US20110129182A1 - Optical waveguide device and method of manufacturing the same - Google Patents
Optical waveguide device and method of manufacturing the same Download PDFInfo
- Publication number
- US20110129182A1 US20110129182A1 US12/946,198 US94619810A US2011129182A1 US 20110129182 A1 US20110129182 A1 US 20110129182A1 US 94619810 A US94619810 A US 94619810A US 2011129182 A1 US2011129182 A1 US 2011129182A1
- Authority
- US
- United States
- Prior art keywords
- optical waveguide
- light
- path conversion
- light path
- inclined surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/43—Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12104—Mirror; Reflectors or the like
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/138—Integrated optical circuits characterised by the manufacturing method by using polymerisation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
Definitions
- the development of the backbone network communication line as mainly focusing on the optical fiber communication technology is proceeding steadily, in such a situation, the electric wirings in the information terminal are becoming a bottleneck.
- the optoelectronic composite substrate (optical waveguide device) of the type that transmits high-speed parts by the light signal has been proposed, in order to compensate the limit of transmission speed of the electric signal.
- the light path conversion inclined surface that is inclined to intersect with the light propagation direction at an angle of 45° is formed at both ends of the optical waveguide, and then the light path conversion mirror is constructed to contact the light path conversion inclined surface, so that the light path conversion is made.
- Patent Literature 1 Japanese Laid-open Patent Publication No. 2002-3654557, it is set forth that the closed space (the air space, or the like) that is enclosed by the light path conversion inclined surface of the optical waveguide and the substrate is used as the light path conversion mirror.
- Patent Literature 2 Japanese Laid-open Patent Publication No. 2008-250007
- the metal film is formed on the light path conversion inclined surface of the optical waveguide by a deposition, or the like, and is used as the light path conversion mirror.
- Patent Literature 3 Japanese Laid-open Patent Publication No. 2008-134621
- the solder resist film of high reflectance is formed on the printed-wiring board by using a white light-curing/thermosetting resin composition.
- Patent Literature 1 In the case where a light reflection is caused by utilizing the space (the air space, or the like)(Patent Literature 1), the space that contacts the light path conversion inclined surface of the optical waveguide must be provided. Therefore, it is feared that a structure of the substrate becomes complicated to bring about an increase in cost.
- Patent Literature 2 In the case where a light reflection is caused by forming the metal film on the light path conversion inclined surface of the optical waveguide (Patent Literature 2), it is needed to form the metal film by the vacuum deposition or the sputter method. Therefore, the new production facilities must be introduced into the mounting line, and it is feared that such situation is at a disadvantage in cost.
- an optical waveguide device which includes a wiring substrate, an optical waveguide bonded on the wiring substrate, and having a light path conversion inclined surface on both ends; and a light path conversion mirror formed to contact the light path conversion inclined surface of the optical waveguide, and formed of a light reflective resin layer or a metal paste layer.
- an optical waveguide device including bonding an optical waveguide having a light path conversion inclined surface on both ends, on a wiring substrate, and obtaining a light path conversion mirror by forming a light reflective resin layer or a metal paste layer to contact the light path conversion inclined surface of the optical waveguide.
- FIGS. 1A to 1C are sectional views (# 1 ) depicting a method of manufacturing an optical waveguide device according to a first embodiment
- FIGS. 2A to 2C are sectional views (# 2 ) depicting the method of manufacturing the optical waveguide device according to the first embodiment
- FIG. 3 is a sectional view depicting an optical waveguide device according to the first embodiment
- FIGS. 4A and 4B are fragmental enlarged views in which neighborhoods of a light emitting element and a light receiving element in FIG. 3 are enlarged, and which depict a state that a light propagates from the light emitting element to the light receiving element via an optical waveguide;
- FIGS. 5A to 5C are sectional views (# 1 ) depicting a method of manufacturing an optical waveguide device according to a second embodiment
- FIGS. 6A to 6C are sectional views (# 2 ) depicting the method of manufacturing the optical waveguide device according to the second embodiment
- FIG. 7 is a sectional view depicting an optical waveguide device according to the second embodiment.
- FIG. 8 is a sectional view depicting another optical waveguide device according to the second embodiment.
- FIGS. 9A to 9C are sectional views depicting a method of manufacturing an optical waveguide device according to a third embodiment
- FIG. 10 is a sectional view depicting an optical waveguide device according to the third embodiment.
- FIGS. 11A to 11C are sectional views depicting a method of manufacturing an optical waveguide device according to a fourth embodiment.
- FIG. 12 is a sectional view depicting an optical waveguide device according to the fourth embodiment.
- FIGS. 1A to FIG. 3 are sectional views depicting a method of manufacturing an optical waveguide device according to a first embodiment.
- a wiring substrate 10 and an optical waveguide 20 are prepared.
- the wiring substrate 10 through holes TH which penetrate to the thickness direction are provided in an insulation substrate 12 made of a resin, or the like, and a penetration electrode 14 is filled in the through holes TH respectively.
- upper connection pads C 1 each connected to the penetration electrode 14 are formed on the upper surface side of the insulation substrate 12 .
- lower connection pads C 2 each connected to the penetration electrode 14 are formed on the lower surface side of the insulation substrate 12 .
- the upper connection pads C 1 , the lower connection pads C 2 , and the penetration electrodes 14 are formed of a metal layer made of copper, or the like.
- the upper connection pads C 1 and the lower connection pads C 2 are connected to the wiring layer, and may be arranged at one end, or may be arranged like an island. Also, internal wiring layers may be formed in the wiring substrate 10 .
- the stacked number of wiring layers of the wiring substrate 10 can be set arbitrarily.
- solder resist 16 in which an opening portion 16 a is provided on the lower connection pads C 2 respectively is formed on the lower surface side of the insulation substrate 12 .
- the optical waveguide 20 is constructed by a core portion 22 , and cladding portion 24 which is formed to surround the core portion 22 (a fragmental sectional view in FIG. 1A ).
- a refractive index of the core portion 22 is set higher than a refractive index of the cladding portion 24 .
- As the material of the core portion 22 and the cladding portion 24 preferably a fluorinated polyimide resin, a UV curable epoxy resin, a silicone resin, or the like is employed.
- a light path conversion inclined surface S which is inclined toward the inside from the upper surface end portion is provided to both ends of the optical waveguide 20 . respectively.
- the light path conversion inclined surface S is inclined to intersect with a light propagation direction A (extending direction of the optical waveguide 20 ) at an angle of 45°.
- the cladding portion 24 of the lower side of the optical waveguide 20 is bonded and fixed onto the wiring substrate 10 by an adhesive agent 18 .
- an adhesive agent 18 a UV curable resin, or the like is employed.
- a liquid light reflective resin material having photosensitivity is formed on the wiring substrate 10 and the optical waveguide 20 by the screen printing, or the like.
- a light reflective resin layer 30 in a semi-cured state is obtained by the pre-curing (preliminary heating process) the light reflective resin material in a temperature atmosphere of about 150° C.
- the light reflective resin layer 30 is formed such that no clearance is formed between the light path conversion inclined surface S of the optical waveguide 20 and the light reflective resin layer 30 , and the light reflective resin layer 30 is formed to contact the whole surface of the light path conversion inclined surface S.
- the light reflective resin layer 30 having photosensitivity is exposed/developed on the basis of the photolithography. Accordingly, via holes VH each reaching the upper connection pad C 1 on both end sides of the wiring substrate 10 are formed in the light reflective resin layer 30 . Simultaneously with this, a light transmitting opening portion 30 a is formed in the light reflective resin layer 30 on the light path conversion inclined surface S on both end sides of the optical waveguide 20 , and thus the upper cladding layer 24 is exposed.
- the light reflective resin layer 30 is cured by applying the main-curing (heating process) in a temperature atmosphere of about 150° C.
- the light reflective resin layer 30 is formed of white resin that the resin such as epoxy is impregnate with a white pigment such as titanium oxide (TiO 2 ), or the like, and has a high light reflectivity. For example, a light whose wavelength is 850 nm is employed, and a reflectance of 90% or more can be obtained.
- the light reflective resin layer 30 which contacts the light path conversion inclined surface S of the optical waveguide 20 functions as a light path conversion mirror M. That is, in the present embodiment, by utilizing the light reflective resin layer 30 as the light path conversion mirror M, a light which propagates through the core portion 22 of the optical waveguide 20 can be converted at the light path conversion inclined surface S by 90°.
- a copper plating layer is formed from the bottom part to the top part of the via hole VH by the electroplating utilizing a plating power feeding layer (not shown) connected to the upper connection pad C 1 as a plating power feeding path. Accordingly, an electrode pad P like a post connected to the upper connection pad C 1 is filled in the via holes VH respectively.
- the plating power feeding layer is not present under the light transmitting opening portion 30 a of the light reflective resin layer 30 . Therefore, a copper plating is not applied to the light transmitting opening portion 30 a , and is kept in identical state.
- the plating power feeding layer (not shown) connected to the upper connection pad C 1 is cut off from the upper connection pad C 1 later.
- a light emitting element 40 and a light receiving element 42 are prepared.
- the light emitting element 40 preferably a surface emitting laser (VCSEL: Vertical Cavity Surface Emitting Laser) is employed.
- VCSEL Vertical Cavity Surface Emitting Laser
- the light receiving element 42 preferably a photo diode is employed.
- the light emitting element 40 has a light emitting portion 40 a and a connection terminal 40 b on the lower surface side. Then, the connection terminal 40 b of the light emitting element 40 is connected and mounted onto the electrode pad P on one end side of the wiring substrate 10 in a state that the light emitting portion 40 a of the light emitting element 40 is directed downward. At this time, the light emitting portion 40 a of the light emitting element 40 is positioned just over the light path conversion inclined surface S of the one end side of the optical waveguide 20 . Accordingly, the light emitting element 40 is optically coupled to the light path conversion inclined surface S (the core portion 22 ) on the one end side of the optical waveguide 20 .
- the light receiving element 42 has a light receiving portion 42 a and a connection terminal 42 b on the lower surface side. Then, the connection terminal 42 b of the light receiving element 42 is connected and mounted onto the electrode pad P on the other end side of the wiring substrate 10 in a state that the light receiving portion 42 a of the light receiving element 42 is directed downward.
- the light receiving portion 42 a of the light receiving element 42 is positioned just over the light path conversion inclined surface S of the optical waveguide 20 .
- the light receiving element 42 is optically coupled to the light path conversion inclined surface S (the core portion 22 ) on the other end side of the optical waveguide 20 .
- a dummy terminal is provided to predetermined end parts of the light emitting element 40 and the light receiving element 42 respectively. Because the dummy terminal is arranged to the light reflective resin layer 30 on the wiring substrate 10 , the light emitting element 40 and the light receiving element 42 are mounted without inclination.
- an underfill resin 44 is filled into a clearance located under the light emitting element 40 .
- the underfill resin 44 is filled into a clearance between the light emitting element 40 and the bottom surface of the light transmitting opening portion 30 a of the light reflective resin layer 30 and a clearance between the light emitting element 40 and the upper surface of the light reflective resin layer 30 .
- the underfill resin 44 is filled into a clearance located under the light receiving element 42 .
- the underfill resin 44 is filled into a clearance between the light receiving element 42 and the bottom surface of the light transmitting opening portion 30 a of the light reflective resin layer 30 and a clearance between the light receiving element 42 and the upper surface of the light reflective resin layer 30 .
- the underfill resin 44 the identical resin with the resin material of the core portion 22 or the cladding portion 24 , mentioned above, is employed.
- the optical waveguide 20 is bonded and fixed onto the wiring substrate 10 having the above structure by the adhesive agent 18 .
- the optical waveguide 20 is constructed with such a structure that core portion 22 is surrounded by the cladding portion 24 .
- the light path conversion inclined surface S which is inclined to intersect with the light propagation direction A ( FIG. 1A ) at an angle of 45° is provided on both ends of the optical waveguide 20 respectively.
- the light reflective resin layer 30 is formed on the side surface and the upper surface of the optical waveguide 20 , and the optical waveguide 20 is buried in the light reflective resin layer 30 . Then, the light reflective resin layer 30 which contacts the light path conversion inclined surfaces S on both ends of the optical waveguide 20 functions as the light path conversion mirror M respectively. That is, the light path conversion mirror M is formed from the light reflective resin layer 30 .
- the via holes VH each reaching the upper connection pad C 1 on both end sides of the wiring substrate 10 are provided in the light reflective resin layer 30 .
- the electrode pad P formed of a copper plating layer is filled in the via holes VH respectively.
- the light transmitting opening portion 30 a is provided in the light reflective resin layer 30 on the light path conversion inclined surface S on both ends of the optical waveguide 20 respectively.
- connection terminals 40 b of the light emitting element 40 are connected and mounted on the electrode pads P on one end side of the wiring substrate 10 in a state that the light emitting portion 40 a of the light emitting element 40 is directed downward.
- the light emitting element 40 is optically coupled to the light path conversion inclined surface S (the core portion 22 ) such that the light emitting portion 40 a is positioned just over the light path conversion inclined surface S on one end side of the optical waveguide 20 .
- connection terminals 42 b of the light receiving element 42 are connected and mounted onto the electrode pads P on the other end side of the wiring substrate 10 in a state that the light receiving portion 42 a of the light receiving element 42 is directed downward.
- the light receiving element 42 is optically coupled to the light path conversion inclined surface S (the core portion 22 ) such that the light receiving portion 42 a is positioned just over the light path conversion inclined surface S on the other end side of the optical waveguide 20 .
- underfill resin 44 is filled into a clearance located under the light emitting element 40 and the light receiving element 42 respectively.
- FIGS. 4A and 4B a fragmental enlarged view of neighborhoods of the light emitting element 40 and the light receiving element 42 in FIG. 3 is depicted. While referring to FIG. 3 and FIGS. 4A and 4B , it will be explained that a state in which a light is propagated from the light emitting element 40 to the light receiving element 42 through the optical waveguide 20 .
- an electric signal being output from a first LSI chip such as CPU, or the like (not shown) mounted on the wiring substrate 10 is supplied to the light emitting element 40 , and a light L is emitted downward from the light emitting portion 40 a of the light emitting element 40 .
- the light L emitted from the light emitting element 40 passes through the underfill resin 44 formed under the light emitting element 40 (in the light transmitting opening portion 30 a of the light reflective resin layer 30 ), and then reaches the light path conversion inclined surface S on one end side of the optical waveguide 20 .
- the light L which reached the light path conversion inclined surface S is reflected by the light reflective resin layer 30 (the light path conversion mirror M) which contacts the light path conversion inclined surface S, so that the light path is converted by 90° and then the light L enters to the core portion 22 .
- the underfill resin 44 is formed by the identical resin with the core portion 22 or the cladding portion 24 . Therefore, a reflection of light at the boundary to the optical waveguide 20 can be suppressed to the utmost.
- the light L enters in the core portion 22 propagates while repeating a total reflection in the core portion 22 , and reaches the light path conversion inclined surface S on the other end side. Then, the light L is reflected by the light reflective resin layer 30 (the light path conversion mirror M) which contacts the light path conversion inclined surface S on the other end side and thus the light path is converted by 90°. Then, the light L passes through the underfill resin 44 and is entered in the light receiving portion 42 a of the light receiving element 42 .
- the light receiving element 42 converts the light signal into the electric signal, so that the electric signal is supplied to a second LSI chip such as a memory, or the like (not shown) mounted on the wiring substrate 10 .
- the light path conversion mirror M provided to contact the light path conversion inclined surface S of the optical waveguide 20 is formed from the light reflective resin layer 30 .
- the light reflective resin layer 30 can be formed easily by using the screen printing machine for forming a resin (solder resist, or the like), that is already equipped in the common mounting line.
- the metal film is used as the light path conversion mirror, there is no necessity to introduce particularly the vacuum deposition equipment, the sputtering equipment, or the like. Therefore, a reduction of production cost can be achieved. Also, there is no necessity to form the metal film only on the light path conversion inclined surface, or to provide a space (an air space, an inert gas space, a vacuum space, or the like). Therefore, a structure of the substrate can be made simple, and the steps/man-hours can be reduced.
- the light reflective resin layer 30 has the sufficient light reflecting characteristics, therefore the high-performance optical waveguide device can be constructed.
- FIGS. 5A to 5C and FIGS. 6A to 6C are sectional views depicting a method of manufacturing an optical waveguide device according to a second embodiment.
- a feature of the second embodiment resides in that the light reflective resin layer is formed partially only on the side surface of the light path conversion inclined surface S of the optical waveguide 20 as the resin layer portion.
- the same reference symbols are affixed to the same steps and the same elements as those in the first embodiment, and their explanation will be omitted herein.
- the optical waveguide 20 is bonded and fixed onto the wiring substrate 10 by the adhesive agent 18 .
- the liquid light reflective resin material is formed partially on the side surface of the light path conversion inclined surface S on both ends of the optical waveguide 20 by the dispenser, or the like, and is cured by applying the main-curing (heating process). Accordingly, a light reflective resin layer portion 30 x which contacts the light path conversion inclined surface S on both ends of the optical waveguide 20 is formed partially, and functions as the light path conversion mirror M.
- the light reflective resin layer portion 30 x in the second embodiment is formed of the identical white resin with the light reflective resin layer 30 in the first embodiment.
- the light reflective resin layer portion 30 x can be formed easily by the resin dispenser which is already equipped in the common mounting line.
- a metal paste layer 32 formed of the metal paste material such as a silver paste, or the like may be employed instead of the light reflective resin layer portion 30 x . That is, the metal paste material is coated partially to the side of the light path conversion inclined surface S on both ends of the optical waveguide 20 by the dispenser, and the metal paste layer 32 is formed by sintering the metal paste material, and the metal paste layer 32 may be utilized as the light path conversion mirror M.
- the metal paste material is formed by dispersing the metal particles into the resin such as epoxy resin, or the like. And the metal particles contact each other by sintering the metal paste material, and thus the metal paste layer 32 formed of the metal layer is obtained.
- the gray/white system metal paste layer 32 such as a silver paste layer, a nickel paste layer, a palladium paste layer, or the like has a high reflectance, and can be preferably utilized as the light path conversion mirror M.
- the metal paste layer 32 can be formed easily by using the dispenser that is already equipped in the common mounting line and coats the silver paste, or the like used in mounting.
- a photosensitive solder resist 26 (insulating resin layer) is formed on the wiring substrate 10 and the optical waveguide 20 .
- the via holes VH each reaches the upper connection pad C 1 on both end sides of the wiring substrate 10 are formed by exposing/developing the solder resist 26 .
- solder resist 26 is illustrated as the insulating resin layer, but various resin layers can be used.
- a copper plating layer is formed in the via holes VH in the solder resist 26 respectively, and thus the electrode pads P like a post connected to the upper connection pad C 1 respectively are obtained.
- connection terminals 40 b of the light emitting element 40 which is optically coupled to the light path conversion inclined surface S on one end side of the optical waveguide 20 , are connected to the electrode pads P on one end side of the wiring substrate 10 .
- connection terminals 42 b of the light receiving element 42 which is optically coupled to the light path conversion inclined surface S on the other end side of the optical waveguide 20 , are connected to the electrode pads P on the other end side of the wiring substrate 10 .
- the underfill resin 44 is filled into clearances located under the light emitting element 40 and the light receiving element 42 respectively.
- the underfill resin 44 is formed of the identical resin with the resin material of the core portion 22 or the cladding portion 24 .
- an optical waveguide device 2 of the second embodiment can be obtained.
- the light reflective resin layer portion 30 x is formed partially only on the side surface of the light path conversion inclined surface S of the optical waveguide 20 to contact the light path conversion inclined surface S.
- the solder resist 26 is formed on the wiring substrate 10 and the optical waveguide 20 .
- the via holes VH each reaches the upper connection pad C 1 on both end sides of the wiring substrate 10 are provided in the solder resist 26 respectively.
- the electrode pad P is filled in the via holes VH respectively.
- the light transmitting opening portion 26 a is provided in the solder resist 26 located over the light path conversion inclined surface S on both ends of the optical waveguide 20 respectively.
- connection terminal 40 b of the light emitting element 40 which is optically coupled to the light path conversion inclined surface S on one end side of the optical waveguide 20 , is connected the electrode pad P on one end side of the wiring substrate 10 and is mounted thereon.
- connection terminal 42 b of the light receiving element 42 which is optically coupled to the light path conversion inclined surface S on the other end side of the optical waveguide 20 , is connected the electrode pad P on the other end side of the wiring substrate 10 and is mounted thereon.
- the underfill resin 44 is filled in the clearances located under the light emitting element 40 and the light receiving element 42 respectively.
- FIG. 8 as depicted in a lower drawing of above FIG. 5B , another optical waveguide device 2 a using the metal paste layer 32 as the light path conversion mirror M is illustrated.
- the metal paste layer 32 is formed instead of the light reflective resin layer portion 30 x in the optical waveguide device 2 in FIG. 7 .
- the metal paste layer 32 is formed partially only on the side surface of the light path conversion inclined surface S on both ends of the optical waveguide 20 to contact the light path conversion inclined surface S.
- Other elements of the optical waveguide device 2 a in FIG. 8 are similar to those of the optical waveguide device 2 in FIG. 7 .
- the optical waveguide devices 2 , 2 a of the second embodiment can achieve the similar advantages to those in the optical waveguide device 1 of the first embodiment.
- the light reflective resin layer portion 30 x or the metal paste layer 32 is formed partially only on the side surface of the light path conversion inclined surface S on both ends of the optical waveguide 20 to constitute the light path conversion mirror M.
- the solder resist 26 which is relatively inexpensive can be used in other portions. Therefore, a reduction in cost can be attained more than the case where the light reflective resin is formed over the whole surface of the wiring substrate 10 . Also, in the case that the metal paste layer 32 is used, since the metal paste layer 32 may be formed only on the parts where the light path conversion mirror M is arranged, a reduction in cost can be attained similarly.
- FIGS. 9A to 9C and FIG. 10 are sectional views depicting a method of manufacturing an optical waveguide device according to a third embodiment.
- a feature of the third embodiment resides in that the light reflective resin layer is utilized not only as the light path conversion mirror but also as the adhesive agent which is used to bond the optical waveguide to the wiring substrate.
- the wiring substrate 10 onto which the optical waveguide 20 is bonded is prepared.
- a liquid light reflective resin material 30 y is formed in the area, which corresponds to the whole area of the optical waveguide 20 , on the wiring substrate 10 by the screen printing, or the like.
- the light reflective resin material 30 y is brought into a semi-cured state by applying the pre-curing.
- the optical waveguide 20 is pressed into the light reflective resin material 30 y such that the light reflective resin material 30 y of the semi-cured state contacts the light path conversion inclined surface S on both ends of the optical waveguide 20 .
- the light reflective resin material 30 y of a semi-cured state is cured by applying the main curing, and thus the light reflective resin layer 30 is obtained.
- the light reflective resin layer 30 located under the optical waveguide 20 functions as the adhesive agent which bonds the optical waveguide 20 to the wiring substrate 10 in the step of curing. Then, the light reflective resin layer 30 which contacts the light path conversion inclined surface S on both ends of the optical waveguide 20 functions as the light path conversion mirror M respectively.
- the light reflective resin layer 30 can also be formed easily by the resin screen printing machine which is already equipped in the common mounting line, or the like.
- the solder resist 26 (insulating resin layer) is formed by the same method as the second embodiment.
- the via holes VH each reaches the upper connection pad C 1 on both end sides of the wiring substrate 10 and the light transmitting opening portion 26 a arranged over the light path conversion inclined surface S are provided.
- the electrode pad P like a post is formed in the via holes VH in the solder resist 26 by the same method as the first embodiment.
- connection terminal 40 b of the light emitting element 40 which is optically coupled to the light path conversion inclined surface S on one end side of the optical waveguide 20 is connected to the electrode pad P on one end side of the wiring substrate 10 .
- connection terminal 42 b of the light receiving element 42 which is optically coupled to the light path conversion inclined surface S on the other end side of the optical waveguide 20 is connected to the electrode pad P on the other end side of the wiring substrate 10 .
- the underfill resin 44 is filled into the clearances located under the light emitting element 40 and the light receiving element 42 respectively.
- an optical waveguide device 3 of the third embodiment can be obtained.
- the optical waveguide 20 is bonded onto the wiring substrate 10 by the light reflective resin layer 30 which functions as the adhesive agent.
- the light reflective resin layer 30 is formed to extend from the lower side of the optical waveguide 20 to the side of the light path conversion inclined surface S located on both ends.
- the light reflective resin layer 30 formed on both ends of the optical waveguide 20 contacts the light path conversion inclined surface S of the optical waveguide 20 , and functions as the light path conversion mirror M respectively.
- optical waveguide device 3 in FIG. 10 are similar to those of the optical waveguide device 2 ( FIG. 7 ) in the second embodiment.
- the optical waveguide device 3 in the third embodiment can achieve the similar advantages to those of the optical waveguide devices 1 , 2 of the first and second embodiments. Also, in the third embodiment, the adhesive agent 18 for bonding the optical waveguide 20 to the wiring substrate 10 is not used, and the light reflective resin layer 30 is also used as the adhesive agent. As a result, the steps can be simplified more than the first and second embodiments, and a further reduction in cost can be achieved.
- FIGS. 11A to 11C and FIG. 12 are sectional views depicting a method of manufacturing an optical waveguide device according to a fourth embodiment.
- a feature of the fourth embodiment resides in that the metal paste layer is utilized not only as the light path conversion mirror but also as the adhesive agent which bonds the optical waveguide to the wiring substrate.
- the same reference symbols are affixed to the same steps and the same elements as those in the first embodiment, and their explanation will be omitted herein.
- the wiring substrate 10 to which the optical waveguide 20 is to be bonded is prepared. Then, a metal paste material 32 a such as a silver paste, or the like is formed in the area, which corresponds to the whole area of optical waveguide 20 on the wiring substrate 10 , by the screen printing, or the like.
- a metal paste material 32 a such as a silver paste, or the like is formed in the area, which corresponds to the whole area of optical waveguide 20 on the wiring substrate 10 , by the screen printing, or the like.
- the optical waveguide 20 is pressed into the metal paste material 32 a such that the metal paste material 32 a contacts the light path conversion inclined surface S of the optical waveguide 20 .
- the metal paste layer 32 is obtained by curing the metal paste material 32 a by means of sintering.
- the metal paste material 32 a located under the optical waveguide 20 functions as the adhesive agent, which bonds the optical waveguide 20 to the wiring substrate 10 , in the step of curing. Then, the metal paste layer 32 which contacts the light path conversion inclined surface S on both sides of the optical waveguide 20 functions as the light path conversion mirror M respectively.
- the metal paste layer 32 can be formed easily by the screen printing machine which is already equipped in the common mounting line, or the like, for forming a silver paste, or the like.
- the solder resist 26 (insulating resin layer) is formed by the similar method to the second embodiment.
- the via holes VH each reaches the upper connection pad C 1 of the wiring substrate 10 and the light transmitting opening portion 26 a arranged over the light path conversion inclined surface S are provided.
- the electrode pad P like a post is formed in the via holes VH in the solder resist 26 by the similar method to the first embodiment.
- connection terminal 40 b of the light emitting element 40 which is optically coupled to the light path conversion inclined surface S on one end side of the optical waveguide 20 , is connected to the electrode pad P on one end side of the wiring substrate 10 .
- connection terminal 42 b of the light receiving element 42 which is optically coupled to the light path conversion inclined surface S on the other end side of the optical waveguide 20 , is connected to the electrode pad P on the other end side of the wiring substrate 10 .
- the underfill resin 44 is filled into the clearances located under the light emitting element 40 and the light receiving element 42 respectively.
- an optical waveguide device 4 of the fourth embodiment can be obtained.
- the optical waveguide 20 is bonded onto the wiring substrate 10 by the metal paste layer 32 which functions as the adhesive agent.
- the metal paste layer 32 is formed to extend from the lower side of the optical waveguide 20 to the side of the light path conversion inclined surface S on both ends. Also, the metal paste layer 32 which contacts the light path conversion inclined surface S of the optical waveguide 20 functions as the light path conversion mirror M.
- optical waveguide device 4 in FIG. 12 Other elements of the optical waveguide device 4 in FIG. 12 are similar to those of the optical waveguide device 2 ( FIG. 7 ) in the second embodiment.
- the optical waveguide device 3 in the fourth embodiment can achieve the similar advantages to those of the optical waveguide devices 1 , 2 of the first and second embodiments. Also, in the fourth embodiment, the adhesive agent 18 for bonding the optical waveguide 20 to the wiring substrate 10 is not used, and the metal paste layer 32 is also used as the adhesive agent. As a result, the steps can be simplified more than the optical waveguide device 2 a ( FIG. 8 ) in the second embodiment, and a further reduction in cost can be achieved.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
- Optical Couplings Of Light Guides (AREA)
- Structure Of Printed Boards (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
- This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2009-271837, filed on Nov. 30, 2009, the entire contents of which are incorporated herein by reference.
- It is related to an optical waveguide device and a method of manufacturing the same.
- Recently, the development of the backbone network communication line as mainly focusing on the optical fiber communication technology is proceeding steadily, in such a situation, the electric wirings in the information terminal are becoming a bottleneck. Against such background, instead of the conventional electric circuit substrate in which all signal transmissions are made by using the electric signal, the optoelectronic composite substrate (optical waveguide device) of the type that transmits high-speed parts by the light signal has been proposed, in order to compensate the limit of transmission speed of the electric signal.
- In the case that the light emitting element and the light receiving element of the surface mounted type are mounted to the optical waveguide, the light path conversion inclined surface that is inclined to intersect with the light propagation direction at an angle of 45° is formed at both ends of the optical waveguide, and then the light path conversion mirror is constructed to contact the light path conversion inclined surface, so that the light path conversion is made.
- In Patent Literature 1 (Japanese Laid-open Patent Publication No. 2002-365457), it is set forth that the closed space (the air space, or the like) that is enclosed by the light path conversion inclined surface of the optical waveguide and the substrate is used as the light path conversion mirror.
- Also, in Patent Literature 2 (Japanese Laid-open Patent Publication No. 2008-250007), it is set forth that the metal film is formed on the light path conversion inclined surface of the optical waveguide by a deposition, or the like, and is used as the light path conversion mirror.
- In Patent Literature 3 (Japanese Laid-open Patent Publication No. 2008-134621), it is set forth that the solder resist film of high reflectance is formed on the printed-wiring board by using a white light-curing/thermosetting resin composition.
- In the case where a light reflection is caused by utilizing the space (the air space, or the like)(Patent Literature 1), the space that contacts the light path conversion inclined surface of the optical waveguide must be provided. Therefore, it is feared that a structure of the substrate becomes complicated to bring about an increase in cost.
- Also, in the case where a light reflection is caused by forming the metal film on the light path conversion inclined surface of the optical waveguide (Patent Literature 2), it is needed to form the metal film by the vacuum deposition or the sputter method. Therefore, the new production facilities must be introduced into the mounting line, and it is feared that such situation is at a disadvantage in cost.
- According to one aspect discussed herein, there is provided an optical waveguide device, which includes a wiring substrate, an optical waveguide bonded on the wiring substrate, and having a light path conversion inclined surface on both ends; and a light path conversion mirror formed to contact the light path conversion inclined surface of the optical waveguide, and formed of a light reflective resin layer or a metal paste layer.
- According to another aspect discussed herein, there is provided a method of manufacturing an optical waveguide device, including bonding an optical waveguide having a light path conversion inclined surface on both ends, on a wiring substrate, and obtaining a light path conversion mirror by forming a light reflective resin layer or a metal paste layer to contact the light path conversion inclined surface of the optical waveguide.
-
FIGS. 1A to 1C are sectional views (#1) depicting a method of manufacturing an optical waveguide device according to a first embodiment; -
FIGS. 2A to 2C are sectional views (#2) depicting the method of manufacturing the optical waveguide device according to the first embodiment; -
FIG. 3 is a sectional view depicting an optical waveguide device according to the first embodiment; -
FIGS. 4A and 4B are fragmental enlarged views in which neighborhoods of a light emitting element and a light receiving element inFIG. 3 are enlarged, and which depict a state that a light propagates from the light emitting element to the light receiving element via an optical waveguide; -
FIGS. 5A to 5C are sectional views (#1) depicting a method of manufacturing an optical waveguide device according to a second embodiment; -
FIGS. 6A to 6C are sectional views (#2) depicting the method of manufacturing the optical waveguide device according to the second embodiment; -
FIG. 7 is a sectional view depicting an optical waveguide device according to the second embodiment; -
FIG. 8 is a sectional view depicting another optical waveguide device according to the second embodiment; -
FIGS. 9A to 9C are sectional views depicting a method of manufacturing an optical waveguide device according to a third embodiment; -
FIG. 10 is a sectional view depicting an optical waveguide device according to the third embodiment; -
FIGS. 11A to 11C are sectional views depicting a method of manufacturing an optical waveguide device according to a fourth embodiment; and -
FIG. 12 is a sectional view depicting an optical waveguide device according to the fourth embodiment. - Embodiments will be explained with reference to the accompanying drawings hereinafter.
-
FIGS. 1A toFIG. 3 are sectional views depicting a method of manufacturing an optical waveguide device according to a first embodiment. - In the method of manufacturing the optical waveguide device according to the first embodiment, as depicted in
FIG. 1A , first, awiring substrate 10 and anoptical waveguide 20 are prepared. In thewiring substrate 10, through holes TH which penetrate to the thickness direction are provided in aninsulation substrate 12 made of a resin, or the like, and apenetration electrode 14 is filled in the through holes TH respectively. - Also, upper connection pads C1 each connected to the
penetration electrode 14 are formed on the upper surface side of theinsulation substrate 12. Also, lower connection pads C2 each connected to thepenetration electrode 14 are formed on the lower surface side of theinsulation substrate 12. In this manner, the upper connection pads C1 and the lower connection pads C2 formed on both surface sides of theinsulation substrate 12 are connected mutually via thepenetration electrode 14 respectively. The upper connection pads C1, the lower connection pads C2, and thepenetration electrodes 14 are formed of a metal layer made of copper, or the like. - The upper connection pads C1 and the lower connection pads C2 are connected to the wiring layer, and may be arranged at one end, or may be arranged like an island. Also, internal wiring layers may be formed in the
wiring substrate 10. The stacked number of wiring layers of thewiring substrate 10 can be set arbitrarily. - Also, a solder resist 16 in which an
opening portion 16 a is provided on the lower connection pads C2 respectively is formed on the lower surface side of theinsulation substrate 12. - The
optical waveguide 20 is constructed by acore portion 22, andcladding portion 24 which is formed to surround the core portion 22 (a fragmental sectional view inFIG. 1A ). A refractive index of thecore portion 22 is set higher than a refractive index of thecladding portion 24. As the material of thecore portion 22 and thecladding portion 24, preferably a fluorinated polyimide resin, a UV curable epoxy resin, a silicone resin, or the like is employed. - Also, a light path conversion inclined surface S which is inclined toward the inside from the upper surface end portion is provided to both ends of the
optical waveguide 20. respectively. The light path conversion inclined surface S is inclined to intersect with a light propagation direction A (extending direction of the optical waveguide 20) at an angle of 45°. - Then, as depicted in
FIG. 1B , thecladding portion 24 of the lower side of theoptical waveguide 20 is bonded and fixed onto thewiring substrate 10 by anadhesive agent 18. As theadhesive agent 18, a UV curable resin, or the like is employed. - Then, as depicted in
FIG. 1C , a liquid light reflective resin material having photosensitivity is formed on thewiring substrate 10 and theoptical waveguide 20 by the screen printing, or the like. Then, a lightreflective resin layer 30 in a semi-cured state is obtained by the pre-curing (preliminary heating process) the light reflective resin material in a temperature atmosphere of about 150° C. - At this time, the light
reflective resin layer 30 is formed such that no clearance is formed between the light path conversion inclined surface S of theoptical waveguide 20 and the lightreflective resin layer 30, and the lightreflective resin layer 30 is formed to contact the whole surface of the light path conversion inclined surface S. - Then, as depicted in
FIG. 2A , the lightreflective resin layer 30 having photosensitivity is exposed/developed on the basis of the photolithography. Accordingly, via holes VH each reaching the upper connection pad C1 on both end sides of thewiring substrate 10 are formed in the lightreflective resin layer 30. Simultaneously with this, a light transmittingopening portion 30 a is formed in the lightreflective resin layer 30 on the light path conversion inclined surface S on both end sides of theoptical waveguide 20, and thus theupper cladding layer 24 is exposed. - Further, the light
reflective resin layer 30 is cured by applying the main-curing (heating process) in a temperature atmosphere of about 150° C. The lightreflective resin layer 30 is formed of white resin that the resin such as epoxy is impregnate with a white pigment such as titanium oxide (TiO2), or the like, and has a high light reflectivity. For example, a light whose wavelength is 850 nm is employed, and a reflectance of 90% or more can be obtained. - Accordingly, the light
reflective resin layer 30 which contacts the light path conversion inclined surface S of theoptical waveguide 20 functions as a light path conversion mirror M. That is, in the present embodiment, by utilizing the lightreflective resin layer 30 as the light path conversion mirror M, a light which propagates through thecore portion 22 of theoptical waveguide 20 can be converted at the light path conversion inclined surface S by 90°. - Then, as depicted in
FIG. 2B , a copper plating layer is formed from the bottom part to the top part of the via hole VH by the electroplating utilizing a plating power feeding layer (not shown) connected to the upper connection pad C1 as a plating power feeding path. Accordingly, an electrode pad P like a post connected to the upper connection pad C1 is filled in the via holes VH respectively. - At this time, the plating power feeding layer is not present under the light transmitting
opening portion 30 a of the lightreflective resin layer 30. Therefore, a copper plating is not applied to the light transmittingopening portion 30 a, and is kept in identical state. The plating power feeding layer (not shown) connected to the upper connection pad C1 is cut off from the upper connection pad C1 later. - Then, as depicted in
FIG. 2C , alight emitting element 40 and alight receiving element 42 are prepared. As thelight emitting element 40, preferably a surface emitting laser (VCSEL: Vertical Cavity Surface Emitting Laser) is employed. Also, as thelight receiving element 42, preferably a photo diode is employed. - The
light emitting element 40 has alight emitting portion 40 a and aconnection terminal 40 b on the lower surface side. Then, theconnection terminal 40 b of thelight emitting element 40 is connected and mounted onto the electrode pad P on one end side of thewiring substrate 10 in a state that thelight emitting portion 40 a of thelight emitting element 40 is directed downward. At this time, thelight emitting portion 40 a of thelight emitting element 40 is positioned just over the light path conversion inclined surface S of the one end side of theoptical waveguide 20. Accordingly, thelight emitting element 40 is optically coupled to the light path conversion inclined surface S (the core portion 22) on the one end side of theoptical waveguide 20. - Also, the
light receiving element 42 has alight receiving portion 42 a and aconnection terminal 42 b on the lower surface side. Then, theconnection terminal 42 b of thelight receiving element 42 is connected and mounted onto the electrode pad P on the other end side of thewiring substrate 10 in a state that thelight receiving portion 42 a of thelight receiving element 42 is directed downward. - At this time, the
light receiving portion 42 a of thelight receiving element 42 is positioned just over the light path conversion inclined surface S of theoptical waveguide 20. As a result, thelight receiving element 42 is optically coupled to the light path conversion inclined surface S (the core portion 22) on the other end side of theoptical waveguide 20. - Although not particularly depicted, a dummy terminal is provided to predetermined end parts of the
light emitting element 40 and thelight receiving element 42 respectively. Because the dummy terminal is arranged to the lightreflective resin layer 30 on thewiring substrate 10, thelight emitting element 40 and thelight receiving element 42 are mounted without inclination. - Then, as depicted in
FIG. 3 , anunderfill resin 44 is filled into a clearance located under thelight emitting element 40. Thus, theunderfill resin 44 is filled into a clearance between the light emittingelement 40 and the bottom surface of the light transmittingopening portion 30 a of the lightreflective resin layer 30 and a clearance between the light emittingelement 40 and the upper surface of the lightreflective resin layer 30. - Further, the
underfill resin 44 is filled into a clearance located under thelight receiving element 42. Thus, theunderfill resin 44 is filled into a clearance between the light receivingelement 42 and the bottom surface of the light transmittingopening portion 30 a of the lightreflective resin layer 30 and a clearance between the light receivingelement 42 and the upper surface of the lightreflective resin layer 30. - As the
underfill resin 44, the identical resin with the resin material of thecore portion 22 or thecladding portion 24, mentioned above, is employed. - With the above, an
optical waveguide device 1 according to the first embodiment is obtained. - As depicted in
FIG. 3 , in theoptical waveguide device 1 according to the first embodiment, theoptical waveguide 20 is bonded and fixed onto thewiring substrate 10 having the above structure by theadhesive agent 18. Theoptical waveguide 20 is constructed with such a structure thatcore portion 22 is surrounded by thecladding portion 24. The light path conversion inclined surface S which is inclined to intersect with the light propagation direction A (FIG. 1A ) at an angle of 45° is provided on both ends of theoptical waveguide 20 respectively. - The light
reflective resin layer 30 is formed on the side surface and the upper surface of theoptical waveguide 20, and theoptical waveguide 20 is buried in the lightreflective resin layer 30. Then, the lightreflective resin layer 30 which contacts the light path conversion inclined surfaces S on both ends of theoptical waveguide 20 functions as the light path conversion mirror M respectively. That is, the light path conversion mirror M is formed from the lightreflective resin layer 30. - The via holes VH each reaching the upper connection pad C1 on both end sides of the
wiring substrate 10 are provided in the lightreflective resin layer 30. The electrode pad P formed of a copper plating layer is filled in the via holes VH respectively. - Also, the light transmitting
opening portion 30 a is provided in the lightreflective resin layer 30 on the light path conversion inclined surface S on both ends of theoptical waveguide 20 respectively. - The
connection terminals 40 b of thelight emitting element 40 are connected and mounted on the electrode pads P on one end side of thewiring substrate 10 in a state that thelight emitting portion 40 a of thelight emitting element 40 is directed downward. Thelight emitting element 40 is optically coupled to the light path conversion inclined surface S (the core portion 22) such that thelight emitting portion 40 a is positioned just over the light path conversion inclined surface S on one end side of theoptical waveguide 20. - Also, the
connection terminals 42 b of thelight receiving element 42 are connected and mounted onto the electrode pads P on the other end side of thewiring substrate 10 in a state that thelight receiving portion 42 a of thelight receiving element 42 is directed downward. Thelight receiving element 42 is optically coupled to the light path conversion inclined surface S (the core portion 22) such that thelight receiving portion 42 a is positioned just over the light path conversion inclined surface S on the other end side of theoptical waveguide 20. - Further, the
underfill resin 44 is filled into a clearance located under thelight emitting element 40 and thelight receiving element 42 respectively. - In
FIGS. 4A and 4B , a fragmental enlarged view of neighborhoods of thelight emitting element 40 and thelight receiving element 42 inFIG. 3 is depicted. While referring toFIG. 3 andFIGS. 4A and 4B , it will be explained that a state in which a light is propagated from thelight emitting element 40 to thelight receiving element 42 through theoptical waveguide 20. - As depicted in
FIG. 4A , an electric signal being output from a first LSI chip such as CPU, or the like (not shown) mounted on thewiring substrate 10 is supplied to thelight emitting element 40, and a light L is emitted downward from thelight emitting portion 40 a of thelight emitting element 40. The light L emitted from thelight emitting element 40 passes through theunderfill resin 44 formed under the light emitting element 40 (in the light transmittingopening portion 30 a of the light reflective resin layer 30), and then reaches the light path conversion inclined surface S on one end side of theoptical waveguide 20. Then, the light L which reached the light path conversion inclined surface S is reflected by the light reflective resin layer 30 (the light path conversion mirror M) which contacts the light path conversion inclined surface S, so that the light path is converted by 90° and then the light L enters to thecore portion 22. - At this time, the
underfill resin 44 is formed by the identical resin with thecore portion 22 or thecladding portion 24. Therefore, a reflection of light at the boundary to theoptical waveguide 20 can be suppressed to the utmost. - Then, as depicted in
FIG. 4B , the light L enters in thecore portion 22 propagates while repeating a total reflection in thecore portion 22, and reaches the light path conversion inclined surface S on the other end side. Then, the light L is reflected by the light reflective resin layer 30 (the light path conversion mirror M) which contacts the light path conversion inclined surface S on the other end side and thus the light path is converted by 90°. Then, the light L passes through theunderfill resin 44 and is entered in thelight receiving portion 42 a of thelight receiving element 42. - The
light receiving element 42 converts the light signal into the electric signal, so that the electric signal is supplied to a second LSI chip such as a memory, or the like (not shown) mounted on thewiring substrate 10. - As explained above, in the
optical waveguide device 1 of the present embodiment, the light path conversion mirror M provided to contact the light path conversion inclined surface S of theoptical waveguide 20 is formed from the lightreflective resin layer 30. The lightreflective resin layer 30 can be formed easily by using the screen printing machine for forming a resin (solder resist, or the like), that is already equipped in the common mounting line. - Accordingly, unlike the case where the metal film is used as the light path conversion mirror, there is no necessity to introduce particularly the vacuum deposition equipment, the sputtering equipment, or the like. Therefore, a reduction of production cost can be achieved. Also, there is no necessity to form the metal film only on the light path conversion inclined surface, or to provide a space (an air space, an inert gas space, a vacuum space, or the like). Therefore, a structure of the substrate can be made simple, and the steps/man-hours can be reduced.
- In addition, the light
reflective resin layer 30 has the sufficient light reflecting characteristics, therefore the high-performance optical waveguide device can be constructed. -
FIGS. 5A to 5C andFIGS. 6A to 6C are sectional views depicting a method of manufacturing an optical waveguide device according to a second embodiment. - A feature of the second embodiment resides in that the light reflective resin layer is formed partially only on the side surface of the light path conversion inclined surface S of the
optical waveguide 20 as the resin layer portion. In the second embodiment, the same reference symbols are affixed to the same steps and the same elements as those in the first embodiment, and their explanation will be omitted herein. - As depicted in
FIG. 5A , likeFIG. 1B in the above first embodiment, theoptical waveguide 20 is bonded and fixed onto thewiring substrate 10 by theadhesive agent 18. - Then, as depicted in an upper drawing of
FIG. 5B , the liquid light reflective resin material is formed partially on the side surface of the light path conversion inclined surface S on both ends of theoptical waveguide 20 by the dispenser, or the like, and is cured by applying the main-curing (heating process). Accordingly, a light reflectiveresin layer portion 30 x which contacts the light path conversion inclined surface S on both ends of theoptical waveguide 20 is formed partially, and functions as the light path conversion mirror M. The light reflectiveresin layer portion 30 x in the second embodiment is formed of the identical white resin with the lightreflective resin layer 30 in the first embodiment. - The light reflective
resin layer portion 30 x can be formed easily by the resin dispenser which is already equipped in the common mounting line. - Otherwise, as depicted in a lower drawing of
FIG. 5B , instead of the light reflectiveresin layer portion 30 x, ametal paste layer 32 formed of the metal paste material such as a silver paste, or the like may be employed. That is, the metal paste material is coated partially to the side of the light path conversion inclined surface S on both ends of theoptical waveguide 20 by the dispenser, and themetal paste layer 32 is formed by sintering the metal paste material, and themetal paste layer 32 may be utilized as the light path conversion mirror M. - The metal paste material is formed by dispersing the metal particles into the resin such as epoxy resin, or the like. And the metal particles contact each other by sintering the metal paste material, and thus the
metal paste layer 32 formed of the metal layer is obtained. The gray/white systemmetal paste layer 32 such as a silver paste layer, a nickel paste layer, a palladium paste layer, or the like has a high reflectance, and can be preferably utilized as the light path conversion mirror M. - The
metal paste layer 32 can be formed easily by using the dispenser that is already equipped in the common mounting line and coats the silver paste, or the like used in mounting. - In the following steps, as depicted in the upper drawing of
FIG. 5B , an example in which the light reflectiveresin layer portion 30 x is used as the light path conversion mirror M will be explained hereunder. - Then, as depicted in
FIG. 5C , a photosensitive solder resist 26 (insulating resin layer) is formed on thewiring substrate 10 and theoptical waveguide 20. Then, as depicted inFIG. 6A , the via holes VH each reaches the upper connection pad C1 on both end sides of thewiring substrate 10 are formed by exposing/developing the solder resist 26. - At this time, simultaneously, a light transmitting
opening portion 26 a is formed in the solder resist 26 on the light path conversion inclined surface S of theoptical waveguide 20. The solder resist 26 is illustrated as the insulating resin layer, but various resin layers can be used. - Then, as depicted in
FIG. 6B , according to the same method as the first embodiment, a copper plating layer is formed in the via holes VH in the solder resist 26 respectively, and thus the electrode pads P like a post connected to the upper connection pad C1 respectively are obtained. - Then, as depicted in
FIG. 6C , like the first embodiment, theconnection terminals 40 b of thelight emitting element 40, which is optically coupled to the light path conversion inclined surface S on one end side of theoptical waveguide 20, are connected to the electrode pads P on one end side of thewiring substrate 10. - Also, like the first embodiment, the
connection terminals 42 b of thelight receiving element 42, which is optically coupled to the light path conversion inclined surface S on the other end side of theoptical waveguide 20, are connected to the electrode pads P on the other end side of thewiring substrate 10. - After this, as depicted in
FIG. 7 , like the first embodiment, theunderfill resin 44 is filled into clearances located under thelight emitting element 40 and thelight receiving element 42 respectively. Theunderfill resin 44 is formed of the identical resin with the resin material of thecore portion 22 or thecladding portion 24. - With the above, an optical waveguide device 2 of the second embodiment can be obtained.
- As depicted in
FIG. 7 , in the optical waveguide device 2 of the second embodiment, the light reflectiveresin layer portion 30 x is formed partially only on the side surface of the light path conversion inclined surface S of theoptical waveguide 20 to contact the light path conversion inclined surface S. Also, the solder resist 26 (insulating resin layer) is formed on thewiring substrate 10 and theoptical waveguide 20. - The via holes VH each reaches the upper connection pad C1 on both end sides of the
wiring substrate 10 are provided in the solder resist 26 respectively. The electrode pad P is filled in the via holes VH respectively. Also, the light transmittingopening portion 26 a is provided in the solder resist 26 located over the light path conversion inclined surface S on both ends of theoptical waveguide 20 respectively. - Also, the
connection terminal 40 b of thelight emitting element 40, which is optically coupled to the light path conversion inclined surface S on one end side of theoptical waveguide 20, is connected the electrode pad P on one end side of thewiring substrate 10 and is mounted thereon. Also, theconnection terminal 42 b of thelight receiving element 42, which is optically coupled to the light path conversion inclined surface S on the other end side of theoptical waveguide 20, is connected the electrode pad P on the other end side of thewiring substrate 10 and is mounted thereon. Theunderfill resin 44 is filled in the clearances located under thelight emitting element 40 and thelight receiving element 42 respectively. - In
FIG. 8 , as depicted in a lower drawing of aboveFIG. 5B , anotheroptical waveguide device 2 a using themetal paste layer 32 as the light path conversion mirror M is illustrated. - As depicted in
FIG. 8 , in theoptical waveguide device 2 a, themetal paste layer 32 is formed instead of the light reflectiveresin layer portion 30 x in the optical waveguide device 2 inFIG. 7 . Themetal paste layer 32 is formed partially only on the side surface of the light path conversion inclined surface S on both ends of theoptical waveguide 20 to contact the light path conversion inclined surface S. Other elements of theoptical waveguide device 2 a inFIG. 8 are similar to those of the optical waveguide device 2 inFIG. 7 . - The
optical waveguide devices 2, 2 a of the second embodiment can achieve the similar advantages to those in theoptical waveguide device 1 of the first embodiment. In addition to this, in the second embodiment, the light reflectiveresin layer portion 30 x or themetal paste layer 32 is formed partially only on the side surface of the light path conversion inclined surface S on both ends of theoptical waveguide 20 to constitute the light path conversion mirror M. - By this matter, even when the light reflective resin is expensive, the solder resist 26 which is relatively inexpensive can be used in other portions. Therefore, a reduction in cost can be attained more than the case where the light reflective resin is formed over the whole surface of the
wiring substrate 10. Also, in the case that themetal paste layer 32 is used, since themetal paste layer 32 may be formed only on the parts where the light path conversion mirror M is arranged, a reduction in cost can be attained similarly. -
FIGS. 9A to 9C andFIG. 10 are sectional views depicting a method of manufacturing an optical waveguide device according to a third embodiment. A feature of the third embodiment resides in that the light reflective resin layer is utilized not only as the light path conversion mirror but also as the adhesive agent which is used to bond the optical waveguide to the wiring substrate. - In the third embodiment, the same reference symbols are affixed to the same steps and the same elements as those in the first embodiment, and their explanation will be omitted herein.
- As depicted in
FIG. 9A , likeFIG. 1A in the first embodiment, thewiring substrate 10 onto which theoptical waveguide 20 is bonded is prepared. Then, a liquid lightreflective resin material 30 y is formed in the area, which corresponds to the whole area of theoptical waveguide 20, on thewiring substrate 10 by the screen printing, or the like. Then, the lightreflective resin material 30 y is brought into a semi-cured state by applying the pre-curing. - Then, as depicted in
FIG. 9B , theoptical waveguide 20 is pressed into the lightreflective resin material 30 y such that the lightreflective resin material 30 y of the semi-cured state contacts the light path conversion inclined surface S on both ends of theoptical waveguide 20. Then, the lightreflective resin material 30 y of a semi-cured state is cured by applying the main curing, and thus the lightreflective resin layer 30 is obtained. - At this time, the light
reflective resin layer 30 located under theoptical waveguide 20 functions as the adhesive agent which bonds theoptical waveguide 20 to thewiring substrate 10 in the step of curing. Then, the lightreflective resin layer 30 which contacts the light path conversion inclined surface S on both ends of theoptical waveguide 20 functions as the light path conversion mirror M respectively. - In the third embodiment, the light
reflective resin layer 30 can also be formed easily by the resin screen printing machine which is already equipped in the common mounting line, or the like. - Then, as depicted in
FIG. 9C , the solder resist 26 (insulating resin layer) is formed by the same method as the second embodiment. In the solder resist 26, the via holes VH each reaches the upper connection pad C1 on both end sides of thewiring substrate 10 and the light transmittingopening portion 26 a arranged over the light path conversion inclined surface S are provided. Then, the electrode pad P like a post is formed in the via holes VH in the solder resist 26 by the same method as the first embodiment. - Then, as depicted in
FIG. 10 , like the first embodiment, theconnection terminal 40 b of thelight emitting element 40 which is optically coupled to the light path conversion inclined surface S on one end side of theoptical waveguide 20 is connected to the electrode pad P on one end side of thewiring substrate 10. Also, theconnection terminal 42 b of thelight receiving element 42 which is optically coupled to the light path conversion inclined surface S on the other end side of theoptical waveguide 20 is connected to the electrode pad P on the other end side of thewiring substrate 10. - Then, the
underfill resin 44 is filled into the clearances located under thelight emitting element 40 and thelight receiving element 42 respectively. - With the above, an optical waveguide device 3 of the third embodiment can be obtained.
- As depicted in
FIG. 10 , in the optical waveguide device 3 of the third embodiment, theoptical waveguide 20 is bonded onto thewiring substrate 10 by the lightreflective resin layer 30 which functions as the adhesive agent. The lightreflective resin layer 30 is formed to extend from the lower side of theoptical waveguide 20 to the side of the light path conversion inclined surface S located on both ends. The lightreflective resin layer 30 formed on both ends of theoptical waveguide 20 contacts the light path conversion inclined surface S of theoptical waveguide 20, and functions as the light path conversion mirror M respectively. - Other configurations of the optical waveguide device 3 in
FIG. 10 are similar to those of the optical waveguide device 2 (FIG. 7 ) in the second embodiment. - The optical waveguide device 3 in the third embodiment can achieve the similar advantages to those of the
optical waveguide devices 1, 2 of the first and second embodiments. Also, in the third embodiment, theadhesive agent 18 for bonding theoptical waveguide 20 to thewiring substrate 10 is not used, and the lightreflective resin layer 30 is also used as the adhesive agent. As a result, the steps can be simplified more than the first and second embodiments, and a further reduction in cost can be achieved. -
FIGS. 11A to 11C andFIG. 12 are sectional views depicting a method of manufacturing an optical waveguide device according to a fourth embodiment. A feature of the fourth embodiment resides in that the metal paste layer is utilized not only as the light path conversion mirror but also as the adhesive agent which bonds the optical waveguide to the wiring substrate. In the fourth embodiment, the same reference symbols are affixed to the same steps and the same elements as those in the first embodiment, and their explanation will be omitted herein. - As depicted in
FIG. 11A , likeFIG. 1B in the first embodiment, thewiring substrate 10 to which theoptical waveguide 20 is to be bonded is prepared. Then, ametal paste material 32 a such as a silver paste, or the like is formed in the area, which corresponds to the whole area ofoptical waveguide 20 on thewiring substrate 10, by the screen printing, or the like. - Then, as depicted in
FIG. 11B , theoptical waveguide 20 is pressed into themetal paste material 32 a such that themetal paste material 32 a contacts the light path conversion inclined surface S of theoptical waveguide 20. Then, themetal paste layer 32 is obtained by curing themetal paste material 32 a by means of sintering. - At this time, the
metal paste material 32 a located under theoptical waveguide 20 functions as the adhesive agent, which bonds theoptical waveguide 20 to thewiring substrate 10, in the step of curing. Then, themetal paste layer 32 which contacts the light path conversion inclined surface S on both sides of theoptical waveguide 20 functions as the light path conversion mirror M respectively. - In the fourth embodiment, the
metal paste layer 32 can be formed easily by the screen printing machine which is already equipped in the common mounting line, or the like, for forming a silver paste, or the like. - Then, as depicted in
FIG. 11C , the solder resist 26 (insulating resin layer) is formed by the similar method to the second embodiment. In the solder resist 26, the via holes VH each reaches the upper connection pad C1 of thewiring substrate 10 and the light transmittingopening portion 26 a arranged over the light path conversion inclined surface S are provided. - Then, the electrode pad P like a post is formed in the via holes VH in the solder resist 26 by the similar method to the first embodiment.
- Then, as depicted in
FIG. 12 , like the first embodiment, theconnection terminal 40 b of thelight emitting element 40, which is optically coupled to the light path conversion inclined surface S on one end side of theoptical waveguide 20, is connected to the electrode pad P on one end side of thewiring substrate 10. Also, theconnection terminal 42 b of thelight receiving element 42, which is optically coupled to the light path conversion inclined surface S on the other end side of theoptical waveguide 20, is connected to the electrode pad P on the other end side of thewiring substrate 10. - Then, the
underfill resin 44 is filled into the clearances located under thelight emitting element 40 and thelight receiving element 42 respectively. - With the above, an
optical waveguide device 4 of the fourth embodiment can be obtained. - As depicted in
FIG. 12 , in theoptical waveguide device 4 of the fourth embodiment, theoptical waveguide 20 is bonded onto thewiring substrate 10 by themetal paste layer 32 which functions as the adhesive agent. Themetal paste layer 32 is formed to extend from the lower side of theoptical waveguide 20 to the side of the light path conversion inclined surface S on both ends. Also, themetal paste layer 32 which contacts the light path conversion inclined surface S of theoptical waveguide 20 functions as the light path conversion mirror M. - Other elements of the
optical waveguide device 4 inFIG. 12 are similar to those of the optical waveguide device 2 (FIG. 7 ) in the second embodiment. - The optical waveguide device 3 in the fourth embodiment can achieve the similar advantages to those of the
optical waveguide devices 1, 2 of the first and second embodiments. Also, in the fourth embodiment, theadhesive agent 18 for bonding theoptical waveguide 20 to thewiring substrate 10 is not used, and themetal paste layer 32 is also used as the adhesive agent. As a result, the steps can be simplified more than theoptical waveguide device 2 a (FIG. 8 ) in the second embodiment, and a further reduction in cost can be achieved. - All examples and conditional language recited herein are intended for pedagogical purpose to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relates to a showing of the superiority and interiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-271837 | 2009-11-30 | ||
JP2009271837A JP5313849B2 (en) | 2009-11-30 | 2009-11-30 | Optical waveguide device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110129182A1 true US20110129182A1 (en) | 2011-06-02 |
US8903203B2 US8903203B2 (en) | 2014-12-02 |
Family
ID=44068975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/946,198 Active 2032-09-24 US8903203B2 (en) | 2009-11-30 | 2010-11-15 | Optical waveguide device and method of manufacturing the same |
Country Status (2)
Country | Link |
---|---|
US (1) | US8903203B2 (en) |
JP (1) | JP5313849B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013152287A (en) * | 2012-01-24 | 2013-08-08 | Hitachi Cable Ltd | Optical module and manufacturing method of the same |
US20130259421A1 (en) * | 2012-03-30 | 2013-10-03 | Fujitsu Limited | Method of manufacturing optical waveguide device and optical waveguide device |
US20150160412A1 (en) * | 2013-03-05 | 2015-06-11 | Ronald Steven Cok | Imprinted multi-level optical circuit structure |
US20170146741A1 (en) * | 2015-11-20 | 2017-05-25 | International Business Machines Corporation | Optical device with precoated underfill |
US20170285284A1 (en) * | 2014-10-24 | 2017-10-05 | Nitto Denko Corporation | Opto-electric hybrid board and method of manufacturing same |
US10386586B2 (en) * | 2016-12-22 | 2019-08-20 | Renesas Electronics Corporation | Semiconductor device and manufacturing method thereof |
US12025831B2 (en) * | 2021-02-18 | 2024-07-02 | Cisco Technology, Inc. | End-face coupling structures within electrical backend |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013003224A (en) * | 2011-06-14 | 2013-01-07 | Shinko Electric Ind Co Ltd | Optical waveguide, manufacturing method thereof, and optical waveguide device |
KR101405611B1 (en) | 2012-05-30 | 2014-06-10 | 엘지이노텍 주식회사 | Optical Printed Circuit Board and Fabricating method of the same |
JP6105254B2 (en) * | 2012-10-29 | 2017-03-29 | 新光電気工業株式会社 | Optical waveguide laminated wiring board, optical module, and optical waveguide laminated wiring board manufacturing method |
JP6235878B2 (en) * | 2013-11-25 | 2017-11-22 | 新光電気工業株式会社 | Optical waveguide device and manufacturing method thereof |
DE102018105080A1 (en) * | 2018-03-06 | 2019-09-12 | Osram Opto Semiconductors Gmbh | SEMICONDUCTOR LASER |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7050691B2 (en) * | 2002-09-20 | 2006-05-23 | Toppan Printing Co., Ltd. | Optical waveguide and method of manufacturing the same |
US7091057B2 (en) * | 2003-12-19 | 2006-08-15 | Agency For Science, Technology And Research | Method of making a single-crystal-silicon 3D micromirror |
US20060215982A1 (en) * | 2005-03-23 | 2006-09-28 | Fuji Xerox Co., Ltd. | Optical member, manufacturing method of the optical member, waveguide substrate, and photo-electric integrated substrate |
US20080131050A1 (en) * | 2006-11-30 | 2008-06-05 | Shinko Electric Industries Co., Ltd. | Manufacturing method of optical-electrical substrate and optical-electrical substrate |
US20090016671A1 (en) * | 2004-10-22 | 2009-01-15 | Ibiden Co., Ltd | Multilayer printed circuit board |
US20090065132A1 (en) * | 2007-09-05 | 2009-03-12 | Shinko Electric Industries Co., Ltd. | Method of forming optical waveguide |
US20090190878A1 (en) * | 2008-01-24 | 2009-07-30 | Shinko Electric Industries Co., Ltd. | Optical/electrical hybrid substrate and method of manufacturing the same |
US20100021107A1 (en) * | 2008-07-24 | 2010-01-28 | Sony Corporation | Optical device |
US20100061679A1 (en) * | 2005-12-02 | 2010-03-11 | Kyocera Corporation | Optical waveguide member, optical wiring board, optical wiring module and method for manufacturing optical waveguide member and optical wiring board |
US20100065309A1 (en) * | 2006-12-26 | 2010-03-18 | Mitsui Chemicals, Inc. | Electrical and optical hybrid board and manufacturing method of the same |
US20100142904A1 (en) * | 2008-12-09 | 2010-06-10 | Shinko Electric Industries Co., Ltd. | Optical waveguide, optical waveguide mounting substrate, and light transmitting and receiving device |
US20110243495A1 (en) * | 2008-12-22 | 2011-10-06 | Panasonic Electric Works Co., Ltd., | Method for forming mirror-reflecting film in optical wiring board, and optical wiring board |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09214003A (en) * | 1996-01-31 | 1997-08-15 | New Japan Radio Co Ltd | Optical semiconductor device and its fabrication method |
JP2002365457A (en) | 2001-06-06 | 2002-12-18 | Sony Corp | Optical waveguide, method for manufacturing the same, and optical signal transmission device |
JP4668049B2 (en) * | 2005-12-02 | 2011-04-13 | 京セラ株式会社 | Optical wiring module |
JP2008033217A (en) * | 2006-07-06 | 2008-02-14 | Kuraray Co Ltd | Reflection type screen and front projection type display system |
JP4538484B2 (en) | 2006-10-24 | 2010-09-08 | 太陽インキ製造株式会社 | Photocurable thermosetting resin composition and printed wiring board using the same |
JP2008250007A (en) | 2007-03-30 | 2008-10-16 | Fuji Xerox Co Ltd | Optoelectronic circuit board |
JP4674596B2 (en) * | 2007-06-04 | 2011-04-20 | 富士ゼロックス株式会社 | Method for manufacturing optoelectronic circuit board |
-
2009
- 2009-11-30 JP JP2009271837A patent/JP5313849B2/en active Active
-
2010
- 2010-11-15 US US12/946,198 patent/US8903203B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7289713B2 (en) * | 2002-09-20 | 2007-10-30 | Toppan Printing Co., Ltd. | Optical waveguide and method of manufacturing the same |
US7050691B2 (en) * | 2002-09-20 | 2006-05-23 | Toppan Printing Co., Ltd. | Optical waveguide and method of manufacturing the same |
US7091057B2 (en) * | 2003-12-19 | 2006-08-15 | Agency For Science, Technology And Research | Method of making a single-crystal-silicon 3D micromirror |
US20090016671A1 (en) * | 2004-10-22 | 2009-01-15 | Ibiden Co., Ltd | Multilayer printed circuit board |
US20060215982A1 (en) * | 2005-03-23 | 2006-09-28 | Fuji Xerox Co., Ltd. | Optical member, manufacturing method of the optical member, waveguide substrate, and photo-electric integrated substrate |
US20100061679A1 (en) * | 2005-12-02 | 2010-03-11 | Kyocera Corporation | Optical waveguide member, optical wiring board, optical wiring module and method for manufacturing optical waveguide member and optical wiring board |
US20080131050A1 (en) * | 2006-11-30 | 2008-06-05 | Shinko Electric Industries Co., Ltd. | Manufacturing method of optical-electrical substrate and optical-electrical substrate |
US20100065309A1 (en) * | 2006-12-26 | 2010-03-18 | Mitsui Chemicals, Inc. | Electrical and optical hybrid board and manufacturing method of the same |
US20090065132A1 (en) * | 2007-09-05 | 2009-03-12 | Shinko Electric Industries Co., Ltd. | Method of forming optical waveguide |
US20090190878A1 (en) * | 2008-01-24 | 2009-07-30 | Shinko Electric Industries Co., Ltd. | Optical/electrical hybrid substrate and method of manufacturing the same |
US20100021107A1 (en) * | 2008-07-24 | 2010-01-28 | Sony Corporation | Optical device |
US20100142904A1 (en) * | 2008-12-09 | 2010-06-10 | Shinko Electric Industries Co., Ltd. | Optical waveguide, optical waveguide mounting substrate, and light transmitting and receiving device |
US8369675B2 (en) * | 2008-12-09 | 2013-02-05 | Shinko Electric Industries Co., Ltd. | Optical waveguide, optical waveguide mounting substrate, and light transmitting and receiving device |
US20110243495A1 (en) * | 2008-12-22 | 2011-10-06 | Panasonic Electric Works Co., Ltd., | Method for forming mirror-reflecting film in optical wiring board, and optical wiring board |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013152287A (en) * | 2012-01-24 | 2013-08-08 | Hitachi Cable Ltd | Optical module and manufacturing method of the same |
US20130259421A1 (en) * | 2012-03-30 | 2013-10-03 | Fujitsu Limited | Method of manufacturing optical waveguide device and optical waveguide device |
US8861903B2 (en) * | 2012-03-30 | 2014-10-14 | Fujitsu Limited | Method of manufacturing optical waveguide device and optical waveguide device |
US20150160412A1 (en) * | 2013-03-05 | 2015-06-11 | Ronald Steven Cok | Imprinted multi-level optical circuit structure |
US9223087B2 (en) * | 2013-03-05 | 2015-12-29 | Eastman Kodak Company | Imprinted multi-level optical circuit structure |
US20170285284A1 (en) * | 2014-10-24 | 2017-10-05 | Nitto Denko Corporation | Opto-electric hybrid board and method of manufacturing same |
US10353161B2 (en) * | 2014-10-24 | 2019-07-16 | Nitto Denko Corporation | Opto-electric hybrid board and method of manufacturing same |
US20170146741A1 (en) * | 2015-11-20 | 2017-05-25 | International Business Machines Corporation | Optical device with precoated underfill |
US10386586B2 (en) * | 2016-12-22 | 2019-08-20 | Renesas Electronics Corporation | Semiconductor device and manufacturing method thereof |
US12025831B2 (en) * | 2021-02-18 | 2024-07-02 | Cisco Technology, Inc. | End-face coupling structures within electrical backend |
Also Published As
Publication number | Publication date |
---|---|
JP2011113039A (en) | 2011-06-09 |
US8903203B2 (en) | 2014-12-02 |
JP5313849B2 (en) | 2013-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8903203B2 (en) | Optical waveguide device and method of manufacturing the same | |
KR100546856B1 (en) | Light reception/emission device embeded photoelectricity mixed loading wiring module and its manufacturing method and its mounting body | |
US8041159B2 (en) | Optical/electrical hybrid substrate and method of manufacturing the same | |
JP4457545B2 (en) | OPTICAL / ELECTRIC WIRING BOARD, MOUNTING BOARD, AND OPTOELECTRIC WIRING BOARD MANUFACTURING METHOD | |
KR101435092B1 (en) | Optical/electrical hybrid substrate | |
JP5262118B2 (en) | Manufacturing method of optical module | |
US9081159B2 (en) | Optical waveguide and method of manufacturing the same, and optical waveguide device | |
US7627210B2 (en) | Manufacturing method of optical-electrical substrate and optical-electrical substrate | |
US8737781B2 (en) | Optical waveguide and method of manufacturing the same, and optical waveguide device | |
JP5493626B2 (en) | Opto-electric hybrid board and electronic equipment | |
US9201203B2 (en) | Photoelectric composite substrate and method of manufacturing the same | |
US20210315108A1 (en) | Integrated Electro-Optical Flexible Circuit Board | |
US8693815B2 (en) | Optoelectronic composite substrate and method of manufacturing the same | |
JP2007199657A (en) | Optical wiring module | |
JP2004163722A (en) | Component-incorporated substrate | |
JP6084027B2 (en) | Optical waveguide device and manufacturing method thereof | |
JP4227471B2 (en) | Method for manufacturing photoelectric mixed wiring module with built-in light receiving / emitting element | |
TWI246612B (en) | Structure having embedded optical electronic components | |
US8611715B2 (en) | Optical waveguide and method of manufacturing the same, and optical waveguide device | |
JP2011044737A (en) | Optical wiring module | |
JP2007094296A (en) | Optical waveguide device and its manufacturing method | |
JP2022191844A (en) | semiconductor package | |
JP4307902B2 (en) | Optical element mounting package, opto-electric composite mounting wiring board | |
JP6084024B2 (en) | Optical waveguide device and manufacturing method thereof | |
JP5407829B2 (en) | Opto-electric hybrid board, optical module, opto-electric hybrid board manufacturing method, and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHINKO ELECTRIC INDUSTRIES CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAMOTO, TAKANORI;YANAGISAWA, KENJI;YAMAMOTO, KAZUNAO;AND OTHERS;REEL/FRAME:025391/0300 Effective date: 20101029 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |