US20110143375A1 - Biomarker detection process and assay of neurological condition - Google Patents
Biomarker detection process and assay of neurological condition Download PDFInfo
- Publication number
- US20110143375A1 US20110143375A1 US13/058,748 US200913058748A US2011143375A1 US 20110143375 A1 US20110143375 A1 US 20110143375A1 US 200913058748 A US200913058748 A US 200913058748A US 2011143375 A1 US2011143375 A1 US 2011143375A1
- Authority
- US
- United States
- Prior art keywords
- biomarker
- subject
- gfap
- uch
- assay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000090 biomarker Substances 0.000 title claims abstract description 215
- 238000000034 method Methods 0.000 title claims abstract description 74
- 230000000926 neurological effect Effects 0.000 title claims abstract description 59
- 238000003556 assay Methods 0.000 title claims abstract description 47
- 230000008569 process Effects 0.000 title claims abstract description 46
- 238000001514 detection method Methods 0.000 title claims description 23
- 210000002966 serum Anatomy 0.000 claims abstract description 45
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 claims description 96
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 claims description 96
- OPQRFPHLZZPCCH-PGMHBOJBSA-N [(z)-[5-chloro-1-[(2,5-dichlorophenyl)methyl]-2-oxoindol-3-ylidene]amino] acetate Chemical compound C12=CC=C(Cl)C=C2C(=N/OC(=O)C)/C(=O)N1CC1=CC(Cl)=CC=C1Cl OPQRFPHLZZPCCH-PGMHBOJBSA-N 0.000 claims description 73
- 102100025038 Ubiquitin carboxyl-terminal hydrolase isozyme L1 Human genes 0.000 claims description 65
- 101710186825 Ubiquitin carboxyl-terminal hydrolase isozyme L1 Proteins 0.000 claims description 65
- 208000030886 Traumatic Brain injury Diseases 0.000 claims description 57
- 230000009529 traumatic brain injury Effects 0.000 claims description 56
- 210000001175 cerebrospinal fluid Anatomy 0.000 claims description 46
- 239000003795 chemical substances by application Substances 0.000 claims description 40
- 210000004027 cell Anatomy 0.000 claims description 29
- 102000004169 proteins and genes Human genes 0.000 claims description 22
- 108090000623 proteins and genes Proteins 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 20
- 230000027455 binding Effects 0.000 claims description 16
- 208000007333 Brain Concussion Diseases 0.000 claims description 15
- -1 CRMP Proteins 0.000 claims description 14
- 101150026440 S100b gene Proteins 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 9
- 102000008763 Neurofilament Proteins Human genes 0.000 claims description 8
- 108010088373 Neurofilament Proteins Proteins 0.000 claims description 8
- 101000969087 Homo sapiens Microtubule-associated protein 2 Proteins 0.000 claims description 7
- 208000006011 Stroke Diseases 0.000 claims description 7
- HONKEGXLWUDTCF-YFKPBYRVSA-N (2s)-2-amino-2-methyl-4-phosphonobutanoic acid Chemical compound OC(=O)[C@](N)(C)CCP(O)(O)=O HONKEGXLWUDTCF-YFKPBYRVSA-N 0.000 claims description 5
- 102000018208 Cannabinoid Receptor Human genes 0.000 claims description 5
- 108050007331 Cannabinoid receptor Proteins 0.000 claims description 5
- 101000616438 Homo sapiens Microtubule-associated protein 4 Proteins 0.000 claims description 5
- 101000969594 Homo sapiens Modulator of apoptosis 1 Proteins 0.000 claims description 5
- 101001092197 Homo sapiens RNA binding protein fox-1 homolog 3 Proteins 0.000 claims description 5
- 102100021794 Microtubule-associated protein 4 Human genes 0.000 claims description 5
- 102100021440 Modulator of apoptosis 1 Human genes 0.000 claims description 5
- 101100131116 Oryza sativa subsp. japonica MPK3 gene Proteins 0.000 claims description 5
- 102100035530 RNA binding protein fox-1 homolog 3 Human genes 0.000 claims description 5
- 101100456045 Schizosaccharomyces pombe (strain 972 / ATCC 24843) map3 gene Proteins 0.000 claims description 5
- 108010022794 2',3'-Cyclic-Nucleotide Phosphodiesterases Proteins 0.000 claims description 4
- 102100040458 2',3'-cyclic-nucleotide 3'-phosphodiesterase Human genes 0.000 claims description 4
- 102100024075 Alpha-internexin Human genes 0.000 claims description 4
- 102000008730 Nestin Human genes 0.000 claims description 4
- 108010088225 Nestin Proteins 0.000 claims description 4
- 102100035414 Neurofascin Human genes 0.000 claims description 4
- 101710189786 Neurofascin Proteins 0.000 claims description 4
- 102100037591 Neuroserpin Human genes 0.000 claims description 4
- 108010011385 alpha-internexin Proteins 0.000 claims description 4
- 210000005049 internexin Anatomy 0.000 claims description 4
- 210000005055 nestin Anatomy 0.000 claims description 4
- 108010080874 neuroserpin Proteins 0.000 claims description 4
- 230000000946 synaptic effect Effects 0.000 claims description 4
- 208000032382 Ischaemic stroke Diseases 0.000 claims description 3
- 208000032851 Subarachnoid Hemorrhage Diseases 0.000 claims description 3
- 229940000406 drug candidate Drugs 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 claims description 3
- 208000016988 Hemorrhagic Stroke Diseases 0.000 claims description 2
- 239000000356 contaminant Substances 0.000 claims description 2
- 208000020658 intracerebral hemorrhage Diseases 0.000 claims description 2
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 claims 13
- 101000979001 Homo sapiens Methionine aminopeptidase 2 Proteins 0.000 claims 6
- 102100023174 Methionine aminopeptidase 2 Human genes 0.000 claims 6
- 102100028652 Gamma-enolase Human genes 0.000 claims 4
- 101710191797 Gamma-enolase Proteins 0.000 claims 4
- 101000950671 Chelon ramada Myosin light chain 3, skeletal muscle isoform Proteins 0.000 claims 2
- 101001052506 Homo sapiens Microtubule-associated proteins 1A/1B light chain 3A Proteins 0.000 claims 2
- 102100024178 Microtubule-associated proteins 1A/1B light chain 3A Human genes 0.000 claims 2
- 102100029438 Nitric oxide synthase, inducible Human genes 0.000 claims 2
- 101710089543 Nitric oxide synthase, inducible Proteins 0.000 claims 2
- 230000006378 damage Effects 0.000 abstract description 54
- 238000005259 measurement Methods 0.000 abstract description 10
- 238000003745 diagnosis Methods 0.000 abstract description 9
- 230000002159 abnormal effect Effects 0.000 abstract description 8
- 239000013060 biological fluid Substances 0.000 abstract description 6
- 230000007246 mechanism Effects 0.000 abstract description 5
- 230000002195 synergetic effect Effects 0.000 abstract description 5
- 102000053171 Glial Fibrillary Acidic Human genes 0.000 description 83
- 208000014674 injury Diseases 0.000 description 54
- 208000027418 Wounds and injury Diseases 0.000 description 50
- 239000012472 biological sample Substances 0.000 description 47
- 239000000523 sample Substances 0.000 description 38
- 206010008089 Cerebral artery occlusion Diseases 0.000 description 35
- 201000007309 middle cerebral artery infarction Diseases 0.000 description 35
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 32
- 108010020004 Microtubule-Associated Proteins Proteins 0.000 description 30
- 239000003550 marker Substances 0.000 description 18
- 210000002569 neuron Anatomy 0.000 description 17
- 238000002965 ELISA Methods 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 241001465754 Metazoa Species 0.000 description 13
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 13
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 12
- 108010005656 Ubiquitin Thiolesterase Proteins 0.000 description 12
- 102000005918 Ubiquitin Thiolesterase Human genes 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 210000004556 brain Anatomy 0.000 description 11
- 208000029028 brain injury Diseases 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 11
- 238000002591 computed tomography Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 108010019965 Spectrin Proteins 0.000 description 10
- 102000005890 Spectrin Human genes 0.000 description 10
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 241000700159 Rattus Species 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 210000002381 plasma Anatomy 0.000 description 9
- 210000003169 central nervous system Anatomy 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000001262 western blot Methods 0.000 description 8
- 102000007590 Calpain Human genes 0.000 description 7
- 108010032088 Calpain Proteins 0.000 description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000003902 lesion Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- 108091023037 Aptamer Proteins 0.000 description 5
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 5
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 5
- 230000006907 apoptotic process Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 230000005779 cell damage Effects 0.000 description 5
- 230000030833 cell death Effects 0.000 description 5
- 208000037887 cell injury Diseases 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 238000007917 intracranial administration Methods 0.000 description 5
- 229960002725 isoflurane Drugs 0.000 description 5
- 230000017074 necrotic cell death Effects 0.000 description 5
- 210000000653 nervous system Anatomy 0.000 description 5
- 230000001537 neural effect Effects 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 238000000611 regression analysis Methods 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 108010076667 Caspases Proteins 0.000 description 4
- 102000011727 Caspases Human genes 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 206010028851 Necrosis Diseases 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 210000003061 neural cell Anatomy 0.000 description 4
- 210000003296 saliva Anatomy 0.000 description 4
- 238000003118 sandwich ELISA Methods 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- 239000003656 tris buffered saline Substances 0.000 description 4
- 210000002700 urine Anatomy 0.000 description 4
- 102100038910 Alpha-enolase Human genes 0.000 description 3
- 102000003952 Caspase 3 Human genes 0.000 description 3
- 108090000397 Caspase 3 Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 102000011779 Nitric Oxide Synthase Type II Human genes 0.000 description 3
- 108010076864 Nitric Oxide Synthase Type II Proteins 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 238000000540 analysis of variance Methods 0.000 description 3
- 210000001130 astrocyte Anatomy 0.000 description 3
- 238000001574 biopsy Methods 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 230000006931 brain damage Effects 0.000 description 3
- 231100000874 brain damage Toxicity 0.000 description 3
- 210000005013 brain tissue Anatomy 0.000 description 3
- DDPMGIMJSRUULN-UHFFFAOYSA-N buphedrone Chemical compound CCC(NC)C(=O)C1=CC=CC=C1 DDPMGIMJSRUULN-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000001054 cortical effect Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000001114 immunoprecipitation Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000000302 ischemic effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 210000004498 neuroglial cell Anatomy 0.000 description 3
- 210000001428 peripheral nervous system Anatomy 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 208000037974 severe injury Diseases 0.000 description 3
- 230000009528 severe injury Effects 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 2
- SHXWCVYOXRDMCX-UHFFFAOYSA-N 3,4-methylenedioxymethamphetamine Chemical compound CNC(C)CC1=CC=C2OCOC2=C1 SHXWCVYOXRDMCX-UHFFFAOYSA-N 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 101710165425 Alpha-enolase Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 208000034656 Contusions Diseases 0.000 description 2
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 description 2
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 description 2
- 206010018341 Gliosis Diseases 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- 108091077621 MAPRE family Proteins 0.000 description 2
- 208000004221 Multiple Trauma Diseases 0.000 description 2
- 208000023637 Multiple injury Diseases 0.000 description 2
- 101710120476 Murinoglobulin-1 Proteins 0.000 description 2
- 102000008880 Peptidase C12, ubiquitin carboxyl-terminal hydrolases Human genes 0.000 description 2
- 108050000823 Peptidase C12, ubiquitin carboxyl-terminal hydrolases Proteins 0.000 description 2
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 2
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 2
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 2
- 102000029797 Prion Human genes 0.000 description 2
- 108091000054 Prion Proteins 0.000 description 2
- 101001006906 Rattus norvegicus T-kininogen 1 Proteins 0.000 description 2
- 101001006907 Rattus norvegicus T-kininogen 2 Proteins 0.000 description 2
- 102000013008 Semaphorin-3A Human genes 0.000 description 2
- 108010090319 Semaphorin-3A Proteins 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 102100031874 Spectrin alpha chain, non-erythrocytic 1 Human genes 0.000 description 2
- 101710157175 Spectrin alpha chain, non-erythrocytic 1 Proteins 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 101000609411 Sus scrofa Inter-alpha-trypsin inhibitor heavy chain H4 Proteins 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- 102000044159 Ubiquitin Human genes 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000004872 arterial blood pressure Effects 0.000 description 2
- 230000003376 axonal effect Effects 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 210000001168 carotid artery common Anatomy 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 230000009519 contusion Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 206010015037 epilepsy Diseases 0.000 description 2
- 235000013861 fat-free Nutrition 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 210000001320 hippocampus Anatomy 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000003447 ipsilateral effect Effects 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 239000003147 molecular marker Substances 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000010410 reperfusion Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 102000013498 tau Proteins Human genes 0.000 description 2
- 108010026424 tau Proteins Proteins 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- 230000000472 traumatic effect Effects 0.000 description 2
- 102000004899 14-3-3 Proteins Human genes 0.000 description 1
- 101710112812 14-3-3 protein Proteins 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- 102000005460 3-oxoacid CoA-transferase Human genes 0.000 description 1
- 108020002872 3-oxoacid CoA-transferase Proteins 0.000 description 1
- VZWXNOBHWODXCW-ZOBUZTSGSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-n-[2-(4-hydroxyphenyl)ethyl]pentanamide Chemical compound C1=CC(O)=CC=C1CCNC(=O)CCCC[C@H]1[C@H]2NC(=O)N[C@H]2CS1 VZWXNOBHWODXCW-ZOBUZTSGSA-N 0.000 description 1
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 1
- 102100023818 ADP-ribosylation factor 3 Human genes 0.000 description 1
- 101710139744 ADP-ribosylation factor 3 Proteins 0.000 description 1
- 102100030381 Acetyl-coenzyme A synthetase 2-like, mitochondrial Human genes 0.000 description 1
- 101710179225 Acetyl-coenzyme A synthetase 2-like, mitochondrial Proteins 0.000 description 1
- 102100040958 Aconitate hydratase, mitochondrial Human genes 0.000 description 1
- 102000005369 Aldehyde Dehydrogenase Human genes 0.000 description 1
- 108020002663 Aldehyde Dehydrogenase Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 102000000412 Annexin Human genes 0.000 description 1
- 108050008874 Annexin Proteins 0.000 description 1
- 108050005845 Annexin A11 Proteins 0.000 description 1
- 108010077173 BB Form Creatine Kinase Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 108010074051 C-Reactive Protein Proteins 0.000 description 1
- 102100032752 C-reactive protein Human genes 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000003846 Carbonic anhydrases Human genes 0.000 description 1
- 108090000209 Carbonic anhydrases Proteins 0.000 description 1
- 102000013392 Carboxylesterase Human genes 0.000 description 1
- 108010051152 Carboxylesterase Proteins 0.000 description 1
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 1
- 108010075016 Ceruloplasmin Proteins 0.000 description 1
- 206010008513 Child maltreatment syndrome Diseases 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- 108090000996 Cofilin 1 Proteins 0.000 description 1
- 102000004360 Cofilin 1 Human genes 0.000 description 1
- 102100022785 Creatine kinase B-type Human genes 0.000 description 1
- 208000025962 Crush injury Diseases 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 102100024426 Dihydropyrimidinase-related protein 2 Human genes 0.000 description 1
- 102100021238 Dynamin-2 Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101710184673 Enolase 1 Proteins 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 101710122170 Glutamate dehydrogenase 1 Proteins 0.000 description 1
- 102100034009 Glutamate dehydrogenase 1, mitochondrial Human genes 0.000 description 1
- 102000034575 Glutamate transporters Human genes 0.000 description 1
- 108091006151 Glutamate transporters Proteins 0.000 description 1
- 208000023329 Gun shot wound Diseases 0.000 description 1
- 102000014702 Haptoglobin Human genes 0.000 description 1
- 108050005077 Haptoglobin Proteins 0.000 description 1
- 208000010496 Heart Arrest Diseases 0.000 description 1
- 102100027685 Hemoglobin subunit alpha Human genes 0.000 description 1
- 108091005902 Hemoglobin subunit alpha Proteins 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 102100030338 Hexokinase-1 Human genes 0.000 description 1
- 101710198391 Hexokinase-1 Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000817607 Homo sapiens Dynamin-2 Proteins 0.000 description 1
- 101001056308 Homo sapiens Malate dehydrogenase, cytoplasmic Proteins 0.000 description 1
- 101710118630 Homocitrate dehydratase, mitochondrial Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000010631 Kininogens Human genes 0.000 description 1
- 108010077861 Kininogens Proteins 0.000 description 1
- 102100024580 L-lactate dehydrogenase B chain Human genes 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 102100026475 Malate dehydrogenase, cytoplasmic Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 108090000192 Methionyl aminopeptidases Proteins 0.000 description 1
- 102100021118 Microtubule-associated protein 2 Human genes 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101000836052 Mus musculus Serine protease inhibitor A3G Proteins 0.000 description 1
- 102000047918 Myelin Basic Human genes 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 101710107068 Myelin basic protein Proteins 0.000 description 1
- 102100035854 N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 Human genes 0.000 description 1
- 108050006009 N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 Proteins 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 101710139464 Phosphoglycerate kinase 1 Proteins 0.000 description 1
- 102100028251 Phosphoglycerate kinase 1 Human genes 0.000 description 1
- 102100037392 Phosphoglycerate kinase 2 Human genes 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 102000011195 Profilin Human genes 0.000 description 1
- 108050001408 Profilin Proteins 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102100021201 Proteasome subunit alpha type-7 Human genes 0.000 description 1
- 101710186664 Proteasome subunit alpha type-7 Proteins 0.000 description 1
- 102100021487 Protein S100-B Human genes 0.000 description 1
- 101710122255 Protein S100-B Proteins 0.000 description 1
- 101710171478 Putative aconitate hydratase, mitochondrial Proteins 0.000 description 1
- 102100034335 Rab GDP dissociation inhibitor alpha Human genes 0.000 description 1
- 101710102264 Rab GDP dissociation inhibitor alpha Proteins 0.000 description 1
- 101000746366 Rattus norvegicus Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 229940122055 Serine protease inhibitor Drugs 0.000 description 1
- 101710102218 Serine protease inhibitor Proteins 0.000 description 1
- 208000002108 Shaken Baby Syndrome Diseases 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 101710090563 Spectrin alpha chain Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 241000656145 Thyrsites atun Species 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 102100030986 Transgelin-3 Human genes 0.000 description 1
- 108050006165 Transgelin-3 Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 101710179590 Vitamin D-binding protein Proteins 0.000 description 1
- 102100038611 Vitamin D-binding protein Human genes 0.000 description 1
- 102000034337 acetylcholine receptors Human genes 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000012197 amplification kit Methods 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 210000002551 anterior cerebral artery Anatomy 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000011948 assay development Methods 0.000 description 1
- 208000037875 astrocytosis Diseases 0.000 description 1
- 230000007341 astrogliosis Effects 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 210000000269 carotid artery external Anatomy 0.000 description 1
- 210000004004 carotid artery internal Anatomy 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 108010022822 collapsin response mediator protein-2 Proteins 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000036757 core body temperature Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000007428 craniotomy Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000001951 dura mater Anatomy 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 108060002885 fetuin Proteins 0.000 description 1
- 102000013361 fetuin Human genes 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000007387 gliosis Effects 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 102000046587 human MAP2 Human genes 0.000 description 1
- 208000003906 hydrocephalus Diseases 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N hydrogen peroxide Substances OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 239000003547 immunosorbent Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 210000004283 incisor Anatomy 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 210000003963 intermediate filament Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 108010087599 lactate dehydrogenase 1 Proteins 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 238000009593 lumbar puncture Methods 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000002406 microsurgery Methods 0.000 description 1
- 210000003657 middle cerebral artery Anatomy 0.000 description 1
- 230000009525 mild injury Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 208000037890 multiple organ injury Diseases 0.000 description 1
- 230000003551 muscarinic effect Effects 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 208000004296 neuralgia Diseases 0.000 description 1
- 208000021722 neuropathic pain Diseases 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 231100000189 neurotoxic Toxicity 0.000 description 1
- 230000002887 neurotoxic effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 239000003001 serine protease inhibitor Substances 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000002693 spinal anesthesia Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000002739 subcortical effect Effects 0.000 description 1
- 201000009032 substance abuse Diseases 0.000 description 1
- 231100000736 substance abuse Toxicity 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 102000003137 synaptotagmin Human genes 0.000 description 1
- 108060008004 synaptotagmin Proteins 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 108010008054 testis specific phosphoglycerate kinase Proteins 0.000 description 1
- 229940124598 therapeutic candidate Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000003144 traumatizing effect Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
- G01N33/6896—Neurological disorders, e.g. Alzheimer's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/577—Immunoassay; Biospecific binding assay; Materials therefor involving monoclonal antibodies binding reaction mechanisms characterised by the use of monoclonal antibodies; monoclonal antibodies per se are classified with their corresponding antigens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/28—Neurological disorders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/28—Neurological disorders
- G01N2800/2871—Cerebrovascular disorders, e.g. stroke, cerebral infarct, cerebral haemorrhage, transient ischemic event
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/56—Staging of a disease; Further complications associated with the disease
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/60—Complex ways of combining multiple protein biomarkers for diagnosis
Definitions
- the present invention in general relates to determination of neurological condition of an individual and in particular to measuring the quantity of a neuroprotective biomarker such as glial fibrillary acidic protein (GFAP) in concert with another biomarker of neurological condition.
- a neuroprotective biomarker such as glial fibrillary acidic protein (GFAP)
- biomarkers as internal indicators of change to molecular or cellular level health condition of a subject.
- biomarker detection uses a sample obtained from a subject, typically cerebrospinal fluid, blood, or plasma, and detects the biomarkers in that sample, biomarker detection holds the prospect of inexpensive, rapid, and objective measurement of neurological condition.
- the attainment of rapid and objective indicators of neurological condition allows one to determine severity of a non-normal brain condition with a previously unrealized degree of objectivity, predict outcome, guide therapy of the condition, as well as monitor subject responsiveness and recovery. Additionally, such information as obtained from numerous subjects allows one to gain a degree of insight into the mechanism of brain injury.
- biomarkers have been identified as being associated with severe traumatic brain injury as is often seen in vehicle collision and combat wounded subjects. These biomarkers included spectrin breakdown products such as SBDP150, SBDP150i, SBDP145 (calpain mediated acute neural necrosis), SBDP120 (caspase mediated delayed neural apoptosis), UCH-L1 (neuronal cell body damage marker), and MAP2 dendritic cell injury associated marker.
- spectrin breakdown products such as SBDP150, SBDP150i, SBDP145 (calpain mediated acute neural necrosis), SBDP120 (caspase mediated delayed neural apoptosis), UCH-L1 (neuronal cell body damage marker), and MAP2 dendritic cell injury associated marker.
- Glial Fibrillary Acidic Protein a member of the cytoskeletal protein family, is the principal 8-9 nanometer intermediate filament of glial cells such as mature astrocytes of the central nervous system (CNS).
- GFAP is a monomeric molecule with a molecular mass between 40 and 53 kDa and an isoelectric point between 5.7 and 5.8.
- GFAP is highly brain specific protein that is not found outside the CNS. GFAP is released into the blood and CSF soon after brain injury.
- astrocytes become reactive in a way that is characterized by rapid synthesis of GFAP termed astrogliosis or gliosis.
- GFAP normally increases with age and there is a wide variation in the concentration and metabolic turnover of GFAP in brain tissue.
- a process for determining the neurological condition of a subject or cells from the subject includes measuring a sample obtained from the subject or cells from the subject at a first time for a quantity of a first biomarker selected from the group of GFAP, UCH-L1, NSE, MAP2, or SBDP. The sample is also measured for a quantity of at least one additional neuroactive biomarker. Through comparison of the quantity of the first biomarker and the quantity of the at least one additional neuroactive biomarker to normal levels for each biomarker, the neurological condition of the subject is determined.
- the assay includes: (a) a substrate for holding a sample isolated from a subject or the cells; (b) a first biomarker specifically binding agent wherein a first biomarker is one of GFAP, UCH-L1, NSE, MAP2, or SBDP; (c) a binding agent specific for another neuroactive biomarker (including one of GFAP, UCH-L1, NSE, MAP2, or SBDP not chosen as the first biomarker); and (d) printed instructions for reacting the first biomarker specific agent with a first portion of the sample so as to detect an amount of said first biomarker and reacting said at least one additional neuroactive biomarker specific agent with a second portion of the sample and the at least one additional neuroactive biomarker in the sample so as to detect an amount of said at least one additional neuroactive biomarker for relation to the condition of the subject or cells derived the subject.
- a process for determining if a subject has suffered mild traumatic brain injury or moderate traumatic brain injury in an event includes measuring a sample obtained from the subject or cells from the subject at a first time after the event for a quantity of GFAP. By comparing the quantity of GFAP to normal levels of GFAP in a control, one determines if the subject has suffered mild traumatic brain injury or moderate traumatic brain injury in the event.
- FIG. 1 represents quantitative western blotting of UCH-L1 in rat CSF following MCAO
- FIG. 2 represents UCH-L1 levels in CSF in sham and CCI treated subjects
- FIG. 3 represents UCH-L1 levels in CSF following sham, mild MCAO challenge, and severe MCAO challenge;
- FIG. 4 represents UCH-L1 levels in serum following sham or CCI at various timepoints
- FIG. 5 represents UCH-L1 levels in serum following sham, mild MCAO challenge, and severe MCAO challenge
- FIG. 6 represents SBDP145 levels in CSF and serum following sham, mild MCAO challenge, and severe MCAO challenge;
- FIG. 7 represents SBDP120 levels in CSF and serum following sham, mild MCAO challenge, and severe MCAO challenge;
- FIG. 8 represents MAP2 elevation in CSF and serum following sham, mild MCAO challenge, and severe MCAO challenge;
- FIG. 9 are bar graphs of GFAP and other biomarkers for human control and severe TBI subjects from CSF samples.
- FIG. 10 are bar graphs of GFAP and other biomarkers for human control and severe TBI subjects of FIG. 1 from serum samples;
- FIG. 11 are bar graphs of GFAP and other biomarkers for human control and severe TBI subjects summarizing the data of FIGS. 9 and 10 ;
- FIG. 12 are plots of arterial blood pressure (MABP), intracranial pressure (ICP) and cerebral profusion pressure (CPP) for a single human subject of traumatic brain injury as a function of time;
- MABP arterial blood pressure
- ICP intracranial pressure
- CPP cerebral profusion pressure
- FIG. 13 are plots of inventive biomarkers from CSF and serum samples from the single human subject of traumatic brain injury of FIG. 12 as a function of time;
- FIG. 14 are plots of inventive biomarkers from CSF and serum samples from another individual human subject of traumatic brain injury as a function of time;
- FIG. 15 are plots of UCH-L1 amounts being present in CSF and serum post severe traumatic brain injury in a mouse subject;
- FIG. 16 are bar graphs of GFAP concentration for controls, as well as individuals in the mild/moderate traumatic brain injury cohort as a function of CT scan results upon admission and 24 hours thereafter;
- FIG. 17 are bar graphs of parallel assays for UCH-L1 biomarker from the samples used for FIG. 16 ;
- FIG. 18 are bar graphs showing the concentration of UCH-L1 and GFAP as well as a biomarker not selected for diagnosis of neurological condition, S100 beta, provided as a function of injury magnitude between control, mild, and moderate traumatic brain injury;
- FIG. 19 are bar graphs showing the concentration of the same markers as depicted in FIG. 18 with respect to initial evidence upon hospital admission as to lesions in tomography scans;
- FIG. 20 represents biomarker levels in human subjects with varying types of brain injury
- FIG. 21 are plots that represent ROC analysis of UCH-L1, GFAP and SBDP145 in human CSF (severe TBI vs. Control A) First 24 hours post-injury;
- FIG. 22 is a plot that represent ROC analysis of UCH-L1 and GFAP in human CSF (mild TBI vs. normal Controls) a mean of 3h35′ with a range 15′-14h35 post-injury.
- FIG. 23 are bar graphs of showing the elevation of brain injury biomarkers (GFAP, UCH-L1 and MAP2) in plasma from stroke patients.
- GFAP brain injury biomarkers
- the present invention has utility in the diagnosis and management of abnormal neurological condition.
- a biomarker such as GFAP from a subject in combination with values obtained for an additional neuroactive biomarker
- a determination of subject neurological condition is provided with greater specificity than previously attainable.
- the present description is directed toward a first biomarker of GFAP for illustrative purposes only and is not meant to be a limitation on the practice or scope of the present invention. It is appreciated that the invention encompasses several other first and additional biomarkers illustratively including UCH-L1, NSE, MAP2, and SBDP.
- UCH-L1, NSE, MAP2, and SBDP The description is appreciated by one of ordinary skill in the art as fully encompassing all inventive biomarkers as an inventive first biomarker as described herein.
- combining the detection of more than one biomarker provides sensitive detection that is unexpectedly able to discern the level and severity of an abnormal neurological condition in a subject.
- the present invention provides for the detection of a neurological condition in a subject.
- a neurological condition may be an abnormal neurological condition such as that caused by genetic disorder, injury, or disease to nervous tissue.
- the present invention also provides an assay for detecting or diagnosing the neurological condition of a subject.
- the neurological condition may be the result of stress such as that from exposure to environmental, therapeutic, or investigative compounds
- brain injury is divided into two levels, mild traumatic brain injury (MTBI), and traumatic brain injury (TBI).
- An intermediate level of moderate TBI is also referred to herein.
- the spectrum between MTBI and extending through moderate TBI is also referred to synonymously mild to moderate TBI or by the abbreviation MMTBI.
- TBI is defined as an injury that correlates with a two-fold increase or greater of two-fold decrease or greater in molecular marker levels or activities.
- MTBI is defined and an injury that correlates with less than a two-fold increase or two-fold decrease in molecular marker levels or activities.
- An inventive process preferably includes determining the neurological condition of a subject by assaying a sample derived from a subject at a first time for the presence of a first biomarker.
- a biomarker is a cell, protein, nucleic acid, steroid, fatty acid, metabolite, or other differentiator useful for measurement of biological activity or response.
- Biomarkers operable herein illustratively include: ubiquitin carboxyl-terminal esterase, ubiquitin carboxy-terminal hydrolase, spectrin breakdown product(s), a neuronally-localized intracellular protein, MAP-tau, C-tau, MAP2, poly (ADP-ribose) polymerase (PARP), collapsin response mediator protein, Annexin A11, Aldehyde dehydrogenase family 7, Cofilin 1, Profilin 1, ⁇ -Enolase (non-neural enolase), Enolase 1 protein, Glyceraldehyde-3-phosphate dehydrogenase, Hexokinase 1, Aconitase 2, Acetyl-CoA synthetase 2, Neuronal protein 22, Phosphoglycerate kinase 2, Phosphoglycerate kinase 1, Hsc70-ps1, Glutamate dehydrogenase 1, Aldolase A, Al
- biomarkers illustratively include those identified by Kobeissy, F H, et al, Molecular & Cellular Proteomics, 2006; 5:1887-1898, the contents of which are incorporated herein by reference, or others known in the art.
- a first biomarker is preferably a neuroactive biomarker.
- neuroactive biomarkers include GFAP, ubiquitin carboxyl-terminal esterase L1 (UCH-L1), Neuron specific enolase (NSE), spectrin breakdown products (SBDP), preferably SBDP150, SBDP150i SBDP145, SBDP120, S100 calcium binding protein B (S100b), microtubule associated proteins (MAP), preferably MAP2, MAP1, MAP3, MAP4, MAPS, myelin basic protein (MBP), Tau, Neurofilament protein (NF), Cannabinoid Receptor (CB), CAM proteins, Synaptic protein, collapsin response mediator proteins (CRMP), inducible nitric oxide synthase (iNOS), Neuronal Nuclei protein (NeuN), 2′,3′-cyclic nucleotide-3′-phosphohydrolase (CNPase), Neuroserpin, alpha-internexin, microtubule-
- the inventive process also includes assaying the sample for at least one additional neuroactive biomarker.
- the one additional neuroactive biomarker is preferably not the same biomarker as the first biomarker. Any of the aforementioned inventive biomarkers are operable as an additional neuroactive biomarker. Any number of biomarkers can be detected such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or more. Detection can be either simultaneous or sequential and may be from the same biological sample or from multiple samples from the same or different subjects. Preferably, detection of multiple biomarkers is in the same assay chamber.
- the inventive process further includes comparing the quantity of the first biomarker and the quantity of the at least one additional neuroactive biomarker to normal levels of each of the first biomarker and the one additional neuroactive biomarker to determine the neurological condition of the subject.
- a biomarker is GFAP.
- GFAP is associated with glial cells such as astrocytes.
- an additional neuroactive biomarker is associated with the health of a different type of cell associated with neural function.
- CNPase is found in the myelin of the central nervous system, and NSE is found primarily in neurons. More preferably, the other cell type is an axon, neuron, or dendrite.
- UCH-L1 in combination with other biomarkers such as GFAP and MAP2.
- biomarkers may be predictors of different modes or types of damage to the same cell type.
- an inventive assay inclusive of biomarkers associated with glial cells as well as at least one other type of neural cell the type of neural cells being stressed or killed as well as quantification of neurological condition results provides rapid and robust diagnosis of traumatic brain injury type.
- Measuring GFAP along with at least one additional neuroactive biomarker and comparing the quantity of GFAP and the additional biomarker to normal levels of the markers provides a determination of subject neurological condition.
- specific biomarker levels that when measured in concert with GFAP afford superior evaluation of subject neurological condition include SBDP 150, SBDP150i, a combination of SBDP145 (calpain mediated acute neural necrosis) and SBDP120 (caspase mediated delayed neural apoptosis), UCH-L1 (neuronal cell body damage marker), and MAP2. This is noted to be of particular value in measuring MMTBI and screening drug candidates or other neural cell stressor compounds with cell cultures.
- a sample is preferably a biological sample.
- biological samples are illustratively cells, tissues, cerebral spinal fluid (CSF), artificial CSF, whole blood, serum, plasma, cytosolic fluid, urine, feces, stomach fluids, digestive fluids, saliva, nasal or other airway fluid, vaginal fluids, semen, buffered saline, saline, water, or other biological fluid recognized in the art.
- CSF cerebral spinal fluid
- cytosolic fluid whole blood
- urine feces, stomach fluids, digestive fluids, saliva, nasal or other airway fluid, vaginal fluids, semen, buffered saline, saline, water, or other biological fluid recognized in the art.
- a biological sample is CSF or blood serum. It is appreciated that two or more separate biological samples are optionally assayed to elucidate the neurological condition of the subject.
- biomarkers also appear in biological fluids in communication with injured cells.
- Obtaining biological fluids such as cerebrospinal fluid (CSF), blood, plasma, serum, saliva and urine, from a subject is typically much less invasive and traumatizing than obtaining a solid tissue biopsy sample.
- CSF cerebrospinal fluid
- samples that are biological fluids are preferred for use in the invention.
- CSF in particular, is preferred for detecting nerve damage in a subject as it is in immediate contact with the nervous system and is readily obtainable.
- Serum is a preferred biological sample as it is easily obtainable and presents much less risk of further injury or side-effect to a donating subject.
- samples of CSF or serum are collected from subjects with the samples being subjected to measurement of GFAP as well as other neuroactive biomarkers.
- the subjects vary in neurological condition.
- Detected levels of GFAP and other neuroactive biomarkers are optionally then correlated with CT scan results as well as GCS scoring. Based on these results, an inventive assay is developed and validated (Lee et al., Pharmacological Research 23:312-328, 2006). It is appreciated that GFAP and other neuroactive biomarkers, in addition to being obtained from CSF and serum, are also readily obtained from blood, plasma, saliva, urine, as well as solid tissue biopsy.
- CSF is a preferred sampling fluid owing to direct contact with the nervous system
- other biological fluids have advantages in being sampled for other purposes and therefore allow for inventive determination of neurological condition as part of a battery of tests performed on a single sample such as blood, plasma, serum, saliva or urine.
- a biological sample is obtained from a subject by conventional techniques.
- CSF is preferably obtained by lumbar puncture.
- Blood is preferably obtained by venipuncture, while plasma and serum are obtained by fractionating whole blood according to known methods.
- Surgical techniques for obtaining solid tissue samples are well known in the art. For example, methods for obtaining a nervous system tissue sample are described in standard neurosurgery texts such as Atlas of Neurosurgery: Basic Approaches to Cranial and Vascular Procedures, by F. Meyer, Churchill Livingstone, 1999; Stereotactic and Image Directed Surgery of Brain Tumors, 1st ed., by David G. T. Thomas, WB Saunders Co., 1993; and Cranial Microsurgery: Approaches and Techniques, by L.
- samples that contain nerve cells e.g., a biopsy of a central nervous system or peripheral nervous system tissue are illustratively suitable biological samples for use in the invention.
- nerve cells e.g., a biopsy of a central nervous system or peripheral nervous system tissue
- other cells express illustratively ⁇ II-spectrin including, for example, cardiomyocytes, myocytes in skeletal muscles, hepatocytes, kidney cells and cells in testis.
- a biological sample including such cells or fluid secreted from these cells might also be used in an adaptation of the inventive methods to determine and/or characterize an injury to such non-nerve cells.
- a subject illustratively includes a dog, a cat, a horse, a cow, a pig, a sheep, a goat, a chicken, non-human primate, a human, a rat, and a mouse.
- Subjects who most benefit from the present invention are those suspected of having or at risk for developing abnormal neurological conditions, such as victims of brain injury caused by traumatic insults (e.g., gunshot wounds, automobile accidents, sports accidents, shaken baby syndrome), ischemic events (e.g., stroke, cerebral hemorrhage, cardiac arrest), neurodegenerative disorders (such as Alzheimer's, Huntington's, and Parkinson's diseases; prion-related disease; other forms of dementia), epilepsy, substance abuse (e.g., from amphetamines, Ecstasy/MDMA, or ethanol), and peripheral nervous system pathologies such as diabetic neuropathy, chemotherapy-induced neuropathy and neuropathic pain.
- traumatic insults e.g., gunshot wounds, automobile accidents, sports
- Baseline levels of several biomarkers are those levels obtained in the target biological sample in the species of desired subject in the absence of a known neurological condition. These levels need not be expressed in hard concentrations, but may instead be known from parallel control experiments and expressed in terms of fluorescent units, density units, and the like. Typically, in the absence of a neurological condition SBDPs are present in biological samples at a negligible amount.
- SBDPs are present in biological samples at a negligible amount.
- UCH-L1 is a highly abundant protein in neurons. Determining the baseline levels of UCH-L1 in neurons of particular species is well within the skill of the art. Similarly, determining the concentration of baseline levels of MAP2, GFAP, NSE, or other biomarker is well within the skill of the art.
- Diagnosing means recognizing the presence or absence of a neurological or other condition such as an injury or disease. Diagnosing is optionally referred to as the result of an assay wherein a particular ratio or level of a biomarker is detected or is absent.
- a “ratio” is either a positive ratio wherein the level of the target is greater than the target in a second sample or relative to a known or recognized baseline level of the same target.
- a negative ratio describes the level of the target as lower than the target in a second sample or relative to a known or recognized baseline level of the same target.
- a neutral ratio describes no observed change in target biomarker.
- an injury is an alteration in cellular or molecular integrity, activity, level, robustness, state, or other alteration that is traceable to an event.
- Injury illustratively includes a physical, mechanical, chemical, biological, functional, infectious, or other modulator of cellular or molecular characteristics.
- An event is illustratively, a physical trauma such as an impact (percussive) or a biological abnormality such as a stroke resulting from either blockade or leakage of a blood vessel.
- An event is optionally an infection by an infectious agent.
- An injury is optionally a physical event such as a percussive impact.
- An impact is the like of a percussive injury such as resulting to a blow to the head that either leaves the cranial structure intact or results in breach thereof.
- CCI controlled cortical impact
- TBI may also result from stroke.
- Ischemic stroke is optionally modeled by middle cerebral artery occlusion (MCAO) in rodents.
- MCAO middle cerebral artery occlusion
- UCH-L1 protein levels are increased following mild MCAO which is further increased following severe MCAO challenge.
- Mild MCAO challenge may result in an increase of protein levels within two hours that is transient and returns to control levels within 24 hours.
- severe MCAO challenge results in an increase in protein levels within two hours following injury and may be much more persistent demonstrating statistically significant levels out to 72 hours or more.
- An exemplary process for detecting the presence or absence of GFAP and one or more other neuroactive biomarkers in a biological sample involves obtaining a biological sample from a subject, such as a human, contacting the biological sample with a compound or an agent capable of detecting of the marker being analyzed, illustratively including an antibody or aptamer, and analyzing binding of the compound or agent to the sample after washing. Those samples having specifically bound compound or agent express the marker being analyzed.
- An inventive process can be used to detect GFAP and one or more other neuroactive biomarkers in a biological sample in vitro, as well as in vivo.
- the quantity of GFAP and one or more other neuroactive biomarkers in a sample is compared with appropriate controls such as a first sample known to express detectable levels of the marker being analyzed (positive control) and a second sample known to not express detectable levels of the marker being analyzed (a negative control).
- in vitro techniques for detection of a marker illustratively include enzyme linked immunosorbent assays (ELISAs), radioimmuno assay, radioassay, western blot, Southern blot, northern blot, immunoprecipitation, immunofluorescence, mass spectrometry, RT-PCR, PCR, liquid chromatography, high performance liquid chromatography, enzyme activity assay, cellular assay, positron emission tomography, mass spectroscopy, combinations thereof, or other technique known in the art.
- in vivo techniques for detection of a marker include introducing a labeled agent that specifically binds the marker into a biological sample or test subject.
- the agent can be labeled with a radioactive marker whose presence and location in a biological sample or test subject can be detected by standard imaging techniques.
- the first biomarker specifically binding agent and the agent specifically binding at least one additional neuroactive biomarker are both bound to a substrate. It is appreciated that a bound agent assay is readily formed with the agents bound with spatial overlap, with detection occurring through discernibly different detection for first biomarker and each of at least one additional neuroactive biomarkers. A color intensity based quantification of each of the spatially overlapping bound biomarkers is representative of such techniques.
- Any suitable molecule that can specifically bind GFAP and any suitable molecule that specifically binds one or more other neuroactive biomarkers are operative in the invention to achieve a synergistic assay.
- a preferred agent for detecting GFAP or the one or more other neuroactive biomarkers is an antibody capable of binding to the biomarker being analyzed.
- an antibody is conjugated with a detectable label.
- Such antibodies can be polyclonal or monoclonal.
- An intact antibody, a fragment thereof (e.g., Fab or F(ab′) 2 ), or an engineered variant thereof (e.g., sFv) can also be used.
- Such antibodies can be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof.
- Antibodies for numerous inventive biomarkers are available from vendors known to one of skill in the art. Illustratively, antibodies directed to inventive biomarkers are available from Santa Cruz Biotechnology (Santa Cruz, Calif.).
- Exemplary antibodies operative herein to detect a first biomarker include anti-GFAP antibody, anti-UCH-L1 antibody, anti-NSE antibody, anti-MAP2 antibody, or an anti-SBDP antibody.
- biomarkers to be targeted as part of an inventive assay different from the first biomarker include GFAP, NSE, SBDP, SBDP150, SBDP145, SBDP120, S100b, MAP2, MAP1, MAP3, MAP4, MAPS, MBP, Tau, Neurofilament protein (NF), Cannabinoid Receptor CB, CAM, Synaptic protein, CRMP, iNOS, NeuN, CSPase, Neuroserpin, alpha-internexin, LC3, Neurofascin, EAAT, Nestin, Cortin-1, or BIII-Tubulin
- An antibody is optionally labeled.
- Labels and labeling kits are commercially available optionally from Invitrogen Corp, Carlsbad, Calif. Labels illustratively include, fluorescent labels, biotin, peroxidase, radionucleotides, or other label known in the art. Alternatively, a detection species of another antibody or other compound known to the art is used as form detection of a biomarker bound by an antibody.
- Antibody-based assays are preferred for analyzing a biological sample for the presence of GFAP and one or more other neuroactive biomarkers. Suitable western blotting methods are described below in the examples section. For more rapid analysis (as may be important in emergency medical situations), immunosorbent assays (e.g., ELISA and RIA) and immunoprecipitation assays may be used.
- immunosorbent assays e.g., ELISA and RIA
- immunoprecipitation assays may be used.
- the biological sample or a portion thereof is immobilized on a substrate, such as a membrane made of nitrocellulose or PVDF; or a rigid substrate made of polystyrene or other plastic polymer such as a microtiter plate, and the substrate is contacted with an antibody that specifically binds GFAP, or one of the other neuroactive biomarkers under conditions that allow binding of antibody to the biomarker being analyzed. After washing, the presence of the antibody on the substrate indicates that the sample contained the marker being assessed. If the antibody is directly conjugated with a detectable label, such as an enzyme, fluorophore, or radioisotope, the presence of the label is optionally detected by examining the substrate for the detectable label. Alternatively, a detectably labeled secondary antibody that binds the marker-specific antibody is added to the substrate. The presence of detectable label on the substrate after washing indicates that the sample contained the marker.
- a detectable label such as an enzyme, fluorophore, or radioisotope
- these basic immunoassays are also operative in the invention. These include the biomarker-specific antibody, as opposed to the sample being immobilized on a substrate, and the substrate is contacted with GFAP or another neuroactive biomarker conjugated with a detectable label under conditions that cause binding of antibody to the labeled marker. The substrate is then contacted with a sample under conditions that allow binding of the marker being analyzed to the antibody. A reduction in the amount of detectable label on the substrate after washing indicates that the sample contained the marker.
- any other suitable agent e.g., a peptide, an aptamer, or a small organic molecule
- a suitable agent e.g., a peptide, an aptamer, or a small organic molecule
- an aptamer that specifically binds all spectrin and/or one or more of its SBDPs might be used.
- Aptamers are nucleic acid-based molecules that bind specific ligands. Methods for making aptamers with a particular binding specificity are known as detailed in U.S. Pat. Nos.
- a myriad of detectable labels that are operative in a diagnostic assay for biomarker expression are known in the art.
- Agents used in methods for detecting GFAP or another neuroactive biomarker are conjugated to a detectable label, e.g., an enzyme such as horseradish peroxidase.
- Agents labeled with horseradish peroxidase can be detected by adding an appropriate substrate that produces a color change in the presence of horseradish peroxidase.
- detectable labels that may be used are known. Common examples of these include alkaline phosphatase, horseradish peroxidase, fluorescent compounds, luminescent compounds, colloidal gold, magnetic particles, biotin, radioisotopes, and other enzymes.
- a primary/secondary antibody system is optionally used to detect one or more biomarkers.
- a primary antibody that specifically recognizes one or more biomarkers is exposed to a biological sample that may contain the biomarker of interest.
- a secondary antibody with an appropriate label that recognizes the species or isotype of the primary antibody is then contacted with the sample such that specific detection of the one or more biomarkers in the sample is achieved.
- the present invention employs a step of correlating the presence or amount of GFAP alone, or with one or more other neuroactive biomarker in a biological sample with the severity and/or type of nerve cell injury.
- GFAP measurement alone is shown herein to be highly effective in detecting MMTBI.
- the amount of GFAP and one or more other neuroactive biomarkers in the biological sample are associated with a neurological condition such as traumatic brain injury as detailed in the examples.
- the results of an inventive assay to synergistically measure GFAP and one or more other neuroactive biomarkers can help a physician or veterinarian determine the type and severity of injury with implications as to the types of cells that have been compromised. These results are in agreement with CT scan and GCS results, yet are quantitative, obtained more rapidly, and at far lower cost.
- the present invention provides a step of comparing the quantity of GFAP and the amount of at least one other neuroactive biomarker to normal levels to determine the neurological condition of the subject. It is appreciated that selection of additional biomarkers allows one to identify the types of cells implicated in an abnormal neurological condition as well as the nature of cell death in the case of an axonal injury marker, namely an SBDP.
- the practice of an inventive process provides a test which can help a physician determine suitable therapeutics to administer for optimal benefit of the subject. While the data provided in the examples herein are provided with respect to a full spectrum of traumatic brain injury, it is appreciated that these results are applicable to ischemic events, neurodegenerative disorders, prion related disease, epilepsy, chemical etiology and peripheral nervous system pathologies. As is shown in the subsequently provided example data, a gender difference is unexpectedly noted in abnormal subject neurological condition.
- the assay includes: (a) a substrate for holding a sample isolated from a subject suspected of having a damaged nerve cell, the sample being a fluid in communication with the nervous system of the subject prior to being isolated from the subject; (b) a GFAP (or other biomarker) specific binding agent; (c) a binding agent specific for another neuroactive biomarker; and (d) printed instructions for performing the assay illustratively for reacting: the specific binding agent with the biological sample or a portion of the biological sample to detect the presence or amount of biomarker, and the agent specific for another neuroactive biomarker with the biological sample or a portion of the biological sample to detect the presence or amount of the at least one biomarker in the biological sample.
- the inventive assay can be used to detect a neurological condition for financial renumeration.
- the assay optionally includes a detectable label such as one conjugated to the agent, or one conjugated to a substance that specifically binds to the agent, such as a secondary antibody.
- a detectable label such as one conjugated to the agent, or one conjugated to a substance that specifically binds to the agent, such as a secondary antibody.
- An inventive process illustratively includes diagnosing a neurological condition in a subject, treating a subject with a neurological condition, or both.
- an inventive process illustratively includes obtaining a biological sample from a subject.
- the biological sample is assayed by mechanisms known in the art for detecting or identifying the presence of one or more biomarkers present in the biological sample. Based on the amount or presence of a target biomarker in a biological sample, a ratio of one or more biomarkers is optionally calculated.
- the ratio is optionally the level of one or more biomarkers relative to the level of another biomarker in the same or a parallel sample, or the ratio of the quantity of the biomarker to a measured or previously established baseline level of the same biomarker in a subject known to be free of a pathological neurological condition.
- the ratio allows for the diagnosis of a neurological condition in the subject.
- An inventive process also optionally administers a therapeutic to the subject that will either directly or indirectly alter the ratio of one or more biomarkers.
- An inventive process is also provided for diagnosing and optionally treating a multiple-organ injury.
- Multiple organs illustratively include subsets of neurological tissue such as brain, spinal cord and the like, or specific regions of the brain such as cortex, hippocampus and the like.
- Multiple injuries illustratively include apoptotic cell death which is detectable by the presence of caspase induced SBDPs, and oncotic cell death which is detectable by the presence of calpain induced SBDPs.
- the inventive process illustratively includes assaying for a plurality of biomarkers in a biological sample obtained from a subject wherein the biological was optionally in fluidic contact with an organ suspected of having undergone injury or control organ when the biological sample was obtained from the subject.
- the inventive process determines a first subtype of organ injury based on a first ratio of a plurality of biomarkers.
- the inventive process also determines a second subtype of a second organ injury based on a second ratio of the plurality of biomarkers in the biological sample.
- the ratios are illustratively determined by processes described herein or known in the art.
- the subject invention illustratively includes a composition for distinguishing the magnitude of a neurological condition in a subject.
- An inventive composition is either an agent entity or a mixture of multiple agents.
- a composition is a mixture.
- the mixture optionally contains a biological sample derived from a subject.
- the subject is optionally suspected of having a neurological condition.
- the biological sample in communication with the nervous system of the subject prior to being isolated from the subject.
- inventive composition also contains at least two primary agents, preferably antibodies, that specifically and independently bind to at least two biomarkers that may be present in the biological sample.
- the first primary agent is in antibody that specifically binds GFAP.
- a second primary agent is preferably an antibody that specifically binds a ubiquitin carboxyl-terminal hydrolase, preferably UCH-L1, or a spectrin breakdown product.
- the agents of the inventive composition are optionally immobilized or otherwise in contact with a substrate.
- the inventive teachings are also preferably labeled with at least one detectable label.
- the detectable label on each agent is unique and independently detectable in either the same assay chamber or alternate chambers.
- a secondary agent specific for detecting or binding to the primary agent is labeled with at least one detectable label.
- the primary agent is a rabbit derived antibody.
- a secondary agent is optionally an antibody specific for a rabbit derived primary antibody.
- the invention employs a step of correlating the presence or amount of a biomarker in a biological sample with the severity and/or type of nerve cell (or other biomarker-expressing cell) injury.
- the amount of biomarker(s) in the biological sample directly relates to severity of nerve tissue injury as a more severe injury damages a greater number of nerve cells which in turn causes a larger amount of biomarker(s) to accumulate in the biological sample (e.g., CSF; serum).
- the biological sample e.g., CSF; serum.
- Whether a nerve cell injury triggers an apoptotic and/or necrotic type of cell death can also be determined by examining the SBDPs present in the biological sample. Necrotic cell death preferentially activates calpain, whereas apoptotic cell death preferentially activates caspase-3.
- calpain and caspase-3 SBDPs can be distinguished, measurement of these markers indicates the type of cell damage in the subject. For example, necrosis-induced calpain activation results in the production of SBDP150 and SBDP145; apoptosis-induced caspase-3 activation results in the production of SBDP150i and SBDP120; and activation of both pathways results in the production of all four markers. Also, the level of or kinetic extent of UCH-L1 present in a biological sample may optionally distinguish mild injury from a more severe injury. In an illustrative example, severe MCAO (2 h) produces increased UCH-L1 in both CSF and serum relative to mild challenge (30 min) while both produce UCH-L1 levels in excess of uninjured subjects.
- the persistence or kinetic extent of the markers in a biological sample is indicative of the severity of the injury with greater injury indicating increases persistence of GFAP, UCH-L1, or SBDP in the subject that is measured by an inventive process in biological samples taken at several time points following injury.
- results of such a test can help a physician determine whether the administration a particular therapeutic such as calpain and/or caspase inhibitors or muscarinic cholinergic receptor antagonists might be of benefit to a patient.
- This method may be especially important in detecting age and gender difference in cell death mechanism.
- assay grade water buffering agents, membranes, assay plates, secondary antibodies, salts, and other ancillary reagents are available from vendors known to those of skill in the art.
- assay plates are available from Corning, Inc. (Corning, N.Y.) and reagents are available from Sigma-Aldrich Co. (St. Louis, Mo.).
- Illustrative reagents used in performing the subject invention include Sodium bicarbonate (Sigma Cat #: C-3041), blocking buffer (Startingblock T20-TBS) (Pierce Cat#: 37543), Tris buffered saline with Tween 20 (TBST; Sigma Cat #: T-9039). Phosphate buffered saline (PBS; Sigma Cat #: P-3813); Tween 20 (Sigma Cat #: P5927); Ultra TMB ELISA (Pierce Cat #: 34028); and Nunc maxisorp ELISA plates (Fisher). Monoclonal and polyclonal GFAP and UCH-L1 antibodies are made in-house or are obtained from Santa Cruz Biotechnology, Santa Cruz, Calif.
- Antibodies directed to ⁇ -II spectrin and breakdown products as well as to MAP2 are available from Santa Cruz Biotechnology, Santa Cruz, Calif. Labels for antibodies of numerous subtypes are available from Invitrogen, Corp., Carlsbad, Calif. Protein concentrations in biological samples are determined using bicinchoninic acid microprotein assays (Pierce Inc., Rockford, Ill., USA) with albumin standards. All other necessary reagents and materials are known to those of skill in the art and are readily ascertainable.
- Anti-biomarker specific rabbit polyclonal antibody and monoclonal antibodies are produced in the laboratory. To determine reactivity specificity of the antibodies to detect a target biomarker a known quantity of isolated or partially isolated biomarker is analyzed or a tissue panel is probed by western blot. An indirect ELISA is used with the recombinant biomarker protein attached to the ELISA plate to determine optimal concentration of the antibodies used in the assay. Microplate wells are coated with rabbit polyclonal anti-human biomarker antibody. After determining the concentration of rabbit anti-human biomarker antibody for a maximum signal, the lower detection limit of the indirect ELISA for each antibody is determined.
- a controlled cortical impact (CCI) device is used to model TBI on rats as previously described (Pike et al, 1998).
- Adult male (280-300 g) Sprague-Dawley rats (Harlan: Indianapolis, Ind.) are anesthetized with 4% isoflurane in a carrier gas of 1:1 O 2 /N 2 O (4 min.) and maintained in 2.5% isoflurane in the same carrier gas.
- Core body temperature is monitored continuously by a rectal thermistor probe and maintained at 37 ⁇ 1° C. by placing an adjustable temperature controlled heating pad beneath the rats.
- Animals are mounted in a stereotactic frame in a prone position and secured by ear and incisor bars.
- a unilateral (ipsilateral to site of impact) craniotomy (7 mm diameter) is performed adjacent to the central suture, midway between bregma and lambda.
- the dura mater is kept intact over the cortex.
- Brain trauma is produced by impacting the right (ipsilateral) cortex with a 5 mm diameter aluminum impactor tip (housed in a pneumatic cylinder) at a velocity of 3.5 m/s with a 1.6 mm compression and 150 ms dwell time. Sham-injured control animals are subjected to identical surgical procedures but do not receive the impact injury.
- Rats are incubated under isoflurane anesthesia (5% isoflurane via induction chamber followed by 2% isoflurane via nose cone), the right common carotid artery (CCA) of the rat is exposed at the external and internal carotid artery (ECA and ICA) bifurcation level with a midline neck incision.
- the ICA is followed rostrally to the pterygopalatine branch and the ECA is ligated and cut at its lingual and maxillary branches.
- a 3-0 nylon suture is then introduced into the ICA via an incision on the ECA stump (the suture's path was visually monitored through the vessel wall) and advanced through the carotid canal approximately 20 mm from the carotid bifurcation until it becomes lodged in the narrowing of the anterior cerebral artery blocking the origin of the middle cerebral artery.
- the skin incision is then closed and the endovascular suture left in place for 30 minutes or 2 hours.
- the rat is briefly reanesthetized and the suture filament is retracted to allow reperfusion.
- the filament is advanced only 10 mm beyond the internal-external carotid bifurcation and is left in place until the rat is sacrificed.
- mice are anesthetized and immediately sacrificed by decapitation. Brains are quickly removed, rinsed with ice cold PBS and halved. The right hemisphere (cerebrocortex around the impact area and hippocampus) is rapidly dissected, rinsed in ice cold PBS, snap-frozen in liquid nitrogen, and stored at ⁇ 80° C. until used.
- brains are quick frozen in dry ice slurry, sectioned via cryostat (20 ⁇ m) onto SUPERFROST PLUS GOLD® (Fisher Scientific) slides, and then stored at ⁇ 80° C. until used. For the left hemisphere, the same tissue as the right side is collected.
- the brain samples are pulverized with a small mortar and pestle set over dry ice to a fine powder.
- the pulverized brain tissue powder is then lysed for 90 min at 4° C. in a buffer of 50 mM Tris (pH 7.4), 5 mM EDTA, 1% (v/v) Triton X-100, 1 mM DTT, 1 ⁇ protease inhibitor cocktail (Roche Biochemicals).
- the brain lysates are then centrifuged at 15,000 ⁇ g for 5 min at 4° C. to clear and remove insoluble debris, snap-frozen, and stored at ⁇ 80° C. until used.
- cleared CSF samples (7 ⁇ l) are prepared for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a 2 ⁇ loading buffer containing 0.25 M Tris (pH 6.8), 0.2 M DTT, 8% SDS, 0.02% bromophenol blue, and 20% glycerol in distilled H 2 O.
- SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- Twenty micrograms (20 ⁇ g) of protein per lane are routinely resolved by SDS-PAGE on 10-20% Tris/glycine gels (Invitrogen, Cat #EC61352) at 130 V for 2 hours.
- PVDF polyvinylidene fluoride
- UCH-L1 protein is readily detectable after injury at statically significant levels above the amounts of UCH-L1 in sham treated samples ( FIGS. 1A , B). These UCH-L1 levels are transiently elevated (at 6 h) after mild ischemia (30 min MCAO) followed by reperfusion, while levels are sustained from 6 to 72 h after a more severe (2 h MCAO) ischemia ( FIGS. 1A , B).
- ELISA is used to more rapidly and readily detect and quantitate UCH-L1 in biological samples.
- a UCH-L1 sandwich ELISA 96-well plates are coated with 100 ⁇ l/well capture antibody (500 ng/well purified rabbit anti-UCH-L1, made in-house by conventional techniques) in 0.1 M sodium bicarbonate, pH 9.2. Plates are incubated overnight at 4° C., emptied and 300 ⁇ l/well blocking buffer (Startingblock T20-TBS) is added and incubated for 30 min at ambient temperature with gentle shaking.
- biotinyl-tyramide solution (Perkin Elmer Elast Amplification Kit) is added for 15 min at room temperature, washed then followed by 100 ⁇ l/well streptavidin-HRP (1:500) in PBS with 0.02% Tween-20 and 1% BSA for 30 min and then followed by washing. Lastly, the wells are developed with 100 ⁇ l/well TMB substrate solution (Ultra-TMB ELISA, Pierce #34028) with incubation times of 5-30 minutes. The signal is read at 652 nm with a 96-well spectrophotometer (Molecular Device Spectramax 190).
- UCH-L1 levels of the TBI group are significantly higher than the sham controls (p ⁇ 0.01, ANOVA analysis) and the na ⁇ ve controls as measured by a swELISA demonstrating that UCH-L1 is elevated early in CSF (2 h after injury) then declines at around 24 h after injury before rising again 48 h after injury ( FIG. 2 ).
- Blood (3-4 ml) is collected at the end of each experimental period directly from the heart using syringe equipped with 21 gage needle placed in a polypropylene tube and allowed to stand for 45 min to 1 hour at room temperature to form clot. Tubes are centrifuged for 20 min at 3,000 ⁇ g and the serum removed and analyzed by ELISA ( FIGS. 4 , 5 ).
- UCH-L1 levels of the TBI group are significantly higher than the sham group (p ⁇ 0.001, ANOVA analysis) and for each time point tested 2 h through 24 h respective to the same sham time points (p ⁇ 0.005, Student's T-test).
- UCH-L1 is significantly elevated after injury as early as 2 h in serum.
- Severe MCAO challenge produces increased serum UCH-L1 relative to mild challenge. Both mild and severe challenge are statistically higher than sham treated animals indicating that serum detection of UCH-L1 is a robust diagnostic and the levels are able to sufficiently distinguish mild from severe injury.
- FIG. 6 demonstrates that levels of SBDP145 in both serum and CSF are significantly (p ⁇ 0.05) increased at all time points studied following severe (2 hr) MCAO challenge relative to mild (30 min) challenge.
- SBDP120 demonstrates significant elevations following severe MCAO challenge between 24 and 72 hours after injury in CSF ( FIG. 7 ).
- levels of SBDP120 in serum are increased following severe challenge relative to mild challenge at all time points between 2 and 120 hours.
- both mild and severe MCAO challenge produces increased SPBP120 and 140 relative to sham treated subjects.
- Microtubule Associated Protein 2 is assayed as a biomarker in both CSF and serum following mild (30 min) and severe (2 hr) MCAO challenge in subjects by ELISA or western blotting essentially as described herein.
- Antibodies to MAP2 (MAP-2 (E-12)) are obtained from Santa Cruz Biotechnology, Santa Cruz, Calif. These antibodies are suitable for both ELISA and western blotting procedures and are crossreactive to murine and human MAP2.
- Levels of MAP2 are significantly (p ⁇ 0.05) increased in subjects following mild MCAO challenge relative to naive animals in both CSF and serum ( FIG. 8 ). Similar to UCH-L1 and SBDPs, severe challenge (2 hr) produces much higher levels of MAP2 in both samples than mild challenge (30 min).
- a control group A synonymously detailed as CSF controls, included 10 individuals also being over the age of 18 or older and no injuries. Samples are obtained during spinal anesthesia for routine surgical procedures or access to CSF associated with treatment of hydrocephalus or meningitis.
- a control group B synonymously described as normal controls, totaled 64 individuals, each age 18 or older and experiencing multiple injuries without brain injury. Further details with respect to the demographics of the study are provided in Table 1.
- FIGS. 9 and 10 The level of biomarkers found in the first available CSF and serum samples obtained in the study are provided in FIGS. 9 and 10 , respectively.
- the average first CSF sample collected as detailed in FIG. 9 was 11.2 hours while the average time for collection of a serum sample subsequent to injury event as per FIG. 10 is 10.1 hours.
- the quantity of each of the biomarkers of UCH-L1, MAP2, SBDP145, SBDP120, and GFAP are provided for each sample for the cohort of traumatic brain injury sufferers as compared to a control group.
- the diagnostic utility of the various biomarkers within the first 12 hours subsequent to injury based on a compilation of CSF and serum data is provided in FIG.
- One subject from the traumatic brain injury cohort was a 52 year old Caucasian woman who had been involved in a motorcycle accident while not wearing a helmet.
- her GCS was 3 and during the first 24 hours subsequent to trauma her best GCS was 8.
- her GCS was 11.
- CT scanning revealed SAH and facial fractures with a Marshall score of 11 and a Rotterdam score of 2.
- Ventriculostomy was removed after 5 years and an overall good outcome was obtained.
- Arterial blood pressure (MABP), intracranial pressure (ICP) and cerebral profusion pressure (CPP) for this sufferer of traumatic brain injury as a function of time is depicted in FIG. 12 .
- a possible secondary insult is noted at approximately 40 hours subsequent to the injury as noted by a drop in MABP and CPP.
- Another individual of the severe traumatic brain injury cohort included a 51 year old Caucasian woman who suffered a crush injury associated with a horse falling on the individual.
- GCS on admission to emergency room was 3 with imaging analysis initially being unremarkable with minor cortical and subcortical contusions.
- MRI on day 5 revealed significant contusions in posterior fossa.
- the Marshall scale at that point was indicated to be 11 with a Rotterdam scale score of 3.
- the CSF and serum values for this individual during a period of time are provided in FIG. 14 .
- GFAP values as a function of time are noted to be markedly elevated relative to normal controls (control group B) as a function of time.
- Stepwise regression analysis was the statistical method used to evaluate each of the biomarkers as an independent predictive factor, along with the demographic factors of age and gender, and also interactions between pairs of factors. Interactions determine important predictive potential between related factors, such as when the relationship between a biomarker and outcome may be different for men and women, such a relationship would be defined as a gender by biomarker interaction.
- biomarkers UCH-L1, MAP2, and GFAP were statistically significant predictors of GCS (Table 2, 3). Furthermore, GFAP was shown to have improved predictability when evaluated in interaction with UCH-L1 and gender (Table 4, 5).
- Example 10 The study of Example 10 was repeated with a moderate traumatic brain injury cohort characterized by GCS scores of between 9 and 11, as well as a mild traumatic brain injury cohort characterized by GCS scores of 12-15. Blood samples were obtained from each patient on arrival to the emergency department of a hospital within 2 hours of injury and measured by ELISA for levels of GFAP in nanograms per milliliter. The results were compared to those of a control group who had not experienced any form of injury. Secondary outcomes included the presence of intracranial lesions in head CT scans.
- FIG. 16 shows GFAP concentration for controls as well as individuals in the mild/moderate traumatic brain injury cohort as a function of CT scan results upon admission and 24 hours thereafter. Simultaneous assays were performed in the course of this study for UCH-L1 biomarker.
- the UCH-L1 concentration derived from the same samples as those used to determine GFAP is provided FIG. 17 .
- the concentration of UCH-L1 and GFAP as well as a biomarker not selected for diagnosis of neurological condition, S100b, is provided as a function of injury magnitude between control, mild, and moderate traumatic brain injury as shown in FIG. 18 .
- FIG. 19 shows the concentration of the same markers as depicted in FIG. 18 with respect to initial evidence upon hospital admission as to lesions in tomography scans illustrating the high confidence in predictive outcome of the inventive process.
- FIG. 20 shows that both NSE and MAP2 are elevated in subjects with MTBI in serum both at admission and at 24 hours of follow up.
- biomarkers such as UCH-L1, GFAP, NSE, and MAP2
- rapid and quantifiable determination as to the severity of the brain injury is obtained consistent with GSC scoring and CT scanning yet in a surprisingly more quantifiable, expeditious and economic process.
- biomarkers indicative of neurological condition the nature of the neurological abnormality is assessed and in this particular study suggestive of neuronal cell body damage.
- gender variations are noted suggesting a role for hormonal anti-inflammatories as therapeutic candidates.
- a receiver operating characteristic (ROC) modeling of UCH-L1, GFAP and SBDP145 post TBI further supports the value of simultaneous measurement of these biomarkers, as shown in FIGS. 21 , 22 .
- FIG. 22 showed that several brain biomarkers (GFAP, UCH-L1 and MAP2) in stroke patients' plasma.
- Samples were collected with an average post-injury time 24.2 hr (range 18-30 h).
- Bottom panel further shows that UCH-L1 is elevated with both hemorrhagic and ischemic stroke populations when compared to normal control plasma.
- Patent documents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains. These documents and publications are incorporated herein by reference to the same extent as if each individual document or publication was specifically and individually incorporated herein by reference.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Neurology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Neurosurgery (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physiology (AREA)
- Psychology (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The subject invention provides a robust, quantitative, and reproducible process and assay for diagnosis of a neurological condition in a subject. The invention provides measurement of two or more biomarkers in a biological fluid such as CSF or serum resulting in a synergistic mechanism for determining the extent of neurological damage in a subject with an abnormal neurological condition and for discerning subtypes thereof or tissue types subjected to damage.
Description
- This application claims priority to U.S. Provisional Application No. 61/188,554 filed Aug. 11, 2008; U.S. Provisional Application No. 61/097,622 filed Sep. 17, 2008; U.S. Provisional Application No. 61/218,727 filed Jun. 19, 2009; and U.S. Provisional Application No. 61/271,135 filed Jul. 18, 2009. The contents of each provisional application is incorporated herein by reference as if each were explicitly and fully expressed herein.
- Portions of this work were supported by grants N14-06-1-1029, W81XWH-8-1-0376 and W81XWH-07-01-0701 from the United States Department of Defense.
- The present invention in general relates to determination of neurological condition of an individual and in particular to measuring the quantity of a neuroprotective biomarker such as glial fibrillary acidic protein (GFAP) in concert with another biomarker of neurological condition.
- The field of clinical neurology remains frustrated by the recognition that secondary injury to a central nervous system tissue associated with physiologic response to the initial insult could be lessened if only the initial insult could be rapidly diagnosed or in the case of a progressive disorder before stress on central nervous system tissues reached a preselected threshold. Traumatic, ischemic, and neurotoxic chemical insult, along with generic disorders, all present the prospect of brain damage. While the diagnosis of severe forms of each of these causes of brain damage is straightforward through clinical response testing, computed tomography (CT), and magnetic resonance imaging (MRI), the imaging diagnostics are limited by both the high cost of spectroscopic imaging and long diagnostic time. The clinical response testing of incapacitated individuals is of limited value and often precludes a nuanced diagnosis. Additionally, owing to the limitations of existing diagnostics, situations arise wherein a subject experiences a stress to their neurological condition but are often unaware that damage has occurred or fail seek treatment as the subtle symptoms often quickly resolve. The lack of treatment of these mild to moderate challenges to neurologic condition of a subject can have a cumulative effect or otherwise result in a severe brain damage event, either of which have a poor clinical prognosis.
- In order to overcome the limitations associated with spectroscopic and clinical response diagnosis of neurological condition, there is increasing attention on the use of biomarkers as internal indicators of change to molecular or cellular level health condition of a subject. As biomarker detection uses a sample obtained from a subject, typically cerebrospinal fluid, blood, or plasma, and detects the biomarkers in that sample, biomarker detection holds the prospect of inexpensive, rapid, and objective measurement of neurological condition. The attainment of rapid and objective indicators of neurological condition allows one to determine severity of a non-normal brain condition with a previously unrealized degree of objectivity, predict outcome, guide therapy of the condition, as well as monitor subject responsiveness and recovery. Additionally, such information as obtained from numerous subjects allows one to gain a degree of insight into the mechanism of brain injury.
- A number of biomarkers have been identified as being associated with severe traumatic brain injury as is often seen in vehicle collision and combat wounded subjects. These biomarkers included spectrin breakdown products such as SBDP150, SBDP150i, SBDP145 (calpain mediated acute neural necrosis), SBDP120 (caspase mediated delayed neural apoptosis), UCH-L1 (neuronal cell body damage marker), and MAP2 dendritic cell injury associated marker. The nature of these biomarkers is detailed in U.S. Pat. Nos. 7,291,710 and 7,396,654, the contents of which are hereby incorporated by reference.
- Glial Fibrillary Acidic Protein (GFAP), a member of the cytoskeletal protein family, is the principal 8-9 nanometer intermediate filament of glial cells such as mature astrocytes of the central nervous system (CNS). GFAP is a monomeric molecule with a molecular mass between 40 and 53 kDa and an isoelectric point between 5.7 and 5.8. GFAP is highly brain specific protein that is not found outside the CNS. GFAP is released into the blood and CSF soon after brain injury. In the CNS following injury, either as a result of trauma, disease, genetic disorders, or chemical insult, astrocytes become reactive in a way that is characterized by rapid synthesis of GFAP termed astrogliosis or gliosis. However, GFAP normally increases with age and there is a wide variation in the concentration and metabolic turnover of GFAP in brain tissue.
- Thus, there exists a need for a process and an assay for providing improved measurement of neurological condition through the quantification of a first biomarker such as GFAP in combination with another biomarker associated with neurological condition.
- A process for determining the neurological condition of a subject or cells from the subject includes measuring a sample obtained from the subject or cells from the subject at a first time for a quantity of a first biomarker selected from the group of GFAP, UCH-L1, NSE, MAP2, or SBDP. The sample is also measured for a quantity of at least one additional neuroactive biomarker. Through comparison of the quantity of the first biomarker and the quantity of the at least one additional neuroactive biomarker to normal levels for each biomarker, the neurological condition of the subject is determined. When the subject have been exposed to an event that could cause mild traumatic brain injury and moderate traumatic brain injury, a process of measuring UCH-L1 and GFAP, such injuries have detection cutoffs for UCH-L1 and GFAP in serum of 0.39 nanograms per milliliter (ng/ml) and 1.4 ng/ml, respectively.
- An assay for determining the neurological condition of a subject or neural cells from the subject is also provided. The assay includes: (a) a substrate for holding a sample isolated from a subject or the cells; (b) a first biomarker specifically binding agent wherein a first biomarker is one of GFAP, UCH-L1, NSE, MAP2, or SBDP; (c) a binding agent specific for another neuroactive biomarker (including one of GFAP, UCH-L1, NSE, MAP2, or SBDP not chosen as the first biomarker); and (d) printed instructions for reacting the first biomarker specific agent with a first portion of the sample so as to detect an amount of said first biomarker and reacting said at least one additional neuroactive biomarker specific agent with a second portion of the sample and the at least one additional neuroactive biomarker in the sample so as to detect an amount of said at least one additional neuroactive biomarker for relation to the condition of the subject or cells derived the subject.
- A process for determining if a subject has suffered mild traumatic brain injury or moderate traumatic brain injury in an event is provided that includes measuring a sample obtained from the subject or cells from the subject at a first time after the event for a quantity of GFAP. By comparing the quantity of GFAP to normal levels of GFAP in a control, one determines if the subject has suffered mild traumatic brain injury or moderate traumatic brain injury in the event.
-
FIG. 1 represents quantitative western blotting of UCH-L1 in rat CSF following MCAO; -
FIG. 2 represents UCH-L1 levels in CSF in sham and CCI treated subjects; -
FIG. 3 represents UCH-L1 levels in CSF following sham, mild MCAO challenge, and severe MCAO challenge; -
FIG. 4 represents UCH-L1 levels in serum following sham or CCI at various timepoints; -
FIG. 5 represents UCH-L1 levels in serum following sham, mild MCAO challenge, and severe MCAO challenge; -
FIG. 6 represents SBDP145 levels in CSF and serum following sham, mild MCAO challenge, and severe MCAO challenge; -
FIG. 7 represents SBDP120 levels in CSF and serum following sham, mild MCAO challenge, and severe MCAO challenge; -
FIG. 8 represents MAP2 elevation in CSF and serum following sham, mild MCAO challenge, and severe MCAO challenge; -
FIG. 9 are bar graphs of GFAP and other biomarkers for human control and severe TBI subjects from CSF samples; -
FIG. 10 are bar graphs of GFAP and other biomarkers for human control and severe TBI subjects ofFIG. 1 from serum samples; -
FIG. 11 are bar graphs of GFAP and other biomarkers for human control and severe TBI subjects summarizing the data ofFIGS. 9 and 10 ; -
FIG. 12 are plots of arterial blood pressure (MABP), intracranial pressure (ICP) and cerebral profusion pressure (CPP) for a single human subject of traumatic brain injury as a function of time; -
FIG. 13 are plots of inventive biomarkers from CSF and serum samples from the single human subject of traumatic brain injury ofFIG. 12 as a function of time; -
FIG. 14 are plots of inventive biomarkers from CSF and serum samples from another individual human subject of traumatic brain injury as a function of time; -
FIG. 15 are plots of UCH-L1 amounts being present in CSF and serum post severe traumatic brain injury in a mouse subject; -
FIG. 16 are bar graphs of GFAP concentration for controls, as well as individuals in the mild/moderate traumatic brain injury cohort as a function of CT scan results upon admission and 24 hours thereafter; -
FIG. 17 are bar graphs of parallel assays for UCH-L1 biomarker from the samples used forFIG. 16 ; -
FIG. 18 are bar graphs showing the concentration of UCH-L1 and GFAP as well as a biomarker not selected for diagnosis of neurological condition, S100 beta, provided as a function of injury magnitude between control, mild, and moderate traumatic brain injury; -
FIG. 19 are bar graphs showing the concentration of the same markers as depicted inFIG. 18 with respect to initial evidence upon hospital admission as to lesions in tomography scans; -
FIG. 20 represents biomarker levels in human subjects with varying types of brain injury; -
FIG. 21 are plots that represent ROC analysis of UCH-L1, GFAP and SBDP145 in human CSF (severe TBI vs. Control A) First 24 hours post-injury; -
FIG. 22 is a plot that represent ROC analysis of UCH-L1 and GFAP in human CSF (mild TBI vs. normal Controls) a mean of 3h35′ with arange 15′-14h35 post-injury. -
FIG. 23 are bar graphs of showing the elevation of brain injury biomarkers (GFAP, UCH-L1 and MAP2) in plasma from stroke patients. - The present invention has utility in the diagnosis and management of abnormal neurological condition. Through the measurement of a biomarker such as GFAP from a subject in combination with values obtained for an additional neuroactive biomarker, a determination of subject neurological condition is provided with greater specificity than previously attainable. The present description is directed toward a first biomarker of GFAP for illustrative purposes only and is not meant to be a limitation on the practice or scope of the present invention. It is appreciated that the invention encompasses several other first and additional biomarkers illustratively including UCH-L1, NSE, MAP2, and SBDP. The description is appreciated by one of ordinary skill in the art as fully encompassing all inventive biomarkers as an inventive first biomarker as described herein. Surprisingly, by combining the detection of more than one biomarker, a synergistic result is achieved. Illustratively, combining the detection of two neuroactive biomarkers such as UCH-L1 and GFAP provides sensitive detection that is unexpectedly able to discern the level and severity of an abnormal neurological condition in a subject.
- The present invention provides for the detection of a neurological condition in a subject. A neurological condition may be an abnormal neurological condition such as that caused by genetic disorder, injury, or disease to nervous tissue. As such, it is a further object of the present invention to provide a means for detecting or diagnosing an abnormal neurological condition in a subject.
- The present invention also provides an assay for detecting or diagnosing the neurological condition of a subject. As the neurological condition may be the result of stress such as that from exposure to environmental, therapeutic, or investigative compounds, it is a further aspect of the present invention to provide a process and assay for screening candidate drug or other compounds or for detecting the effects of environmental contaminants regardless of whether the subject itself or cells derived there from are exposed to the drug candidate or other possible stressors.
- For purposes of the subject invention, brain injury is divided into two levels, mild traumatic brain injury (MTBI), and traumatic brain injury (TBI). An intermediate level of moderate TBI is also referred to herein. The spectrum between MTBI and extending through moderate TBI is also referred to synonymously mild to moderate TBI or by the abbreviation MMTBI. TBI is defined as an injury that correlates with a two-fold increase or greater of two-fold decrease or greater in molecular marker levels or activities. MTBI is defined and an injury that correlates with less than a two-fold increase or two-fold decrease in molecular marker levels or activities.
- An inventive process preferably includes determining the neurological condition of a subject by assaying a sample derived from a subject at a first time for the presence of a first biomarker. A biomarker is a cell, protein, nucleic acid, steroid, fatty acid, metabolite, or other differentiator useful for measurement of biological activity or response. Biomarkers operable herein illustratively include: ubiquitin carboxyl-terminal esterase, ubiquitin carboxy-terminal hydrolase, spectrin breakdown product(s), a neuronally-localized intracellular protein, MAP-tau, C-tau, MAP2, poly (ADP-ribose) polymerase (PARP), collapsin response mediator protein, Annexin A11, Aldehyde dehydrogenase family 7, Cofilin 1, Profilin 1, α-Enolase (non-neural enolase), Enolase 1 protein, Glyceraldehyde-3-phosphate dehydrogenase, Hexokinase 1, Aconitase 2, Acetyl-CoA synthetase 2, Neuronal protein 22, Phosphoglycerate kinase 2, Phosphoglycerate kinase 1, Hsc70-ps1, Glutamate dehydrogenase 1, Aldolase A, Aldolase C, fructose-biphosphate, Dimethylarginine dimethylaminohydrolase 1, Microtubule-associated protein 2, Carbonic anhydrase, ADP-ribosylation factor 3, Transferrin, Liver regeneration-related protein, Hemoglobin α-chain, Hemoglobin β chain, Liver regeneration-related protein, Fetuin β, 3-Oxoacid-CoA transferase, Malate dehydrogenase 1, NAD (soluble), Lactate dehydrogenase B, Malate dehydrogenase, Carboxylesterase E1 precursor, Serine protease inhibitor α1, Haptoglobin, Ubiquitin carboxyl-terminal hydrolase L1, Serine protease inhibitor 2a, T-kininogen, α1 major acute phase protein, Albumin, α1 major acute phase protein prepeptide, Murinoglobulin 1 homolog, Group-specific component protein, Guanosine diphosphate dissociation inhibitor 1, Collapsin response mediator protein 2, Murinoglobulin 1 homolog, Ferroxidase, Ceruloplasmin, Spectrin α-chain, brain, C-reactive protein, Brain creatine kinase, Proteasome subunit α-type 7, 14-3-3 protein, Synaptotagmin, subtypes thereof, fragments thereof, breakdown products thereof, or combinations thereof. Other potential biomarkers illustratively include those identified by Kobeissy, F H, et al, Molecular & Cellular Proteomics, 2006; 5:1887-1898, the contents of which are incorporated herein by reference, or others known in the art.
- A first biomarker is preferably a neuroactive biomarker. Illustrative examples of neuroactive biomarkers include GFAP, ubiquitin carboxyl-terminal esterase L1 (UCH-L1), Neuron specific enolase (NSE), spectrin breakdown products (SBDP), preferably SBDP150, SBDP150i SBDP145, SBDP120, S100 calcium binding protein B (S100b), microtubule associated proteins (MAP), preferably MAP2, MAP1, MAP3, MAP4, MAPS, myelin basic protein (MBP), Tau, Neurofilament protein (NF), Cannabinoid Receptor (CB), CAM proteins, Synaptic protein, collapsin response mediator proteins (CRMP), inducible nitric oxide synthase (iNOS), Neuronal Nuclei protein (NeuN), 2′,3′-cyclic nucleotide-3′-phosphohydrolase (CNPase), Neuroserpin, alpha-internexin, microtubule-associated
protein 1 light chain 3 (LC3), Neurofascin, the glutamate transporters (EAAT), Nestin, Cortin-1, 2′, and BIII-Tubulin. - The inventive process also includes assaying the sample for at least one additional neuroactive biomarker. The one additional neuroactive biomarker is preferably not the same biomarker as the first biomarker. Any of the aforementioned inventive biomarkers are operable as an additional neuroactive biomarker. Any number of biomarkers can be detected such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or more. Detection can be either simultaneous or sequential and may be from the same biological sample or from multiple samples from the same or different subjects. Preferably, detection of multiple biomarkers is in the same assay chamber. The inventive process further includes comparing the quantity of the first biomarker and the quantity of the at least one additional neuroactive biomarker to normal levels of each of the first biomarker and the one additional neuroactive biomarker to determine the neurological condition of the subject.
- In a preferred embodiment a biomarker is GFAP. GFAP is associated with glial cells such as astrocytes. Preferably, an additional neuroactive biomarker is associated with the health of a different type of cell associated with neural function. For example, CNPase is found in the myelin of the central nervous system, and NSE is found primarily in neurons. More preferably, the other cell type is an axon, neuron, or dendrite.
- In another preferred embodiment, especially for MBTI and MMTBI, is UCH-L1 in combination with other biomarkers such as GFAP and MAP2.
- It is appreciated however, that multiple biomarkers may be predictors of different modes or types of damage to the same cell type. Through the use of an inventive assay inclusive of biomarkers associated with glial cells as well as at least one other type of neural cell, the type of neural cells being stressed or killed as well as quantification of neurological condition results provides rapid and robust diagnosis of traumatic brain injury type. Measuring GFAP along with at least one additional neuroactive biomarker and comparing the quantity of GFAP and the additional biomarker to normal levels of the markers provides a determination of subject neurological condition.
- Preferably, specific biomarker levels that when measured in concert with GFAP afford superior evaluation of subject neurological condition include
SBDP 150, SBDP150i, a combination of SBDP145 (calpain mediated acute neural necrosis) and SBDP120 (caspase mediated delayed neural apoptosis), UCH-L1 (neuronal cell body damage marker), and MAP2. This is noted to be of particular value in measuring MMTBI and screening drug candidates or other neural cell stressor compounds with cell cultures. - A sample is preferably a biological sample. Preferred examples of biological samples are illustratively cells, tissues, cerebral spinal fluid (CSF), artificial CSF, whole blood, serum, plasma, cytosolic fluid, urine, feces, stomach fluids, digestive fluids, saliva, nasal or other airway fluid, vaginal fluids, semen, buffered saline, saline, water, or other biological fluid recognized in the art. Most preferably, a biological sample is CSF or blood serum. It is appreciated that two or more separate biological samples are optionally assayed to elucidate the neurological condition of the subject.
- In addition to increased cell expression, biomarkers also appear in biological fluids in communication with injured cells. Obtaining biological fluids such as cerebrospinal fluid (CSF), blood, plasma, serum, saliva and urine, from a subject is typically much less invasive and traumatizing than obtaining a solid tissue biopsy sample. Thus, samples that are biological fluids are preferred for use in the invention. CSF, in particular, is preferred for detecting nerve damage in a subject as it is in immediate contact with the nervous system and is readily obtainable. Serum is a preferred biological sample as it is easily obtainable and presents much less risk of further injury or side-effect to a donating subject.
- To provide correlations between neurological condition and measured quantities of GFAP and other neuroactive biomarkers, samples of CSF or serum are collected from subjects with the samples being subjected to measurement of GFAP as well as other neuroactive biomarkers. The subjects vary in neurological condition. Detected levels of GFAP and other neuroactive biomarkers are optionally then correlated with CT scan results as well as GCS scoring. Based on these results, an inventive assay is developed and validated (Lee et al., Pharmacological Research 23:312-328, 2006). It is appreciated that GFAP and other neuroactive biomarkers, in addition to being obtained from CSF and serum, are also readily obtained from blood, plasma, saliva, urine, as well as solid tissue biopsy. While CSF is a preferred sampling fluid owing to direct contact with the nervous system, it is appreciated that other biological fluids have advantages in being sampled for other purposes and therefore allow for inventive determination of neurological condition as part of a battery of tests performed on a single sample such as blood, plasma, serum, saliva or urine.
- A biological sample is obtained from a subject by conventional techniques. For example, CSF is preferably obtained by lumbar puncture. Blood is preferably obtained by venipuncture, while plasma and serum are obtained by fractionating whole blood according to known methods. Surgical techniques for obtaining solid tissue samples are well known in the art. For example, methods for obtaining a nervous system tissue sample are described in standard neurosurgery texts such as Atlas of Neurosurgery: Basic Approaches to Cranial and Vascular Procedures, by F. Meyer, Churchill Livingstone, 1999; Stereotactic and Image Directed Surgery of Brain Tumors, 1st ed., by David G. T. Thomas, WB Saunders Co., 1993; and Cranial Microsurgery: Approaches and Techniques, by L. N. Sekhar and E. De Oliveira, 1st ed., Thieme Medical Publishing, 1999. Methods for obtaining and analyzing brain tissue are also described in Belay et al., Arch. Neurol. 58: 1673-1678 (2001); and Seijo et al., J. Clin. Microbiol. 38: 3892-3895 (2000).
- After insult, nerve cells in in vitro culture or in situ in a subject express altered levels or activities of one or more proteins than do such cells not subjected to the insult. Thus, samples that contain nerve cells, e.g., a biopsy of a central nervous system or peripheral nervous system tissue are illustratively suitable biological samples for use in the invention. In addition to nerve cells, however, other cells express illustratively αII-spectrin including, for example, cardiomyocytes, myocytes in skeletal muscles, hepatocytes, kidney cells and cells in testis. A biological sample including such cells or fluid secreted from these cells might also be used in an adaptation of the inventive methods to determine and/or characterize an injury to such non-nerve cells.
- A subject illustratively includes a dog, a cat, a horse, a cow, a pig, a sheep, a goat, a chicken, non-human primate, a human, a rat, and a mouse. Subjects who most benefit from the present invention are those suspected of having or at risk for developing abnormal neurological conditions, such as victims of brain injury caused by traumatic insults (e.g., gunshot wounds, automobile accidents, sports accidents, shaken baby syndrome), ischemic events (e.g., stroke, cerebral hemorrhage, cardiac arrest), neurodegenerative disorders (such as Alzheimer's, Huntington's, and Parkinson's diseases; prion-related disease; other forms of dementia), epilepsy, substance abuse (e.g., from amphetamines, Ecstasy/MDMA, or ethanol), and peripheral nervous system pathologies such as diabetic neuropathy, chemotherapy-induced neuropathy and neuropathic pain.
- Baseline levels of several biomarkers are those levels obtained in the target biological sample in the species of desired subject in the absence of a known neurological condition. These levels need not be expressed in hard concentrations, but may instead be known from parallel control experiments and expressed in terms of fluorescent units, density units, and the like. Typically, in the absence of a neurological condition SBDPs are present in biological samples at a negligible amount. However, UCH-L1 is a highly abundant protein in neurons. Determining the baseline levels of UCH-L1 in neurons of particular species is well within the skill of the art. Similarly, determining the concentration of baseline levels of MAP2, GFAP, NSE, or other biomarker is well within the skill of the art.
- As used herein the term “diagnosing” means recognizing the presence or absence of a neurological or other condition such as an injury or disease. Diagnosing is optionally referred to as the result of an assay wherein a particular ratio or level of a biomarker is detected or is absent.
- As used herein a “ratio” is either a positive ratio wherein the level of the target is greater than the target in a second sample or relative to a known or recognized baseline level of the same target. A negative ratio describes the level of the target as lower than the target in a second sample or relative to a known or recognized baseline level of the same target. A neutral ratio describes no observed change in target biomarker.
- As used herein an injury is an alteration in cellular or molecular integrity, activity, level, robustness, state, or other alteration that is traceable to an event. Injury illustratively includes a physical, mechanical, chemical, biological, functional, infectious, or other modulator of cellular or molecular characteristics. An event is illustratively, a physical trauma such as an impact (percussive) or a biological abnormality such as a stroke resulting from either blockade or leakage of a blood vessel. An event is optionally an infection by an infectious agent. A person of skill in the art recognizes numerous equivalent events that are encompassed by the terms injury or event.
- An injury is optionally a physical event such as a percussive impact. An impact is the like of a percussive injury such as resulting to a blow to the head that either leaves the cranial structure intact or results in breach thereof. Experimentally, several impact methods are used illustratively including controlled cortical impact (CCI) at a 1.6 mm depression depth, equivalent to severe TBI in human. This method is described in detail by Cox, C D, et al., J Neurotrauma, 2008; 25(11):1355-65. It is appreciated that other experimental methods producing impact trauma are similarly operable.
- TBI may also result from stroke. Ischemic stroke is optionally modeled by middle cerebral artery occlusion (MCAO) in rodents. UCH-L1 protein levels, for example, are increased following mild MCAO which is further increased following severe MCAO challenge. Mild MCAO challenge may result in an increase of protein levels within two hours that is transient and returns to control levels within 24 hours. In contrast, severe MCAO challenge results in an increase in protein levels within two hours following injury and may be much more persistent demonstrating statistically significant levels out to 72 hours or more.
- An exemplary process for detecting the presence or absence of GFAP and one or more other neuroactive biomarkers in a biological sample involves obtaining a biological sample from a subject, such as a human, contacting the biological sample with a compound or an agent capable of detecting of the marker being analyzed, illustratively including an antibody or aptamer, and analyzing binding of the compound or agent to the sample after washing. Those samples having specifically bound compound or agent express the marker being analyzed.
- An inventive process can be used to detect GFAP and one or more other neuroactive biomarkers in a biological sample in vitro, as well as in vivo. The quantity of GFAP and one or more other neuroactive biomarkers in a sample is compared with appropriate controls such as a first sample known to express detectable levels of the marker being analyzed (positive control) and a second sample known to not express detectable levels of the marker being analyzed (a negative control). For example, in vitro techniques for detection of a marker illustratively include enzyme linked immunosorbent assays (ELISAs), radioimmuno assay, radioassay, western blot, Southern blot, northern blot, immunoprecipitation, immunofluorescence, mass spectrometry, RT-PCR, PCR, liquid chromatography, high performance liquid chromatography, enzyme activity assay, cellular assay, positron emission tomography, mass spectroscopy, combinations thereof, or other technique known in the art. Furthermore, in vivo techniques for detection of a marker include introducing a labeled agent that specifically binds the marker into a biological sample or test subject. For example, the agent can be labeled with a radioactive marker whose presence and location in a biological sample or test subject can be detected by standard imaging techniques. Optionally, the first biomarker specifically binding agent and the agent specifically binding at least one additional neuroactive biomarker are both bound to a substrate. It is appreciated that a bound agent assay is readily formed with the agents bound with spatial overlap, with detection occurring through discernibly different detection for first biomarker and each of at least one additional neuroactive biomarkers. A color intensity based quantification of each of the spatially overlapping bound biomarkers is representative of such techniques.
- Any suitable molecule that can specifically bind GFAP and any suitable molecule that specifically binds one or more other neuroactive biomarkers are operative in the invention to achieve a synergistic assay. A preferred agent for detecting GFAP or the one or more other neuroactive biomarkers is an antibody capable of binding to the biomarker being analyzed. Preferably, an antibody is conjugated with a detectable label. Such antibodies can be polyclonal or monoclonal. An intact antibody, a fragment thereof (e.g., Fab or F(ab′)2), or an engineered variant thereof (e.g., sFv) can also be used. Such antibodies can be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. Antibodies for numerous inventive biomarkers are available from vendors known to one of skill in the art. Illustratively, antibodies directed to inventive biomarkers are available from Santa Cruz Biotechnology (Santa Cruz, Calif.). Exemplary antibodies operative herein to detect a first biomarker include anti-GFAP antibody, anti-UCH-L1 antibody, anti-NSE antibody, anti-MAP2 antibody, or an anti-SBDP antibody. Other biomarkers to be targeted as part of an inventive assay different from the first biomarker include GFAP, NSE, SBDP, SBDP150, SBDP145, SBDP120, S100b, MAP2, MAP1, MAP3, MAP4, MAPS, MBP, Tau, Neurofilament protein (NF), Cannabinoid Receptor CB, CAM, Synaptic protein, CRMP, iNOS, NeuN, CSPase, Neuroserpin, alpha-internexin, LC3, Neurofascin, EAAT, Nestin, Cortin-1, or BIII-Tubulin
- An antibody is optionally labeled. A person of ordinary skill in the art recognizes numerous labels operable herein. Labels and labeling kits are commercially available optionally from Invitrogen Corp, Carlsbad, Calif. Labels illustratively include, fluorescent labels, biotin, peroxidase, radionucleotides, or other label known in the art. Alternatively, a detection species of another antibody or other compound known to the art is used as form detection of a biomarker bound by an antibody.
- Antibody-based assays are preferred for analyzing a biological sample for the presence of GFAP and one or more other neuroactive biomarkers. Suitable western blotting methods are described below in the examples section. For more rapid analysis (as may be important in emergency medical situations), immunosorbent assays (e.g., ELISA and RIA) and immunoprecipitation assays may be used. As one example, the biological sample or a portion thereof is immobilized on a substrate, such as a membrane made of nitrocellulose or PVDF; or a rigid substrate made of polystyrene or other plastic polymer such as a microtiter plate, and the substrate is contacted with an antibody that specifically binds GFAP, or one of the other neuroactive biomarkers under conditions that allow binding of antibody to the biomarker being analyzed. After washing, the presence of the antibody on the substrate indicates that the sample contained the marker being assessed. If the antibody is directly conjugated with a detectable label, such as an enzyme, fluorophore, or radioisotope, the presence of the label is optionally detected by examining the substrate for the detectable label. Alternatively, a detectably labeled secondary antibody that binds the marker-specific antibody is added to the substrate. The presence of detectable label on the substrate after washing indicates that the sample contained the marker.
- Numerous permutations of these basic immunoassays are also operative in the invention. These include the biomarker-specific antibody, as opposed to the sample being immobilized on a substrate, and the substrate is contacted with GFAP or another neuroactive biomarker conjugated with a detectable label under conditions that cause binding of antibody to the labeled marker. The substrate is then contacted with a sample under conditions that allow binding of the marker being analyzed to the antibody. A reduction in the amount of detectable label on the substrate after washing indicates that the sample contained the marker.
- Although antibodies are preferred for use in the invention because of their extensive characterization, any other suitable agent (e.g., a peptide, an aptamer, or a small organic molecule) that specifically binds GFAP or another neuroactive biomarker is optionally used in place of the antibody in the above described immunoassays. For example, an aptamer that specifically binds all spectrin and/or one or more of its SBDPs might be used. Aptamers are nucleic acid-based molecules that bind specific ligands. Methods for making aptamers with a particular binding specificity are known as detailed in U.S. Pat. Nos. 5,475,096; 5,670,637; 5,696,249; 5,270,163; 5,707,796; 5,595,877; 5,660,985; 5,567,588; 5,683,867; 5,637,459; and 6,011,020.
- A myriad of detectable labels that are operative in a diagnostic assay for biomarker expression are known in the art. Agents used in methods for detecting GFAP or another neuroactive biomarker are conjugated to a detectable label, e.g., an enzyme such as horseradish peroxidase. Agents labeled with horseradish peroxidase can be detected by adding an appropriate substrate that produces a color change in the presence of horseradish peroxidase. Several other detectable labels that may be used are known. Common examples of these include alkaline phosphatase, horseradish peroxidase, fluorescent compounds, luminescent compounds, colloidal gold, magnetic particles, biotin, radioisotopes, and other enzymes. It is appreciated that a primary/secondary antibody system is optionally used to detect one or more biomarkers. A primary antibody that specifically recognizes one or more biomarkers is exposed to a biological sample that may contain the biomarker of interest. A secondary antibody with an appropriate label that recognizes the species or isotype of the primary antibody is then contacted with the sample such that specific detection of the one or more biomarkers in the sample is achieved.
- The present invention employs a step of correlating the presence or amount of GFAP alone, or with one or more other neuroactive biomarker in a biological sample with the severity and/or type of nerve cell injury. GFAP measurement alone is shown herein to be highly effective in detecting MMTBI. The amount of GFAP and one or more other neuroactive biomarkers in the biological sample are associated with a neurological condition such as traumatic brain injury as detailed in the examples. The results of an inventive assay to synergistically measure GFAP and one or more other neuroactive biomarkers can help a physician or veterinarian determine the type and severity of injury with implications as to the types of cells that have been compromised. These results are in agreement with CT scan and GCS results, yet are quantitative, obtained more rapidly, and at far lower cost.
- The present invention provides a step of comparing the quantity of GFAP and the amount of at least one other neuroactive biomarker to normal levels to determine the neurological condition of the subject. It is appreciated that selection of additional biomarkers allows one to identify the types of cells implicated in an abnormal neurological condition as well as the nature of cell death in the case of an axonal injury marker, namely an SBDP. The practice of an inventive process provides a test which can help a physician determine suitable therapeutics to administer for optimal benefit of the subject. While the data provided in the examples herein are provided with respect to a full spectrum of traumatic brain injury, it is appreciated that these results are applicable to ischemic events, neurodegenerative disorders, prion related disease, epilepsy, chemical etiology and peripheral nervous system pathologies. As is shown in the subsequently provided example data, a gender difference is unexpectedly noted in abnormal subject neurological condition.
- An assay for analyzing cell damage in a subject or a cell culture isolated therefrom is also provided. The assay includes: (a) a substrate for holding a sample isolated from a subject suspected of having a damaged nerve cell, the sample being a fluid in communication with the nervous system of the subject prior to being isolated from the subject; (b) a GFAP (or other biomarker) specific binding agent; (c) a binding agent specific for another neuroactive biomarker; and (d) printed instructions for performing the assay illustratively for reacting: the specific binding agent with the biological sample or a portion of the biological sample to detect the presence or amount of biomarker, and the agent specific for another neuroactive biomarker with the biological sample or a portion of the biological sample to detect the presence or amount of the at least one biomarker in the biological sample. The inventive assay can be used to detect a neurological condition for financial renumeration.
- The assay optionally includes a detectable label such as one conjugated to the agent, or one conjugated to a substance that specifically binds to the agent, such as a secondary antibody.
- An inventive process illustratively includes diagnosing a neurological condition in a subject, treating a subject with a neurological condition, or both. In a preferred embodiment an inventive process illustratively includes obtaining a biological sample from a subject. The biological sample is assayed by mechanisms known in the art for detecting or identifying the presence of one or more biomarkers present in the biological sample. Based on the amount or presence of a target biomarker in a biological sample, a ratio of one or more biomarkers is optionally calculated. The ratio is optionally the level of one or more biomarkers relative to the level of another biomarker in the same or a parallel sample, or the ratio of the quantity of the biomarker to a measured or previously established baseline level of the same biomarker in a subject known to be free of a pathological neurological condition. The ratio allows for the diagnosis of a neurological condition in the subject. An inventive process also optionally administers a therapeutic to the subject that will either directly or indirectly alter the ratio of one or more biomarkers.
- An inventive process is also provided for diagnosing and optionally treating a multiple-organ injury. Multiple organs illustratively include subsets of neurological tissue such as brain, spinal cord and the like, or specific regions of the brain such as cortex, hippocampus and the like. Multiple injuries illustratively include apoptotic cell death which is detectable by the presence of caspase induced SBDPs, and oncotic cell death which is detectable by the presence of calpain induced SBDPs. The inventive process illustratively includes assaying for a plurality of biomarkers in a biological sample obtained from a subject wherein the biological was optionally in fluidic contact with an organ suspected of having undergone injury or control organ when the biological sample was obtained from the subject. The inventive process determines a first subtype of organ injury based on a first ratio of a plurality of biomarkers. The inventive process also determines a second subtype of a second organ injury based on a second ratio of the plurality of biomarkers in the biological sample. The ratios are illustratively determined by processes described herein or known in the art.
- The subject invention illustratively includes a composition for distinguishing the magnitude of a neurological condition in a subject. An inventive composition is either an agent entity or a mixture of multiple agents. In a preferred embodiment a composition is a mixture. The mixture optionally contains a biological sample derived from a subject. The subject is optionally suspected of having a neurological condition. The biological sample in communication with the nervous system of the subject prior to being isolated from the subject. In inventive composition also contains at least two primary agents, preferably antibodies, that specifically and independently bind to at least two biomarkers that may be present in the biological sample. In a preferred embodiment the first primary agent is in antibody that specifically binds GFAP. A second primary agent is preferably an antibody that specifically binds a ubiquitin carboxyl-terminal hydrolase, preferably UCH-L1, or a spectrin breakdown product.
- The agents of the inventive composition are optionally immobilized or otherwise in contact with a substrate. The inventive teachings are also preferably labeled with at least one detectable label. In a preferred embodiment the detectable label on each agent is unique and independently detectable in either the same assay chamber or alternate chambers. Optionally a secondary agent specific for detecting or binding to the primary agent is labeled with at least one detectable label. In the nonlimiting example the primary agent is a rabbit derived antibody. A secondary agent is optionally an antibody specific for a rabbit derived primary antibody. Mechanisms of detecting antibody binding to an antigen are well known in the art, and a person of ordinary skill in the art readily envisions numerous methods and agents suitable for detecting antigens or biomarkers in a biological sample.
- The invention employs a step of correlating the presence or amount of a biomarker in a biological sample with the severity and/or type of nerve cell (or other biomarker-expressing cell) injury. The amount of biomarker(s) in the biological sample directly relates to severity of nerve tissue injury as a more severe injury damages a greater number of nerve cells which in turn causes a larger amount of biomarker(s) to accumulate in the biological sample (e.g., CSF; serum). Whether a nerve cell injury triggers an apoptotic and/or necrotic type of cell death can also be determined by examining the SBDPs present in the biological sample. Necrotic cell death preferentially activates calpain, whereas apoptotic cell death preferentially activates caspase-3. Because calpain and caspase-3 SBDPs can be distinguished, measurement of these markers indicates the type of cell damage in the subject. For example, necrosis-induced calpain activation results in the production of SBDP150 and SBDP145; apoptosis-induced caspase-3 activation results in the production of SBDP150i and SBDP120; and activation of both pathways results in the production of all four markers. Also, the level of or kinetic extent of UCH-L1 present in a biological sample may optionally distinguish mild injury from a more severe injury. In an illustrative example, severe MCAO (2 h) produces increased UCH-L1 in both CSF and serum relative to mild challenge (30 min) while both produce UCH-L1 levels in excess of uninjured subjects. Moreover, the persistence or kinetic extent of the markers in a biological sample is indicative of the severity of the injury with greater injury indicating increases persistence of GFAP, UCH-L1, or SBDP in the subject that is measured by an inventive process in biological samples taken at several time points following injury.
- The results of such a test can help a physician determine whether the administration a particular therapeutic such as calpain and/or caspase inhibitors or muscarinic cholinergic receptor antagonists might be of benefit to a patient. This method may be especially important in detecting age and gender difference in cell death mechanism.
- It is appreciated that other reagents such as assay grade water, buffering agents, membranes, assay plates, secondary antibodies, salts, and other ancillary reagents are available from vendors known to those of skill in the art. Illustratively, assay plates are available from Corning, Inc. (Corning, N.Y.) and reagents are available from Sigma-Aldrich Co. (St. Louis, Mo.).
- Methods involving conventional biological techniques are described herein. Such techniques are generally known in the art and are described in detail in methodology treatises such as Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, ed. Sambrook et al., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; and Current Protocols in Molecular Biology, ed. Ausubel et al., Greene Publishing and Wiley-Interscience, New York, 1992 (with periodic updates). Immunological methods (e.g., preparation of antigen-specific antibodies, immunoprecipitation, and immunoblotting) are described, e.g., in Current Protocols in Immunology, ed. Coligan et al., John Wiley & Sons, New York, 1991; and Methods of Immunological Analysis, ed. Masseyeff et al., John Wiley & Sons, New York, 1992.
- Various aspects of the present invention are illustrated by the following non-limiting examples. The examples are for illustrative purposes and are not a limitation on any practice of the present invention. It will be understood that variations and modifications can be made without departing from the spirit and scope of the invention. While the examples are generally directed to mammalian tissue, specifically, analyses of mouse tissue, a person having ordinary skill in the art recognizes that similar techniques and other techniques known in the art readily translate the examples to other mammals such as humans. Reagents illustrated herein are commonly cross reactive between mammalian species or alternative reagents with similar properties are commercially available, and a person of ordinary skill in the art readily understands where such reagents may be obtained. Variations within the concepts of the invention are apparent to those skilled in the art.
- Illustrative reagents used in performing the subject invention include Sodium bicarbonate (Sigma Cat #: C-3041), blocking buffer (Startingblock T20-TBS) (Pierce Cat#: 37543), Tris buffered saline with Tween 20 (TBST; Sigma Cat #: T-9039). Phosphate buffered saline (PBS; Sigma Cat #: P-3813); Tween 20 (Sigma Cat #: P5927); Ultra TMB ELISA (Pierce Cat #: 34028); and Nunc maxisorp ELISA plates (Fisher). Monoclonal and polyclonal GFAP and UCH-L1 antibodies are made in-house or are obtained from Santa Cruz Biotechnology, Santa Cruz, Calif. Antibodies directed to α-II spectrin and breakdown products as well as to MAP2 are available from Santa Cruz Biotechnology, Santa Cruz, Calif. Labels for antibodies of numerous subtypes are available from Invitrogen, Corp., Carlsbad, Calif. Protein concentrations in biological samples are determined using bicinchoninic acid microprotein assays (Pierce Inc., Rockford, Ill., USA) with albumin standards. All other necessary reagents and materials are known to those of skill in the art and are readily ascertainable.
- Anti-biomarker specific rabbit polyclonal antibody and monoclonal antibodies are produced in the laboratory. To determine reactivity specificity of the antibodies to detect a target biomarker a known quantity of isolated or partially isolated biomarker is analyzed or a tissue panel is probed by western blot. An indirect ELISA is used with the recombinant biomarker protein attached to the ELISA plate to determine optimal concentration of the antibodies used in the assay. Microplate wells are coated with rabbit polyclonal anti-human biomarker antibody. After determining the concentration of rabbit anti-human biomarker antibody for a maximum signal, the lower detection limit of the indirect ELISA for each antibody is determined. An appropriate diluted sample is incubated with a rabbit polyclonal antihuman biomarker antibody for 2 hours and then washed. Biotin labeled monoclonal anti-human biomarker antibody is then added and incubated with captured biomarker. After thorough wash, streptavidin horseradish peroxidase conjugate is added. After 1 hour incubation and the last washing step, the remaining conjugate is allowed to react with substrate of hydrogen peroxide tetramethyl benzadine. The reaction is stopped by addition of the acidic solution and absorbance of the resulting yellow reaction product is measured at 450 nanometers. The absorbance is proportional to the concentration of the biomarker. A standard curve is constructed by plotting absorbance values as a function of biomarker concentration using calibrator samples and concentrations of unknown samples are determined using the standard curve.
- A controlled cortical impact (CCI) device is used to model TBI on rats as previously described (Pike et al, 1998). Adult male (280-300 g) Sprague-Dawley rats (Harlan: Indianapolis, Ind.) are anesthetized with 4% isoflurane in a carrier gas of 1:1 O2/N2O (4 min.) and maintained in 2.5% isoflurane in the same carrier gas. Core body temperature is monitored continuously by a rectal thermistor probe and maintained at 37±1° C. by placing an adjustable temperature controlled heating pad beneath the rats. Animals are mounted in a stereotactic frame in a prone position and secured by ear and incisor bars. Following a midline cranial incision and reflection of the soft tissues, a unilateral (ipsilateral to site of impact) craniotomy (7 mm diameter) is performed adjacent to the central suture, midway between bregma and lambda. The dura mater is kept intact over the cortex. Brain trauma is produced by impacting the right (ipsilateral) cortex with a 5 mm diameter aluminum impactor tip (housed in a pneumatic cylinder) at a velocity of 3.5 m/s with a 1.6 mm compression and 150 ms dwell time. Sham-injured control animals are subjected to identical surgical procedures but do not receive the impact injury. Appropriate pre- and post-injury management is preformed to insure compliance with guidelines set forth by the University of Florida Institutional Animal Care and Use Committee and the National Institutes of Health guidelines detailed in the Guide for the Care and Use of Laboratory Animals. In addition, research is conducted in compliance with the Animal Welfare Act and other federal statutes and regulations relating to animals and experiments involving animals and adhered to principles stated in the “Guide for the Care and Use of Laboratory Animals, NRC Publication, 1996 edition.”
- Rats are incubated under isoflurane anesthesia (5% isoflurane via induction chamber followed by 2% isoflurane via nose cone), the right common carotid artery (CCA) of the rat is exposed at the external and internal carotid artery (ECA and ICA) bifurcation level with a midline neck incision. The ICA is followed rostrally to the pterygopalatine branch and the ECA is ligated and cut at its lingual and maxillary branches. A 3-0 nylon suture is then introduced into the ICA via an incision on the ECA stump (the suture's path was visually monitored through the vessel wall) and advanced through the carotid canal approximately 20 mm from the carotid bifurcation until it becomes lodged in the narrowing of the anterior cerebral artery blocking the origin of the middle cerebral artery. The skin incision is then closed and the endovascular suture left in place for 30 minutes or 2 hours. Afterwards the rat is briefly reanesthetized and the suture filament is retracted to allow reperfusion. For sham MCAO surgeries, the same procedure is followed, but the filament is advanced only 10 mm beyond the internal-external carotid bifurcation and is left in place until the rat is sacrificed. During all surgical procedures, animals are maintained at 37±1° C. by a homeothermic heating blanket (Harvard Apparatus, Holliston, Mass., U.S.A.). It is important to note that at the conclusion of each experiment, if the rat brains show pathologic evidence of subarachnoid hemorrhage upon necropsy they are excluded from the study. Appropriate pre- and post-injury management is preformed to insure compliance with all animal care and use guidelines.
- At the appropriate time points (2, 6, 24 hours and 2, 3, 5 days) after injury, animals are anesthetized and immediately sacrificed by decapitation. Brains are quickly removed, rinsed with ice cold PBS and halved. The right hemisphere (cerebrocortex around the impact area and hippocampus) is rapidly dissected, rinsed in ice cold PBS, snap-frozen in liquid nitrogen, and stored at −80° C. until used. For immunohistochemistry, brains are quick frozen in dry ice slurry, sectioned via cryostat (20 μm) onto SUPERFROST PLUS GOLD® (Fisher Scientific) slides, and then stored at −80° C. until used. For the left hemisphere, the same tissue as the right side is collected. For Western blot analysis, the brain samples are pulverized with a small mortar and pestle set over dry ice to a fine powder. The pulverized brain tissue powder is then lysed for 90 min at 4° C. in a buffer of 50 mM Tris (pH 7.4), 5 mM EDTA, 1% (v/v) Triton X-100, 1 mM DTT, 1× protease inhibitor cocktail (Roche Biochemicals). The brain lysates are then centrifuged at 15,000×g for 5 min at 4° C. to clear and remove insoluble debris, snap-frozen, and stored at −80° C. until used.
- For gel electrophoresis and electroblotting, cleared CSF samples (7 μl) are prepared for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a 2× loading buffer containing 0.25 M Tris (pH 6.8), 0.2 M DTT, 8% SDS, 0.02% bromophenol blue, and 20% glycerol in distilled H2O. Twenty micrograms (20 μg) of protein per lane are routinely resolved by SDS-PAGE on 10-20% Tris/glycine gels (Invitrogen, Cat #EC61352) at 130 V for 2 hours. Following electrophoresis, separated proteins are laterally transferred to polyvinylidene fluoride (PVDF) membranes in a transfer buffer containing 39 mM glycine, 48 mM Tris-HCl (pH 8.3), and 5% methanol at a constant voltage of 20 V for 2 hours at ambient temperature in a semi-dry transfer unit (Bio-Rad). After electro-transfer, the membranes are blocked for 1 hour at ambient temperature in 5% non-fat milk in TBS and 0.05% Tween-2 (TBST) then are incubated with the primary polyclonal UCH-L1 antibody in TBST with 5% non-fat milk at 1:2000 dilution as recommended by the manufacturer at 4° C. overnight. This is followed by three washes with TBST, a 2 hour incubation at ambient temperature with a biotinylated linked secondary antibody (Amersham, Cat #RPN1177v1), and a 30 min incubation with Streptavidin-conjugated alkaline phosphatase (BCIP/NBT reagent: KPL, Cat #50-81-08). Molecular weights of intact biomarker proteins are assessed using rainbow colored molecular weight standards (Amersham, Cat #RPN800V). Semi-quantitative evaluation of intact GFAP, UCH-L1, or SBDP protein levels is performed via computer-assisted densitometric scanning (Epson XL3500 scanner) and image analysis with ImageJ software (NIH).
- Subjects are subjected to MCAO challenge and CSF samples analyzed by quantitative western blotting. UCH-L1 protein is readily detectable after injury at statically significant levels above the amounts of UCH-L1 in sham treated samples (
FIGS. 1A , B). These UCH-L1 levels are transiently elevated (at 6 h) after mild ischemia (30 min MCAO) followed by reperfusion, while levels are sustained from 6 to 72 h after a more severe (2 h MCAO) ischemia (FIGS. 1A , B). - ELISA is used to more rapidly and readily detect and quantitate UCH-L1 in biological samples. For a UCH-L1 sandwich ELISA (swELISA), 96-well plates are coated with 100 μl/well capture antibody (500 ng/well purified rabbit anti-UCH-L1, made in-house by conventional techniques) in 0.1 M sodium bicarbonate, pH 9.2. Plates are incubated overnight at 4° C., emptied and 300 μl/well blocking buffer (Startingblock T20-TBS) is added and incubated for 30 min at ambient temperature with gentle shaking. This is followed by either the addition of the antigen standard (recombinant UCH-L1) for standard curve (0.05-50 ng/well) or samples (3-10 μl CSF) in sample diluent (
total volume 100 μl/well). The plate is incubated for 2 hours at room temperature, then washed with automatic plate washer (5×300 μl/well with wash buffer, TBST). Detection antibody mouse anti-UCH-L1-HRP conjugated (made in-house, 50 μg/ml) in blocking buffer is then added to wells at 100 μL/well and incubated for 1.5 h at room temperature, followed by washing. If amplification is needed, biotinyl-tyramide solution (Perkin Elmer Elast Amplification Kit) is added for 15 min at room temperature, washed then followed by 100 μl/well streptavidin-HRP (1:500) in PBS with 0.02% Tween-20 and 1% BSA for 30 min and then followed by washing. Lastly, the wells are developed with 100 μl/well TMB substrate solution (Ultra-TMB ELISA, Pierce #34028) with incubation times of 5-30 minutes. The signal is read at 652 nm with a 96-well spectrophotometer (Molecular Device Spectramax 190). - UCH-L1 levels of the TBI group (percussive injury) are significantly higher than the sham controls (p<0.01, ANOVA analysis) and the naïve controls as measured by a swELISA demonstrating that UCH-L1 is elevated early in CSF (2 h after injury) then declines at around 24 h after injury before rising again 48 h after injury (
FIG. 2 ). - Following MCAO challenge the magnitude of UCH-L1 in CSF is dramatically increased with severe (2 h) challenge relative to a more mild challenge (30 min). (
FIG. 3 ) The more severe 2 h MCAO group UCH-L1 protein levels are 2-5 fold higher than 30 min MCAO (p<0.01, ANOVA analysis). UCH-L1 protein levels for shams are virtually indistinguishable from naïve controls. - Similar results are obtained for UCH-L1 in serum. Blood (3-4 ml) is collected at the end of each experimental period directly from the heart using syringe equipped with 21 gage needle placed in a polypropylene tube and allowed to stand for 45 min to 1 hour at room temperature to form clot. Tubes are centrifuged for 20 min at 3,000×g and the serum removed and analyzed by ELISA (
FIGS. 4 , 5). - UCH-L1 levels of the TBI group are significantly higher than the sham group (p<0.001, ANOVA analysis) and for each time point tested 2 h through 24 h respective to the same sham time points (p<0.005, Student's T-test). UCH-L1 is significantly elevated after injury as early as 2 h in serum. Severe MCAO challenge produces increased serum UCH-L1 relative to mild challenge. Both mild and severe challenge are statistically higher than sham treated animals indicating that serum detection of UCH-L1 is a robust diagnostic and the levels are able to sufficiently distinguish mild from severe injury.
- Spectrin breakdown products are analyzed following rat MCAO challenge by procedures similar to those described in U.S. Pat. No. 7,291,710, the contents of which are incorporated herein by reference.
FIG. 6 demonstrates that levels of SBDP145 in both serum and CSF are significantly (p<0.05) increased at all time points studied following severe (2 hr) MCAO challenge relative to mild (30 min) challenge. Similarly, SBDP120 demonstrates significant elevations following severe MCAO challenge between 24 and 72 hours after injury in CSF (FIG. 7 ). However, levels of SBDP120 in serum are increased following severe challenge relative to mild challenge at all time points between 2 and 120 hours. In both CSF and Serum both mild and severe MCAO challenge produces increased SPBP120 and 140 relative to sham treated subjects. - Microtubule Associated Protein 2 (MAP2) is assayed as a biomarker in both CSF and serum following mild (30 min) and severe (2 hr) MCAO challenge in subjects by ELISA or western blotting essentially as described herein. Antibodies to MAP2 (MAP-2 (E-12)) are obtained from Santa Cruz Biotechnology, Santa Cruz, Calif. These antibodies are suitable for both ELISA and western blotting procedures and are crossreactive to murine and human MAP2. Levels of MAP2 are significantly (p<0.05) increased in subjects following mild MCAO challenge relative to naive animals in both CSF and serum (
FIG. 8 ). Similar to UCH-L1 and SBDPs, severe challenge (2 hr) produces much higher levels of MAP2 in both samples than mild challenge (30 min). - A study was conducted that included 46 human subjects suffering severe traumatic brain injury. Each of these subjects is characterized by being over
age 18, having a GCS of less than or equal to 8 and required ventriculostomy and neuromonitoring as part of routine care. A control group A, synonymously detailed as CSF controls, included 10 individuals also being over the age of 18 or older and no injuries. Samples are obtained during spinal anesthesia for routine surgical procedures or access to CSF associated with treatment of hydrocephalus or meningitis. A control group B, synonymously described as normal controls, totaled 64 individuals, eachage 18 or older and experiencing multiple injuries without brain injury. Further details with respect to the demographics of the study are provided in Table 1. -
TABLE 1 Subject Demographics for Severe Traumatic Brain Injury Study TBI CSF Controls Normal Controls Number 46 10 64 Males 34 (73.9%) 29 (65.9%) 26 (40.6%) Females 12 (26.1%) 15 (34.1%) 38 (59.4% Age: Average 50.2 58.2 1, 2 30.09 2, 3 Std Dev 19.54 20.52 15.42 Minimum 19 23 18 Maximum 88 82 74 Race: Caucasian Black 45 38 (86.4%) 52 (81.2%) Asian 1 6 (13.6) 4 (6.3%) Other 7 (10.9%) 1 (1.6%) GCS in Emergency Department Average 5.3 Std Dev 1.9 - The level of biomarkers found in the first available CSF and serum samples obtained in the study are provided in
FIGS. 9 and 10 , respectively. The average first CSF sample collected as detailed inFIG. 9 was 11.2 hours while the average time for collection of a serum sample subsequent to injury event as perFIG. 10 is 10.1 hours. The quantity of each of the biomarkers of UCH-L1, MAP2, SBDP145, SBDP120, and GFAP are provided for each sample for the cohort of traumatic brain injury sufferers as compared to a control group. The diagnostic utility of the various biomarkers within the first 12 hours subsequent to injury based on a compilation of CSF and serum data is provided inFIG. 11 and indicates in particular the value of GFAP as well as that of additional markers UCH-L1 and the spectrin breakdown products. Elevated levels of UCH-L1 are indicative of the compromise of neuronal cell body damage while an increase in SPDP145 with a corresponding decrease in SBDP120 is suggestive of acute axonal necrosis. - One subject from the traumatic brain injury cohort was a 52 year old Caucasian woman who had been involved in a motorcycle accident while not wearing a helmet. Upon admission to an emergency room her GCS was 3 and during the first 24 hours subsequent to trauma her best GCS was 8. After 10 days her GCS was 11. CT scanning revealed SAH and facial fractures with a Marshall score of 11 and a Rotterdam score of 2. Ventriculostomy was removed after 5 years and an overall good outcome was obtained. Arterial blood pressure (MABP), intracranial pressure (ICP) and cerebral profusion pressure (CPP) for this sufferer of traumatic brain injury as a function of time is depicted in
FIG. 12 . A possible secondary insult is noted at approximately 40 hours subsequent to the injury as noted by a drop in MABP and CPP. The changes in concentration of inventive biomarkers per CSF and serum samples from this individual are noted inFIG. 13 . These results include a sharp increase in GFAP in both the CSF and serum as well as the changes in the other biomarkers depicted inFIG. 13 and provide important clinical information as to the nature of the injury and the types of cells involved, as well as modes of cell death associated with the spectrin breakdown products. - Another individual of the severe traumatic brain injury cohort included a 51 year old Caucasian woman who suffered a crush injury associated with a horse falling on the individual. GCS on admission to emergency room was 3 with imaging analysis initially being unremarkable with minor cortical and subcortical contusions. MRI on
day 5 revealed significant contusions in posterior fossa. The Marshall scale at that point was indicated to be 11 with a Rotterdam scale score of 3. The subject deteriorated and care was withdrawn 10 days after injury. The CSF and serum values for this individual during a period of time are provided inFIG. 14 . - Based on the sandwich ELISA testing, GFAP values as a function of time are noted to be markedly elevated relative to normal controls (control group B) as a function of time.
- The concentration of spectrin breakdown products, MAP2 and UCH-L1 as a function of time subsequent to traumatic brain injury has been reported elsewhere as exemplified in U.S. Pat. Nos. 7,291,710 and 7,396,654 each of which is incorporated herein by reference.
- An analysis was performed to evaluate the ability of biomarkers measured in serum to predict TBI outcome, specifically GCS. Stepwise regression analysis was the statistical method used to evaluate each of the biomarkers as an independent predictive factor, along with the demographic factors of age and gender, and also interactions between pairs of factors. Interactions determine important predictive potential between related factors, such as when the relationship between a biomarker and outcome may be different for men and women, such a relationship would be defined as a gender by biomarker interaction.
- The resulting analysis identified biomarkers UCH-L1, MAP2, and GFAP as being statistically significant predictors of GCS (Table 2, 3). Furthermore, GFAP was shown to have improved predictability when evaluated in interaction with UCH-L1 and gender (Table 4, 5).
-
TABLE 2 Stepwise Regression Analysis 1 - Cohort includes: All Subjects >= 18 Years Old Summary of Stepwise Selection - 48 Subjects Variable Parameter Model Step Entered Estimate R-Square F Value p-value Intercept 13.02579 2 SEXCD −2.99242 0.1580 7.29 0.0098 1 CSF_UCH_L1 −0.01164 0.2519 11.54 0.0015 3 Serum_MAP_2 0.96055 0.3226 4.59 0.0377 -
TABLE 3 Stepwise Regression Analysis 2 - Cohort includes: TBI Subjects >= 18 Years Old Summary of Stepwise Selection - 39 Subjects Variable Parameter Model Step Entered Estimate R-Square F Value p-value Intercept 5.73685 1 Serum_UCH_L1 −0.30025 0.0821 8.82 0.0053 2 Serum_GFAP 0.12083 0.1973 5.16 0.0291 -
TABLE 4 Stepwise Regression Analysis 1 - Cohort includes: TBI and A Subjects >= 18 Years Old Summary of Stepwise Selection - 57 Subjects Variable Parameter Model Step Entered Estimate R-Square F Value p-value Intercept 8.04382 1 Serum_UCH_L −0.92556 0.1126 12.90 0.0007 2 Serum_MAP_2 1.07573 0.2061 5.79 0.0197 3 Serum_UCH-L1 + 0.01643 0.2663 4.35 0.0419 Serum_GFAP -
TABLE 5 Stepwise Regression Analysis 2 - Cohort includes: TBI Subjects >= 18 Years Old Summary of Stepwise Selection - 44 Subjects Variable Parameter Model Step Entered Estimate R-Square F Value p-value Intercept 5.50479 1 Serum_UCH_L1 −0.36311 0.0737 11.95 0.0013 2 SEX_Serum_GFAP 0.05922 0.1840 5.09 0.0296 3 Serum_MAP_2 0.63072 0.2336 2.59 0.1157 - The study of Example 10 was repeated with a moderate traumatic brain injury cohort characterized by GCS scores of between 9 and 11, as well as a mild traumatic brain injury cohort characterized by GCS scores of 12-15. Blood samples were obtained from each patient on arrival to the emergency department of a hospital within 2 hours of injury and measured by ELISA for levels of GFAP in nanograms per milliliter. The results were compared to those of a control group who had not experienced any form of injury. Secondary outcomes included the presence of intracranial lesions in head CT scans.
- Over 3 months 53 patients were enrolled: 35 with GCS 13-15, 4 with GCS 9-12 and 14 controls. The mean age was 37 years (range 18-69) and 66% were male. The mean GFAP serum level was 0 in control patients, 0.107 (0.012) in patients with GCS 13-15 and 0.366 (0.126) in GCS 9-12 (P<0.001). The difference between GCS 13-15 and controls was significant at P<0.001. In patients with intracranial lesions on CT GFAP levels were 0.234 (0.055) compared to 0.085 (0.003) in patients without lesions (P<0.001). There is a significant increase in GFAP in serum following a MTBI compared to uninjured controls in both the mild and moderate groups. GFAP was also significantly associated with the presence of intracranial lesions on CT.
-
FIG. 16 shows GFAP concentration for controls as well as individuals in the mild/moderate traumatic brain injury cohort as a function of CT scan results upon admission and 24 hours thereafter. Simultaneous assays were performed in the course of this study for UCH-L1 biomarker. The UCH-L1 concentration derived from the same samples as those used to determine GFAP is providedFIG. 17 . The concentration of UCH-L1 and GFAP as well as a biomarker not selected for diagnosis of neurological condition, S100b, is provided as a function of injury magnitude between control, mild, and moderate traumatic brain injury as shown inFIG. 18 . The simultaneous analyses of UCH-L1 and GFAP from these patients illustrates the synergistic effect of the inventive process in allowing an investigator to simultaneously diagnose traumatic brain injury as well as discern the level of traumatic brain injury between mild and moderate levels of severity.FIG. 19 shows the concentration of the same markers as depicted inFIG. 18 with respect to initial evidence upon hospital admission as to lesions in tomography scans illustrating the high confidence in predictive outcome of the inventive process.FIG. 20 shows that both NSE and MAP2 are elevated in subjects with MTBI in serum both at admission and at 24 hours of follow up. These data demonstrate a synergistic diagnostic effect of measuring multiple biomarkers such as GFAP, UCH-L1, NSE, and MAP2 in a subject. - Through the simultaneous measurement of multiple biomarkers such as UCH-L1, GFAP, NSE, and MAP2, rapid and quantifiable determination as to the severity of the brain injury is obtained consistent with GSC scoring and CT scanning yet in a surprisingly more quantifiable, expeditious and economic process. Additionally, with a coupled assay for biomarkers indicative of neurological condition, the nature of the neurological abnormality is assessed and in this particular study suggestive of neuronal cell body damage. As with severe traumatic brain injury, gender variations are noted suggesting a role for hormonal anti-inflammatories as therapeutic candidates. A receiver operating characteristic (ROC) modeling of UCH-L1, GFAP and SBDP145 post TBI further supports the value of simultaneous measurement of these biomarkers, as shown in
FIGS. 21 , 22. - In addition,
FIG. 22 showed that several brain biomarkers (GFAP, UCH-L1 and MAP2) in stroke patients' plasma. Samples were collected with an average post-injury time 24.2 hr (range 18-30 h). Top panel shows GFAP, UCH-L1 and MAP2 levels in stroke (n=11) versus normal controls (n=30). Bottom panel further shows that UCH-L1 is elevated with both hemorrhagic and ischemic stroke populations when compared to normal control plasma. - Patent documents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains. These documents and publications are incorporated herein by reference to the same extent as if each individual document or publication was specifically and individually incorporated herein by reference.
- The foregoing description is illustrative of particular embodiments of the invention, but is not meant to be a limitation upon the practice thereof. The following claims, including all equivalents thereof, are intended to define the scope of the invention.
Claims (34)
1. A process for determining the neurological condition of a subject or cells from the subject comprising:
measuring a sample obtained from the subject or cells from the subject at a first time for a quantity of a first biomarker selected from the group of GFAP, UCH-L1, NSE, MAP2, S100b, or a SBDP, and a quantity of at least one additional neuroactive biomarker; and
comparing the quantity of said first biomarker and the quantity of said at least one additional neuroactive biomarker to normal levels of said first biomarker and said at least one additional neuroactive biomarker to determine the neurological condition of the subject.
2. The process of claim 1 wherein the sample is cerebrospinal fluid or blood serum.
3. The process of claim 1 wherein the sample is a culture of the cells exposed to a drug candidate or an environmental contaminant.
4. The process of claim 1 wherein said at least one additional neuroactive biomarker is GFAP, UCH-L1, NSE, SBDP150, SBDP145, SBDP120, S100b, MAP2, MAP1, MAP3, MAP4, MAPS, MBP, Tau, Neurofilament protein (NF), Cannabinoid Receptor CB, CAM, Synaptic protein, CRMP, iNOS, NeuN, CNPase, Neuroserpin, alpha-internexin, LC3, Neurofascin, EAAT, Nestin, Cortin-1, or BIII-Tubulin.
5. The process of claim 1 wherein is at least one additional neuroactive biomarker is one of GFAP, UCH-L1, NSE, SBDP150, SBDP150i, SBDP145, SBDP120, or MAP2.
6. The process of claim 1 further comprising measuring a second quantity of said first biomarker and a second quantity of said at least one additional neuroactive biomarker at a second time to yield a kinetic profile for said first biomarker and said at least one additional neuroactive biomarker.
7. The process of claim 1 further comprising comparing the quantity of said first biomarker and the quantity of said at least one additional neuroactive biomarker between normal levels in the subject to other individuals of the same gender as the subject.
8. The process of claim 1 wherein said at least one additional neuroactive biomarker is GFAP.
9. The process of claim 7 wherein said first biomarker is UCH-L1 and determined if the subject or cells from the subject has been exposed to some degree of traumatic brain injury ranging from mild to severe.
10. The process of claim 9 further comprising predicting mortality based on the quantity of UCH-L1 and the quantity of GFAP.
11. The process of claim 9 wherein mild traumatic brain injury and moderate traumatic brain injury have detection cutoffs for UCH-L1 and GFAP in serum of 0.39 ng/ml and 1.4 ng/ml, respectively.
12. The process of claim 1 wherein the at least one additional neuroactive biomarker is S100b.
13. The process of claim 1 wherein the at least one additional neuroactive biomarker is a SBDP of SBDP150, SBDP150i, SBDP145, or SBDP120.
14. The process of claim 1 wherein the at least one additional neuroactive biomarker is NSE.
15. The process of claim 1 wherein the at least one additional neuroactive biomarker is a MAP of MAP2, MAP1, MAP3, MAP4, or MAPS.
16. The process of any of claims 1 to 15 wherein the first biomarker is UCH-L1.
17. An assay for determining the neurological condition of a subject or cells from the subject comprising:
a substrate for holding a sample isolated from the subject or the cells;
a first biomarker specifically binding agent wherein a first biomarker is one of GFAP, UCH-L1, NSE, MAP2, S100b, or a SBDP;
an agent specifically binding at least one additional neuroactive biomarker; and
printed instructions for reacting said first biomarker specific agent with a first portion of the sample so as to detect an amount of said first biomarker and reacting said at least one additional neuroactive biomarker specific agent with a second portion of the sample and said at least one additional neuroactive biomarker in the sample so as to detect an amount of said at least one additional neuroactive biomarker to determine the neurological condition of the subject according to the process of claim 1 .
18. The assay of claim 17 wherein the first biomarker specific agent is one of anti-GFAP antibody, anti-UCH-L1 antibody, anti-NSE antibody, anti-MAP2 antibody, or an anti-SBDP antibody.
19. The assay of claim 17 wherein the agent specifically binding at least one additional neuroactive biomarker binds one of GFAP, NSE, SBDP, SBDP150, SBDP150i, SBDP145, SBDP120, S100b, MAP2, MAP1, MAP3, MAP4, MAPS, MBP, Tau, Neurofilament protein (NF), Cannabinoid Receptor CB, CAM, Synaptic protein, CRMP, iNOS, NeuN, CNPase, Neuroserpin, alpha-internexin, LC3, Neurofascin, EAAT, Nestin, Cortin-1, or BIII-Tubulin.
20. The assay of claim 17 wherein the agent specifically binding at least one additional neuroactive biomarker binds GFAP.
21. The assay of claim 17 wherein the agent specifically binding at least one additional neuroactive biomarker binds S100b.
22. The assay of claim 17 wherein the agent specifically binding at least one additional neuroactive biomarker binds a SBDP of SBDP150, SBDP150i, SBDP145, or SBDP120.
23. The assay of any of claims 17 to 22 wherein the first biomarker specific agent is anti-UCH-L1 antibody.
24. The assay of claim 17 wherein said first biomarker specifically binding agent and said agent specifically binding at least one additional neuroactive biomarker are both bound to the substrate.
25. The assay of claim 24 wherein said first biomarker specifically binding agent and said agent specifically binding at least one additional neuroactive biomarker are both bound to the substrate with spatial overlap.
26. The assay of claim 17 wherein the first portion and the second portion of the sample and the second portion of the sample are the same, and detection of the amount of said first biomarker and the amount of said at least one additional neuroactive biomarker occurs simultaneously.
27. The assay of claim 26 wherein detection of the amount of said first biomarker and the amount of said at least one additional neuroactive biomarker occurs with spatial overlap.
28. The assay of any of claims 17 or 24 to 26 further comprising a separate first biomarker detection species for said first biomarker and a separate discernable at least one additional neuroactive biomarker detection species for said at least one additional neuroactive biomarker.
29. The assay of claim 17 wherein the neurological condition is stroke, ischemic stroke, hemorrhagic stroke, or subarachnoid hemorrhage (SAH).
30. The assay of claim 17 wherein the neurological condition is mild traumatic brain injury or moderate traumatic brain injury.
31. A process for determining if a subject has suffered mild traumatic brain injury or moderate traumatic brain injury in an event comprising:
measuring a sample obtained from the subject or cells from the subject at a first time after the event for a quantity of GFAP; and
comparing the quantity of said GFAP to normal levels of GFAP in a control to determine if the subject has suffered mild traumatic brain injury or moderate traumatic brain injury in the event.
32. The process of claim 31 wherein the first time is within 48 hours of the event.
33. The process of claim 31 wherein the sample is blood serum.
34. The process of any of claims 31 to 33 wherein a mean GFAP value for the subject having suffered suffered mild traumatic brain injury or moderate traumatic brain injury in the event is approximately 0.28 nanograms per milliliter of the sample.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/058,748 US20110143375A1 (en) | 2008-08-11 | 2009-08-11 | Biomarker detection process and assay of neurological condition |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18855408P | 2008-08-11 | 2008-08-11 | |
US9762208P | 2008-09-17 | 2008-09-17 | |
US21872709P | 2009-06-19 | 2009-06-19 | |
US13/058,748 US20110143375A1 (en) | 2008-08-11 | 2009-08-11 | Biomarker detection process and assay of neurological condition |
PCT/US2009/053376 WO2010019553A2 (en) | 2008-08-11 | 2009-08-11 | Biomarker detection process and assay of neurological condition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/053376 A-371-Of-International WO2010019553A2 (en) | 2008-08-11 | 2009-08-11 | Biomarker detection process and assay of neurological condition |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/217,119 Continuation-In-Part US20140342381A1 (en) | 2008-08-11 | 2014-03-17 | Devices and methods for biomarker detection process and assay of neurological condition |
US15/709,368 Continuation US20180031577A1 (en) | 2008-08-11 | 2017-09-19 | Biomarker detection process and assay of neurological condition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110143375A1 true US20110143375A1 (en) | 2011-06-16 |
Family
ID=41669607
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/058,748 Abandoned US20110143375A1 (en) | 2008-08-11 | 2009-08-11 | Biomarker detection process and assay of neurological condition |
US15/709,368 Abandoned US20180031577A1 (en) | 2008-08-11 | 2017-09-19 | Biomarker detection process and assay of neurological condition |
US16/890,943 Active US11994522B2 (en) | 2008-08-11 | 2020-06-02 | Biomarker detection process and assay of neurological condition |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/709,368 Abandoned US20180031577A1 (en) | 2008-08-11 | 2017-09-19 | Biomarker detection process and assay of neurological condition |
US16/890,943 Active US11994522B2 (en) | 2008-08-11 | 2020-06-02 | Biomarker detection process and assay of neurological condition |
Country Status (9)
Country | Link |
---|---|
US (3) | US20110143375A1 (en) |
EP (3) | EP4235181A3 (en) |
JP (2) | JP5781436B2 (en) |
AU (1) | AU2009282117B2 (en) |
CA (1) | CA2733990C (en) |
DK (1) | DK2324360T3 (en) |
ES (1) | ES2665245T3 (en) |
NO (1) | NO2324360T3 (en) |
WO (1) | WO2010019553A2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013090285A1 (en) * | 2011-12-14 | 2013-06-20 | University Of Rochester | Method of diagnosing mild traumatic brain injury |
WO2014194329A1 (en) * | 2013-05-31 | 2014-12-04 | Banyan Biomarkers, Inc. | NEURAL SPECIFIC S100β FOR BIOMARKER ASSAYS AND DEVICES FOR DETECTION OF A NEUROLOGICAL CONDITION |
WO2014197097A3 (en) * | 2013-03-15 | 2015-01-22 | The Trustees Of Princeton University | Plasmonic nanocavity array sensors for analyte detection enhancement and methods for making and using of the same |
US9664694B2 (en) | 2004-04-15 | 2017-05-30 | University Of Florida Research Foundation, Inc. | Neural proteins as biomarkers for nervous system injury and other neural disorders |
WO2017100632A1 (en) * | 2015-12-11 | 2017-06-15 | Arizona Board Of Regents On Behalf Of Arizona State University | Human alzheimer's disease and traumatic brain injury associated tau variants as biomarkers and methods of use thereof |
WO2018081649A1 (en) | 2016-10-28 | 2018-05-03 | Banyan Biomarkers, Inc. | Antibodies to ubiquitin c-terminal hydrolase l1 (uch-l1) and glial fibrillary acidic protein (gfap) and related methods |
US10041959B2 (en) | 2009-09-14 | 2018-08-07 | Banyan Biomarkers, Inc. | Micro-RNA, autoantibody and protein markers for diagnosis of neuronal injury |
CN108459160A (en) * | 2017-02-19 | 2018-08-28 | 黄胜和 | Purposes of the biomarker in preparing the reagent for detecting central nervous system |
WO2018175942A1 (en) * | 2017-03-23 | 2018-09-27 | Abbott Laboratories | Methods for aiding in the diagnosis and determination of the extent of traumatic brain injury in a human subject using the early biomarker ubiquitin carboxy-terminal hydrolase l1 |
CN110383068A (en) * | 2016-10-03 | 2019-10-25 | 雅培实验室 | The improved method for assessing UCH-L1 state in Patient Sample A |
CN110494752A (en) * | 2017-03-23 | 2019-11-22 | 雅培实验室 | With the method for early stage biomarker ubiquitin carboxy terminal hydrolase-l 1 assisted diagnosis measurement people experimenter traumatic brain injury degree |
CN110892266A (en) * | 2017-12-09 | 2020-03-17 | 雅培实验室 | Methods of using a combination of GFAP and UCH-L1 to aid in the diagnosis and assessment of traumatic brain injury in a human subject |
JP2020042046A (en) * | 2014-10-06 | 2020-03-19 | ユニヴェルシテ ド ジュネーヴUniversite De Geneve | Markers and their use in brain injury |
US10794918B2 (en) | 2003-09-24 | 2020-10-06 | Matthias Sitzer | Use of GFAP for identification of intracerebral hemorrhage |
US10849548B2 (en) | 2017-05-30 | 2020-12-01 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a mild traumatic brain injury in a human subject using cardiac troponin I and early biomarkers |
US10866251B2 (en) | 2017-05-25 | 2020-12-15 | Abbott Laboratories | Methods for aiding in the determination of whether to perform imaging on a human subject who has sustained or may have sustained an injury to the head using early biomarkers |
US10877048B2 (en) | 2017-04-15 | 2020-12-29 | Abbott Laboratories | Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury in a human subject using early biomarkers |
US10877038B2 (en) | 2017-04-28 | 2020-12-29 | Abbott Laboratories | Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury using early biomarkers on at least two samples from the same human subject |
US11022617B2 (en) | 2017-12-09 | 2021-06-01 | Abbott Laboratories | Methods for aiding in the diagnosis and evaluation of a subject who has sustained an orthopedic injury and that has or may have sustained an injury to the head, such as mild traumatic brain injury (TBI), using glial fibrillary acidic protein (GFAP) and/or ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) |
US11169159B2 (en) | 2017-07-03 | 2021-11-09 | Abbott Laboratories | Methods for measuring ubiquitin carboxy-terminal hydrolase L1 levels in blood |
US11685951B2 (en) | 2017-07-18 | 2023-06-27 | The Research Foundation For The State University Of New York | Biomarkers for intracranial aneurysm |
US11994523B2 (en) | 2017-12-29 | 2024-05-28 | Abbott Laboratories | Biomarkers and methods for diagnosing and evaluating traumatic brain injury |
US11994522B2 (en) | 2008-08-11 | 2024-05-28 | Banyan Biomarkers, Inc. | Biomarker detection process and assay of neurological condition |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3779444A1 (en) | 2008-01-18 | 2021-02-17 | President and Fellows of Harvard College | Methods of detecting signatures of disease or conditions in bodily fluids |
US9874573B2 (en) * | 2008-10-02 | 2018-01-23 | Gaia Medical Institute | Health test for a broad spectrum of health problems |
US20130029859A1 (en) * | 2009-06-19 | 2013-01-31 | Svetlov Stanislav I | Biomarker assay of neurological condition |
US20120202231A1 (en) * | 2009-07-18 | 2012-08-09 | Kevin Ka-Wang Wang | Synergistic biomarker assay of neurological condition using s-100b |
AU2011354597B2 (en) | 2010-01-26 | 2016-09-22 | Bioregency Inc. | Compositions and methods relating to argininosuccinate synthetase |
EP2553466A4 (en) * | 2010-04-01 | 2013-10-16 | Banyan Biomarkers Inc | Markers and assays for detection of neurotoxicity |
WO2011160096A2 (en) * | 2010-06-17 | 2011-12-22 | Banyan Biomarkers, Inc. | Glial fibrillary acidic protein, autoantigens and autoantibodies thereto as biomarkers of neural injury or neurological disorder or condition |
KR20130041961A (en) | 2010-07-23 | 2013-04-25 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | Methods for detecting signatures of disease or conditions in bodily fluids |
WO2012012717A1 (en) | 2010-07-23 | 2012-01-26 | President And Fellows Of Harvard College | Methods of detecting prenatal or pregnancy-related diseases or conditions |
AU2011280997A1 (en) | 2010-07-23 | 2013-02-28 | President And Fellows Of Harvard College | Methods of detecting autoimmune or immune-related diseases or conditions |
US20120040846A1 (en) | 2010-07-23 | 2012-02-16 | President And Fellows Of Harvard College | Methods of Detecting Diseases or Conditions Using Phagocytic Cells |
EP2628013B1 (en) * | 2010-10-14 | 2019-06-12 | The Johns Hopkins University | Biomarkers of brain injury |
WO2012142301A2 (en) | 2011-04-12 | 2012-10-18 | Quanterix Corporation | Methods of determining a treatment protocol for and/or a prognosis of a patients recovery from a brain injury |
EP2707389B1 (en) | 2011-05-12 | 2019-10-30 | The Johns Hopkins University | Assay reagents for a neurogranin diagnostic kit |
US9709573B2 (en) | 2012-03-13 | 2017-07-18 | The Johns Hopkins University | Citrullinated brain and neurological proteins as biomarkers of brain injury or neurodegeneration |
US20150275298A1 (en) | 2012-06-15 | 2015-10-01 | Harry Stylli | Methods of detecting diseases or conditions |
MX2014015434A (en) | 2012-06-15 | 2015-07-14 | Harry Stylli | Methods of detecting diseases or conditions using circulating diseased cells. |
WO2014164362A1 (en) | 2013-03-09 | 2014-10-09 | Harry Stylli | Methods of detecting prostate cancer |
US10494675B2 (en) | 2013-03-09 | 2019-12-03 | Cell Mdx, Llc | Methods of detecting cancer |
US10534003B2 (en) | 2013-07-17 | 2020-01-14 | The Johns Hopkins University | Multi-protein biomarker assay for brain injury detection and outcome |
EP3663764B1 (en) * | 2014-04-08 | 2023-11-01 | University of Florida Research Foundation, Inc. | Protein biomarkers for acute, subacute and chronic traumatic injuries of the central nervous system |
AU2015314813B2 (en) | 2014-09-11 | 2022-02-24 | Immunis.Ai, Inc. | Methods of detecting prostate cancer |
JP2020507622A (en) * | 2017-02-07 | 2020-03-12 | バイオリージェンシー インコーポレイテッド | S100β and isoforms for neurological condition detection |
WO2019199869A1 (en) | 2018-04-10 | 2019-10-17 | Quanterix Corporation | Quantification of biomarkers present in physiological samples |
KR102179032B1 (en) * | 2019-09-20 | 2020-11-18 | 한림대학교 산학협력단 | Biomarkers for Distinguishing GCI and TBI |
WO2022115705A2 (en) | 2020-11-30 | 2022-06-02 | Enigma Biointelligence, Inc. | Non-invasive assessment of alzheimer's disease |
CN116879564A (en) * | 2023-09-06 | 2023-10-13 | 暨南大学附属第一医院(广州华侨医院) | Spinal cord injury biomarker based on proteomics and phosphorylated protein modification histology and application thereof |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234814A (en) * | 1989-06-01 | 1993-08-10 | Du Pont Merck Pharmaceutical Company | Diagnostic assay for alzheimer's disease |
US5252463A (en) * | 1990-06-22 | 1993-10-12 | The Du Pont Merck Pharmaceutical Company | Clipsin, a chymotrypsin-like protease and method of using same |
US5270163A (en) * | 1990-06-11 | 1993-12-14 | University Research Corporation | Methods for identifying nucleic acid ligands |
US5475096A (en) * | 1990-06-11 | 1995-12-12 | University Research Corporation | Nucleic acid ligands |
US5536639A (en) * | 1994-03-25 | 1996-07-16 | Cephalon, Inc. | Methods for detecting calpain activation by detection of calpain activated spectrin breakdown products |
US5567588A (en) * | 1990-06-11 | 1996-10-22 | University Research Corporation | Systematic evolution of ligands by exponential enrichment: Solution SELEX |
US5595877A (en) * | 1990-06-11 | 1997-01-21 | Nexstar Pharmaceuticals, Inc. | Methods of producing nucleic acid ligands |
US5614649A (en) * | 1994-11-14 | 1997-03-25 | Cephalon, Inc. | Multicatalytic protease inhibitors |
US5637459A (en) * | 1990-06-11 | 1997-06-10 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: chimeric selex |
US5660985A (en) * | 1990-06-11 | 1997-08-26 | Nexstar Pharmaceuticals, Inc. | High affinity nucleic acid ligands containing modified nucleotides |
US5683867A (en) * | 1990-06-11 | 1997-11-04 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: blended SELEX |
US5707796A (en) * | 1990-06-11 | 1998-01-13 | Nexstar Pharmaceuticals, Inc. | Method for selecting nucleic acids on the basis of structure |
US5777194A (en) * | 1995-04-26 | 1998-07-07 | Cephalon, Inc. | Gene-targeted mice with humanized Aβ sequence and Swedish FAD mutation |
US5869336A (en) * | 1994-07-15 | 1999-02-09 | Cephalon, Inc. | Recombinant enzymatically active calpain expressed in a baculovirus system |
US6011020A (en) * | 1990-06-11 | 2000-01-04 | Nexstar Pharmaceuticals, Inc. | Nucleic acid ligand complexes |
US6048703A (en) * | 1996-11-15 | 2000-04-11 | Cephalon, Inc. | Methods for detecting cell apoptosis |
US20010001285A1 (en) * | 1999-04-01 | 2001-05-17 | 3M Innovative Properties Company | Tapes for heat sealing substrates |
US20020147998A1 (en) * | 2000-03-30 | 2002-10-10 | Mcconlogue Lisa C. | Screening markers and methods for neurodegenerative disorders |
WO2005106038A2 (en) * | 2004-04-15 | 2005-11-10 | University Of Florida Research Foundation, Inc. | Neural proteins as biomarkers for nervous system injury and other neural disorders |
US20050260697A1 (en) * | 2004-04-15 | 2005-11-24 | University Of Florida Research Foundation, Inc. | Proteolytic markers as diagnostic biomarkers for cancer, organ injury and muscle rehabilitation/exercise overtraining |
US7291710B2 (en) * | 2002-09-11 | 2007-11-06 | University Of Florida Research Foundation, Inc. | Detection of spectrin and spectrin proteolytic cleavage products in assessing nerve cell damage |
Family Cites Families (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4376110A (en) | 1980-08-04 | 1983-03-08 | Hybritech, Incorporated | Immunometric assays using monoclonal antibodies |
US4366241A (en) | 1980-08-07 | 1982-12-28 | Syva Company | Concentrating zone method in heterogeneous immunoassays |
US4517288A (en) | 1981-01-23 | 1985-05-14 | American Hospital Supply Corp. | Solid phase system for ligand assay |
US4702909A (en) | 1982-05-05 | 1987-10-27 | Louisiana State University A & M | Non-A, non-B hepatitis antigen, antigen compositions, vaccine and diagnostic reagent |
CA1291031C (en) | 1985-12-23 | 1991-10-22 | Nikolaas C.J. De Jaeger | Method for the detection of specific binding agents and their correspondingbindable substances |
US5231000A (en) | 1987-10-08 | 1993-07-27 | The Mclean Hospital | Antibodies to A4 amyloid peptide |
US5118606A (en) | 1988-09-02 | 1992-06-02 | The Regents Of The University Of California | Methods for detecting cellular pathology by assaying spectrin and spectrin breakdown products |
US5118937A (en) | 1989-08-22 | 1992-06-02 | Finnigan Mat Gmbh | Process and device for the laser desorption of an analyte molecular ions, especially of biomolecules |
US5045694A (en) | 1989-09-27 | 1991-09-03 | The Rockefeller University | Instrument and method for the laser desorption of ions in mass spectrometry |
HUT62312A (en) | 1990-03-05 | 1993-04-28 | Cephalon Inc | Process for producing chymotrypsin-like proteases and their inhibitors |
US5586226A (en) | 1990-05-16 | 1996-12-17 | Canon Kabushiki Kaisha | Control method and device for a unicolor printer |
WO1993003369A1 (en) | 1991-08-01 | 1993-02-18 | Voorheis Paul H | Diagnostic method for alzheimer's disease |
US5792664A (en) | 1992-05-29 | 1998-08-11 | The Rockefeller University | Methods for producing and analyzing biopolymer ladders |
CA2136717A1 (en) | 1992-05-29 | 1993-12-09 | Brian T. Chait | Method and product for the sequence determination of peptides using a mass spectrometer |
CA2163426C (en) | 1993-05-28 | 2005-11-01 | T. William Hutchens | Method and apparatus for desorption and ionization of analytes |
DE4337654C2 (en) | 1993-11-04 | 1996-08-08 | Biotest Pharma Gmbh | Use of bovine colostral milk from animals not hyperimmunized with viruses as a liver protection preparation |
CZ287488B6 (en) | 1996-02-02 | 2000-12-13 | Biotrin Intellectual Pty Ltd | Method of determining state of liver functions of individual including liver implant recipient |
NZ516848A (en) | 1997-06-20 | 2004-03-26 | Ciphergen Biosystems Inc | Retentate chromatography apparatus with applications in biology and medicine |
EP1037626A1 (en) | 1997-12-16 | 2000-09-27 | Cephalon, Inc. | Multicatalytic protease inhibitors for use as anti-tumor agents |
IL138668A0 (en) | 1998-04-03 | 2001-10-31 | Phylos Inc | Addressable protein arrays |
US6406921B1 (en) | 1998-07-14 | 2002-06-18 | Zyomyx, Incorporated | Protein arrays for high-throughput screening |
DE69920487T2 (en) | 1998-09-08 | 2006-03-09 | Innogenetics N.V. | TAU AS A MARKER FOR EARLY DAMAGE TO THE CENTRAL NERVOUS SYSTEM |
WO2000056934A1 (en) | 1999-03-24 | 2000-09-28 | Packard Bioscience Company | Continuous porous matrix arrays |
US20020002270A1 (en) | 1999-06-16 | 2002-01-03 | Raymond P. Zinkowski | Purified antigen for alzheimer's disease, and methods of obtaining and using same |
US6589746B1 (en) | 1999-10-21 | 2003-07-08 | University Of Cincinnati | Method of detecting axonally-derived protein tau in patients with traumatic CNS injury |
US20050063942A1 (en) | 2001-02-02 | 2005-03-24 | Clark Mike A. | Methods for predicting sensitivity of tumors to arginine deprivation |
US6949377B2 (en) | 2001-03-05 | 2005-09-27 | Ho Winston Z | Chemiluminescence-based microfluidic biochip |
US20040253637A1 (en) | 2001-04-13 | 2004-12-16 | Biosite Incorporated | Markers for differential diagnosis and methods of use thereof |
US20030199000A1 (en) | 2001-08-20 | 2003-10-23 | Valkirs Gunars E. | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
US7713705B2 (en) | 2002-12-24 | 2010-05-11 | Biosite, Inc. | Markers for differential diagnosis and methods of use thereof |
US20040203083A1 (en) | 2001-04-13 | 2004-10-14 | Biosite, Inc. | Use of thrombus precursor protein and monocyte chemoattractant protein as diagnostic and prognostic indicators in vascular diseases |
US20020172676A1 (en) | 2001-05-16 | 2002-11-21 | George Jackowski | Method of treatment of alzheimer's disease and device therefor |
US7144708B2 (en) | 2001-06-25 | 2006-12-05 | The Cleveland Clinic Foundation | Markers of blood barrier disruption and methods of using same |
JP2003070498A (en) | 2001-07-19 | 2003-03-11 | Pharma Design Inc | Method for detecting abnormality of ubiquitin carboxy- terminal hydrolase l1 gene |
CA2457775A1 (en) * | 2001-08-20 | 2003-02-27 | Biosite Incorporated | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
US20030040660A1 (en) | 2001-08-27 | 2003-02-27 | George Jackowski | Method for diagnosing and distinguishing traumatic brain injury and diagnostic devices for use therein |
WO2003032894A2 (en) | 2001-10-12 | 2003-04-24 | Pfizer Products Inc. | Method of monitoring neuroprotective treatment |
US7371582B2 (en) | 2002-01-23 | 2008-05-13 | Boditechmed Inc. | Lateral flow quantitative assay method and strip and laser-induced fluorescence detection device therefor |
WO2003064624A2 (en) | 2002-01-31 | 2003-08-07 | Gene Logic, Inc. | Molecular hepatotoxicology modeling |
US20040076974A1 (en) | 2002-04-01 | 2004-04-22 | Kier Larry D. | Liver necrosis predictive genes |
WO2004078204A1 (en) | 2002-06-12 | 2004-09-16 | The Cleveland Clinic Foundation | Markers of blood barrier permeability and methods of using same |
EP1587955A4 (en) | 2002-12-24 | 2007-03-14 | Biosite Inc | Markers for differential diagnosis and methods of use thereof |
WO2005004794A2 (en) | 2003-06-09 | 2005-01-20 | Alnylam Pharmaceuticals Inc. | Method of treating neurodegenerative disease |
JP5019878B2 (en) | 2003-09-20 | 2012-09-05 | エレクトロフォレティックス リミテッド | Methods relating to the detection of markers for the diagnosis of brain disorder-related diseases |
GB0322063D0 (en) * | 2003-09-20 | 2003-10-22 | Univ Geneve | Diagnostic method for brain damage-related disorders |
EP1519194A1 (en) | 2003-09-24 | 2005-03-30 | Roche Diagnostics GmbH | Use of gfap for identification of intracerebral hemorrhage |
US20050130226A1 (en) | 2003-09-26 | 2005-06-16 | The University Of Cincinnati | Fully integrated protein lab-on-a-chip with smart microfluidics for spot array generation |
US7794948B2 (en) | 2003-11-07 | 2010-09-14 | Vermilllion, Inc. | Biomarkers for alzheimer's disease |
US20060094064A1 (en) | 2003-11-19 | 2006-05-04 | Sandip Ray | Methods and compositions for diagnosis, stratification, and monitoring of alzheimer's disease and other neurological disorders in body fluids |
US20050112585A1 (en) | 2003-11-21 | 2005-05-26 | Dominic Zichi | Method for adjusting the quantification range of individual analytes in a multiplexed assay |
TWI281473B (en) | 2003-12-19 | 2007-05-21 | Ind Tech Res Inst | Biomarkers for liver diseases and method for using same |
CA2564609C (en) | 2003-12-31 | 2014-02-11 | President And Fellows Of Harvard College | Assay device and method |
US20140303041A1 (en) | 2004-04-15 | 2014-10-09 | University Of Florida Research Foundation Inc. | In vitro diagnostic devices for nervous system injury and other neural disorders |
US8492107B2 (en) | 2004-04-15 | 2013-07-23 | University Of Florida Research Foundation, Inc. | Neural proteins as biomarkers for nervous system injury and other neural disorders |
US20060292558A1 (en) | 2004-07-19 | 2006-12-28 | Cell Biosciences Inc. | Methods and apparatus for protein assay diagnostics |
CN100534619C (en) | 2004-10-15 | 2009-09-02 | 西门子公司 | Method for carrying out an electrochemical measurement on a liquid measuring sample in a measuring chamber that can be accessed by lines, and corresponding arrangement |
US8048638B2 (en) | 2005-04-01 | 2011-11-01 | University Of Florida Research Foundation, Inc. | Biomarkers of liver injury |
EP1874958B1 (en) | 2005-04-01 | 2019-03-27 | University of Florida Research Foundation, Incorporated | Biomarkers of liver injury |
GB2428240A (en) | 2005-07-14 | 2007-01-24 | Univ Gen Ve | Diagnostic method for brain damage-related disorders |
WO2007033385A2 (en) | 2005-09-13 | 2007-03-22 | Fluidigm Corporation | Microfluidic assay devices and methods |
EP1949103A2 (en) | 2005-10-20 | 2008-07-30 | Biosite Incorporated | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
EP1977223B8 (en) | 2006-01-12 | 2013-05-15 | MycroLab Diagnostics Pty Ltd | Smart card with integrated microfluidic analysis |
US8563291B2 (en) | 2006-02-15 | 2013-10-22 | Mie University | Method of constructing recombinant proteoliposome for diagnostic use |
US20070255113A1 (en) | 2006-05-01 | 2007-11-01 | Grimes F R | Methods and apparatus for identifying disease status using biomarkers |
WO2007136617A2 (en) | 2006-05-18 | 2007-11-29 | Walter Reed Army Institute Of Research (Wrair) | Endothelial-monocyte activating polypeptide ii, a biomarker for use in diagnosis of brain injury |
EP2024395A4 (en) | 2006-05-26 | 2009-07-01 | Biosite Inc | Use of natriuretic peptides as diagnostic and prognostic indicators in vascular diseases |
WO2008008819A2 (en) | 2006-07-11 | 2008-01-17 | University Of Florida Research Foundation, Inc. | Diagnosis and treatment of neurological inflammation |
CA2668640A1 (en) | 2006-11-01 | 2008-05-29 | George Mason Intellectual Properties, Inc. | Biomarkers for neurological conditions |
US8293489B2 (en) | 2007-01-31 | 2012-10-23 | Henkin Robert I | Methods for detection of biological substances |
US20120196307A1 (en) | 2007-02-06 | 2012-08-02 | Banyan Biomarkers, Inc. | Synaptotagmin and collapsin response mediator protein as biomarkers for traumatic brain injury |
WO2008097618A1 (en) | 2007-02-06 | 2008-08-14 | University Of Florida Research Foundation, Inc. | Synaptotagmin and collapsin response mediator protein as biomarkers for traumatic brain injury |
CA2715248A1 (en) | 2008-02-04 | 2009-08-13 | Banyan Biomarkers, Inc. | Process to diagnose or treat brain injury |
EP2274011A4 (en) | 2008-04-17 | 2013-04-24 | Banyan Biomarkers Inc | An antibody bound synthetic vesicle containing active agent molecules |
EP2143735A1 (en) | 2008-07-10 | 2010-01-13 | Institut Pasteur | Variable domains of camelid heavy-chain antibodies directed against glial fibrillary acidic proteins |
US20140342381A1 (en) | 2008-08-11 | 2014-11-20 | Banyan Biomarkers, Inc. | Devices and methods for biomarker detection process and assay of neurological condition |
EP4235181A3 (en) | 2008-08-11 | 2024-02-28 | Banyan Biomarkers Inc | Biomarker detection process and assay of neurological condition |
JP5996190B2 (en) | 2008-09-19 | 2016-09-21 | ヘンリー フォード ヘルス システムHenry Ford Health System | Methods, systems and compositions for calpain inhibition |
WO2010059242A2 (en) | 2008-11-21 | 2010-05-27 | The Johns Hopkins University | Neurodegenerative disease diagnostic compositions and methods of use |
US20130029859A1 (en) | 2009-06-19 | 2013-01-31 | Svetlov Stanislav I | Biomarker assay of neurological condition |
US20170315136A9 (en) | 2009-06-19 | 2017-11-02 | Banyan Biomarkers, Inc. | Biomarker assay of neurological condition |
US20120202231A1 (en) | 2009-07-18 | 2012-08-09 | Kevin Ka-Wang Wang | Synergistic biomarker assay of neurological condition using s-100b |
US20130022982A1 (en) | 2009-09-14 | 2013-01-24 | Kevin Ka-Wang Wang | Micro-rna, autoantibody and protein markers for diagnosis of neuronal injury |
AU2011354597B2 (en) | 2010-01-26 | 2016-09-22 | Bioregency Inc. | Compositions and methods relating to argininosuccinate synthetase |
EP2553466A4 (en) | 2010-04-01 | 2013-10-16 | Banyan Biomarkers Inc | Markers and assays for detection of neurotoxicity |
WO2011160096A2 (en) | 2010-06-17 | 2011-12-22 | Banyan Biomarkers, Inc. | Glial fibrillary acidic protein, autoantigens and autoantibodies thereto as biomarkers of neural injury or neurological disorder or condition |
EP2628013B1 (en) | 2010-10-14 | 2019-06-12 | The Johns Hopkins University | Biomarkers of brain injury |
WO2013040502A2 (en) | 2011-09-14 | 2013-03-21 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Processes and kits to detect and monitor for diagnostic biomarkers for post traumatic stress disorder (ptsd) and to differentiate between suicidal and non-suicidal form of the disorder |
US20140018299A1 (en) | 2012-07-10 | 2014-01-16 | Banyan Biomarkers, Inc. | Method and device to detect, monitor and promote neural regeneration and improvement of cognitive function in a subject suffering from neural injury |
US20140024053A1 (en) | 2012-07-20 | 2014-01-23 | Banyan Biomarkers, Inc. | Methods, kits and devices for detecting bii-spectrin, and breakdown products thereof, as biomarkers for the diagnosis of neural injury |
US20140275294A1 (en) | 2013-03-15 | 2014-09-18 | Banyan Biomarkers, Inc. | Devices and methods for biomarker detection process and assay of liver injury |
WO2014194329A1 (en) | 2013-05-31 | 2014-12-04 | Banyan Biomarkers, Inc. | NEURAL SPECIFIC S100β FOR BIOMARKER ASSAYS AND DEVICES FOR DETECTION OF A NEUROLOGICAL CONDITION |
EP3129780A4 (en) | 2014-04-07 | 2017-12-13 | Iron Horse Diagnostics Inc. | Traumatic brain injury and neurodegenerative biomarkers, methods, and systems |
EP3663764B1 (en) | 2014-04-08 | 2023-11-01 | University of Florida Research Foundation, Inc. | Protein biomarkers for acute, subacute and chronic traumatic injuries of the central nervous system |
US11078298B2 (en) | 2016-10-28 | 2021-08-03 | Banyan Biomarkers, Inc. | Antibodies to ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) and related methods |
JP7344797B2 (en) * | 2017-04-15 | 2023-09-14 | アボット・ラボラトリーズ | Methods to aid in hyperacute diagnosis and determination of traumatic brain injury in human subjects using early biomarkers |
AU2018256845B2 (en) * | 2017-04-28 | 2024-03-14 | Abbott Laboratories | Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury using early biomarkers on at least two samples from the same human subject |
JP7269182B2 (en) * | 2017-05-30 | 2023-05-08 | アボット・ラボラトリーズ | Methods to Help Diagnose and Assess Mild Traumatic Brain Injury in Human Subjects Using Cardiac Troponin I and Early Biomarkers |
JP7344801B2 (en) * | 2017-12-09 | 2023-09-14 | アボット・ラボラトリーズ | Glial fibrillary acidic protein (GFAP) and/or ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) Methods to assist in diagnosis and assessment of injuries sustained or potential injuries |
US11016105B2 (en) * | 2017-12-09 | 2021-05-25 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a traumatic brain injury in a human subject using a combination of GFAP and UCH-L1 |
-
2009
- 2009-08-11 EP EP23168587.6A patent/EP4235181A3/en active Pending
- 2009-08-11 EP EP18154197.0A patent/EP3336551B1/en active Active
- 2009-08-11 EP EP09807153.3A patent/EP2324360B1/en not_active Revoked
- 2009-08-11 NO NO09807153A patent/NO2324360T3/no unknown
- 2009-08-11 DK DK09807153.3T patent/DK2324360T3/en active
- 2009-08-11 ES ES09807153.3T patent/ES2665245T3/en active Active
- 2009-08-11 JP JP2011523089A patent/JP5781436B2/en active Active
- 2009-08-11 CA CA2733990A patent/CA2733990C/en active Active
- 2009-08-11 AU AU2009282117A patent/AU2009282117B2/en active Active
- 2009-08-11 US US13/058,748 patent/US20110143375A1/en not_active Abandoned
- 2009-08-11 WO PCT/US2009/053376 patent/WO2010019553A2/en active Application Filing
-
2014
- 2014-07-24 JP JP2014150903A patent/JP5976732B2/en active Active
-
2017
- 2017-09-19 US US15/709,368 patent/US20180031577A1/en not_active Abandoned
-
2020
- 2020-06-02 US US16/890,943 patent/US11994522B2/en active Active
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234814A (en) * | 1989-06-01 | 1993-08-10 | Du Pont Merck Pharmaceutical Company | Diagnostic assay for alzheimer's disease |
US5696249A (en) * | 1990-06-11 | 1997-12-09 | Nexstar Pharmaceuticals, Inc. | Nucleic acid ligands |
US5683867A (en) * | 1990-06-11 | 1997-11-04 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: blended SELEX |
US5475096A (en) * | 1990-06-11 | 1995-12-12 | University Research Corporation | Nucleic acid ligands |
US6011020A (en) * | 1990-06-11 | 2000-01-04 | Nexstar Pharmaceuticals, Inc. | Nucleic acid ligand complexes |
US5660985A (en) * | 1990-06-11 | 1997-08-26 | Nexstar Pharmaceuticals, Inc. | High affinity nucleic acid ligands containing modified nucleotides |
US5595877A (en) * | 1990-06-11 | 1997-01-21 | Nexstar Pharmaceuticals, Inc. | Methods of producing nucleic acid ligands |
US5270163A (en) * | 1990-06-11 | 1993-12-14 | University Research Corporation | Methods for identifying nucleic acid ligands |
US5707796A (en) * | 1990-06-11 | 1998-01-13 | Nexstar Pharmaceuticals, Inc. | Method for selecting nucleic acids on the basis of structure |
US5567588A (en) * | 1990-06-11 | 1996-10-22 | University Research Corporation | Systematic evolution of ligands by exponential enrichment: Solution SELEX |
US5670637A (en) * | 1990-06-11 | 1997-09-23 | Nexstar Pharmaceuticals, Inc. | Nucleic acid ligands |
US5637459A (en) * | 1990-06-11 | 1997-06-10 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: chimeric selex |
US5252463A (en) * | 1990-06-22 | 1993-10-12 | The Du Pont Merck Pharmaceutical Company | Clipsin, a chymotrypsin-like protease and method of using same |
US5871712A (en) * | 1994-03-25 | 1999-02-16 | Cephalon, Inc. | Methods for detecting calpain activation and identifying calpain inhibitors |
US5536639A (en) * | 1994-03-25 | 1996-07-16 | Cephalon, Inc. | Methods for detecting calpain activation by detection of calpain activated spectrin breakdown products |
US6057143A (en) * | 1994-07-15 | 2000-05-02 | Cephalon, Inc. | Recombinant enzymatically active calpain expressed in a baculovirus system |
US5869336A (en) * | 1994-07-15 | 1999-02-09 | Cephalon, Inc. | Recombinant enzymatically active calpain expressed in a baculovirus system |
US5614649A (en) * | 1994-11-14 | 1997-03-25 | Cephalon, Inc. | Multicatalytic protease inhibitors |
US5990083A (en) * | 1994-11-14 | 1999-11-23 | Cephalon, Inc. | Multicatalytic protease inhibitors |
US5830870A (en) * | 1994-11-14 | 1998-11-03 | Cephalon, Inc. | Multicatalytic protease inhibitors |
US5777194A (en) * | 1995-04-26 | 1998-07-07 | Cephalon, Inc. | Gene-targeted mice with humanized Aβ sequence and Swedish FAD mutation |
US6048703A (en) * | 1996-11-15 | 2000-04-11 | Cephalon, Inc. | Methods for detecting cell apoptosis |
US7256252B1 (en) * | 1996-11-15 | 2007-08-14 | Cephalon, Inc. | Methods for detecting cell apoptosis |
US20010001285A1 (en) * | 1999-04-01 | 2001-05-17 | 3M Innovative Properties Company | Tapes for heat sealing substrates |
US20020147998A1 (en) * | 2000-03-30 | 2002-10-10 | Mcconlogue Lisa C. | Screening markers and methods for neurodegenerative disorders |
US7291710B2 (en) * | 2002-09-11 | 2007-11-06 | University Of Florida Research Foundation, Inc. | Detection of spectrin and spectrin proteolytic cleavage products in assessing nerve cell damage |
WO2005106038A2 (en) * | 2004-04-15 | 2005-11-10 | University Of Florida Research Foundation, Inc. | Neural proteins as biomarkers for nervous system injury and other neural disorders |
US20050260697A1 (en) * | 2004-04-15 | 2005-11-24 | University Of Florida Research Foundation, Inc. | Proteolytic markers as diagnostic biomarkers for cancer, organ injury and muscle rehabilitation/exercise overtraining |
US20050260654A1 (en) * | 2004-04-15 | 2005-11-24 | University Of Florida Research Foundation, Inc. | Neural proteins as biomarkers for nervous system injury and other neural disorders |
US7396654B2 (en) * | 2004-04-15 | 2008-07-08 | University Of Florida Research Foundation, Inc. | Neural proteins as biomarkers for traumatic brain injury |
Non-Patent Citations (12)
Title |
---|
"Cerebral contusion" published by Wikipedia online on September 13, 2006. Retrieved from https://en.wikipedia.org/wiki/Cerebral_contusion. Retrieved on 3/20/2017 1:54:09 PM * |
Hinkle et al. J Neurotrauma, 14(10): 729-738, 1997 * |
Lee and Newberg, NeuroRx: The Journal of the American Society for Experimental NeuroTherapeutics, Vol. 2, 372-383, April 2005 * |
Nyl�n et al., J Neurological Sci., 240:85-91, 2006 * |
Pelinka et al. J Trauma, 57:1006 -1012, 2004 * |
Pelinka et al., J Neurotrama, 21(11): 1553-1561, 2004 * |
Petzold et al., Crit Care Med., 30(12), 2705-2710, December 2002 * |
Petzold et al., J Immunological Methods, 287:169-177, April 2004 * |
Raabe et al., Br J Neurosurg, 13:56-59, 1999 * |
Ringger et al., J Neurotrauma, 21(10):1443-1456, 2004 * |
Siman et al., Brain Research, 1213:1-11, June 5, 2008 * |
Vos et al., European Journal of Neurology, 13(6):632-638, June 6, 2006. * |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10794918B2 (en) | 2003-09-24 | 2020-10-06 | Matthias Sitzer | Use of GFAP for identification of intracerebral hemorrhage |
US9810698B2 (en) | 2004-04-15 | 2017-11-07 | University Of Florida Research Foundation, Incorporated | Neural proteins as biomarkers for nervous system injury and other neural disorders |
US10330689B2 (en) | 2004-04-15 | 2019-06-25 | University Of Florida Research Foundation, Inc. | Neural proteins as biomarkers for nervous system injury and other neural disorders |
US11221342B2 (en) | 2004-04-15 | 2022-01-11 | University Of Florida Research Foundation, Inc. | Neural proteins as biomarkers for nervous system injury and other neural disorders |
US9664694B2 (en) | 2004-04-15 | 2017-05-30 | University Of Florida Research Foundation, Inc. | Neural proteins as biomarkers for nervous system injury and other neural disorders |
US11994522B2 (en) | 2008-08-11 | 2024-05-28 | Banyan Biomarkers, Inc. | Biomarker detection process and assay of neurological condition |
US10041959B2 (en) | 2009-09-14 | 2018-08-07 | Banyan Biomarkers, Inc. | Micro-RNA, autoantibody and protein markers for diagnosis of neuronal injury |
WO2013090285A1 (en) * | 2011-12-14 | 2013-06-20 | University Of Rochester | Method of diagnosing mild traumatic brain injury |
WO2014197097A3 (en) * | 2013-03-15 | 2015-01-22 | The Trustees Of Princeton University | Plasmonic nanocavity array sensors for analyte detection enhancement and methods for making and using of the same |
WO2014194329A1 (en) * | 2013-05-31 | 2014-12-04 | Banyan Biomarkers, Inc. | NEURAL SPECIFIC S100β FOR BIOMARKER ASSAYS AND DEVICES FOR DETECTION OF A NEUROLOGICAL CONDITION |
JP2020042046A (en) * | 2014-10-06 | 2020-03-19 | ユニヴェルシテ ド ジュネーヴUniversite De Geneve | Markers and their use in brain injury |
WO2017100632A1 (en) * | 2015-12-11 | 2017-06-15 | Arizona Board Of Regents On Behalf Of Arizona State University | Human alzheimer's disease and traumatic brain injury associated tau variants as biomarkers and methods of use thereof |
CN110383068A (en) * | 2016-10-03 | 2019-10-25 | 雅培实验室 | The improved method for assessing UCH-L1 state in Patient Sample A |
WO2018081649A1 (en) | 2016-10-28 | 2018-05-03 | Banyan Biomarkers, Inc. | Antibodies to ubiquitin c-terminal hydrolase l1 (uch-l1) and glial fibrillary acidic protein (gfap) and related methods |
US12077601B2 (en) | 2016-10-28 | 2024-09-03 | Banyan Biomarkers, Inc. | Antibodies to ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) and related methods |
US11078298B2 (en) | 2016-10-28 | 2021-08-03 | Banyan Biomarkers, Inc. | Antibodies to ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) and related methods |
CN108459160A (en) * | 2017-02-19 | 2018-08-28 | 黄胜和 | Purposes of the biomarker in preparing the reagent for detecting central nervous system |
CN110494752A (en) * | 2017-03-23 | 2019-11-22 | 雅培实验室 | With the method for early stage biomarker ubiquitin carboxy terminal hydrolase-l 1 assisted diagnosis measurement people experimenter traumatic brain injury degree |
US11016092B2 (en) | 2017-03-23 | 2021-05-25 | Abbott Laboratories | Methods for aiding in the diagnosis and determination of the extent of traumatic brain injury in a human subject using the early biomarker ubiquitin carboxy-terminal hydrolase L1 |
WO2018175942A1 (en) * | 2017-03-23 | 2018-09-27 | Abbott Laboratories | Methods for aiding in the diagnosis and determination of the extent of traumatic brain injury in a human subject using the early biomarker ubiquitin carboxy-terminal hydrolase l1 |
US10877048B2 (en) | 2017-04-15 | 2020-12-29 | Abbott Laboratories | Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury in a human subject using early biomarkers |
US12099069B2 (en) | 2017-04-15 | 2024-09-24 | Abbott Laboratories | Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury in a human subject using early biomarkers |
US10877038B2 (en) | 2017-04-28 | 2020-12-29 | Abbott Laboratories | Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury using early biomarkers on at least two samples from the same human subject |
US12085567B2 (en) | 2017-04-28 | 2024-09-10 | Abbott Laboratories | Methods for aiding in the hyperacute diagnosis and determination of traumatic brain injury using early biomarkers on at least two samples from the same human subject |
US12092647B2 (en) | 2017-05-25 | 2024-09-17 | Abbott Laboratories | Methods for aiding in the determination of whether to perform imaging on a human subject who has sustained or may have sustained an injury to the head using early biomarkers |
US10866251B2 (en) | 2017-05-25 | 2020-12-15 | Abbott Laboratories | Methods for aiding in the determination of whether to perform imaging on a human subject who has sustained or may have sustained an injury to the head using early biomarkers |
US10849548B2 (en) | 2017-05-30 | 2020-12-01 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a mild traumatic brain injury in a human subject using cardiac troponin I and early biomarkers |
US11129564B2 (en) | 2017-05-30 | 2021-09-28 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a mild traumatic brain injury in a human subject using cardiac troponin I |
US11931161B2 (en) | 2017-05-30 | 2024-03-19 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a mild traumatic brain injury in a human subject using cardiac troponin I and early biomarkers |
US11169159B2 (en) | 2017-07-03 | 2021-11-09 | Abbott Laboratories | Methods for measuring ubiquitin carboxy-terminal hydrolase L1 levels in blood |
US12123883B2 (en) | 2017-07-03 | 2024-10-22 | Abbott Laboratories | Methods for measuring ubiquitin carboxy—terminal hydrolase L1 levels in blood |
US11685951B2 (en) | 2017-07-18 | 2023-06-27 | The Research Foundation For The State University Of New York | Biomarkers for intracranial aneurysm |
CN110892266A (en) * | 2017-12-09 | 2020-03-17 | 雅培实验室 | Methods of using a combination of GFAP and UCH-L1 to aid in the diagnosis and assessment of traumatic brain injury in a human subject |
US11016105B2 (en) | 2017-12-09 | 2021-05-25 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a traumatic brain injury in a human subject using a combination of GFAP and UCH-L1 |
US11022617B2 (en) | 2017-12-09 | 2021-06-01 | Abbott Laboratories | Methods for aiding in the diagnosis and evaluation of a subject who has sustained an orthopedic injury and that has or may have sustained an injury to the head, such as mild traumatic brain injury (TBI), using glial fibrillary acidic protein (GFAP) and/or ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) |
US12105100B2 (en) | 2017-12-09 | 2024-10-01 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a traumatic brain injury in a human subject using a combination of GFAP and UCH-L1 |
US12105098B2 (en) | 2017-12-09 | 2024-10-01 | Abbott Laboratories | Methods for aiding in the diagnosis and evaluation of a subject who has sustained an orthopedic injury and that has or may have sustained an injury to the head, such as mild traumatic brain injury (TBI), using glial fibrillary acidic protein (GFAP) and/or ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) |
US11994523B2 (en) | 2017-12-29 | 2024-05-28 | Abbott Laboratories | Biomarkers and methods for diagnosing and evaluating traumatic brain injury |
Also Published As
Publication number | Publication date |
---|---|
WO2010019553A3 (en) | 2010-07-08 |
EP3336551A1 (en) | 2018-06-20 |
US20210011028A1 (en) | 2021-01-14 |
EP4235181A3 (en) | 2024-02-28 |
JP2014199262A (en) | 2014-10-23 |
CA2733990C (en) | 2018-12-11 |
DK2324360T3 (en) | 2018-05-14 |
AU2009282117B2 (en) | 2016-05-12 |
EP3336551B1 (en) | 2023-05-31 |
EP2324360A4 (en) | 2012-08-29 |
NO2324360T3 (en) | 2018-06-30 |
JP5976732B2 (en) | 2016-08-24 |
CA2733990A1 (en) | 2010-02-18 |
EP2324360B1 (en) | 2018-01-31 |
AU2009282117A1 (en) | 2010-02-18 |
US20180031577A1 (en) | 2018-02-01 |
JP2012500388A (en) | 2012-01-05 |
ES2665245T3 (en) | 2018-04-25 |
WO2010019553A2 (en) | 2010-02-18 |
EP4235181A2 (en) | 2023-08-30 |
JP5781436B2 (en) | 2015-09-24 |
EP2324360A2 (en) | 2011-05-25 |
US11994522B2 (en) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11994522B2 (en) | Biomarker detection process and assay of neurological condition | |
US20170176460A1 (en) | Neural specific s100-beta for biomarker assays and devices for detection of a neurological condition | |
WO2011160096A2 (en) | Glial fibrillary acidic protein, autoantigens and autoantibodies thereto as biomarkers of neural injury or neurological disorder or condition | |
US20190064187A1 (en) | Biomarker assay of neurological condition | |
US20120202231A1 (en) | Synergistic biomarker assay of neurological condition using s-100b | |
US20150268252A1 (en) | Biomarker assay of neurological condition | |
US20140342381A1 (en) | Devices and methods for biomarker detection process and assay of neurological condition | |
US20110082203A1 (en) | Process to diagnose or treat brain injury | |
WO2015066211A1 (en) | Uch-l1 isoforms, assays and devices for detection of a neurological condition | |
US20140303041A1 (en) | In vitro diagnostic devices for nervous system injury and other neural disorders | |
US20170307640A1 (en) | Methods, kits and devices for detecting bii-spectrin, and breakdown products thereof, as biomarkers for the diagnosis of neural injury | |
US20240264177A1 (en) | Biomarker detection process and assay of neurological condition | |
AU2015203660A1 (en) | Process to diagnose or treat brain injury |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BANYAN BIOMARKERS, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, KEVIN KA-WANG;HAYES, RONALD L.;MUELLER, UWE R.;AND OTHERS;SIGNING DATES FROM 20091014 TO 20091022;REEL/FRAME:025798/0130 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |