1°. In yet another embodiment, the system changes the golf club angle by at least about 2°. °. In still another embodiment, the system changes the golf club angle by at least about 3°. In a different embodiment, the system changes the golf club angle by greater than about 3°.
  • In one embodiment, the element has a cylindrically shaped base member that is flush with the sole and a protrusion formed on and protruding from the base member for changing/correcting the club face angle at address. Of course, the element may comprise any shape that is rotatable about the system axis that is substantially parallel to the y-axis, for example, being conically shaped, disc-shaped, wedge-shaped or tapered. And the protrusion may also comprise any shape or form capable of interacting with the ground at address and changing/correcting club face angle. In another embodiment, the element comprises a base member (without protrusion) wherein the base member extends past the sole at address to correct/change the club face angle.
  • In another embodiment of the golf club of the invention, the system is disposed within the body between the toe and the heel at a distance from the heel that is less than a distance from the toe. However, in a golf club of the invention, the system may alternatively be disposed within the body between the toe and the heel at a distance from the heel that is greater than or substantially similar to a distance from the toe.
  • In yet another embodiment, the body comprises a more than one system for changing club face angle at address spaced between the heel and the toe. In one embodiment, one of systems may be disengaged at will.
  • Any known fastening means may be used to secure or fasten the element and system within the body, including for example, mechanical locking means, welding or brazing, or adhesives, temporarily or permanently.
  • The system including the element may comprise any known material including for example plastic, composite, or metal.
  • In yet another embodiment, the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel, wherein the body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face; and wherein the body comprises a weight member that is adjustable in a vertical direction to move the center of gravity in the vertical direction and is rotatable about a system axis that is substantially parallel to the y-axis to adjust club face angle at address.
  • In a different embodiment of the invention, the wood-type golf club includes a head comprising a body having a face, a sole, a crown, a toe and a heel. The body has a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face. A system is disposed within the body for adjusting club face angle at address comprising an element that is rotatable about a system axis that is substantially parallel to the z-axis to provide at least first and second club face angle positions at address. See, e.g., FIGS. 26A and 26B.
  • In still another embodiment, the wood-type golf club incorporates a head comprising a body having a face, a sole, a crown, a toe and a heel, wherein the sole is disposed between the toe and the heel. Further, the sole comprises a body portion and one of a plurality of interchangeable adjustment portions wherein the body portion is integral with the body and one of the plurality of interchangeable adjustment portions is interchangeably mated with the body portion such that for a club face angle X at address at location L, each of the plurality of interchangeable adjustment parts adjusts the club face angle X to a different club face angle Xa wherein n is the number of interchangeable adjustment portions. See, e.g., FIGS. 27A, 27B, and 27C.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Preferred features of the present invention are disclosed in the accompanying drawings, wherein similar reference characters denote similar elements throughout the several views, and wherein:
  • FIG. 1 is a perspective view of an embodiment of a club head of the present invention;
  • FIG. 2 is bottom plan view of an embodiment of a club head of FIG. 1;
  • FIG. 3A is a front plan view of an embodiment of a club head according to FIG. 1 at impact with a golf ball;
  • FIG. 3B is a front plan view of an embodiment of a club head according to FIG. 1 at address;
  • FIG. 4A is bottom plan view of an embodiment of a club head of FIG. 1;
  • FIG. 4B is a cross-sectional view of the club head of FIG. 4 taken along line 3B-3B in FIG. 4;
  • FIG. 4C is a cross-sectional view of the club head of FIG. 4 taken along line 4C-4C in FIG. 4;
  • FIG. 4D is a cross-sectional view of the club head of FIG. 4 taken along line 4D-4D in FIG. 4;
  • FIG. 5 is a back view of the club head of FIG. 1;
  • FIG. 6 is a heel side view of the club head of FIG. 1;
  • FIG. 7A is a bottom plan view of a club head with the inventive sole of FIG. 1;
  • FIG. 7B is a cross sectional view of the club head of FIG. 7A taken along line 7B-7B;
  • FIG. 8 is a bottom plan view of another alternative embodiment of a club head of the present invention;
  • FIG. 9 is a top plan view of an alternative embodiment of a club head according to the present invention;
  • FIG. 10A is a front plan view of a club head according to an embodiment of the club head of FIG. 9;
  • FIG. 10B is a cross-sectional view of the club head of FIG. 10A, taken along lines 10B-10B;
  • FIG. 11 is a top plan view of the club head according to an embodiment of FIG. 9;
  • FIG. 12A is a front plan view of a club head according to an embodiment of the club head of FIG. 9;
  • FIG. 12B is a cross-sectional view of the club head of FIG. 12A, taken along lines 12B-12B;
  • FIG. 13 is a back perspective cut-out view of an embodiment of a club head according to FIG. 9;
  • FIG. 14 is a back view of the club head of FIG. 13;
  • FIG. 15 is a perspective view of a weight tube according to the embodiment of the FIG. 13;
  • FIG. 16 is a back perspective cut-out view of another embodiment of a club head according to FIG. 9;
  • FIG. 17 is a perspective view of a weight tube according to the embodiment of the FIG. 17;
  • FIG. 18 is a back perspective cut-out view of another embodiment of a club head according to FIG. 9;
  • FIG. 19 is a bottom plan view of another embodiment of a club head according to FIG. 9;
  • FIG. 20 is a front perspective cut-out view of another embodiment of a club head according to FIG. 9;
  • FIG. 21 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 13;
  • FIG. 22 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 13;
  • FIG. 23 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 16;
  • FIG. 24 is a graph depicting the movement of the center of gravity along the y-axis and z-axis according to the embodiment of FIG. 16;
  • FIG. 25 is a front perspective cut-out view of the golf club head according to another embodiment of the golf club of the invention;
  • FIGS. 26A and 26B are heel side views of the golf club head according to another embodiment of the golf club of the invention; and
  • FIGS. 27A, 27B and 27C are heel side views of the golf club head according to another embodiment of the golf club of the invention.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a golf club head 10 of the present invention. Club head 10 includes a body 12 having a strike face 14, a sole 16, a crown 18, a skirt 20 and a hosel 22. The body defines a hollow interior volume 24 (See FIGS. 4B-4D). Foam or other material may partially or completely fill the interior volume. Weights may be included within the interior volume. The face may be provided with grooves or score lines of varying design. The club head has a toe 26 and a heel 28.
  • A golf club shaft (not shown) is attached at hosel 22 and is disposed along a shaft axis A-A. The hosel 22 may extend to the bottom of the club head 10, may terminate at a location between the sole and crown portions 16 and 18 of the head 10, or the hosel 22 may terminate flush with the crown portion 26.
  • It is recommended that the inner volume 24 have a volume greater than 125 cubic centimeters, and more preferably greater than 175 cubic centimeters. Preferably, the mass of the inventive club head 10 is greater than 150 grams, but less than 220 grams; although the club head may have any suitable weight. The body 12 may be formed of sheets welded together or cast, preferably from steel, aluminum or titanium or any other suitable material or combination thereof.
  • The strike face 14 may be made by milling, casting, forging or stamping and forming. The face 14 may be made of any suitable material, including titanium, titanium alloy, carbon steel, stainless steel, beryllium copper, and other metals or composites. The face 14 may have any suitable thickness, and may be uniform or varied. As will be appreciated, the face 14 may be connected to the body 12 by any suitable means, including bonding and welding. Alternatively, the body 12 and face 14 may be cast simultaneously forming a homogeneous shell and eliminating the need to bond or otherwise permanently secure a separate face 14 to the body 12. Alternatively, the sole 16 or crown 18 may be formed separately and fitted to the remainder of the body 12 as is known to those of skill in the art.
  • The sole 16 preferably has a complex shape that accomplishes two objectives. The first objective is to provide a surface for the club head 10 to sit on in the address position that squares the face 14 to the target. The second objective is to provide a sole shape that gives more clearance to the ground at impact than would be available in a club head with a conventional sole. In order to achieve the first objective, an address portion or zero degree bounce portion 30 is provided. This portion is a sufficient area on the sole 16 on which the club head 10 may rest when placed at the address position by a golfer. The zero degree bounce portion 30 may be a flat portion provided on the sole 16. The zero degree bounce portion 30 may be directly centered behind the face 16 or, as illustrated, may be provided more toward the heel 28. As illustrated in FIGS. 1 and 2, the sole 16 has a zero degree bounce portion 30, such that at address the club head 10 rests at this point and the face 14 is square to the target. The zero degree bounce portion 30 enables the club head 10 to sit just as a conventional club head without a sole having a complex shape. Thus, the complex sole of the inventive club head 10 does not adversely affect the way the club head sits at address.
  • In order to achieve the second objective, a portion of the sole 16 is relieved to give it a multi-relief surface 32 with a negative bounce. Preferably, a negative bounce portion 34 is provided on the sole 16 in a center portion that is spaced from the face 14 of the club head 10. Thus, the club head 10 has two areas of bounce. As illustrated in FIGS. 3A and 3B, the impact position Ip of the club head 10 is different than an address position Ap because the dynamics of the golf swing cause the shaft to flex at impact thereby moving the position of the club head 10. FIG. 3B illustrates the club head at address where the face is square to the target, the shaft axis A-A creates an angle with the ground G called the shaft angle βa. As illustrated in FIG. 3A, during impact, the club head is rotated a few degrees upright, and the shaft axis A-A creates a different angle with the ground G called shaft angle βi.
  • It will be appreciated that in one embodiment the toe 26 may be up at least 5 degrees at a first measurement, for example when the club head 10 sits at address, such that the face 14 measures square. At a second measurement, for example during impact with a golf ball, taken at a centered position the face 14 measures differently than the first measurement. For example, the face 14 may measure at least two degrees more open at the second measurement than the first measurement, or at least two degrees open at the second measurement than the first measurement. The centered position may comprise the negative bounce portion 34, which may be a substantially flat surface. When the first measurement occurs at the address position, the shaft angle βa preferably measures about 55 to 45 degrees. When the second measurement occurs at impact of the club head 10 with a golf ball, the shaft angle βi measures about 55 degrees to 60 degrees.
  • As illustrated in FIGS. 1 and 2, the sole 16 features a multi-relief surface 32 to provide greater ground clearance at the trailing edge 36 of the sole 16 to minimize turf resistance. With this construction, the ground/sole contact point remains forward toward the leading edge 38 of the strike face 14. Maintaining a forward ground/sole contact point improves directional control and ball flight, by reducing the potential of the club head 10 to bounce or skip onto the ball. This is particularly true of players that play the ball forward in their stance, or who sweep the ball from the turf with a shallow angle of attack. Preferably, the multi-relief surface 32 sole features the negative bounce portion 32 and a cutaway portion 40.
  • The negative bounce portion 34 may have any desired overall shape; preferably the negative bounce portion 34 has a triangular shape as shown in FIGS. 1 and 2. FIGS. 4A-4D illustrates the negative bounce portion 34 and cutaway portion 40 in the sole 16. Cross-sectional views illustrated in FIGS. 4B and 4D show cutaway portion 40 in comparison with the regular surface 42 of a conventional club head sole. FIG. 4B illustrates the cross-sectional view of the center section of the club head 10 with the negative bounce portion 34 and cutaway portion 40 in comparison with the regular surface of a conventional club head sole 42.
  • The cutaway portion 40 extends from the negative bounce portion 34 to the trailing edge 36 of to the club head 10. As illustrated in FIGS. 4B-D, the cutaway portion 40 continues and may gradually increase the negative surface from the plane S running along the bottom of the sole. Preferably, the cutaway portion 40 has a depth dcp of about 0.05 to 0.5 inch from the regular surface of a conventional club head sole 42; this depth may or may not be constant. FIGS. 5 and 6 illustrate the back 44 and heel 28 of the club head. The full extent of the cutaway portion 40 can be envisioned.
  • FIGS. 7A-7B illustrate the sole 16 of the club head 10 and a cross-sectional view through line 7B-7B which illustrates the multi-relief surface 32 of the sole 16. The negative bounce portion 34 is spaced a distance D1 from the strike face, where D1 is preferably about 0.1 to 1.0 inch. More preferably, D1 is about 0.35 to 0.65 inch from the strike face 14 of the club head 10. The distance D1 may be different for different club heads as it may depend on the face progression and the loft of the club head. As illustrated, the negative bounce portion 34 comprises a surface having an angle α from a plane S running along the bottom of the sole 16 parallel to the z-axis of a coordinate system running through the club head. The negative bounce portion 34 comprises about a negative 0.5 to a negative 4.0 degree surface, such that the angle α is about negative 0.5 to 4.0 degrees from the plane S. Preferably, the negative bounce portion 34 comprises about a negative 2.0 degree surface. It will be appreciated that the negative bounce portion 34 may have a constant angle or may have an angle that varies toward the back of the sole. The negative bounce portion 34 may have locations with multiple radii.
  • As illustrated, the multi-relief surface 32 includes both the negative bounce portion 34 and the cutaway portion 40 and these form a triangular shape. The triangular shape forms an angle φ, angle φ is preferably about 35 to 50 degrees, and more preferably about 38 to 44 degrees. The negative bounce portion 34 and cutaway portion 40 have a length L, length L is preferably about 1 to 5 inches, and more preferably about 2 to 4 inches.
  • FIG. 8 shows an alternative embodiment for the sole 16. The club head 46 features a multi-relief sole 32 as described above. The multi-relief sole features the negative bounce portion 34 and the cutaway portion 40. It will be appreciated that the negative bounce portion 34 and cutaway portion 40 may have any suitable shape.
  • In general, to increase the sweet spot, the center of gravity of the club head is moved toward the bottom and back of the club head. This permits an average golfer to launch the ball up in the air faster and hit the ball farther. In addition, the moment of inertia of the club head is increased to minimize the distance and accuracy penalties associated with off-center hits. In order to move the weight down and back without increasing the overall weight of the club head, material or mass is generally taken from one area of the club head and moved to another. Materials can be taken from the face of the club, creating a thin club face, the crown and/or sole and placed toward the back of the club.
  • FIG. 9 illustrates a top of a club head 50 according to another embodiment of the present invention. Club head 50 includes a body 52 having a strike face 54, a sole 56 (see FIGS. 10A and 10B), a crown 58, a skirt 60 and a hosel 62. The body defines a hollow interior volume 64 (See FIGS. 10B and 12B). The face may be provided with grooves or score lines of varying design. The club head has a toe 66 and a heel 68.
  • FIG. 9 illustrates the center of gravity (e.g.) along the x-axis and z-axis. In order to improve playability of the club head 50 it is desired to be able to move the e.g. within the club head 50 to a more optimal position. Preferably, the club head 50 features a weight system 70 (see FIGS. 10A-10B and 12A-12B) to move the e.g. within the club head 50 to a more optimal position. Preferably, the e.g. is movable within a 6 mm distance along the z-axis in comparison to a club head without the weight system. More preferably, the e.g. is movable within a 4 mm distance along the z-axis. The e.g. may be movable within a 6 mm distance along the x-axis in comparison to a club head without the weight system, more preferably within a 2 mm distance, and still more preferably within a 0.5 mm distance. Additionally, the e.g. is moveable within a 6 mm distance along the y-axis in comparison to a club head without the weight system (See FIG. 10A-10B and 12A-12B). Preferably the e.g. is moveable within a 2 mm distance along the y-axis.
  • The e.g. adjustability may not substantially affect the dynamic loft of the club head. For example, for a 3 mm front-back e.g. shift the dynamic loft changes about 0.4 degrees. When the e.g. is moved back, the backspin may increase, for example between 100 and 300 rpm per 3 mm of e.g. movement toward the rear of the club head.
  • FIG. 10A illustrates the front face 54 of the club head showing the x-axis and the y-axis. FIG. 10B is a cross-sectional view taken along lines 10B-10B of FIG. 10A. FIG. 10B depicts the inside of the club head featuring a weight system 70 according to the invention, and the e.g. may be moved along the z axis and y axis.
  • FIG. 10B depicts the weight system 70 as a tube 72 placed within the club head 50 within a plane formed by the y-axis and z-axis to adjust the e.g. of the club head. As illustrated in FIG. 11, it will be appreciated that more than one tube 72 may be provided within the club head 50. As illustrated in FIG. 10B, the weight system 70 features a tube 72 with a weight 74 at one end 76 of the tube 72. As shown in FIG. 10B, the weight 74 is placed the back of the club head 50 to move the e.g. to a desired location for desirable ball flight. When the weight 74 is located at a back of the club head 50, a shot hit off the club head 50 has increased backspin and a higher launch angle resulting in a softer landing. In an alternative embodiment, it will be appreciated that the tube 72 may feature multiple inserts varying in weight for placement within the tube 72 to move the e.g. of the club head 50 to a desired location.
  • As illustrated, the tube 72 is preferably provided at an angle within the club head 50. The tube 72 is angled downward toward the face 54 of the club head 50, such that the tube 72 is provided within the plane formed by the z-axis and y-axis. The tube 72 may be angled by an angle δ, where δ is at least 1 degree from the plane W formed by the z axis and x axis. Preferably, the tube is angled downward toward the face 54 by at least 3 degrees from the plane W formed by the z-axis and x-axis. More preferably, the tube 72 is angled downward toward the face of the club head 50 by about 3 to 7 degrees from the plane W formed by the z-axis and x-axis. It will be appreciated that although the tube 72 is described herein as being provided within a plane formed by the y-axis and z-axis, the tube 72 may be offset in either direction from that plane by any desired amount.
  • Now referring to FIG. 12A-12B, it will be appreciated that the tube 72 may be flipped within the club head 50, such that the weight 74 is provided at the other end 76 of the club head 50, closer to the face 54, to move the e.g to a different location for desirable ball flight. When the weight 74 is located at a front of the club head 50 a shot hit off the club head 50 has less backspin and a lower trajectory resulting in a shallower landing for increased distance. It will be appreciated that the tube 72 itself may be able to be inserted in the club head with the weight 74 in either direction, or that different tubes 72 may be selectable with the weight 74 at the desired end and then provided in the club head.
  • It will be appreciated that a club having the weight system 70, such as the tube 72 and weight 74, may also include the multi-relief surface 32 on the sole 56 as described above. For example, in FIGS. 10B and 12B the sole 56 may feature a multi-relief surface 32 with a negative bounce portion 34 and a cutaway portion 40 as described above. It will also be appreciated that the angle 8 of the tube may be substantially parallel to the multi-relief surface 32.
  • FIG. 13 illustrates how the tube 72 may be inserted into the club head 50. A sheath 78 extending from a block 79 in the club head 50 receives the tube 72 with the weight 74, and a fastener 80 locks the tube 72 in place within the club head 50. The tube 72 is fastened to the outside of the club head 50 substantially flush with an outer surface 82 of the club head, as illustrated in FIG. 14.
  • FIG. 15 illustrates the tube 72 according to the embodiment of FIG. 13. The weight 74 is provided at an end 76 of the tube 72. It will be appreciated that the tube 72 and weight 74 may be joined by threaded engagement, epoxy, mechanical lock or other joining method. The weight 74 may comprise tungsten or any other suitable material. The weight 74 has a mass of about 10 to 25 grams. The combined mass of the tube 72 and weight 74 is about 20 to 40 grams. Preferably, the tube 72 comprises aluminum, although any other suitable material may be used.
  • It is envisioned that the orientation of the tube 72 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location. The tube 72 has a diameter td of about 0.3 to 0.5 inch and a length t1 of about 2 to 3 inches. It will be appreciated that more than one tube 72 could be provided in the club head 50 at any one time as illustrated in FIG. 11, or that multiple tubes 72 with a different mass may be provided to the user or fitting location.
  • FIG. 16 illustrates an alternative embodiment for placement of the tube 72 within the club head 50. In this embodiment, the tube 72 has threads 84 on both ends 86 and 88 that interlock in threaded engagement to the mating threads 90 on a block 92 inside the club head adjacent the face 54 and threads 94 on a block 96 adjacent the skirt 60 of the club head 50. The tube 72 is fastened to the inside of the club head 50 adjacent the face 54. It is envisioned that the orientation of the tube 72 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location.
  • FIG. 17 illustrates the tube 72 of the embodiment of FIG. 16 showing the dual threaded ends 86 and 88 of the tube that may be inserted in either direction into the club head 50 and threadedly received adjacent the face 54. The tube 72 has a diameter td and a length t1 has described above and the weight 74 and tube 72 have a similar mass as described above. The exterior of the tube 72 would align substantially flush with the outer surface 82 of the club head 50.
  • FIG. 18 shows an alternative embodiment for the weight system 70 where a weight 98 may be slid along a pipe 100 provided in the club head 50. The exterior surface 102 of the sole 56 of the club head 50 may feature a mechanism 104 to move the weight 98 along the pipe 100 to the desired location to move the e.g. for the desired ball flight as described above. Alternatively, the position of the weight 98 on the pipe 100 may be set during manufacture of the club head.
  • FIG. 19 features another alternative embodiment for the weight system 70. This embodiment features two or more cavities 106 in the sole 56 of the club head 50 for receiving inserts 108. The cavities 106 may be placed in any desired location on the club head 50. As illustrated, the three cavities 106 are provided along an axis O offset from the x-axis. The cavities 106 may be aligned parallel to the x-axis or may be offset in either direction. The cavities 106 may be provided on an axis O offset from the x-axis by 0 to 90 degrees in either direction. The back portion 110 of the club head may feature deeper cavities 106 to mimic the angle of the tube 72 described above relative to the plane formed by the z-axis and x-axis. The inserts 108 may have different mass and may be placed in the different cavities 106 to move the e.g. to a desired location. The inserts 108 may be movable by the user, or they may be set at the time of manufacture or modifiable in a fitting environment.
  • FIG. 20 illustrates yet another alternative embodiment of the weighting system 70 for moving the center of gravity along the y-axis. As illustrated, the club head 50 features a vertical cavity 112 extending from the sole 56 into the hollow volume 64 of the club head. The cavity 112 may be placed in any desired location in the sole 56, for example centered along the width of the face 54 and located more toward the back of the club head 50, as illustrated. A weight 114 is made to fit within the cavity 112, such that it mates securely within the cavity 112. It will be appreciated that the weight 114 may be secured in the cavity in any suitable manner, including threaded engagement, epoxy, mechanical lock, or other joining method. As illustrated, the cavity 112 is cylindrical and the weight 114 is a corresponding cylindrical plug, although it will be appreciated that the weight 114 and mating cavity 112 may be any suitable shape and size. The weight 114 features a heavy end 116 and a lighter end 118. The heavy or lighter end 116 and 118 may be placed closer to the sole 56 to move the e.g. to the desired location along the y-axis. It is envisioned that the orientation of the orientation of the weight 114 may be set during manufacture, may be modified by the user, or may be modifiable by the manufacturer or a designated fitting location. This embodiment may assist in isolating just one attribute, moving the e.g. along the y-axis, thereby making club fitting more straight forward.
  • As illustrated in FIG. 21, the movement of the e.g. is illustrated based on the construction of FIG. 13. It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the back of the club head 50, and a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the front of the club head 50. FIG. 21 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads.
  • As illustrated in FIG. 22, the movement of the e.g. is illustrated based on the construction of FIG. 13. It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the back of the club head 50, and a club head 50 with the weight system 70 of FIG. 13 having the weight 74 in the front of the club head 50. FIG. 22 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads.
  • As illustrated in FIG. 23, the movement of the e.g. is illustrated based on the construction of FIG. 16. It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 16 having the weight 74 in the back of the club head 50, and a club head 74 with the weight system 70 of FIG. 16 having the weight 74 in the front of the club head 50. FIG. 23 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads.
  • As illustrated in FIG. 24, the movement of the e.g. is illustrated based on the construction of FIG. 16. It illustrates the movement of the e.g. along the y-axis and z-axis between a normal Titleist 904F fairway wood without a weight system, a club head 50 with the weight system 70 of FIG. 16 having the weight 74 in the back of the club head 50, and a club head 50 with the weight system 70 of FIG. 16 having the weight 74 in the front of the club head 50. FIG. 24 illustrates the relative position of the e.g. along the y-axis and z-axis for these various club heads. The locations of the e.g. shown in FIGS. 21-24 were calculated using a commercially available CAD (computer aided design) system.
  • FIG. 25 illustrates and alternative embodiment of the golf ball of the invention depicted in FIG. 20, having the following modifications. Protrusion 120 extends outward past sole 56 a distance sufficient to change the club face angle at address by rotating protrusion 120 about the y axis. Alternatively, in FIG. 20, cylindrically shaped weight 114 itself may extend a distance outward past sole 56 to change the club face angle at address.
  • FIGS. 26A and 26B show examples wherein alternatively shaped elements 121 and 122, respectively, may be rotated about an axis that is parallel to the z-axis to change the club face angle at address.
  • FIGS. 27A, 27B and 27C show examples of how the sole may comprise a body portion 123 and one of a plurality of interchangeable adjustment portions 125 wherein the body portion 123 is integral with the body and the one of the plurality of interchangeable adjustment portions 125 is interchangeably mated with the body portion 123 to change the club face angle at address. Body portion 123 and adjustment portion 125 may mate by any known means for joining matable parts such as teeth 124 as in FIG. 27A, or a lip member such as in FIG. 27B or clip-on means such as depicted in FIG. 27C.
  • While various descriptions of the present invention are described above, it should be understood that the various features of each embodiment could be used alone or in any combination thereof. Therefore, this invention is not to be limited to only the specifically preferred embodiments depicted herein. For example, the multi-relief surface sole may be combined in one club head with the weight system to move the e.g. of the club head. Further, it should be understood that variations and modifications within the spirit and scope of the invention might occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is accordingly defined as set forth in the appended claims.

Claims (21)

1. A wood-type golf club head comprising:
a body having a face, a sole, a crown, a toe and a heel;
the body having a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face;
a system disposed within the body for adjusting club face angle at address comprising an element that is rotatable about a system axis that is substantially parallel to the y-axis to provide at least first and second club face angle positions at address.
2. The wood-type golf club head of claim 1, wherein the element interacts with the ground plane at address to change/modify the club face angle.
3. The wood-type golf club head of claim 1, wherein the system changes the golf club angle by less than 1°.
4. The wood-type golf club head of claim 1, wherein the system changes the golf club angle by at least about 1°.
5. The wood-type golf club head of claim 1, wherein the system changes the golf club angle by at least about 2°.
6. The wood-type golf club head of claim 1, the system changes the golf club angle by at least about 3°.
7. The wood-type golf club head of claim 1, wherein the system changes the golf club angle by greater than about 3°.
8. The wood-type golf club head of claim 1, wherein the element has a cylindrically shaped base member that is flush with the sole and a protrusion formed on and protruding from the base member for changing the club face angle at address.
9. The wood-type golf club head of claim 1, wherein the element is disc-shaped.
10. The wood-type golf club head of claim 1, wherein the element is wedge-shaped.
11. The wood-type golf club head of claim 1, wherein the element is tapered.
12. The wood-type golf club head of claim 8, wherein the protrusion interacts with the ground at address changing club face angle.
13. The wood-type golf club head of claim 1, wherein the system is disposed within the body between the toe and the heel at a distance from the heel that is greater than or substantially similar to a distance from the toe.
14. The wood-type golf club head of claim 1, wherein the body comprises a more than one system for changing club face angle at address spaced between the heel and the toe.
15. The wood-type golf club head of claim 14, wherein at least one of systems may be disengaged.
16. The wood-type golf club head of claim 1, wherein the system is secured within the body with at least one of mechanical locking means, welding means, brazing, or an adhesive.
17. The wood-type golf club head of claim 1, wherein the system comprises a material selected from the group comprising plastic, composite, or metal.
18. A wood-type golf club head comprising:
a body having a face, a sole, a crown, a toe and a heel;
the body having a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face;
a system disposed within the body for adjusting club face angle at address comprising an element that is rotatable about a system axis that is substantially parallel to the z-axis to provide at least first and second club face angle positions at address.
19. The wood-type golf club head of claim 18, wherein the system is disposed within the body between the toe and the heel at a distance from the heel that is less than a distance from the toe.
20. A wood-type golf club head comprising:
a body having a face, a sole, a crown, a toe and a heel;
the body having a coordinate system with an x-axis extending horizontally tangent to a center of the club face, a y-axis extending vertically from the center of the club face, and a z-axis extending horizontally through the center of the club face; and
wherein the body comprises a weight member that is adjustable in a vertical direction to move the center of gravity in the vertical direction and is rotatable about a system axis that is substantially parallel to the y-axis to adjust club face angle at address.
21. A wood-type golf club head comprising:
a body having a face, a sole, a crown, a toe and a heel;
the sole being disposed between the toe and the heel and comprising a body portion and one of a plurality of interchangeable adjustment portions;
wherein the body portion is integral with the body and the one of the plurality of interchangeable adjustment portions is interchangeably mated with the body portion;
such that for a club face angle X at address at location L, each of the plurality of interchangeable adjustment parts adjusts the club face angle X to a different club face angle Xn wherein n is the number of interchangeable adjustment portions.
US13/571,650 2005-12-23 2012-08-10 Metal wood club Abandoned US20120302367A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/571,650 US20120302367A1 (en) 2005-12-23 2012-08-10 Metal wood club

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US29/245,472 USD532474S1 (en) 2005-12-23 2005-12-23 Golf club head sole
US11/560,903 US7824277B2 (en) 2005-12-23 2006-11-17 Metal wood club
US12/911,052 US7997998B2 (en) 2005-12-23 2010-10-25 Metal wood club
US13/206,191 US20110294595A1 (en) 2005-12-23 2011-08-09 Metal wood club
US13/571,650 US20120302367A1 (en) 2005-12-23 2012-08-10 Metal wood club

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/206,191 Continuation-In-Part US20110294595A1 (en) 2005-12-23 2011-08-09 Metal wood club

Publications (1)

Publication Number Publication Date
US20120302367A1 true US20120302367A1 (en) 2012-11-29

Family

ID=47219596

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/571,650 Abandoned US20120302367A1 (en) 2005-12-23 2012-08-10 Metal wood club

Country Status (1)

Country Link
US (1) US20120302367A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702534B2 (en) 2010-08-20 2014-04-22 Callaway Golf Company Golf club head
US8777774B1 (en) 2012-01-27 2014-07-15 Callaway Golf Company Adjustable iron-type golf club head
US8834294B1 (en) 2012-06-08 2014-09-16 Callaway Golf Company Golf club head with center of gravity adjustability
US8956244B1 (en) 2012-06-08 2015-02-17 Callaway Golf Company Golf club head with center of gravity adjustability
US20150367207A1 (en) * 2014-06-23 2015-12-24 Dunlop Sports Co. Ltd. Golf club and golf club set
US20170100649A1 (en) * 2012-06-27 2017-04-13 Callaway Golf Company Golf Club Head Having Optimized Ball Speed to CT Relationship
US20170151474A1 (en) * 2012-06-27 2017-06-01 Callaway Golf Company Golf Club Head With Structural Columns
US20170165539A1 (en) * 2012-06-27 2017-06-15 Callaway Golf Company Golf Club Head With Structural Columns
US9782646B2 (en) 2012-06-08 2017-10-10 Callaway Golf Company Golf club head with center of gravity adjustability
US9821199B1 (en) 2012-06-27 2017-11-21 Callaway Golf Company Golf club head having stress-reducing tubes
US9889349B1 (en) 2012-06-27 2018-02-13 Callway Golf Company Golf club head having stress-reducing structures
US10092797B2 (en) 2011-12-29 2018-10-09 Taylor Made Golf Company, Inc. Golf club head
US10238933B1 (en) * 2012-06-27 2019-03-26 Callaway Golf Company Golf club head having adjustable stress-reducing structures
US10300356B2 (en) 2015-05-20 2019-05-28 Taylor Made Golf Company, Inc. Golf club heads
US20190217167A1 (en) * 2012-06-27 2019-07-18 Callaway Golf Company Golf Club Head Having Adjustable Stress-Reducing Structures
USD930100S1 (en) * 2017-07-10 2021-09-07 Parsons Xtreme Golf, LLC Golf club head
US20220258017A1 (en) * 2019-07-19 2022-08-18 Aerotec Power Pty Ltd Improved sporting articles
US11541286B2 (en) 2014-05-21 2023-01-03 Taylor Made Golf Company, Inc. Golf club heads

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429354A (en) * 1994-07-27 1995-07-04 Lisco, Inc. Crownless golf club
US5435551A (en) * 1994-11-22 1995-07-25 Chen; Archer C. C. Golf club head of composite material
US5518242A (en) * 1994-07-27 1996-05-21 Lisco, Inc. Crownless golf club
US5807186A (en) * 1997-03-18 1998-09-15 Chen; Archer C. C. Golf club including lie adjusting device
USD470203S1 (en) * 2002-04-12 2003-02-11 Callaway Golf Company Golf club head
USD470552S1 (en) * 2002-04-12 2003-02-18 Callaway Golf Company Golf club head
USD470553S1 (en) * 2002-04-12 2003-02-18 Callaway Golf Company Golf club head
US6530848B2 (en) * 2000-05-19 2003-03-11 Elizabeth P. Gillig Multipurpose golf club
US6623374B1 (en) * 2002-04-15 2003-09-23 Callaway Golf Company Golf club head and set of golf clubs
USD503444S1 (en) * 2004-01-21 2005-03-29 John P. Gillig Golf club head
US7128660B2 (en) * 2000-05-19 2006-10-31 Elizabeth P. Gillig Revocable Trust Method of golf club performance enhancement and articles resultant therefrom
US7789774B2 (en) * 2004-10-13 2010-09-07 Roger Cleveland Golf Company, Inc. Golf club head having a displaced crown portion
US7854667B2 (en) * 2000-05-19 2010-12-21 Triple Tee Golf, Inc. Method of golf club performance enhancement and articles resultant therefrom
US20110152000A1 (en) * 2009-12-23 2011-06-23 Taylormade Golf Company, Inc. Golf club
US8142308B2 (en) * 2000-05-19 2012-03-27 Triple Tee Golf, Inc. System of golf club performance enhancement and articles resultant therefrom
US20130324307A1 (en) * 2012-05-31 2013-12-05 Nike, Inc. Golf club and golf club head with a crown recessed feature

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518242A (en) * 1994-07-27 1996-05-21 Lisco, Inc. Crownless golf club
US5429354A (en) * 1994-07-27 1995-07-04 Lisco, Inc. Crownless golf club
US5435551A (en) * 1994-11-22 1995-07-25 Chen; Archer C. C. Golf club head of composite material
US5807186A (en) * 1997-03-18 1998-09-15 Chen; Archer C. C. Golf club including lie adjusting device
US7128660B2 (en) * 2000-05-19 2006-10-31 Elizabeth P. Gillig Revocable Trust Method of golf club performance enhancement and articles resultant therefrom
US8142308B2 (en) * 2000-05-19 2012-03-27 Triple Tee Golf, Inc. System of golf club performance enhancement and articles resultant therefrom
US7854667B2 (en) * 2000-05-19 2010-12-21 Triple Tee Golf, Inc. Method of golf club performance enhancement and articles resultant therefrom
US6530848B2 (en) * 2000-05-19 2003-03-11 Elizabeth P. Gillig Multipurpose golf club
USD470203S1 (en) * 2002-04-12 2003-02-11 Callaway Golf Company Golf club head
USD470553S1 (en) * 2002-04-12 2003-02-18 Callaway Golf Company Golf club head
USD470552S1 (en) * 2002-04-12 2003-02-18 Callaway Golf Company Golf club head
US6623374B1 (en) * 2002-04-15 2003-09-23 Callaway Golf Company Golf club head and set of golf clubs
USD503444S1 (en) * 2004-01-21 2005-03-29 John P. Gillig Golf club head
US7789774B2 (en) * 2004-10-13 2010-09-07 Roger Cleveland Golf Company, Inc. Golf club head having a displaced crown portion
US20110152000A1 (en) * 2009-12-23 2011-06-23 Taylormade Golf Company, Inc. Golf club
US20130324307A1 (en) * 2012-05-31 2013-12-05 Nike, Inc. Golf club and golf club head with a crown recessed feature

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8727911B2 (en) 2010-08-20 2014-05-20 Callaway Golf Company Golf club head
US8702534B2 (en) 2010-08-20 2014-04-22 Callaway Golf Company Golf club head
US12090372B2 (en) 2011-12-29 2024-09-17 Taylor Made Golf Company, Inc. Golf club head
US11266885B2 (en) 2011-12-29 2022-03-08 Taylor Made Golf Company, Inc. Golf club head
US10888742B2 (en) 2011-12-29 2021-01-12 Taylor Made Golf Company, Inc. Golf club head
US10463925B2 (en) 2011-12-29 2019-11-05 Taylor Made Golf Company, Inc. Golf club head
US10092797B2 (en) 2011-12-29 2018-10-09 Taylor Made Golf Company, Inc. Golf club head
US8777774B1 (en) 2012-01-27 2014-07-15 Callaway Golf Company Adjustable iron-type golf club head
US9782646B2 (en) 2012-06-08 2017-10-10 Callaway Golf Company Golf club head with center of gravity adjustability
US8834294B1 (en) 2012-06-08 2014-09-16 Callaway Golf Company Golf club head with center of gravity adjustability
US8956244B1 (en) 2012-06-08 2015-02-17 Callaway Golf Company Golf club head with center of gravity adjustability
US9889349B1 (en) 2012-06-27 2018-02-13 Callway Golf Company Golf club head having stress-reducing structures
US20170113104A1 (en) * 2012-06-27 2017-04-27 Callaway Golf Company Golf Club Head Having Optimized Ball Speed to CT Relationship
US9821199B1 (en) 2012-06-27 2017-11-21 Callaway Golf Company Golf club head having stress-reducing tubes
US20170165539A1 (en) * 2012-06-27 2017-06-15 Callaway Golf Company Golf Club Head With Structural Columns
US20170151474A1 (en) * 2012-06-27 2017-06-01 Callaway Golf Company Golf Club Head With Structural Columns
US10238933B1 (en) * 2012-06-27 2019-03-26 Callaway Golf Company Golf club head having adjustable stress-reducing structures
US20170100649A1 (en) * 2012-06-27 2017-04-13 Callaway Golf Company Golf Club Head Having Optimized Ball Speed to CT Relationship
US20170113105A1 (en) * 2012-06-27 2017-04-27 Callaway Golf Company Golf Club Head Having Optimized Ball Speed To CT Relationship
US20190217167A1 (en) * 2012-06-27 2019-07-18 Callaway Golf Company Golf Club Head Having Adjustable Stress-Reducing Structures
US9776058B2 (en) * 2012-06-27 2017-10-03 Callaway Golf Company Golf club head having optimized ball speed to CT relationship
US10589154B2 (en) * 2012-06-27 2020-03-17 Callaway Golf Company Golf club head having adjustable stress-reducing structures
US11541286B2 (en) 2014-05-21 2023-01-03 Taylor Made Golf Company, Inc. Golf club heads
US10286264B2 (en) * 2014-06-23 2019-05-14 Sumitomo Rubber Industries, Ltd. Golf club set with progression of curvature of sole and center of gravity
US20150367207A1 (en) * 2014-06-23 2015-12-24 Dunlop Sports Co. Ltd. Golf club and golf club set
US10300356B2 (en) 2015-05-20 2019-05-28 Taylor Made Golf Company, Inc. Golf club heads
USD930100S1 (en) * 2017-07-10 2021-09-07 Parsons Xtreme Golf, LLC Golf club head
US20220258017A1 (en) * 2019-07-19 2022-08-18 Aerotec Power Pty Ltd Improved sporting articles

Similar Documents

Publication Publication Date Title
US9737770B2 (en) Metal wood club
US20120302367A1 (en) Metal wood club
US9421432B2 (en) Metal wood club
US20070149315A1 (en) Metal wood club
US20130244808A1 (en) Metal wood club
US9144717B2 (en) Putter heads and putters
JP5601726B2 (en) Golf club head or other ball striking device having a stiffening face portion
US8562452B2 (en) Golf club or golf club head having an adjustable ball striking face
JP5767230B2 (en) Golf club and golf club head
JP5769393B2 (en) Metal wood club
US20040048682A1 (en) Golf club head
US20060234807A1 (en) Iron-type golf clubs
US6875130B2 (en) Wood-type golf club head
US7819759B2 (en) Golf club head
US8480507B2 (en) Golf clubs and golf club heads
JP2003199850A (en) Iron type golf club head
EP2432571B1 (en) Multi-component golf club head
JP4657484B2 (en) Golf club head and golf club

Legal Events

Date Code Title Description
AS Assignment

Owner name: ACUSHNET COMPANY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MYRHUM, MARK C.;ZIMMERMAN, GERY M.;BENNETT, THOMAS ORRIN;AND OTHERS;SIGNING DATES FROM 20120725 TO 20120806;REEL/FRAME:028763/0980

AS Assignment

Owner name: KOREA DEVELOPMENT BANK, NEW YORK BRANCH, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ACUSHNET COMPANY;REEL/FRAME:031868/0519

Effective date: 20121219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ACUSHNET COMPANY, MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (031868/0519);ASSIGNOR:KOREA DEVELOPMENT BANK, NEW YORK BRANCH;REEL/FRAME:039939/0362

Effective date: 20160728