US20110165479A1 - Charge Air Humidification of Fuel Cells - Google Patents
Charge Air Humidification of Fuel Cells Download PDFInfo
- Publication number
- US20110165479A1 US20110165479A1 US13/050,455 US201113050455A US2011165479A1 US 20110165479 A1 US20110165479 A1 US 20110165479A1 US 201113050455 A US201113050455 A US 201113050455A US 2011165479 A1 US2011165479 A1 US 2011165479A1
- Authority
- US
- United States
- Prior art keywords
- fuel cell
- feed gas
- cathode feed
- liquid water
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04126—Humidifying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
- H01M8/04164—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04111—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to fuel cell systems, and more particularly to humidifying charge air delivered to a fuel cell stack.
- Fuel cell systems are increasingly being used as a power source in a wide variety of applications. Fuel cell propulsion systems have also been proposed for use in vehicles as a replacement for internal combustion engines.
- the fuel cells generate electricity that is used to charge batteries and/or to power an electric motor.
- a solid-polymer-electrolyte fuel cell includes a membrane that is sandwiched between an anode and a cathode.
- a fuel commonly hydrogen (H 2 ), but also either methane (CH 4 ) or methanol (CH 3 OH)
- an oxidant such as oxygen (O 2 ) is supplied to the cathode.
- the source of the oxygen is commonly air.
- a first half-cell reaction dissociation of the hydrogen (H 2 ) at the anode generates hydrogen protons (H + ) and electrons (e ⁇ ).
- the membrane is proton conductive and dielectric. As a result, the protons are transported through the membrane. The electrons flow through an electrical load (such as the batteries or the electric motor) that is connected across the membrane.
- oxygen (O 2 ) at the cathode reacts with protons (H + ), and electrons (e ⁇ ) are taken up to form water (H 2 O).
- the relative humidity of the oxidant impacts durability and efficiency of the fuel cell system.
- Conventional strategies have been developed to humidify the oxidant flowing to the fuel cell. These strategies, however, present certain disadvantages.
- One disadvantage is that the achievable humidification level is limited.
- Other disadvantages include low durability, higher cost and increased space requirements.
- the present invention provides a fuel cell system.
- the fuel cell system includes a fuel cell stack that receives a cathode feed gas and has an exhaust stream and a heat transfer stream flowing therefrom.
- a charge-air heat exchanger enables heat transfer between the heat transfer stream and the cathode feed gas to adjust a feed gas temperature.
- the charge-air heat exchanger also enables heat transfer between the heat transfer stream and a liquid water to vaporize the liquid water providing water vapor.
- the water vapor humidifies the cathode feed gas.
- the source of liquid water is a water condensate originating from within the fuel cell system.
- the heat transfer stream includes a fluid operable to heat and cool as needed. An important feature is cooling and therefore, the heat transfer stream is referred to as coolant for simplicity. It is appreciated, however, that it is not limited to cooling as it may also heat.
- the fuel cell system further includes a condenser that condenses water vapor in the exhaust stream.
- the fuel cell system includes an injector that injects the water condensate into the cathode feed gas.
- the injector forms a part of the charge-air heat exchanger or is adjacent the charge-air heat exchanger.
- the fuel cell system further includes a compressor that compresses the cathode feed gas.
- the compressor receives a portion of the water condensate to humidify the cathode feed gas within the compressor.
- the compressor comprises an injector that injects the water condensate into the cathode feed gas. The water condensate is vaporized within the compressor during a compression process.
- a portion of the water condensate is injected into the fuel cell stack to humidify the cathode feed gas within the fuel cell stack.
- FIG. 1 is a fuel cell system including charge air humidification according to the present invention
- FIG. 2 is an alternative fuel cell system including charge air humidification according to the present invention.
- FIG. 3 is another alternative fuel cell system including charge air humidification according to the present invention.
- the fuel cell system 10 includes a fuel cell stack 12 , a coolant system 14 , a charge-air heat exchanger 16 and a compressor 18 .
- the coolant system 14 maintains the operating temperature of the fuel cell stack 12 at an appropriate level. Additionally, the coolant system 14 adjusts the temperature of fluids at various points in the fuel cell system 10 as explained in further detail below.
- the compressor 18 compresses oxidant that is supplied to the fuel cell stack 12 . More specifically, the oxidant is supplied as a cathode feed gas or charge air to a cathode side (not shown) of the fuel cell stack 12 .
- the cathode feed gas catalytically reacts with a hydrogen-rich reformate supplied to an anode side (not shown) of the fuel cell stack 12 .
- the oxidant is oxygen-rich air supplied by the compressor 18 and charge-air heat exchanger 16 at an appropriate operating state (i.e., temperature and pressure). The oxidant reacts with the hydrogen-rich reformate to produce electrical power and an exhaust stream.
- the exhaust stream is made up of reaction products including water (H 2 O) vapor and a small amount of liquid H 2 O depending on the operating strategy of the fuel cell stack 12 .
- the H 2 O vapor condenses as it travels through an exhaust conduit 20 to provide an H 2 O condensate.
- the exhaust conduit 20 can be configured to maximize the surface area over which the exhaust stream passes to enable condensation of the H 2 O vapor.
- a condenser 22 can be included to condense the H 2 O vapor to provide the H 2 O condensate.
- the source of H 2 O can be provided from a means other than the exhaust stream.
- a separate water storage tank (not shown) can be used to supply liquid H 2 O.
- the coolant system 14 controls coolant flow through the fuel cell system 10 and includes a pump (not shown) and a radiator (not shown) that enables heat transfer to atmosphere.
- coolant refers to a heat transfer fluid that is able to cool and heat as needed. For example, in a situation where the coolant is warmer than an adjacent fluid or structure, the coolant serves to heat that adjacent fluid or structure. Similarly, in a situation where the coolant is cooler than an adjacent fluid or structure, the coolant serves to cool that adjacent fluid or structure. Coolant is pumped through the fuel cell stack 12 to cool the fuel cell stack 12 and maintain an operating temperature of the fuel cell stack 12 .
- the coolant flows from the fuel cell stack 12 , through the charge-air heat exchanger 16 and back to the coolant system 14 .
- a regulator valve 23 is optionally provided to control the flow rate of coolant to the charge-air heat exchanger 16 .
- the heat of compression and heat transfer from the coolant enables vaporization of the H 2 O condensate.
- the heat exchanger adjusts the cathode feed gas to an appropriate temperature for reaction in the fuel cell stack 12 .
- the H 2 O condensate and coolant are directed to the charge-air heat exchanger 16 and cooperate to humidify the cathode feed gas. More particularly, an injector or multiple injectors 24 are provided to inject the H 2 O condensate into the cathode feed gas as it flows through the charge-air heat exchanger 16 .
- the coolant is in heat exchange relationship with the cathode feed gas and injected H 2 O condensate.
- the adiabatic cooling effect occurs whereby the charge air temperature drops and the H 2 O condensate is vaporized to form H 2 O vapor.
- heat transfer occurs from the coolant to the H 2 O condensate, vaporizing the H 2 O condensate.
- the process in one embodiment is operable essentially at constant temperature and pressure (i.e., state) maintained by the coolant (i.e., working fluid).
- the multi-stage humidification process includes a first stage with an injector 24 for injecting a first volume of the H 2 O condensate into the cathode feed gas.
- the first volume is vaporized within the cathode feed gas stream in the heat transfer process as described above.
- a second stage includes a second injector 24 for injecting a second volume of the H 2 O condensate into the partially humidified cathode feed gas.
- the second volume is vaporized within the cathode feed gas stream in the adiabatic heat transfer process as described above.
- Two or more stages (e.g., third and fourth stages) can be implemented to achieve the desired humidity level of the cathode feed gas.
- a fuel cell system 10 ′ includes humidification of the cathode feed gas within the compressor 18 . More specifically, a portion of the H 2 O condensate is fed to an inlet of the compressor 18 .
- the compressor includes an injector 26 that injects the H 2 O condensate into the cathode feed gas at the compressor suction side.
- the compression process generates sufficient heat to vaporize a part of the H 2 O condensate, humidifying the cathode feed gas.
- the fuel cell system 10 ′ of FIG. 2 provides for humidification of the cathode feed gas at both the compressor 18 and the charge-air heat exchanger 16 , as described in detail above.
- the proportion of cathode feed gas humidification that occurs within the compressor 18 to that which occurs within the charge-air heat exchanger 16 can be controlled. Due to the limited available heat of compression and dwell time, a smaller portion of humidification can occur within the compressor 18 . As a result, the larger portion of humidification occurs within the charge-air heat exchanger 16 as detailed above. Alternatively, a larger portion of humidification can occur within the compressor 18 . As a result, the smaller portion of humidification occurs within the charge-air heat exchanger 16 . In such a case, the multi-stage humidification process may not be required depending on how much H 2 O condensate must be injected to sufficiently humidify the cathode feed gas.
- a fuel cell system 10 ′′ includes humidification of the cathode feed gas within the compressor 18 , the cooler 16 and the fuel cell stack 12 . More specifically, a portion of the H 2 O condensate is fed to the compressor 18 for humidifying the cathode feed gas as described above with respect to FIG. 2 . Additionally, a portion of the H 2 O condensate is fed to the fuel cell stack 12 . An injector 28 is provided to inject the H 2 O condensate into the cathode feed gas within the fuel cell stack 12 . Heat transfer occurs to vaporize the H 2 O condensate, humidifying the cathode feed gas within the fuel cell stack 12 .
- the fuel cell systems of the present invention include several distinct advantages over conventional humidification strategies.
- One advantage is that overall system durability and efficiency is improved. This is a result of a higher achievable humidification level over conventional systems and a reduced heat load on the cooling system.
- the reduced heat load is a result of the heat that would otherwise be discharged through the coolant system being used to vaporize the H 2 O condensate within the cooler. As a result, lower system temperatures and a more stream-lined coolant system including a smaller radiator are achieved. Additionally, less liquid H 2 O exits the exhaust of the vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
Abstract
A fuel cell system includes a fuel cell stack that receives a cathode feed gas and has an exhaust stream and a heat transfer stream flowing therefrom. A charge-air heat exchanger enables heat transfer between the heat transfer stream and the cathode feed gas. The charge-air heat exchanger also enables heat transfer between the heat transfer stream and the cathode feed gas to compensate for the adiabatic cooling effect. Furthermore, the charge-air heat exchanger vaporizes the liquid water to provide water vapor. The water vapor humidifies the cathode feed gas.
Description
- The present invention relates to fuel cell systems, and more particularly to humidifying charge air delivered to a fuel cell stack.
- Fuel cell systems are increasingly being used as a power source in a wide variety of applications. Fuel cell propulsion systems have also been proposed for use in vehicles as a replacement for internal combustion engines. The fuel cells generate electricity that is used to charge batteries and/or to power an electric motor. A solid-polymer-electrolyte fuel cell includes a membrane that is sandwiched between an anode and a cathode. To produce electricity through an electrochemical reaction, a fuel, commonly hydrogen (H2), but also either methane (CH4) or methanol (CH3OH), is supplied to the anode and an oxidant, such as oxygen (O2) is supplied to the cathode. The source of the oxygen is commonly air.
- In a first half-cell reaction, dissociation of the hydrogen (H2) at the anode generates hydrogen protons (H+) and electrons (e−). The membrane is proton conductive and dielectric. As a result, the protons are transported through the membrane. The electrons flow through an electrical load (such as the batteries or the electric motor) that is connected across the membrane. In a second half-cell reaction, oxygen (O2) at the cathode reacts with protons (H+), and electrons (e−) are taken up to form water (H2O).
- The relative humidity of the oxidant impacts durability and efficiency of the fuel cell system. Conventional strategies have been developed to humidify the oxidant flowing to the fuel cell. These strategies, however, present certain disadvantages. One disadvantage is that the achievable humidification level is limited. Other disadvantages include low durability, higher cost and increased space requirements.
- Accordingly, the present invention provides a fuel cell system. The fuel cell system includes a fuel cell stack that receives a cathode feed gas and has an exhaust stream and a heat transfer stream flowing therefrom. A charge-air heat exchanger enables heat transfer between the heat transfer stream and the cathode feed gas to adjust a feed gas temperature. The charge-air heat exchanger also enables heat transfer between the heat transfer stream and a liquid water to vaporize the liquid water providing water vapor. The water vapor humidifies the cathode feed gas. Preferably, the source of liquid water is a water condensate originating from within the fuel cell system. In one aspect, the heat transfer stream includes a fluid operable to heat and cool as needed. An important feature is cooling and therefore, the heat transfer stream is referred to as coolant for simplicity. It is appreciated, however, that it is not limited to cooling as it may also heat.
- In one feature, the fuel cell system further includes a condenser that condenses water vapor in the exhaust stream.
- In another feature, the fuel cell system includes an injector that injects the water condensate into the cathode feed gas. Preferably, the injector forms a part of the charge-air heat exchanger or is adjacent the charge-air heat exchanger.
- In still another feature, the fuel cell system further includes a compressor that compresses the cathode feed gas. The compressor receives a portion of the water condensate to humidify the cathode feed gas within the compressor. The compressor comprises an injector that injects the water condensate into the cathode feed gas. The water condensate is vaporized within the compressor during a compression process.
- In yet another feature, a portion of the water condensate is injected into the fuel cell stack to humidify the cathode feed gas within the fuel cell stack.
- Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
- The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
-
FIG. 1 is a fuel cell system including charge air humidification according to the present invention; -
FIG. 2 is an alternative fuel cell system including charge air humidification according to the present invention; and -
FIG. 3 is another alternative fuel cell system including charge air humidification according to the present invention. - The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
- Referring now to
FIG. 1 , afuel cell system 10 is shown. Thefuel cell system 10 includes afuel cell stack 12, acoolant system 14, a charge-air heat exchanger 16 and acompressor 18. Thecoolant system 14 maintains the operating temperature of thefuel cell stack 12 at an appropriate level. Additionally, thecoolant system 14 adjusts the temperature of fluids at various points in thefuel cell system 10 as explained in further detail below. Thecompressor 18 compresses oxidant that is supplied to thefuel cell stack 12. More specifically, the oxidant is supplied as a cathode feed gas or charge air to a cathode side (not shown) of thefuel cell stack 12. The cathode feed gas catalytically reacts with a hydrogen-rich reformate supplied to an anode side (not shown) of thefuel cell stack 12. The oxidant is oxygen-rich air supplied by thecompressor 18 and charge-air heat exchanger 16 at an appropriate operating state (i.e., temperature and pressure). The oxidant reacts with the hydrogen-rich reformate to produce electrical power and an exhaust stream. - The exhaust stream is made up of reaction products including water (H2O) vapor and a small amount of liquid H2O depending on the operating strategy of the
fuel cell stack 12. The H2O vapor condenses as it travels through anexhaust conduit 20 to provide an H2O condensate. Theexhaust conduit 20 can be configured to maximize the surface area over which the exhaust stream passes to enable condensation of the H2O vapor. Alternatively, acondenser 22 can be included to condense the H2O vapor to provide the H2O condensate. It is also anticipated that the source of H2O can be provided from a means other than the exhaust stream. For example, a separate water storage tank (not shown) can be used to supply liquid H2O. - The
coolant system 14 controls coolant flow through thefuel cell system 10 and includes a pump (not shown) and a radiator (not shown) that enables heat transfer to atmosphere. As used herein, the term coolant refers to a heat transfer fluid that is able to cool and heat as needed. For example, in a situation where the coolant is warmer than an adjacent fluid or structure, the coolant serves to heat that adjacent fluid or structure. Similarly, in a situation where the coolant is cooler than an adjacent fluid or structure, the coolant serves to cool that adjacent fluid or structure. Coolant is pumped through thefuel cell stack 12 to cool thefuel cell stack 12 and maintain an operating temperature of thefuel cell stack 12. The coolant flows from thefuel cell stack 12, through the charge-air heat exchanger 16 and back to thecoolant system 14. Aregulator valve 23 is optionally provided to control the flow rate of coolant to the charge-air heat exchanger 16. As described in further detail below, the heat of compression and heat transfer from the coolant enables vaporization of the H2O condensate. The heat exchanger adjusts the cathode feed gas to an appropriate temperature for reaction in thefuel cell stack 12. - The H2O condensate and coolant are directed to the charge-
air heat exchanger 16 and cooperate to humidify the cathode feed gas. More particularly, an injector ormultiple injectors 24 are provided to inject the H2O condensate into the cathode feed gas as it flows through the charge-air heat exchanger 16. The coolant is in heat exchange relationship with the cathode feed gas and injected H2O condensate. Preferably, the adiabatic cooling effect occurs whereby the charge air temperature drops and the H2O condensate is vaporized to form H2O vapor. Additionally, heat transfer occurs from the coolant to the H2O condensate, vaporizing the H2O condensate. Concurrently, heat transfer occurs from the coolant to the cathode feed gas, reheating the cathode feed gas. As a result, the process in one embodiment is operable essentially at constant temperature and pressure (i.e., state) maintained by the coolant (i.e., working fluid). - Depending upon the amount of the H2O condensate that must be injected to humidify the cathode feed gas to an appropriate level, a multi-stage humidification process is provided in one embodiment. The multi-stage humidification process includes a first stage with an
injector 24 for injecting a first volume of the H2O condensate into the cathode feed gas. The first volume is vaporized within the cathode feed gas stream in the heat transfer process as described above. A second stage includes asecond injector 24 for injecting a second volume of the H2O condensate into the partially humidified cathode feed gas. The second volume is vaporized within the cathode feed gas stream in the adiabatic heat transfer process as described above. Two or more stages (e.g., third and fourth stages) can be implemented to achieve the desired humidity level of the cathode feed gas. - Referring now to
FIG. 2 , afuel cell system 10′ is shown and includes humidification of the cathode feed gas within thecompressor 18. More specifically, a portion of the H2O condensate is fed to an inlet of thecompressor 18. The compressor includes aninjector 26 that injects the H2O condensate into the cathode feed gas at the compressor suction side. The compression process generates sufficient heat to vaporize a part of the H2O condensate, humidifying the cathode feed gas. Thus, thefuel cell system 10′ ofFIG. 2 provides for humidification of the cathode feed gas at both thecompressor 18 and the charge-air heat exchanger 16, as described in detail above. - The proportion of cathode feed gas humidification that occurs within the
compressor 18 to that which occurs within the charge-air heat exchanger 16 can be controlled. Due to the limited available heat of compression and dwell time, a smaller portion of humidification can occur within thecompressor 18. As a result, the larger portion of humidification occurs within the charge-air heat exchanger 16 as detailed above. Alternatively, a larger portion of humidification can occur within thecompressor 18. As a result, the smaller portion of humidification occurs within the charge-air heat exchanger 16. In such a case, the multi-stage humidification process may not be required depending on how much H2O condensate must be injected to sufficiently humidify the cathode feed gas. - Referring now to
FIG. 3 , afuel cell system 10″ is shown and includes humidification of the cathode feed gas within thecompressor 18, the cooler 16 and thefuel cell stack 12. More specifically, a portion of the H2O condensate is fed to thecompressor 18 for humidifying the cathode feed gas as described above with respect toFIG. 2 . Additionally, a portion of the H2O condensate is fed to thefuel cell stack 12. Aninjector 28 is provided to inject the H2O condensate into the cathode feed gas within thefuel cell stack 12. Heat transfer occurs to vaporize the H2O condensate, humidifying the cathode feed gas within thefuel cell stack 12. Thus, thefuel cell system 10″ ofFIG. 3 provides for humidification of the cathode feed gas at thecompressor 18 and at the charge-air heat exchanger 16 as described in detail above, as well as within thefuel cell stack 12 itself. As described above with reference toFIG. 2 , the proportion of humidification that occurs within thecompressor 18, the charge-air heat exchanger 16 and thefuel cell stack 12 can vary as design requirements dictate. - The fuel cell systems of the present invention include several distinct advantages over conventional humidification strategies. One advantage is that overall system durability and efficiency is improved. This is a result of a higher achievable humidification level over conventional systems and a reduced heat load on the cooling system. The reduced heat load is a result of the heat that would otherwise be discharged through the coolant system being used to vaporize the H2O condensate within the cooler. As a result, lower system temperatures and a more stream-lined coolant system including a smaller radiator are achieved. Additionally, less liquid H2O exits the exhaust of the vehicle.
- The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Claims (15)
1-9. (canceled)
10. A fuel cell system, comprising:
a fuel cell stack that exhausts an exhaust stream;
a heat transfer system that supplies a heat transfer fluid through said fuel cell stack; and
a multi-stage charge-air heat exchanger having first stage and second stages and that enables heat transfer between said heat transfer fluid and a cathode feed gas and that enables heat transfer between said heat transfer fluid, said cathode feed gas and liquid water to vaporize said liquid water providing water vapor, wherein said water vapor humidifies said cathode feed gas.
11. The fuel cell system of claim 10 further comprising a first stage injector that injects a portion of said liquid water into said cathode feed gas within said first stage.
12. The fuel cell system of claim 10 further comprising a second stage injector that injects a portion of said liquid water into said cathode feed gas within said second stage.
13. The fuel cell system of claim 10 further comprising a condenser that condenses water vapor in said exhaust stream to provide said liquid water as a condensate.
14. The fuel cell system of claim 10 further comprising a compressor that compresses said cathode feed gas.
15. The fuel cell system of claim 14 wherein said compressor is upstream of said charge-air heat exchanger and receives a portion of said liquid water to humidify said cathode feed gas within said compressor.
16. The fuel cell system of claim 15 further comprising an injector arranged to inject said liquid water into said cathode feed gas within said compressor.
17. The fuel cell system of claim 15 wherein said liquid water is vaporized within said compressor during a compression process.
18. The fuel cell system of claim 10 wherein a portion of said liquid water is injected into said fuel cell stack to humidify said cathode feed gas within said fuel cell stack.
19. A method of humidifying a cathode feed gas supplied to a fuel cell stack, comprising:
flowing said cathode feed gas through a charge-air heat exchanger;
injecting liquid water into said cathode feed gas within said charge-air heat exchanger; and
vaporizing said liquid water within said charge-air heat exchanger via heat transfer from a heat transfer fluid to humidify said cathode feed gas.
20. The method of claim 19 further comprising condensing water vapor within an exhaust stream of said fuel cell stack to form said liquid water.
21. The method of claim 19 further comprising compressing said cathode feed gas within a compressor prior to said step of flowing said cathode feed gas through said charge-air heat exchanger.
22. The method of claim 21 further comprising injecting a portion of said liquid water into said compressor to humidify said cathode feed gas during a compression process.
23. The method of claim 19 further comprising injecting a portion of said liquid water into said fuel cell stack to humidify said cathode feed gas within said fuel cell stack.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/050,455 US20110165479A1 (en) | 2003-08-15 | 2011-03-17 | Charge Air Humidification of Fuel Cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/641,565 US7910255B2 (en) | 2003-08-15 | 2003-08-15 | Charge air humidification for fuel cells |
US13/050,455 US20110165479A1 (en) | 2003-08-15 | 2011-03-17 | Charge Air Humidification of Fuel Cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/641,565 Division US7910255B2 (en) | 2003-08-15 | 2003-08-15 | Charge air humidification for fuel cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110165479A1 true US20110165479A1 (en) | 2011-07-07 |
Family
ID=34136388
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/641,565 Expired - Fee Related US7910255B2 (en) | 2003-08-15 | 2003-08-15 | Charge air humidification for fuel cells |
US13/050,455 Abandoned US20110165479A1 (en) | 2003-08-15 | 2011-03-17 | Charge Air Humidification of Fuel Cells |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/641,565 Expired - Fee Related US7910255B2 (en) | 2003-08-15 | 2003-08-15 | Charge air humidification for fuel cells |
Country Status (2)
Country | Link |
---|---|
US (2) | US7910255B2 (en) |
DE (1) | DE102004038633B4 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170155159A1 (en) * | 2014-07-02 | 2017-06-01 | Volkswagen Ag | Fuel cell device having a water-transferring anode gas path, and method for operating a fuel cell |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10356012A1 (en) * | 2003-11-27 | 2005-06-30 | Airbus Deutschland Gmbh | Arrangement and method for producing water on board an aircraft |
US20050175875A1 (en) * | 2004-02-09 | 2005-08-11 | Nelson Amy E. | Cooling subsystem for an electrochemical fuel cell system |
DE102006017646B4 (en) * | 2006-04-12 | 2008-08-21 | Daimler Ag | Method for regulating the exhaust gas temperature of a fuel cell system |
TW200743251A (en) * | 2006-05-05 | 2007-11-16 | Asia Pacific Fuel Cell Tech | Fuel cell system having drainage treating apparatus |
CN101075685A (en) * | 2006-05-16 | 2007-11-21 | 亚太燃料电池科技股份有限公司 | Fuel cell system with drainer |
US8053126B2 (en) * | 2006-09-29 | 2011-11-08 | GM Global Technology Operations LLC | Water transfer efficiency improvement in a membrane humidifier by reducing dry air inlet temperature |
WO2011086603A1 (en) * | 2010-01-15 | 2011-07-21 | トヨタ自動車株式会社 | Gas supplying equipment |
CA2864768A1 (en) * | 2012-02-27 | 2013-09-06 | Dana Canada Corporation | Method and system for cooling charge air for a fuel cell, and three-fluid charge air cooler |
DE102013217594A1 (en) * | 2013-09-04 | 2015-03-05 | Volkswagen Ag | Fuel cell system with tempering device and method for controlling a fuel cell system |
US9774046B2 (en) * | 2015-07-17 | 2017-09-26 | Ford Global Technologies, Llc | Humidification system and method for a fuel cell |
DE102016204474B4 (en) | 2016-03-17 | 2023-05-11 | Bayerische Motoren Werke Aktiengesellschaft | Heat exchanger and fuel cell system |
JP7279599B2 (en) * | 2019-09-26 | 2023-05-23 | 株式会社アイシン | fuel cell system |
DE102020203569A1 (en) | 2020-03-19 | 2021-09-23 | Mtu Friedrichshafen Gmbh | Fuel cell arrangement and method for operating a fuel cell arrangement |
CN112259762A (en) * | 2020-10-23 | 2021-01-22 | 广东能源集团科学技术研究院有限公司 | Fuel cell cathode humidifying system |
DE102020007745A1 (en) | 2020-12-18 | 2022-06-23 | Cellcentric Gmbh & Co. Kg | Device for supplying air to a fuel cell |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5360679A (en) * | 1993-08-20 | 1994-11-01 | Ballard Power Systems Inc. | Hydrocarbon fueled solid polymer fuel cell electric power generation system |
US5958614A (en) * | 1996-12-27 | 1999-09-28 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Fuel cell generating set including lysholm compressor |
US6013385A (en) * | 1997-07-25 | 2000-01-11 | Emprise Corporation | Fuel cell gas management system |
US20010001287A1 (en) * | 1997-12-22 | 2001-05-17 | Masataka Ueno | Fuel cell system |
US6238814B1 (en) * | 1997-12-22 | 2001-05-29 | Kabushikikaisha Equos Research | Fuel cell system |
US6268074B1 (en) * | 1999-04-05 | 2001-07-31 | General Motors Corporation | Water injected fuel cell system compressor |
US20020086194A1 (en) * | 2000-06-07 | 2002-07-04 | Janusz Blaszczyk | Method and apparatus for humidifying a gas flow and to a method for using such a device |
US20020098395A1 (en) * | 2001-01-22 | 2002-07-25 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell system and humidification method |
US6428915B1 (en) * | 1998-09-25 | 2002-08-06 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Apparatus for regulating humidity of process air in fuel cell system |
US20020106537A1 (en) * | 2000-05-23 | 2002-08-08 | Kazuo Saito | Fuel cell system and method of controlling the same |
US20020150803A1 (en) * | 2001-04-16 | 2002-10-17 | Asia Pacific Fuel Cell Technologies, Ltd. | Generating system for a fuel cell, and heat waste recirculating and cooling system of said generating system |
US20020155328A1 (en) * | 2001-04-20 | 2002-10-24 | Smith T. Paul | Method and apparatus for water vapor transfer |
US6924051B2 (en) * | 2002-04-03 | 2005-08-02 | Modine Manufacturing Company | Contact heater/humidifier for fuel cell systems |
US7101636B2 (en) * | 2000-08-10 | 2006-09-05 | Sanyo Electric Co., Ltd. | Fuel cell system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19856499C1 (en) | 1998-12-08 | 2000-10-26 | Daimler Chrysler Ag | Method and device for the two-stage charging of process air for a fuel cell |
US6921595B2 (en) * | 2000-05-31 | 2005-07-26 | Nuvera Fuel Cells, Inc. | Joint-cycle high-efficiency fuel cell system with power generating turbine |
DE10120947A1 (en) | 2001-04-22 | 2002-10-24 | Daimler Chrysler Ag | Fuel cell air supply device has electrically-driven low-pressure compressor in series with high-pressure compressor with turbine for energy recovery |
US6835483B2 (en) * | 2001-05-31 | 2004-12-28 | Plug Power, Inc. | Method and apparatus for controlling a combined heat and power fuel cell system |
DE10154621A1 (en) | 2001-11-07 | 2003-05-22 | Fev Motorentech Gmbh | Moistening of cathode air for Polymer Electrolyte Membrane Polymer Fuel Cell for use in hybrid vehicle involves nozzles for spraying water into inlet air upstream of compressor |
-
2003
- 2003-08-15 US US10/641,565 patent/US7910255B2/en not_active Expired - Fee Related
-
2004
- 2004-08-09 DE DE102004038633A patent/DE102004038633B4/en not_active Expired - Fee Related
-
2011
- 2011-03-17 US US13/050,455 patent/US20110165479A1/en not_active Abandoned
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5360679A (en) * | 1993-08-20 | 1994-11-01 | Ballard Power Systems Inc. | Hydrocarbon fueled solid polymer fuel cell electric power generation system |
US5958614A (en) * | 1996-12-27 | 1999-09-28 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Fuel cell generating set including lysholm compressor |
US6013385A (en) * | 1997-07-25 | 2000-01-11 | Emprise Corporation | Fuel cell gas management system |
US20010001287A1 (en) * | 1997-12-22 | 2001-05-17 | Masataka Ueno | Fuel cell system |
US6238814B1 (en) * | 1997-12-22 | 2001-05-29 | Kabushikikaisha Equos Research | Fuel cell system |
US6428915B1 (en) * | 1998-09-25 | 2002-08-06 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Apparatus for regulating humidity of process air in fuel cell system |
US6268074B1 (en) * | 1999-04-05 | 2001-07-31 | General Motors Corporation | Water injected fuel cell system compressor |
US20020106537A1 (en) * | 2000-05-23 | 2002-08-08 | Kazuo Saito | Fuel cell system and method of controlling the same |
US20020086194A1 (en) * | 2000-06-07 | 2002-07-04 | Janusz Blaszczyk | Method and apparatus for humidifying a gas flow and to a method for using such a device |
US7101636B2 (en) * | 2000-08-10 | 2006-09-05 | Sanyo Electric Co., Ltd. | Fuel cell system |
US20020098395A1 (en) * | 2001-01-22 | 2002-07-25 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell system and humidification method |
US20020150803A1 (en) * | 2001-04-16 | 2002-10-17 | Asia Pacific Fuel Cell Technologies, Ltd. | Generating system for a fuel cell, and heat waste recirculating and cooling system of said generating system |
US20020155328A1 (en) * | 2001-04-20 | 2002-10-24 | Smith T. Paul | Method and apparatus for water vapor transfer |
US6924051B2 (en) * | 2002-04-03 | 2005-08-02 | Modine Manufacturing Company | Contact heater/humidifier for fuel cell systems |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170155159A1 (en) * | 2014-07-02 | 2017-06-01 | Volkswagen Ag | Fuel cell device having a water-transferring anode gas path, and method for operating a fuel cell |
US10403913B2 (en) * | 2014-07-02 | 2019-09-03 | Audi Ag | Fuel cell device having a water-transferring anode gas path, and method for operating a fuel cell |
Also Published As
Publication number | Publication date |
---|---|
US20050037250A1 (en) | 2005-02-17 |
DE102004038633B4 (en) | 2013-07-25 |
US7910255B2 (en) | 2011-03-22 |
DE102004038633A1 (en) | 2005-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110165479A1 (en) | Charge Air Humidification of Fuel Cells | |
US8216736B2 (en) | Fuel cell system using evaporative cooling method | |
US8304123B2 (en) | Ambient pressure fuel cell system employing partial air humidification | |
US7470479B2 (en) | Method and apparatus for warming-up fuel cell and fuel cell vehicle | |
US7045229B2 (en) | Gas-supplying apparatus, gas-supplying mechanism and gas-supplying process in fuel cell | |
EP1110264B1 (en) | Ambient pressure fuel cell system | |
US10411275B2 (en) | Fuel cell cooling system | |
US6835484B2 (en) | Supersonic vapor compression and heat rejection cycle | |
US7267900B2 (en) | Fuel cell system | |
US20050199192A1 (en) | Thermal management system and method for vehicle electrochemical engine | |
US7354670B2 (en) | Fuel cell with fuel gas adjustment mechanism | |
EP1724869A1 (en) | Anode tail gas recycle cooler and re-heater for a solid oxide fuel cell stack assembly | |
US9368816B2 (en) | Shutdown strategy to avoid carbon corrosion due to slow hydrogen/air intrusion rates | |
US7037610B2 (en) | Humidification of reactant streams in fuel cells | |
US8241806B2 (en) | Fuel cell system | |
US20030148151A1 (en) | Method for operating a fuel cell system, and associated fuel cell installation | |
US7402353B2 (en) | Transient controls to improve fuel cell performance and stack durability | |
US7479335B2 (en) | Anode humidification | |
US8709670B2 (en) | Fuel cell system with mechanical check valve | |
US7919209B2 (en) | System stability and performance improvement with anode heat exchanger plumbing and re-circulation rate | |
CN221783255U (en) | Anode subsystem of fuel cell and fuel cell | |
US9029031B2 (en) | Variable air utilization increases fuel cell membrane durability | |
US20130252117A1 (en) | Apparatus and method for humidified fluid stream delivery to fuel cell stack | |
JP2019021545A (en) | Fuel cell system | |
KR20030018921A (en) | Fuel cell system for vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |