US20120247312A1 - Structural panel insert with honeycomb core - Google Patents
Structural panel insert with honeycomb core Download PDFInfo
- Publication number
- US20120247312A1 US20120247312A1 US13/065,844 US201113065844A US2012247312A1 US 20120247312 A1 US20120247312 A1 US 20120247312A1 US 201113065844 A US201113065844 A US 201113065844A US 2012247312 A1 US2012247312 A1 US 2012247312A1
- Authority
- US
- United States
- Prior art keywords
- structural insert
- filler material
- insert
- cellular structure
- openings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 claims abstract description 76
- 229910052751 metal Inorganic materials 0.000 claims abstract description 60
- 239000002184 metal Substances 0.000 claims abstract description 59
- 239000000945 filler Substances 0.000 claims abstract description 30
- 239000011148 porous material Substances 0.000 claims abstract description 13
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 210000003850 cellular structure Anatomy 0.000 claims description 24
- 239000004005 microsphere Substances 0.000 claims description 9
- 238000005452 bending Methods 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 3
- 230000001413 cellular effect Effects 0.000 abstract description 2
- 238000001764 infiltration Methods 0.000 description 25
- 230000008595 infiltration Effects 0.000 description 25
- 239000010410 layer Substances 0.000 description 20
- 239000011156 metal matrix composite Substances 0.000 description 16
- 238000005266 casting Methods 0.000 description 14
- 239000000919 ceramic Substances 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910001338 liquidmetal Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052580 B4C Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910002109 metal ceramic alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/02—Plate construction
- F41H5/04—Plate construction composed of more than one layer
- F41H5/0414—Layered armour containing ceramic material
- F41H5/0421—Ceramic layers in combination with metal layers
Definitions
- This invention relates to inserts for structural panels in general and more specifically to a structural insert for Metal Matrix Composite (MMC) Armor, the insert having a cellular structure with openings as a component part.
- MMC Metal Matrix Composite
- Ceramic and other polymer composites have poor strength in the through-the-thickness direction and they are not as rigid or stiff as metal backings. But metal backings have the problem of increased weight due to their higher density.
- a metal or metal matrix composite backing with lower density than an equivalent metal backing can be made by including a lightweight metal insert with cellular openings. Further, the openings can be filled with low density ceramic microspheres prior to infiltrating with aluminum.
- an insert having a cellular structure filled with energy absorbing materials functions to attenuate a blast from a projectile hit by deforming in response to the blast shock.
- the bubbles give some additional ability to absorb and deflect the blast force thus breaking up the attendant stress waves.
- the cellular structure can be placed in a variety of locations throughout the structural insert to achieve desired shear strength or density variations where needed.
- honeycomb structures are prevalent in the prior art, a structural insert integrally cast in a Metal Matrix Composite (MMC) and utilizing a percentage of cellular structure placed in combination with other materials in a single insert is neither taught nor suggested in the prior art.
- MMC Metal Matrix Composite
- a structural insert according to the present invention can be utilized in a Metal Matrix Composite (MMC) structure such as an armor structure having one or more material layers with each material layer having at least one structural insert arranged along a common surface.
- MMC Metal Matrix Composite
- a portion of at least one structural insert up to and including the entire insert may contain a cellular structure.
- the cellular structure can be placed in a variety of locations throughout the insert in combination with other material types to achieve desired shear strength, bend strength, stiffness, and energy absorption where needed.
- the cellular structure may also contain filler materials inserted in the cells.
- the cellular structure enables locating the filler material in specific locations and acts as a “holder” for the filler materials.
- the insert may comprise in combination with the cellular structure dense or porous material types arranged in the insert .
- the insert is infiltrated with a liquid metal which solidifies within the inserts open porosity.
- a reinforcement material containing a fraction of high volume hollow microspheres with interior voids can be utilized and placed within the inserts cellular structure to decrease the weight of the armor system.
- the inserts may include an infinite combination of dense material and porous material types and geometries. These dense materials may comprise inorganic material systems such as ceramics, metals or composites with dense microstructures.
- the structural inserts of the present invention can be used as a component in the material layers of a Metal Matrix Composite Armor System and may be included in one or more material layers.
- a typical armor system may include multiple material components arranged in a common plane and stacked upon each other.
- the material components can include, in addition to the structural inserts of the present invention, inserts made of dense and porous material types, such as dense ceramic tiles or porous ceramic fillers.
- the material layers are infiltrated with liquid metal which solidifies within the materials open porosity thereby binding the layers together to create a coherent integral structure.
- the selection of different dense and porous material types allows the designer to vary physical and mechanical properties throughout the structure for optimization and increased effectiveness of the armor system.
- the selection of different material types may be based on strength, toughness, thermal expansion and weight attributes of the individual material types desirable for projectile impact protection.
- the liquid metal is introduced under pressure into the casting mold encapsulating and infiltrating the material layers.
- the mold chamber is fabricated to create the final shape or closely approximate that desired of the final product.
- FIG. 1 is a perspective view of a Honeycomb material utilized in the structural insert of the present invention.
- FIG. 2 illustrates that structural insert 25 can be configured as part of a multi-layer metal matrix composite armor system having multiple inserts 25 placed side by side and stacked upon each other.
- FIG. 3 and FIG. 4 illustrate a structural insert 25 with alternative placement of honeycomb material 10 and filler material 20 prior to metal infiltration.
- FIG. 5 illustrates a structural insert 25 utilizing a honeycomb material 10 with a portion of openings 10 A filled with a filler material 20 and with hollow micro-spheres 30 .
- FIG. 6 illustrates the structural insert 25 of FIG. 5 further including metal inserts 35 placed within honeycomb material 10 prior to metal infiltration.
- FIG. 7 illustrates the structural insert 25 of FIG. 6 subsequent to metal infiltration casting.
- FIG. 8 illustrates a top view of the structural insert 25 of FIG. 6 arranged in a Metal Matrix Composite Armor subsequent to metal infiltration casting.
- FIG. 9 illustrates a cross-section of the structural insert 25 of FIG. 6 having top and bottom facesheets 45 subsequent to metal infiltration casting.
- FIG. 10 illustrates a cross-section of the structural insert 25 having facesheets 45 of FIG. 9 , and further including a dense ceramic layer 50 .
- FIGS. 3-10 A structural insert for a Metal Matrix Composite Armor having a polygonal or HoneyComb Core, according to the present invention, is best seen in the embodiments illustrated in FIGS. 3-10 .
- a honeycomb core or cellular structure 10 is disclosed with openings 10 A and oppositely facing sides 12 and 14 between which the openings 10 A extend.
- the openings 10 A are of hexagonal form, but may take on any cellular structure.
- the honeycomb core 10 may be made from either ceramic or metal and is placed in a sealed mold cavity prior to metal infiltration casting.
- Suitable metal infiltrants include but are not limited to aluminum alloys, copper, titanium and magnesium, and other metal alloys cast from the molten liquid phase.
- the liquid metal infiltration process is described in U.S. Pat. No. 3,547,180 and incorporated herein by reference for all that it discloses.
- FIG. 3 illustrates honeycomb core 10 as part of a structural insert 25 prior to metal infiltration.
- Insert 25 includes filler material 20 replacing a portion of honeycomb core 10 at the edges of the insert 25 .
- FIG. 4 illustrates an alternative embodiment where honeycomb core 10 replaces a portion of filler material 20 at the edges of insert 25 . It is contemplated that any combination of filler material 20 and honeycomb core 10 may be utilized in an insert 25 to provide different characteristics such as increased shear strength at the edges of insert 25 or blast force absorbtion and deflection of an attendant stress wave.
- inserts may be utilized in an armor structure having one or more stacked material layers and each material layer having at least one reinforcement insert arranged along a common surface, as illustrated in FIG. 2 .
- FIG. 5 An insert 25 having a honeycomb core 10 is illustrated in FIG. 5 and FIG. 6 prior to metal infiltration.
- a portion of openings 10 A are filled with a filler material 20 and with hollow micro-spheres 30 and the remaining openings 10 A are open.
- an additional filler material comprising a metal insert 35 replaces a portion of honeycomb core 10 prior to metal infiltration.
- the metal insert can be machined to provide an attachment means for the insert 25 .
- FIG. 7 illustrates the insert 25 of FIG. 6 subsequent to metal infiltration casting.
- FIG. 8 illustrates the arrangement of four inserts 25 after placement in a mold cavity and subsequent to metal infiltration casting.
- the metal “XX” infiltrates all areas of open porosity including any open areas between hollow micro-spheres 30 and the openings 10 A. Since metal inserts 35 contain no open porosity the metal “XX” infiltrates only at the surface.
- FIGS. 7-9 subsequent to metal infiltration casting, a metal enveloping layer 40 is formed around the metal infiltrated insert(s) 25 .
- FIG. 8 illustrates a top view of the side by side placement of inserts 25 , with spacing there-between, and metal infiltrated around and in between the inserts 25 .
- top and bottom face sheets 45 comprising a filler material 20 of metal composite or metal matrix material, being dense or porous, may be placed around insert 25 to create a structural sandwich panel having facesheets 45 to provide strength and stiffness in bending.
- the facesheets 45 range in thickness from 1/10 to 1 ⁇ 4 the thickness of honeycomb cellular structure 10 , as measured by the distance between oppositely facing sides 12 and 14 .
- FIG. 10 illustrates the insert of FIG. 9 , further including a dense ceramic layer 50 and face sheets 45 .
- the filler material 20 can be of a variety of dense or porous material types.
- Dense material types may include surface voids that are filled with aluminum during the Al infiltration process such as metal inserts 35 as illustrated in FIG. 6 .
- Mechanical and chemical reactive surface bonding allows the dense material metal infiltrated surface to bond to adjacent material types during metal infiltration casting.
- a Metal Matrix Composite Armor comprised of inserts 25 having a honeycomb core 10 functions to attenuate a blast from a projectile by deforming in response to the blast shock. These differing material properties tend to absorb or attenuate the shock wave more effectively than is generally possible with a material that has uniform material properties throughout. Utilizing materials of different CTE values and which are strongly bound both mechanically and chemically produces compressive and tensioned layers throughout the composite armor after metal infiltration and solidification.
- Porous material types include reinforcement of ceramic or metal in the form of particulates or fibers.
- the ceramic and/or metal particulate or fiber reinforcement include materials such as aluminum oxide, carbon, graphite, silicon carbide, boron carbide, titanium, tungsten, molybdenum, copper, aluminum and other anticipated ceramics or metal materials.
- the porous material types have an interior open porosity between about 30% and about 98% prior to metal infiltration and have a predetermined fraction of void volume or open structure throughout the material structure, or can be open spaces in a closed mold, such as honeycomb core 10 openings 10 A, that are filled with molten metal subsequent to metal infiltration casting.
- a process of forming a porous material or preform constituent, which may be utilized in subject invention, is disclosed in U.S. Pat. No. 5,047,182, incorporated herein by reference for all it discloses.
- a filler material type 20 of porous material can be utilized as described herein as part of insert 25 ( FIG. 3 , 4 ) and can also be used to fill openings 10 A of honeycomb core 10 ( FIG. 5 , 6 ).
- a porous material can be utilized as a facesheet 45 as illustrated in FIG. 9 .
- Filler material 20 of dense material types includes aluminum oxide, silicon carbide, boron carbide, silicon nitride, and chemical vapor deposit diamond.
- Dense materials may be a dense metal such as titanium, tungsten, molybdenum, and depleted uranium.
- Other suitable dense materials include but are not limited to glass-ceramics, and other inorganic material systems which are compatible with molten metal processing and which can contribute to ballistic resistance of the integrated system.
- Dense materials such as high strength steels, metal alloys, and ceramic alloys may be used in subject invention.
- a filler material type 20 of dense material can be utilized as described herein as part of insert 25 ( FIG. 3 , 4 ) and can also be used to fill openings 10 A of honeycomb core 10 ( FIG. 5 , 6 ).
- a dense material can be utilized as a facesheet 45 or layer 50 as illustrated in FIG. 9 and FIG. 10 or as inserts 35 as illustrated in FIG. 6 and FIG. 7 .
- high volume fractions of hollow micro-spheres 30 with interior voids are used to fill openings 10 A.
- the bubble material 30 comprises a lightweight, inert hollow spheres filled with air and/or gas with a density about 0.4 to 1.6 grams/cubic-centimeter.
- the hollow spheres 20 are denoted by “000” and the metal infiltrant denoted by “XXX” in FIGS. 7-9 after metal infiltration. Bubble material 20 is dispersed randomly throughout openings 10 A as illustrated in FIG. 5 .
- the hollow spheres are hermetic, and do not collapse or fill with metal during the metal infiltration process.
- the hollow spheres have been demonstrated by the inventor to be strong enough to withstand the pressure of metal infiltration casting and will not soften or crush under extreme metal infiltration temperatures greater than 600 degrees celsius. Furthermore, the hollow spheres do not degrade or dissolve due to chemical reactions with the metal infiltrant.
- hollow spheres of the Cenosphere variety are utilized as the hollow micro-sphere material 30 .
- Cenospheres, a component of aluminum fly-ash, have shown to exhibit light weight, and when used in Metal Matrix Composite (MMC) structures can reduce density to less than 2 g/cc.
- MMC Metal Matrix Composite
- Cenospheres are produced as a natural by-product of coal combustion during the generation of electric power. As a portion of the fly-ash generated in coal production, cenospheres are recycled from the waste stream. They are made up of inert silica, iron and alumina, and have a size ranging from 1 to 300 microns with an average compressive strength of 3000 PSI. Cenospheres of low bulk density are produced by Sphere Services, Inc, of Oakridge, Tenn.
- the insert(s) 25 becomes metal rich in its open porosity at its surface (in the case of a dense material type) and throughout its open porosity in the case of porous material type.
- the insert(s) 25 as illustrated in FIGS. 3-6 are initially placed into a mold cavity suitable for molten metal infiltration casting.
- the mold cavity is typically prepared from a die suitable for molten metal infiltration casting with the dimensions defined to produce a multi-structure metal matrix composite.
- the final products, as illustrated in alternative embodiments 7-10, are infiltrated with molten aluminum to form a metal matrix bonded composite in the desired product shape geometry.
- the insert 25 (and additional facesheets for FIG. 9 embodiment, and additional dense layer for FIG. 10 embodiment) now becomes metal rich and can alternatively be referred to as a “Metal Matrix Composite”.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Laminated Bodies (AREA)
Abstract
A structural insert with a cellular core as a holder for filler materials, in combination with other dense or porous material types arranged in the structural insert, to achieve a desired shear strength and stiffness in desired locations. The insert having metal within any areas of open porosity and the insert capable of being used as a component in a composite system such as a light weight armor.
Description
- This invention relates to inserts for structural panels in general and more specifically to a structural insert for Metal Matrix Composite (MMC) Armor, the insert having a cellular structure with openings as a component part.
- Many different kinds of lightweight armor systems are known and are currently being used in a wide range of applications, including, for example, aircraft, light armored vehicles, and body armor systems, wherein it is desirable to provide protection against bullets and other projectiles.
- While early armor systems tended to rely on a single layer of material, it was soon realized that the effectiveness of the armor system could be improved considerably by using more than one material layer; each layer optimized for a specific purpose. For example, utilizing a hard monolithic ceramic face to initiate destruction of hardened projectiles and a backing layer of energy absorbing material such as high strength Ceramic fibers.
- However, Ceramic and other polymer composites have poor strength in the through-the-thickness direction and they are not as rigid or stiff as metal backings. But metal backings have the problem of increased weight due to their higher density.
- It has been discovered by the present inventors that a metal or metal matrix composite backing, with lower density than an equivalent metal backing can be made by including a lightweight metal insert with cellular openings. Further, the openings can be filled with low density ceramic microspheres prior to infiltrating with aluminum.
- It has been discovered that the use of an insert having a cellular structure filled with energy absorbing materials, such as high volume hollow micro-spheres functions to attenuate a blast from a projectile hit by deforming in response to the blast shock. The bubbles give some additional ability to absorb and deflect the blast force thus breaking up the attendant stress waves. Furthermore, the cellular structure can be placed in a variety of locations throughout the structural insert to achieve desired shear strength or density variations where needed.
- Although honeycomb structures are prevalent in the prior art, a structural insert integrally cast in a Metal Matrix Composite (MMC) and utilizing a percentage of cellular structure placed in combination with other materials in a single insert is neither taught nor suggested in the prior art.
- A structural insert according to the present invention can be utilized in a Metal Matrix Composite (MMC) structure such as an armor structure having one or more material layers with each material layer having at least one structural insert arranged along a common surface.
- A portion of at least one structural insert up to and including the entire insert may contain a cellular structure. The cellular structure can be placed in a variety of locations throughout the insert in combination with other material types to achieve desired shear strength, bend strength, stiffness, and energy absorption where needed. The cellular structure may also contain filler materials inserted in the cells. The cellular structure enables locating the filler material in specific locations and acts as a “holder” for the filler materials. The insert may comprise in combination with the cellular structure dense or porous material types arranged in the insert .
- The insert is infiltrated with a liquid metal which solidifies within the inserts open porosity. A reinforcement material containing a fraction of high volume hollow microspheres with interior voids can be utilized and placed within the inserts cellular structure to decrease the weight of the armor system. The inserts may include an infinite combination of dense material and porous material types and geometries. These dense materials may comprise inorganic material systems such as ceramics, metals or composites with dense microstructures.
- The structural inserts of the present invention can be used as a component in the material layers of a Metal Matrix Composite Armor System and may be included in one or more material layers. A typical armor system may include multiple material components arranged in a common plane and stacked upon each other. The material components can include, in addition to the structural inserts of the present invention, inserts made of dense and porous material types, such as dense ceramic tiles or porous ceramic fillers.
- The material layers are infiltrated with liquid metal which solidifies within the materials open porosity thereby binding the layers together to create a coherent integral structure. The selection of different dense and porous material types allows the designer to vary physical and mechanical properties throughout the structure for optimization and increased effectiveness of the armor system. The selection of different material types may be based on strength, toughness, thermal expansion and weight attributes of the individual material types desirable for projectile impact protection.
- The liquid metal is introduced under pressure into the casting mold encapsulating and infiltrating the material layers. The mold chamber is fabricated to create the final shape or closely approximate that desired of the final product.
- The invention is best understood from the following detailed description when read in connection with the accompanying drawings, which illustrate various embodiments of the present invention:
-
FIG. 1 is a perspective view of a Honeycomb material utilized in the structural insert of the present invention. -
FIG. 2 illustrates thatstructural insert 25 can be configured as part of a multi-layer metal matrix composite armor system havingmultiple inserts 25 placed side by side and stacked upon each other. -
FIG. 3 andFIG. 4 illustrate astructural insert 25 with alternative placement ofhoneycomb material 10 andfiller material 20 prior to metal infiltration. -
FIG. 5 illustrates astructural insert 25 utilizing ahoneycomb material 10 with a portion ofopenings 10A filled with afiller material 20 and with hollow micro-spheres 30. -
FIG. 6 illustrates thestructural insert 25 ofFIG. 5 further includingmetal inserts 35 placed withinhoneycomb material 10 prior to metal infiltration. -
FIG. 7 illustrates thestructural insert 25 ofFIG. 6 subsequent to metal infiltration casting. -
FIG. 8 illustrates a top view of thestructural insert 25 ofFIG. 6 arranged in a Metal Matrix Composite Armor subsequent to metal infiltration casting. -
FIG. 9 illustrates a cross-section of thestructural insert 25 ofFIG. 6 having top andbottom facesheets 45 subsequent to metal infiltration casting. -
FIG. 10 illustrates a cross-section of thestructural insert 25 havingfacesheets 45 ofFIG. 9 , and further including a denseceramic layer 50. - A structural insert for a Metal Matrix Composite Armor having a polygonal or HoneyComb Core, according to the present invention, is best seen in the embodiments illustrated in
FIGS. 3-10 . Referring toFIG. 1 , a honeycomb core orcellular structure 10 is disclosed withopenings 10A and oppositely facingsides openings 10A extend. In the disclosed embodiment theopenings 10A are of hexagonal form, but may take on any cellular structure. - The
honeycomb core 10 may be made from either ceramic or metal and is placed in a sealed mold cavity prior to metal infiltration casting. Suitable metal infiltrants include but are not limited to aluminum alloys, copper, titanium and magnesium, and other metal alloys cast from the molten liquid phase. The liquid metal infiltration process is described in U.S. Pat. No. 3,547,180 and incorporated herein by reference for all that it discloses. -
FIG. 3 illustrateshoneycomb core 10 as part of astructural insert 25 prior to metal infiltration.Insert 25 includesfiller material 20 replacing a portion ofhoneycomb core 10 at the edges of theinsert 25.FIG. 4 illustrates an alternative embodiment where honeycombcore 10 replaces a portion offiller material 20 at the edges ofinsert 25. It is contemplated that any combination offiller material 20 andhoneycomb core 10 may be utilized in aninsert 25 to provide different characteristics such as increased shear strength at the edges ofinsert 25 or blast force absorbtion and deflection of an attendant stress wave. - It is further contemplated that the inserts may be utilized in an armor structure having one or more stacked material layers and each material layer having at least one reinforcement insert arranged along a common surface, as illustrated in
FIG. 2 . - An
insert 25 having ahoneycomb core 10 is illustrated inFIG. 5 andFIG. 6 prior to metal infiltration. InFIG. 5 a portion ofopenings 10A are filled with afiller material 20 and withhollow micro-spheres 30 and theremaining openings 10A are open. InFIG. 6 , an additional filler material comprising ametal insert 35 replaces a portion ofhoneycomb core 10 prior to metal infiltration. The metal insert can be machined to provide an attachment means for theinsert 25.FIG. 7 illustrates theinsert 25 ofFIG. 6 subsequent to metal infiltration casting. -
FIG. 8 illustrates the arrangement of fourinserts 25 after placement in a mold cavity and subsequent to metal infiltration casting. As illustrated inFIG. 7 , the metal “XX” infiltrates all areas of open porosity including any open areas between hollow micro-spheres 30 and theopenings 10A. Sincemetal inserts 35 contain no open porosity the metal “XX” infiltrates only at the surface. - As illustrated in
FIGS. 7-9 , subsequent to metal infiltration casting, ametal enveloping layer 40 is formed around the metal infiltrated insert(s) 25.FIG. 8 illustrates a top view of the side by side placement ofinserts 25, with spacing there-between, and metal infiltrated around and in between theinserts 25. As illustrated in theFIG. 9 cross-section, top andbottom face sheets 45 comprising afiller material 20 of metal composite or metal matrix material, being dense or porous, may be placed aroundinsert 25 to create a structural sandwichpanel having facesheets 45 to provide strength and stiffness in bending. - The
facesheets 45 range in thickness from 1/10 to ¼ the thickness of honeycombcellular structure 10, as measured by the distance betweenoppositely facing sides FIG. 10 illustrates the insert ofFIG. 9 , further including a denseceramic layer 50 andface sheets 45. Thefiller material 20 can be of a variety of dense or porous material types. - Dense material types may include surface voids that are filled with aluminum during the Al infiltration process such as metal inserts 35 as illustrated in
FIG. 6 . Mechanical and chemical reactive surface bonding allows the dense material metal infiltrated surface to bond to adjacent material types during metal infiltration casting. - The compression and containment provided in a Metal Matrix Composite Armor comprised of
inserts 25 having ahoneycomb core 10 functions to attenuate a blast from a projectile by deforming in response to the blast shock. These differing material properties tend to absorb or attenuate the shock wave more effectively than is generally possible with a material that has uniform material properties throughout. Utilizing materials of different CTE values and which are strongly bound both mechanically and chemically produces compressive and tensioned layers throughout the composite armor after metal infiltration and solidification. - Porous material types include reinforcement of ceramic or metal in the form of particulates or fibers. The ceramic and/or metal particulate or fiber reinforcement include materials such as aluminum oxide, carbon, graphite, silicon carbide, boron carbide, titanium, tungsten, molybdenum, copper, aluminum and other anticipated ceramics or metal materials. The porous material types have an interior open porosity between about 30% and about 98% prior to metal infiltration and have a predetermined fraction of void volume or open structure throughout the material structure, or can be open spaces in a closed mold, such as
honeycomb core 10openings 10A, that are filled with molten metal subsequent to metal infiltration casting. - A process of forming a porous material or preform constituent, which may be utilized in subject invention, is disclosed in U.S. Pat. No. 5,047,182, incorporated herein by reference for all it discloses. A
filler material type 20 of porous material can be utilized as described herein as part of insert 25 (FIG. 3 , 4) and can also be used to fillopenings 10A of honeycomb core 10 (FIG. 5 , 6). Furthermore a porous material can be utilized as afacesheet 45 as illustrated inFIG. 9 . -
Filler material 20 of dense material types includes aluminum oxide, silicon carbide, boron carbide, silicon nitride, and chemical vapor deposit diamond. Dense materials may be a dense metal such as titanium, tungsten, molybdenum, and depleted uranium. Other suitable dense materials include but are not limited to glass-ceramics, and other inorganic material systems which are compatible with molten metal processing and which can contribute to ballistic resistance of the integrated system. - Dense materials such as high strength steels, metal alloys, and ceramic alloys may be used in subject invention. A
filler material type 20 of dense material can be utilized as described herein as part of insert 25 (FIG. 3 , 4) and can also be used to fillopenings 10A of honeycomb core 10 (FIG. 5 , 6). Furthermore a dense material can be utilized as afacesheet 45 orlayer 50 as illustrated inFIG. 9 andFIG. 10 or asinserts 35 as illustrated inFIG. 6 andFIG. 7 . - In one embodiment, and to reduce the density of the armor layer, high volume fractions of
hollow micro-spheres 30 with interior voids, are used to fillopenings 10A. Thebubble material 30 comprises a lightweight, inert hollow spheres filled with air and/or gas with a density about 0.4 to 1.6 grams/cubic-centimeter. Thehollow spheres 20 are denoted by “000” and the metal infiltrant denoted by “XXX” inFIGS. 7-9 after metal infiltration.Bubble material 20 is dispersed randomly throughoutopenings 10A as illustrated inFIG. 5 . - The hollow spheres are hermetic, and do not collapse or fill with metal during the metal infiltration process. The hollow spheres have been demonstrated by the inventor to be strong enough to withstand the pressure of metal infiltration casting and will not soften or crush under extreme metal infiltration temperatures greater than 600 degrees celsius. Furthermore, the hollow spheres do not degrade or dissolve due to chemical reactions with the metal infiltrant.
- In the disclosed embodiment, hollow spheres of the Cenosphere variety are utilized as the hollow
micro-sphere material 30. However, any ceramic or metallic bubble which is hermetic with the metal infiltrant, has sufficient crush strength, and acceptable reactivity with the infiltrant is acceptable. Cenospheres, a component of aluminum fly-ash, have shown to exhibit light weight, and when used in Metal Matrix Composite (MMC) structures can reduce density to less than 2 g/cc. - Cenospheres are produced as a natural by-product of coal combustion during the generation of electric power. As a portion of the fly-ash generated in coal production, cenospheres are recycled from the waste stream. They are made up of inert silica, iron and alumina, and have a size ranging from 1 to 300 microns with an average compressive strength of 3000 PSI. Cenospheres of low bulk density are produced by Sphere Services, Inc, of Oakridge, Tenn.
- Following infiltration casting the insert(s) 25 becomes metal rich in its open porosity at its surface (in the case of a dense material type) and throughout its open porosity in the case of porous material type.
- The insert(s) 25 as illustrated in
FIGS. 3-6 are initially placed into a mold cavity suitable for molten metal infiltration casting. The mold cavity is typically prepared from a die suitable for molten metal infiltration casting with the dimensions defined to produce a multi-structure metal matrix composite. The final products, as illustrated in alternative embodiments 7-10, are infiltrated with molten aluminum to form a metal matrix bonded composite in the desired product shape geometry. At this point the insert 25 (and additional facesheets forFIG. 9 embodiment, and additional dense layer forFIG. 10 embodiment) now becomes metal rich and can alternatively be referred to as a “Metal Matrix Composite”. - It should be understood that the preceding is merely a detailed description of one embodiment of this invention and that numerous changes to the disclosed embodiment can be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. Rather, the scope of the invention is to be determined only by the appended claims and their equivalents.
Claims (16)
1. A structural insert for a composite armor, comprising:
an encapsulating barrier formed around a cellular structure, said cellular structure having a plurality of openings , said plurality of openings having oppositely faced sides between which said plurality of openings extend; and
a filler material disposed within at least one of said plurality of openings, said plurality of openings further comprising said encapsulating metal.
2. A structural insert for a composite armor as in claim 1 , further comprising a second filler material disposed in at least one of said plurality of openings, said first filler material and said second filler material in different openings.
3. A structural insert for a composite armor as in claim 1 , further comprising a second filler material disposed in at least one of said plurality of openings, said first filler material and said second filler material in the same openings.
4. A structural insert for a composite armor as in claim 1 , wherein a portion of said cellular structure is replaced by a second filler material , wherein said second filler material is porous, said porous material further comprising a metal infiltrated therein.
5. A structural insert as in claim 1 , wherein one or more of said structural inserts are arranged in a common plane, said common plane inserts further arranged in one or more stacked layers.
6. A structural insert as in claim 1 wherein said encapsulating metal barrier is continuous from the interior of said cellular structure to the periphery of said cellular structure.
7. A structural insert as in claim 1 further comprising first and second face sheets disposed on opposite sides of said cellular structure, said encapsulating metal barrier formed around said cellular structure and said face sheets.
8. A structural insert for a composite armor as in claim 1 , wherein a portion of said cellular structure is replaced by a second filler material, wherein said second filler material is a dense material.
9. A structural insert for a composite armor as in claim 5 , wherein said structural inserts arranged in a common plane have spacing therebetween.
10. A structural insert for a composite armor as in claim 5 , wherein said one or more stacked layers further comprise one or more dense materials disposed between said one or more stacked layers.
11. A structural insert as in claim 7 , further comprising a dense material layer, said dense material layer disposed between said first and second face sheets.
12. A structural insert as in claim 5 , further comprising one or more face sheets disposed on the top and bottom of said one or more stacked layers.
13. A structural insert as in claim 1 , wherein said filler material is a plurality of high volume hollow microspheres.
14. A structural insert as in claim 7 , wherein said first and second face sheet thickness precludes said cellular structure from bending.
15. A structural insert as in claim 14 , wherein said first and second face sheet thickness is from about 1/10 to ¼ the thickness of said cellular structure.
16. A structural insert as in claim 1 , wherein said encapsulating metal bonds said cellular structure and said filler material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/065,844 US20120247312A1 (en) | 2011-03-31 | 2011-03-31 | Structural panel insert with honeycomb core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/065,844 US20120247312A1 (en) | 2011-03-31 | 2011-03-31 | Structural panel insert with honeycomb core |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120247312A1 true US20120247312A1 (en) | 2012-10-04 |
Family
ID=46925520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/065,844 Abandoned US20120247312A1 (en) | 2011-03-31 | 2011-03-31 | Structural panel insert with honeycomb core |
Country Status (1)
Country | Link |
---|---|
US (1) | US20120247312A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140230639A1 (en) * | 2011-07-06 | 2014-08-21 | Ajou Universtiy Industry-Academic Cooperation Foundation | Defense structure for national defense |
US20160375648A1 (en) * | 2015-06-26 | 2016-12-29 | Richard Adams | Structural panel insert having encapsulated filler materials |
US9846014B2 (en) * | 2013-12-03 | 2017-12-19 | The University Of Akron | Ballistic materials having a three-dimensional sphere structure |
EP3270093A1 (en) * | 2016-07-15 | 2018-01-17 | Craco GmbH | Compound armour and method for the preparation of same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4404889A (en) * | 1981-08-28 | 1983-09-20 | The United States Of America As Represented By The Secretary Of The Army | Composite floor armor for military tanks and the like |
US5221807A (en) * | 1989-12-06 | 1993-06-22 | Societe Europeenne De Propulsion | Ballistic protection armor |
US5620804A (en) * | 1988-11-10 | 1997-04-15 | Lanxide Technology Company, Lp | Metal matrix composite bodies containing three-dimensionally interconnected co-matrices |
US6895851B1 (en) * | 2003-06-16 | 2005-05-24 | Ceramics Process Systems | Multi-structure metal matrix composite armor and method of making the same |
-
2011
- 2011-03-31 US US13/065,844 patent/US20120247312A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4404889A (en) * | 1981-08-28 | 1983-09-20 | The United States Of America As Represented By The Secretary Of The Army | Composite floor armor for military tanks and the like |
US5620804A (en) * | 1988-11-10 | 1997-04-15 | Lanxide Technology Company, Lp | Metal matrix composite bodies containing three-dimensionally interconnected co-matrices |
US5221807A (en) * | 1989-12-06 | 1993-06-22 | Societe Europeenne De Propulsion | Ballistic protection armor |
US6895851B1 (en) * | 2003-06-16 | 2005-05-24 | Ceramics Process Systems | Multi-structure metal matrix composite armor and method of making the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140230639A1 (en) * | 2011-07-06 | 2014-08-21 | Ajou Universtiy Industry-Academic Cooperation Foundation | Defense structure for national defense |
US9115960B2 (en) * | 2011-07-06 | 2015-08-25 | Ajou University Industry-Academic Cooperation Foundation | Defense structure for national defense |
US9846014B2 (en) * | 2013-12-03 | 2017-12-19 | The University Of Akron | Ballistic materials having a three-dimensional sphere structure |
US20160375648A1 (en) * | 2015-06-26 | 2016-12-29 | Richard Adams | Structural panel insert having encapsulated filler materials |
EP3270093A1 (en) * | 2016-07-15 | 2018-01-17 | Craco GmbH | Compound armour and method for the preparation of same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160375648A1 (en) | Structural panel insert having encapsulated filler materials | |
US6955112B1 (en) | Multi-structure metal matrix composite armor and method of making the same | |
US20110259184A1 (en) | Multi-structure metal matrix composite armor with integrally cast holes | |
US8132493B1 (en) | Hybrid tile metal matrix composite armor | |
US7478579B2 (en) | Encapsulated ballistic structure | |
US7866248B2 (en) | Encapsulated ceramic composite armor | |
CN103180685B (en) | There is the armour plate of bar shaped protection element and absorb the method for bullet energy | |
Matchen | Applications of ceramics in armor products | |
US7128963B2 (en) | Ceramic composite body, method for fabricating ceramic composite bodies, and armor using ceramic composite bodies | |
US8628857B2 (en) | Ballistic plate and method of fabrication thereof | |
US8464626B2 (en) | Multi-layer metal matrix composite armor with edge protection | |
US20130316116A1 (en) | Composite Ceramic Structure and Method of Manufacture | |
US20120247312A1 (en) | Structural panel insert with honeycomb core | |
JP5508743B2 (en) | Shock absorbing member | |
DK178289B1 (en) | Light weight composite armor with structural strength | |
JP5808099B2 (en) | Shock absorbing member, bulletproof plate | |
US20140123844A1 (en) | Shock absorbing member and method for producing same | |
JP2005164071A (en) | Bulletproof member | |
WO2008097375A2 (en) | Encapsulated ceramic composite armor | |
Chabera et al. | Fabrication and characterization of composite materials based on porous ceramic preform infiltrated by elastomer | |
CN114812276A (en) | High-restraint bionic structure armor resistant to multiple projectiles and preparation method thereof | |
WO2007141488A1 (en) | Blast attenuation structure | |
US20120174750A1 (en) | Armor materials, body armor articles and methods of manufacture | |
Zhang et al. | Bio-inspired Optimization of Al2O3/Al Composite Armor: Structural Design and Ballistic Simulation Based on Armadillo Shell | |
JP5095027B1 (en) | Shock absorbing member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |